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Natural language processing has achieved great success in a wide range of ap-

plications, producing both commercial language services and open-source language

tools. However, most methods take a static or batch approach, assuming that the

model has all information it needs and makes a one-time prediction. In this disser-

tation, we study dynamic problems where the input comes in a sequence instead of

all at once, and the output must be produced while the input is arriving. In these

problems, predictions are often made based only on partial information. We see this

dynamic setting in many real-time, interactive applications. These problems usually

involve a trade-off between the amount of input received (cost) and the quality of the

output prediction (accuracy). Therefore, the evaluation considers both objectives

(e.g., plotting a Pareto curve).

Our goal is to develop a formal understanding of sequential prediction and

decision-making problems in natural language processing and to propose efficient

solutions. Toward this end, we present meta-algorithms that take an existent batch

model and produce a dynamic model to handle sequential inputs and outputs. We



build our framework upon theories of Markov Decision Process (MDP), which allows

learning to trade off competing objectives in a principled way. The main machine

learning techniques we use are from imitation learning and reinforcement learning,

and we advance current techniques to tackle problems arising in our settings. We

evaluate our algorithm on a variety of applications, including dependency parsing,

machine translation, and question answering. We show that our approach achieves a

better cost-accuracy trade-off than the batch approach and heuristic-based decision-

making approaches.

We first propose a general framework for cost-sensitive prediction, where dif-

ferent parts of the input come at different costs. We formulate a decision-making

process that selects pieces of the input sequentially, and the selection is adaptive to

each instance. Our approach is evaluated on both standard classification tasks and

a structured prediction task (dependency parsing). We show that it achieves similar

prediction quality to methods that use all input, while inducing a much smaller cost.

Next, we extend the framework to problems where the input is revealed incremen-

tally in a fixed order. We study two applications: simultaneous machine translation

and quiz bowl (incremental text classification). We discuss challenges in this set-

ting and show that adding domain knowledge eases the decision-making problem.

A central theme throughout the chapters is an MDP formulation of a challenging

problem with sequential input/output and trade-off decisions, accompanied by a

learning algorithm that solves the MDP.
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Chapter 1: Introduction

Natural language processing (NLP) focuses on “static” problems where the

model has all information it needs and makes a one-time prediction. For example,

classifying a document after reading everything in it or translating a sentence after

seeing all words of it. This thesis tackles “dynamic” problems where the input ar-

rives sequentially, and outputs are required before all pieces of the input are in. This

is important for two reasons. First, real-time applications often have a budget (time

or money constraint), and a dynamic solver that works with a variable amount of

information enables a cost-accuracy trade-off. Second, interactive applications re-

quire systems that respond in real time even with partial information. For instance,

in simultaneous interpretation, translations must be generated before an utterance

is finished; in robotic navigation, localization may be needed before the environment

is fully sensed. In these situations, we must make decisions online adaptive to any

information obtained so far.

We present a general framework based on Markov Decision Process (MDP) for

dynamic problems in NLP. Unlike most prior statistical language learning methods,

the contribution of this thesis is a meta-algorithm that works with various mod-

els developed for different task—e.g., dependency parsing, machine translation or

1
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Figure 1.1: Overview of the dynamic system.

question answering— rather than a new model or a new estimation method. An

overview of our approach is shown in Figure 1.1. Given an existing batch system, we

learn a controller that interacts with it sequentially. The controller decides which

piece of the input to feed the batch model at each step and when to generate out-

put from the batch model as a prediction. Its novelty lies in the formulation of a

sequential decision-making framework (Section 1.3) that unrolls a single, static pre-

diction into a sequence of partial predictions, without modifying existing models.

This additional dimension in time allows us to learn a trade-off between cost and

accuracy.

1.1 Dynamism in Natural Language Processing

Recent years have witnessed great success of statistical NLP in a wide range

of areas, e.g., speech recognition, machine translation, and information extraction,

mostly due to the availability of large speech and text data. At its core, a sta-

tistical system maps an input (e.g., a sentence, a document) to an output (e.g.,

a syntactic structure, a document category). In a typical NLP setting, this map-

ping is performed offline, meaning that the inputs are prepared in a batch and are
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processed in complete units. However, real-time applications usually have stringent

time-constraints and/or operate in an interactive environment, where such batch

processing can be impractical.

Consider a chatbot that relies on core NLP techniques. To fully understand

a talking human, many sub-tasks need to be solved. For example, speech recogni-

tion, parsing, sentiment analysis, sarcasm detection, and even facial expression and

gesture classification if visual systems are enabled. Performing all of these tasks

are expensive, especially when the human input becomes long. Fortunately, not all

tasks are necessary at all times. For example, if the human asks “How is the weather

today?”, which is a common, unambiguous question, we do not need nuanced anal-

ysis like sarcasm detection. Knowing the right information to seek at the right time

requires the bot to evaluate the current situation (e.g., a clear or vague message)

and make decisions adaptively—what additional information would be most helpful

for making a response at the moment.

In addition, when humans interact with a computer, their input is sequential—

we speak/type word by word—and sometimes dynamic—we pause, interrupt and

correct what we have said. Batch methods which wait for the entire input before

processing can cause unnecessary delay. They are also less responsive when the

input is changing (e.g., correction, topic diversion) because they passively wait for

the human to hit “Enter”. Therefore, we need dynamic methods that can process

sequentially revealed data and maintain a (partial) output throughout the inputting

period. In fact, commercial search engines such as Google search (Figure 1.2) have

adopted the same dynamic paradigm. As soon as you start typing in the input box,
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Figure 1.2: An example of dynamic information retrieval by Google.
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it auto-completes the partial query and shows you the search result; this process is

iterated whenever the input is updated.

Several lines (Dulac-Arnold, 2014; Benbouzid et al., 2012; Gao and Koller,

2011; Xu et al., 2013) of machine learning research have focused on tasks with

dynamic input. Despite the advances on speed-accuracy trade-off in the machine

learning community, there is much less work in dynamic, sequential settings in NLP.

Such problems in NLP are more challenging because they are often structured and

need complex decoding compared to multi-class classification addressed in related

machine learning work. Given the burgeoning high-performance batch NLP tools

(e.g., Moses, 1 Stanford Core NLP tools, 2 Illinois NLP tools, 3), we are ready to

bridge the gap by taking them to the dynamic setting.

1.2 Sequential Acquire vs. Sequential Reveal

Sequential problems roughly fall into two categories depending on how the

input sequence is generated: (a) inputs come at different costs and are selected

sequentially for cost-sensitive prediction; (b) inputs come in sequentially in a fixed

order and early prediction is preferred despite insufficient information. A common

challenge in both categories is the conflict between information cost and prediction

quality. We characterize and give examples of the two types of problems below.
1http://www.statmt.org/moses/index.php?n=Main.HomePage
2http://nlp.stanford.edu/software/
3http://cogcomp.cs.illinois.edu/page/software/
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1.2.1 Sequential Acquire

Prediction relies on information such as sensor measurements, lab reports, and

retrieved knowledge. These pieces of information do not come cheap. In addition,

because of varying levels of difficulty or ambiguity among instances, different in-

stances of a problem often require a different amount of information to solve. To

reduce cost and adapt to various instances, a system must dynamically acquire the

information they need for decisions based on goals and current knowledge. Given a

time or expense budget, the system must also balance a trade-off between the cost

of acquiring more information (and reasoning about it) and the quality of the result.

In this setting, we have a set of available information to exploit. Our goal is to

learn a decision-maker that decides which information to acquire at each step and

when to stop (output the final prediction). Intuitively, recalling the chatbot exam-

ple, we want to use cheap information for easy instances and additional expensive

information only for hard instances; and we want to stop as soon as enough informa-

tion has been obtained. One NLP problem with costly information is dependency

parsing.

Dependency Parsing The goal of dependency parsing is to find the syntactic

structure of a sentence in the form of a dependency tree. Figure 1.3 shows the parse

tree for a sentence. Each arc of the tree represents a head-modifier relationship

between two words of the sentence. For example, in Figure 1.3, “This” is a modifier

of “time”. Similar to other structured prediction methods, statistical dependency
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.This time , the firms were ready$ head modifier

Figure 1.3: Dependency parse tree of an example sentence ($ represents the root).

parsing algorithms first compute a score for each potential parse tree and then out-

put the highest-scoring tree. Often myriads of features are needed to evaluate the

goodness of a potential parse tree. For example, given the sentence “I saw a bird”,

to decide whether “saw” is the head of “bird”, we can include features such as their

part-of-speech tags, word forms, morphology, distance, and various combinations of

these basic components. Most computation is spent on getting feature values (e.g.,

running a part-of-speech tagger, running a morphology analyzer, and matching reg-

ular expressions) and hashing the feature values (often strings) to feature indices.

However, some word pairs have an obvious head-modifier relationship, e.g., a deter-

miner and a noun close to each other like “a” and “bird” in the example sentence.

If we select features to compute only when needed at test time, we can resolve the

easy cases without spending time on more complex features.

1.2.2 Sequential Reveal

In some applications, the input is revealed incrementally, and we do not have

control over its arrival. Here the cost is time spent on waiting for more input,

because an early prediction is often desired (this will become clear in the examples
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below). Therefore, the model needs to decide when to output its prediction based on

the partial input. It may seem that the sequential-revealing task is a simpler version

of the above sequential-acquiring task, because we need not worry about what to

acquire and only need to decide when to output. However, without the flexibility

of selecting the piece of input most in need, we face more difficulty when predicting

with scarce information: instead of selecting a few informative features, we may be

given a few unhelpful ones. This results in a trade-off unbalanced towards accuracy.

We discuss such challenges in simultaneous interpretation and quiz bowl below.

Simultaneous Interpretation In a standard machine translation setting, the

system gets a complete sentence in the source language as input and produces its

translation in the target language. However, when two people speak with each other,

such batch translation would result in undesirable delay and hinder communication,

because waiting for an utterance to finish may take a long time. A better way

is to translate while the speaker is talking—the so-called simultaneous interpreta-

tion. It was invented during the Nuremberg Trials and has become a standard for

international meetings since then. Given a stream of speech, a simultaneous ma-

chine translation system must decide when to start/resume translating and when to

pause and wait for more input. The goal is to produce coherent translation while

minimizing translation latency.

Since translation must be produced given a partial input sentence, one problem

arises when translating between two languages with divergent word orders: The

system is not able to produce a legitimate translation due to missing syntactic
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Ich bin  mit dem Zug nach Ulm gefahren

I     am with the   train  to    Ulm  traveled

I              (......waiting......)            traveled by train to Ulm

German

Gloss

English

Figure 1.4: Large delay due to divergent word order in De-En translation.

constituents, and the translation has to be delayed until the missing constituents

are available. One example is translating from a head-final language (SOV) to a

head-initial (SVO) language, e.g., from German or Japanese to English. As shown in

Figure 1.4, the verb “traveled” comes at the end of the source German sentence, but

the target English sentence needs a verb immediately after the subject “I”. In such

cases, the translator has to wait for the necessary constituents which may appear at

the very end. In Chapter 5, we discuss how to alleviate this problem by predicting

the missing content and by reordering the target sentence.

Quiz Bowl Quiz bowl is a trivia game widely played in English-speaking coun-

tries between schools, with tournaments held most weekends. It is usually played

between two teams. Similar to Jeopardy!, a moderator reads the questions to play-

ers, and they score points by buzzing in first (often before the question is finished)

and answering the question correctly.4 To test the depth of one’s knowledge on a

subject, a question usually starts with obscure information and reveals more and

more obvious clues towards the end. One example question and its answer are shown

in Figure 1.5. Therefore, players face a speed-accuracy trade-off: while buzzing later

increases one’s chance of answering correctly, it also increases the risk of losing the

chance to answer to the opponent.
4A buzzer is used in quiz bowl to interrupt the question.
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With Leo Szilard, he invented a doubly-eponymous refrigerator with no
moving parts. He did not take interaction with neighbors into account when
formulating his theory of heat capacity, so Debye adjusted the theory for
low temperatures. His summation convention automatically sums repeated
indices in tensor products. His name is attached to the A and B coefficients
for spontaneous and stimulated emission, the subject of one of his multiple
groundbreaking 1905 papers. He further developed the model of statistics
sent to him by Bose to describe particles with integer spin. For 10 points,
who is this German physicist best known for formulating the special and
general theories of relativity? Answer: Albert Einstein

Figure 1.5: A quiz bowl question.

A quiz bowl bot should consist of a question-answering model that predicts

the answer given incremental text input, and a decision-making model that decides

when to buzz. Normally, we would train the decision-making model to buzz when

the question-answering model is most confident about the correct answer. However,

due to uncontrollable input order we have a similar challenge here: how to improve

performance when the question-answering model becomes confident only towards

the end of a question, in which cases a naive model is forced to answer very late.

One distinct characteristic of this problem is that decisions are made in a multiagent

environment: the opponents are also actively making decisions to compete with us.

In Chapter 6 we discuss adaptive strategies to exploit the opponent’s behavior.

1.3 A Dynamic Solver

We have seen a recurring pattern in sequential problems with dynamic input

from examples in the previous section: a sequence of decisions leading to a sequence

of predictions that incrementally builds up the final output. Toward this end, the

framework proposed in this thesis aims to address the following questions: (a) how
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current 
prediction

make 
decision

output 
prediction

update 
prediction

start

update 
input

stop

continue

task predictor
controller
I/O

Figure 1.6: Interaction between the task predictor and the controller.

to make the intermediate and final predictions; (b) what decisions to make and how

they affect the following input and prediction; (c) how to learn decision-making in an

interactive environment. This section provides high-level answers to these questions

and gives and overview of our dynamic solver.

Building a dynamic solver requires three components, each responding to one

question raised above:

• a task predictor that outputs predictions given (partial) inputs;

• a search space that defines how the problem is solved in a sequential manner;

• a controller that reacts to any change of the input and defines a path in the

search space leading to a solution.

For all tasks addressed in this thesis, there exists a solver for the static version of the

problem, and it is used as an off-the-shelf task predictor. The task predictor does

not necessarily deal with the fact that the input may be partial; it is used only as a

black box. The complication due to partial inputs is instead handled by the search
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space and the controller. The main advantage of separating this complication from

the task predictor is better compatibility of the framework and more freedom in

designing the search space. Our framework works with any task predictor without

being constrained by its design, since the interaction happens only at the I/O level.

We learn the solver by actively interacting with the environment (input/output).

Figure 1.6 shows the paradigm of algorithms proposed in this thesis. The input is

updated iteratively. After each update, the task predictor makes a new intermedi-

ate prediction. The controller then makes a decision about whether to terminate

the process; if not, it decides how to update the input based on past intermediate

predictions. During this decision-making process, both the task predictor and the

controller make predictions which are dependent on each other. It is useful to dif-

ferentiate between the two types of predictions: We refer to the output of the task

predictor as a (intermediate) prediction, and output of the controller as a decision

(e.g., continue or stop).

We assume that the task predictor is given or pre-trained. There is no con-

straint on the task predictor, thus its choice is problem-dependent. For example, a

convolutional neural network can be used for object recognition where predictions

are object classes; a maximum entropy classifier can be used for text classification

where predictions are text labels such as topics or sentiment. The only require-

ment is that the task predictor must be able to work with partial inputs. Handling

incomplete data is an area with extensive literature, e.g., feature imputation. We

do not address this (orthogonal) problem in particular. Instead, the task predictor

considers all inputs complete and operates in the same way as it does in standard
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settings.

The main tool we use to learn the controller is reduction-based imitation learn-

ing, which we describe in Chapter 2. The high-level idea is to have an expert

demonstrate the desired decisions to make in various situations and learn to mimic

the expert. The advantage of this approach is that given supervision from the ex-

pert, we can reduce it to a supervised learning problem and exploit recent advances

in this area. The disadvantage, of course, is that it requires an expert throughout

the training process. In our setting, the desired behavior is better, faster prediction.

Fortunately, in many NLP applications such an expert is easy to obtain as we will

explain in later chapters. In addition, recent imitation learning algorithms are able

to work with sub-optimal experts by better exploration (Chang et al., 2015).

1.4 Contribution

The primary contribution of this thesis is a meta-algorithm for converting an

existent batch model to a dynamic model that solves problems with sequential input.

Unlike prior approaches that rely on a particular prediction model or are crafted

for specific problems, we have a decision model dedicated to handling complication

resulted from incomplete inputs, and we keep the batch predictor untouched. This

separation enables better generalization and larger flexibility: there is much less

constraint when designing the search space (i.e., the sequential solution). Otherwise,

we usually need to modify the task predictor (e.g., a decoder) that is specifically

designed for a problem. In addition, we can quickly swap in a more advanced task
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predictor in future without changing the whole system.

We demonstrate the effectiveness of our framework on a variety of tasks, in-

cluding standard multiclass classification, structured prediction (dependency pars-

ing, simultaneous machine translation), and games (quiz bowl). We show that our

framework is flexible enough to adapt to the needs of different problems. New func-

tionality can be incorporated as an action to form a more complex search space.

New objectives can be encoded as the reward function, where users can specify a

desired trade-off between cost and accuracy. Performance can be further improved

by using batch models that are trained or fine-tuned to handle partial inputs.

In addition, we have investigated several previously under-explored areas. For

example, most work on dependency parsing (or more generally, on structured pre-

diction) focuses on better and faster decoding methods, but few studied the cost of

feature computation. Similarly, machine translation has largely focused on batch

translation at the sentence level. Although there exists work on translation at

the sub-sentence level based on speech segmentation, little work exploits linguistic

knowledge and strategies of human interpreters. Finally, we first explored human-

computer question-answering in a competitive setting—one step towards building

strategic dialog agent (e.g., for negotiation).

1.5 Beyond Natural Language Processing

Our work has applications in areas other than NLP as well. We briefly describe

some directions below.
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Generally speaking, sequential information selection is relevant to any task

where the input is costly. In cloud computing, we may need to collect logs from

each host to inspect operation of the distributed system (e.g., for debugging). These

logs are often huge structured files that are hard to analyze. Instead of tediously

examining everything in each log, a dynamic model can sequentially process from

coarse information to finer details, thus efficiently identifies dubious parts where the

problem may reside. Similarly, in the Internet of Things, the central system needs to

frequently collect sensor data from its nodes to examine the current status and send

commands. Instead of periodically collect data from all nodes, an energy-efficient

system would automatically decide when to pull the information in need and which

node to pull from given past information.

Another potential application is online education. With the success of massive

open online courses, there is an increasing need to develop personalized courses for

individual students. Given a large amount of data from user record, it is possible to

adapt the teaching plan to each student based on their recent feedback. For example,

we can learn a dynamic planner to decide which lecture or how much of the lecture

to show to a student given one’s current progress in the course. Besides learning

a good planner, another challenge in this problem is human-computer interaction:

how can we design an effective interface to communicate with students and collect

their feedback for training the planner.

A related sequential search problem in the field of programming languages is

program synthesis. We take a user specification as input and aim to transform that

into executable code. This is usually formulated as a constraint satisfaction problem:
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A candidate program is proposed and then tested by a verifier; given feedback from

the verifier, a new candidate program is generated and the process repeats until a

program passes the verifier. In our framework, this can be naturally framed as a

sequential decision-making problem. Instead of proposing the next program based

on search heuristics, we can learn to search in the program space more efficiently,

for example, it is possible to identify which part of the program to modify based on

the feedback, or to quickly prune unpromising search areas.

1.6 Roadmap

We begin by introducing machine learning background needed to understand

the remainder of this thesis (Chapter 2), followed by applications with sequentially

acquired and sequentially revealed inputs (Chapter 3 to 6). To coherently present

the thesis, we think it is helpful to discuss prior work related to an application in its

own chapter, instead of putting them all in a single chapter. Therefore, we include a

section of related work at the end of each application chapter. Chapter 7 concludes

with a summary and future work. The thesis proceeds as follows.

Chapter 2 introduces relevant background from machine learning. We start with

the MDP formulation of sequential decision-making problems and introduce

two main approaches for solving MDPs: reinforcement learning and imitation

learning. The focus of this chapter is a family of interactive imitation learning

algorithm based on learning reduction—DAgger (Dataset Aggregation) and

its variant AggreVaTe (Aggregate Values to Imitate), which forms the core
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learning algorithms for our model. We also describe the theoretical guarantee

of these algorithms.

Chapter 3 describes our sequential prediction framework in the simplest case, where

the model selects pieces of information sequentially to complete a supervised

classification task. We present results of dynamic feature selection on com-

mon multiclass classification datasets. We also propose a variant of DAgger

that tackles the learning problem when the expert is too good to mimic. This

chapter forms the basis of our method, which is adapted to more complex

problems in later chapters.

Chapter 4 extends the dynamic feature selection method introduced in the previ-

ous Chapter to structured prediction. As mentioned in Section 1.2.1, feature

computation is expensive in dependency parsing. We present how dynamic

feature selection can be done jointly with inference in minimum-spanning tree

dependency parsing. We show a speedup of parsing time across seven lan-

guages. This work is among the first to apply feature selection to structured

problems for test-time efficiency.

Chapter 5 begins applications where the input is sequentially revealed. This chap-

ter focuses on simultaneous machine translation. We first describe challenges

specific to this domain due to divergent word order (e.g., see Section 1.2.2).

We then present two methods to alleviate the problem, including prediction

of future content and target-side word reordering. This work is the first to

combine machine learning innovation with linguistic knowledge and human

strategies for machine interpretation.
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Chapter 6 presents another application with sequentially revealed input—quiz

bowl. It is both an incremental text classification task and a two-player zero-

sum game which involves interaction with another human opponent. Given

the two perspectives, we experiment with two approaches: imitation learning

and reinforcement learning with opponent modeling. This is the first work

that directly learns to compete with humans in a text-based game.

Chapter 7 summarizes the results presented in this thesis and proposes future

directions for these methods.
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Chapter 2: Machine Learning Foundations for Sequential Decision-

Making

Sequential prediction is challenging because the training data are dynamic.

The current decision results from previous decisions and will affect future inputs.

Since data are generated online, one big challenge in learning in a dynamic, sequen-

tial process is to make sure that distributions of the training data and the test data

stay as close as possible. This chapter covers machine learning background necessary

for understanding the problem formulation and learning algorithms in this thesis.

We start by introducing the basics of Markov decision process (MDP), a typical

model for sequential decision-making. We use it to formulate the sequential process

in many of our algorithms. Next, we describe common algorithms for solving MDPs

with a focus on imitation learning (or learning from demonstrations). Finally, we

present the main learning method we use: a family of imitation learning algorithms

based on interaction with the environment and a teacher.

2.1 Markov Decision Process

The Markov decision process (MDP) is a concise mathematical model describ-

ing an environment that responds stochastically to actions conducted by a decision-
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maker. MDPs were first studied at least as early as the 1950s (Bellman, 1957) and

have been widely used in robotic systems.

An MDP is defined by a 5-tuple (S,A, T, R, γ). S is the set of all possible

states (s ∈ S) of the environment, and A is the set of actions (a ∈ A) that an agent

may take to interact with the environment. The transition function T defines the

dynamics of the environment: T : S × A → Pr(S). We use T (s, a, s′) to denote

the probability of transitioning to state s′ after executing action a in state s. The

transition function assumes the Markov property: the conditional probability dis-

tribution of future states depends only on the current state. The reward function

R quantifies the goodness of an action in a certain state. R(s, a, s′) denotes the

immediate reward of taking a in s and moving into s′; we use rt as a shorthand for

R(st, at, st+1).

For example, our problem of sequential information acquisition can be formu-

lated as an MDP. Suppose we want to select features adaptively at test time to

reduce computation cost. The state contains selected features and past predictions,

and the action space is the set of all unused features. Once a new feature is selected,

we transit to the next state deterministically: the new feature is added to the state

and the intermediate prediction is updated.

An agent in an MDP observes the state and interacts with the environment

by taking actions and receiving rewards until a terminal state is reached. A policy

π defines how an agent acts in an MDP, mapping a state to an action: π : S → A.

The policy can be either a deterministic function of the state, where a = π(s), or a

stochastic distribution over actions, where a ∼ π(·|s). We consider only determinis-
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tic policies in this thesis.

Given an MDP, our goal is to find a policy that maximizes the agent’s ex-

pected discounted cumulative reward over a potentially infinite task horizon. The

expected reward is defined by Eat∼π,st+1∼T [∑∞t=0 γ
tR(st, at, st+1)], where γ ∈ [0, 1) is

the discount factor so that future rewards are weighted down accordingly. In this

thesis, all of our tasks have a finite horizon. In addition, to simplify terminology,

we refer to the expected discounted cumulative reward as future reward thereafter.

Most algorithms for solving MDPs are based on estimating value functions,

which evaluate how desirable it is for an agent to be in a given state. Here “desirable”

is defined in terms of future reward. Formally, the value of state s under policy π is

V π(s) = E
[ ∞∑
k=0

γkrt+k+1|st = s

]
. (2.1)

We can further define the value of taking action a in state s following policy π:

Qπ(s, a) = E
[ ∞∑
k=0

γkrt+k+1|st = s, at = a

]
. (2.2)

We call Qπ the action-value function or Q-function. One important property of

these value functions is that they can be defined recursively, which is given by the

Bellman Equation (Bellman, 1957):

Qπ(s, a) =
∑
s′
T (s, a, s′) [R(s, a, s′) + γV π(s′)] (2.3)

V π(s) = Ea∼π [Qπ(s, a)] (2.4)
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In addition, the optimal value functions satisfy:

Q∗(s, a) =
∑
s′
T (s, a, s′)

[
R(s, a, s′) + γmax

a′∈A
Q∗(s′, a′)

]
(2.5)

V ∗(s) = max
a∈A

Q∗(s, a) (2.6)

and the optimal policy is:

π∗(s) = arg min
a∈A

Q∗(s, a) (2.7)

Suppose we know the transition function T and the reward function R, and

there are finitely many states and actions, we can solve the MDP via linear pro-

gramming or dynamic programming based on the above recursive relationships, e.g.,

value iteration (Bellman, 1957), policy iteration (Howard, 1960) and so on. How-

ever, in real-world applications, the model dynamics are often unknown and we often

face large state and action spaces. In these cases, the exact methods are no longer

feasible. Instead, we turn to approximate methods based on experience (sampled

trajectories) rather than an MDP model. These methods (e.g., Q-learning (Watkins

and Dayan, 1992; Sutton and Barto, 1998), policy gradient (Sutton et al., 2000))

use techniques of Monte Carlo estimation (sampling), bootstrapping, and/or func-

tion approximation. We have introduced basic ideas behind reinforcement learning

(RL) algorithms; in the next section, we describe imitation learning, a more efficient

approach that takes advantage of expert demonstration.
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2.2 Imitation Learning

RL algorithms aim to learn a policy that maximizes the future reward; learning

is often done by trial-and-error style interaction with the environment. On the other

hand, imitation learning learns a policy that mimics an expert’s behavior, which

is also called apprenticeship learning or learning from demonstrations. Imitation

learning assumes access to a human expert or a reference policy that demonstrates

the desired behavior during training. Instead of directly optimizing the reward, the

agent aims to imitate the expert who executes an optimal or near-optimal policy

implicitly. Therefore, imitation learning is suitable for problems where a reward

function is not obvious or exploration is expensive, while expert demonstration is

easy to obtain. One such example is robot control, such as navigation, manipulation,

and locomotion, where imitation learning has gained success (Coates et al., 2008;

Pieter Abbeel and Ng, 2008; Ratliff et al., 2006).

Imitation learning is attractive to us for two reasons. First, the NLP problems

we are interested in are all supervised; therefore, we can often easily compute the

optimal action sequence from the ground truth, or at least derive some form of weak

supervision from it. For example, in quiz bowl, the expert should buzz if the current

answer prediction is correct and wait otherwise. The expert supervision greatly

reduces our search space, because the expert guidance constrains the search area

to be close the expert’s path. Second, imitation learning is closely related to well-

studied supervised learning problems such as multiclass classification. Therefore,

we can use powerful existing learning tools in areas of, for example, online learning
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and deep learning. Below we introduce basic notations used in imitation learning.

Notation We consider a sequential task with a T -step time horizon.1 The state

distribution under policy π at time t is dtπ. The average state distribution over T

steps is dπ = 1
T

∑T
t=1 d

t
π. To be consistent with terminology from supervised learning,

we use the notion of loss rather than reward. Formally, the immediate loss of policy

π is L(s, π(s)), and we use L(s, π) as a shorthand. We define the task loss as the

T -step expected loss of π: J(π) = ∑T
t=1 Es∼dtπ [L(s, π(s)] = TEs∼dπ [L(s, π(s))]. This

is the loss that we are interested in minimizing.

For some tasks, however, we may not know the loss function L that accurately

penalizes bad behavior, or we can assign a loss only in the terminal state, in which

case the lack of immediate loss creates difficulty for RL. For example, when teaching

a robot to move a cup from one table to another, we do not necessarily know how

to quantify the goodness of a move except when the cup is dropped or placed as

expected. The delayed reward introduces large variance in future reward estimation

and makes learning harder. On the other hand, in imitation learning we observe

demonstrations from an expert who is assumed to minimize J(π), and we aim to

mimic the expert’s behavior, e.g., cloning a human’s hand trajectory of moving a

cup. Since we have supervision (the expert action) in each state along the trajectory,

the problem becomes easier and can be reduced to classification, as we explain in

the next section.
1We overload the symbol T here to refer to the sequence length instead of the transition function

introduced in the previous section.
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2.2.1 Reduction to Classification

In imitation learning, examples of state-action pairs generated by the expert

are used as supervision. Instead of minimizing the task loss, we minimize a surrogate

loss `(s, π, π∗) that measures the difference between the learned policy and the expert

policy. This reduces imitation learning to a classification problem because we essen-

tially learn to recreate the expert’s action in each state. For example, if we have a

continuous action space, we may use squared loss, where `(s, π, π∗) = (π(s)− π∗(s))2

and π is a regressor; if we have a discrete action space, we may use negative log

likelihood, where `(s, π, π∗) = − log expπ(s,a∗)∑
a∈A expπ(s,a) (a∗ = π∗(s) and π(s, a) is the prob-

ability of choosing action a given by π), and π is a maximum entropy (MaxEnt)

classifier.

Therefore, a straightforward approach is to use the expert’s trajectories as

supervised data and learn a multiclass classifier that predicts the expert’s action.

At each time step t, we collect a training example (φ(st), π∗(st)), where φ maps

a state to a feature vector, and π∗(st) is the class label (expert’s action) of this

example. Then using any standard supervised learning algorithm, we can learn a

policy

π̂ = arg min
π∈Π

Es∼dπ∗ [`(s, π, π
∗)], (2.8)

where Π is the policy space and dπ∗ is the distribution of states generated by exe-

cuting the oracle policy.

Imitation learning algorithms are often analyzed in terms of regret to the
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expert performance. To prove that mimicking the expert indeed leads us to the true

goal, we need to bound the difference between J(π) and J∗(π) based on `. Ross and

Bagnell (2010) show:

Theorem 1. Assume ` upper bounds the 0-1 loss, and L is bounded in [0, Lmax].

Let Es∼dπ∗ [`(s, π, π∗)] = ε, then:

J(π) ≤ J(π∗) + LmaxT
2ε.

This bound shows that performance of the learned policy is upper bounded

by the expert’s, and in the worst case the difference increases quadratically with

time. For detailed proof, see Theorem 3.3.2 of (Ross, 2013). Similar bounds on the

supervised learning approach can also be found in Kääriäinen (2006) and Syed and

Schapire (2011).

The main reason for the quadratically increasing loss is the mismatch between

training and test state distribution. During training, the learner observes state-

action pairs generated by the expert only. However, at test time, the learner may

go to a bad state that the expert never visits due to prediction error. As a result,

it can be trapped in the bad state forever because the expert has not demonstrated

what to do in such a state. Taking quiz bowl as an example, the expert may always

answer within the first sentence; at test time, if the agent goes beyond the first

sentence, it may never answer. Therefore, it is possible for the learner to achieve a

small surrogate loss during training on the expert’s state distribution, but still does
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poorly at test time. To alleviate this problem, we need to explore states that may

be encountered at test time. In the next section, we describe an iterative learning

method that tackles the data mismatch problem.

2.3 Iterative Imitation Learning

The key idea of the iterative approach to imitation learning is to train the

policy under states visited by both the expert and the learner. To explore states

induced by the learner, we learn policies iteratively and generate states using previ-

ous learned policies. Many algorithms have been proposed along this line, including

Searn (Daumé III et al., 2009), DAgger (Ross et al., 2011), AggraVaTe (Ross

and Bagnell, 2014) and LOLS (Chang et al., 2015). We mainly use DAgger in this

thesis, which is perhaps the most efficient one among the others. We also present

its variant AggraVaTe in this section.

In its simplest form, the Dataset Aggregation (DAgger) algorithm (Ross et

al., 2011) works as follows. In the first iteration, we collect a training set D1 =

{(s, π∗(s))} where s is induced by the expert policy (π̂1 = π∗); then learn a policy

π̂2 using D1, same as the supervised learning approach. In iteration i, we collect

trajectories by executing the previous policy π̂i, and form the training set Di by

labeling s ∼ dπi with expert actions π∗(s). At the end of iteration i we learn a new

policy π̂i+1 on all examples collected so far, D0
⋃
. . .Di, hence the name “Dataset

Aggregation”. Intuitively, this enables the learner to learn how to recover from its

mistakes when it is off the expert’s trajectory, such that the policy performs well

27



Algorithm 1 DAgger
1: Initialize D ← ∅, π1 ← any policy in Π.
2: for i = 1 to N do
3: Let πi = βiπ

∗ + (1− βi)π̂i−1. I Using stochastic policy
4: Sample T -step trajectories using πi where s ∼ πi.
5: Collect dataset Di = {(s, π∗(s)} from the trajectories.
6: Aggregate datasets D ← D⋃Di.
7: Train policy π̂i+1 on D. I For example, a linear SVM
8: end for
9: Return best π̂i evaluated on the validation set.

under states induced by itself.

We show the complete DAgger algorithm in Algorithm 1. To learn from

states more likely to be induced by the learned policy at test time, we explore by a

mixture of π∗ and the last learned policy π̂i−1, as shown in Line 3 of Algorithm 1.

In practice, we often set β1 = 1 so that no initial policy needs to be specified before

learning starts. In later iterations, we schedule β to decrease over time such that the

state distribution becomes closer to one induced by a learned policy. For example,

we can choose βi = (1−α)i−1 where α is a small constant, such that the probability

of taking an expert’s action decays exponentially in the number of iterations.2 Such

stochastic mixing policies are first proposed in Searn to gradually move away from

the expert’s trajectory. In this thesis, we use the hyperparameter-free version where

β1 = 1 and βi = 0 for i > 1 unless stated otherwise.

At the end of each iteration, a new policy π̂i is learned on the aggregated

dataset. The procedure of training the policy is the same as training a multiclass

classifier or a regressor (in which case the action space is continuous). For example,

we can use standard machine learning packages such as LIBSVM (Chang and Lin,
2In theory, DAgger requires 1

N

∑N
i=1 βi → 0 as N →∞.
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2011), LIBLINEAR (Fan et al., 2008) and Scikit-learn (Pedregosa et al., 2011).

Furthermore, if there is a large amount of data, we can use an online learner and

update after each new example is collected, e.g. using Vowpal Wabbit (Langford et

al., 2007). At the end, we return the policy that performs best on the validation

set; in practice, one can also return the last policy.

Analysis The theory of this family of iterative imitation learning algorithms

largely relies on no-regret online learning. The key is to view each iteration as

one step in the online learning setting: The adversary picks a loss function in each

iteration depending on the state distribution, and the learner chooses the best pol-

icy in hindsight, much as in the Follow-the-Leader algorithm. Here we only present

related theoretical results, as the proof is not relevant to understanding the rest of

the thesis. Interested readers are referred to Chapter 3 of (Ross, 2013).

We define several key variables used in the theoretical guarantee. Let Q∗t (s, π)

be the t-step cost in L of executing π in in state s and following π∗ thereafter for t

steps. If the expert policy satisfies Q∗T−t+1(s, π)−Q∗T−t+1(s, π∗) ≤ u for any t, s and

π, where u is a constant, then we call it a u-robust expert policy. This condition

requires that the expert is capable of recovering from a mistake at some step without

incurring additional loss larger than u. In many situations, it is reasonable to assume

u is small. For example, when learning to drive a car, if the learner steers the car

to a wrong direction, a human expert can often steer it back with a little detour. In

our sequential information acquisition case, if a non-informative or noisy feature is

selected by mistake, we can add a discriminate feature in the next step to correct

29



the prediction. Further, we use εclass to denote the minimum loss we can achieve

in the policy space Π such that εclass = minπ∈Π
1
N

∑N
i=1 Es∼dπi [`(s, π, π

∗)]; and we

denote the sequence of learned policies π1, π2, . . . , πN by π1:N .

Given the above definitions, we can show that DAgger results in a relative

loss linear in T compared to the supervised learning approach:

Theorem 2. (Ross et al., 2011) Assume ` upper bounds L, π∗ is u-robust, and N

is O(uT log T ), then there exists a policy π ∈ π1:N such that:

J(π) ≤ J(π∗) + uTεclass +O(1). (2.9)

The main reason of DAgger’s success is that it explores states likely to be

encountered at test time, and learns to recover from mistakes. However, it has a

couple of limitations: (a) it requires an expert who knows what to do in any state

and is available throughout training, which may be very expensive if the expert is a

human; (b) it treats all mistakes equally, whereas some mistakes can be more costly

than others, e.g. hitting the car in front vs. slow acceleration. The first limitation

is not a problem in our case since our expert actions are easy to obtain, which will

become clear in later chapters. The second limitation can pose a problem to some

applications, and we present learning algorithms that consider action costs next.
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2.4 Cost-sensitive Imitation Learning

In the previous section, we have assumed that we do not know the actual loss

function L and minimize the surrogate loss ` instead. However, sometimes we do

have additional information on L which should be considered during training. For

example, we can often assign a loss in the terminal state based on the result of a

task even though we may not know the cost of intermediate actions. Knowledge on

L helps us to identify which imitation errors are tolerable and which are serious. In

this section, we present methods that consider the cost of each action during policy

learning.

We define the cost of an action as its expected future loss (cost-to-go) following

the expert policy after the current state. Formally, if the learner takes action a in

state s at time t, the expert cost-to-go of a is Q∗T−t+1(s, a). It is straightforward

to extend DAgger with the cost information. In Algorithm 1, when sampling

trajectories using πi, we roll out random actions to get their cost-to-go under the

expert policy. Then we collect examples augmented with cost: (s, a,Q∗) (we use

Q∗ as a short hand for Q∗T−t+1(s, a)). The imitation problem is now reduced to

a cost-sensitive classification problem, which again can be solved efficiently using

standard algorithms (Langford and Beygelzimer, 2005; Beygelzimer et al., 2009).

In Algorithm 2, we show training procedure of the extension of DAgger, Ag-

graVaTe (Aggregate Values to Imitate). Comparing to DAgger (Algorithm 1),

the main difference is that instead of using the expert action π∗(s) as the supervision

signal, we use the expert cost-to-go Q∗(s, a). This allows us to measure the good-
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Algorithm 2 AggraVaTe Algorithm (DAgger with cost)
1: Initialize D ← ∅, π1 ← any policy in Π.
2: for i = 1 to N do
3: Let πi = βiπ

∗ + (1− βi)π̂i−1. I Using stochastic policy
4: for j = 1 to M do
5: Sample t uniformly from {1, . . . , T}.
6: Roll in with πi until t.
7: Execute exploration action a ∈ A in current state st.
8: Roll out with π∗ until terminal state and record the cost-to-go Q∗.
9: end for

10: Collect dataset Di = {(s, a,Q∗} from the trajectories.
11: Aggregate datasets D ← D⋃Di.
12: Train cost-sensitive classifier π̂i+1 on D.
13: end for

ness of each action in a given state and apply cost-sensitive classification. Similar

rollout-based methods include Searn and LOLS.

In standard cost-sensitive classification settings, a cost is assigned to each la-

bel. In AggraVaTe, however, we only know the cost of sampled actions (Line

7–8). Given only partial cost information, we can learn a regressor to predict the

cost-to-go, or treat the unobserved action cost as zero. In addition, instead of

exploring actions randomly, we may want to use an exploration strategy to se-

lect actions that are most helpful to learning. The action selection problem can

be formulated as a contextual bandit problem (Auer et al., 2002; McMahan and

Streeter, 2009; Beygelzimer et al., 2011). In this thesis, we take a simple approach

of rolling out all available actions, same as Searn’s exploration. The cost of each

action is then normalized by subtracting the minimum cost-to-go from the state:

Q∗(s, a)← Q∗(s, a)−mina′∈AQ∗(s, a′). Computing the full cost information is not

as expensive as one would think if proper memoization is applied (Chang et al.,

2014).
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We can obtain a similar theoretical guarantee for AggraVaTe. Let εclass =

minπ∈Π
1
N

∑N
i=1 Et∼U(1,T ),s∼dtπi

[
Q∗T−t+1(s, πi)−minaQ∗T−t+1(s, a)

]
, which is the min-

imum expected relative cost achieved by policies in Π over N iterations. We have

Theorem 3. (Ross and Bagnell, 2014) Assume Q∗ is non-negative and is bounded

by Q∗max, and βi ≤ (1− α)i−1 for some constant α. If N is O(Q
∗
max
α
T log T ), then

J(π) ≤ J(π∗) + Tεclass +O(1). (2.10)

In practice, rollouts can be expensive to execute, especially if T is large. To

reduce computational cost, one can also directly assign a heuristic cost to each action

based on domain knowledge of the task. Generally speaking, we have the following

choices for rollouts:

• No rollout (DAgger or using heuristic costs). This is the most efficient

choice and often provides decent performance in practice.

• Expert rollout (Searn, AggraVaTe). It provides additional informa-

tion at the cost of more computation. However, there are various ways to

speedup the rollout process, many of which has been implemented in the Vow-

pal Wabbit L2S package, for example, memoization and early termination.

Additionally, in structured prediction expert cost-to-go is often easy to com-

pute/simulate without actually rolling out a policy (Daumé III et al., 2009).

• Learner rollout (RL). This resembles Monte Carlo methods in RL, or more
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specifically, classification-based RL (Lagoudakis and Parr, 2003; Lazaric et al.,

2010). It is perhaps the most inefficient option but can be helpful when the

expert is sub-optimal (Chang et al., 2015).

2.5 Summary

We have introduced the basics of MDP, which is a typical mathematical formu-

lation for sequential decision-making problems. We then described two approaches

for solving MDPs, reinforcement learning, and imitation learning. These are the

main machine learning tools we will apply in the following chapters.

Imitation learning is usually more efficient when the expert policy is easy to

construct, which is often true in our problems. On the other hand, reinforcement

learning is needed when no good expert policy is available or is cheap to query.

Specifically, we design greedy selection experts for sequential acquiring problems and

use DAgger for the first two applications: dynamic feature selection for multiclass

classification (Chapter 3) and dependency parsing (Chapter 4). For simultaneous

interpretation (Chapter 5), we propose a novel reward function that considers both

translation quality and speed, and we use imitation learning with cost (negative

reward) to solve it. Finally, we use reinforcement learning (Q-learning) for quiz

bowl (Chapter 6) so that we can better model interaction with multiple agents.
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Chapter 3: Dynamic Feature Selection

This chapter describes joint work with Hal Daumé III and Jason Eisner (He

et al., 2012) published in NIPS 2012.

Before going into sequential problems in NLP, we first focus on a sequen-

tial acquisition problem in the setting of cost-sensitive classification. In a practical

machine learning task, features are usually acquired at a cost with unknown discrim-

inative powers. In many cases, expensive features often imply better performance.

For example, in medical diagnosis, some tests can be very informative (e.g., X-ray,

electrocardiogram) but are expensive to run or have side-effects on the human body.

While at training time we can devote large amounts of time and resources to col-

lecting data and building models, at test time we often cannot afford to obtain a

complete set of features for all instances. This leaves us a cost-accuracy trade-off

problem. We propose to reduce feature cost by selecting features dynamically on an

instance basis at test time.

This chapter introduces a sequential decision-making framework for dynamic

feature selection. In the next chapter, we show how this approach can be adapted

to dependency parsing, a structured prediction problem in NLP. The central learn-

ing method we use is the DAgger algorithm introduced in the previous chapter.
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Besides showing its effectiveness when applying to non-typical imitation scenarios,

we discuss a practical issue often arising in our setting: the expert behavior is too

good to learn for the learner. We further propose an adaptation of DAgger which

alleviates this problem.

3.1 Sequential Acquisition of Features with Cost

We now define the problem of dynamic feature selection. We consider the

classification setting where each feature is obtained at a known cost. The precise

definition of cost is problem-dependent, for instance, the computation time or the

expense of running an experiment. We assume that we are provided with a classifier

that has been trained to work well on instances for which all feature values are

known, hence we are only concerned with the test time classification performance

in terms of both accuracy and cost. We refer to the pre-trained classifier as the task

predictor below.

Unlike typical feature selection methods that use a fixed set of pre-selected

features for all instances, we select a (different) set of features for each instance

adaptively, such that hard instances get more budget and easy instances get less

budget. This can be naturally framed as a sequential decision-making problem.

At each step, given selected features and current prediction/belief of the instance,

we decide whether to stop acquiring more features and output a prediction, and if

not, which feature(s) to purchase next. We allow the agent to select more than one

feature at a time. A selectable bundle of one or more features is called a factor ; such
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a bundle might be defined by a feature template, for example, or by a procedure

that acquires several features at once.

3.2 An Imitation Learning Approach

We represent the feature selection process as an MDP. The state includes the

set of factors selected so far and intermediate predictions based on these factors.

Thus given D factors, we have a state space of size 2D. The action set includes

all factors that have not been selected yet, as well as the termination action stop

(stop adding more features and output a prediction). An agent follows an acquisition

policy π that determines which action to take in a state. After a new factor is added,

we run the task predictor to update the current prediction with the new features,

thus transit to the next state. When classifying with an incomplete feature set, we

set values of non-selected features to be zero.1 Next, we define the loss function and

the expert used in imitation learning.

Loss Function The loss L should consider both the prediction quality and the

feature cost. We use classification margin as a measure of prediction quality. As-

suming that the task predictor h computes a score for each class (which is true for

most classification algorithms) given any set of features, the classification margin is

defined as the difference between the score of the true label and the highest score

among those of other labels. Higher margin indicates a more confident prediction of

the correct class. In general, we can use other measures depending on the specific
1Classification with missing features is an extensively researched area, e.g. feature imputation.

Here we use this simple method which is shown to be effective in our case.
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application as well, e.g. log likelihood of the true label. We can compute the loss of

a state s as a simple linear combination of these two objectives:

L(s) = α · cost(s)−margin(s, h), (3.1)

where cost(s) and margin(s, h) denote the total cost of features in s and the clas-

sification margin given by h using all selected features, and α is a user-specified

parameter to trade-off cost and accuracy. In general, this loss function is only de-

fined for the terminal state (after the stop action is taken), since the cost function

and the classification margin do not necessarily decompose over each factor. In the

simplest case where costs of each feature are independent and the task predictor h

is a linear classifier, we can define the immediate loss as the cost of a newly added

factor and the classification margin using only the new factor.

Given the delayed loss and the exponential state space (2D), we take the

imitation learning approach. Below We describe how we obtain an expert efficiently.

Expert Ideally, the expert should find a subset of features achieving the minimum

terminal loss for each instance. However, we have too large a state space (exponen-

tial) to search for the optimal subset of features exhaustively. In addition, given a

state, the expert action may not be unique since the optimal subset of features does

not have to be selected in a fixed order. Therefore, we use a (sub-optimal) greedy

forward-selection expert. At time step t, the expert iterates through all features in

the action space At and calculates a one-step lookahead cost for each action C(st, a)
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(a ∈ At); it then chooses the action with the minimum cost. The action cost is de-

fined based on L. Let st+1|a be the tentative next state assuming action a is taken,

then C(st, a) = L(st+1|a) is the loss of the next state. Note that the stop action

does not change the current state (i.e. st = st+1), therefore the expert terminates

if no factor improves the current loss L(st). Even though the greedy expert finds a

sub-optimal feature set, we find it often achieves high accuracy with a rather small

cost in our experiments.

Given the above expert, we are ready to apply imitation learning to learn a

feature selection policy. Recall that the core learning part of DAgger reduces to

a supervised learning algorithm. While the expert provides labels in each state, we

still need to define features describing the state.

State Features We include two types of features: task features and meta-features.

Task feature are simply features selected so far and they are defined by the specific

classification problem, e.g. different tests performed to diagnose a patient. Meta-

features are computed based on feature costs and past predictions given by the task

predictor. They are used to evaluate confidence of the current prediction. Task

features are useful to decide the next feature to add, and meta-features are useful

to decide when to stop.

We define the state feature φ(s) as a concatenation of task features and meta-

features. Our meta-features look at current scores/cost given by h and the change

in scores/cost compared to the last time step. More specifically, let the confidence

score of h be score of the predicted class, and we have the following meta-features:
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confidence score, change in confidence score after adding the last factor, a boolean

bit indicating whether the prediction changed after adding the last factor, cost of

the current feature set, change in cost after adding the last factor, the cost-efficient

index (cost divided by confidence score), and the current prediction.

Now that we have all components needed for learning a policy, we can run

DAgger with our favorite supervised learning algorithm. However, we find in the

initial experiments that a large gap exists between the performance of the expert

policy and the learned policy. We investigate this phenomenon in the next section.

3.3 Learning when the Expert is Too Good

Recall that the guarantee of DAgger (Theorem 2) depends on the imitation

error εclass in the supervised learning step. If εclass is small, DAgger can always find

a good policy. However, sometimes it can be hard to obtain a good classifier that

has low training error using a typical supervised learning algorithm. This occurs

when the learner’s policy space is not able to approximate the expert’s policy.

An oracle can be hard to imitate in two ways. First, the learning policy space

is not able to approximate the expert’s policy, meaning that the learner has limited

learning ability. For example, the actual loss function can be highly non-convex,

which suggests a linear predictor is not enough and a better class of predictors

is needed. Second, information known by the expert cannot be sufficiently inferred

from the state features, meaning that the learner has limited learning resources. For

example, in dynamic feature selection, the expert knows the ground truth. Thus,
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it can evaluate each action by the true loss, while the learner has to infer this

information from the state features.

To address this problem, we propose to coach the learner with easy-to-learn

actions that gradually approach the expert actions. Intuitively, this allows the

learner to move towards a better action without much effort, instead of aiming at

an impractical goal from the very beginning. To better instruct the learner, a coach

should demonstrate actions that are not much worse than the expert action but are

easier to achieve within the learner’s policy space. The lower an action’s cost is,

the closer it is to the expert action. The higher an action is ranked by the learner’s

current policy, the more it is preferred by the learner, thus easier to learn. Therefore,

similar to (Chiang et al., 2008), we define a hope action that combines the action

cost and the preference of the learner’s current policy. We use π̃i to denote the coach

in place of the expert in iteration i. Let scoreπi(s, a) be a measure of how likely πi

chooses action a in state s. We define π̃i as

π̃i(s) = arg max
a∈A

λi · scoreπi(s, a)− C(s, a) (3.2)

where λi is a nonnegative parameter specifying how close the coach is to the oracle.

We set λ1 = 0 as the learner has not learned any model yet in the first iteration. The

coaching algorithm is exactly the same as DAgger, except that we use π̃i instead

of π∗ in each iteration. We refer to the proposed algorithm as Coaching below.
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Theoretical Analysis We analyze the coaching algorithm under the theoretical

framework of DAgger (Section 2.3). We show that it achieves the same relative

bound as DAgger but with a possibly smaller εclass. Let ˜̀
i(π) = Es∼dπi [`(s, π, π̃i(s))]

denote the expected surrogate loss with respect to π̃i. We define the minimum loss

of the best policy in hindsight with respect to hope actions as

ε̃class = 1
N

min
π∈Π

N∑
i=1

˜̀
i(π). (3.3)

Our main result is the following theorem:

Theorem 4. Assume ` upper bounds L, π∗ is u-robust, and N is O(uT log T ), then

there exists a policy π ∈ π1:N such that:

J(π) ≤ J(π∗) + uT ε̃class +O(1). (3.4)

Both the DAgger theorem and the coaching theorem provide a relative guar-

antee. They depend on whether we can find a policy that has small training error

in each iteration. The distinction is that our guarantee depends on ε̃class, which is

resulted from learning the easier coaching actions, while DAgger may fail to find a

policy with small εclass. Through coaching, we can always adjust λ to create a more

learnable expert policy space to enable low training error, at the price of running a

few more iterations. Proof of the theorem can be found in Appendix A.
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3.4 Experiments

Setup We perform experiments on three UCI datasets (radar signal, digit recog-

nition, image segmentation) and assign random costs to features. For all datasets,

the data classifier are trained using MegaM (Daumé III, 2004). However, since we

assume the provided classifier is to be used at test time, using it at training time

may cause a difference in the distribution of training and test data for feature selec-

tion. For example, the confidence level in φ(s) during training can be much higher

that that during testing. Therefore, similar to cross validation, we split the training

data into 10 folds. We collect trajectories on each fold using a data classifier trained

on the other 9 folds. This provides a better simulation of the environment at test

time. For the digit dataset, we split the 16 × 16 image into non-overlapping 4 × 4

blocks and each factor contains the 16 pixel values in a block. For the other two

datasets, each factor contains one feature.

For dynamic feature selection, we use DAgger and coaching for policy learn-

ing. We run both algorithms for 15 iterations and take the best policy evaluated on

the development set. For coaching, we schedule λ with exponential decay, such that

λ1 = 0 and λi = e−i+2 for i > 1 where i is the iteration number. We use LIBSVM

to learn the multiclass classifier.

Evaluation We compare with two static feature selection baselines that sequen-

tially add features according to a ranked list. The first baseline (Forward) ranks

factors according to the standard forward feature selection algorithm without cost.
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The second baseline (|w|/cost) ranks the factors by the ratio |w|/cost, where |w| de-

notes the sum of absolute weights of features in a factor. Features with high ratios

are expected to be more cost-efficient.

Since we have two competing objectives, reducing feature cost and improving

prediction quality, we need a measurement for comparing how much we can gain in

one objective without making the other objective worse. Therefore, we evaluate the

algorithms by their Pareto curves that show different trade-off results on a plane

formed by axes of both objectives. More specifically, for our dynamic feature selec-

tion algorithms, we control the parameter α to obtain a set of results at increasing

costs. We experiment with α values from {0.0, 0.1, 0.25, 0.5, 1.0, 1.5, 2.0}. For the

two baseline algorithms, we take the performance after adding each factor to get

accuracy at different costs.

Result We show the Pareto curves of different algorithms in Figure 3.1. First, we

can see that dynamically selecting features for each instance significantly improves

the accuracy at a small cost. Sometimes, it even achieves higher accuracy than

using all features. Second, we notice that there is a substantial gap between perfor-

mance of the learned policy and the expert policy, however, in almost all settings

Coaching dominates DAgger, i.e. achieving higher accuracy at a lower cost. From

Figure 3.1(a), we see that coaching reduces the gap by taking small steps towards

the oracle. Nevertheless, the learned policy hardly imitates the expert policy, as

coaching is still inherently limited by the insufficient policy space. We expect better

performance with predictors of higher capacity, e.g. neural networks.
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(b) Radar dataset.
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(c) Digit dataset.

0.0 0.2 0.4 0.6 0.8 1.0
average cost per example

0.60

0.65

0.70

0.75

0.80

0.85

0.90

ac
cu

ra
cy

|w|/cost
Forward
DAgger
Coaching
Oracle

(d) Segmentation dataset.

Figure 3.1: (a) reward (negative loss) vs. cost of DAgger and Coaching over 15
iterations on the digit dataset with α = 0.5. (c) to (d) show accuracy vs. cost
of each of the three datasets. For DAgger and Coaching, we show results with
α ∈ {0, 0.1, 0.25, 0.5, 1.0, 1.5, 2}.

3.5 Related Work

As the scale of machine learning problems become larger, learning information

gathering policies has received more attention in cost-sensitive classification. How-

ever, many of the proposals in this space use general MDP techniques, which are

sufficient but perhaps not necessary given the constrained, deterministic world of

sequential selection.
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Our work is closest to Dulac-Arnold (2014), where a datum-wise represen-

tation is learned by selecting features for each instance adaptively in a sequential

decision-making process. There are a couple of distinctions. First, their primary

goal is to learn a sparse representation per data point and to approximate the L0

regularization, while we aim to learn a cost-accuracy trade-off. Therefore, our loss

function explicitly quantifies the trade-off. The second distinction is mainly techni-

cal. They take the reinforcement learning approach and use a single policy for both

the task predictor and the feature selector. This formulation has a larger search

space compared to ours and does not leverage pre-training of the task predictor. In

addition, it might face difficulty in complex domains where the predictor and the

selector need different function classes.

Our work is also related to Benbouzid et al. (2012). We both formulate classi-

fication as sequential decision-making and solve it under the MDP framework. The

difference is that here features are pre-ranked; at test time, the policy takes features

from the ranked list and choose to add or skip the next feature. However, in our

work and Dulac-Arnold (2014), the policy can choose any feature. The advantage

of free selection is that the model enjoys larger flexibility. The disadvantage is that

it increases the action space, thus implies more a more difficult learning problem.

In the next chapter, we will also use a pre-ranked list of features due to a more

complex problem setting.

Other recent feature selection or budgeted learning methods include classifier

ensemble methods which adaptively select a subset of classifiers to evaluate, in-

cluding tree-based algorithms (Xu et al., 2013; Kusner et al., 2014), boosting style
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algorithms (Grubb and Bagnell, 2012; Reyzin, 2011), and probabilistic approaches

based on value-of-information (Gao and Koller, 2011). In addition, cascading ap-

proaches incorporate test-time cost constraint by a coarse-to-fine classifier cascade

and an early-stop strategy (Chen et al., 2012; Weiss and Taskar, 2010).

3.6 Conclusion

In this chapter, we showed how to formulate the task of sequential feature

selection for cost-sensitive classification inside the imitation learning paradigm. We

proposed a computationally simple reference policy (that has access to the training

labels) and used imitation learning to compete with it, avoiding the difficulties of

more general reinforcement learning techniques. We also proposed a loss function

that explicitly balances the trade-off between the task loss and the cost of features.

More generally, the method introduced in this chapter demonstrates the ef-

fectiveness of our dynamic solver on sequential acquisition problems. In addition,

it shows that imitation learning is a promising tool for solving problems where an

expert policy can be constructed at training time. Fruitful directions include adapt-

ing and extending the ideas we presented to more complex domains: In the next

chapter, we extend this method to structured prediction with more sophisticated

feature space and output space.
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Chapter 4: Graph-based Dependency Parsing

This chapter describes joint work with Hal Daumé III and Jason Eisner (He

et al., 2013) in EMNLP 2013.

In the last chapter, we have seen how classification can be solved sequentially

to trade off cost and accuracy. However, applying the framework to structured

problems is not straightforward, as the input space and the output space now consist

of exponentially many local substructures. In this chapter, we focus on a structured

prediction problem, dependency parsing. Structured prediction is defined by an

input space X and an output space Y . Unlike in multiclass classification, where

Y is a set of discrete values, here it is a set of discrete structures. Therefore, a

structured prediction model must make a joint prediction over mutually dependent

output variables that form a structure in Y . In NLP, input X is usually a piece

of text (e.g. sentences, documents), and Y is a linguistic structure that we are

interested in, (e.g. a parse tree, word alignment between two sentences), or text of

certain relation to the input text (e.g. summarization, translation).

Compared to settings in the previous chapter, we have two complexities in

structured prediction. First, features are defined on independent parts (substruc-

tures) of the input. Second, predicting the output requires solving a combinatorial
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optimization problem over Y . In this chapter, we propose a method that answers

the following questions in the context of dependency parsing: (a) how to arrange a

large number of features so that they can be selected by groups; (b) how to adap-

tively select features for each part of the structured input space while keeping the

overall decision overhead low; (c) how to adaptively make predictions for each part

of the structured output space while considering all parts jointly.

We begin by introducing common algorithms for graph-based dependency

parsing, and then describe our dynamic feature selection algorithm that speeds

up the process.

4.1 Graph-based Dependency Parsing

In Section 1.2.1, we briefly introduced the task of dependency parsing; in this

section, we give a more detailed description of the minimum-spanning tree (MST)

parsing algorithm (McDonald et al., 2005a; McDonald and Pereira, 2006; McDonald

et al., 2005b). We will use the MST parser as our task (batch) predictor and aim

to speed it up by reducing features computation cost.

In a typical structured prediction problem, searching for the best structure in

the exponentially large space Y is often intractable. Therefore, the output space is

decomposed into substructures. The problem is usually solved in two steps. First,

each structure is scored by taking the sum of scores of its substructures, which are

typically computed by a linear model based on features describing a substructure.

Second, the highest-scoring structure can be found by dynamic programming thanks
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to the decomposition (Eisner, 1996; McDonald, 2007; Jurafsky and Martin, 2000) or

by integer linear programming (Gillick and Favre, 2009; Martins et al., 2009; Roth

and tau Yih, 2005). The second step is often called decoding or inference.

In graph-based dependency parsing of an n-word input sentence, we must

construct a tree y whose vertices 0, 1, . . . n correspond to the root node (namely 0)

and the ordered words of the sentence. Each directed edge of this tree points from

a head (parent) to one of its modifiers (child).

We follow a common approach to structured prediction problems. In the

scoring stage, we score all possible edges (or other small substructures) using a

learned function; in the decoding stage, we use dynamic programming to find the

dependency tree with the highest total score. We describe the two steps in detail

and examine their empirical computation cost below.

Scoring The score of a tree y is defined as a sum of local scores. That is, sθ(y) =

θ ·∑E∈y φ(E) = ∑
E∈y θ · φ(E), where E ranges over small connected subgraphs of

y that can be scored individually. Here φ(E) extracts a high-dimensional feature

vector from E together with the input sentence, and θ denotes a weight vector that

has typically been learned from data. The first-order model decomposes the tree

into edges E of the form 〈h,m〉, where h ∈ [0, n] and m ∈ [1, n] (with h 6= m) are a

head token and one of its modifiers. Finding the best tree requires first computing

θ · φ(E) for each of the n2 possible edges.

The features are computed according to feature templates. In Table 4.1, we

show example feature templates for a potential dependency edge. A typical parser

50



Edge Feature Template Feature Instantiation

This ← time

head word time
mod word This
head word+mod word time+This
head pos NN
mod pos DT
head pos+mod pos NN+DT
head word+mod word+head pos+mod pos time+This+NN+DT
edge direction right

Table 4.1: Example feature templates and instantiations. In feature templates,
“mod” means modifier and “pos” means part-of-speech tag.

usually uses hundreds of feature templates (e.g. 268 for our first-order parser). The

number of features (template instantiations) can be millions (e.g. 76 million for our

first-order parser on PTB).

Since scoring the edges independently in this way restricts the parser to a local

view of the dependency structure, higher-order models can achieve better accuracy.

For example, in the second-order model of McDonald and Pereira (2006), each local

subgraph E is a triple that includes the head and two modifiers of the head, which are

adjacent to each other. Other methods that use triples include grandparent-parent-

child triples (Koo and Collins, 2010), or non-adjacent siblings (Carreras, 2007).

Third-order models (Koo and Collins, 2010) use quadruples, employing grand-sibling

and tri-sibling information.

Decoding The usual inference problem is to find the highest scoring tree for the

input sentence. Note that in a valid tree, each token 1, . . . , n must be attached to

exactly one parent (either another token or the root 0). We can further require the

tree to be projective, meaning that edges are not allowed to cross each other. It
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is well known that dynamic programming can be used to find the best projective

dependency tree in O(n3) time, much as in CKY, for first-order models and some

higher-order models (Eisner, 1996; McDonald and Pereira, 2006). When the projec-

tivity restriction is lifted, McDonald et al. (2005b) pointed out that the best tree

can be found in O(n2) time using a minimum directed spanning tree algorithm (Chu

and Liu, 1965; Edmonds, 1967; Tarjan, 1977), though only for first-order models.1

We will make use of this fast non-projective algorithm as a subroutine in early stages

of our system.

Analyzing Time Usage We have assumed that feature computation is bottle-

neck in dependency parsing. Therefore, we first testify the assumption by investigat-

ing time usage during parsing. Specifically, we take the MSTParser2 and measure

the wall-clock time spent on scoring and decoding. We use the development set,

section 22 of the Penn Treebank (PTB) (Marcus et al., 1993) for profiling.

In Figure 4.1, we show the average scoring and decoding time of sentences at

different lengths, and we measure for both first-order (projective and non-projective)

and second-order (projective) parsing. We observe that (a) feature computation

took more than 80% of the total time; (b) even though non-projective decoding

time grows quadratically in terms of the sentence length, in practice, it is almost

negligible (0.23 ms on average) compared to the projective decoding time; (c) the

second-order projective model is significantly slower due to higher time complexity
1The non-projective parsing problem becomes NP-hard for higher-order models. One approxi-

mate solution (McDonald and Pereira, 2006) works by doing projective parsing and then rearrang-
ing edges.

2Available at http://www.seas.upenn.edu/~strctlrn/MSTParser/MSTParser.html

52

http://www.seas.upenn.edu/~strctlrn/MSTParser/MSTParser.html


0 10 20 30 40 50 60 70
sentence length

0

200

400

600

800

1000

1200

1400

m
ea

n
tim

e
(m

s)

1st-order scoring O(n2)

2nd-order scoring O(n3)

proj dec O(n3)

non-proj dec O(n2)

2nd-order proj dec O(n3)

Figure 4.1: Comparison of scoring time and decoding time on English PTB section
22 using multiple parsers.

in both scoring and decoding.

The actual time usage depends largely on how the parser is implemented.3

However, we believe feature extraction is the major computation block since it grows

with the number and complexity of features, which can be a large hidden constant

in the time complexity. In addition, large time consumption of feature extraction

has been reported in other work (Bohnet, 2010) as well. In the next section, we

discuss how to adapt the dynamic feature selection framework described in the last

chapter to dependency parsing, specifically the MSTParser.

4.2 Dynamic Feature Selection for Parsing

Using the analogy of feature selection for classification, here each edge is an

example to be classified as either a true edge in the ground truth parse tree or a false
3We changed the feature computation part in the original MSTParser to make to more efficient.

Specifically, instead of hashing a feature string, we hash an integer by encoding the features into
a sequence of bytes similar to Bohnet (2010).
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edge, and we select feature templates to instantiate. There are two main challenges.

First, given hundreds of templates, it is not efficient to select one template at a time

considering the decision overhead between two steps: running the policy and the

decoder (for intermediate prediction). Second, making decisions and maintaining a

different set of features for each edge (n2 in total) is expensive. Therefore, we make

two simplifications to reduce the number of decisions needed. First, we group and

rank all features beforehand, such that we only make decisions about whether to add

more features or to stop. Second, instead of making separate decisions for each edge,

we make decisions for important edges only and use structural constraints to decide

for other edges. Recall that in dynamic feature selection we make intermediate

predictions after new features are added. The key idea is to make decisions for

edges in the intermediate parse tree only: these are the important edges which are

likely to appear in the final parse tree. In the following, we give an overview of our

parsing algorithm followed by a detailed description.

4.2.1 Overview

We show the parsing process for one short sentence in Figure 4.2. The first step

is to parse using the first feature group. We use the fast first-order non-projective

parser for intermediate prediction since given observations (b) and (c) from the

time usage analysis, we cannot afford to run projective parsing multiple times. The

single resulting tree (blue and red edges in Figure 4.2) has only n edges, and we use

a classifier to decide which of these edges are reliable enough that we should “lock”
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Figure 4.2: Overview of dynamic feature selection for dependency parsing. (a)
Start with all possible edges except those filtered by the length dictionary. (b) – (e)
Add the next group of feature templates and parse using the non-projective parser.
Predicted trees are shown as blue and red edges, where red indicates the edges that
we then decide to lock. Dashed edges are pruned because of having the same child
as a locked edge; 2-dot-3-dash edges are pruned because of crossing with a locked
edge; fine-dashed edges are pruned because of forming a cycle with a locked edge,
and 2-dot-1-dash edges are pruned since the root has already been locked with one
child. (f) Final projective parsing.

them—i.e., commit to including them in the final tree. This is the only decision

that our policy π must make. Locked (red) edges are definitely in the final tree. We

then do constraint propagation to make decisions for other edges: we rule out all

edges that conflict with the locked edges, barring them from appearing in the final

tree.4 Conflicts are defined as violation of the projective parsing constraints:

• Each word has exactly one parent;

• Edges cannot cross each other;5

• The directed graph is non-cyclic;
4Constraint propagation also automatically locks an edge when all other edges with the same

child have been ruled out.
5Naively, the cost of finding edges that cross a locked edge is O(n2). But at most n edges will be

locked during the entire algorithm, for a total O(n3) runtime—the same as one call to projective
parsing, and far faster in practice. With cleverness, this can even be reduced to O(n2 logn) by
using a k-d tree to store edges as two-dimensional ranges.
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• Only one word is attached to the root.

Once constraint propagation has finished, we visit all edges (gray) whose fate is still

unknown and update their scores in parallel by adding the next group of features.

The process is repeated unless all edges are determined or no more feature is left.

As a result, most edges will be locked in or ruled out without needing to look

up all of their features. Some edges may still remain uncertain even after including

all features. If so, a final iteration (Figure 4.2 (f)) uses the slower projective parser

to resolve the status of these maximally uncertain edges. In our example, the parser

does not figure out the correct parent of time until this final step. This final,

accurate parser can use its own set of weighted features, including higher-order

features, as well as the projectivity constraint. But since it only needs to resolve

the few uncertain edges, both scoring and decoding are fast.

If we wanted our parser to be able to produce non-projective trees, then we

would skip this final step or have it use a higher-order non-projective parser, and

we would not prune edges crossing the locked edges.

4.2.2 The Full Algorithm

We now describe our parsing algorithm in details.

pre-trained Parsers Same as in the classification setting, we use pre-trained

task predictors to generate intermediate and final outputs. We assume that we are

given three increasingly accurate but increasingly slow parsers that can be called as

subroutines: a first-order non-projective parser, a first-order projective parser, and
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a second-order projective parser. In all cases, their feature weights have already

been trained using the full set of features, and we will not change these weights.

In general, we will return the output of one of the projective parsers. But at early

iterations, the non-projective parser helps us rapidly consider interactions among

edges that may be relevant to our dynamic decisions.

Feature Template Ranking We first rank the 268 first-order feature templates

by forward selection. We start with an empty list of feature templates, and at each

step, we greedily add the one whose addition most improves the parsing accuracy

on a development set. Since some features may be slower than others (for example,

the "between" feature templates require checking all tokens in-between the head and

the modifier), we could instead select the feature template with the highest ratio

of accuracy improvement to runtime. However, for simplicity we do not consider

this: after grouping (see below), minor changes of the ranks within a group have no

effect. The accuracy is evaluated by running the first-order non-projective parser

since we will use it to make most of the decisions. The 112 second-order feature

templates are then ranked by adding them in a similar greedy fashion (given that

all first-order features have already been added), evaluating with the second-order

projective parser.

We then divide this ordered list of feature templates intoK groups: T1, . . . , TK .

Our parser adds an entire group of feature templates at each step, since adding one

template at a time would require too many decisions and obviate speedups. The

simplest grouping method would be to put an equal number of feature templates in
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Figure 4.3: Forward feature selection result using the non-projective model on En-
glish PTB section 22.

each group. From Figure 4.3 we can see that the accuracy increases significantly with

the first few templates and gradually levels off as we add less valuable templates.

Thus, a more cost-efficient method is to split the ranked list into several groups so

that the accuracy increases by roughly the same amount after each group is added.

In this case, earlier stages are fast because they tend to have many fewer feature

templates than later stages. For example, for English, we use 7 groups of first-order

feature templates and 4 groups of second-order feature templates. The sequence of

group sizes is 1, 4, 10, 12, 47, 33, 161 and 35, 29, 31, 17 for first- and second-order

parsing respectively.

Sequential Feature Selection and Edge Pruning Our test time parsing pro-

cedure is shown in Algorithm 3.

Similar to the length dictionary filter of Rush and Petrov (2012), for each test

sentence, we first deterministically remove edges longer than the maximum length of
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Algorithm 3 DynFS(G(V , E), π)
1: E ← {〈h,m〉 : |h−m| ≤ lenDict(h,m)}
2: Add T1 to all edges in E
3: ŷ ← non-projective decoding
4: for i = 2 to K do
5: Esort ← sort unlocked edges {E : E ∈ ŷ} in descending order of their scores
6: for 〈h,m〉 ∈ Esort do
7: if π(ψ(〈h,m〉)) == lock then
8: E ← E \ {{〈h′,m〉 ∈ E : h′ 6= h} ⋃ {〈h′,m′〉 ∈ E : cross 〈h,m〉} ⋃

{〈h′,m′〉 ∈ E : cycle with 〈h,m〉}}
9: if h == 0 then

10: E ← E \ {〈0,m′〉 ∈ E : m′ 6= m}
11: end if
12: else
13: Add Ti to {〈h′,m′〉 ∈ E : m′ == m}
14: end if
15: end for
16: if i == K then
17: ŷ ← projective decoding
18: else if i 6= K or fail then
19: ŷ ← non-projective decoding
20: end if
21: end for
22: Return ŷ

edges in the training set that have the same head part-of-speech (pos) tag, modifier

pos tag, and direction (Algorithm 3, Line 1). This simple step prunes around 40%

of the non-gold edges in our PTB development set at a cost of less than 0.1% in

accuracy.

Given a test sentence of length n, we start with a complete directed graph

G(V , E), where E = {〈h,m〉 : h ∈ [0, n], m ∈ [1, n]}. After the length dictionary

pruning step, we compute T1 for all remaining edges to obtain a pruned weighted

directed graph. We predict a parse tree using the features so far (other features are

treated as absent, with value 0). Then for each edge in this intermediate tree, we use

a policy π (binary linear classifier) to choose between two actions: A = {lock, add}.
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The lock action ensures that 〈h,m〉 appears in the final parse tree by pruning edges

that conflict with 〈h,m〉 (Algorithm 3, Line 8).6 If the classifier is not confident

enough about the parent of m, it decides to add to gather more information. The

add action computes the next group of features for 〈h,m〉 and all other competing

edges with child m. Since we classify the edges one at a time, decisions on one edge

may affect later edges. To improve efficiency and reduce cascaded error, we sort the

edges in the predicted tree and process them as above in descending order of their

scores (Algorithm 3, Line 5).

Now we can continue with the second iteration of parsing. Overall, our method

runs up to K = K1 +K2 iterations on a given sentence, where we have K1 groups of

first-order features and K2 groups of second-order features. We run K1−1 iterations

of non-projective first-order parsing (adding groups T1, . . . , TK1−1), then 1 iteration

of projective first-order parsing (adding group TK1), and finally K2 iterations of

projective second-order parsing (adding groups TK1+1, . . . TK).

Before each iteration, we use the result of the previous iteration (as explained

above) to prune some edges and add a new group of features to the rest. We then

run the relevant parser. Each of the three parsers has a different set of feature

weights, so when we switch parsers on rounds K1 and K1 + 1, we must also change

the weights of the previously added features to those specified by the new parsing

model.

In practice, we can stop as soon as the fate of all edges is known. Also, if no
6If the conflicting edge is in the current predicted parse tree (which can happen because of

non-projectivity), we forbid the model to prune it. Otherwise, the non-projective parser at the
next stage may fail to find a tree in rare cases.
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projective parse tree can be constructed at round K1 using the available unpruned

edges, then we immediately fall back to returning the non-projective parse tree

from round K1 − 1 (Algorithm 3, Line 18–20). This fail case rarely occurs in our

experiments (fewer than 1% of sentences).

We have defined the search space and decisions the policy must make. Next,

we describe how to learn such a policy using imitation learning.

4.2.3 Policy Learning

We follow the same learning algorithm introduced in Chapter 3. In this section,

we describe components required to run DAgger.

Expert In our case, the expert’s decision is rather straightforward. Replace the

policy π in Algorithm 3 by an expert. If the edge under consideration is a gold

edge, it executes lock; otherwise, it executes add. Basically the expert “cheats” by

knowing the true tree and always making the right decision. On our PTB dev set,

it can get 96.47% accuracy7 with only 2.9% of the first-order features. This is an

upper bound on our performance.

pre-trained Parsers We obtain the pre-trained parsers in the same way as in the

last chapter. We partition the training sentences T into N folds T 1, T 2, . . . , T N . To

simulate parsing results at test time, when collecting examples on T i, using parsers

trained on T \ T i, much as in cross-validation.
7The imperfect performance is because the accuracy is measured with respect to the gold parse

trees. The expert only makes optimal pruning decisions but the performance depends on the
pre-trained parser as well.
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State Features We use a feature map ψ that concatenates all previously acquired

parsing features together with meta-features that reflect confidence in current pre-

diction of the edge. The meta-features are based on scores of each edge given features

added so far. Since each modifier can have only one head, it makes sense to nor-

malize scores of competing edges which have the same modifier. We standardize

the edge scores by a sigmoid function. Formally, let ṡ denote the normalized score,

defined by ṡθ(〈h,m〉) = 1/(1 + exp{−sθ(〈h,m〉)}). Our meta-features for 〈h,m〉

include:

• current normalized score, and normalized score before adding the current fea-

ture group;

• margin to the highest scoring competing edges, i.e., ṡ(w, 〈h,m〉)−maxh′ ṡ(w, 〈h′,m〉)

where h′ ∈ [0, n] and h′ 6= h;

• index of the next feature group to be added.

We also tried more complex meta-features, for example, mean and variance of the

scores of competing edges, and structured features such as whether the head of e is

locked and how many locked children it currently has. It turns out that given all the

parsing features, the margin is the most discriminative meta-feature. We believe it

is because the margin is the most direct indication of how confident a prediction is

after we normalize scores of competing edges to a probability distribution. When it

is present, other meta-features we added do not help much. Thus, we do not include

them in our experiments due to overhead.
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4.3 Experiments

Setup We generate dependency structures from the PTB constituency trees using

the head rules of Yamada and Matsumoto (2003). Following convention, we use

sections 02–21 for training, section 22 for development and section 23 for testing.

We also report results on six languages from the CoNLL-X shared task (Buchholz

and Marsi, 2006) as suggested in (Rush and Petrov, 2012), which cover a variety

of language families. We follow the standard training/test split specified in the

CoNLL-X data and tune parameters by cross validation when training the classifiers

(policies). The PTB test data is tagged by a Stanford pos tagger (Toutanova et al.,

2003) trained on sections 02–21. We use the provided gold pos tags for the CoNLL

test data. All results are evaluated by the unlabeled attachment score (UAS). For

a fair comparison with previous work, punctuation is included when computing

parsing accuracy of all CoNLL-X languages but not English (PTB).

For policy training, we train a linear SVM classifier using LIBLINEAR (Fan

et al., 2008). For all languages, we run DAgger for 20 iterations and select the

best policy evaluated on the development set among the 20 policies obtained from

each iteration.

Evaluation Our baseline parser is the publicly available implementation of MST-

Parser8 (with modifications to the feature computation) and its default settings, so

the feature weights of the projective and non-projective parsers are trained by the
8http://www.seas.upenn.edu/~strctlrn/MSTParser/MSTParser.html
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MIRA algorithm (Crammer and Singer, 2003; Crammer et al., 2006).

The parsing features contains most features proposed in the literature (Mc-

Donald et al., 2005a; Koo and Collins, 2010). The basic feature components include

lexical features (token, prefix, suffix), pos features (coarse and fine), edge length and

direction. The feature templates consist of different conjunctions of these compo-

nents. Other than features on the head word and the child word, we include features

on in-between words and surrounding words as well. For PTB, our first-order model

has 268 feature templates and 76,287,848 features; the second-order model has 380

feature templates and 95,796,140 features. The accuracy of our full-feature models

is comparable or superior to previous results.

We compare with the baseline parser and the vine pruning cascade parser (Rush

and Petrov, 2012) in terms of speedup in wall-clock time and parsing accuracy. The

vine pruning cascade parser gains speedup by coarse-to-fine projective parsing cas-

cades (Charniak et al., 2006), where they take multiple passes of parsing, and prune

edges in each pass. While we focus on reducing feature computation, they focus on

reducing decoding time.

Result In Table 4.2, we compare the dynamic parsing models with the full-feature

models and the vine pruning cascade models for first-order and second-order parsing.

The speedup for each language is defined as the speed relative to its full-feature

baseline model. We take results reported by Rush and Petrov (2012) for the vine

pruning model. As speed comparison for parsing largely relies on implementation,

we also report the percentage of feature templates chosen for each sentence. The cost
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column shows the average number of feature templates computed for each sentence,

expressed as a percentage of the number of feature templates if we had only pruned

using the length dictionary filter.
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Language Method First-order Second-order
Speedup Cost(%) UAS(D) UAS(F) Speedup Cost(%) UAS(D) UAS(F)

Bulgarian DynFS 3.44 34.6 91.1 91.3 4.73 16.3 91.6 92.0
VineP 3.25 - 90.5 90.7 7.91 - 91.6 92.0

Chinese DynFS 2.12 42.7 91.0 91.3 2.36 31.6 91.6 91.9
VineP 1.02 - 89.3 89.5 2.03 - 90.3 90.5

English DynFS 5.58 24.8 91.7 91.9 5.27 49.1 92.5 92.7
VineP 5.23 - 91.0 91.2 11.88 - 92.2 92.4

German DynFS 4.71 21.0 89.2 89.3 6.02 36.6 89.7 89.9
VineP 3.37 - 89.0 89.2 7.38 - 90.1 90.3

Japanese DynFS 4.80 15.6 93.7 93.6 8.49 7.53 93.9 93.9
VineP 4.60 - 91.7 92.0 14.90 - 92.1 92.0

Portuguese DynFS 4.36 32.9 87.3 87.1 6.84 40.4 88.0 88.2
VineP 4.47 - 90.0 90.1 12.32 - 90.9 91.2

Swedish DynFS 3.60 37.8 88.8 89.0 5.04 22.1 89.5 89.8
VineP 4.64 - 88.3 88.5 13.89 - 89.4 89.7

Table 4.2: Comparison of speedup and accuracy with the vine pruning cascade approach for six languages. In the setup,
DynFS means our dynamic feature selection model, VineP means the vine pruning cascade model, UAS(D) and UAS(F) refer
to the unlabeled attachment score of the dynamic model (D) and the full-feature model (F) respectively. For each language, the
speedup is relative to its corresponding first- or second-order model using the full set of features. Results for the vine pruning
cascade model are taken from Rush and Petrov (2012). The cost is the percentage of feature templates used per sentence on
edges that are not pruned by the dictionary filter.
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Figure 4.4: System dynamics on English PTB section 23. Time and accuracy are
relative to those of the baseline model using full features. Red (locked), gray (un-
decided), dashed gray (pruned) lines correspond to edges shown in Figure 4.2.

From the table we notice that our first-order model’s performance is compara-

ble or superior to the vine pruning model, both in terms of speedup and accuracy.

In some cases, the model with fewer features even achieves higher accuracy than the

model with full features. The second-order model, however, does not work as well.

In our experiments, the second-order model is more sensitive to false negatives, i.e.

pruning of gold edges, due to larger error propagation than the first-order model.

Therefore, to maintain parsing accuracy, the policy must make high-precision prun-

ing decisions and becomes conservative. We could mitigate this by training the

original parsing feature weights in conjunction with our policy feature weights. In

addition, there is larger overhead during when checking non-projective edges and

cycles.

We demonstrate the dynamics of our system in Figure 4.4 on PTB section 23.

We show how the runtime, accuracy, number of locked edges and undecided edges
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Figure 4.5: Pareto curves for the dynamic and static approaches on English PTB
section 23.

change over the iterations in our first-order dynamic projective parsing. From itera-

tions 1 to 6, we obtain parsing results from the non-projective parser; in iteration 7,

we run the projective parser. The plot shows relative numbers (percentage) to the

baseline model with full features. The number of remaining edges drops quickly after

the second iteration. From Figure 4.3, however, we notice that even with the first

feature group which only contains one feature template, the non-projective parser

can almost achieve 50% accuracy. Thus, ideally, our policy should have locked that

many edges after the first iteration. The learned policy does not imitate the ex-

pert perfectly, either because our policy features are not discriminative enough, or

because a linear classifier is not powerful enough for this task.

Finally, to show the advantage of making dynamic decisions that consider the

interaction among edges on the given input sentence, we compare our results with a

static feature selection approach on PTB section 23. The static algorithm does no

pruning except by the length dictionary at the start. In each iteration, instead of
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running a fast parser and making decisions online, it simply adds the next group of

feature templates to all edges. By forcing both algorithms to stop after each stage,

we get the Pareto curves shown in Figure 4.5. For a given level of high accuracy,

our dynamic approach (black) is much faster than its static counterpart (blue).

4.4 Related Work

In dependency parsing, the problem of feature computation is less studied.

Instead, previous work has made much progress on the complementary problem:

speeding up decoding by pruning the search space of tree structures. In Roark and

Hollingshead (2008) and the follow-up work by Bodenstab (2012), pruning deci-

sions are made locally for each cell in the CKY algorithm as a preprocessing step.

At test time, the parser works on a fixed pruned graph. In the vine pruning ap-

proach (Rush and Petrov, 2012), edge pruning is done via a coarse-to-fine projective

parsing cascade, using the framework of structured prediction cascades (Weiss and

Taskar, 2010). These approaches do not directly tackle the feature selection prob-

lem. However, it is important to note that the feature selection approach and the

graph pruning approach are not exclusive. During feature selection, we lock and

prune edges, which reduces work of the decoder. On the other hand, pruned edges

do not require further feature computation, which also reduces the scoring time. In

addition, the two approaches both have limitations due to decision overhead. In

feature selection, we have to reduce the number of decisions for edges and features.

In graph pruning, the pruning step must itself compute high-dimensional features
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just to decide which edges to prune, thus pruning has to rely on simpler features for

efficiency (Rush and Petrov, 2012).

From the machine learning perspective, much work has focused on adaptive

feature selection for supervised learning (See Section 3.5), however, very few is

applicable to structured prediction. The most related work is Weiss et al. (2013),

where models are arranged in order of increasing complexity (in terms of the feature

used), and a selector is learned to decide whether to use a more complex model. The

difference from our work is that they make the same decision for all substructures,

while we consider each substructure—at least the important ones—separately.

4.5 Conclusion

In this chapter, we extended the dynamic feature selection framework proposed

in the last chapter to structured prediction. We proposed a dynamic feature selection

algorithm for graph-based dependency parsing, which successfully reduces feature

computation time and avoids decision overhead. We evaluated our method across 7

languages. Our dynamic parser achieved accuracies comparable or even superior to

parsers using a full set of features, while computing fewer than 30% of the feature

templates.

This chapter concludes the first part of methods focusing on sequential acqui-

sition problems. We have demonstrated the effectiveness of dynamically acquiring

information only when needed on two applications. Starting from the next chapter,

we will focus on problems with sequentially revealed input.
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Chapter 5: Simultaneous Interpretation

This chapter describes joint work with Alvin Grissom II, John Morgan, Jor-

dan Boyd-Graber and Hal Daumé III (He et al., 2015; Grissom II et al., 2014) in

EMNLP 2014 and 2015.

To this point, we have seen that a cost-accuracy trade-off can be achieved by

selecting features adaptively. From this chapter on, we start a new type of sequential

problem where the input is revealed incrementally. In Chapter 1 we introduced

two sequential revealing problems in NLP: simultaneous interpretation and quiz

bowl (sequential question answering). The focus of this chapter is simultaneous

interpretation, a less studied area in machine translation. In the rest of this chapter,

we assume that speech input/output has been recognized or transcribed into text and

we work with textual data only. Therefore, we will use the two terms—simultaneous

interpretation and simultaneous translation—interchangeably.

Similar to the dynamic feature selection setting, we assume that we are given

a pre-trained translator, and we need to adapt it to changing input and achieve a

trade-off between cost and prediction quality. The difference here is that we cannot

select which part of the input we would like to see, instead, we are given parts of the

input in a fixed order. In simultaneous translation, the given input is a sequence of
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words coming in one by one. The cost in sequential revealing problems is the time

spent on waiting for more input. Therefore, our goal is to translate (speak) as soon

as possible once words are input (uttered).

We first show how to learn a translation policy in a framework similar to that

introduced in the previous two chapters. We then discuss challenges for simultaneous

translation when we are not able to select the information most needed, e.g., the verb

required for translation comes late in the input. Finally, we present two linguistically

inspired methods to alleviate problems due to divergent word orders of the source

language (input) and the target language (output).

5.1 Simultaneous Interpretation

Unlike translating a book, interpretation happens during real-time conversa-

tion or speech. To make sure information flows smoothly between the speaker and

the listener, the interpreter must translate under a stringent time constraint. There

is no time for weighing the appropriateness of similar words or looking up an un-

familiar expression. There are two major modes of interpretation: consecutive and

simultaneous. In consecutive interpretation, the speaker stops after finishing a com-

plete thought and waits for the interpreter to translate. This is similar to the normal

translation setting, where complete sentences are seen before translation starts. In

simultaneous interpretation, the interpreter translates while the speaker is talking.

One of the first noted uses of simultaneous interpretation was the Nuremberg tri-

als (Gaiba, 1998) after the Second World War, where a trade-off between translation
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accuracy and latency was required to achieve “fair and expeditious trials”. Since the

speaker does not reserve time for translation, the interpreter must decide when to

translate and when to wait for more information. In the rest of the section, we

formally define the problem of simultaneous machine translation and our learning

objective.

5.1.1 Problem Formulation

In batch machine translation (MT), we are given an input sentence x in the

source language, and the system needs to output its translation y in the target

language. We are interested in simultaneous machine translation, where the input

comes in word by word.1 Therefore, our input is a sequence of words x1, . . . , xT ,

where xt is the input word at time t and T is the length of the input. Correspond-

ingly, the system generates partial translations y1, . . . , yT at each time step. The

output yt can be empty, in which case the system decides to wait for more input

words. Next, we describe evaluation metrics for batch MT and simultaneous MT.

5.1.2 Objective and Evaluation Metric

Good simultaneous translations must optimize two objectives that are often

at odds: producing high-quality translations and producing them expeditiously. All

else being equal, maximizing either goal in isolation is trivial: for maximally accu-

rate translation, use a batch translator and wait until the sentence is complete, then
1In this chapter, we deal with textual data on sentence level instead of continuous speech as in

real interpretation. We simulate speaker’s utterance by revealing one word of the source sentence
at a time.
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translate it all at once; for maximally expeditious translation, create glossed trans-

lations as words appear. The former is essentially consecutive interpretation, and

we refer to it as batch translation. The latter is translated in the source sentence’s

word order, which can result in awkward translations of distant language pairs; we

refer to it as monotone translation (Tillmann et al., 1997; Pytlik and Yarowsky,

2006). In the ideal case, we can imagine a psychic translator that maximizes both

accuracy and speed: it predicts what the speaker is going to say and translate the

entire (imagined) sentence as soon as one word is uttered. Obviously, this system is

unrealistic, however, it helps us to identify a spectrum of system performance. We

propose an evaluation metric for simultaneous MT that considers both translation

latency and accuracy. Our metric is based on the bleu metric for batch MT.

BLEU bleu (Papineni et al., 2002b) is a widely used metric for measuring perfor-

mance of a MT system, which has been shown to have high correlation with human

judgments of quality (Papineni et al., 2002b; Papineni et al., 2002a). Given a set of

reference translations R and a set of candidate translations Y (generated by a MT

system), bleu measures the similarity between these two translations by computing

the average n-gram precision for paired y ∈ Y and r ∈ R (i.e., the percentage of

n-grams in y that also appear in r). Formally, we define the n-gram precision as

pn(Y ,R) =
∑
y∈Y

∑
x∈fn(y) 1x∈fn(r)∑

y∈Y
∑
x∈fn(y) 1 (5.1)
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where 1 is the indicator function and fn denotes the n-gram extractor; for example,

f1 returns all words in a sentence and f2 returns all bigrams.

If we only consider precision, it is possible for a system to get 100% score

by simply generating one word in each reference translation. Therefore, bleu also

includes a brevity penalty (BP). Letm be the total length of all reference translations

and n be the length of corresponding candidate translations, we have

BP =


1 n > m

e1−m/n otherwise
(5.2)

Finally, the bleu score is defined as

bleu(Y ,R) = BP · exp
(

N∑
n=1

pn(Y ,R)
)
, (5.3)

where N is usually set to 4.

The above bleu score is defined on the entire corpus. However, since we will

be learning policy on an instance basis, we need a sentence-level bleu. The naive

way to compute bleu score for a sentence is to simple treat it as a corpus having

only one sentence.

Latency-BLEU We now describe our metric, latency-bleu (lbleu) for simulta-

neous MT. Instead of a single candidate translation in batch MT, we have a sequence

of partial translations y1, . . . , yT for each input sentence. We consider these partial

translations in a two-dimensional space, with time (quantized by the number of
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Figure 5.1: Latency-bleu: integral of bleu score over time.

source words seen) on the x-axis and the bleu score on the y-axis. At each point

in time, the system may generate a partial translation or nothing (wait). If yt is

empty, we use the bleu score of the last partial translation as the score at time t.

The visualization of lbleu is shown in Figure 5.1, as the integral area of bleu over

time. A good system will be high and to the left, optimizing the area under the

curve: the psychic system would produce points as high as possible immediately.

Formally, let y1:t be a shorthand for {y1, . . . , yT}; we define lbleu on a sentence

basis:

lbleu(y1:T , r) = 1
T

∑
t

bleu(yt, r) + T · bleu(yT , r). (5.4)

The score of a simultaneous translation is the sum of the scores of all individual

segments that contribute to the overall translation. We multiply the final bleu

score by T to ensure good final translations in learned systems.2 This effectively

gives equal weight to intermediate translations and the final translation.

Now that we have defined our objective, in the following section we describe

what kind of decisions are needed to achieve such a trade-off between latency and
2One could replace T with a parameter, β, to bias towards different kinds of simultaneous

translations. As β →∞, we recover batch translation.
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accuracy.

5.2 Decision Process for Interpretation

A simultaneous MT system needs two modules: a translator that produces

translations for input (partial) sentences, and a decision-maker that decides when

to translate and when to wait for more information. We pretrain a translator us-

ing an off-the-shelf batch MT system and use it as a callable function to provide

us translations of any input text. We learn a decision-maker in the MDP frame-

work using imitation learning. This section focus on the formulation of the MDP

(Section 2.1) for simultaneous translation.

In the MDP context, our state contains words seen so far x1:t, and their trans-

lations y1:t. The action set includes wait and commit. Waiting is the simplest action.

It produces no output and allows the system to receive more input, biding its time,

so that when it does choose to translate, the translation is based on more informa-

tion. Committing sends received words to the translator and produces a translation.

We can recreate a batch translation system by a sequence of wait actions until all

input is observed, followed by a commit action to generate the complete translation.

Similarly, we can recreate the monotone translator by committing at every time

step. The reward in the final state is lbleu score defined in the last section, and

the optimal action sequence that maximizes lbleu can be found by beam search.

Combining Partial Translations While we assume an underlying batch trans-

lator, we do not assume it can automatically combine a sequence of partial trans-
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lations. The straightforward way is to send consecutive segments of text to the

translator, translate them separately and concatenate the output segment transla-

tions. However, this way the translator does not have the previous context of each

segment, and the translation quality may degrade. A slightly more complex way is

to send all words seen so far (including those already translated) to the translator.

To avoid possible conflict translation with previously committed translations, we

only append translation of new words to the current output.3

We have described all essential components required to run an imitation learn-

ing algorithm. However, we have ignored an important problem that may limit the

performance of our system: divergent word orders between the source and the target

language. We detail this problem in the next section.

5.3 Challenge: Delayed Information

The translation process described above is limited by unavoidable word re-

ordering between languages with drastically different word orders. Performing real-

time translation is especially difficult when information that comes early in the

target language comes late in the source language. A common example is when

translating from a verb-final (sov) language (e.g., German or Japanese) to a verb-

medial (svo) language, (e.g., English). For instance, in the example in Figure 5.2,

the main verb of the sentence (in bold) appears at the end of the German sentence.

However, the target English sentence requires a verb immediately after the subject
3We which part of the translation is for new input words since the output has alignment

information, assuming a phrase-based MT system.
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ich bin mit dem Zug nach Ulm gefahren
I am with the train to Ulm traveled
I (. . . . . . waiting. . . . . . ) traveled by train to Ulm

Figure 5.2: An example of translating from a verb-final language to English. The
verb, in bold, appears at the end of the sentence, preventing coherent translations
until the final source word is revealed.

“I”. In this case, a dynamic translator would behave the same as a batch translator

at best, since it is forced to wait until the end of the sentence for the final verb.

Waiting for such missing constituents required early in the target sentence can cause

significant delay.

To address the above problem of divergent word orders, we propose two ap-

proaches. Both improves the speed at a little cost of translation quality. Although

the two approaches focus on translating from SOV languages to SVO languages,

some techniques apply to other language pairs as well.

The first approach is to predict upcoming words, especially the required but

late syntactic constituent such as the verb. In reality, predicting future content is

also an important skill of human interpreters (Hönig, 1997; Camayd-Freixas, 2011).

They usually talk with the speaker or review the speech outline beforehand, so as to

have a better idea of what the speaker is going to say next during interpretation. If

the prediction is accurate, the system can start to translate before actually sees the

syntactic component in need. However, our prediction may not always be reasonable,

thus we need to decide when to trust the prediction and when to ignore it. In

Section 5.4 we show how to incorporate future content prediction as another action

and make decisions about it.

The second approach is to reorder the target sentence to postpone the need
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for late constituents. Thanks to the flexibility of natural languages, sometimes we

can arrange the words in a different way such that the unseen part is not required to

produce a grammatical partial translation. Essentially, we want to paraphrase the

target sentence so that it has a word order similar to that of the source sentence.

While this is possible by adding “paraphrasing” actions to the search space, we

will end up with a more complex action set and need to edit possibly inaccurate

translations given by the batch translator. To avoid the complication, we modify

the batch translator instead. In Section 5.5 we describe rewriting rules to make the

target translation more monotone.

5.4 Predicting Future Content

In this section, we present a prediction method for alleviating the problem

of divergent word orders. Our goal is to predict upcoming words (especially the

late constituent in need) in the source sentence and use it as extra information for

translating the current partial input. To see the advantage of predicting future

words, we show an example in Figure 5.3. The reward is shown in dark blue for

different systems. The monotone system translates anyway without the necessary

constituent, and the batch system has to wait until the end for the verb. By correctly

predicting the verb “gegangen” (to go), we achieve a better overall translation more

quickly. In the following, we first describe how this can be combined with our current

translation system, then show how to build such predictors.
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Figure 5.3: Comparison of lbleu for an impossible psychic system, a traditional
batch system, a monotone (German word order) system, and our prediction-based
system.

Richer State and Action Space We incorporate prediction as an action in our

MDP framework. Specifically, we add two actions: next-word and verb The next-

word action takes a prediction of the next source word and produces an updated

translation based on that prediction, i.e. appending the predicted word to the words

seen so far and translating them as a single sentence. The verb action predicts the

source sentence’s final verb (since it is a verb-final language). The system uses the

predicted verb in the same way as the next word by appending it to the current

prefix.

With the two additional action, our state space becomes richer too. Besides

the words and translations so far, we also include prediction of the next word and

the final verb. Specifically, our state features are as follows.

• Input. We use a bag-of-words representation of the words seen so far. To
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Figure 5.4: A simultaneous translation from source (German) to target (English).
The agent chooses to wait until after (3). At this point, it is sufficiently confident
to predict the final verb of the sentence (4). Given this additional information, it
can now begin translating the sentence into English, constraining future translations
(5). As the rest of the sentence is revealed, the system can translate the remainder
of the sentence.

encode time/position of the state, we include the length of the current input

as well as the most recent word and bigram.

• Translation. We use a bag-of-words representation of the target translation

so far. We also have meta-features including the score of the current transla-

tion, and the difference between the current and previous translation scores.

• Prediction. We include the predicted verb and next word as well as their

probabilities (details of the predictor are described later in this section).

We show the whole simultaneous translation process in Figure 5.4, using an

example translation from German to English. The gray boxes represent the un-

derlying batch translator, and the red arrows represent the decision-maker and its

actions. Once the system commits, the new output is shown in green (the previous
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output is fixed once committed and is shown in black). In the example, for the

first few source words, the translator lacks the confidence to produce any output

due to insufficient information at the state. However, after State 3, the state shows

high confidence in the predicted verb “gefahren”. Combined with previous German

input it has observed, the system is sufficiently confident to act on that prediction

to produce English translation.

Incremental Word Predictor The prediction of the next word in the source

language sentence is modeled with a left-to-right language model. This is analogous

to how a human translator might use his own “language model” to guess upcoming

words to gain some speed by completing, for example, collocations before they are

uttered. We use a simple bigram language model for next-word prediction (Heafield

et al., 2013).

For verb prediction, we use a generative model that combines the prior proba-

bility of a particular verb v, p(v), with the likelihood of the source context at time t

given that verb (namely, p(x1:t|v)), as estimated by a smoothed Kneser-Ney language

model (Kneser and Ney, 1995). The prior probability p(v) is estimated by simple

relative frequency estimation. The context, x1:t, consists of all words observed. We

model p(x1:t|v) with verb-specific n-gram language models. The predicted verb at

time t is then:

v̂(t) = arg max
v
p(v)

t∏
i=1

p(xi|v, xi−n+1:i−1) (5.5)

where xi−n+1:i−1 is the n− 1-gram context. To narrow the search space, we consider

only the 100 most frequent final verbs, where a “final verb” is defined as the sequence
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of verbs at the end of a sentence and particles as detected by a German pos tagger.4

5.4.1 Experiments

Setup We focus on translating from German (sov) to English (svo). We use data

from the German-English Parallel “de-news” corpus of radio broadcast news (Koehn,

2000), which we lower-cased and stripped of punctuation. A total of 48, 601 sentence

pairs are randomly selected for building our system. Of these, we use 70% (34, 528

pairs) for training word alignments.

We used 1 million words of news text from the Leipzig Wortschatz (Quasthoff

et al., 2006) German corpus to train 5-gram language models to predict a verb from

the 100 most frequent verbs. For training the translation policy, we restrict ourselves

to sentences that end with one of the 100 most frequent verbs. This results in a

data set of 4401 training sentences and 1832 test sentences from the de-news data.

We did this to narrow the search space (from thousands of possible but mostly very

infrequent, verbs).

For next-word prediction, we use the 18, 345 most frequent German bigrams

from the training set to provide a set of candidates in a language model trained on

the same set. We use frequent bigrams to reduce the computational cost of finding

the completion probability of the next word.

In Figure 5.5, we show performance of the optimal policy vs. the learned

policy, as well as the two baseline policies: the batch policy and the monotone
4This has the obvious disadvantage of ignoring morphology and occasionally creating duplicates

of common verbs that have may be associated with multiple particles; nevertheless, it provides a
straightforward verb to predict.
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Figure 5.5: The final reward of policies on German data. Our policy outperforms
all baselines by the end of the sentence.

policy. The x-axis is the percentage of the source sentence seen by the model, and

the y-axis is a smoothed average of the reward as a function of the percentage of the

sentence revealed. The monotone policy’s performance is close to the optimal policy

for the first half of the sentence, as German and English have similar word order,

though they diverge toward the end. Our learned policy outperforms the monotone

policy toward the end and of course outperforms the batch policy throughout the

sentence. Figure 5.6 shows counts of actions taken by each policy. The batch policy

always commits at the end. The monotone policy commits at each position. Our

learned policy has an action distribution similar to that of the optimal policy but is

slightly more cautious.

Discussion The word prediction method we use here is very simple. In fact, the

low percentage of the verb and next-word action is because that these predictions are

often inaccurate. A more realistic predictor would take context into account when

85



0
2500
5000
7500

10000

0
2500
5000
7500

10000

0
2500
5000
7500

10000

0
2500
5000
7500

10000

Batch
M

onotone
O

ptim
al

Searn

COMMIT WAIT NEXTWORD VERB
Action

Ac
tio

n 
C

ou
nt

Policy Actions

Figure 5.6: Histogram of actions taken by the policies.

it is available. For example, for TED talks we usually have the title and abstract of

the talk beforehand, which can be used as additional features for prediction. Since

the prediction approach can suffer from low prediction accuracy due to limited

knowledge of the context, we propose an orthogonal paraphrasing approach in the

next section.

5.5 Word Reordering

We now turn to a different approach to handling divergent word orders during

simultaneous translation. We have seen from Figure 5.2 that the batch translator

does not work well for simultaneous translation as it expects complete information.

Therefore, we modify training references of the batch translator such that it learns

to produce more monotone translation using only the available information. The
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Source:
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    We        should change the structure and composition of the government       

�
�  ||         ���        ||          ������        ||   	����
 !
                the government’s   structure and composition   should be changed by us

Batch:

Monotone:

Figure 5.7: Divergent word order between language pairs can cause long delays in
simultaneous translation: Segments (||) mark the portions of the sentence that can
be translated together. (Case markers: topic (TOP), genitive (GEN), accusative
(ACC), copula (COP).)

motivation is that a sentence can often be paraphrased into a different word order

with the meaning kept unchanged. We apply syntactic transformations to target

references to make their word orders closer to the source language word order.

We show an example of Japanese-English translation in Figure 5.7. Consider

the batch translation: in English, the verb “change” comes immediately after the

subject “We”, whereas in Japanese it comes at the end of the sentence; therefore, to

produce an intelligible English sentence, we must translate the object after the final

verb is observed, resulting in one large and painfully delayed segment. However,

in the monotone translation, by passivizing the English sentence, we can cache the

subject and begin translating before observing the final verb. Furthermore, by using

the English possessive, we mimic the order of the Japanese genitive construction.

These transformations enable us to divide the input into shorter segments, thus

reducing translation delay.

We propose to rewrite the reference translation in a way that uses the original

lexicon, obeys standard grammar rules of the target language, preserves the original
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semantics, and yields more monotonic translations. As it is hard to define rewriting

as a small set of actions, we instead learn to rewrite when training the underlying

translator. We first rewrite reference translations (as a preprocessing step) in an

order similar to the source language word order, then train the MT system with the

rewritten references so that it learns how to produce low-latency translations from

the data. A data-driven approach to learning these rewriting rules is hampered by

the dearth of parallel data: we have few examples of text that have been both in-

terpreted and translated. Therefore, we design syntactic transformation rules based

on linguistic analysis of the source and the target languages. We apply these rules

to parsed text and decide whether to accept the rewritten sentence based on the

amount of delay reduction. In this section, we focus on Japanese to English trans-

lation, because (i) Japanese and English have significantly different word orders;

and consequently, (ii) the syntactic constituents required earlier by an English sen-

tence often come late in the corresponding Japanese sentence. Next, we describe

our rewriting rules and how they are applied to the original references.

5.5.1 Transformation Rules

We design a variety of syntactic transformation rules for Japanese-English

translation motivated by their structural differences. Our rules cover verb, noun,

and clause reordering. While we specifically focus on Japanese to English, many

rules are broadly applicable to sov to svo languages.
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5.5.1.1 Verb Phrases

The most significant difference between Japanese and English is that the head

of a verb phrase comes at the end of Japanese sentences. In English, it occupies one

of the initial positions. We now introduce rules that can postpone a head verb.

Passivization and Activization In Japanese, the standard structure of a sen-

tence is NP1 NP2 verb, where case markers following the verb indicate the voice of

the sentence. However, in English, we have NP1 verb NP2, where the form of the verb

indicates its voice. Changing the voice is particularly useful when NP2 (object in an

active-voice sentence and subject in a passive-voice sentence) is long. By reversing

positions of verb and NP2, we are not held back by the upcoming verb and can start

to translate NP2 immediately. Figure 5.7 shows an example in which passive voice

can help make the target and source word orders more compatible, but it is not

the case that passivizing every sentence would be a good idea; sometimes making

a passive sentence active makes the word orders more compatible if the objects are

relatively short:

O: The talk was denied by the boycott group spokesman.

R: The boycott group spokesman denied the talk.

Quotative Verbs Quotative verbs are verbs that, syntactically and semantically,

resemble said and often start an independent clause. Such verbs are frequent, espe-

cially in news, and can be moved to the end of a sentence:
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O: They announced that the president will restructure the division.

R: The president will restructure the division, they announced.

In addition to quotative verbs, candidates typically include factive (e.g., know,

realize, observe), factive-like (e.g., announce, determine), belief (e.g., believe, think,

suspect), and anti-factive (e.g., doubt, deny) verbs. When these verbs are followed

by a clause (S or SBAR), we move the verb and its subject to the end of the clause.

While some exploratory work automatically extracts factive verbs, to our

knowledge, an exhaustive list does not exist. To obtain a list with reasonable cov-

erage, we exploit the fact that Japanese has an unambiguous quotative particle, to,

that precedes such verbs.5 We identify all of the verbs in the Kyoto corpus (Neubig,

2011) marked by the quotative particle and translate them into English. We then

use these as our quotative verbs.6

5.5.1.2 Noun Phrases

Another difference between Japanese and English lies in the order of adjectives

and the nouns they modify. We identify two situations where we can take advantage

of the flexibility of English grammar to favor sentence structures consistent with

positions of nouns in Japanese.

Genitive Reordering In Japanese, genitive constructions always occur in the

form of X no Y, where Y belongs to X. In English, however, the order may be
5We use a morphological analyzer to distinguish between the conjunction and quotative parti-

cles. Examples of words marked by this particle include 見られる (expect), 言う (say), 思われ
る (seem), する (assume), 信じる (believe) and so on.

6We also include the phrase It looks like.
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reversed through the of construction. Therefore, we transform constructions NP1 of

NP2 to possessives using the apostrophe-s, NP2’(s) NP1 (Figure 5.7). We use simple

heuristics to decide if such a transformation is valid. For example, when X / Y

contains proper nouns (e.g., the City of New York), numbers (e.g., seven pounds of

sugar), or pronouns (e.g., most of them), changing them to the possessive case is

not legal.

that Clause In English, clauses are often modified through a pleonastic pronoun.

E.g., It is ADJP to/that SBAR/S. In Japanese, however, the subject (clause) is usually

put at the beginning. To be consistent with the Japanese word order, we move the

modified clause to the start of the sentence: To S/SBAR is ADJP. The rewritten English

sentence is still grammatical, although its structure is less frequent in common

English usage. For example,

O: It is important to remain watchful.

R: To remain watchful is important.

5.5.1.3 Conjunction Clause

In Japanese, clausal conjunctions are often marked at the end of the initial

clause of a compound sentence. In English, however, the order of clauses is more

flexible. Therefore, we can reduce delay by reordering the English clauses to mirror

how they typically appear in Japanese. Below we describe rules reversing the order

of clauses connected by these conjunctions:

91



• Clausal conjunctions: because (of), in order to

• Contrastive conjunctions: despite, even though, although

• Conditionals: (even) if, as a result (of)

• Misc: according to

In standard Japanese, such conjunctions include no de, kara, de mo and so on. The

sentence often appears in the form of S2 conj, S1. In English, however, two common

constructions are

S1 conj S2: We should march because winter is coming.

conj S2, S1: Because winter is coming, we should march.

To follow the Japanese clause order, we adapt the above two constructions to

S2, conj’ S1: Winter is coming, because of this, we should march.

Here conj’ represents the original conjunction word appended with simple pro-

nouns/phrases to refer to S2. For example, because → because of this, even if →

even if this is the case.

5.5.2 Sentence Rewriting Process

We now turn our attention to the implementation of the syntactic transfor-

mation rules described above. Applying a transformation consists of three steps:

1. Detection: Identify nodes in the parse tree for which the transformation is

applicable;
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   We new world the loveSource:
Delay:

We  love the new worldTarget:

1 4

   We new world the loveSource:
Delay:

The new world is loved by usNew target:

2 1 2

Figure 5.8: An example of applying the passivization rule to create a translation
reference that is more monotonic.

2. Modification: Transform nodes and labels;

3. Evaluation: Compute delay reduction, and decide whether to accept the

rewritten sentence.

Figure 5.8 illustrates the process using passivization as an example. In the detection

step, we find the subtree that satisfies the condition of applying a rule. In this case,

we look for an S node whose children include an NP (denoted by NP1), the subject,

and a VP to its right, such that the VP node has a leaf VB*, the main verb,7 followed

by another NP (denoted by NP2), the object. We allow the parent nodes (S and VP)

to have additional children besides the matched ones. They are not affected by

the transformation. In the modification step, we swap the subject node and object

node; we add the verb be in its correct form by checking the tense of the verb and

the form of NP2;8and we add the preposition by before the subject. The process is
7The main verb excludes be and have when it indicates tense (e.g., have done).
8We use the Nodebox linguistic library (https://www.nodebox.net/code) to detect and modify

word forms.
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executed recursively throughout the parse tree.

Although our rules are designed to minimize long range reordering, there are

exceptions.9 Thus applying a rule does not always reduce delay. In the evaluation

step, we compare translation delay before and after applying the rule. We accept a

rewritten sentence if its delay is reduced; otherwise, we revert to the input sentence.

Since we do not segment sentences during rewriting, we must estimate the delay.

To estimate the delay, we use word alignments. Figure 5.8c shows the source

Japanese sentence in its word-for-word English translation and alignments from the

target words to the source words. The first English word, “We”, is aligned to the

first Japanese word; it can thus be treated as an independent segment and translated

immediately. The second English word, “love”, is aligned to the last Japanese word,

which means the system cannot start to translate until four more Japanese words are

revealed. Therefore, this alignment forms a segment with a delay of four words/seg.

Alignments of the following words come before the source word aligned to “love”;

hence, they are already translated in the previous segment and we do not double

count their delay. In this example, the delay of the original sentence is 2.5 word/seg;

after rewriting, it is reduced to 1.7 word/seg. Therefore, we accept the rewritten

sentence. However, when the subject phrase is long and the object phrase is short,

a swap may not reduce delay.

We can now formally define the delay. Let ei be the ith target word in the

input sentence x and ai be the maximum index among indices of source words that
9For example, in clause transformation, the Japanese conjunction moshi, which is clause initial,

may appear at the beginning of a sentence to emphasize conditionals, although its appearance is
relatively rare.
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ei aligned to. We define the delay of ei as di = max(0, ai − maxj<i aj). The delay

of x is then ∑N
i=1 di/N , where the sum is over all aligned words except punctuation

and stopwords.

Given a set of rules, we need to decide which rules to apply and in what

order. Fortunately, our rules have little interaction with each other, and the order

of application has a negligible effect. We apply the rules, roughly, sequentially in

order of complexity: if the output of current rule is not accepted, the sentence is

reverted to the last accepted version.

5.5.3 Experiments

We evaluate our method on the Reuters Japanese-English corpus of news arti-

cles (Utiyama and Isahara, 2003). For training the MT system, we also include the

eijiro dictionary entries and the accompanying example sentences.10 The rewrit-

ten translation is generally slightly longer than the gold translation because our

rewriting often involves inserting pronouns (e.g., “it”, “this”) for antecedents.

We use the TreebankWordTokenizer from nltk (Bird et al., 2009) to tok-

enize English sentences and Kuromoji Japanese morphological analyzer11 to tok-

enize Japanese sentences. Our phrase-based MT system is trained by Moses (Koehn

et al., 2003) with standard parameters settings. We use GIZA++ (Och and Ney,

2003) for word alignment and k-best batch MIRA (Cherry and Foster, 2012) for

tuning. The translation quality is evaluated by bleu (Papineni et al., 2002b) and
10Available at http://eijiro.jp
11Available at http://www.atilika.org/
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verb voice noun conj.
Applicable % 39.9 50.0 26.4 4.8
Accepted % 22.5 24.0 51.2 38.4

Table 5.1: Percentage of sentences that each rule category can be applied to (Appli-
cable) and the percentage of sentences for which the rule results in a more monotonic
sentence (Accepted).

ribes (Isozaki et al., 2010).12 To obtain the parse trees for English sentences, we

use the Stanford Parser (Klein and Manning, 2003) and the included English model.

5.5.3.1 Quality of Rewritten Translations

After applying the rewriting rules, Table 5.1 shows the percentage of sentences

that are candidates and how many rewrites are accepted. The most generalizable

rules are passivization and delaying quotative verbs. We rewrite 32.2% of sentences,

reducing the delay from 9.9 words/seg to 6.3 words/seg per segment for rewritten

sentences and from 7.8 words/seg to 6.7 words/seg overall.

We evaluate the quality of our rewritten sentences from two perspectives:

grammaticality and preserved semantics. To examine how close the rewritten sen-

tences are to standard English, we train a 5-gram language model using the English

data from the Europarl corpus, consisting of 46 million words, and use it to com-

pute perplexity. Rewriting references increase the perplexity under the language

model only slightly: from 332.0 to 335.4. To ensure that rewrites leave meaning

unchanged, we use the semafor semantic role labeler (Das et al., 2014) on the

original and modified sentence; for each role-labeled token in the reference sen-
12In contrast to BLEU, RIBES is an order-sensitive metric commonly used for translation

between Japanese and English.
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tence, we examine its corresponding role in the rewritten sentence and calculate the

average accuracy across all sentences. Even ignoring benign lexical changes—for

example, “he” becoming “him” in a passivized sentence—95.5% of the words retain

their semantic roles in the rewritten sentences.

Although our rules are conservative to minimize corruption, some errors are

unavoidable due to propagation of parser errors. For example, the sentence the

London Stock Exchange closes at 1230 GMT today is parsed as:13

(S (NP the London Stock Exchange)

(VP (VBZ closes)

(PP at 1230 )

(NP GMT today)))

GMT today is separated from the PP as an NP and is mistaken as the object. The

passive version is then GMT today is closed at 1230 by the London Stock Exchange.

Such errors could be reduced by skipping nodes with low inside/outside scores given

by the parser, or skipping low-frequency patterns. However, we leave this for future

work.

5.5.3.2 Segmentation

At test time, we use right probability (Fujita et al., 2013, rp) to decide when

to start translating a sentence. As we read in the source Japanese sentence, if the

input segment matches an entry in the learned phrase table, we query the rp of the

Japanese/English phrase pair. A higher rp indicates that the English translation of
13For simplicity we show the shallow parse only.
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this Japanese phrase will likely be followed by the translation of the next Japanese

phrase. In other words, translation of the two consecutive Japanese phrases is

monotonic, thus, we can begin translating immediately. Following (Fujita et al.,

2013), if the rp of the current phrase is lower than a fixed threshold, we cache the

current phrase and wait for more words from the source sentence; otherwise, we

translate all cached phrases. Finally, translations of segments are concatenated to

form a complete translation of the input sentence.

5.5.3.3 Speed/Accuracy Trade-off

To show the effect of rewritten references, we compare the following mt sys-

tems:

• gd: only gold reference translations;

• rw: only rewritten reference translations;

• rw+gd: both gold and the rewritten references; and

• rw-lm+gd: using gold reference translations but using the rewritten refer-

ences for training the lm and for tuning.

For rw+gd and rw-lm+gd, we interpolate the language models of gd and rw.

The interpolating weight is tuned with the rewritten sentences. For rw+gd, we

combine the translation models (phrase tables and reordering tables) of rw and gd

by fill-up combination (Bisazza et al., 2011), where all entries in the tables of rw

are preserved and entries from the tables of gd are added if new.
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Figure 5.9: Speed/accuracy trade-off curves: bleu (left) / ribes (right) versus
translation delay (average number of words per segment).

Increasing the rp threshold increases interpretation delay but improves the

quality of the translation. We set the rp threshold at 0.0, 0.2, 0.4, 0.8 and fi-

nally 1.0 (equivalent to batch translation). Figure 5.9 shows the bleu/ribes scores

vs. the number of words per segment as we increase the threshold. Rewritten

sentences alone do not significantly improve over the baseline. We suspect this is

because the transformation rules sometimes generate ungrammatical sentences due

to parsing errors, which impairs learning. However, combining rw and gd results

in a better speed-accuracy trade-off: the rw+gd curve completely dominates other
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curves in Figure 5.9(a), 5.9(c). Thus, using more monotone translations improves

simultaneous machine translation, and because rw-lm+gd is about the same as

gd, the major improvement likely comes from the translation model from rewritten

sentences.

The right two plots recapitulate the evaluation with the ribes metric. This

result is less clear, as mt systems are optimized for bleu and ribes penalizes word

reordering, making it difficult to compare systems that intentionally change word

order. Nevertheless, rw is comparable to gd on gold references and superior to the

baseline on rewritten references.

5.5.3.4 Effect on Verbs

Rewriting training data not only creates lower latency simultaneous trans-

lations, but it also improves batch translation. One reason is that sov to svo

translation often drops the verb because of long range reordering. (We see this for

Japanese here, but this is also true for German.) Similar word orders in the source

and target results in less reordering and improves phrase-based mt (Collins et al.,

2005; Xu et al., 2009). Table 5.2 shows the number of verbs in the translations of

the test sentences produced by gd, rw, rw+gd, as well as the number in the gold

reference translation. Both rw and rw+gd produce more verbs (a statistically

significant result), although rw+gd captures the most verbs.
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Translation
gd rw rw+gd Gold ref

# of verbs 1971 2050 2224 2731

Table 5.2: Number of verbs in the test set translation produced by different models
and the gold reference translation. Boldface indicates the number is significantly
larger than others (excluding the gold ref) according to two-sample t-tests with
p < 0.001.

Ref
he also said that the real dangers for the euro lay in the potential for
divergences in the domestic policy needs among the various participating
nations of the single currency.

gd
he also for the euro, is a real danger to launch a single currency in many
different countries and domestic policies on the need for the possibility of
a difference.

rw
he also for the euro is a real danger to launch a single currency in many
different countries and domestic policies to the needs of the possibility of a
difference, he said.

Table 5.3: Example of translation produced by gd and rw.

5.5.3.5 Error Analysis

Table 5.3 compares translations by gd and rw. rw correctly puts the verb

said at the end, while gd drops the final verb. However, rw still produces he at

the beginning (also the first word in the Japanese source sentence). It is because

our current segmentation strategy does not preserve words for later translation This

can be addressed by adding a stack to reorder segments instead of monotonically

translating all segments.
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5.6 Related Work

Most previous work on simultaneous machine translation focuses on learning

a segmentation strategy, essentially a decision model with two actions: wait and

commit. The input is segmented into small chunks which are then translated in-

dependently. Most segmentation strategies are based on heuristics, such as pauses

in speech (Fügen et al., 2007; Bangalore et al., 2009), comma prediction (Sridhar

et al., 2013) and phrase reordering probability (Fujita et al., 2013). Learning-based

methods have also been proposed. Oda et al. (2014) find segmentations that maxi-

mize the bleu score of the final concatenated translation by dynamic programming.

Compared to prior approaches, our work provides a nice decision-making framework

that allows for richer actions other than wait and commit.

Smarter segmentation method can achieve a better speed-accuracy trade-off

to some extent, however, their gain can still be restricted by natural word reordering

between the source and the target sentences.

One approach is to predict the necessary component that has not been re-

vealed. To our knowledge, the only attempt to specifically predict verbs or any late-

occurring terms is Matsubara et al. (2000). They used pattern matching on what

would today be considered a small data set to predict English verbs for Japanese

to English simultaneous mt. More recently, Oda et al. (2015) predict syntactic

constituents for a syntax-based MT system to process incremental input.

Another approach is to train with interpreter-generated references, so that the

MT system can learn delay reduction strategies implicitly from the interpreters (Paulik
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and Waibel, 2009; Paulik and Waibel, 2010; Shimizu et al., 2013). However, existing

parallel simultaneous interpretation corpora (Shimizu et al., 2014; Matsubara et al.,

2002; Bendazzoli and Sandrelli, 2005) are often small, and collecting new data is ex-

pensive due to the inherent costs of recording and transcribing speeches (Paulik and

Waibel, 2010). In addition, due to the intense time pressure during interpretation,

human interpretation has the disadvantage of simpler, less precise diction (Camayd-

Freixas, 2011; Al-Khanji et al., 2000) compared to human translations done at the

translator’s leisure, allowing for more introspection and precise word choice. Our

paraphrasing approach addresses the data scarcity problem and combines transla-

tors’ lexical precision and interpreters’ syntactic flexibility. In addition, it can be

combined with any decision module.

There are many work in machine translation (Collins et al., 2005; Galley and

Manning, 2008) on source-side reordering to reduce long-distance word reordering

during decoding. However, in interpretation, we do not have control over the source

sentence. Since reordering happens at the target side, we also need to make sure

that the rewritten sentence is grammatical—a constraint not present in source-

side reordering. The idea of rewriting as a preprocessing step is also related to

text simplification for NLP systems. Chandrasekar et al. (1996) design rules to

break long sentences into multiple shorter, simpler sentences before send them to

an NLP system (e.g., a parser, a translator), since long and complicated sentences

are challenging to process for both humans and NLP models.
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5.7 Conclusion

In this chapter, we propose a sequential decision-making framework for simul-

taneous machine translation, a sequential revealing problem. The proposed frame-

work is under the same paradigm as the sequential acquisition algorithms introduced

in the previous two chapters. However, naively applying the framework may face dif-

ficulties when the needed information is not available. In simultaneous translation,

this occurs when a syntactic constituent required by the target sentence comes late

in the source sentence. We further proposed two complementary methods to address

this issue. The prediction approach demonstrates the flexibility of our framework

to handle new actions suitable to different applications. Besides this new learning

framework for simultaneous MT, we also develop linguistically inspired paraphrasing

rules to reduce translation delay.
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Chapter 6: Opponent Modeling

This chapter describes joint work with Jordan Boyd-Graber, Kevin Kwok and

Hal Daumé III (He et al., 2016) in ICML 2016.

Till now the sequential problems we have considered all have a single agent (the

system itself) interacting with the environment, e.g., a selector acquiring features, a

controller starting and pausing translation. In practice, however, a system may need

to interact with other systems or human beings. In this chapter, we aim to answer

the question: how can we take into consideration other agents who are actively

affecting the environment during decision-making?

To answer this question, we focus on quiz bowl, a question answering game

that involves two parties. It has similar characteristics to simultaneous translation:

the input is revealed incrementally, and an early answer is preferred which calls for

a speed-accuracy trade-off. More importantly, the multi-player nature of this game

provides us a concrete setting to investigate policy learning with multiple agents.

Given possibly unknown agents (aside from the system itself) in the environment,

sometimes it can be hard to define an expert, as we will see later in this chapter.

Instead, we take the reinforcement learning approach and show how the recent deep

reinforcement learning technique enables us to incorporate behavior of other agents.
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6.1 Motivation and Overview

An intelligent agent working in strategic settings (e.g., collaborative or compet-

itive tasks) must predict the action of other agents and reason about their intentions.

This is important because all active agents affect the state of the world. For ex-

ample, a multi-player game ai can exploit suboptimal players if it can predict their

bad moves; a negotiating agent can reach an agreement faster if it knows the other

party’s bottom line; a self-driving car must avoid accidents by predicting where cars

and pedestrians are going. Two critical questions in opponent modeling are what

variable(s) to model and how to use the predicted information. However, the an-

swers depend much on the specific application, and most previous work (Billings et

al., 1998a; Southey et al., 2005; Ganzfried and Sandholm, 2011) focuses exclusively

on poker games which require substantial domain knowledge.

In this chapter, we aim to build a general opponent modeling framework for se-

quential decision-making, which enables the agent to exploit idiosyncrasies of various

opponents. First, to account for the changing behavior, we must model uncertainty

in the opponent’s strategy instead of classifying it into one of the player stereotypes.

Second, domain knowledge is often required when the prediction of opponents are

separated from learning the dynamics of the world. Given the above two considera-

tions, we model the opponent probabilistically and learn the policy and the opponent

model jointly. Our models in this chapter are based on reinforcement learning, more

specifically, Q-learning, rather than imitation learning in the previous chapters. We

suggest the reader to review concepts defined in Section 2.1. In the next section, we
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first introduce the game of quiz bowl and its multiagent setting.

6.2 Quiz Bowl: an Incremental Classification Game

A real-life setting where humans classify documents incrementally and com-

pete with an opponent is quiz bowl, an academic competition between schools in

English-speaking countries; hundreds of teams compete in dozens of tournaments

each year (Jennings, 2006). Note the distinction between quiz bowl and Jeopardy,

a recent application area (Ferrucci et al., 2010). While Jeopardy also uses signaling

devices, these are only usable after a question is completed (interrupting Jeopardy’s

questions would make for bad television). Thus, Jeopardy is batch classification

followed by a race—among those who know the answer—to punch a button first.

Two teams listen to the same question.1 In this context, a question is a

series of clues (features) referring to the same entity (for an example question, see

Figure 6.1). We assume a fixed feature ordering for a test sequence (i.e., you cannot

request specific features). Teams interrupt the question at any point by “buzzing

in”; if the answer is correct, the team gets points and the next question is read.

Otherwise, the team loses points and the other team can answer.

A successful quiz bowl player needs two things: a content model to predict

answers given (partial) questions and a buzzing model to decide when to buzz in.
1Called a “starter” (UK) or “tossup” (US) in the lingo, as it often is followed by a “bonus”

given to the team that answers the starter; here we only concern ourselves with tossups answerable
by both teams.
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After losing a race for the Senate, this politician edited the Omaha World-Herald.
This man resigned 3 from one of his posts when the President sent a letter to
Germany protesting the Lusitania 3 sinking, and 3 he advocated 3 coining 3 silver
at a 16 3 to 1 33 rate 3 compared to 3 gold. He was the 3 three-time Democratic 3

Party 333 nominee for 3 President 3 but 333 lost to McKinley twice 33 and then
Taft, although he served as Secretary of State 33 under Woodrow Wilson, 3 and he
later argued 3 against Clarence Darrow 3 in the Scopes 33 Monkey Trial. For ten
points, name this 3 man who famously declared that “we shall not be crucified on
a Cross of 3 Gold”. 3

Figure 6.1: Quiz bowl question onWilliam Jennings Bryan, a late nineteenth century
American politician; obscure clues are at the beginning while more accessible clues
are at the end. Words (excluding stop words) are shaded based on the number of
times the word triggered a buzz from any player who answered the question (darker
means more buzzes; buzzes contribute to the shading of the previous five words).
Diamonds (3) indicate buzz positions of humans.

GRU GRU GRU

wt�1 wt wt+1

ŷt�1 ŷt+1ŷt

… …

Figure 6.2: gru for incremental text classification. Words are revealed one by one.
wt represents the t-th revealed word, and ŷt represents the predicted answer at time
t.

Content Model We model the question answering part as an incremental text-

classification problem. Therefore, our content model is a classifier that takes in a

(partial) question and outputs the answer. A human player would have a changing

guess of the answer while the question is being revealed. To model a sequence of

guesses, we use a recurrent neural network with gated recurrent units (gru) (Cho et

al., 2014) as our content model. It reads in the question sequentially and outputs a

distribution over answers at each word given past information encoded in the hidden

states. The model is shown in Figure 6.2.
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Buzzing Model To test the depth of one’s knowledge on a subject, the question

usually starts with obscure information and reveals more and more obvious clues

towards the end. For example, in Figure 6.1, more human buzzes (marked by

diamonds) occur towards the end of the question. Therefore, the buzzing model faces

a speed-accuracy trade-off: while buzzing later increases one’s chance of answering

correctly, it also increases the risk of losing the chance to answer. A safe strategy

is to always buzz as soon as the content model is confident enough. A smarter

strategy, however, is to adapt to different opponents: if the opponent is likely to

buzz late on a question, wait for more clues; otherwise, buzz more aggressively.

Following the imitation approach as in previous chapters, we need an expert.

If we take the safe strategy, the expert behavior is straightforward: always buzzing

when the current prediction is correct. The agent may learn to buzz at different

confidence levels that adapt to different states.2 However, it cannot learn to adapt

to different opponents. An expert policy considering the opponent behavior is less

obvious. Therefore, we take a RL approach to learning a buzzing policy. The state

includes words revealed and predictions from the content model, and the actions are

buzz and wait. Upon buzzing, the content model outputs the most likely answer at

the current position. An episode terminates when one player buzzes and answers

the question correctly. A correct answer is worth 10 points and a wrong answer is

-5. The complete payoff matrix is shown in Table 6.1.

Our model is built upon a basic RL algorithm, Q-learning. In the next section,
2For example, if an answer has a small number of training examples (questions), prediction

of it tends to have lower confidence in general, thus the policy should learn to buzz at a lower
confidence level for questions from the minority class.

109



Computer Human Payoff
1 first and wrong right −15
2 — first and correct −10
3 first and wrong wrong −5
4 first and correct — +10
5 wrong first and wrong +5
6 right first and wrong +15

Table 6.1: Payoff matrix (from the computer’s perspective) for when agents “buzz”
during a question. To focus on incremental classification, we exclude instances where
the human interrupts with an incorrect answer, as after an opponent eliminates
themselves, the answering reduces to standard classification.

we review Q-learning and its recent variant based on deep neural networks.

6.3 Deep Q-Learning

Reinforcement learning is commonly used for solving Markov-decision pro-

cesses (mdp). Unlike imitation learning, an expert is not available and the agent

has to find the optimal action in each state by exploration. In Section 2.1, given

the optimal Q-values of each action in a state, the optimal policy always chooses

the action with the highest Q-value (Equation 2.7). Therefore, if we can find the

optimal Q-values of each state, the decision problem is solved.

Q-learning (Watkins and Dayan, 1992; Sutton and Barto, 1998) is a popular

model-free method for finding the optimal Q-values that does not require knowledge

of T . Given observed transitions (s, a, s′, r) (also called an experience), the Q-values

are updated recursively:

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
.

110



Algorithm 4 Q-Learning
1: Initialize Q(s, a) for all a ∈ A, s ∈ S
2: for i = 1 to N do
3: Initialize s randomly
4: while s is not terminal do
5: Choose a using an exploration policy derived from Q
6: Take action a, observe s′, r
7: Update Q(s, a)← Q(s, a) + α [r + γmaxa′ Q(s′, a′)−Q(s, a)]
8: s← s′

9: end while
10: end for

The transition probabilities are thus modeled implicitly through stochastic updates.

Given discrete state and actions (e.g., in a grid world), we can updateQ(s, a) for each

state iteratively. We show the complete learning algorithm in Algorithm 4. During

training, we follow an exploration policy (Line 5, Algorithm 4) to explore off-policy

actions. A common strategy is to use ε-greedy exploration. With probability ε,

it chooses a random action; with probability 1 − ε, it chooses the action with the

highest Q-value. It has been shown that if each action is executed in each state

an infinite number of times and the learning rate α is decayed appropriately, the

Q-values will converge with probability 1 to the optimal values Q∗ (Jaakkola et al.,

1994; Tsitsiklis, 1994). Therefore, at test time, we execute the greedy policy that

chooses the action with the maximum Q-value in any state.

Algorithm 4 works effectively for a small, discrete state and action space.

For complex problems with continuous states, the Q-function cannot be expressed

as a lookup table, requiring a continuous approximation. For example, in linear

approximation models:

Q(s, a) = w · φ(s, a), (6.1)
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where φ is a feature map that returns a d-dimensional vector representation of the

state and action: φ : S × A → Rd. The weight vector w is then updated as in

stochastic gradient descent for linear regression. Line 7 of Algorithm 4 becomes

w ← w + α
[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
· φ(s, a) (6.2)

Deep RL uses a (deep) neural network to approximate the Q-function. Re-

cently, the deep Q-Network (dqn) (Mnih et al., 2015) has shown great success in a

variety of problems, including Atari games, Go (Silver et al., 2016) and text-based

games (Narasimhan et al., 2015). Inspired by the success of dqn, we use it as our

basic learning framework. The dqn algorithm is essentially Q-learning with experi-

ence replay. It draws samples (s, a, s′, r) from a replay memory M , and the neural

network predicts Q∗ by minimizing squared loss at iteration i:

Li(θi) = E(s,a,s′,r)∼U(M)

[(
r + γmax

a′
Q(s′, a′; θi−1)−Q(s, a; θi)

)2
]
, (6.3)

where U(M) is a uniform distribution over replay memory. We will build our oppo-

nent model upon the dqn framework.

6.4 Deep Reinforcement Opponent Network

In a multi-agent setting, the environment is affected by the joint action of all

agents. From the perspective of one agent, the outcome of an action in a given

state is no longer stable but is dependent on actions of other agents. In this sec-
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tion, we first analyze the effect of multiple agents on the Q-learning framework;

then we present our model Deep Reinforcement Opponent Network (dron) and its

multitasking variation.

6.4.1 Q-Learning with Opponents

In mdp terms, the joint action space is defined by AM = A1 ×A2 × . . .×An

where n is the total number of agents. We use a to denote the action of the agent

we control (the primary agent) and o to denote the joint action of all other agents

(secondary agents), such that (a, o) ∈ AM . Similarly, the transition probability be-

comes T M(s, a, o, s′) = Pr(s′|s, a, o), and the new reward function is RM(s, a, o, s′).

Our goal is to learn an optimal policy for the primary agent given interactions with

the joint policy πo of the secondary agents.3

If πo is stationary, then the multi-agent mdp reduces to a single-agent mdp:

the opponents can be considered as part of the world. Thus, they redefine the

transition function and the reward function:

T (s, a, s′) =
∑
o

πo(o|s)T M(s, a, o, s′)

R(s, a, s′) =
∑
o

πo(o|s)RM(s, a, o, s′)

Therefore, the agent need not be aware of the existence of other agents, and standard

Q-learning should suffice.

Nevertheless, it is often unrealistic to assume that the opponent uses a fixed
3While a joint policy defines the distribution of joint actions, the opponents may be controlled

by independent policies.
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policy. Other agents may also be learning or adapting to maximize their rewards

through time. For example, in strategy games, players may disguise their true strate-

gies at the beginning to fool the opponents; a player in a winning situation tends to

play more defensively and one in a losing situation may play more aggressively. In

these situations, we face opponents with an unknown policy πot that changes over

time.

Considering the effects of other agents, the definition of an optimal policy

no longer applies—the goodness of a policy now depends on policies of secondary

agents. Therefore, we define the optimal Q-function relative to the joint policy of

opponents: Q∗|πo = maxπQπ|πo(s, a) ∀s ∈ S and ∀a ∈ A. The recurrent relation

between Q-values still holds:

Q∗π|πo(st, at) =
∑
ot

πot (ot|st)
∑
st+1

T (st, at, ot, st+1)[
R(st, at, ot, st+1) + γmax

at+1
Q∗π|πo(st+1, at+1)

]
. (6.4)

6.4.2 dqn with Opponent Modeling

Given Equation 6.4, we can continue applying Q-learning and estimate both

the transition function and the opponents’ policy by stochastic updates. However,

treating opponents as part of the world can result in slow response to an adaptive

opponent (Uther and Veloso, 2003), since the dynamics of the world perceived by

an agent is in fact changing.

To encode opponent behavior explicitly, we propose the Deep Reinforcement
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Figure 6.3: Diagram of the dron architecture. (a) dron-concat: the opponent
representation is concatenated with the state representation. (b) dron-MoE: Q-
values predicted by K experts are combined linearly by weights from the gating
network.

Opponent Network (dron) that models Q·|πo and πo jointly. dron consists of a

Q-Network (NQ) that evaluates actions for a state and an opponent network (No)

that learns a representation of πo. Now the key questions are how to combine the

two networks and what supervision signal to use. To answer the first question, we

investigate two network architectures: dron-concat that concatenates NQ and No,

and dron-moe that applies a Mixture-of-Experts model. To answer the second

question, we consider two settings: (a) predicting Q-values only, as our goal is to

maximize reward instead of building an accurate simulator of the opponent; and (b)

also predicting extra information about the opponent when it is available, e.g., the

type of their strategy.

DRON-concat NQ and No embed the state and the opponent in separate hidden

spaces (hs and ho) via standard mappings, e.g., linear layers with rectification or
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convolutional neural networks. To incorporate knowledge of πo into the Q-Network,

we concatenate representations of the state and the opponent (Figure 6.3a). The

concatenation then jointly predicts the Q-value. Therefore, the last layer(s) of the

neural network is responsible for understanding the interaction between opponents

and Q-values. Since there is only one Q-Network, the model requires a more dis-

criminative representation of the opponents to learn an adaptive policy. To alleviate

this, our second model encodes a stronger prior of the relation between opponents’

actions and Q-values based on Equation 6.4.

DRON-MoE The right part of Equation 6.4 can be written as∑ot π
o
t (ot|st)Qπ(st, at, ot),

an expectation over different opponent behavior. We use a Mixture-of-Experts net-

work (Jacobs et al., 1991) to explicitly model the opponent action as a hidden

variable and marginalize over it (Figure 6.3b). The expected Q-value is obtained by

combining predictions from multiple expert networks:

Q(st, at; θ) =
K∑
i=1

wiQi(hs, at)

Qi(hs, ·) = f(W s
i h

s + bsi ).

Each expert network responds to a possible reward given the opponent’s move. The

combination weights (distribution over experts) are computed by a gating network:

w = softmax (f(W oho + bo)) .
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Figure 6.4: Diagram of the DRON with multitasking. The blue part shows that the
supervision signal from the opponent affects the Q-learning network by changing
the opponent features.

Here f(·) is a nonlinear activation function (we use ReLU for all experiments), W

represents the linear transformation matrix and b is the bias term.

Unlike dron-concat which is ignorant of the relation with opponents and solely

relies on the data to learn it, dron-moe has the advantage of knowing that Q-

values have different distributions depending on φo, and having each expert network

manage one type of opponent strategy.

Multitasking with dron As shown in Figure 6.3, the previous two models aim

to predict only Q-values, thus, the opponent representation is learned indirectly

through feedback from the Q-value. If extra information about the opponent is

available, we may use them as extra supervision for the opponent network to learn

more discriminative representations. Fortunately, many games reveal additional

information besides the final reward at the end of a game. At the very least the

agent has observed actions taken by the opponents in past states; sometimes their
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private information such as the hidden cards in poker. More high-level information

includes abstracted plans or strategies after some analysis. Such information reflects

characteristics of opponents and can aid policy learning.

Unlike previous work that learns a separate model to predict this information

about the opponent (Davidson, 1999; Ganzfried and Sandholm, 2011; Schadd et

al., 2007), we apply multitask learning and use the observation as extra supervision

signals to learn a shared opponent representation ho. Figure 6.4 shows the archi-

tecture of multitask dron, where the supervision signal is denoted by yo in blue.

The advantage of multitasking over explicit opponent modeling is that it leverages

high-level knowledge of the game and the opponent, while being robust to insuffi-

cient opponent data and modeling error due to the main supervision from Q-values.

We evaluate multitasking dron with two types of supervision signals, future action

and overall strategy of the opponent.

We have described variants of dqn that incorporate an opponent model. Next,

we introduce our problem, quiz bowl, and we will see the role of opponent modeling

in interactive, multi-agent sequential problems.

6.5 Experiments

In this section, we first evaluate our models on a simulated soccer game, then

on quiz bowl using real data. Both tasks have two players against each other and

the opponent presents varying behavior. We compare dron models with dqn and

analyze their response against different types of opponents.
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Figure 6.5: Illustration of the soccer game. Two players A and B compete to move
the ball to the opponent’s goal. Arrows show players’ moving directions.

All systems are trained under the same Q-learning framework. Unless stated

otherwise, the experiments have the following configuration: discount factor γ is 0.9,

parameters are optimized by AdaGrad (Duchi et al., 2011) with a learning rate of

0.0005, and the mini-batch size is 64. We use ε-greedy exploration during training,

starting with an exploration rate of 0.3 that linearly decays to 0.1 within 500,000

steps. We train all models for fifty epochs and select the one with the highest average

reward on the development set for testing.

6.5.1 Soccer

Setup Our first testbed is a soccer variant following previous work on multi-player

games (Littman, 1994; Collins, 2007; Uther and Veloso, 2003). The game is played

on a 6 × 9 grid (Figure 6.5) by two players, A and B.4 The game starts with A

and B standing in a randomly selected square in the left and right half (except the

goals), and the ball going to one of them randomly. Players choose from five actions:
4Although the game is played in a grid world, we do not represent the Q-function in tabular

form as in previous work. Therefore, it can be generalized to more complex pixel-based settings.
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move N, S, W, E or stand still (Figure 6.5(1)). An action is invalid if it takes the

player to a shaded square or outside of the border. If two players move to the same

square, the player who possesses the ball before the move loses it to the opponent

(Figure 6.5(2)), and the move does not take place. Therefore, a good strategy to

intercept the ball is to move to where the opponent will be. A player scores one

point if they take the ball to the opponent’s goal (Figure 6.5(3), (4)) and the game

ends. If neither player gets a goal within one hundred steps, the game ends with a

tie and both players get zero points.

Defensive Offensive
w/ ball Avoid opponent Advance to goal
w/o ball Defend goal Intercept the ball

Table 6.2: Strategies of the hand-crafted rule-based agent.

Implementation We design a rule-based agent as the opponent. It has a defensive

mode and an offensive mode. We show its strategies under different conditions in

Table 6.2. The offensive agent always prioritizes attacking over defending. In 5000

games against a random agent, it wins 99.86% of the time and the average episode

length is 10.46. The defensive agent only focuses on defending its own goal. As a

result, it wins 31.80% of the games and ties 58.40% of them; the average episode

length is 81.70. To simulate a varying strategy, we let the agent randomly choose

between the two modes in each game.

The input state is a 1 × 15 vector representing coordinates of the agent, the

opponent, the axis limits of the field, positions of the goal areas and possession of
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Model Basic Multitask
+action +type

Max R
dron-concat 0.682 0.695∗ 0.690∗
dron-moe 0.699∗ 0.697∗ 0.686∗
dqn-world 0.664 - -

Mean R
dron-concat 0.660 0.672 0.669
dron-moe 0.675 0.664 0.672
dqn-world 0.616 - -

Table 6.3: Rewards of dqn and dron models on Soccer. We report the maximum
test reward ever achieved (Max R) and the average reward of the last 10 epochs
(Mean R). Statistically significant (p < 0.05 in two-tailed pairwise t-tests) improve-
ment is shown for the dqn (∗) and all other models (bold). dron models achieve
higher rewards in both measures.

the ball. We define a player’s move by five cases: approaching the agent, avoiding

the agent, approaching the agent’s goal, approaching self goal and standing still.

The opponent features include frequencies of observed opponent moves, its most

recent move and action, and the frequency of losing the ball to the opponent.

The baseline dqn has two hidden layers, both with 50 hidden units. We

call this model dqn-world, meaning treating the opponents as part of the world.

The hidden layer of the opponent network in dron also has 50 hidden units. For

multitasking, we experiment with two supervision signals, opponent action in the

current state (+action) and the opponent mode (+type). We use cross entropy as

the loss function in both settings.

Results In Table 6.3, we compare rewards of dron models, their multitasking

variations, and dqn-world. After each epoch, we evaluate the policy with 5000
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Figure 6.6: Learning curves on Soccer over fifty epochs. dron models are more
stable than dqn.

randomly generated games and compute the average reward. We report the mean

test reward after the model stabilizes and the maximum test reward ever achieved.

The dron models outperform the dqnbaseline. Our model also has much smaller

variance (Figure 6.6).

From the “Multitask” column we see that adding additional supervision signals

improves dron-concat but not dron-moe. We suspect this is because dron-concat

does not explicitly learn different strategies for different types of opponents, therefore

more discriminative opponent representation helps it model the relation between

opponent behavior and Q-values better. However, for dron-moe, while better

opponent representation is still desirable, the supervision signal may not be aligned

with “classification” of the opponents learned from the Q-values.

To investigate how the learned policies adapt to different opponents, we let the

agents play against a defensive opponent and an offensive opponent. Furthermore,

to understand the best an agent can do in these two settings, we train two dqn
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dqn dqn dron dron
O only D only -world -concat -moe

O 0.897 -0.272 0.811 0.875 0.870
D 0.480 0.504 0.498 0.493 0.486

Table 6.4: Average rewards of dqn and dron models when playing against different
types of opponents. Offensive and defensive agents are represented by O and D. “O
only” and “D only” means training against O and D agents only. Upper bounds of
rewards are in bold. dron achieves rewards close to the upper bounds against both
types of opponents.
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Figure 6.7: Effect of varying the number experts (2–4) and multitasking on Soccer.
The error bars show the 90% confidence interval. dron-moe consistently improves
over DQN regardless of the number of mixture components. Adding extra supervi-
sion does not obviously improve the results.

agents against the offensive and defensive opponents. The rest of the agents are

trained against the random opponent. Table 6.4 shows their average rewards and

upper bounds (in bold). dqn-world is confused by the defensive behavior and sig-

nificantly sacrifices its performance against the offensive opponent; dron achieves a

much better trade-off, retaining rewards close to the upper bounds against a varying

opponent.

Finally, we examine how the number of experts in dron-moe affects the result.
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From Figure 6.7, we see no significant difference in varying the number of experts,

and dron-moe consistently performs better than dqn across all K. Similar to the

results in Table 6.3, multitasking is not obviously helpful here.

6.5.2 Quiz Bowl

Setup We collect question/answer pairs and log user buzzes from Protobowl, an

online multi-player quizbowl application.5 Additionally, we include data from Boyd-

Graber et al. (2012). After removing answers with fewer than 20 questions and

users who played fewer than twenty games, we end up with 1045 answers and 37.7k

questions. We divide all questions into two non-overlapping sets: one for training the

content model and one for training the buzzing policy. There are clearly two clusters

of players (Figure 6.8(a)): aggressive players who buzz early with varying accuracies

and cautious players who buzz late but maintain higher accuracy. Our gru content

model (Figure 6.8(b)) is more accurate with more input words—a behavior similar

to human players.

Implementation Our input state must represent information from the content

model and the opponents. Information from the content model takes the form of a

belief vector : a vector (1×1045) that represents the current estimate of each possible

guess being the correct answer of the question given our current input represented

as log probabilities. As described in Section 3.2, we use both task features from

the content model and meta-features. Specifically, we concatenate the belief vector
5http://protobowl.com
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from the previous time step, which allows the model to capture sudden shifts in

certainty, which are often good opportunities to buzz. In addition, we include the

number of words seen and whether a wrong buzz has happened.

The opponent features include the number of questions the opponent has an-

swered, the average buzz position and the error rate. The basic dqn has two hidden

layers, both with 128 hidden units. The hidden layer for the opponent has ten hidden

units. Similar to the soccer game, we experiment with two settings for multitask-

ing: (a) predicting how likely the opponent will buzz; (b) predicting the type of the

opponent. We approximate the ground truth for (a) by min(1, t/buzz position) and

use the mean square error as the loss function. The ground truth for (b) is based on

dividing players into four groups according to their buzz positions—the percentage

of question revealed—and cross entropy is used as the loss function.

Results In addition to dqn-world, we also compare with dqn-self, a baseline

without interaction with opponents at all. dqn-self is ignorant of the opponents and

learns to play the safe strategy: answer as soon as the content model is confident.

During training, when the answer prediction is correct, it receives a reward of 10

for buzz and -10 for wait. When the answer prediction is incorrect, it receives a

reward of -15 for buzz and 15 for wait. Since all rewards are immediate, we set γ

to 0 for dqn-self. With data of the opponents’ responses, dron and dqn-world use

the game payoff (from the perspective of the computer) as the reward.

First, we compare the average rewards on the test set of our models, dron-

concat and dron-moe (with 3 experts), and the baseline models, dqn-self and dqn-
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world. From the first column in Table 6.5, our models achieve statistically significant

improvements over the dqn baselines and dron-moe outperforms dron-concat. In

addition, the dron models have much less variance compared to dqn-world as the

learning curves show in Figure 6.11.
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Figure 6.8: Accuracy vs. the number of words revealed. (a) Real-time user perfor-
mance. Each dot represents one user; dot size and color correspond to the number of
questions the user answered. (b) Content model performance. Accuracy is measured
based on predictions at each word. Accuracy improves as more words are revealed.
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Model Basic Multitask Basic vs. opponents buzzing at different positions (%revealed (#episodes))
+action +type 0− 25% (4.8k) 25− 50% (18k) 50− 75% (0.7k) 75− 100% (1.3k)

R ↑ R ↑ rush↓ miss↓ R ↑ rush↓ miss↓ R ↑ rush↓ miss↓ R ↑ rush↓ miss↓
dron-concat 1.04 1.34∗ 1.25 -0.86 0.06 0.15 1.65 0.10 0.11 -1.35 0.13 0.18 0.81 0.19 0.12
dron-moe 1.29∗ 1.00 1.29∗ -0.46 0.06 0.15 1.92 0.10 0.11 -1.44 0.18 0.16 0.56 0.22 0.10
dqn-world 0.95 - - -0.72 0.04 0.16 1.67 0.09 0.12 -2.33 0.23 0.15 -1.01 0.30 0.09
dqn-self 0.80 - - -0.46 0.09 0.12 1.48 0.14 0.10 -2.76 0.30 0.12 -1.97 0.38 0.07

Table 6.5: Comparison between dron and dqn models. The left column shows the average reward of each model on the test
set. The right column shows performance of the basic models against different types of players, including the average reward
(R), the rate of buzzing incorrectly (rush) and the rate of missing the chance to buzz correctly (miss). ↑ means higher is better
and ↓ means lower is better. In the left column, we indicate statistically significant results (p < 0.05 in two-tailed pairwise
t-tests) with boldface for vertical comparison and ∗ for horizontal comparison.
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To investigate strategies learned by these models, we show their performance

against different types of players (as defined at the end of “Implementation”) in

the right columns in Table 6.5. We compare three measures of performance, the

average reward (R), percentage of early and incorrect buzzes (rush), and percentage

of missing the chance to buzz correctly before the opponent (miss). All models

beat Type 2 players, mainly because they are the majority in our dataset. As

expected, dqn-self learns a safe strategy that tends to buzz early. It performs the

best against Type 1 players who answers early. However, it has very high rush

rate against cautious players, resulting in much lower rewards against Type 3 and

Type 4 players. Without opponent modeling, dqn-world is biased towards the

majority player, thus having the same problem as dqn-self when playing against

players who buzz late. Both dron models successfully learn to exploit the cautious

players while maintaining a competent performance against the aggressive players.

Furthermore, dron-moe matches dqn-self’s performance on the Type 1 players,

demonstrating that it discovers different buzzing strategies.

In Figure 6.9, we show an example question with buzz positions labeled. The

dron agents demonstrate dynamic behavior against different players; dron-moe

almost always buzzes right before the opponent in this example. In addition, when

the player buzzes wrong and the game continues, dron-moe learns to wait longer

since the opponent is gone, while the other agents are still in a rush.

Next, we show results with multitasking with two supervision signals, next

action (+action) and type (+type) of the opponent. Similar to what we observed

in Soccer, adding extra supervision does not yield better results over dron-moe
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The antibiotic erythromycin works by disrupting this organelle , 
which contains E , P*, and A sites on its large subunit . The* parts 
of� this� organelle✤� are assembled� at nucleoli✤ , and when 
bound to�✤� a membrane , these create the rough ER . Codons✤ 
are  translated at this organelle where the tRNA and mRNA meet .  
For 10 points  , name this organelle that is the site of protein 
synthesis .
�: DQN-self    �: DQN-world    ✤: DRON-MOE    �: DRON-concat 

Figure 6.9: Buzz positions of human players and agents on one science question
whose answer is “ribosome”. Words where a player buzzes are displayed in a combi-
nation of color and underline unique to the player; a wrong buzz is shown in italic;
a buzz with a star (∗) indicates a fast one before all machine buzzes. Words where
an agent buzzes is subscripted by a symbol unique to the agent; the format of the
symbol corresponds to the player it is playing against. The lightest gray color (of
dqn-self on one dqn-world) means that the buzz position of the agent does not
depend on its opponent. dron agents adjust their buzz positions according to the
opponent’s buzz position and correctness.

(Table 6.5) but significantly improves dron-concat. Figure 6.10 varies the number

of experts in dron-moe (K) from two to four. Using a mixture model for the

opponents consistently improves over the dqn baseline, and using three experts gives

better performance on this task. For multitasking, adding the action supervision

does not help at all. However, the more high-level type supervision yields competent

results, especially with four experts, mostly because the number of experts matches

the number of types.
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Figure 6.10: Effect of varying the number experts (2–4) and multitasking on quiz
bowl. The error bars show the 90% confidence interval. dron-moe consistently
improves over dqn regardless of the number of mixture components. Supervision of
the opponent type is more helpful than the specific action taken.
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Figure 6.11: Learning curves on Quizbowl over fifty epochs. dron models are more
stable than dqn.
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6.6 Related Work

Implicit vs. Explicit opponent modeling Opponent modeling has been stud-

ied extensively in games. Most existing approaches fall into the category of explicit

modeling, where a model (e.g., decision trees, neural networks, Bayesian models)

directly predicts parameters of the opponent, e.g., actions (Uther and Veloso, 2003;

Ganzfried and Sandholm, 2011), private information (Billings et al., 1998b; Richards

and Amir, 2007), or domain-specific strategies (Schadd et al., 2007; Southey et al.,

2005). Here one difficulty is that the model may need a prohibitive number of ex-

amples before producing anything useful. Another is that as the opponent behavior

is modeled separately from dynamics of the world, it is not always clear how to

incorporate these predictions robustly into policy learning. The results on mul-

titasking dron also suggest that improvement from explicit modeling is limited.

However, it is better suited to games of incomplete information, where it is clear

what information needs to be predicted to achieve a higher reward.

Our work is closely related to implicit opponent modeling. Since the agent

aims to maximize its own expected reward without having to identify the opponent’s

strategy, this approach does not have the difficulty of incorporating prediction of the

opponent’s parameters. In Rubin and Watson (2011) and Bard et al. (2013), first

a portfolio of strategies are constructed offline based on domain knowledge or past

experience, then strategies are selected online using multi-arm bandit algorithms.

Both models focus on heads-up limit Texas hold’em poker. Our approach does

not have a clear online/offline distinction. Instead, we learn strategies and their
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combiner jointly in a simpler way, thus we require less domain knowledge of the

problem. Nevertheless, offline initialization can be easily enabled in our model by

initializing expert networks with dqn models pre-trained against a particular type

of opponents.

Neural network opponent models Davidson (1999) applies neural networks to

opponent modeling, where a simple multi-layer perceptron is trained as a classifier

to predict opponent actions given game logs. Lockett et al. (2007) propose an

architecture similar to dron-concat that aims to identify the type of an opponent.

However, instead of learning a hidden representation, they learn a mixture weights

over a pre-specified set of cardinal opponents; and they use the neural network

as a standalone solver without the reinforcement learning setting, which may not

be suitable for more complex problems. Foerster et al. (2016) use modern neural

networks to learn a group of parameter-sharing agents that solve a coordination

task, where each agent is controlled by a deep recurrent Q-Network (Hausknecht

and Stone, 2015). Our setting is different in that we control only one agent and the

policy space of other agents is unknown. Opponent modeling with neural networks

remains understudied with ample room for improvement.

6.7 Conclusion

This chapter considers sequential decision-making when more than one active

agents are acting in the environment, which is common in collaborative and com-

petitive settings. Our method takes advantage of the recent deep Q-learning and
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learns the representation of opponents which affects the rewards. The model is also

flexible enough to include supervision for parameters of the opponents, much as in

explicit modeling.

In general, opponent modeling methods can be applied to NLP systems that

interact with humans. In fact, the prediction approach for simultaneous translation

introduced in the last chapter can be considered as a form of opponent modeling.

If we consider the speaker as another agent in the environment, then the system is

trying to prediction the opponent action (next word, final verb). Another example

would be building user models for persuasion or negotiation dialogs.
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Chapter 7: Conclusion

7.1 Summary

In this thesis, we address problems with sequential predictions and decisions

in NLP, and answer the following questions:

• When to solve a problem sequentially?

• How to formulate the sequential decision-making process?

• How to extend the framework to different domains?

To answer these questions, we focus on two scenarios: when the input infor-

mation is costly, we select parts of it sequentially to make predictions at a lower

cost; when the input is revealed incrementally, we decide when to make an early

prediction based on the amount of information we have. The common character-

istics of these two types of problems are (a) both takes a sequence of inputs and

produces a sequence of predictions; (b) each prediction in the sequence has some

cost; (b) there is a cost-quality trade-off in deciding when to output/commit to the

current prediction.

Specifically, we have looked at dynamic feature selection for both classification

and dependency parsing, simultaneous translation, and quiz bowl (incremental text
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classification). We showed basic MDP components in each of these problems. In

general, the state contains inputs so far and intermediate predictions; the actions

are the decisions the system needs to make; the loss/reward encodes the desired

trade-off between information cost and prediction quality.

In addition, we described multiple ways to extend the sequential decision-

making framework. The most straightforward one is to change the action set and

state space. For example, in sequential acquisition problems, we can either select

from all available features or decide whether to take a feature from a ranked list.

In simultaneous translation, we can add richer actions such as prediction the next

word and the final verb. Another way is to modify the baseline predictor (e.g. the

classifier trained with complete information, the batch translator). For example,

we train the batch translator with paraphrased inputs so that it produces more

monotone translations, fitting better to the sequential setting.

The main machine learning tools we use are imitation learning and reinforce-

ment learning algorithms. They are two common approaches to solving sequential

decision-making problems using the MDP formulation. Besides demonstrating their

effectiveness in solving NLP problems, we further proposed adaptations of the stan-

dard algorithms, including using coaching in imitation learning when the expert is

too good, and modeling opponents when multiple agents are affecting the environ-

ment in reinforcement learning.
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7.2 Future Directions

While this thesis has focused on sequential acquisition and sequential revealing

problems, there are several other directions worth future pursuit, in both learning

method and application.

7.2.1 Joint Learning of Predictor and Policy

In most of our applications, we separated the task predictor and the policy.

The task predictor is pre-trained in the static or batch stetting where no decision

is involved, and the policy is trained given a fixed task predictor. This design has

one potential problem that the task predictor is not prepared for handling partial

inputs. Dulac-Arnold (2014) considers possible predictions as different actions in

addition to actions taken by the controller. The disadvantage of this approach is

that learning can be hard if the prediction space is large; also, the task predictor

and the policy may require different kinds of features.

Another way to alleviate the problem is to give the task predictor randomly

sampled partial inputs during pretraining. For example, we can train a classifier

with randomly selected features. To adapt the task predictor to partial examples

likely to form at test time, we can fine-tune the pre-trained predictor during policy

learning: feeding it partial examples produced by the current learned policy.

Alternatively, we can take a multitasking approach to learning the task predic-

tor and the policy: they can be two modules with shared parameters and representa-

tion. Since outputs of the two modules are interdependent, it is reasonable to have

137



overlap between them. This approach avoids disadvantages of either considering

them as a single predictor or completely separate predictors.

7.2.2 Context Representation

One important aspect in sequential prediction is context representation. The

standard MDP assumes the Markov property for state transition. This is sometimes

a simplified model for real applications. In fact, state features often include features

from previous states in practice. Context also plays a central role in language

understanding. For example, a dialog system needs to maintain a flow of topics

to fully understand the user. If a user says “What about tomorrow”, they may

be asking about the weather tomorrow, or proposing a meeting time. The actual

answer depends much on previous interaction.

Recent work (Zhang et al., 2016; Mnih et al., 2014) has used an LSTM to

encode a sequence of states to incorporate history information in reinforcement

learning. When the sequence becomes longer, it is interesting to consider a hier-

archical representation that captures both global and local context. For example,

in simultaneous translation of TED talks, we can model the talk title/abstract as

the global context, which can be combined with the local word sequence to predict

future content.

It would also be helpful for the system to have an external memory to save

information that might be useful in future. The external memory can be updated in

each step by rewriting some memory slots. Therefore, the system needs to make de-
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cisions about which memories are out-dated and should be removed, which memories

can be combined to form a higher-level concept, and whether the new information

should be written for future use.

7.2.3 Extensions of Sequential Selecting and Revealing Problems

We have seen dependency parsing as a sequential selection problem, as well as

simultaneous interpretation and quiz bowl as sequential revealing problems. Being

able to select needed information dynamically and produce an early prediction for

streaming data are key to efficient systems given a plethora of information, and they

have wider application than what we have worked on. Below we detail two other

directions.

NLP with World Knowledge Currently most NLP systems work as standalone

applications without a context of the world. However, world knowledge is essential

in language understanding. For example, consider the following narrative:

“Alice met Bob on Friday afternoon. They had some fun time. In the end,

Bob proposed to watch a show together the next day. Alice agreed.”

To answer the question “which day will Alice and Bob watch a show”, one

must know that the day following Friday is Saturday. Such knowledge is considered

common sense in human communication, thus it cannot be inferred from the input

narrative alone, and a knowledge base is required. Unfortunately, considering world

knowledge is expensive in practice. A knowledge base usually has millions of entries

and it takes time to identify relevant information. This is where dynamic selection
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can help: we only need to query the knowledge base when ambiguity is present or

the reasoning is broken (e.g., due to missing knowledge). In our sequential selection

framework, the knowledge base is considered as another piece of costly input and

we decide whether to use it or not depending on specific instances.

Customer Service Our work on quiz bowl is relevant to incremental text classifi-

cation. Early prediction of streaming text is important in time-sensitive applications

such as high-frequency trading. Another area that needs fast text processing is cus-

tomer service call center. At least half of the cost in call centers is spent on labor,

thus reducing communication time is crucial to reduce cost. A good customer ser-

vice chat bot should direct the user to a corresponding agent as fast as possible,

otherwise, it may block other customers and lower satisfaction rate. We can improve

processing speed from two aspects. First, the system can infer user intention before

one finishes talking, much as in quiz bowl. Second, the system needs to decide the

next question to ask so as to finish the task in a minimum number of steps. This is

also related to goal-oriented dialogs, which we explain in Section 7.2.5.

7.2.4 Interpretable Prediction and Decision

Although machine learning models are often used as a black-box in practice, in

some domains it is important to understand reasons behind these predictions. For

example, when making medical, business or government decisions, a wrong predic-

tion can have serious consequences, and a desirable model is desirable. Sequential

prediction can help expose a model’s “decision process” by examining its reaction
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The film that unfolds from these beginnings is in many ways a conventional
one, but it unfolds with so much wit, panache, and visual ingenuity that it
outstrips many a more high-concept movie.

Figure 7.1: Example movie review. Words in red indicate negative opinion while
words in blue indicate positive opinion.

to different information.

We show a snippet of an example movie review in Figure 7.1. Suppose we

have a sentiment analysis model and we want to interpret its prediction for the

snippet. One approach is to use the model to produce a sequence of predictions

at each word. By looking at changes in the output, we can identify specific parts

of the input leading to the final prediction. In the example, a reasonable model

would predict negative opinion after the word “convention”, become less confident

at the contrastive conjunction “but”, and predict positive opinion after seeing “wit,

panache, and visual ingenuity”.

The above method is mainly used to inspect a trained model, nevertheless,

we can also directly frame prediction as a sequential decision-making process that

reflects effects of different pieces of the input. One direction is to equip the model

with memory. As we scan the input sequentially, we decide whether to add a piece

to the memory, to delete a piece from the memory or to combine with a piece of the

memory. Such composition reveals what the model is “thinking” during prediction.

We use the example in Figure 7.1 for illustration again. Here “convention” is an

important word that should be added to the memory first, however, after seeing

“but” we can delete it as this conjunction emphasize content after it. Finally, the

model should mainly focus on “wit, panache, and visual ingenuity” in the memory.
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7.2.5 Interaction with Humans

In Chapter 6 we briefly explored systems that interact with humans. Instead

of statically receiving user input and producing an output independent of any con-

text, we believe an NLP system can benefit from considering user interaction as a

sequential process. Below we detail some directions along this line.

Information Retrieval When searching for information about an event, a user

is likely to issue a sequence of related queries regarding the event; in addition,

later queries may depend on new information found in earlier results. Therefore,

considering the context in a query sequence can help disambiguation. For instance,

if a user first searches “GOP nomination”, followed by “the wall”, then it is much

more likely that “the wall” means the Trump Wall other than the album by Pink

Floyd. In this setting, the system does not necessarily make any explicit decision,

however, the context given by previous queries and outputs should be considered in

the current state and affect ranking of current search results.

Dialog Dialog is probably the most typical sequential NLP problem, which can be

broadly classified as goal-oriented dialogs and open-ended dialogs. Open-ended di-

alog system focuses on building a chat bot. We are more interested in goal-oriented

dialog systems, which complete a task specified by the user through conversation, for

example, personal assistants such as Siri by Apple, Echo by Amazon, Cortana by Mi-

crosoft and Google Now. These dialogs are often formulated as a partially observable

MDP (Young, 2006), where intention (state) of the user is modeled probabilistically.
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One interesting area is diplomatic dialogs, e.g., negotiation, persuasion, and argu-

mentation. Here uncertainty of the user intention is not only due to the limitation of

speech recognition and language understanding but also due to strategy of the user

(e.g. faking an intention). Identifying the user’s strategy is related to opponent

modeling. In addition to that, the system needs a counter strategy to achieve a

cooperative or competitive goal, which can be modeled a decision-making process.

Finally, the action needs to be rendered into natural language understandable by

users.

Human-In-the-Loop Learning In Chapter 3 we have seen how a system can

acquire pieces of input adaptively. Taking this framework one step further, we can

consider human as a costly subroutine available during prediction. Of course, we

do not want to directly ask a person to label the example for us. Instead, we can

decompose the task to smaller, simpler subtasks which can be answered by a person

without too much effort. For example, We can ask a human to translate part of a

sentence (e.g. an unknown word, a phrase) that we are not sure about. This way,

even though the system cannot completely replace a human expert, it can lower the

requirement for an expert.
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Appendix A: Proof for DAgger with Coaching

The theorem is as follows:

Theorem 5. Assume ` upper bounds L, π∗ is u-robust, and N is O(uT log T ), then

there exists a policy π ∈ π1:N such that:

J(π) ≤ J(π∗) + uT ε̃class +O(1).

We consider a policy π parameterized by a vector w ∈ Rd. Let φ : S×A→ Rd

be a feature map describing the state. The predicted action is

âπ,s = arg max
a∈A

wTφ(s, a) (A.1)

and the hope action is

ãπ,s = arg max
a∈A

λwTφ(s, a)− L(s, a). (A.2)

We assume that the loss function ` : Rd → R is a convex upper bound of the 0-

1 loss. Further, it can be written as `(s, π, π∗(s)) = f(wTφ(s, π(s)), π∗(s)) for a

function f : R→ R and a feature vector ‖φ(s, a)‖2 ≤ R. We assume that f is twice
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differentiable and convex in wTφ(s, π(s)), which is common for most loss functions

used by supervised classification methods.

It has been shown that given a strongly convex loss function `, Follow-The-

Leader has O(logN) regret (Hazan et al., 2006; Kakade and Shalev-shwartz, 2008).

More specifically, given the above assumptions we have:

Theorem 6. Let D = maxw1,w2∈Rd ‖w1−w2‖2 be the diameter of the convex set Rd.

For some b,m > 0, assume that for all w ∈ Rd, we have |f ′(wTφ(s, a))| ≤ b and

|f ′′(wTφ(s, a))| ≥ m. Then Follow-The-Leader on functions ` have the following

regret:

N∑
i=1

`i(πi)−min
π∈Π

N∑
i=1

`i(π) ≤
N∑
i=1

`i(πi)−
N∑
i=1

`i(πi+1)

≤ 2nb2

m

[
log

(
DRmN

b

)
+ 1

]
(A.3)

To analyze the regret using surrogate loss with respect to hope actions, we use

the following lemma:

Lemma 1. ∑N
i=1 `i(πi)−minπ∈Π

∑N
i=1

˜̀
i(π) ≤ ∑N

i=1 `i(πi)−
∑N
i=1

˜̀
i(πi+1).

Proof. We prove inductively that ∑N
i=1

˜̀
i(πi+1) ≤ minπ∈Π

∑N
i=1

˜̀
i(π).

When N = 1, by Follow-The-Leader we have π2 = arg min
π∈Π

˜̀1(π), thus ˜̀1(π2) =

minπ∈Π ˜̀1(π).
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Assume correctness for N − 1, then

N∑
i=1

˜̀
i(πi+1) ≤ min

π∈Π

N−1∑
i=1

˜̀
i(π) + ˜̀

N(πN+1) (inductive assumption)

≤
N−1∑
i=1

˜̀
i(πN+1) + ˜̀

N(πN+1) = min
π∈Π

N∑
i=1

˜̀
i(π)

The last equality is due to the fact that πN+1 = arg min
π∈Π

∑N
i=1

˜̀
i(π).

To see how learning from π̃i allows us to approaching π∗, we derive the regret

bound of ∑N
i=1 `i(πi)−minπ∈Π

∑N
i=1

˜̀
i(π).

Theorem 7. Assume that wi is upper bounded by C, i.e. for all i ‖wi‖2 ≤ C,

‖φ(s, a)‖2 ≤ R and |L(s, a)− L(s, a′)| ≥ ε for some action a, a′ ∈ A. Assume λi is

non-increasing and define nλ as the largest n < N such that λi ≥
ε

2RC . Let `max be

an upper bound on the loss, i.e. for all i, `i(s, πi, π∗(s)) ≤ `max. We have

N∑
i=1

`i(πi)−min
π∈Π

N∑
i=1

˜̀
i(π) ≤ 2`maxnλ + 2nb2

m

[
log

(
DRmN

b

)
+ 1

]
(A.4)

Proof. Given Lemma 1, we only need to bound the RHS, which can be written as

(
N∑
i=1

`i(πi)− ˜̀
i(πi)

)
+
(

N∑
i=1

˜̀
i(πi)− ˜̀

i(πi+1)
)
. (A.5)

To bound the first term, we consider a binary action space A = {1,−1} for

clarity. The proof can be extended to the general case in a straightforward manner.

Note that in states where a∗s = ãπ,s, `(s, π, π∗(s)) = `(s, π, π̃(s)). Thus we only
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need to consider situations where a∗s 6= ãπ,s:

`i(πi)− ˜̀
i(πi)

= Es∼dπi
[
(`i(s, πi,−1)− `i(s, πi, 1)) 1{s : ãπi,s=1,a∗s=−1}

]
+Es∼dπi

[
(`i(s, πi, 1)− `i(s, πi,−1)) 1{s:ãπi,s=−1,a∗s=1}

]
(A.6)

In the binary case, we define ∆L(s) = L(s, 1)−L(s,−1) and ∆φ(s) = φ(s, 1)−

φ(s,−1).

Case 1 ãπi,s = 1 and a∗s = −1.

ãπi,s = 1 implies λiwT
i ∆φ(s) ≥ ∆L(s) and a∗s = −1 implies ∆L(s) > 0.

Together we have ∆L(s) ∈ (0, λiwT
i ∆φ(s)]. From this we know that wT

i ∆φ(s) ≥ 0

since λi > 0, which implies âπi = 1. Therefore we have

p(a∗s = −1, ãπi,s = 1, âπi,s = 1)

= p(ãπi,s = 1|a∗s = −1, âπi,s = 1)p(âπi, s = 1)p(a∗s = −1)

= p

(
λi ≥

∆L(s)
wT
i ∆φ(s)

)
· p(wT

i ∆φ(s) ≥ 0) · p(∆L(s) > 0)

≤ p
(
λi ≥

ε

2RC

)
· 1 · 1 = p

(
λi ≥

ε

2RC

)

Let nλ be the largest n < N such that λi ≥
ε

2RC , we have

N∑
i=1

Es∼dπi
[
(`i(s, πi,−1)− `i(s, πi, 1)) 1{s : ãπi,s=1,a∗s=−1}

]
≤ `maxnλ (A.7)

For example, let λi decrease exponentially, e.g., λi = λ0e
−i. If λ0 <

εeN

2RC , Then
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nλ = dlog 2λ0RC

ε
e.

Case 2 ãπi,s = −1 and a∗s = 1. This is symmetrical to Case 1. Similar

arguments yield the same bound.

In the online learning setting, imitating the coach is to obsearve the loss ˜̀
i(πi)

and learn a policy πi+1 = arg min
π∈Π

∑i
j=1

˜̀
j(π) at iteration i. This is indeed equivalent

to Follow-The-Leader except that we replaced the loss function. Thus Theorem 6

gives the bound of the second term.

Equation A.5 is then bounded by 2`maxnλ + 2nb2

m

[
log

(
DRmN

b

)
+ 1

]
.

Now we can prove Theorem 4. Consider the best policy in π1:N , we have

min
π∈π1:N

Es∼dπ [`(s, π, π∗(s))] ≤ 1
N

N∑
i=1

Es∼dπi [`(s, πi, π
∗(s))]

≤ ε̃N + 2`maxnλ
N

+ 2nb2

mN

[
log

(
DRmN

b

)
+ 1

]

When N is O(T log T ), the regret is O(1/T ). Applying Theorem 2 completes the

proof.
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