
ABSTRACT

Title of dissertation: Alternating Optimization: Constrained Problems,
Adversarial Networks, and Robust Models

Zheng Xu
Doctor of Philosophy, 2019

Dissertation directed by: Professor Tom Goldstein
Department of Computer Science

Data-driven machine learning methods have achieved impressive performance

for many industrial applications and academic tasks. Machine learning methods

usually have two stages: training a model from large-scale samples, and inference

on new samples after the model is deployed. The training of modern models relies

on solving difficult optimization problems that involve nonconvex, nondifferentiable

objective functions and constraints, which is sometimes slow and often requires

expertise to tune hyperparameters. While inference is much faster than training, it

is often not fast enough for real-time applications. We focus on machine learning

problems that can be formulated as a minimax problem in training, and study

alternating optimization methods served as fast, scalable, stable and automated

solvers.

First, we focus on the alternating direction method of multipliers (ADMM) for

constrained problem in classical convex and nonconvex optimization. Some popu-

lar machine learning applications including sparse and low-rank models, regularized

linear models, total variation image processing, semidefinite programming, and con-

sensus distributed computing. We propose adaptive ADMM (AADMM), which is

a fully automated solver achieving fast practical convergence by adapting the only

free parameter in ADMM. We further automate several variants of ADMM (relaxed

ADMM, multi-block ADMM and consensus ADMM), and prove convergence rate

guarantees that are widely applicable to variants of ADMM with changing parame-

ters. We release the fast implementation for more than ten applications and validate

the efficiency with several benchmark datasets for each application. Second, we fo-

cus on the minimax problem of generative adversarial networks (GAN). We apply

prediction steps to stabilize stochastic alternating methods for the training of GANs,

and demonstrate advantages of GAN-based losses for image processing tasks. We

also propose GAN-based knowledge distillation methods to train small neural net-

works for inference acceleration, and empirically study the trade-off between accel-

eration and accuracy. Third, we present preliminary results on adversarial training

for robust models. We study fast algorithms for the attack and defense for universal

perturbations, and then explore network architectures to boost robustness.

Alternating Optimization: Constrained Problems,
Adversarial Networks, and Robust Models

by

Zheng Xu

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2019

Advisory Committee:
Professor Tom Goldstein, Chair/Advisor
Professor Rama Chellappa
Professor David Jacobs
Professor Gavin Taylor
Professor Furong Huang
Professor John Dickerson

c© Copyright by
Zheng Xu

2019

Dedication

To my parents JX, MS, and my wife XL.

ii

Acknowledgments

Now I have (almost) reached the end of the Ph.D. journal. I owe a debt

of gratitude to many people, and I apologize in advance to whom I could have

inadvertently left out in this acknowledgement.

First and foremost I would like to thank my advisor, Tom Goldstein, who

has provided everything I could ask for from an advisor. I have learnt so much

by working together, talking with him, and simply being around him. His views

on sharing credit, preferring simplicity, driven by intuition and motivation, seeking

long-term impact, prioritization, and presentation have made a huge impact on and

will continue guiding my own research. He gave me a lot of freedom to exploring

my research, taking internships, and spending time with my family. It has been a

great pleasure working with such a nice and intelligent person.

I thank my committee members, David Jacobs, Gavin Taylor, Furong Huang,

Rama Chellappa, and John Dickerson. In our collaboration, they have helped a

lot with their expertise in computer vision, tensor method, distributed comput-

ing, etc. This thesis would not become the current shape without these fruitful

collaborations and their valuable feedback and suggestions. I have taken several re-

search internships and I thank my industrial mentors, Doug Burdick at IBM, Anima

Anandkumar at Amazon, Jiawei Huang at Honda, Chen Fang at Adobe, and Oncel

Tuzel at Apple, for giving me the opportunities to touch the industrial research

style, enjoy the computing resources, and stay in bay area. Part of the thesis is

based on my internship projects at Honda and Adobe. I would like to thank Louiqa

iii

Raschid from UMD business school for her financial support at the beginning of

my PhD study. I enjoyed the financial projects we have worked on together and

appreciate the freedom she gave me for exploring my interests. Thank my mentors

and teachers before my Ph.D. study, my undergraduate advisor Houqiang Li and

my master advisor Chang-Wen Chen, for their guidance and recommendation in my

early research stage. Particularly, I would also like to thank my mentor Xin-Jing

Wang at Microsoft during my master study, for her strong support in my application

at the beginning and job search at the end of my Ph.D. study.

I have collaborated with many fantastic researchers during my Ph.D. study.

Special thanks go to Mario Figueiredo for helping organize and polish my ADMM

papers, I would hope I could write like him one day; Xiaoming Yuan for his theoret-

ical insights that lead to the analysis in my paper; Hao Li for helping my transition

from classical optimization to neural networks and as a nice hardware and system

consult; Ali Shafahi for our collaboration on adversarial attack and defense; Xitong

Yang for our discussion on image processing tasks. Besides my committee members

and industrial mentors, I am also fortune to work with our long-term collaborator

Christoph Studer from Cornell; our labmates Soham De, Sohil Shah, Abhay Yadav,

Ronny Huang, Mahyar Najibi and Karthik Sankararaman from UMD; Yen-Chang

Hsu from Gatech, Michael Wilber from Cornell Tech, Aaron Hertzman, Hailin Jin

from Adobe during my internships; my old friends Kuiyuan Yang from DeepMotion,

Xiaoshuai Sun from HIT, Wen Li from ETH, and many other researchers.

I have met new and old friends in this journey. Hao Zhou and Ruofei Du

have helped my quick adaptation to life in Maryland. Jiayao Hu has always been

iv

welcoming me and my family to California. I did a lot of my course projects with

Weiwei Yang and Hong Wei. My five-year roommate Peng Lei has shared a lot

of his experience. I enjoyed all the talk, discussion and play at Maryland, during

my internships and at conferences with my friends, Ang Li, Xing Niu, Jinfeng Rao,

Xiyang Dai, Han Zhou, Changqing Zou, Mingfei Gao, Jingjing Zheng, Chen Zhu,

Renkun Ni, Lingjia Deng, Beidi Chen, Yang Shi, Tan Yu, Hui Ding, Yin Zhou,

Shuangfei Zhai, Wei Ping, Ye Xu, Amin Ghiasi, to name a few. I would like to

thank the staff members who has created the cheerful environment at the computer

science department, Jeff Foster, Jeniffer Story, Tom Hurst, Jodie Gray, Sharron

McElroy and others.

Last but most importantly, I thank my family, my parents Jinxin Xu and

Mingxia Sun, for their unconditional love, understanding and support. I can keep

exploring and enjoying a researcher’s life as I know they always have my back. I

am extremely fortune to have the experience together with my wife Xue Li, who

deserves more credit then myself. She has made me a better researcher and a better

person. If there is one thing that I did not do wrong and would not regret at all in

the past five years, it is sharing the adventure with her.

So long, and thanks for all the fish.

v

Table of Contents

Dedication ii

Acknowledgements iii

Table of Contents vi

List of Tables xi

List of Figures xiii

1 Introduction 1
1.1 Organization . 2
1.2 Contribution . 6

I Constrained Problem and Adaptive ADMM 9

2 Constrained Problem and ADMM 10
2.1 ADMM and penalty parameter . 10

2.1.1 Residuals and stop condition 11
2.2 Multi-block ADMM . 12

2.2.1 Residuals and stop condition 13
2.3 Minimax optimization problems . 14

2.3.1 Residuals and stop condition 15
2.4 Exemplar applications . 16

2.4.1 Elastic net regularized linear regression 16
2.4.2 Low rank least squares . 17
2.4.3 Support vector machine and quadratic programming 18
2.4.4 Basis pursuit . 19
2.4.5 Consensus `1-regularized logistic regression 20
2.4.6 Semidefinite programming . 21
2.4.7 Unwrapped SVM . 21
2.4.8 Total variation image denoising 22

2.5 Benchmark datasets . 23
2.6 Convergence and related work . 23

vi

3 Convergence Analysis of ADMM 27
3.1 Generalized ADMM with diagonal penalty parameters 27
3.2 Preliminaries . 28
3.3 Convergence criteria . 30
3.4 Appendix: proof of lemmas . 35

4 Adaptive ADMM 43
4.1 Background and related work . 44

4.1.1 Parameter tuning and adaptation 44
4.1.2 Dual interpretation of ADMM 45
4.1.3 Spectral stepsize selection . 47

4.2 Spectral penalty parameters . 48
4.2.1 Spectral stepsize for DRS . 49
4.2.2 Spectral stepsize estimation 51
4.2.3 Safeguarding . 53
4.2.4 Adaptive ADMM . 54
4.2.5 Convergence . 55

4.3 Experiments . 55
4.3.1 Experimental setting . 55
4.3.2 Convergence results . 58
4.3.3 Sensitivity . 59

4.4 Summarization . 60

5 Variants of ADMM 62
5.1 Adaptive Multi-block ADMM . 63

5.1.1 Residual balancing for multi-block ADMM 63
5.1.2 Dual interpretation of multi-block ADMM 64
5.1.3 Spectral stepsize for multi-block DRS 65
5.1.4 Spectral penalty parameter for multi-block ADMM 68
5.1.5 Experiment: elastic net regularized linear regression 71
5.1.6 Experiment: robust principal component analysis 74

5.2 Adaptive Relaxed ADMM . 79
5.2.1 Introduction . 79
5.2.2 Convergence theory . 81
5.2.3 Dual interpretation of relaxed ADMM 82
5.2.4 Spectral adaptive stepsize rule 83
5.2.5 Proofs of convergence theorems 89
5.2.6 Appendix:proofs of lemmas and theorems 94
5.2.7 Experiments . 104
5.2.8 Summarization . 107

5.3 Adaptive Consensus ADMM . 109
5.3.1 Introduction . 109
5.3.2 Dual interpretation of generalized ADMM 111
5.3.3 Generalized spectral stepsize rule 113
5.3.4 Stepsize estimation for consensus problems 114

vii

5.3.5 Safeguarding and convergence 116
5.3.6 Experiments & Applications 119
5.3.7 Summarization . 123

5.4 Nonconvex Problems . 123
5.4.1 Introduction . 123
5.4.2 Nonconvex applications . 126
5.4.3 Experiments & Observations 128
5.4.4 Appendix: implementation details 130

5.4.4.1 `0 regularized linear regression 130
5.4.4.2 `0 regularized image denoising 133
5.4.4.3 Phase retrieval . 134
5.4.4.4 Eigenvector problem 135

5.4.5 Appendix: synthetic and realistic datasets 136
5.4.6 Summarization . 139

II GAN, Network Acceleration and Image Processing 140

6 Stochastic Alternating Methods 141
6.1 Stochastic Alternating Methods with Prediction Step 141
6.2 Background and Advantage of Prediction Step 143
6.3 Convergence for Convex-concave Problem 145
6.4 Proof of Theorems . 147
6.5 Generative Adversarial Network . 152

7 Adversarial Network for Image Processing 154
7.1 Image Style Transfer . 154

7.1.1 Introduction . 154
7.1.2 Related work . 157
7.1.3 Proposed method . 160

7.1.3.1 Network architecture 160
7.1.3.2 Adversarial training 162
7.1.3.3 Ablation study . 165

7.1.4 Experiments . 166
7.1.4.1 Evaluation of style transfer 169
7.1.4.2 Evaluation of style transfer for general objects 170
7.1.4.3 Evaluation for style ranking 172

7.1.5 Supplemental experiments . 174
7.1.5.1 Examples for general style transfer 174
7.1.5.2 Destylization . 175

7.1.6 Summarization and discussion 176
7.2 Image Dehazing . 177

7.2.1 Introduction . 177
7.2.2 Related work . 180
7.2.3 VGG-based U-Net with instance normalization 183

viii

7.2.4 Experiments . 186
7.2.4.1 Quantitative evaluation on benchmark dataset 188
7.2.4.2 Ablation study . 189
7.2.4.3 Cross-domain evaluation 190
7.2.4.4 Qualitative evaluation 192

7.2.5 Discussion . 193
7.2.6 GAN-based Loss without Paired Training Images 195

8 Knowledge Distillation with Conditional Adversarial Networks 197
8.1 Introduction . 197

8.1.1 Related work . 200
8.2 Learning loss for knowledge distillation 202

8.2.1 Neural networks with residual connection 203
8.2.2 Knowledge distillation . 203
8.2.3 Learning loss with adversarial networks 205

8.3 Experiments . 209
8.3.1 Benefits of learning loss . 210
8.3.2 Analysis of the proposed method 211
8.3.3 Does WRN need to be deep and wide? 213
8.3.4 Training student for acceleration 215

8.4 Summarization and discussion . 215

III Adversarial Training for Robustness 217

9 Universal Adversarial Training 218
9.1 Introduction . 218
9.2 Related work . 221
9.3 Optimization for universal perturbation 223
9.4 Universal adversarial training . 227

9.4.1 Attacking hardened models 231
9.4.2 Universal adversarial training for free! 234

9.5 Universal perturbations for ImageNet 235
9.5.1 Benefits of the proposed method 236
9.5.2 The effect of clipping . 238
9.5.3 How much training data does the attack need? 239

9.6 Universal adversarial training on ImageNet 240
9.7 Summarization . 241

10 Exploiting Adaptive Networks for Robustness 242
10.1 Introduction . 242
10.2 Related work . 245
10.3 Adaptive Networks . 249

10.3.1 Network architecture . 250
10.3.2 Adversarial training . 252

ix

10.3.3 Quantitative evaluation on CIFAR-10 and CIFAR-100 254
10.3.4 Training curves and qualitative analysis 258

10.4 Summarization . 260

11 Conclusion and Discussion 261

Bibliography 266

x

List of Tables

2.1 Statistics of regression and classification benchmark datasets. 24

4.1 Iterations (and runtime in seconds) for the various algorithms and appli-

cations described in the text. Absence of convergence after n iterations is

indicated as n+. AADMM is the proposed Algorithm 1. 56

5.1 Iterations (and runtime in seconds) for EN regularized linear regression.

Absence of convergence after n iterations is indicated as n+. Approx

AADMM and Adaptive ADMM are the proposed Algorithm 2 with (5.23)

and (5.24), respectively. 72
5.2 Iterations (and runtime in seconds) for robust PCA. Absence of conver-

gence after n iterations is indicated as n+. Approx AADMM and Adaptive

ADMM are the proposed Algorithm 2 with (5.23) and (5.24), respectively. 77
5.3 Iterations (and runtime in seconds) for various applications. Absence of

convergence after n iterations is indicated as n+. 108
5.4 Iterations (and runtime in seconds);128 cores are used; absence of conver-

gence after n iterations is indicated as n+. 118
5.5 Iterations (with runtime in seconds) and objective (or PSNR) for the var-

ious algorithms and applications described in the text. Absence of conver-

gence after n iterations is indicated as n+. 131

7.1 Quantitative evaluation for style transfer. Our method is preferred
by human annotators and outperforms baselines. 165

7.2 Quantitative evaluation for style transfer of building. Different meth-
ods are competitive for different styles. The overall performance of
our method is better. 169

7.3 Quantitative results on RESIDE-standard dataset [Li+17b]. 188
7.4 Ablation study on RESIDE-standard dataset. 189
7.5 Quantitative results for cross-domain evaluation. 191

8.1 Error rate achieved on benchmark datasets. 210
8.2 The effect of different components of the loss in the proposed method. 212
8.3 The effect of discriminator depth on CIFAR-100. 212

xi

8.4 The effect of depth and width in student network; the parameter size,

inference time and error rate on CIFAR-100. 213

9.1 Validation accuracy of hardened WideResnet models trained on
CIFAR-10. Note that Madry’s PGD training is significantly slower
than the other training methods. 234

9.2 Top-1 accuracy on ImageNet for natural images, and adversarial im-
ages with universal perturbation. 237

9.3 Accuracy on ImageNet for natural and robust models. 241

10.1 Performance of (robust) CIFAR-10 models. We inject adaptive layers
in WRN-28-4, and compare with WRN-28-4 and WRN-28-5 with
more parameters. 255

10.2 Performance of (robust) CIFAR-100 models. We inject adaptive lay-
ers in WRN-28-4, and compare with WRN-28-4 and WRN-28-5 with
more parameters. 255

10.3 Performance of (robust) CIFAR-10 WRN-34-10 models. We directly
compare with previously reported results in [Mad+17; Sha+19]. . . . 256

xii

List of Figures

1.1 The success of data-driven mathine learning. 2
1.2 Examples show the difficulty of optimization in machine learning. . . 3

2.1 ”Barbara”, ”Cameraman”, and ”Lena” for image processing applications. . 22

4.1 Relative residual (top) and penalty parameter (bottom) for the synthetic

basis pursuit (BP) problem. 58
4.2 Top row: sensitivity of convergence speed to initial penalty parameter τ0

for EN, QP, and LRLS. Bottom row: sensitivity to problem scaling s for

EN, QP, and LRLS. 59
4.3 Sensitivity of convergence speed to safeguarding threshold εcor for proposed

AADMM. Synthetic problems of various applications are studied. Best

viewed in color. 60

5.1 Relative residual (left) and penalty parameter (right) for applying multi-

block ADMM to the synthetic problem of EN regularized linear regression. 73
5.2 Sensitivity with respect to initial penalty parameter (left) and problem

scale (right) for applying multi-block ADMM to the synthetic problem of

EN regularized linear regression. 74
5.3 Singular values of low rank matrix A (left) and sparse error E (right) for

the synthetic problem of RPCA. The bottom row is recovered by AADMM,

where mean square errors of recovered A and E are 1.48e− 4 and 1.88e− 4. 75
5.4 Sample face images of human subject 3 and recovered low rank faces and

sparse errors by AADMM. RPCA decomposes the original faces into in-

trinsic images (low rank) and shadings (sparse). 75
5.5 Relative residual (left) and penalty parameter (right) for the synthetic

problem of RPCA. 77
5.6 Sensitivity with respect to initial penalty parameter (left) and problem

scale (right) for applying multi-block ADMM to the synthetic problem of

EN regularized linear regression. 79
5.7 Sensitivity of convergence speed for the synthetic problem of EN regular-

ized linear regression. (left) sensitivity to the initial penalty τ0; (middle)

sensitivity to relaxation γ0; (right) sensitivity to relaxation γ0 when opti-

mal τ0 is selected by grid search. 105

xiii

5.8 Sensitivity of convergence speed to safeguarding threshold εcor for proposed

ARADMM. Synthetic problems (’cameraman’ for TVIR, and ’FaceSet1’

for RPCA) of various applications are studied. Best viewed in color. . . . 106
5.9 ACADMM is robust to the initial penalty τ , number of cores N , and

number of training samples. 120
5.10 Sensitivity to the (initial) penalty parameter τ0 for the `0 regularized linear

regression, eigenvector computation, ”cameraman” denoising, and phase

retrieval. (top) Number of iterations needed as a function of initial penalty

parameter. (bottom) The objective/PSNR of the minima found for each

non-convex problem. 129
5.11 Convergence results when the non-smooth objective term is updated first,

and the smooth term is updated second. Sensitivity to the (initial) penalty

parameter τ0 is shown for the synthetic problem of `0 regularized linear

regression, eigenvector computation, the ”cameraman” denoising problem,

and phase retrieval. The top row shows the convergence speed in iterations.

The bottom row shows the objective/PSNR achieved by the final iterates. 132
5.12 The synthetic one-dimensional signal for `0 regularized image denoising.

The groundtruth signal, noisy signal (PSNR = 37.8) and recovered signal

by AADMM (PSNR = 45.4) are shown. 137
5.13 The groundtruth image (left), noisy image (middle), and recovered im-

age by AADMM (right) for `0 regularized image denoising. The PSNR

of the noisy/recovered images are 21.9/24.7 for ”Barbara”, 22.4/27.8 for

”Cameraman”, 21.9/27.9 for ”Lena”. 138

6.1 Comparison of GAN training algorithms for DCGAN architecture on

Cifar-10 image datasets. Using default parameters of DCGAN; lr =

0.0002, β1 = 0.5. 153

7.1 Proposed network: (left) encoder-decoder as generator; (right) pre-
trained VGG as encoder. The decoder architecture is symmetric com-
paring to encoder. We use the conventional texture loss based on
pre-trained encoder features, and adversarially train mask module,
decoder and discriminator. 159

7.2 Benefits of adversarial training and mask module. We show the
encoder-decoder network with adversarial training only, mask module
only, and the combination of adversarial training and mask module.
Mask module only does not improve the visual quality of generated
images, which have artifacts and undesired textures. GAN only can
generate collapsed images with corrupted eyes and noses. 164

7.3 Qualitative evaluation for style transfer. We shown examples of trans-
ferring photos to seven different styles. AdaIN and WCT will generate
artifacts and undesired textures. Gatys’ results are more visually ap-
pealing, but the optimization is slow, and it is hard to choose the
parameter to control stylization level. Our method efficiently gener-
ate clean and stylized images. 166

xiv

7.4 Qualitative evaluation for general objects. This task is more dif-
ficult for our GAN-based method because the training data is more
noisy, especially for bird images with large diversity. Our method can
generate clean background, detailed foreground, and better stylized
strokes. 168

7.5 Qualitative evaluation for style ranking. 169
7.6 Ranking stylized images by our discriminator. 171
7.7 Qualitative evaluation for style transfer on texture-centric cases in

previous papers. Our method generates stylized images with clean
background, which are visually competitive to the previous methods
that targeted only on texture transfer. 173

7.8 Qualitative evaluation for destylization. 175
7.9 The proposed network: encoder-decoder with skip connections

and instance normalization (IN); convolutional layers of pre-trained
VGG [SZ14] are used as encoder; `2 reconstruction loss and VGG
perceptual loss are used for training decoder and IN layers. 182

7.10 An example of qualitative results in ablation study. We zoom in the
bottom left corner of the images to show more details in the second
row. 189

7.11 Qualitative evaluation on cross-domain dataset. The four exam-
ples are from D-Hazy-NYU [Anc+16], D-Hazy-MB [Anc+16], I-
Haze [Anc+18a] and O-Haze [Anc+18b], respectively. Best viewed
in color and zoomed in. 192

7.12 (a) Unpaired dataset with natural hazy images and haze-free images.
(b) Overall architecture of our Disentangled Dehazing Network. GJ ,
Gt, GA indicate the generators for the scene radiance, the medium
transmission and the global atmosphere light, respectively. 195

8.1 Network architectures. 202
8.2 Analysis of the proposed method. 211
8.3 Trade-off of error rate to inference time and parameter size. The figure is

generated from Table 8.4. Networks WRN-10-m are labeled as circles, and

WRN-d-4 are labeled as crosses for the proposed approach. The largest

student is 7x smaller and 5x faster than the teacher WRN-40-10. 214

9.1 A universal perturbation made using a subset of ImageNet and the
VGG-16 architecture. When added to the validation images, their
labels usually change. The perturbation was generated using the
proposed Algorithm 6. Perturbation pixel values lie in [−10, 10] (i.e.
ε = 10). 219

xv

9.2 Classification accuracy on adversarial examples of universal pertur-
bations generated by increasing the cross-entropy loss. PGD and
ADAM converge faster. We use 5000 training samples from CIFAR-
10 for constructing the universal adversarial perturbation for natu-
rally trained Wide ResNet model from [Mad+17]. The batch-size is
128, ε=8, and the learning-rate/step-size is 1. 226

9.3 Visualizations of universal perturbations after 160 iterations of the
optimizers depicted in Fig. 9.2. 227

9.4 Classification accuracy for (adversarial) training of (robust) models
with (top) FGSM update and (bottom) ADAM update. We show the
accuracy before and after the gradient ascent for δ in Algorithm 7.
We omitted the figure for SGD update because the gap between the
two curves for SGD is invisible. 229

9.5 Classification accuracy on training data when the universal pertur-
bations are updated with the ADAM optimizer. We use 5000 train-
ing samples from CIFAR-10 for constructing the universal adversar-
ial perturbation for an adversarially trained WideResnet model from
[Mad+17]. The batch-size is 128, ε=8, and the learning-rate/step-size
is 1. 231

9.6 The universal perturbations made using PGD and ADAM for 4 differ-
ent robust models trained on CIFAR-10: adversarially trained with
FGSM or PGD, and universally adversarially trained with FGSM
(uFGSM) or SGD (uSGD). Perturbations were made using 400 it-
erations. The top row perturbations are made using PGD and the
bottom row perturbations are made using ADAM. 232

9.7 Universal perturbations generated using our Algorithm 6 for different
network architectures on ImageNet. Visually, these perturbations
which are for naturally trained models are structured. 236

9.9 Training universal perturbation can fool naturally trained AlexNet
on ImageNet, but fails to fool our robust AlexNets. We smoothed
the curves in (a) for better visualization. The universal perturba-
tions generated for the universal adversarial trained AlexNets on Im-
ageNet have little geometric structure compared to that of the nat-
urally trained network. (b) Universal perturbation of natural model.
The accuracy of the validation images + noise is only 3.9% (c) Per-
turbation for our universally trained model using Algorithm 7. The
accuracy of the validation images + noise for our robust model is
42.0%. (d) Perturbation for the model trained with our free univer-
sal training variant (Algorithm 8). The accuracy of the validation
images + noise is 28.3%. While the universal noise for the free vari-
ant of universal adversarial training has some structure compared to
the non-free variant, when compared to that of the natural model
(b), it is structure-less. 239

10.1 Network architecture with adaptive layers. 250

xvi

10.2 Training curves for robust models for (top) CIFAR-10 and (bottom)
CIFAR-100: (left) accuracy on adversarial training samples; (middle)
accuracy on clean validation samples; (right) accuracy on PGD-3 val-
idation samples. 257

10.3 Visualization of adversarial examples generated for natural and ro-
bust WRN-34-10 for CIFAR-10 with large ε = 30 following [Tsi+18].
The large ε adversarial examples generated for robust models align
well with human perception. 259

xvii

Chapter 1: Introduction

Data-driven machine learning methods have become a success in both indus-

trial applications and academic research. For example, the best performed model

has surpassed human performance in imagenet recognition competition, which is

a challenge of classifying 1000-categories for more than 10 millions of images, see

Fig. 1.1a for recent trend of this competition. The recent advance of machine learn-

ing benefits from growing available data on the web and supervised information

from crowd sourcing, powerful computing devices like GPUs, and strong models like

deep neural networks to fit the data. Large scale data and complicated models also

bring challenges for machine learning.

Machine learning methods usually have two stages: training a model from

large-scale samples, and inference on new samples after the model is deployed, see

an illustrative example in Fig. 1.1b. The training of modern models relies on solving

difficult optimization problems that involve nonconvex, nondifferentiable objective

functions and constraints, which is sometimes slow and often requires expertise

to tune hyperparameters. Fig. 1.2 presents examples of difficult problems to be

optimized with complex solvers. While inference is much faster than training, it

is often not fast enough for real-time in practice. How to efficiently fit large-scale

1

data and deploy models in domain-specific applications is one of the key problems

in machine learning.

2010

35 29

81

123

157
172

2011 2012 2013 2014 2015 2016

Participation and Performance

Number of
Entries	

Classification
Errors (top-5)	

0.28

0.03
0.23

0.66

Average Precision
For Object Detection	

(a) Machine learning models surpass hu-
man error rate of 0.05 on large scale im-
age classification task. [FFD17]

Optimization	for	machine	learning
• Two	stages	of	data-driven	machine	learning

• Fitting	a	model	from	training	data:	optimize	an	objective	function

• Predicting	for	unseen	data

?

(b) Training and inference stages of ma-
chine learning method.

Figure 1.1: The success of data-driven mathine learning.

We focus on machine learning problems that can be formulated as a minimax

problem in training, and study alternating optimization methods served as fast, scal-

able, stable and automated solvers. Our study mainly concentrates on classification

and image processing tasks, including the applications of both classical linear mod-

els with regularizers and modern deep neural networks. We proposed an automated

solver for constrained problem that converges fast in practice. Next, we stabalize the

training of adversarial networks and apply the adversarial loss for image processing

and network acceleration. Finally, we develop fast algorithm for adversarial attack

and defense and exploit network design for robustness.

1.1 Organization

Alternating optimization methods optimize complex objective functions by

solving simpler sub-problems or related steps. Some popular applications including

sparse and low-rank models, regularized linear models, total variation image pro-

2

-4
2

-3

-2

-1

1 2

0

1

1

2

0

3

0

4

-1
-1

-2 -2

(a) Finding a saddle point of a surface
requires complex solvers such as alter-
nating optimization methods.

(b) The loss surface of a real neural net-
work that is often optimized by simple
stochastic gradient methods; the behav-
ior of these solvers is not well under-
stood.

Figure 1.2: Examples show the difficulty of optimization in machine learning.

cessing, generative adversarial networks, and adversarial training for robust models

[Xu+14; Xu+15; Xu+17b; Xu+16b; Xu+16a; Li+17d; Yad+18; Sha+19].

In the first part of the dissertation (Chapter 2 - Chapter 5), we introduce

our automated solver for constrained problem based on our series of works that

make many machine learning problems easier for non-expert users [Xu+15; Xu+17b;

Xu+17d; Xu+17c; Xu+17e; Xu+16a]. Among the alternating optimization meth-

ods, the alternating direction method of multipliers (ADMM) is a versatile tool for

solving a wide range of problems that can be formulated as a two-term objective

with a linear constraint. ADMM applies three steps to solve the saddle point of

Lagrangian minimax problem . The solver has the only free parameter, known

as penalty parameter in the literature. We proposed adaptive ADMM (AADMM),

which is a fully automated solver that tunes the penalty parameter in an adap-

tive way. We released code for more than ten applications such as sparse linear

3

regression, support vector machine classifiers, semidefinite programming, and im-

age denoising [Xu+17b; Xu+16a]. By investigating the equivalence of primal and

dual forms of ADMM, we derived an adaptive penalty parameter schema inspired

by the Barzilai-Borwein methods in gradient descent. We also propose an intuitive

while efficient rule to safeguard our parameter estimation to guarantee convergence.

The overhead of AADMM over ADMM is modest–only a few inner products plus

the storage to keep one previous iterate, while the practical convergence speed of

AADMM is much faster than non-adaptive methods. We also prove convergence

rate guarantees that are widely applicable to variants of ADMM with changing

penalty parameter [Xu+17c]. With a bounded adaptivity assumption, we prove a

worst case ergodic O(1/k) convergence rate in variational inequality sense.

We then automate variants of ADMM by exploiting the proposed adaptive

schema. A practical variant of ADMM is adding an extra interpolation step be-

tween the two primal update steps, which also introduces a new parameter, the

relaxation parameter. We proposed adaptive relaxed ADMM (ARADMM) to jointly

choose the penalty and relaxation parameters, which achieves even faster practical

convergence than AADMM for some applications, and is also guaranteed to con-

verge [Xu+17d]. ADMM methods, which typically deal with two-term objectives,

can be generalized to the “multi-block” ADMM, which handles many. Though the

convergence analysis becomes significantly harder and it sometimes cannot converge

in theory, we proposed adaptive multi-block ADMM (AMADMM) that works well

in practice [Xu+17e]. ADMM is also one of the most efficient methods for dis-

tributed optimization [Boy+11]. We proposed a variant of ADMM that is scalable

4

in distributing the training of deep neural networks [Tay+16; Tay+17], although it

still suffers from the generalization issue that is common in batch training for very

deep nets. We proposed adaptive consensus ADMM (ACADMM) for choosing node-

specific penalty parameters and developed a fully automated solver for distributing

general optimization problems [Xu+17c].

In the second part of the dissertation (Chapter 6 - Chapter 8), we discuss gen-

erative adversarial networks (GANs) and various applications [Yad+18; Yan+18;

Xu+18b; Xu+18a; Xu+19a]. The training of GANs is a minimax problem relies

heavily on stochastic alternating direction methods as the solver, and there is in-

creasing interests in optimizing such nonconvex and nonconcave objectives. The

training of GANs is not well understood and is also known to be unstable. We

showed that the stochastic alternating methods for training GANs can be stabilized

by introducing the prediction step inspired by the primal-dual gradient methods,

which allows users to choose bigger stepsizes and achieves better models [Yad+18].

We analyze the convergence of stochastic alternating methods with prediction step

for convex-concave problem in Chapter 6 to help understand the solver in theory.

GANs have been extensively studied over recent years, especially for image

processing tasks. We recently applied GANs for image style transfer [Xu+19a] and

image dehazing [Xu+18a; Yan+18]. We use the encoder-decoder architecture and

pre-trained feature extractor for these image processing tasks. Together with nor-

malization layers, we can train deeper and wider networks that achieve superior

performance. Deep and wide networks can sometimes be difficult to deploy in prac-

tice. We further show that GAN framework can be applied when we learn a small

5

student network from a large teacher network for accelerating inference. Our results

suggest GAN framework can not only boost the performance of image processing,

but also apply for many other tasks [Xu+18b].

In the third part of the dissertation (Chapter 9 - Chapter 10), we study ro-

bust models that can defend against adversarial examples. Adversarial examples

can be generated by adding a small perturbation to test samples (often created by

first-order gradient method for attacking the model) that mislead models to make

mistakes on prediction. It is more difficult to attack a robust model, and adversarial

training is one of the most successful methods for defense. Adversarial training can

be formulated as a minimax problem of training on generated adversarial examples.

In Chapter 9 [Sha+18], we focus on universal perturbation that can fool a model

when applied to a set of samples. Simple methods like stochastic gradient and clip-

ping loss help us efficiently generate universal perturbation for attack, and make the

attack and defense of universal perturbation on large scale dataset like ImageNet

possible. Our adversarially trained model is robust to universal perturbations. In

Chapter 10 [Xu+19b], we present preliminary results on exploiting network architec-

ture to boost robustness. We show adaptive normalization layer can be helpful for

training robust models. Chapter 11 concludes the dissertation with some discussion

remarks.

1.2 Contribution

We summarize the technical contributions here:

6

• For the first time, we prove O(1/k) convergence rate of ADMM with adap-

tive penalty parameter. The assumption can be satisfied in practice and the

theoretical analysis is widely applicable to the variants of ADMM (Chapter 3).

• We proposed Adaptive ADMM (AADMM), which is a fully automated solver

that converges fast in practice. It is easy for non-expert users to use our

AADMM for their domain-specific problems. We design spectral stepsize for

constrained problem, which is simple yet effective. We validated the perfor-

mance of AADMM with various applications and benchmark datasets (Chap-

ter 4) .

• We further exploit the proposed adaptive schema for variants of ADMM. Adap-

tive relaxed ADMM achieves even faster practical convergence. Adaptive con-

sensus ADMM is more suitable for distributed computing withe large number

of nodes. The adaptive schema can be extended to multi-block ADMM, and

AADMM is effective for several nonconvex problems. We perform extensive

experimental study and open-sourced our fast implementation (Chapter 5).

• For a convex-concave saddle point problem, we show that stochastic alternat-

ing gradients may not converge, while introducing the extra prediction step

would help it converge. The stochastic alternating gradients with predictions

step has O(1/
√
k) convergence rate (Chapter 6).

• In Chapter 7, we apply adversarial networks to enhance image processing. For

image style transfer, we adversarially training a single feed-forward network to

7

learn from multi-domain artistic images for arbitrary style transfer. For image

dehazing, we use a simple yet efficient network that can serve as a hard to

beat baseline, and apply GAN framework to train without paired image data.

• We apply adversarial network beyond image processing tasks. We introduce

conditional adversarial networks to transfer knowledge from large teacher net-

work to small student student for inference acceleration. We empirically show

that the loss learned by the adversarial training has the advantage over the

predetermined loss in the student-teacher strategy, especially when the student

network has relatively small capacity (Chapter 8).

• We propose fast algorithm based on stochastic gradients for the attack and

defense of universal perturbation. Our fast algorithm enables us to generate

stronger universal perturbation, and train robust models for large scale dataset

like ImageNet (Chapter 9).

• In Chapter 10, We propose to adversarially train adaptive networks for ro-

bustness. To build adaptive networks, we introduce a normalization module

conditioned on inputs which allows the network to “adapt” itself for different

samples. We found increasing the stepsize for generating adversarial examples

and initializing from pre-trained natural model can help adversarial training.

8

Part I

Constrained Problem and Adaptive ADMM

9

Chapter 2: Constrained Problem and ADMM

Alternating optimization methods are widely used to solve problems in ma-

chine learning, computer vision, and image processing. Some popular applications

including sparse and low-rank models, empirical risk minimization, total varia-

tion image restoration, and generative adversarial networks [Boy+11; Gol+14b;

Goo+14a; Xu+17b; Li+17d]. In this section, we first review ADMM methods and

its variants, and introduce background on general minimax optimization methods

and the stochastic alternating methods. We then provide multiple applications in

computer vision, image processing and machine learning. At last, we discuss previ-

ous theoretical analysis on the convergence of these methods. In the next chapter,

we will prove convergence for ADMM with adaptive parameters.

2.1 ADMM and penalty parameter

ADMM dates back to the 1970s [GM76; GM75]. In the last decade, ADMM

became one of the tools of choice to handle a wide variety of optimization problems

in machine learning, signal processing, and many other areas (for a comprehensive

10

review, see [Boy+11]). ADMM tackles problems in the form

min
u,v

H(u) +G(v), subject to Au+Bv = b. (2.1)

We optimize the Lagrangian of the constrained problem

max
λ

min
u,v

H(u) +G(v) + 〈λ, b− Au−Bv〉+
τ

2
‖b− Au−Bv‖2 (2.2)

with three steps per iteration as

uk+1 = arg min
u
H(u) +

τk
2
‖b− Au−Bvk +

λk
τk
‖2

2 (2.3)

vk+1 = arg min
v
G(v) +

τk
2
‖b− Auk+1 −Bv +

λk
τk
‖2

2 (2.4)

λk+1 =λk + τk(b− Auk+1 −Bvk+1), (2.5)

where λ is the dual variable. The penalty parameter {τk} is the only free parameter

in ADMM and is significant for the practical convergence speed.

2.1.1 Residuals and stop condition

The convergence of the algorithm can be monitored using primal and dual

“residuals,” both of which approach zero as the iterates become more accurate, and

which are defined as

rk = b− Auk −Bvk, and dk = τkA
TB(vk − vk−1), (2.6)

11

respectively [Boy+11]. The iteration is generally stopped when

‖rk‖2 ≤ εtol max{‖Auk‖2, ‖Bvk‖2, ‖b‖2} and ‖dk‖2 ≤ εtol‖ATλk‖2, (2.7)

where εtol > 0 is the stopping tolerance.

2.2 Multi-block ADMM

Multi-block ADMM is the direct extension of two-block ADMM, which tackles

problems in the form

min
ui∈Rni

N∑
i=1

Hi(ui), subject to
N∑
i=1

Aiui = b, (2.8)

where N is the number of blocks, Hi : Rni → R̄ are (convex) functions, Ai ∈ Rp×ni ,

and b ∈ Rp. With λ∈Rp denoting the dual variables (Lagrange multipliers), multi-

block ADMM has the form

ui,k+1 = arg min
ui

Hi(ui) + 〈λk,−Aiui〉

+
τk
2
‖b−

i−1∑
j=1

Ajuj,k+1 − Aiui −
N∑

j=i+1

Ajuj,k‖2
2 (2.9)

λk+1 =λk + τk(b−
N∑
i=1

Aiui,k+1), (2.10)

where (2.9) represents the sequential update of primal variables ui in the order of

i = 1, . . . , N . And (2.9) recovers the vanilla ADMM steps in (5.157, 5.158) when

N = 2.

12

2.2.1 Residuals and stop condition

The primal and dual residuals are defined to measure the primal and dual

feasibility of the constrained problem. Following the derivatioin of two-block ADMM

in [Boy+11], the primal and dual feasibility of multi-block ADMM are

0 = b−
N∑
i=1

Aiui (2.11)

0 ∈ ∂Hi(ui)− ATi λ. (2.12)

The primal residual is defined as

rk+1 := b−
N∑
i=1

Ai,k+1ui,k+1. (2.13)

From multi-block ADMM steps (2.9,2.10),

0 ∈ ∂Hi(ui,k+1)− ATi λk − τkATi (b−
i∑

j=1

Ajuj,k+1 −
N∑

j=i+1

Ajuj,k) (2.14)

= ∂Hi(ui,k+1)− ATi λk+1 + τATi

N∑
j=i+1

Aj(ui,k − ui,k+1). (2.15)

uN,k+1, λk+1 always satisfy the dual feasibility condition in (2.12). Dual residual are

defined to measure the other N − 1 conditions

di,k+1 := τATi

N∑
j=i+1

Aj(ui,k − ui,k+1). (2.16)

13

We define stop criterion based on multi-block residuals as


‖rk‖2 ≤ εtol max{maxi{‖Aiui,k‖2}, ‖b‖2}

maxi{‖di,k‖2} ≤ εtol mini{‖ATi λk‖2},
(2.17)

where εtol > 0 is the stopping tolerance.

2.3 Minimax optimization problems

Let us consider optimizing the minimax problem that is more general than the

Lagrangian saddle point problem (2.2),

min
u

max
v
L(u, v). (2.18)

An attractive application of the minimax problem is the training of generative adver-

sarial networks (GANs). The stochastic alternating gradients method for training

GANs can be written as

uk+1 = uk − τkL′u(uk, vk) | gradient descent in u (2.19)

vk+1 = vk + σkL′v(ūk+1, v
k) | gradient ascent in v, (2.20)

where {τk, σk} are the stepsizes.

When L(u, v) is convex in u, and concave in v, we are particularly interested

14

in the following bilinear saddle point problem,

min
u

max
v
L(u, v) = F (u) + vTAu−G(v). (2.21)

The primal-dual hybrid gradients method (PDHG) for this problem has the following

steps,

ûk+1 = uk − τkATvk (2.22)

uk+1 = arg min
u
F (u) +

1

2τk
‖u− ûk+1‖2

2 (2.23)

ũk+1 = uk+1 + (uk+1 − uk) (2.24)

v̂k+1 = vk + σkAṽk+1 (2.25)

vk+1 = arg min
v
G(v) +

1

2σk
‖v − v̂k+1‖2, (2.26)

where F (u), G(v) can be nondifferentiable functions. The convex-concave saddle

point problem is understood better in theory than the non-convex and non-concave

GANs. PDHG can be considered as a preconditioned ADMM [CP11].

2.3.1 Residuals and stop condition

We can use the norm of gradients L′u,L′v to monitor the alternating gradient

methods. In practice, when training large scale problems such as GANs in stochastic

setting, we usually stop the algorithm after a fixed number of iterations.

15

For PDHG, the optimal condition of steps (2.23, 2.26) are

0 ∈ ∂F (uk+1) +
1

τk
(uk+1 − (uk − τkATvk)) (2.27)

= ∂F (uk+1) +
1

τk
(uk+1 − uk) + ATvk (2.28)

0 ∈ ∂G(vk+1) +
1

σk
(vk+1 − (vk + σkA(2uk+1 − uk))) (2.29)

= ∂G(vk+1) +
1

σk
(vk+1 − vk)− A(2uk+1 − uk). (2.30)

The saddle point (u?, v?) satisfies

0 ∈ ∂F (u?) + ATv? (2.31)

0 ∈ ∂G(v?)− Au?. (2.32)

The primal and dual residuals are defined as

P (uk+1, vk+1) = AT (vk+1 − vk)−
1

τk
(uk+1 − uk) ∈ ∂F (uk+1) + ATvk+1 (2.33)

D(uk+1, vk+1) = A(uk+1 − uk)−
1

σk
(vk+1 − vk) ∈ ∂G(vk+1)− Auk+1. (2.34)

2.4 Exemplar applications

2.4.1 Elastic net regularized linear regression

Elastic net (EN)is a modification of `1-regularized linear regression (a.k.a.

LASSO) that helps preserve groups of highly correlated variables [ZH05; Gol+14b]

16

and requires solving

min
x

1

2
‖Dx− c‖2

2 + ρ1‖x‖1 +
ρ2

2
‖x‖2

2, (2.35)

where, as usual, ‖ · ‖1 and ‖ · ‖2 denote the `1 and `2 norms, D is a data matrix, c

contains measurements, and x is the vector of regression coefficients. One way to

apply ADMM to this problem is to rewrite it as

min
u,v

1

2
‖Du− c‖2

2 + ρ1‖v‖1 +
ρ2

2
‖v‖2

2

subject to u− v = 0.

(2.36)

The synthetic dataset introduced by Zou and Hastie [ZH05] and realistic dataset

introduced by Efron et al. [Efr+04] and Zou and Hastie [ZH05] are investigated.

Typical parameters are ρ1 = ρ2 = 1.

2.4.2 Low rank least squares

Low rank least squares (LRLS) uses the nuclear matrix norm (sum of singular

values) as the convex surrogate of matrix rank,

min
X

1

2
‖DX − C‖2

F + ρ1‖X‖∗ +
ρ2

2
‖X‖2

F , (2.37)

where ‖ · ‖∗ denotes the nuclear norm, ‖ · ‖F is the Frobenius norm, D ∈ Rn×m is

a data matrix, C ∈ Rn×d contains measurements, and X ∈ Rm×d is the variable

matrix. ADMM can be applied after rewriting (2.37) as Yang and Yuan [YY13] and

17

Xu et al. [Xu+15]

min
U,V

1

2
‖DU − C‖2

F + ρ1‖V ‖∗ +
ρ2

2
‖V ‖2

F ,

subject to U − V = 0.

(2.38)

A synthetic problem is constructed using a random data matrix D ∈ R1000×200, a low

rank matrix X ∈ R200×500, and C = DW + Noise. We use the binary classification

problems introduced by Lee et al. [Lee+06] and Schmidt et al. [Sch+07], where each

column of X represents a linear exemplar classifier, trained with a positive sample

and all negative samples [Xu+15]; typical parameters are ρ1 = ρ2 = 1.

2.4.3 Support vector machine and quadratic programming

The dual of the support vector machine (SVM) learning problem is a quadratic

programming (QP) problem,

min
z

1

2
zTQz − eT z

subject to cT z = 0 and 0 ≤ z ≤ C,

(2.39)

where z is the SVM dual variable, Q is the kernel matrix, c is a vector of labels, e

is a vector of ones, and C > 0 [CL11]. We also consider the canonical QP

min
x

1

2
xTQx+ qTx subject to Dx ≤ c, (2.40)

18

which can be solved by applying ADMM to

min
u,v

1

2
uTQu+ qTu+ ι{z: zi≤c}(v)

subject to Du− v = 0;

(2.41)

here, ιS is the indicator function of set S: ιS(v) = 0, if v ∈ S, and ιS(v) = ∞,

otherwise.

We study classification problems from Lee et al. [Lee+06] and Schmidt et al.

[Sch+07] with typical parameterC = 1, and a random synthetic QP [Gol+14b],

where Q ∈ R500×500 with condition number ' 4.5× 105.

2.4.4 Basis pursuit

Basis pursuit (BP) seeks a sparse representation of a vector c by solving the

constrained problem

min
x
‖x‖1 subject to Dx = c, (2.42)

where D ∈ Rm×n, c ∈ Rm,m < n. An extended form with D̂ = [D, I] ∈ Rm×(n+m)

has been used to reconstruct occluded and corrupted faces [Wri+09a]. To apply

ADMM, problem (2.42) is rewritten as

min
u,v

ι{z:Dz=c}(u) + ‖v‖1 subject to u− v = 0. (2.43)

19

We experiment with synthetic random D ∈ R10×30. We also use a data matrix for

face reconstruction from the Extended Yale B Face dataset [Wri+09c], where each

frontal face image is scaled to 32×32. For each human subject, an image is selected

and corrupted with 5% noisy pixels, and the remaining images from the same subject

are used to reconstruct the corrupted image.

2.4.5 Consensus `1-regularized logistic regression

Consensus `1-regularized logistic regression is formulated as a distribute opti-

mization problem with the form

min
xi,z

N∑
i=1

ni∑
j=1

log(1 + exp(−cjDT
j xi)) + ρ‖z‖1

subject to xi − z = 0, i = 1, . . . , N,

(2.44)

where xi ∈ Rm represents the local variable on the ith distributed node, z is the

global variable, ni is the number of samples in the ith block, Dj ∈ Rm is the jth

sample, and cj ∈ {−1, 1} is the corresponding label. The goal of this example is to

test AADMM also in distributed/consensus problems, for which ADMM has become

an important tool [Boy+11].

A synthetic problem is constructed with Gaussian random data and sparse

ground truth solutions. Binary classification problems from Lee et al. [Lee+06] and

Liu et al. [Liu+09], and Schmidt et al. [Sch+07] are also used to test the effectiveness

of the proposed method. We use ρ = 1, for small and medium datasets, and ρ = 5

for the large datasets to encourage sparsity. We split the data equally into two blocks

20

and use a loop to simulate the distributed computing of consensus subproblems.

2.4.6 Semidefinite programming

Semidefinite programming (SDP) solves the problem

min
X
〈F,X〉 subject to X � 0, D(X) = c, (2.45)

where X � 0 means that X is positive semidefinite, X, F, Di ∈ Rn×n are

symmetric matrices, inner product 〈X, Y 〉 = trace(XTY), and D(X) =

(〈D1, X〉, . . . , 〈Dm, X〉)T . ADMM is applied to the dual form of (2.45),

min
y,S

− cTy subject to D∗(y) + S = F, S � 0, (2.46)

where D∗(y) =
∑m

i=1 yiDi, and S is a symmetric positive semidefinite matrix.

As test data, we use 6 graphs from the Seventh DIMACS Implementation

Challenge on Semidefinite and Related Optimization Problems (following Burer and

Monteiro [BM03]).

2.4.7 Unwrapped SVM

The unwrapped formulation of SVM [Gol+16], which can be used in dis-

tributed computing environments via “transpose reduction” tricks, applies ADMM

21

to the primal form of SVM to solve

min
x

1

2
‖x‖2

2 + C
n∑
j=1

max{1− cjDT
j x, 0}, (2.47)

where Dj ∈ Rm is the jth sample of training data, and cj ∈ {−1, 1} is the cor-

responding label. ADMM is applied by splitting the `2-norm regularizer and the

non-differentiable hinge loss term.

2.4.8 Total variation image denoising

Total variation image denoising (TVID) is often performed by solving

[Rud+92]

min
x

1

2
‖x− c‖2

2 + ρ‖∇x‖1 (2.48)

where c represents given noisy image, and ∇ is the discrete gradient operator, which

computes differences between adjacent image pixels. ADMM is applied by splitting

the `2-norm term and the non-differentiable total variation term.

Barbara 512*512 Cameraman 256*256 Lena 512*512

Figure 2.1: ”Barbara”, ”Cameraman”, and ”Lena” for image processing applications.

22

2.5 Benchmark datasets

Both synthetic and benchmark datasets are discussed for those applications.

The regression and classification benchmark datasets (obtained from the UCI repos-

itory 1 and the LIBSVM page 2) are used in [Efr+04; Lee+06; Liu+09; Sch+07;

ZH05]. The dataset statistics are summarized in Table 2.1. The features are cen-

tered to have zero mean and unit variance for the small and medium sized datasets,

and scaled to be between -1 and 1 for the large and sparse datasets. Extended Yale

Face Dataset B (obtained from 3) with cropped and resized images (32*32) is used

for basis pursuit [Wri+09c] and robust principal component analysis [Wri+09b].

This dataset has 38 individuals and around 64 near frontal images under different

illuminations per individual. ”Barbara”, ”Cameraman”, and ”Lena” (Fig. 2.1) are

used for image processing applications.

2.6 Convergence and related work

ADMM is known to have a O(1/k) convergence rate under mild conditions

for convex problems [HY12b; HY15], while a O(1/k2) rate is possible when at least

one of the functions is strongly convex or smooth [Gol+13; Gol+14b; Kad+15;

TY16b]. Linear convergence can be achieved with strong convexity assumptions

[DY14; Nis+15; TZ15; DY16; GB16]. All of these results assume constant penalty.

1http://archive.ics.uci.edu/ml/
2https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
3http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
4Australian Credit
5Australian Heart
6Wisconsin Breast Caner

23

http://archive.ics.uci.edu/ml/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html

Application Dataset #samples #features

Regression

Boston 506 13
Diabetes 768 8
Leukemia 38 7129
Prostate 97 8

Servo 130 4

Binary
Classification

AC4 690 14
AH5 270 13

German 1000 24
Hepatitis 155 19

Ionosphere 351 34
Madelon 2000 500

Pima 768 8
Sonar 208 60

Spambase 4601 57
Spect 80 22
Spectf 80 44
Splice 1000 60
WBC6 683 10
News20 19996 1355191
Rcv1 20242 47236

Realsim 72309 20958

Table 2.1: Statistics of regression and classification benchmark datasets.

24

When the penalty is adapted, convergence is proved without providing a rate

[He+00], and for some particular variants of ADMM (“linearized” or “precondi-

tioned”) [Lin+11; Gol+15] . We prove the O(1/k) convergence rate for ADMM with

adaptive penalty, under the assumption of convex functions and bounded adaptivity

in Chapter 3.

ADMM steps can also be applied to nonconvex problems such as `0 regularized

problem [DZ13], and phase retrieval [Wen+12]. The convergence of ADMM for

nonconvex problems under certain assumptions are studied in [Wan+14; LP15;

Hon+16; Wan+15]. The current weakest assumptions are given in [Wan+15], which

requires the Lipschitz differentiable of the last updated primal term and several other

conditions.

In practice, ADMM and its variants have been applied to multi-block prob-

lems such as matrix factorization [Xu+12; SF14], robust principal component anal-

ysis [TY11] and neural networks [Tay+16]. However, the direct extension of ADMM

for multi-block problems is not necessarily convergent [Che+16a]. The convergence

of multi-block ADMM is also discussed in [HY12a; Cai+14; Lin+15; TY16a], where

at least one of the functions is strongly convex is assumed. Linear convergence is

provided for multi-block ADMM in [HL12], with extra assumptions on the function

form of each term, compact feasible sets and rank of matrices in linear conditions.

The primal-dual hybrid gradient (PDHG) method [ZC08; Ess+09] has been

popularized by Chambolle and Pock [CP11], and has been successfully applied to a

range of machine learning and statistical estimation problems [Gol+15]. Stochastic

methods for convex saddle-point problems can be roughly divided into two cate-

25

gories: stochastic coordinate descent [DL14; LZ15; ZL15; ZS15; ZS16; WX17; ST17]

and stochastic gradient descent [Che+14; Qia+16]. Similar optimization algorithms

have been studied for reinforcement learning [WC16; Du+17]. Recently, a “doubly”

stochastic method that randomizes both primal and dual updates was proposed for

strongly convex bilinear saddle point problems [Yu+15]. For general saddle point

problems, “doubly” stochastic gradient descent methods are discussed in [Nem+09;

PB16], in which primal and dual variables are updated simultaneously based on the

previous iterates and the current gradients.

26

Chapter 3: Convergence Analysis of ADMM

We now study the convergence of ADMM adaptive penalty parameters. We

provide conditions on penalty parameters that guarantee convergence, and also a

convergence rate. The issue of how to automatically tune penalty parameters effec-

tively will be discussed in Chapter 4 and Chapter 5.

We prove for a slightly more general form of ADMM, where the penalty param-

eter is a diagonal matrix instead of a single number. To the best of our knowledge,

this is the first worst-case convergence rate for ADMM with changing parameters.

The theory results in this chapter has been published in [Xu+17c].

3.1 Generalized ADMM with diagonal penalty parameters

Let Tk = diag(τ 1
k , . . . , τ

p
k) be a diagonal matrix containing non-negative penalty

parameters on iteration k. Define the norm ‖u‖2
T = uTTu. Using the notation

defined above with u = (u1; . . . ; uN) ∈ RdN , we can write the ADMM steps as

uk+1 = arg min
u
f(u) + 〈−Au, λk〉+ 1/2‖b− Au−Bvk‖2

Tk
(3.1)

vk+1 = arg min
v
g(v) + 〈−Bv, λk〉+ 1/2‖b− Auk+1 −Bv‖2

Tk
(3.2)

λk+1 =λk + Tk(b− Auk+1 −Bvk+1). (3.3)

27

When using a diagonal penalty matrix, the generalized residuals become


rk = b− Auk −Buk

dk = ATTkB(vk − vk−1).

(3.4)

The sequel contains a convergence proof for generalized ADMM with adaptive

penalty matrix Tk. Our proof is inspired by the variational inequality (VI) approach

in [He+00; HY12b; HY15].

3.2 Preliminaries

Notation. We use the following notation to simplify the discussions. Define

the combined variables y = (u; v) ∈ Rn+m and z = (u; v;λ) ∈ Rn+m+p, and de-

note iterates as yk = (uk; vk) and zk = (uk; vk;λk). Let y? and z? denote optimal

primal/dual solutions. Further define ∆z+
k = (∆u+

k ; ∆v+
k ; ∆λ+

k) := zk+1 − zk and

∆z∗k = (∆u∗k; ∆v∗k; ∆λ∗k) := z? − zk. Set

φ(y) = f(u) + g(v), F (z) =


−ATλ

−BTλ

Au+Bv − b

 ,

Hk=


0 0 0

0 BTTkB 0

0 0 (Tk)
−1

, Mk=


In 0 0

0 Im 0

0 −TkB Ip

.

28

Note that F (z) is a monotone operator satisfying ∀z, z′, (z−z′)T (F (z)−F (z′)) ≥ 0.

We introduce intermediate variable z̃k+1 = (uk+1; vk+1; λ̂k+1), where λ̂k+1 = λk +

Tk(b− Auk+1 −Bvk). We thus have

∆z+
k = Mk(z̃k+1 − zk). (3.5)

Variational inequality formulation. The optimal solution z? of problem

(5.156) satisfies the variational inequality (VI),

∀z, φ(y)− φ(y?) + (z − z?)TF (z?) ≥ 0. (3.6)

From the optimality conditions for the sub-steps (3.1, 3.2), we see that yk+1 satisfies

the variational inequalities

∀u, f(u)− f(uk+1) + (u− uk+1)T (ATTk(Auk+1 +Bvk − b)− ATλk) ≥ 0 (3.7)

∀v, g(v)− g(vk+1) + (v − vk+1)T (BTTk(Auk+1 +Bvk+1 − b)−BTλk) ≥ 0, (3.8)

which can be combined as

φ(y)− φ(yk+1) + (z − z̃k+1)T
(
F (z̃k+1) +Hk∆z

+
k

)
≥ 0. (3.9)

Lemmas. We present several lemmas to facilitate the proof of our main con-

vergence theory, which extend previous results regarding ADMM [HY12b; HY15] to

ADMM with a diagonal penalty matrix. Lemma 3.2.1 shows the difference between

29

iterates decreases as the iterates approach the true solution, while Lemma 3.2.2 im-

plies a contraction in the VI sense. Full proofs are provided in appendix; Eq. (6.9)

and Eq. (6.14) are supported using equations (3.6, 3.8, 3.9) and standard tech-

niques, while Eq. (3.12) is proven from Eq. (6.14). Lemma 3.2.2 is supported by the

relationship in Eq. (3.5).

Lemma 3.2.1. The optimal solution z? = (u?; v?;λ?) and sequence zk = (uk; vk;λk)

of generalized ADMM satisfy

(B∆v+
k)T∆λ+

k ≥ 0, (3.10)

∆z∗k+1Hk∆z
+
k ≥ 0, (3.11)

‖∆z+
k ‖2

Hk
≤ ‖∆z∗k‖2

Hk
− ‖∆z∗k+1‖2

Hk
. (3.12)

Lemma 3.2.2. The sequence z̃k = (uk; vk; λ̂k) and zk = (uk; vk;λk)
T from general-

ized ADMM satisfy, ∀z,

(z̃k+1 − z)THk∆z
+
k ≥

1

2
(‖zk+1 − z‖2Hk − ‖zk − z‖

2
Hk

). (3.13)

3.3 Convergence criteria

We provide a convergence analysis of ADMM with an adaptive diagonal

penalty matrix by showing (i) the norm of the residuals converges to zero; (ii) the

method attains a worst-case ergodic O(1/k) convergence rate in the VI sense. The

key idea of the proof is to bound the adaptivity of T k so that ADMM is stable

enough to converge, which is presented as the following assumption.

30

Assumption 3.3.1. The adaptivity of the diagonal penalty matrix Tk =

diag(τ1,k, . . . , τp,k) is bounded by

∞∑
k=1

(ηk)
2 <∞, where (ηk)

2 = max
i∈{1,...,p}

{(ηi,k)2},

(ηi,k)
2 = max{τi,k/τi,k−1 − 1, τi,k−1/τi,k − 1}.

(3.14)

We can apply Assumption 3.3.1 to verify that

1

1 + η2
k

≤ τi,k
τi,k−1

≤ 1 + η2
k. (3.15)

which is needed to prove Lemma 3.3.1.

Lemma 3.3.1. Suppose Assumption 3.3.1 holds. Then z = (u; v; λ) and z′ =

(u′; v′; λ′) satisfy, ∀z, z′

‖z − z′‖2
Hk
≤ (1 + (ηk)

2)‖z − z′‖2
Hk−1

. (3.16)

Now we are ready to prove the convergence of generalized ADMM with adap-

tive penalty under Assumption 3.3.1. We prove the following quantity, which is a

norm of the residuals, converges to zero.

‖∆z+
k ‖2

Hk
=‖B∆v+

k ‖2
Tk

+ ‖∆λ+
k ‖2

(Tk)−1

=‖(ATTk)†dk‖2
Tk

+ ‖rk‖2
Tk
,

(3.17)

where A† denotes generalized inverse of a matrix A. Note that ‖∆z+
k ‖2

Hk
converges

31

to zero only if ‖rk‖ and ‖dk‖ converge to zero, provided A and Tk are bounded.

Theorem 3.3.1. Suppose Assumption 3.3.1 holds. Then the iterates zk =

(uk; vk;λk) of generalized ADMM satisfy

lim
k→∞
‖∆z+

k ‖2
Hk

= 0. (3.18)

Proof. Let z = zk, z
′ = z? in Lemma 3.3.1 to achieve

‖∆z∗k‖2
Hk
≤ (1 + (ηk)

2)‖∆z∗k‖2
Hk−1

. (3.19)

Combine (3.19) with Lemma 3.2.1 (3.12) to get

‖∆z+
k ‖2

Hk
≤ (1 + (ηk)

2)‖∆z∗k‖2
Hk−1

− ‖∆z∗k+1‖2
Hk
. (3.20)

Accumulate (3.20) for k = 1 to l,

l∑
k=1

l∏
t=k+1

(1 + (ηt)2)‖∆z+
k ‖2

Hk
≤

l∏
t=1

(1 + (ηt)2)‖∆z∗1‖2
H0 − ‖∆z∗l+1‖2

Hl . (3.21)

Then we have
l∑

k=1

‖∆z+
k ‖2

Hk
≤

l∏
t=1

(1 + (ηt)2)‖∆z∗1‖2
H0 . (3.22)

When l→∞, Assumption 3.3.1 suggests
∏∞

t=1(1 + (ηt)2) <∞, which means∑∞
k=1 ‖∆z+

k ‖2
Hk

<∞. Hence limk→∞ ‖∆z+
k ‖2

Hk
= 0.

We further exploit Assumption 3.3.1 and Lemma 3.3.1 to prove Lemma 3.3.2,

32

and combine VI (3.9), Lemma 3.2.2, and Lemma 3.3.2 to prove the O(1/k) conver-

gence rate in Theorem 3.3.2.

Lemma 3.3.2. Suppose Assumption 3.3.1 holds. Then z = (u; v;λ) ∈ Rm+n+p and

the iterates zk = (uk; vk;λk) of generalized ADMM satisfy, ∀z

l∑
k=1

(‖z − zk‖2
Hk
− ‖z − zk‖2

Hk−1
) ≤ CΣ

η C
Π
η (‖z − z?‖2

H0 + ‖∆z∗1‖2
H0) <∞, (3.23)

where CΣ
η =

∑∞
k=1(ηk)

2, CΠ
η =

∏∞
t=1(1 + (ηt)2).

Theorem 3.3.2. Suppose Assumption 3.3.1 holds. Consider the sequence z̃k =

(uk; vk; λ̂k) of generalized ADMM and define z̄l = 1
l

∑l
k=1 z̃

k.Then sequence z̄l sat-

isfies the convergence bound

φ(y)− φ(ȳl) + (z − z̄l)TF (z̄l) ≥ − 1

2 l
(‖z − z0‖2

H0

+ CΣ
η C

Π
η ‖z − z?‖2

H0 + CΣ
η C

Π
η ‖∆z∗1‖2

H0). (3.24)

Proof. We can verify with simple algebra that

(z − z′)TF (z) = (z − z′)TF (z′). (3.25)

33

Apply (3.25) with z′ = z̃k+1, and combine VI (3.9) and Lemma 3.2.2 to get

φ(y)− φ(yk+1) + (z − z̃k+1)TF (z) (3.26)

=φ(y)− φ(yk+1) + (z − z̃k+1)TF (z̃k+1) (3.27)

≥(z̃k+1 − z)THk∆z
+
k (3.28)

≥1

2
(‖zk+1 − z‖2

Hk
− ‖zk − z‖2

Hk
). (3.29)

Summing for k = 0 to l − 1 gives us

∑l

k=1
φ(y)− φ(yk) + (z − z̃k)TF (z)

≥1

2

∑l

k=1
(‖z − zk‖2

Hk−1
− ‖z − zk−1‖2

Hk−1
).

(3.30)

Since φ(y) is convex, the left hand side of (3.30) satisfies,

LHS = l φ(y)−
l∑

k=1

φ(yk) + (l z −
l∑

k=1

z̃k)
TF (z)

≤ l φ(y)− l φ(ȳl) + (l z − l z̄l)TF (z). (3.31)

34

Applying Lemma 3.3.2, we see the right hand side satisfies,

RHS =
1

2

l∑
k=1

(‖z − zk‖2
Hk
− ‖z − zk−1‖2

Hk−1
)+

1

2

l∑
k=1

(‖z − zk‖2
Hk−1

− ‖z − zk‖2
Hk

)

(3.32)

≥1

2
(‖z − zl‖2

Hl − ‖z − z0‖2
H0)+

− 1

2
CΣ
η C

Π
η (‖z − z?‖2

H0 + ‖∆z∗1‖2
H0)

(3.33)

≥− 1

2
(‖z − z0‖2

H0 + CΣ
η C

Π
η ‖z − z?‖2

H0+

CΣ
η C

Π
η ‖∆z∗1‖2

H0).

(3.34)

Combining inequalities (3.30), (3.31) and (3.34), and letting z′ = z̄k in (3.25) yields

the O(1/k) convergence rate in (3.24)

3.4 Appendix: proof of lemmas

Proof of Lemma 3.2.1 (6.9)

Proof. By using the updated dual variable λk+1 in (3.3), VI (3.8) can be rewritten

as

∀v, g(v)− g(vk+1)− (Bv −Bvk+1)Tλk+1 ≥ 0. (3.35)

Similarly, in the previous iteration,

∀v, g(v)− g(vk)− (Bv −Bvk)Tλk ≥ 0. (3.36)

35

Let v = vk in (3.35) and v = vk+1 in (3.36), and sum the two inequalities

together. We conclude

(Bvk+1 −Bvk)T (λk+1 − λk) ≥ 0. (3.37)

Proof of Lemma 3.2.1 (6.14)

Proof. VI (3.9) can be rewritten as

φ(y)− φ(yk+1) + (z − zk+1)T
(
F (zk+1) + Ω(∆z+

k , Tk)
)
≥ 0, (3.38)

where Ω(∆z+
k , Tk) = (−ATTkB∆v+

k ; 0; (Tk)
−1∆λ+

k).

Let y = y?, z = z? in VI (3.38), and y = yk+1, z = zk+1 in VI (3.6), and sum

the two equalities together to get

(∆z∗k+1)TΩ(∆z+
k , Tk) ≥

(∆z∗k+1)T (F (z?)− F (zk+1)).

(3.39)

Since F (z) is monotone, the right hand side is non-negative. Now, substitute

Ω(∆z+
k , Tk) into (3.39) to get

−(A∆u∗k+1)TTk(B∆v+
k) + (∆λ∗k+1)T (Tk)

−1∆λ+
k ≥ 0. (3.40)

If we use the feasibility constraint of optimal solution (Au? +Bv? = b) and the dual

36

update formula (3.3), we have

TkA∆u∗k+1 = ∆λ+
k − TkB∆v∗k+1. (3.41)

Substitute this into (4.13) yields

(B∆v∗k+1)TTkB∆v+
k + (∆λ∗k+1)T (Tk)

−1∆λ+
k ≥ (B∆v+

k)T∆λ+
k (3.42)

The proof (6.14) is concluded by applying (6.9) to (3.42).

Proof of Lemma 3.2.1 (3.12)

Proof.

‖∆z∗k‖2
Hk

= ‖z? − zk‖2
Hk

(3.43)

= ‖z? − zk+1 + zk+1 − zk‖2
Hk

(3.44)

= ‖∆z∗k+1 + ∆z+
k ‖2

Hk
(3.45)

= ‖∆z∗k+1‖2
Hk

+ ‖∆z+
k ‖2

Hk
+ 2(∆z∗k+1)THk∆z

+
k (3.46)

≥ ‖∆z∗k+1‖2
Hk

+ ‖∆z+
k ‖2

Hk
. (3.47)

Eq. (6.14) is used for the inequality in (3.47), and Eq. (3.12) is derived by rearranging

the order of ‖∆z∗k‖2
Hk
≥ ‖∆z∗k+1‖2

Hk
+ ‖∆z+

k ‖2
Hk

.

Proof of Lemma 3.2.2

37

Proof. Applying the observation

(a− b)TH(c− d) =
1

2
(‖a− d‖2

H − ‖a− c‖2
H)

+
1

2
(‖c− b‖2

H − ‖c− d‖2
H),

(3.48)

we have

(z̃k+1 − z)THk∆z
+
k = (z̃k+1 − z)Hk(zk+1 − zk) (3.49)

=
1

2
(‖z̃k+1 − zk‖2

Hk
− ‖z̃k+1 − zk+1‖2

Hk
)+

1

2
(‖zk+1 − z‖2

Hk
− ‖zk − z‖2

Hk
).

(3.50)

We now consider

‖z̃k+1 − zk+1‖2
Hk

= ‖z̃k+1 − zk + zk − zk+1‖2
Hk

(3.51)

=‖z̃k+1 − zk‖2
Hk

+ ‖∆z+
k ‖2

Hk
− 2(z̃k+1 − zk)THk∆z

+
k , (3.52)

and get

‖z̃k+1 − zk‖2
Hk
− ‖z̃k+1 − zk+1‖2

Hk
(3.53)

=2(z̃k+1 − zk)THk∆z
+
k − ‖∆z+

k ‖2
Hk
. (3.54)

38

We then substitute ∆z+
k with Mk(z̃k+1 − zk) in (3.5),

‖z̃k+1 − zk‖2
Hk
− ‖z̃k+1 − zk+1‖2

Hk
(3.55)

=(z̃k+1 − zk)T (2I −Mk)
THkMk(z̃k+1 − zk) (3.56)

=‖λ̂k+1 − λk‖2
(Tk)−1 ≥ 0. (3.57)

Combining (3.50) and (3.57), we conclude

(z̃k+1 − z)THk∆z
+
k ≥

1

2
(‖zk+1 − z‖2Hk − ‖zk − z‖

2
Hk

). (3.58)

Proof of Lemma 3.3.1

Proof. Assumption 3.3.1 implies (3.15), which suggests the diagonal matrices Tk and

Tk−1 satisfy

Tk ≤(1 + (ηk)
2)Tk−1

(Tk)
−1 ≤(1 + (ηk)

2)(Tk−1)−1.

(3.59)

39

Then we have

‖z − z′‖2
Hk

(3.60)

=‖B(v − v′)‖2
Tk

+ ‖λ− λ′‖2
(Tk)−1 (3.61)

≤(1 + (ηk)
2)(‖B(v − v′)‖2

Tk−1
+ ‖λ− λ′‖2

(Tk−1)−1) (3.62)

≤(1 + (ηk)
2)‖z − z′‖2

Hk−1
. (3.63)

The inequality (3.59) is used to get from (3.61) to (3.62).

Proof of Lemma 3.3.2

Proof. From (3.20) we know

‖∆z+
k ‖2

Hk
+ ‖∆z∗k+1‖2

Hk
≤ (1 + (ηk)

2)‖∆z∗k‖2
Hk−1

. (3.64)

Hence

‖∆z∗k+1‖2
Hk
≤(1 + (ηk)

2)‖∆z∗k‖2
Hk−1

(3.65)

≤
k∏
t=1

(1 + (ηt)2)‖∆z∗1‖2
H0 (3.66)

≤
∞∏
t=1

(1 + (ηt)2)‖∆z∗1‖2
H0 (3.67)

=CΠ
η ‖∆z∗1‖2

H0 <∞. (3.68)

40

Let z′ = z? in Lemma 3.3.1, we have

‖z − z?‖2
Hk
≤ (1 + (ηk)

2)‖z − z?‖2
Hk−1

(3.69)

≤
k∏
t=1

(1 + (ηt)2)‖z − z?‖2
H0 (3.70)

≤
∞∏
t=1

(1 + (ηt)2)‖z − z?‖2
H0 (3.71)

= CΠ
η ‖z − z?‖2

H0 <∞. (3.72)

Let z′ = zk in Lemma 3.3.1, we have

‖z − zk‖2
Hk
≤ (1 + (ηk)

2)‖z − zk‖2
Hk−1

. (3.73)

41

Then we have

l∑
k=1

(‖z − zk‖2
Hk
− ‖z − zk‖2

Hk−1
) (3.74)

≤
l∑

k=1

(ηk)
2‖z − zk‖2

Hk−1
(3.75)

=
l∑

k=1

(ηk)
2‖z − z? + z? − zk‖2

Hk−1
(3.76)

≤
l∑

k=1

(ηk)
2(‖z − z?‖2

Hk−1
+ ‖∆z∗k‖2

Hk−1
) (3.77)

≤
l∑

k=1

(ηk)
2(CΠ

η ‖z − z?‖2
H0 + CΠ

η ‖∆z∗1‖2
H0) (3.78)

≤
∞∑
k=1

(ηk)
2(CΠ

η ‖z − z?‖2
H0 + CΠ

η ‖∆z∗1‖2
H0) (3.79)

=CΣ
η (CΠ

η ‖z − z?‖2
H0 + CΠ

η ‖∆z∗1‖2
H0) (3.80)

=CΣ
η C

Π
η (‖z − z?‖2

H0 + ‖∆z∗1‖2
H0) <∞. (3.81)

42

Chapter 4: Adaptive ADMM

The alternating direction method of multipliers (ADMM) is an invaluable ele-

ment of the modern optimization toolbox. ADMM decomposes complex optimiza-

tion problems into sequences of simpler subproblems, often solvable in closed form;

its simplicity, flexibility, and broad applicability, make ADMM a state-of-the-art

solver in machine learning, signal processing, and many other areas [Boy+11].

It is well known that the efficiency of ADMM hinges on the careful selection of

a penalty parameter, which needs to be manually tuned by users for their particular

problem instances. In contrast, for gradient descent and proximal-gradient meth-

ods, adaptive (i.e. automated) stepsize selection rules have been proposed, which

essentially dispense with user oversight and dramatically boost performance [BB88;

Fle05; Gol+14a; Wri+09c; Zho+06].

In this chapter, we propose to automate and speed up ADMM by using stepsize

selection rules adapted from the gradient descent literature, namely the Barzilai-

Borwein “spectral” method for smooth unconstrained problems [BB88; Fle05]. Since

ADMM handles multi-term objectives and linear constraints, it is not immediately

obvious how to adopt such rules. The keystone of our approach is to analyze the

dual of the ADMM problem, which can be written without constraints. To ensure

43

reliability of the method, we develop a correlation criterion that safeguards it against

inaccurate stepsize choices. The resulting adaptive ADMM (AADMM) algorithm is

fully automated and fairly insensitive to the initial stepsize, as testified for by a

comprehensive set of experiments. We propose AADMM in [Xu+17b], and provide

more comprehensive studies in [Xu+17e].

4.1 Background and related work

4.1.1 Parameter tuning and adaptation

Relatively little work has been done on automating ADMM, i.e., on adaptively

choosing τk. In the particular case of a strictly convex quadratic objective, criteria

for choosing an optimal constant penalty have been recently proposed by Ghadimi

et al. [Gha+15] and Raghunathan and Di Cairano [RDC14]. Lin et al. [Lin+11]

proposed a non-increasing sequence for the linearization parameter in “linearized”

ADMM; however, they do not address the question of how to choose the penalty

parameter in ADMM or its variants.

Residual balancing (RB) [He+00; Boy+11] is the only available adaptive

method for general form problems (5.156); it is based on the following observa-

tion: increasing τk strengthens the penalty term, yielding smaller primal residuals

but larger dual ones; conversely, decreasing τk leads to larger primal and smaller

dual residuals. As both residuals must be small at convergence, it makes sense to

“balance” them, i.e., tune τk to keep both residuals of similar magnitude. A simple

44

scheme for this goal is

τk+1 =



ητk if ‖rk‖2 > µ‖dk‖2

τk/η if ‖dk‖2 > µ‖rk‖2

τk otherwise,

(4.1)

with µ > 1 and η > 1 [Boy+11]. RB has recently been adapted to distributed

optimization [Son+16] and other primal-dual splitting methods [Gol+15]. ADMM

with adaptive penalty is not guaranteed to converge, unless τk is fixed after a finite

number of iterations [He+00].

Despite some practical success of the RB idea, it suffers from several flaws.

The relative size of the residuals depends on the scaling of the problem; e.g., with the

change of variable u ← 10u, problem (5.156) can be re-scaled so that ADMM pro-

duces an equivalent sequence of iterates with residuals of very different magnitudes.

Consequently, RB criteria are arbitrary in some cases, and their performance varies

wildly with different problem scalings (see Section 4.3.3). Furthermore, the penalty

parameter may adapt slowly if the initial value is far from optimal. Finally, without

a careful choice of η and µ, the algorithm may fail to converge unless adaptivity is

turned off [He+00].

4.1.2 Dual interpretation of ADMM

We now explain the close relationship between ADMM and Douglas-Rachdord

splitting (DRS) [EB92; Ess09; Gol+14b], which plays a central role in the proposed

45

approach. The starting observation is that the dual of problem (5.156) has the form

min
ζ∈Rp

H∗(AT ζ)− 〈ζ, b〉︸ ︷︷ ︸
Ĥ(ζ)

+G∗(BT ζ)︸ ︷︷ ︸
Ĝ(ζ)

, (4.2)

where F ∗ denotes the Fenchel conjugate of F , defined as F ∗(y) = supx〈x, y〉 −F (x)

[Roc70].

The DRS algorithm solves (4.2) by generating two sequences (ζk)k∈N and

(ζ̂k)k∈N according to

0 ∈ ζ̂k+1 − ζk
τk

+ ∂Ĥ(ζ̂k+1) + ∂Ĝ(ζk) (4.3)

0 ∈ ζk+1 − ζk
τk

+ ∂Ĥ(ζ̂k+1) + ∂Ĝ(ζk+1), (4.4)

where we use the standard notation ∂F (x) for the subdifferential of F evaluated at

x [Roc70].

Referring back to ADMM in (5.157)–(5.159), and defining λ̂k+1 = λk + τk(b−

Auk+1 −Bvk), the optimality condition for the minimization in (5.157) is

0 ∈ ∂H(uk+1)− AT (λk + τk(b− Auk+1 −Bvk))︸ ︷︷ ︸
λ̂k+1

which is equivalent to AT λ̂k+1 ∈ ∂H(uk+1), thus1 uk+1 ∈ ∂H∗(AT λ̂k+1). A similar

argument using the optimality condition for (5.158) leads to vk+1 ∈ ∂G∗(BTλk+1).

1An important property relating F and F ∗ is that y ∈ ∂H(x) if and only if x ∈ ∂H∗(y) [Roc70].

46

Recalling (4.2), we arrive at

Auk+1 − b ∈ ∂Ĥ(λ̂k+1) and Bvk+1 ∈ ∂Ĝ(λk+1). (4.5)

Using these identities, we finally have

λ̂k+1 = λk + τk(b− Auk+1 −Bvk)

∈ λk − τk
(
∂Ĥ(λ̂k+1) + ∂Ĝ(λk)

)
(4.6)

λk+1 = λk + τk(b− Auk+1 −Bvk+1)

∈ λk − τk
(
∂Ĥ(λ̂k+1) + ∂Ĝ(λk+1)

)
, (4.7)

showing that the sequences (λk)k∈N and (λ̂k)k∈N satisfy the same conditions (4.3)

and (4.4) as (ζk)k∈N and (ζ̂k)k∈N, thus proving that ADMM for problem (5.156) is

equivalent to DRS for its dual (4.2).

4.1.3 Spectral stepsize selection

The classical gradient descent step for unconstrained minimization of a smooth

function F: Rn→ R has the form xk+1 = xk− τk∇F (xk). Spectral gradient methods,

pioneered by Barzilai and Borwein (BB) [BB88], adaptively choose the stepsize τk

to achieve fast convergence.

In a nutshell, the standard (there are variants) BB method sets τk = 1/αk,

with αk chosen such that αkI mimics the Hessian of F over the last step, seeking a

47

quasi-Newton step. A least squares criterion yields

αk = argmin
α∈R
‖∇F (xk)−∇F (xk−1)− α(xk − xk−1)‖22, (4.8)

which is an estimate of the curvature of F across the previous step of the algorithm.

BB gradient methods often dramatically outperform those with constant stepsize

[Fle05; Zho+06] and have been generalized to handle non-differentiable problems

via proximal gradient methods [Wri+09c; Gol+14a]. Finally, notice that (4.8) is

equivalent to approximating the gradient ∇F (xk) as a linear function of xk,

∇F (xk) ≈ ∇F (xk−1) + αk(xk − xk−1) = αk xk + ak, (4.9)

where ak = ∇F (xk−1)−αk xk−1. The observation that a local linear approximation

of the gradient has an optimal parameter equal to the inverse of the BB stepsize

will play an important role below.

4.2 Spectral penalty parameters

Inspired by the BB method, we propose a spectral penalty parameter selection

method for ADMM. We first derive a spectral stepsize rule for DRS, and then adapt

this rule to ADMM. Finally, we discuss safeguarding rules to prevent unexpected

behavior when curvature estimates are inaccurate.

48

4.2.1 Spectral stepsize for DRS

Consider the dual problem (4.2). Following the observation in (4.9) about the

BB method, we approximate ∂Ĥ and ∂Ĝ at iteration k as linear functions,

∂Ĥ(ζ̂) = αk ζ̂ + Ψk and ∂Ĝ(ζ) = βk ζ + Φk, (4.10)

where αk > 0, βk > 0 are local curvature estimates of dual functions Ĥ and Ĝ,

respectively, and Ψk,Φk ⊂ Rp. Once we obtain these curvature estimates, we will

be able to exploit the following proposition.

Proposition 4.2.1 (Spectral DRS). Suppose the DRS steps (4.3)–(4.4) are applied

to problem (4.2), where (omitting the subscript k from αk, βk,Ψk,Φk to lighten the

notation in what follows)

∂Ĥ(ζ̂) = α ζ̂ + Ψ and ∂Ĝ(ζ) = β ζ + Φ.

Then, the minimal residual of Ĥ(ζk+1)+Ĝ(ζk+1) is obtained by setting τk = 1/
√
αβ.

Proof. Inserting (4.10) into the DRS step (4.3)–(4.4) yields

0 ∈ ζ̂k+1 − ζk
τ

+ (α ζ̂k+1 + Ψ) + (β ζk + Φ), (4.11)

0 ∈ ζk+1 − ζk
τ

+ (α ζ̂k+1 + Ψ) + (β ζk+1 + Φ). (4.12)

49

From (4.11)–(4.12), we can explicitly get the update for ζ̂k+1 as

ζ̂k+1 =
1− β τ
1 + α τ

ζk −
aτ + bτ

1 + α τ
, (4.13)

where a ∈ Ψ and b ∈ Φ, and for ζk+1 as

ζk+1 =
1

1 + β τ
ζk −

α τ

1 + β τ
ζ̂k+1 −

a τ + bτ

1 + β τ
(4.14)

=
(1 + αβ τ 2)ζk − (a+ b)τ

(1 + α τ)(1 + β τ)
, (4.15)

where the second equality results from using the expression for ζ̂k+1 in (4.13).

The residual rDR at ζk+1 is simply the magnitude of the subgradient (corre-

sponding to elements a ∈ Ψ and b ∈ Φ) of the objective that is given by

rDR = ‖(α + β)ζk+1 + (a+ b)‖2 (4.16)

=
1 + αβ τ 2

(1 + α τ)(1 + β τ)
‖(α + β)ζk + (a+ b)‖2, (4.17)

where ζk+1 in (4.17) was substituted with (4.15). The optimal stepsize τk minimizes

the residual

τk = arg min
τ
rDR = arg max

τ

(1 + α τ)(1 + β τ)

1 + αβ τ 2
(4.18)

= arg max
τ

(α + β)τ

1 + αβτ 2
(4.19)

= 1/
√
αβ. (4.20)

50

Finally (recovering the iteration subscript k), notice that τk = (α̂k β̂k)
1/2, where

α̂k = 1/αk and β̂k = 1/βk are the spectral gradient descent stepsizes for Ĥ and Ĝ,

at ζ̂k and ζk, respectively.

Proposition 4.2.1 shows how to adaptively choose τk: begin by obtaining lin-

ear estimates of the subgradients of the two terms in the dual objective (4.2); the

geometric mean of these optimal gradient descent stepsizes is then the optimal DRS

stepsize, thus also the optimal ADMM penalty parameter, due to the equivalence

shown in Subsection 4.1.2.

4.2.2 Spectral stepsize estimation

We now address the estimation of α̂k = 1/αk and β̂k = 1/βk. These curvature

parameters are estimated based on the results from iteration k and an older iteration

k0 < k. Noting (4.5), we define

∆λ̂k := λ̂k − λ̂k0

∆Ĥk := ∂Ĥ(λ̂k)− ∂Ĥ(λ̂k0) = A(uk − uk0).

Assuming, as above, a linear model for ∂Ĥ, we expect ∆Ĥk ≈ α∆λ̂k + a. As is

typical in BB-type methods [BB88; Zho+06], α is estimated via one of the two least

squares problems

min
α
‖∆Ĥk − α∆λ̂k‖2

2 or min
α
‖α−1∆Ĥk −∆λ̂k‖2

2.

51

The closed form solutions for the corresponding spectral stepsizes α̂k = 1/αk are,

respectively,

α̂SD
k =

〈∆λ̂k,∆λ̂k〉
〈∆Ĥk,∆λ̂k〉

and α̂MG
k =

〈∆Ĥk,∆λ̂k〉
〈∆Ĥk,∆Ĥk〉

, (4.21)

where, following Zhou et al. [Zho+06], SD stands for steepest descent and MG for

minimum gradient. The Cauchy-Schwarz inequality implies that α̂SD
k ≥ α̂MG

k . Rather

than choosing one or the other, we suggest the hybrid stepsize rule proposed by Zhou

et al. [Zho+06],

α̂k =


α̂MG
k if 2 α̂MG

k > α̂SD
k

α̂SD
k − α̂MG

k /2 otherwise.

(4.22)

The spectral stepsize β̂k = 1/βk is similarly set to

β̂k =


β̂MG
k if 2 β̂MG

k > β̂SD
k

β̂SD
k − β̂MG

k /2 otherwise,

(4.23)

where β̂SD
k = 〈∆λk,∆λk〉/〈∆Ĝk,∆λk〉, β̂MG

k = 〈∆Ĝk,∆λk〉/〈∆Ĝk,∆Ĝk〉, ∆Ĝk =

B(vk − vk0), and ∆λk = λk − λk0 . It is important to note that α̂k and β̂k are

obtained from the iterates of ADMM, i.e., the user is not required to supply the

dual problem.

52

4.2.3 Safeguarding

On some iterations, the linear models (for one or both subgradients) underlying

the spectral stepsize choice may be very inaccurate. When this occurs, the least

squares procedure may produce ineffective stepsizes. The classical BB method for

unconstrained problems uses a line search to safeguard against unstable stepsizes

resulting from unreliable curvature estimates. In ADMM, however, there is no notion

of “stable” stepsize (any constant stepsizes is stable), thus line search methods are

not applicable. Rather, we propose to safeguard the method by assessing the quality

of the curvature estimates, and only updating the stepsize if the curvature estimates

satisfy a reliability criterion.

Algorithm 1 Adaptive ADMM (AADMM)

Input: initialize v0, λ0, τ0, k0 = 0
while not converge by residual check (5.161) and k < maxiter do
uk+1 = arg minuH(u) + τk

2 ‖b−Au−Bvk + λk
τk
‖22

vk+1 = arg minv G(v) + τk
2 ‖b−Auk+1 −Bv + λk

τk
‖22

λk+1 ← λk + τk(b−Auk+1 −Bvk+1)

if mod(k, Tf) = 1 then

λ̂k+1 = λk + τk(b− Auk+1 −Bvk)
Estimate spectral stepsizes α̂k+1, β̂k+1 in (4.22, 4.23)

Estimate correlations αcor
k+1, β

cor
k+1 in (4.24)

Update τk+1 in (5.151)

k0 ← k
else
τk+1 ← τk

end if
k ← k + 1

end while

The linear model (4.10) assumes the change in dual (sub)gradient is linearly

proportional to the change in the dual variables. To test the validity of this assump-

53

tion, we measure the correlation between these quantities (equivalently, the cosine

of their angle):

αcor
k =

〈∆Ĥk,∆λ̂k〉
‖∆Ĥk‖ ‖∆λ̂k‖

and βcor
k =

〈∆Ĝk,∆λk〉
‖∆Ĝk‖ ‖∆λk‖

. (4.24)

The spectral stepsizes are updated only if the correlations indicate the estimation

is credible enough. The safeguarded spectral adaptive penalty rule is

τk =



√
α̂kβ̂k if αcor

k > εcor and βcor
k > εcor

α̂k if αcor
k > εcor and βcor

k ≤ εcor

β̂k if αcor
k ≤ εcor and βcor

k > εcor

τk−1 otherwise,

(4.25)

where εcor is a quality threshold for the curvature estimates, while α̂k and β̂k are the

stepsizes given by (4.22)–(4.23). Notice that (5.151) falls back to constant τk when

both curvature estimates are deemed inaccurate.

4.2.4 Adaptive ADMM

Algorithm 1 shows the complete adaptive ADMM (AADMM). We suggest

only updating the stepsize every Tf iterations. Safeguarding threshold εcor = 0.2

and Tf = 2 generally perform well. The overhead of AADMM over ADMM is

modest: only a few inner products plus the storage to keep one previous iterate.

54

4.2.5 Convergence

He et al. [He+00] proved that convergence is guaranteed for ADMM with

adaptive penalty when either of the two following conditions are satisfied:

Assumption 4.2.1 (Bounded increasing).

∞∑
k=1

η2
k <∞, where ηk =

√
max{ τk

τk−1
, 1} − 1. (4.26)

Assumption 4.2.2 (Bounded decreasing).

∞∑
k=1

θ2
k <∞, where θk =

√
max{τk−1

τk
, 1} − 1. (4.27)

Assumption 4.2.1 (Assumption 4.2.2) suggests that increasing (decreasing) of

adaptive penalty is bounded. In the previous section, we have proved O(1/k) con-

vergence rate when both Assumption 4.2.1 and Assumption 4.2.2 are satisfied. In

practice, these conditions can be satisfied by turning off adaptivity after a finite num-

ber of steps, which we have found unnecessary in our experiments with AADMM.

4.3 Experiments

4.3.1 Experimental setting

We consider several applications to demonstrate the effectiveness of the pro-

posed AADMM. We focus on statistical problems involving non-differentiable ob-

jectives: linear regression with elastic net regularization [Efr+04; Gol+14b], low

55

Application Dataset
Vanilla
ADMM

Fast
ADMM

Residual
balance

Adaptive
ADMM

Elastic net
regression

Synthetic 2000+ (1.64) 263 (.270) 111 (.129) 43 (.046)
Boston 2000+ (2.19) 208 (.106) 54 (.023) 17 (.011)

Diabetes 594 (.269) 947 (.848) 28 (.020) 10 (.005)
Leukemia 2000+ (22.9) 2000+ (24.2) 1737 (19.3) 152 (1.70)
Prostate 548 (.293) 139 (.049) 29 (.015) 16 (.012)

Servo 142 (.040) 44 (.017) 27 (.012) 13 (.007)

Low rank
least squares

Synthetic 543(31.3) 129(7.30) 75(5.59) 13(.775)
Madelon 1943(925) 193(89.6) 133(60.9) 27(12.8)

Sonar 1933(9.12) 313(1.51) 102(.466) 31(.160)
Splice 1704(38.2) 189(4.25) 92(2.04) 18(.413)

QP and
dual SVM

Synthetic 439 (6.15) 535 (7.8380) 232 (3.27) 71 (.984)
Madelon 100 (14.0) 57 (8.14) 28 (4.12) 19 (2.64)

Sonar 139 (.227) 43 (.075) 37 (.069) 28 (.050)
Splice 149 (4.9) 47 (1.44) 39 (1.27) 20 (.681)

Basis
pursuit

Synthetic 163 (.027) 2000+ (.310) 159 (.031) 114 (.026)
Human1 2000+ (2.35) 2000+ (2.41) 839 (.990) 503 (.626)
Human2 2000+ (2.26) 2000+ (2.42) 875 (1.03) 448 (.554)
Human3 2000+ (2.29) 2000+ (2.44) 713 (.855) 523 (.641)

Consensus
logistic

regression

Synthetic 301 (3.36) 444 (3.54) 43 (.583) 22 (.282)
Madelon 2000+ (205) 2000+ (166) 115 (42.1) 23 (20.8)

Sonar 2000+ (33.5) 2000+ (47) 106 (2.82) 90 (1.64)
Splice 2000+ (29.1) 2000+ (43.7) 86 (1.91) 22 (.638)

News20 69 (5.91e3) 32 (3.45e3) 18 (1.52e3) 16 (1.2e3)
Rcv1 38 (177) 23 (122) 13 (53.0) 12 (53.9)

Realsim 1000+ (2.73e3) 1000+ (1.86e3) 121 (558) 22 (118)

Semidefinite
programming

hamming-7-5-6 455(1.78) 2000+(8.60) 1093(4.21) 284(1.11)
hamming-8-3-4 418(6.38) 2000+(29.1) 1071(16.5) 118(2.02)
hamming-9-5-6 2000+(187) 2000+(187) 1444(131) 481(53.1)
hamming-9-8 2000+(162) 2000+(159) 1247(97.2) 594(52.7)
hamming-10-2 2000+(936) 2000+(924) 1194(556) 391(193)
hamming-11-2 2000+(6.43e3) 2000+(6.30e3) 1203(4.15e3) 447(1.49e3)

Table 4.1: Iterations (and runtime in seconds) for the various algorithms and applica-
tions described in the text. Absence of convergence after n iterations is indicated as n+.
AADMM is the proposed Algorithm 1.

56

rank least squares [YY13; Xu+15], quadratic programming (QP) [Boy+11; Gha+15;

Gol+14b; RDC14], basis pursuit [Boy+11; Gol+14b], consensus `1-regularized lo-

gistic regression [Boy+11], and semidefinite programming [BM03; Wen+10]. We

use both synthetic and benchmark datasets (obtained from the UCI repository and

the LIBSVM page) used by Efron et al. [Efr+04], Lee et al. [Lee+06], Liu et al.

[Liu+09], Schmidt et al. [Sch+07], and Wright et al. [Wri+09c], and Zou and Hastie

[ZH05]. For the small and medium sized datasets, the features are standardized to

zero mean and unit variance, whereas for the large and sparse datasets the features

are scaled to be in [−1, 1].

For comparison, we implemented vanilla ADMM (fixed stepsize), fast ADMM

with a restart strategy [Gol+14b], and ADMM with residual balancing [Boy+11;

He+00], using (4.1) with µ = 10 and η = 2, and adaptivity was turned off after

1000 iterations to guarantee convergence. The proposed AADMM is implemented

as shown in Algorithm 1, with fixed parameters εcor = 0.2 and Tf = 2.

We set the stopping tolerance to εtol = 10−5, 10−3, and 0.05 for small, medium,

and large scale problems, respectively. The initial penalty τ0 = 0.1 is used for

all problems, except the canonical QP, where τ0 is set to the value proposed for

quadratic problems by Raghunathan and Di Cairano [RDC14]. For each problem,

the same randomly generated initial variables v0, λ0 are used for ADMM and all the

variants thereof.

57

0 50 100 150 200 250 300
Iteration

10-1

100

101

102

Pe
na

lty
 p

ar
am

et
er

Vanilla ADMM
Fast ADMM
Residual balance
Adaptive ADMM

0 50 100 150 200 250 300
Iteration

10-5

10-4

10-3

10-2

10-1

100

101

Re
la

tiv
e

re
sid

ua
l

Vanilla ADMM
Fast ADMM
Residual balance
Adaptive ADMM

0 50 100 150 200 250 300
Iteration

10-1

100

101

102

Pe
na

lty
 p

ar
am

et
er

Vanilla ADMM
Fast ADMM
Residual balance
Adaptive ADMM

0 50 100 150 200 250 300
Iteration

10-5

10-4

10-3

10-2

10-1

100

101

Re
la

tiv
e

re
sid

ua
l

Vanilla ADMM
Fast ADMM
Residual balance
Adaptive ADMM

Figure 4.1: Relative residual (top) and penalty parameter (bottom) for the synthetic
basis pursuit (BP) problem.

4.3.2 Convergence results

Table 4.1 reports the convergence speed of ADMM and its variants for the ap-

plications described in Section 2.4. Vanilla ADMM with fixed stepsize does poorly

in practice: in 13 out of 23 realistic datasets, it fails to converge in the maximum

number of iterations. Fast ADMM [Gol+14b] often outperforms vanilla ADMM,

but does not compete with the proposed AADMM, which also outperforms resid-

ual balancing in all test cases except in the Rcv1 problem for consensus logistic

regression.

Fig. 4.1 presents the relative residual (top) and penalty parameter (bottom)

for the synthetic BP problem. The relative residual is defined as

max

{ ‖rk‖2

max{‖Auk‖2, ‖Bvk‖2, ‖b‖2}
,
‖dk‖2

‖ATλk‖2

}
,

which is based on stopping criterion (5.161). Fast ADMM often restarts and is slow

to converge. The penalty parameter chosen by RB oscillates. AADMM quickly

58

adapts the penalty parameter and converges fastest.

(a) Elastic net regression (b) Quadratic programming (c) Low rank least squares

10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105

Initial penalty parameter

100

101

102

103
Ite

ra
tio

ns

Vanilla ADMM
Fast ADMM
Residual balance
Adaptive ADMM

10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105

Initial penalty parameter

100

101

102

103

Ite
ra

tio
ns

Vanilla ADMM
Fast ADMM
Residual balance
Adaptive ADMM

10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105

Initial penalty parameter

100

101

102

103

Ite
ra

tio
ns

Vanilla ADMM
Fast ADMM
Residual balance
Adaptive ADMM

(a) Elastic net regression (b) Quadratic programming (c) Low rank least squares

10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105

Problem scale

100

101

102

103

Ite
ra

tio
ns

Vanilla ADMM
Fast ADMM
Residual balance
Adaptive ADMM

10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105

Problem scale

100

101

102

103
Ite

ra
tio

ns

Vanilla ADMM
Fast ADMM
Residual balance
Adaptive ADMM

10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105

Problem scale

100

101

102

103

Ite
ra

tio
ns

Vanilla ADMM
Fast ADMM
Residual balance
Adaptive ADMM

Figure 4.2: Top row: sensitivity of convergence speed to initial penalty parameter τ0 for
EN, QP, and LRLS. Bottom row: sensitivity to problem scaling s for EN, QP, and LRLS.

4.3.3 Sensitivity

We study the sensitivity of the different ADMM variants to problem scaling

and initial penalty parameter (τ0). Scaling sensitivity experiments were done by

multiplying the measurement vector c by a scalar s. Fig. 5.10 presents iteration

counts for a wide range of values of initial penalty τ0 (top) and problems scale s

(bottom) for EN regression, canonical QP, and LRLS with synthetic datasets. Fast

ADMM and vanilla ADMM use the fixed initial penalty parameter τ0, and are highly

sensitive to this choice, as shown in Fig. 5.10; in contrast, AADMM is very stable

with respect to τ0 and the scale s.

Finally, Fig. 4.3 presents iteration counts when applying AADMM with various

59

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Safeguarding correlation threshold

100

101

102

103

Co
nv

er
ge

nc
e

ite
ra

tio
ns

EN LinReg
Cons LogReg
Quad Prog
Basis Pursuit
LRLS
SDP

Figure 4.3: Sensitivity of convergence speed to safeguarding threshold εcor for proposed
AADMM. Synthetic problems of various applications are studied. Best viewed in color.

safeguarding correlation thresholds εcor. When εcor = 0 the new penalty value is

always accepted, and when εcor = 1 the penalty parameter is never changed. The

proposed AADMM method is insensitive to εcor and performs well for a wide range

of εcor ∈ [0.1, 0.4] for various applications.

4.4 Summarization

We have proposed adaptive ADMM (AADMM), a new variant of the popu-

lar ADMM algorithm that tackles one of its fundamental drawbacks: critical de-

pendence on a penalty parameter that needs careful tuning. This drawback has

made ADMM difficult to use by non-experts, thus AADMM has the potential to

contribute to wider and easier applicability of this highly flexible and efficient op-

timization tool. Our approach imports and adapts the Barzilai-Borwein “spectral”

stepsize method from the smooth optimization literature, tailoring it to the more

general class of problems handled by ADMM. The cornerstone of our approach is

60

the fact that ADMM is equivalent to Douglas-Rachford splitting (DRS) applied

to the dual problem, for which we develop a spectral stepsize selection rule; this

rule is then translated into a criterion to select the penalty parameter of ADMM. A

safeguarding function that avoids unreliable stepsize choices finally yields AADMM.

Experiments on a comprehensive range of problems and datasets have shown that

AADMM outperforms other variants of ADMM and is robust with respect to initial

parameter choice and problem scaling.

61

Chapter 5: Variants of ADMM

In this chapter, we further exploit the adaptive schema in Chapter 4,

and propose several variants of AADMM, including adaptive multi-block ADMM

(AMADMM) [Xu+17e], adaptive relaxed ADMM (ARADMM) [Xu+17d], and

adaptive consensus ADMM (ACADMM) [Xu+17c]. ARADMM achieves faster prac-

tical convergence speed by further automating the relaxed parameter for the extra

interpolation step in ADMM. AMADMM works for problems with more than two

primal splitting variables. ACADMM is specifically designed for formulated con-

sensus problem for distributed computing. We study the theoretical convergence of

ARADMM and ACADMM, while the theoretical guarantee of AMADMM remains

an open problem. At the end of this chapter (Section 5.4), we present empirical

results on applying AADMM to several nonconvex problems [Xu+16a]. Our ex-

periments suggest the penalty parameter plays an even more important role for

nonconvex problems, and our AADMM not only converges fast but also arrives at

good stationary point.

62

5.1 Adaptive Multi-block ADMM

5.1.1 Residual balancing for multi-block ADMM

Based on the stop criterion in (2.17), a residual balancing criterion for multi-

block ADMM is proposed as

τk+1 =



ητk if maxi{‖di,k‖2} > µ‖rk‖2

τk/η if ‖rk‖2 > µmaxi{‖di,k‖2}

τk otherwise,

(5.1)

for parameters µ > 1 and η > 1. Defining normalized residuals as

rnormk =
rk

max{maxi{‖Aiui,k‖2}, ‖b‖2}
and dnormi,k =

di,k
mini{‖ATi λk‖2}

, (5.2)

the normalized residual balancing schema with respect to rnormk , dnormk is

τk+1 =



ητk if maxi ‖dnormi,k ‖2 > µ‖rnormk ‖2

τk/η if ‖rnormk ‖2 > µmaxi ‖dnormi,k ‖2

τk otherwise,

(5.3)

where µ > 1 and η > 1 are parameters.

63

5.1.2 Dual interpretation of multi-block ADMM

The dual of multi-block problem (2.8) has the form

min
ζ∈Rp

H∗1 (AT1 ζ)− 〈ζ, b〉︸ ︷︷ ︸
Ĥ1(ζ)

+
N∑
i=2

H∗i (ATi ζ)︸ ︷︷ ︸
Ĥi(ζ)

; (5.4)

with F ∗ denoting the Fenchel conjugate of F , defined as F ∗(y) = supx〈x, y〉 − F (x)

[Roc70].

The direct extension of DRS algorithm to multi-block problem solves (5.4) by

generating sequences (ζi,k)i∈N,k∈N according to

0 ∈ ζi,k+1 − ζk
τk

+
i∑

j=1

∂Ĥj(ζi,k+1) +
N∑

j=i+1

∂Ĥj(ζk), (5.5)

where ζk = ζN,k ,and we use the standard notation ∂F (x) for the subdifferential of

F evaluated at x [Roc70].

Similar to the two-block ADMM, referring back to (2.9) and defining

λi,k+1 = λk + τk(b−
i∑

j=1

Aiui,k+1 −
N∑

j=i+1

Aiui,k), (5.6)

the optimality condition for the minimization of (2.9) is

0 ∈ ∂Hi(ui,k+1)− ATi λi,k+1, (5.7)

which is equivalent to ATi λi,k+1 ∈ ∂Hi(ui,k+1), thus ui,k+1 ∈ ∂H∗i (ATi λi,k+1). Recall-

64

ing definition of Ĥi(λ) in (5.4), we arrive at

A1u
k+1
1 − b ∈ ∂Ĥ1(λk+1

1) and Aiui,k+1 ∈ ∂Ĥi(λi,k+1), 2 ≤ i ≤ N. (5.8)

Using these identities, we finally have

λi,k+1 = λk + τk(b−
i∑

j=1

Aiui,k+1 −
N∑

j=i+1

Aiui,k) (5.9)

∈ λk − τk
(i∑
j=1

∂Ĥi(ζi,k+1) +
N∑

j=i+1

∂Ĥi(ζi,k)
)

(5.10)

showing that the sequences (λi,k)i∈N,k∈N satisfy the multi-block DRS conditions (5.5)

as (ζi,k)i∈N,k∈N.

5.1.3 Spectral stepsize for multi-block DRS

Similar to the two-block analysis in Section 4.2.1, considering the dual problem

(5.4), ∂Ĥi(ζi) at iteration k is modeled by linear functions of their arguments,

∂Ĥi(ζi) = αi,k ζi + Ψi,k (5.11)

where αi,k > 0 are local curvature estimates of functions Ĥi, respectively, and Ψi,k ⊂

Rp. Once we obtain these curvature estimates, we will be able to exploit the following

propositions.

Proposition 5.1.1 (Spectral multi-block DRS). Suppose the multi-block DRS steps

(5.5) are applied to problem (5.4), where (omitting iteration k from αi,k,Ψi,k to

65

lighten the notation in what follows)

∂Ĥi(ζi) = αi ζi + Ψi

Then, the minimal residual of
∑N

i=1 Ĥi(ζi,k+1) is obtained by setting

τk = argminτ

N∑
i=1

log(1 + αi τ)− log τ.

Proof. Inserting (5.11) into the DRS step (5.5), we have

0 ∈ ζi,k+1 − ζk
τ

+
i∑

j=1

(αj ζj,k+1 + Ψj) +
N∑

j=i+1

(αj ζj,k + Ψj) (5.12)

From (5.12), we can explicitly get the update for ζi,k+1 as

ζ1,k+1 =
1 + α1 τ − α τ

1 + α1 τ
ζk −

a τ

1 + α1 τ
(5.13)

ζi,k+1 =
1

1 + αi τ
ζi−1,k+1 +

αi τ

1 + αi τ
ζk (5.14)

=
1∏i

j=2(1 + αj τ)
ζ1,k+1 +

i∑
j=2

αj τ∏i
l=j(1 + αl τ)

ζk (5.15)

=
1 + α1 τ − α τ∏i
j=1(1 + αj τ)

ζk −
a τ∏i

j=1(1 + αj τ)
+

i∑
j=2

αj τ∏i
l=j(1 + αl τ)

ζk (5.16)

=
1∏i

j=1(1 + αj τ)

(
(1− α τ) ζk +

i∑
l=1

αl τ

l−1∏
m=1

(1 + αm τ) ζk − a τ
)
(5.17)

= ζk −
α τ ζk + a τ∏i
j=1(1 + αj τ)

, (5.18)

66

where ai ∈ Ψi, a =
∑N

i=1 ai and α =
∑N

i=1 αi, and ζk+1 = ζN,k+1.

The residual rDR at ζk+1 is simply the magnitude of the subgradient of the

objective that is given by

rDR = ‖αζk+1 + a‖2 =

(
1− α τ∏N

j=1(1 + αj τ)

)
‖αζk + a‖2, (5.19)

where ζk+1 in (5.19) was substituted with (5.18) when i = N . The optimal stepsize

τk minimizes the residual

τk = arg min
τ
rDR = arg max

τ

α τ∏N
j=1(1 + αj τ)

(5.20)

= arg min
τ
− log

(
α τ∏N

j=1(1 + αj τ)

)
(5.21)

= argminτ

N∑
i=1

log(1 + αi τ)− log τ (5.22)

= argminτ

N∑
i=1

log(α̂i + τ)− log τ, (5.23)

where α̂i = 1/αi is the spectral gradient descent stepsizes for Ĥi at ζi,k.

WhenN = 2, spectral stepsize for multi-block DRS in (5.23) reduce to (4.20) in

Section 4.2.1. (5.23) is an one-dimensional optimization problem that can be solved

by gradient method such as BFGS and L-BFGS [Byr+95]. Gradient method will

find a local minimum that is closest to the initial stepsize if (5.23) is nonconvex.

Inspired by the closed-form solution for spectral stepsize of DRS in (4.20), the

geometric mean of curvatures of functions is used to estimate the solution of (5.23)

67

as spectral stepsize,

τk =

(
N∏
i=1

α̂i

) 1
N

. (5.24)

The following proposition is exploited as an substitution of stepsize selection for

multi-block DRS.

Proposition 5.1.2 (Approximate spectral multi-block DRS). Suppose the multi-

block DRS steps (5.5) are applied to problem (5.4), where (omitting iteration k from

αi,k,Ψi,k to lighten the notation in what follows)

∂Ĥi(ζi) = αi ζi + Ψi

Then, the spectral stepsize can be estimated by τk =
(∏N

i=1
1
αi

) 1
N
.

5.1.4 Spectral penalty parameter for multi-block ADMM

The spectral penalty parameter selection algorithm is introduced in this sec-

tion. Similar to Algorithm 1 for two-block ADMM, we can begin by obtaining linear

estimates of the subgradients of the terms in the dual objective (5.4). Thanks to the

equivalence of ADMM and DRS presented in Section 5.1.2, the subgradients can be

estimated along with ADMM steps. The correlation based safeguarding criterion is

applied to each curvature estimation. Then Proposition 5.1.1 and Proposition 5.1.2

show how to adaptively choose the stepsize for mutli-block DRS, i.e. the penalty

parameter for multi-block ADMM.

68

Defining

∆λi,k := λi,k − λi,k0 and ∆Ĥi,k := ∂Ĥi(λi,k)− ∂Ĥi(λi,k0) = A(ui,k − ui,k0),

(5.25)

the spectral stepsize αi,k = 1/αk for the components Ĥ(λi,k) at the k-th iteration

are estimated by

α̂SD
i,k =

〈∆λi,k,∆λi,k〉
〈∆Ĥi,k,∆λi,k〉

and α̂MG
i,k =

〈∆Ĥi,k,∆λi,k〉
〈∆Ĥi,k,∆Ĥi,k〉

(5.26)

α̂i,k =


α̂MG
i,k if 2 α̂MG

i,k > α̂SD
i,k

α̂SD
i,k − α̂MG

i,k /2 otherwise.

(5.27)

The correlation to test the validity of the linear assumption (5.11) for each

component is measured by

αcorr
i,k =

〈∆Ĥi,k,∆λi,k〉
‖∆Ĥi,k‖2 ‖∆λi,k‖2

(5.28)

Proposition 5.1.3 (Safeguarding). The threshold εcorr on αcorr
i,k is used to safe-

guard the curvature estimations. If none of the curvatures is deemed accurate, i.e.

∀i ∈ {1 . . . N}, αcorr
i,k < εcorr, then τk+1 = τk. Otherwise, the inaccurate stepsizes

(curvatures) are estimated by the largest stepsizes (smallest curvatures) among the

accurate estimations, ∀i ∈ {j|αcorr
j,k < εcorr}, α̂i,k = max{α̂j,k|αcorr

j,k ≥ εcorr}.

Then the spectral penalty parameter is selected by either (5.23) or (5.24).

69

Algorithm 2 Adaptive multi-block ADMM with spectral penalty parameter selec-
tion
Input: initialize v0, λ0, τ0, k0 = 0

1: while not converge by residual check (2.17) and k < maxiter do
2: for i = 1, 2, . . . , N do

3: ui,k+1 ← arg min
ui

Hi(ui) + 〈λk,−Aiui〉+ τk
2
‖b−

N∑
j=1,j 6=i

Ajuj,k+1 − Aiui‖2
2

4: end for

5: λk+1 ← λk + τk(b−
N∑
i=1

Aiui,k+1)

6: if mod(k, Tf) = 1 then
7: for i = 1, 2, . . . , N do

8: λi,k+1 ← λk + τk(b−
i∑

j=1

Aiui,k+1 −
N∑

j=i+1

Aiui,k)

9: Compute spectral stepsizes α̂i,k+1 using (5.27)
10: Estimate correlation αcorr

i,k+1 using (5.28)
11: end for
12: Safeguard α̂i,k+1 based on αcorr

i,k+1 using Proposition 5.1.3
13: Update τk+1 using either (5.23) or (5.24)
14: k0 ← k
15: else
16: τk+1 ← τk
17: end if
18: end while

70

The proposed method for spectral penalty parameter selection falls back to (5.151)

when N = 2. The complete adaptive multi-block ADMM (AADMM) is shown in

Algorithm 2.

5.1.5 Experiment: elastic net regularized linear regression

Solving EN regularized linear regression problem (2.35) with two-block ADMM

is presented in the previous sections. An alternative approach is to apply multi-block

ADMM by solving

min
u1,u2,u3

1

2
‖Du1 − c‖2

2 + ρ1‖u2‖1 +
ρ2

2
‖u3‖2

2 (5.29)

subject to u1 − u2 = 0, u1 − u3 = 0.

71

Then the ADMM steps are

u1,k+1 = arg min
u1

1

2
‖Du1 − c‖2

2 +
τ

2

2∑
j=1

‖uj+1,k − u1 + λj,k/τ‖2
2 (5.30)

=

(DTD + 2τIn)−1(τ(u2,k + u3,k) + (λ1,k + λ2,k) +DT c) if n ≥ m

(1
2
In −DT (4τIm + 2DDT)−1D)((u2,k + u3,k) + (λ1,k + λ2,k)/τ +DT c/τ) if n < m

(5.31)

u2,k+1 = arg min
u2

ρ1‖u2‖1 +
τ

2
‖ − u1,k+1 + u2 + λ1,k/τ‖2

2 (5.32)

= shrink(u1,k+1 − λ1,k, ρ1/τ) (5.33)

u3,k+1 = arg min
u3

ρ2

2
‖u3‖2

2 +
τ

2
‖ − uk+1 + u3 + λ2,k/τ‖2

2 (5.34)

=
1

ρ2 + τ
(τu1 − λ2) (5.35)

λ1,k+1 = λ1,k + τ(−u1,k+1 + u2,k+1) (5.36)

λ2,k+1 = λ2,k + τ(−u1,k+1 + u3,k+1). (5.37)

Dataset
Vanilla
ADMM

Residual
balance

Normalized
RB

Approx
AADMM

Adaptive
ADMM

Synthetic 2000+(1.64) 102(.103) 147(.144) 116(.122) 62(.167)
Boston 2000+(1.44) 48(.032) 81(.056) 21(.020) 63(.781)

Diabetes 526(.509) 17(.019) 16(.018) 12(.019) 33(.393)
Leukemia 2000+(9.06) 1094(4.84) 78(.331) 1000(4.69) 1096(5.13)
Prostate 514(.314) 27(.017) 24(.018) 19(.019) 19(.078)

Servo 116(.089) 16(.012) 16(.017) 16(.016) 13(.051)

Table 5.1: Iterations (and runtime in seconds) for EN regularized linear regression. Ab-
sence of convergence after n iterations is indicated as n+. Approx AADMM and Adaptive
ADMM are the proposed Algorithm 2 with (5.23) and (5.24), respectively.

Convergence results Both synthetic data and regression benchmark data are in-

vestigated. Typical parameters ρ1 = ρ2 = 1 are used in all experiments. Table 5.1

reports the convergence speed of ADMM and its variants for applying multi-block

72

0 50 100 150 200

10
-4

10
-2

10
0

Re
la

tiv
e

re
sid

ua
l

Iteration

Vanilla ADMM
Residual balance
Normalized RB
Approx AADMM
Adaptive ADMM

0 50 100 150 200
10

-1

10
0

10
1

10
2

10
3

Pe
na

lty
 p

ar
am

et
er

Iteration

Figure 5.1: Relative residual (left) and penalty parameter (right) for applying multi-block
ADMM to the synthetic problem of EN regularized linear regression.

ADMM to EN regularized linear regression. Comparing with two-block ADMM re-

sults in Section 4.3, multi-block ADMM often requires more iterations to converge.

Both Multi-block AADMM by optimize (5.23) and Approx AADMM by using an

approximate solution in (5.24) requires less iterations than vanilla ADMM. However,

the runtime of Approx AADMM is notably shorter than AADMM since the formu-

lation (5.24) is much simpler. Multi-block residual balancing methods proposed in

Section 5.1.1 also perform well, and sometimes outperforms AADMM.

The convergence curve and the adapted penalty parameter for applying multi-

block ADMM to the synthetic problem of EN regularized linear regression are pre-

sented in Fig. 5.1. Both AADMM methods and residual balancing methods increase

the initial penalty parameter.

Sensitivity Fig. 5.2 presents iteration counts for a wide range of values of initial

penalty parameter τ0 and problem scale s. Scaling sensitivity experiments were done

by multiplying the groundtruth vector x∗ by a scalar s in the synthetic problem.

Both AADMM methods and residual balancing methods are relatively stable with

73

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
510

0

10
1

10
2

10
3

Initial penalty parameter

Ite
ra

tio
ns

Vanilla ADMM
Residual balance
Normalized RB
Approx AADMM
Adaptive ADMM

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
510

0

10
1

10
2

10
3

Problem scale

Ite
ra

tio
ns

Vanilla ADMM
Residual balance
Normalized RB
Approx AADMM
Adaptive ADMM

Figure 5.2: Sensitivity with respect to initial penalty parameter (left) and problem scale
(right) for applying multi-block ADMM to the synthetic problem of EN regularized linear
regression.

respect to the selection of initial penalty parameter τ0. AADMM methods are

relatively more stable than residual balancing methods with respect to the problem

scale s.

5.1.6 Experiment: robust principal component analysis

We consider the stable version of RPCA [Zho+10; TY11]

min
A,E,Z

‖A‖∗ + ρ1‖E‖1 +
ρ2

2
‖Z‖2

F subject to A+ E + Z = C, (5.38)

where A represents the low rank matrix, E represents the sparse error, Z represents

the noise. Multi-block ADMM is applied to RPCA by iteratively solving Z, E and

74

Groundtruth

Recovered

Singular values of
low rank matrix Sparse error

0 50 100 150 200
0

2

4

6

8

10

12

14

50 100 150 200

20

40

60

80

100

120

140

160

180

200

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 50 100 150 200
0

2

4

6

8

10

12

14

50 100 150 200

20

40

60

80

100

120

140

160

180

200

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 5.3: Singular values of low rank matrix A (left) and sparse error E (right) for
the synthetic problem of RPCA. The bottom row is recovered by AADMM, where mean
square errors of recovered A and E are 1.48e− 4 and 1.88e− 4.

Original faces

Low rank

Sparse error

Figure 5.4: Sample face images of human subject 3 and recovered low rank faces and
sparse errors by AADMM. RPCA decomposes the original faces into intrinsic images (low
rank) and shadings (sparse).

75

A,

Zk+1 =
ρ2

2
‖Z‖2

F +
τk
2
‖C − Ek − Ak − Z + λk/τk‖2

F (5.39)

=
τk

ρ2 + τk
(C − Ek − Ak − Z + λk/τk) (5.40)

Ek+1 = ρ1‖E‖1 +
τk
2
‖C − E − Ak − Zk+1 + λk/τk‖2

F (5.41)

= shrink(C − Ak − Zk+1 + λk/τk, ρ1/τk) (5.42)

Ak+1 = ‖A‖∗ +
τk
2
‖C − Ek+1 − A− Zk+1 + λk/τk‖2

F (5.43)

= SVT(C − Ek+1 − Zk+1 + λk/τk, 1/τk) (5.44)

λk+1 = λk + τk(C − Ek+1 − Ak+1 − Zk+1). (5.45)

A synthetic problem is created as follows, let low rank matrix A = UV , where

U ∈ Rn×r, V ∈ Rr×n are two random matrix with n = 200 and r = 20. A is

then normalized to have each entry between −1 and 1. E is a sparse matrix of 5%

entries as 1 and 5% entries as −1. Z is Gaussian noise with zero mean and 0.01

standard deviation. Extended Yale B Face dataset is used by applying RPCA for

each individual human, and the measurement matrix C is constructed by vectorizing

each image as a row of the matrix, which is composed of a low rank matrix, a sparse

error matrix and some noise. ρ2 = 1, ρ1 = ρ2/10 are used for the synthetic problem,

and ρ2 = 0.1, ρ1 = ρ2/5 are used for face decomposition. Those parameters are

selected based on the performance of reconstruction. The synthetic problem are

presented in Fig. 5.3, and example face images are presented in Fig. 5.4.

76

Dataset
Vanilla
ADMM

Residual
balance

Normalized
RB

Approx
AADMM

Adaptive
ADMM

Synthetic 42(1.07) 18(.449) 36(.870) 18(.476) 13(.412)
Hum1 20(.594) 20(.532) 26(.710) 19(.584) 16(.582)
Hum2 18(.505) 18(.470) 27(.718) 18(.545) 15(.548)
Hum3 20(.532) 20(.498) 26(.643) 19(.515) 16(.530)

Table 5.2: Iterations (and runtime in seconds) for robust PCA. Absence of convergence
after n iterations is indicated as n+. Approx AADMM and Adaptive ADMM are the
proposed Algorithm 2 with (5.23) and (5.24), respectively.

0 10 20 30 40 50
10

-2

10
-1

10
0

10
1

Pe
na

lty
 p

ar
am

et
er

Iteration

Vanilla ADMM
Residual balance
Normalized RB
Approx AADMM
Adaptive ADMM

0 10 20 30 40 50
10

-3

10
-2

10
-1

10
0

10
1

10
2

Re
la

tiv
e

re
sid

ua
l

Iteration

Vanilla ADMM
Residual balance
Normalized RB
Approx AADMM
Adaptive ADMM

Figure 5.5: Relative residual (left) and penalty parameter (right) for the synthetic prob-
lem of RPCA.

77

Convergence results Table 5.2 reports the convergence speed of ADMM and its

variants for RPCA. Multi-block AADMM by optimizing (5.23) often requires less

iteration counts than Approx AADMM by using an approximate solution in (5.24).

However, the runtime of Approx AADMM is somtimes shorter than AADMM since

the formulation (5.24) is simpler. The initial penalty parameter choice τ0 = 0.1

works well for vanilla ADMM when applying RPCA to faces. The convergence

curve and the adapted penalty parameter for applying multi-block ADMM to the

synthetic problem of RPCA are presented in Fig. 5.5.

Sensitivity Fig. 5.6 presents iteration counts for a wide range of values of initial

penalty parameter τ0 and problem scale s. Scaling sensitivity experiments were done

by multiplying the measurement C by a scalar s in the synthetic problem. Both

AADMM methods and residual balancing methods are stable with respect to the

selection of initial penalty parameter τ0. Normalized residual balancing performs

better when problem scale s is very small or large, while AADMM performs better

for the normalized data in synthetic problem when s is close to 1.

78

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

Initial penalty parameter

Ite
ra

tio
ns

Vanilla ADMM
Residual balance
Normalized RB
Approx AADMM
Adaptive ADMM

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

Problem scale

Ite
ra

tio
ns

Vanilla ADMM
Residual balance
Normalized RB
Approx AADMM
Adaptive ADMM

Figure 5.6: Sensitivity with respect to initial penalty parameter (left) and problem scale
(right) for applying multi-block ADMM to the synthetic problem of EN regularized linear
regression.

5.2 Adaptive Relaxed ADMM

5.2.1 Introduction

Relaxed ADMM is a popular practical variant of ADMM, and proceeds with

the following steps:

uk+1 = arg min
u
h(u) +

τk
2

∥∥∥∥b− Au−Bvk +
λk
τk

∥∥∥∥2

(5.46)

ûk+1 = γkAuk+1 + (1− γk)(b−Bvk) (5.47)

vk+1 = arg min
v
g(v) +

τk
2

∥∥∥∥b− ûk+1 −Bv +
λk
τk

∥∥∥∥2

(5.48)

λk+1 = λk + τk(b− ûk+1 −Bvk+1). (5.49)

Here, λk ∈ Rp denotes the dual variables (Lagrange multipliers) on iteration k,

and (τk, γk) are sequences of penalty and relaxation parameters. Relaxed ADMM

coincides with the original non-relaxed version if γk = 1.

Convergence of (relaxed) ADMM is guaranteed under fairly general assump-

79

tions [EB92; HY12b; HY15; Fan+15], if the penalty and relaxation parameters are

held constant. However, the practical performance of ADMM depends strongly

on the choice of these parameters, as well as on the problem being solved. Good

penalty choices are known for certain ADMM formulations, such as strictly convex

quadratic problems [RDC14; Gha+15], and for the gradient descent parameter in

the “linearized” ADMM [Lin+11; Liu+13].

Adaptive penalty methods (in which the penalty parameters are tuned auto-

matically as the algorithm proceeds) achieve good performance without user over-

sight. For non-relaxed ADMM, the authors of [He+00] propose methods that mod-

ulate the penalty parameter so that the primal and dual residuals (i.e., derivatives

of the Lagrangian with respect to primal and dual variables) are of approximately

equal size. This “residual balancing” approach has been generalized to work with

preconditioned variants of ADMM [Gol+15] and distributed ADMM [Son+16]. In

[Xu+17b], a spectral penalty parameter method is proposed that uses the local

curvature of the objective to achieve fast convergence. All of these methods are

specific to (non-relaxed) vanilla ADMM, and do not apply to the more general case

involving a relaxation parameter.

In this section, we study adaptive parameter choices for the relaxed ADMM

that jointly and automatically tune both the penalty parameter τk and relaxation

parameter γk. In Section 5.2.2, we address theoretical questions about the con-

vergence of ADMM with non-constant penalty and relaxation parameters. In Sec-

tion 5.2.4, we discuss practical methods for choosing these parameters. Finally, in

Section 5.2.7, we compare ARADMM to other ADMM variants and examine the

80

benefits of the proposed approach for real-world regression, classification, and image

processing problems.

5.2.2 Convergence theory

We study conditions under which ADMM converges with adaptive penalty

and relaxation parameters. Our approach utilizes the variational inequality (VI)

methods put forward in [He+00; HY12b; HY15]. Our results measure convergence

using the primal and dual “residuals,” which are defined as

rk = b− Auk −Bvk and dk = τkA
TB(vk − vk−1). (5.50)

It has been observed that these residuals approach zero as the algorithm approaches

a true solution [Boy+11]. Typically, the iterative process is stopped if

‖rk‖ ≤ εtol max{‖Auk‖, ‖Bvk‖, ‖b‖}

and ‖dk‖ ≤ εtol‖ATλk‖,
(5.51)

where εtol > 0 is the stopping tolerance [Boy+11]. For this reason, it is important

to know that the method converges in the sense that the residuals approach zero as

k →∞.

In the sequel, we prove that relaxed ADMM converges in the residual sense,

provided that the algorithm parameters satisfy one of the following two assumptions.

81

Assumption 5.2.1. The relaxation sequence γk and penalty sequence τk satisfy

1 ≤ γk < 2, lim
k→∞

1/τ 2
k <∞,

∞∑
k=1

η2
k <∞,

where η2
k =

γk
(2− γk)

max
(
τ 2
k/τ

2
k−1, 1

)
− 1.

(5.52)

Assumption 5.2.2. The relaxation sequence γk and penalty sequence τk satisfy

1 ≤ γk < 2, lim
k→∞

τ 2
k <∞,

∞∑
k=1

θ2
k <∞,

where θ2
k =

γk
(2− γk)

max
(
τ 2
k−1/τ

2
k , 1

)
− 1.

(5.53)

In Section 5.2.5, we prove adaptive relaxed ADMM converges if the algorithm

parameters satisfy either Assumption 5.2.1 or Assumption 5.2.2. Before presenting

the proof, we show how to choose the relaxation parameters that lead to efficient

performance in practice.

5.2.3 Dual interpretation of relaxed ADMM

We derive our adaptive stepsize rules by examining the close relationship be-

tween relaxed ADMM and the relaxed Douglas-Rachford Splitting (DRS) [EB92;

DY14; GB16]. The dual of the general constrained problem (5.156) is

min
ζ∈Rp

h∗(AT ζ)− 〈ζ, b〉︸ ︷︷ ︸
ĥ(ζ)

+ g∗(BT ζ)︸ ︷︷ ︸
ĝ(ζ)

, (5.54)

with f ∗ denoting the Fenchel conjugate of f , defined as f ∗(y) = supx〈x, y〉 − f(x)

[Roc70].

82

The relaxed DRS algorithm solves (5.54) by generating two sequences, (ζk)k∈N

and (ζ̂k)k∈N, according to

0 ∈ ζ̂k+1 − ζk
τk

+ ∂ĥ(ζ̂k+1) + ∂ĝ(ζk), (5.55)

0 ∈ζk+1 − ζk
τk

+ γk ∂ĥ(ζ̂k+1)− (1− γk)∂ĝ(ζk) + ∂ĝ(ζk+1), (5.56)

where γk is a relaxation parameter, and ∂f(x) denotes the subdifferential of f

evaluated at x [Roc70]. Referring back to ADMM in (5.46)–(5.49), and defining

λ̂k+1 = λk + τk(b − Auk+1 − Bvk), the sequences (λk)k∈N and (λ̂k)k∈N satisfy the

same conditions (5.55) and (5.56) as (ζk)k∈N and (ζ̂k)k∈N, thus ADMM for the prob-

lem (5.156) is equivalent to DRS on its dual (5.54). A detailed proof of this is

provided in the supplementary material.

5.2.4 Spectral adaptive stepsize rule

Adaptive stepsize rules of the “spectral” type were originally proposed for

simple gradient descent on smooth problems by Barzilai and Borwein [BB88], and

have been found to dramatically outperform constant stepsizes in many applications

[Fle05; Wri+09c]. Spectral stepsize methods work by modeling the gradient of

the objective as a linear function, and then selecting the optimal stepsize for this

simplified linear model.

Spectral methods were recently used to determine the penalty parameter for

the non-relaxed ADMM in [Xu+17b]. Inspired by that work, we derive spectral step-

size rules assuming a linear model/approximation for ∂ĥ(ζ̂) and ∂ĝ(ζ) at iteration

83

k given by

∂ĥ(ζ̂) = αk ζ̂ + Ψk and ∂ĝ(ζ) = βk ζ + Φk, (5.57)

where αk > 0, βk > 0 are local curvature estimates of ĥ and ĝ, respectively, and

Ψk,Φk ⊂ Rp. Once we obtain these curvature estimates, we will exploit the following

simple proposition whose proof is given in the supplementary material.

Proposition 5.2.1. Suppose the DRS steps (5.55)–(5.56) are applied to problem

(5.54), where (omitting iteration k from αk, βk,Ψk,Φk to lighten the notation in

what follows)

∂ĥ(ζ̂) = α ζ̂ + Ψ and ∂ĝ(ζ) = β ζ + Φ. (5.58)

Then, the residual of ĥ(ζk+1) + ĝ(ζk+1) will be zero if τ and γ are chosen to satisfiy

γk = 1 +
1+αβτ2k
(α+β)τk

.

Our adaptive method works by fitting a linear model to the gradient (or sub-

gradient) of our objective, and then using Proposition 5.2.1 to select an optimal

stepsize pair that obtains zero residual on the model problem. For our convergence

theory to hold, we need γ < 2. For fixed values of α and β, the minimal value of γk

that is still optimal for the linear model occurs if we choose

τk = arg min
τ

1 + αβτ 2

(α + β)τ
= 1/

√
αβ. (5.59)

Note this is the same “optimal” penalty parameter proposed for non-relaxed ADMM

in [Xu+17b]. Under this choice of τk, we then have the “optimal” relaxation param-

84

eter

γk = 1 +
1 + αβτ 2

(α + β)τ
= 1 +

2
√
αβ

α + β
≤ 2. (5.60)

Estimation of stepsizes We now propose a simple method for fitting a linear model

to the dual objective terms so that the formulas in Section ?? can be used to obtain

stepsizes. Once these linear models are formed, the optimal penalty parameter and

relaxation term can be calculated by (5.59) and (5.60), thanks to the equivalence of

relaxed ADMM and DRS.

In what follows, we let α̂k = 1/αk and β̂k = 1/βk to simplify notation. The

optimal stepsize choice is then written as τk = (α̂k β̂k)
1/2 and γk = 1 +

2
√
α̂kβ̂k

α̂k+β̂k
.

The estimation of α̂k and β̂k for the dual components ĥ(λ̂k) and ĝ(λk) at the

k-th iteration of primal ADMM has been described in [Xu+17b]. It is easy to verify

that the model parameters α̂k and β̂k of relaxed ADMM can be estimated based on

the results from iteration k and an older iteration k0 < k in a similar way. If we

define

∆λ̂k := λ̂k − λ̂k0 and ∆ĥk := A(uk − uk0), (5.61)

85

then the parameter α̂k is obtained from the formula

α̂k =


α̂MG
k if 2 α̂MG

k > α̂SD
k

α̂SD
k − α̂MG

k /2 otherwise,

(5.62)

α̂SD
k =

〈∆λ̂k,∆λ̂k〉
〈∆ĥk,∆λ̂k〉

and α̂MG
k =

〈∆ĥk,∆λ̂k〉
〈∆ĥk,∆ĥk〉

. (5.63)

For a detailed derivation of these formulas, see Chapter 4.

The spectral stepsize β̂k of ĝ(λk) is similarly estimated with ∆ĝk :=B(vk−vk0),

and ∆λk :=λk − λk0 . It is important to note that α̂k and β̂k are obtained from the

iterates of ADMM alone, i.e., our scheme does not require the user to supply the

dual problem.

Safeguarding Spectral stepsize methods for simple gradient descent are paired with

a backtracking line search to guarantee convergence in case the linear model as-

sumptions break down and an unstable stepsize is produced. ADMM methods have

no analog of backtracking. Rather, we adopt the correlation criterion proposed in

[Xu+17b] to test the validity of the local linear assumption, and only rely on the

adaptive model when the assumptions are deemed valid. To this end, we define

αcor
k =

〈∆ĥk,∆λ̂k〉
‖∆ĥk‖ ‖∆λ̂k‖

and βcor
k =

〈∆ĝk,∆λk〉
‖∆ĝk‖ ‖∆λk‖

. (5.64)

When the model assumptions (5.58) hold perfectly, the vectors ∆ĥk and ∆λ̂k should

be highly correlated and we get αcor
k = 1. When αcor

k or βcor
k is small, the model

86

assumptions are invalid and the spectral stepsize may not be effective.

The proposed method uses the following update rules

τk+1 =



√
α̂kβ̂k if αcor

k > εcor and βcor
k > εcor

α̂k if αcor
k > εcor and βcor

k ≤ εcor

β̂k if αcor
k ≤ εcor and βcor

k > εcor

τk otherwise,

(5.65)

γk+1 =



1 + 2
√
α̂kβ̂k

α̂k+β̂k
if αcor

k > εcor and βcor
k > εcor

1.9 if αcor
k > εcor and βcor

k ≤ εcor

1.1 if αcor
k ≤ εcor and βcor

k > εcor

1.5 otherwise,

(5.66)

where εcor is a quality threshold for the curvature estimates, while α̂k and β̂k are the

spectral stepsizes estimated in Section 5.2.4. The update for τk+1 only uses model

parameters that have been accurately estimated. When the model is effective for

h but not g, we use a large γk = 1.9 to make the v update conservative relative to

the u update. When the model is effective for g but not h, we use a small γk = 1.1

to make the v update aggressive relative to the u update.

Applying convergence guarantee Our convergence theory requires either Assump-

tion 5.2.1 or Assumption 5.2.2 to be satisfied, which suggests that convergence is

guaranteed under “bounded adaptivity” for both penalty and relaxation parame-

ters. These conditions can be guaranteed by explicitly adding constraints to the

stepsize choice in ARADMM.

87

Algorithm 3 Adaptive relaxed ADMM (ARADMM)

Input: initialize v0, λ0, τ0, γ0, and k0 =0
1: while not converge by (5.51) and k < maxiter do
2: Perform relaxed ADMM, as in (5.46)–(5.49)
3: if mod(k, Tf) = 1 then

4: λ̂k+1 = λk + τk(b− Auk+1 −Bvk)
5: Compute spectral stepsizes α̂k, β̂k using (5.62)
6: Estimate correlations αcor

k , βcor
k using (5.64)

7: Update τk+1, γk+1 using (5.65) and (5.66)
8: Bound τk+1, γk+1 using (5.67)
9: k0 ← k

10: else
11: τk+1 ← τk and γk+1 ← γk
12: end if
13: k ← k + 1
14: end while

To guarantee convergence, we simply replace the parameter updates (5.65)

and (5.66) with

τ̂k+1 = min {τk+1, (1 + Ccg/k2) τk}

γ̂k+1 = min {γk+1, 1 + Ccg/k2},
(5.67)

where Ccg is some (large) constant. It is easily verified that the parameter sequence

(τ̂k, γ̂k) satisfies Assumption 5.2.1. In practice, the update schemes (5.65) and (5.66)

converges reliably without explicitly enforcing these conditions. We use a very large

Ccg such that the conditions are not triggered in the first few thousand iterations

and provide these constraints for theoretical interests.

ARADMM algorithm The complete adaptive relaxed ADMM (ARADMM) is

shown in Algorithm 3. We suggest only updating the stepsize every Tf = 2 it-

erations. We suggest a fixed safeguarding threshold εcor = 0.2, which is used in all

88

our experiments. The overhead of the adaptive scheme is modest, requiring only a

few inner product calculations.

5.2.5 Proofs of convergence theorems

We now prove that relaxed ADMM converges under Assumption 5.2.1 or 5.2.2.

Let

y =

u
v

 ∈ Rn+m, z =


u

v

λ

 ∈ Rn+m+p. (5.68)

We use yk = (uk, vk)
T and zk = (uk, vk, λk)

T to denote iterates, and y? = (u?, v?)T

and z? = (u?, v?, λ?)T denote optimal solutions. Set ∆z+
k = (∆u+

k ,∆v
+
k ,∆λ

+
k) :=

zk+1 − zk, and ∆z∗k = (∆u∗k,∆v
∗
k,∆λ

∗
k) := z? − zk, and define

f(y) = h(u) + g(v), F (z) =


−ATλ

−BTλ

Au+Bv − b

. (5.69)

Notice that F (z) is monotone, which means ∀z, z′, (z − z′)T (F (z)− F (z′)) ≥ 0.

Problem formulation (5.156) can be reformulated as a variational inequality

(VI). The optimal solution z? satisfies

∀z, f(y)− f(y?) + (z − z?)TF (z?) ≥ 0. (5.70)

89

Likewise, the ADMM iterates produced by steps (5.46) and (5.48) satisfy the vari-

ational inequalities

∀u, h(u)− h(uk+1) + (u− uk+1)T

(τkA
T (Auk+1 +Bvk − b)− ATλk) ≥ 0, (5.71)

∀v, g(v)− g(vk+1) + (v − vk+1)T

(τkB
T (ûk+1 +Bvk+1 − b)−BTλk) ≥ 0. (5.72)

Using the definitions of y, z, f(y), and F (z) in (5.68, 5.69), λ in (5.49), and û in

(5.47), VI (5.71) and (5.72) combine to yield

f(y)− f(yk+1) + (z − zk+1)T
(
F (zk+1) + Ω(∆z+

k , τk, γk)
)
≥ 0,

Ω(∆z+
k , τk, γk) =


γk−1
γk

AT∆λ+
k − τk

γk
ATB∆v+

k

0

1
γkτk

∆λ+
k − γk−1

γk
B∆v+

k

. (5.73)

We then apply VI (5.70), (5.72), and (5.73) in order to prove the following

lemmas for our contraction proof, which show that the difference between iterates

decreases as the iterates approach the true solution. The remaining details of the

proof are in the appendix.

Lemma 5.2.1. The iterates zk = (uk, vk, λk)
T generated by ADMM satisfy

(B∆v+
k)T∆λ+

k ≥ 0. (5.74)

90

Lemma 5.2.2. Let γk ≥ 1. The optimal solution z? and iterates zk generated by

ADMM satisfy

2− γk
γk
‖τkB∆v+

k + ∆λ+
k ‖2

≤γk(‖τkB∆v∗k‖2 + ‖∆λ∗k‖2)

− (2− γk)(‖τkB∆v∗k+1‖2 + ‖∆λ∗k+1‖2).

(5.75)

We are now ready to state our main convergence results. The proof of Theorem

5.2.1 is shown here in full, and leverages Lemma 5.2.2 to produce a contraction

argument. The proof of Theorem 5.2.2 is extremely similar, and is shown in the

appendix.

Theorem 5.2.1. Suppose Assumption 5.2.1 holds. Then, the iterates zk =

(uk, vk, λk)
T generated by ADMM satisfy

lim
k→∞
‖rk‖ = 0 and lim

k→∞
‖dk‖ = 0. (5.76)

Proof. Assumption 5.2.1 implies

γk
2− γk

τ 2
k ≤ (1 + η2

k)τ
2
k−1 and

γk
2− γk

≤ (1 + η2
k). (5.77)

91

If γk < 2 as in Assumption 5.2.1, then Lemma 5.2.2 shows

1

γk
‖τkB∆v+

k + ∆λ+
k ‖2

≤ γk
2− γk

(τ 2
k‖B∆v∗k‖2 + ‖∆λ∗k‖2)

− (τ 2
k‖B∆v∗k+1‖2 + ‖∆λ∗k+1‖2) (5.78)

≤(1 + η2
k)(τ

2
k−1‖B∆v∗k‖2 + ‖∆λ∗k‖2)

− (τ 2
k‖B∆v∗k+1‖2 + ‖∆λ∗k+1‖2), (5.79)

where (5.77) is used to get from (5.78) to (5.79). Accumulating inequality (5.79)

from k = 0 to N shows

N∑
k=0

N∏
t=k+1

(1 + η2
t)

1

γk
‖τkB∆v+

k + ∆λ+
k ‖2

≤
N∏
k=1

(1 + η2
t)(τ

2
0 ‖B∆v∗0‖2 + ‖∆λ∗0‖2). (5.80)

Assumption 5.2.1 also implies
∏∞

t=1(1 + η2
t)<∞, and

∏N
t=k+1(1 + η2

t)
1
γk
≥ 1

γk
> 1/2.

Then, (5.80) indicates
∑∞

k=0 ‖τkB∆v+
k + ∆λ+

k ‖2 <∞, and

lim
k→∞
‖τkB∆v+

k + ∆λ+
k ‖2 = 0. (5.81)

92

Now, from Lemma 5.2.1, (B∆v+
k)T∆λ+

k ≥ 0, and so

lim
k→∞

‖∆λ+
k ‖2 ≤ lim

k→∞
‖τkB∆v+

k + ∆λ+
k ‖2 = 0, (5.82)

lim
k→∞

‖τkB∆v+
k ‖2 ≤ lim

k→∞
‖τkB∆v+

k + ∆λ+
k ‖2 = 0. (5.83)

The residuals rk, dk in (5.50) satisfy

rk =
1

γkτk
∆λ+

k−1 −
γk − 1

γk
B∆v+

k−1, (5.84)

dk = τkA
TB∆v+

k−1, (5.85)

from which we get

lim
k→∞
‖rk‖ ≤ lim

k→∞

1

γkτk
‖∆λ+

k−1‖ +
γk − 1

γkτ 2
k−1

‖τk−1B∆v+
k−1‖ = 0, and (5.86)

lim
k→∞
‖dk‖ ≤ lim

k→∞
‖A‖‖τkB∆v+

k−1‖

≤ lim
k→∞

√
1 + η2

k‖A‖ ‖τk−1B∆v+
k−1‖ = 0.

Similar methods can be used to prove the following about convergence under

Assumption 5.2.2. The proof of the following theorem is given in the appendix.

Theorem 5.2.2. Suppose Assumption 5.2.2 holds. Then, the iterates zk =

93

(uk, vk, λk)
T generated by ADMM satisfy

lim
k→∞
‖rk‖ = 0 and lim

k→∞
‖dk‖ = 0. (5.87)

5.2.6 Appendix:proofs of lemmas and theorems

Proof of Lemma 5.2.1

Proof. Using the dual updates (5.49), VI (5.72) can be rewritten as

∀v, g(v)− g(vk+1)− (Bv −Bvk+1)Tλk+1 ≥ 0. (5.88)

Similarly, in the previous iteration,

∀v, g(v)− g(vk)− (Bv −Bvk)Tλk ≥ 0. (5.89)

After letting v = vk in (5.88) and v = vk+1 in (5.89), we sum the two inequal-

ities together to conclude

(Bvk+1 −Bvk)T (λk+1 − λk) ≥ 0. (5.90)

Lemma 5.2.3. The optimal solution z? = (u?, v?, λ?)T and sequence zk =

94

(uk, vk, λk)
T generated by ADMM satisfy

(τkB∆v∗k+1 + ∆λ∗k+1)T (τkB∆v+
k + ∆λ+

k)

≥ 1− γk
γk
‖τkB∆v+

k + ∆λ+
k ‖2

+ γk((τkB∆v∗k)
T∆λ∗k − (τkB∆v∗k+1)T∆λ∗k+1).

(5.91)

Proof of Lemma 5.2.3

Proof. We replace y = y?, z = z? in VI (5.73) and y = yk+1, z = zk+1 in VI (5.70),

and sum the two inequalities to get

(∆z∗k+1)TΩ(∆z+
k , τk, γk) ≥ (∆z∗k+1)T (F (z?) − F (zk+1)). (5.92)

From (5.73), the monotonicity of F (z), and Ω(∆z+
k , τk, γk), we have

(τkA∆u∗k+1)T ((γk − 1)∆λ+
k − τkB∆v+

k)

+ (∆λ∗k+1)T (∆λ+
k + (1− γk)τkB∆v+

k) ≥ 0. (5.93)

Using the feasibility of optimal solution Au? + Bv? = b, λk+1 in (5.49) and

ûk+1 in (5.47), we have

τkA∆u∗k+1 =
1

γk
∆λ+

k +
1− γk
γk

τkB∆v+
k − τkB∆v∗k+1. (5.94)

95

We now substitute (5.94) into (5.93) and simplify to get,

(τkB∆v∗k+1 + ∆λ∗k+1)T (τkB∆v+
k + ∆λ+

k) ≥

1− γk
γk
‖τkB∆v+

k + ∆λ+
k ‖2 + γk(τkB∆v+

k)T∆λ+
k

+ γk((τkB∆v∗k+1)T∆λ+
k + (τkB∆v+)T∆λ∗k+1). (5.95)

We can use the fact that

∆λ∗k = ∆λ∗k+1 + ∆λ+
k and ∆v∗k = ∆v∗k+1 + ∆v+

k , (5.96)

to get

(τkB∆v∗k+1)T∆λ+
k + (τkB∆v+)T∆λ∗k+1

= (τkB∆v∗k)
T∆λ∗k − (τkB∆v∗k+1)T∆λ∗k+1

− (τkB∆v+
k)T∆λ+

k . (5.97)

Finally, we substitute (5.97) into (5.95) to get (5.91).

Proof of Lemma 5.2.2

96

Proof. Begin by deriving

‖τkB∆v∗k + ∆λ∗k‖2

= ‖(τkB∆v∗k+1 + ∆λ∗k+1) + (τkB∆v+
k + ∆λ+

k)‖2 (5.98)

= ‖τkB∆v∗k+1 + ∆λ∗k+1‖2 + ‖τkB∆v+
k + ∆λ+

k ‖2

+ 2(τkB∆v∗k+1 + ∆λ∗k+1)T (τkB∆v+
k + ∆λ+

k) (5.99)

≥ ‖τkB∆v∗k+1 + ∆λ∗k+1‖2 +
2− γk
γk
‖τkB∆v+

k + ∆λ+
k ‖2

+ 2γk((τkB∆v∗k)
T∆λ∗k − (τkB∆v∗k+1)T∆λ∗k+1), (5.100)

97

where (5.96) is used for (5.98), and Lemma 5.2.3 is used for (5.100). We now have

2− γk
γk
‖τkB∆v+

k + ∆λ+
k ‖2

≤‖τkB∆v∗k + ∆λ∗k‖2 − ‖τkB∆v∗k+1 + ∆λ∗k+1‖2

−2γk((τkB∆v∗k)
T∆λ∗k − (τkB∆v∗k+1)T∆λ∗k+1) (5.101)

=‖τkB∆v∗k‖2 + ‖∆λ∗k‖2 − ‖τkB∆v∗k+1‖2 − ‖∆λ∗k+1‖2

− 2(γk − 1)(τkB∆v∗k)
T∆λ∗k

− 2(γk − 1)(−τkB∆v∗k+1)T∆λ∗k+1 (5.102)

=γk(‖τkB∆v∗k‖2 + ‖∆λ∗k‖2)

− (2− γk)(‖τkB∆v∗k+1‖2 + ‖∆λ∗k+1‖2)

− (γk − 1)‖τkB∆v∗k + ∆λ∗k‖2

− (γk − 1)‖τkB∆v∗k+1 −∆λ∗k+1‖2 (5.103)

≤γk(‖τkB∆v∗k‖2 + ‖∆λ∗k‖2)

− (2− γk)(‖τkB∆v∗k+1‖2 + ‖∆λ∗k+1‖2). (5.104)

Proof of Theorem 5.2.2

98

Proof. When γk < 2 as in Assumption 5.2.2, Lemma 5.2.2 suggests

1

γk
‖B∆v+

k +
1

τk
∆λ+

k ‖2

≤ γk
2− γk

(‖B∆v∗k‖2 +
1

τ 2
k

‖∆λ∗k‖2)

− (‖B∆v∗k+1‖2 +
1

τ 2
k

‖∆λ∗k+1‖2). (5.105)

Assumption 5.2.2 also suggests

γk
(2− γk)τ 2

k

≤ 1 + θ2
k

τ 2
k−1

and
γk

2− γk
≤ (1 + θ2

k). (5.106)

Then (5.105) leads to

1

γk
‖ 1

τk
∆v+

k +B∆λ+
k ‖2

≤(1 + θ2
k)(‖B∆v∗k‖2 +

1

τ 2
k−1

‖∆λ∗k‖2)

− (‖B∆v∗k+1‖2 +
1

τ 2
k

‖∆λ∗k+1‖2). (5.107)

Accumulating (5.107) from k = 0 to get

N∑
k=0

N∏
t=k+1

(1 + θ2
t)

1

γk
‖B∆v+

k +
1

τk
∆λ+

k ‖2

≤
N∏
k=1

(1 + θ2
t)(‖B∆v∗0‖2 +

1

τ 2
0

‖∆λ∗0‖2). (5.108)

Assumption 5.2.2 suggests
∏∞

t=1(1 + θ2
t) < ∞, and

∏N
t=k+1(1 + θ2

t)
1
γk
≥ 1

γk
> 0.5.

99

Then (5.108) indicates
∑∞

k=0 ‖B∆v+
k + 1

τk
∆λ+

k ‖2 <∞. Hence

lim
k→∞
‖B∆v+

k +
1

τk
∆λ+

k ‖2 = 0. (5.109)

Since (B∆v+
k)T∆λ+

k ≥ 0 as in Lemma 5.2.1,

lim
k→∞
‖ 1

τk
∆λ+

k ‖2 ≤ lim
k→∞
‖B∆v+

k +
1

τk
∆λ+

k ‖2 = 0 (5.110)

lim
k→∞
‖B∆v+

k ‖2 ≤ lim
k→∞
‖B∆v+

k +
1

τk
∆λ+

k ‖2 = 0. (5.111)

The residuals rk, dk in (5.50) then satisfy

rk =
1

γkτk
∆λ+

k−1 −
γk − 1

γk
B∆v+

k−1 (5.112)

dk = τkA
TB∆v+

k−1. (5.113)

We finally have

lim
k→∞
‖rk‖ ≤ lim

k→∞

1

γk
‖ 1

τk
∆λ+

k−1‖+
γk − 1

γk
‖B∆v+

k−1‖

≤ lim
k→∞

√
1 + θ2

k

γk−1

‖ 1

τk
∆λ+

k−1‖

+
γk − 1

γk
‖B∆v+

k−1‖ = 0, and (5.114)

lim
k→∞
‖dk‖ ≤ lim

k→∞
|A|‖τkB∆v+

k−1‖

≤ lim
k→∞

(1 + η2
k)τk|A| ‖B∆v+

k−1‖ = 0. (5.115)

100

Equivalence of relaxed ADMM and relaxed DRS in Section 5.2.3

Proof. Referring back to the ADMM steps (5.46)–(5.49), and defining λ̂k+1 = λk +

τk(b− Auk+1 −Bvk), the optimality condition for the minimization of (5.46) is

0 ∈∂h(uk+1)− ATλk − τkAT (b− Auk+1 −Bvk) (5.116)

= ∂h(uk+1)− AT λ̂k+1, (5.117)

which is equivalent to AT λ̂k+1 ∈ ∂h(uk+1), thus1 uk+1 ∈ ∂h∗(AT λ̂k+1). A similar

argument using the optimality condition for (5.48) leads to vk+1 ∈ ∂g∗(BTλk+1).

Recalling (5.54), we arrive at

Auk+1 − b ∈ ∂ĥ(λ̂k+1) and Bvk+1 ∈ ∂ĝ(λk+1). (5.118)

1An important property relating f and f∗ is that y ∈ ∂f(x) if and only if x ∈ ∂f∗(y) [Roc70].

101

Using these identities, we finally have

λ̂k+1 = λk + τk(b− Auk+1 −Bvk) (5.119)

∈ λk − τk
(
∂ĥ(λ̂k+1) + ∂ĝ(λk)

)
(5.120)

λk+1 = λk + τk(b− ûk+1 −Bvk+1) (5.121)

= λk + γkτk(b− Auk+1 −Bvk+1)

+ (1− γk)τk(Bvk −Bvk+1) (5.122)

∈ λk − τk
(
∂ĥ(λ̂k+1) + ∂ĝ(λk+1)

)
+ (1− γk)τk (∂ĝ(λk)− ∂ĝ(λk+1)) , (5.123)

showing that the sequences (λk)k∈N and (λ̂k)k∈N satisfy the same conditions (5.55)

and (5.56) as (ζk)k∈N and (ζ̂k)k∈N, thus proving that ADMM for problem (5.156) is

equivalent to DRS for its dual (5.54).

Proof of Proposition 5.2.1 in Section 5.2.4

Proof. Rearrange DRS step (5.56) to get

0 ∈ ζk+1 − ζk
(1− γ)τ

+
γ

1− γ ∂ĥ(ζ̂k+1)− ∂ĝ(ζk) +
1

1− γ ∂ĝ(ζk+1). (5.124)

Combine DRS step (5.55) and (5.124) to get

0 ∈ 1

τ
(
ζk+1

1− γ + ζ̂k+1 −
2− γ
1− γ ζk) +

1

1− γ (∂ĥ(ζ̂k+1) + ĝ(ζk+1)). (5.125)

102

Inserting the linear assumption (5.57) to DRS step (5.55), we can explicitly get the

update for ζ̂k+1 as

ζ̂k+1 =
1− β τ
1 + α τ

ζk −
aτ + bτ

1 + α τ
, (5.126)

where a ∈ Ψ and b ∈ Φ. Inserting the linear model (5.57) into (5.125), we get

ζk+1 =
γ − 1− ατ

1 + βτ
ζ̂k+1 +

2− γ
1 + βτ

ζk −
(a+ b)τ

1 + βτ
(5.127)

= ζk − γτ
(α + β)ζk + (a+ b)

(1 + ατ)(1 + βτ)
, (5.128)

where the second equality results from using the expression for ζ̂k+1 from (5.126).

The residual rDR at ζk+1 is simply the magnitude of the subgradient (corre-

sponding to elements a ∈ Ψ and b ∈ Φ) of the objective and is given by

rDR = ‖(α+ β)ζk+1 + (a+ b)‖ (5.129)

=

∣∣∣∣1− γτ(α+ β)

(1 + α τ)(1 + β τ)

∣∣∣∣ · ‖(α+ β)ζk + (a+ b)‖, (5.130)

where ζk+1 in (5.130) was substituted with (5.128). The optimal parameters mini-

mize the residual

τ, γ = arg min
τ,γ

rDR

= arg min
τ,γ

∣∣∣∣1− γτ(α + β)

(1 + α τ)(1 + β τ)

∣∣∣∣ . (5.131)

103

This residual has optimal value of zero when

γk = 1 +
1 + αβτ 2

k

(α + β)τk
.

5.2.7 Experiments

The proposed ARADMM is implemented as shown in Algorithm 3. We also

implemented vanilla ADMM, (non-adaptive) relaxed ADMM, ADMM with residual

balancing (RB), and adaptive ADMM (AADMM) for comparison.

The relaxation parameter for the non-adaptive relaxed ADMM is fixed at

γk = 1.5 as suggested in [EB92]. The parameters of RB and AADMM are selected

as in [He+00; Boy+11; Xu+17b]. The initial penalty τ0 = 1/10 and initial relaxation

γ0 = 1 are used for all problems except the canonical QP problem, where initial

parameters are set to the geometric mean of the maximum and minimum eigenvalues

of matrix Q, as proposed for quadratic problems in [RDC14].

For each problem, the same randomly generated initial variables v0, λ0 are

used for ADMM and its variant methods. As suggested by [He+00; Xu+17b],

the adaptivity of RB and AADMM is stopped after 1000 iterations to guarantee

convergence.

Convergence results Table 5.3 reports the convergence speed of ADMM and its

variants for various applications. More experimental results including the table of

104

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
510

0

10
1

10
2

10
3

Initial penalty parameter

Ite
ra

tio
ns

Vanilla ADMM
Relaxed ADMM
Residual balance
Adaptive ADMM
ARADMM

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
10

0

10
1

10
2

10
3

Initial relaxation parameter

Ite
ra

tio
ns

Vanilla ADMM
Relaxed ADMM
Residual balance
Adaptive ADMM
ARADMM

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
10

0

10
1

10
2

10
3

Initial relaxation parameter

Ite
ra

tio
ns

Vanilla ADMM
Relaxed ADMM
Residual balance
Adaptive ADMM
ARADMM

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
100

101

102

103

Initial relaxation parameter

Ite
ra

tio
ns

Vanilla ADMM
Relaxed ADMM
Residual balance
Adaptive ADMM
ARADMM

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
100

101

102

103

Initial relaxation parameter

Ite
ra

tio
ns

Vanilla ADMM
Relaxed ADMM
Residual balance
Adaptive ADMM
ARADMM

10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105100

101

102

103

Initial penalty parameter

Ite
ra

tio
ns

Vanilla ADMM
Relaxed ADMM
Residual balance
Adaptive ADMM
ARADMM

Figure 5.7: Sensitivity of convergence speed for the synthetic problem of EN regular-
ized linear regression. (left) sensitivity to the initial penalty τ0; (middle) sensitivity to
relaxation γ0; (right) sensitivity to relaxation γ0 when optimal τ0 is selected by grid search.

more test cases, the convergence curves, and visual results of image restoration

and robust PCA for face decomposition are provided in the supplementary mate-

rial. Relaxed ADMM often outperforms vanilla ADMM, but does not compete with

adaptive methods like RB, AADMM and ARADMM. The proposed ARADMM

performs best in all the test cases.

Sensitivity to initialization We study the sensitivity of the different ADMM vari-

ants to the initial penalty (τ0) and initial relaxation parameter (γ0). Fig. 5.7 presents

iteration counts for a wide range of values of τ0, γ0, for elastic net regression with

synthetic datasets. In the left and center plots we fix one of τ0, γ0 and vary the other.

The number of iterations needed to convergence is plotted as the algorithm param-

eters vary. In the right plot, we use a grid search to find the optimal τ0 for different

values of γ0. Fig. 5.7 (left) shows that adaptive methods are relatively stable with

respect to the initial penalty τ0, while ARADMM outperforms RB and AADMM in

all choices of initial τ0. Fig. 5.7 (middle) suggests that the relaxation γ0 is generally

less important than τ0. When a bad value of τ is chosen, it is unlikely that a good

choice of γ can compensate. The proposed ARADMM that jointly adjusts τ, γ is

105

generally better than simply adding the relaxation to the existing adaptive methods

RB and AADMM.

Fig. 5.7 (right) shows the sensitivity to γ when using a grid search to choose

the optimal τ0. This optimal τ0 significantly improves the performance of vanilla

ADMM and relaxed ADMM (which use the same τ0 for all iterations). Even when

using the optimal stepsize for the non-adaptive methods, ARADMM is superior to

or competitive with the non-adaptive methods. Note that this experiment is meant

to show a best-case scenario for the non-adaptive methods; in practice the user

generally has no knowledge of the optimal value of τ. Adaptive methods achieve

optimal or near-optimal performance without an expensive grid search.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

100

101

102

103

Safeguarding correlation threshold

C
on

ve
rg

en
ce

 it
er

at
io

ns

EN LinReg
LRLS
Quad Prog
Cons LogReg
Unwr SVM
Imag Res
RPCA

Figure 5.8: Sensitivity of convergence speed to safeguarding threshold εcor for proposed
ARADMM. Synthetic problems (’cameraman’ for TVIR, and ’FaceSet1’ for RPCA) of
various applications are studied. Best viewed in color.

Sensitivity to safeguarding Finally, Fig. 5.8 presents iteration counts when apply-

ing ARADMM with various safeguarding correlation thresholds εcor. When εcor = 0,

the calculated adaptive parameters based on curvature estimations are always ac-

cepted, and when εcor =1 the parameters are never changed. The proposed AADMM

106

method is insensitive to εcor and performs well for a wide range of εcor ∈ [0.1, 0.4] for

various applications, except for unwrapping SVM and RPCA. Though tuning such

“hyper-parameters” may improve the performance of ARADMM for some applica-

tions, the fixed εcor = 0.2 performs well in all our experiments (seven applications

and over fifty test cases, a full list is in the supplementary material). The proposed

ARADMM is fully automated and performs well without parameter tuning.

5.2.8 Summarization

We have proposed an adaptive method for jointly tuning the penalty and re-

laxation parameters of relaxed ADMM without user oversight. We have analyzed

adaptive relaxed ADMM schemes, and provided conditions for which convergence

is guaranteed. Experiments on a wide range of machine learning, computer vision,

and image processing benchmarks have demonstrated that the proposed adaptive

method (often significantly) outperforms other ADMM variants without user over-

sight or parameter tuning. The new adaptive method improves the applicability of

relaxed ADMM by facilitating fully automated solvers that exhibit fast convergence

and are usable by non-expert users.

107

Application Dataset
Vanilla
ADMM

Relaxed
ADMM

Residual
balance

Adaptive
ADMM

Proposed
ARADMM

Elastic net
regression

Synthetic 2000+(.642) 2000+(.660) 424(.144) 102(.051) 70(.026)
MNIST 1225(29.4) 816(19.9) 94(2.28) 41(.943) 21(.549)

CIFAR10 2000+(690) 2000+(697) 556(193) 2000+(669) 94(31.7)
News20 2000+(1.21e4)2000+(9.16e3) 227(914) 104(391) 71(287)
Rcv1 2000+(1.20e3) 1823(802) 196(79.1) 104(35.7) 64(26.0)

Realsim 2000+(4.26e3)2000+(4.33e3) 341(355) 152(125) 107(88.2)

Low rank
least squares

Synthetic 2000+(118) 2000+(116) 268(15.1) 26(1.55) 18(1.04)
German 2000+(4.72) 2000+(4.72) 642(1.52) 130(.334) 52(.125)
Spectf 2000+(2.70) 2000+(2.74) 336(.455) 162(.236) 105(.150)

MNIST 200+(1.86e3) 200+(2.08e3) 200+(3.29e3)200+(3.46e3) 38(658)
CIFAR10 200+(7.24e3) 200+(1.33e4) 53(1.60e3) 8(208) 6(156)

QP and
dual SVM

Synthetic 1224(11.5) 823(7.49) 626(5.93) 170(1.57) 100(.914)
German 2000+(58.8) 2000+(61.8) 1592(45.0) 1393(38.9) 1238(34.9)
Spectf 2000+(.846) 2000+(.777) 169(.070) 175(.086) 53(.026)

Consensus
logistic

regression

Synthetic 590(9.93) 391(6.97) 70(1.23) 35(.609) 20(.355)
German 2000+(34.3) 2000+(66.6) 151(2.60) 35(.691) 26(.580)
Spectf 1005(20.1) 667(14.4) 117(1.98) 145(1.63) 85(1.07)

MNIST 200+(2.99e3) 200+(3.47e3) 200+(1.37e3) 49(536) 28(333)
CIFAR10 200+(593) 200+(2.08e3) 200+(1.54e3) 131(165) 19(33.7)

Unwrapping
SVM

Synthetic 2000+(1.13) 1418(.844) 2000+(1.16) 355(.229) 147(.094)
German 753(1.88) 560(1.37) 2000+(4.98) 572(1.44) 213(.545)
Spectf 567(.203) 367(.112) 567(.185) 207(.068) 149(.052)

MNIST 128(130) 118(111) 163(153) 200+(217) 67(71.0)
CIFAR10 200+(512) 200+(532) 200+(516) 89(285) 57(143)

Image
denoising

Barbara 262(35.0) 175(23.6) 74(10.0) 59(8.67) 38(5.57)
Cameraman 311(8.96) 208(5.89) 82(2.29) 88(2.76) 35(1.08)

Lena 347(46.3) 232(31.3) 94(12.5) 68(9.70) 39(5.58)

Robust
PCA

FaceSet1 2000+(41.1) 1507(30.3) 560(11.1) 561(11.9) 267(5.65)
FaceSet2 2000+(41.1) 2000+(41.4) 263(5.54) 388(9.00) 188(4.02)
FaceSet3 2000+(39.4) 1843(36.3) 375(7.44) 473(9.89) 299(6.27)

Table 5.3: Iterations (and runtime in seconds) for various applications. Absence of con-
vergence after n iterations is indicated as n+.

108

5.3 Adaptive Consensus ADMM

5.3.1 Introduction

Consensus ADMM [Boy+11] solves minimization problems involving a com-

posite objective f(v) =
∑

i fi(v), where worker i stores the data needed to compute

fi, and so is well suited for distributed model fitting problems [Boy+11; ZK14;

Son+16; Cha+16a; Gol+16; Tay+16]. To distribute this problem, consensus meth-

ods assign a separate copy of the unknowns, ui, to each worker, and then apply

ADMM to solve

min
ui∈Rd,v∈Rd

N∑
i=1

fi(ui) + g(v), subject to ui = v, (5.132)

where v is the “central” copy of the unknowns, and g(v) is a regularizer. The

consensus problem (5.132) coincides with (5.156) by defining u = (u1; . . . ; uN) ∈

RdN , A = IdN ∈ RdN×dN , and B = −(Id; . . . ; Id) ∈ RdN×d, where Id represents the

d× d identity matrix.

We propose an adaptive consensus ADMM (ACADMM) method to automate

local algorithm parameters selection. Instead of estimating one global penalty pa-

rameter for all workers, different local penalty parameters are estimated using the

local curvature of subproblems on each node.

In the following, we use the subscript i to denote iterates computed on the ith

node, superscript k is the iteration number, λi,k is the dual vector of Lagrange mul-

109

tipliers, and {τi,k} are iteration/worker-specific penalty parameters (contrasted with

the single constant penalty parameter τ of “vanilla” ADMM). Consensus methods

apply ADMM to (5.132), resulting in the steps

ui,k+1 = arg min
ui

fi(ui) +
τi,k
2
‖vk − ui +

λi,k
τi,k
‖2 (5.133)

vk+1 = arg min
v
g(v) +

N∑
i=1

τi,k
2
‖v − ui,k+1 +

λi,k
τi,k
‖2 (5.134)

λi,k+1 = λi,k + τi,k(vk+1 − ui,k+1). (5.135)

The primal and dual residuals, rk and dk, are used to monitor convergence.

rk =


r1,k

...

rN,k

 , dk =


d1,k

...

dN,k

 ,


ri,k = vk − ui,k

di,k = τi,k(vk−1 − vk).
(5.136)

The primal residual rk approaches zero when the iterates accurately satisfy the linear

constraints in (5.132), and the dual residual dk approaches zero as the iterates near

a minimizer of the objective. Iteration can be terminated when

‖rk‖2 ≤ εtol max{
∑N

i=1
‖ui,k‖2, N‖vk‖2}

and ‖dk‖2 ≤ εtol
∑N

i=1
‖λi,k‖2,

(5.137)

where εtol is the stopping tolerance. The residuals in (5.136) and stopping criterion

in (5.137) are adopted from the general problem [Boy+11] to the consensus prob-

lem. The observation that residuals rk, dk can be decomposed into “local residuals”

110

ri,k, di,k has been exploited to generalize the residual balancing method [He+00] for

distributed consensus problems [Son+16].

To address the issue of how to automatically tune parameters on each node for

optimal performance, we propose adaptive consensus ADMM (ACADMM), which

sets worker-specific penalty parameters by exploiting curvature information. We

derive our method from the dual interpretation of ADMM – Douglas-Rachford split-

ting (DRS) – using a diagonal penalty matrix. We then derive the spectral stepsizes

for consensus problems by assuming the curvatures of the objectives are diagonal

matrices with diverse parameters on different nodes. At last, we discuss the practi-

cal computation of the spectral stepsizes from consensus ADMM iterates and apply

our theory in Chapter 3 to guarantee convergence.

5.3.2 Dual interpretation of generalized ADMM

The dual form of problem (5.156) can be written

min
λ∈Rp

f ∗(ATλ)− 〈λ, b〉︸ ︷︷ ︸
f̂(λ)

+ g∗(BTλ)︸ ︷︷ ︸
ĝ(λ)

, (5.138)

where λ denotes the dual variable, while f ∗, g∗ denote the Fenchel conjugate of

f, g [Roc70]. It is known that ADMM steps for the primal problem (5.156) are

equivalent to performing Douglas-Rachford splitting (DRS) on the dual problem

(5.138) [EB92; Xu+17b]. In particular, the generalized ADMM iterates satisfy the

111

DRS update formulas

0 ∈ (Tk)
−1(λ̂k+1 − λk) + ∂f̂(λ̂k+1) + ∂ĝ(λk) (5.139)

0 ∈ (Tk)
−1(λk+1 − λk) + ∂f̂(λ̂k+1) + ∂ĝ(λk+1), (5.140)

where λ̂i,k+1 = λi,k + τi,k(vk+1 − ui,k) denotes the intermediate variable. We now

prove the equivalence of generalized ADMM and DRS.

Proof. The optimality condition for ADMM step (3.1) is

0 ∈ ∂f(uk+1)− AT (λk + Tk(b− Auk+1 −Bvk)︸ ︷︷ ︸
λ̂k+1

), (5.141)

which is equivalent to AT λ̂k+1 ∈ ∂f(uk+1). By exploiting properties of the Fenchel

conjugate [Roc70], we get uk+1 ∈ ∂f ∗(AT λ̂k+1). A similar argument using the

optimality condition for (3.2) leads to vk+1 ∈ ∂g∗(BTλk+1). Recalling the definition

of f̂ , ĝ in (5.138), we arrive at

Auk+1 − b ∈ ∂f̂(λ̂k+1) and Bvk+1 ∈ ∂ĝ(λk+1). (5.142)

We can then use simple algebra to verify λk, λ̂k+1 in (3.3) and ∂f̂(λ̂k+1), ∂ĝ(λk+1) in

(5.142) satisfy the generalized DRS steps (5.139, 5.140).

112

5.3.3 Generalized spectral stepsize rule

Proposition 4.2.1proved that the minimum residual of DRS can be obtained

by setting the scalar penalty to τk = 1/
√
αβ, where we assume the subgradients are

locally linear as

∂f̂(λ̂) = α λ̂+ Ψ and ∂ĝ(λ) = β λ+ Φ, (5.143)

α, β ∈ R represent scalar curvatures, and Ψ,Φ ⊂ Rp.

We now present generalized spectral stepsize rules that can accomodate con-

sensus problems.

Proposition 5.3.1 (Generalized spectral DRS). Suppose the generalized DRS steps

(5.139, 5.140) are used, and assume the subgradients are locally linear,

∂f̂(λ̂) = Mα λ̂+ Ψ and ∂ĝ(λ) = Mβ λ+ Φ. (5.144)

for matrices Mα = diag(α1Id, . . . , αNId) and Mβ = diag(β1Id, . . . , βNId), and some

Ψ,Φ ⊂ Rp. Then the minimal residual of f̂(λk+1) + ĝ(λk+1) is obtained by setting

τi,k = 1/
√
αi βi, ∀i = 1, . . . , N .

Proof. Substituting subgradients ∂f̂(λ̂), ∂ĝ(λ) into the generalized DRS steps

113

(5.139, 5.140), and using our linear assumption (5.144) yields

0 ∈ (Tk)
−1(λ̂k+1 − λk) + (Mα λ̂k+1 + Ψ) + (Mβ λk + Φ)

0 ∈ (Tk)
−1(λk+1 − λk) + (Mα λ̂k+1 + Ψ) + (Mβ λk+1 + Φ).

Since Tk,Mα,Mβ are diagonal matrices, we can split the equations into independent

blocks, ∀i = 1, . . . , N,

0 ∈ (λ̂i,k+1 − λi,k)/τi,k + (αi λ̂k+1 + Ψi) + (βi λk + Φi)

0 ∈ (λi,k+1 − λi,k)/τi,k + (αi λ̂k+1 + Ψi) + (βi λk+1 + Φi).

Applying Proposition 5.3.1 in [Xu+17b] to each block, τi,k = 1/
√
αi βi minimizes the

block residual represented by rDRi,k = ‖(αi+βi)λk+1+(ai+bi)‖, where ai ∈ Ψi, bi ∈ Φi.

Hence the residual norm at step k + 1, which is ‖(Mα + Mβ)λk+1 + (a + b)‖ =√∑N
i=1(rDRi,k+1)2 is minimized by setting τi,k = 1/

√
αi βi, ∀i = 1, . . . , N .

5.3.4 Stepsize estimation for consensus problems

Thanks to the equivalence of ADMM and DRS, Proposition 5.3.1 can also be

used to guide the selection of the “optimal” penalty parameter. We now show that

the generalized spectral stepsizes can be estimated from the ADMM iterates for the

primal consensus problem (5.132), without explicitly supplying the dual functions.

As in (5.142), the subgradients of dual functions ∂f̂ , ∂ĝ can be computed from

the ADMM iterates using the identities derived from (3.1, 3.2). For the consensus

114

problem we have A = IdN , B = −(Id; . . . ; Id), and b = 0, and so

(u1,k+1; . . . ; uN,k+1) ∈ ∂f̂(λ̂k+1) (5.145)

−(vk+1; . . . ; vk+1︸ ︷︷ ︸
N duplicates of vk+1

) ∈ ∂ĝ(λk+1). (5.146)

If we approximate the behavior of these sub-gradients using the linear approximation

(5.144), and break the sub-gradients into blocks (one for each worker node), we get

(omitting iteration index k for clarity)

ui = αi λ̂i + ai and − v = βi λi + bi, ∀i (5.147)

where αi and βi represent the curvature of local functions f̂i and ĝi on the ith node.

We select stepsizes with a two step procedure, which follows the spectral step-

size literature. First, we estimate the local curvature parameters, αi and βi, by

finding least-squares solutions to (5.147). Second, we plug these curvature estimates

into the formula τi,k = 1/
√
αi βi. This formula produces the optimal stepsize when

f̂ and ĝ are well approximated by a linear function, as shown in Proposition 5.3.1.

For notational convenience, we work with the quantities α̂i,k = 1/αi, β̂i,k =

1/βi, which are estimated on each node using the current iterates ui,k, vk, λi,k, λ̂i,k and

also an older iterate ui,k0 , vk0 , λi,k0 , λ̂i,k0 , k0 < k. Defining ∆ui,k = ui,k−ui,k0 , ∆λ̂i,k =

λ̂i,k − λ̂i,k0 and following the literature for Barzilai-Borwein/spectral stepsize esti-

mation, there are two least squares estimators that can be obtained from (5.147):

115

α̂SD
i,k =

〈∆λ̂i,k,∆λ̂i,k〉
〈∆ui,k,∆λ̂i,k〉

and α̂SD
i,k =

〈∆ui,k,∆λ̂k〉
〈∆ui,k,∆ui,k〉

(5.148)

where SD stands for steepest descent, and MG stands for minimum gradient.

[Zho+06] recommend using a hybrid of these two estimators, and choosing

α̂i,k =


α̂MG
i,k if 2 α̂MG

i,k > α̂SD
i,k

α̂SD
i,k − α̂MG

i,k /2 otherwise.

(5.149)

It was observed that this choice worked well for non-distributed ADMM in Chap-

ter 4. We can similarly estimate β̂i,k from ∆vk = −vk + vk0 and ∆λi,k = λi,k − λi,k0 .

ACADMM estimates the curvatures in the original d-dimensional feature

space, and avoids estimating the curvature in the higher Nd-dimensional feature

space (which grows with the number of nodes N in AADMM [Xu+17b]), which

is especially useful for heterogeneous data with different distributions allocated to

different nodes. The overhead of our adaptive scheme is only a few inner products,

and the computation is naturally distributed on different workers.

5.3.5 Safeguarding and convergence

Spectral stepsizes for gradient descent methods are equipped with safeguarding

strategies like backtracking line search to handle inaccurate curvature estimation and

to guarantee convergence. To safeguard the proposed spectral penalty parameters,

we check whether our linear subgradient assumption is reasonable before updating

116

Algorithm 4 Adaptive consensus ADMM (ACADMM)

Input: initialize v0, λi,0, τi,0, k0 =0,
1: while not converge by (5.137) and k < maxiter do
2: Locally update ui,k on each node by (5.133)
3: Globally update vk on central server by (5.134)
4: Locally update dual variable λi,k on each node by (5.135)
5: if mod(k, Tf) = 1 then

6: Locally update λ̂i,k = λi,k−1 + τi,k(vk−1 − ui,k)
7: Locally compute spectral stepsizes α̂i,k, β̂i,k
8: Locally estimate correlations αcor

i,k , β
cor
i,k

9: Locally update τi,k+1 using (5.151)
10: k0 ← k
11: else
12: τi,k+1 ← τi,k
13: end if
14: k ← k + 1
15: end while

the stepsizes. We do this by testing that the correlations

αcor
i,k =

〈∆ui,k,∆λ̂i,k〉
‖∆ui,k‖ ‖∆λ̂i,k‖

and βcor
i,k =

〈∆vk,∆λi,k〉
‖∆vk‖ ‖∆λi,k‖

, (5.150)

are bounded away from zero by a fixed threshold. We also bound changes in the

penalty parameter by (1+Ccg/k2) according to Assumption 3.3.1, which was shown in

Theorem 3.3.1 and Theorem 3.3.2 to guarantee convergence. The final safeguarded

ACADMM rule is

τ̂i,k+1 =



√
α̂i,kβ̂i,k if αcor

i,k > εcor and βcor
i,k > εcor

α̂i,k if αcor
i,k > εcor and βcor

i,k ≤ εcor

β̂i,k if αcor
i,k ≤ εcor and βcor

i,k > εcor

τi,k otherwise,

τi,k+1 = max{min{τ̂i,k+1, (1 +
Ccg

k2
)τi,k} ,

τi,k
1 + Ccg/k2

}.

(5.151)

117

Application Dataset
CADMM

[Boy+11]

RB-ADMM
[He+00]

AADMM
[Xu+17b]

CRB-ADMM
[Son+16]

Proposed
ACADMM

Elastic net
regression

Synthetic1 1000+(1.27e4) 94(1.22e3) 43(563) 106(1.36e3) 48(623)
Synthetic2 1000+(1.27e4) 130(1.69e3) 341(4.38e3) 140(1.79e3) 57(738)

MNIST 100+(1.49e4) 88(1.29e3) 40(5.99e3) 87(1.27e4) 14(2.18e3)
CIFAR10 2 100+(1.04e3) 100+(1.06e3) 100+(1.05e3) 100+(1.05e3) 35(376)

News20 100+(4.61e3) 100+(4.60e3) 100+(5.17e3) 100+(4.60e3) 78(3.54e3)
RCV1 33(1.06e3) 31(1.00e3) 20(666) 31(1.00e3) 8(284)

Realsim 32(5.91e3) 30(5.59e3) 14(2.70e3) 30(5.57e3) 9(1.80e3)

Sparse
logistic

regression

Synthetic1 138(137) 78(114) 80(101) 48(51.9) 24(29.9)
Synthetic2 317(314) 247(356) 1000+(1.25e3) 1000+(1.00e3) 114(119)

MNIST 325(444) 212(387) 325(516) 203(286) 149(218)
CIFAR10 310(700) 152(402) 310(727) 149(368) 44(118)
News20 316(4.96e3) 211(3.84e3) 316(6.36e3) 207(3.73e3) 137(2.71e3)
RCV1 155(115) 155(116) 155(137) 155(115) 150(114)

Realsim 184(77) 184(77) 184(85) 183(77) 159(68)

Support
Vector

Machine

Synthetic1 33(35.0) 33(49.8) 19(27) 26(28.4) 21(25.3)
Synthetic2 283(276) 69(112) 1000+(1.59e3) 81(97.4) 25(39.0)

MNIST 1000+(930) 172(287) 73(127) 285(340) 41(88.0)
CIFAR10 1000+(774) 227(253) 231(249) 1000+(1.00e3) 62(60.2)
News20 259(2.63e3) 262(2.74e3) 259(3.83e3) 267(2.78e3) 217(2.37e3)
RCV1 47(21.7) 47(21.6) 47(31.1) 40(19.0) 27(15.4)

Realsim 1000+(76.8) 1000+(77.6) 442(74.4) 1000+(79.3) 347(41.6)

SDP Ham-9-5-6 100+(2.01e3) 100+(2.14e3) 35(860) 100+(2.14e3) 30(703)

Table 5.4: Iterations (and runtime in seconds);128 cores are used; absence of convergence
after n iterations is indicated as n+.

118

5.3.6 Experiments & Applications

We now study the performance of ACADMM on benchmark problems, and

compare to other methods.

Our experiments use the following test problems that are commonly solved

using consensus methods.

Linear regression with elastic net regularizer. We consider consensus

formulations of the elastic net [ZH05] with fi and g defined as,

fi(ui) =
1

2
‖Diui − ci‖2, g(v) = ρ1|v|+

ρ2

2
‖v‖2, (5.152)

where Di ∈ Rni×m is the data matrix on node i, and ci is a vector of measurements.

Sparse logistic regression with `1 regularizer can be written in the con-

sensus form for distributed computing,

fi(ui) =

ni∑
j=1

log(1 + exp(−ci,jDT
i,jui)), g(v) = ρ|v| (5.153)

where Di,j ∈ Rm is the jth sample, and ci,j ∈ {−1, 1} is the corresponding label.

The minimization sub-step (5.133) in this case is solved by L-BFGS [LN89].

Support Vector Machines (SVMs) minimize the distributed objective

function [Gol+16]

fi(ui) = C

ni∑
j=1

max{1− ci,jDT
i,jui, 0}, g(v) =

1

2
‖v‖22 (5.154)

119

10-2 100 102 104

Initial penalty parameter

101

102

103

Ite
ra

tio
ns

ENRegression-Synthetic1

CADMM
RB-ADMM
AADMM
CRB-ADMM
ACADMM

101 102

Number of cores

101

102

103

Ite
ra

tio
ns

ENRegression-Synthetic2

CADMM
RB-ADMM
AADMM
CRB-ADMM
ACADMM

101 102

Number of cores

101

102

103

Ite
ra

tio
ns

SVM-Synthetic2

CADMM
RB-ADMM
AADMM
CRB-ADMM
ACADMM

10-2 100 102 104

Initial penalty parameter

101

102

103

Ite
ra

tio
ns

ENRegression-Synthetic2

CADMM
RB-ADMM
AADMM
CRB-ADMM
ACADMM

(a) Sensitivity of iteration
count to initial penalty τ0.
Synthetic problems of EN re-
gression are studied with 128
cores.

104 105

Number of samples

101

102

103

Ite
ra

tio
ns

ENRegression-Synthetic2

CADMM
RB-ADMM
AADMM
CRB-ADMM
ACADMM

(b) Sensitivity of iteration
count to number of cores (top)
and number of samples (bot-
tom).

101 102

Number of cores

101

102

103

104

Se
co

nd
s

SVM-Synthetic2

CADMM
RB-ADMM
AADMM
CRB-ADMM
ACADMM

(c) Sensitivity of iteration
count (top) and wall time (bot-
tom) to number of cores.

Figure 5.9: ACADMM is robust to the initial penalty τ , number of cores N , and number
of training samples.

where Di,j ∈ Rm is the jth sample on the ith node, and ci,j ∈ {−1, 1} is its label.

The minimization (5.133) is solved by dual coordinate ascent [CL11].

Semidefinite programming (SDP) can be distributed as,

fi(Ui) = ι{Di(Ui) = ci}, g(v) = 〈F, V 〉+ ι{V � 0} (5.155)

where ι{S} is a characteristic function that is 0 if condition S is satisfied and infinity

otherwise. V �0 indicates that V is positive semidefinite. V, F, Di,j ∈ Rn×n are

symmetric matrices, 〈X, Y 〉 = trace(XTY) denotes the inner product of X and Y ,

and Di(X) = (〈Di,1, X〉; . . . ; 〈Di,mi , X〉).

120

Experimental Setup We test these applications with synthetic and real datasets.

Synthetic1 contains samples from a normal distribution, and Synthetic2 contains

samples from a mixture of 10 random Gaussians. Synthetic2 is heterogeneous be-

cause the data block on each individual node is sampled from only 1 of the 10

Gaussians. We also acquire large empirical datasets from the LIBSVM webpage

[Liu+09], as well as MNIST digital images [LeC+98], and CIFAR10 object images

[KH09]. For binary classification tasks (SVM and logreg), we equally split the 10

category labels of MNIST and CIFAR into “positive” and “negative” groups. We

use a graph from the Seventh DIMACS Implementation Challenge on Semidefinite

and Related Optimization Problems following [BM03] for Semidefinite Programming

(SDP). The regularization parameter is fixed at ρ = 10 in all experiments.

Consensus ADMM (CADMM) [Boy+11], residual balancing (RB-ADMM)

[He+00], adaptive ADMM (AADMM) [Xu+17b], and consensus residual balancing

(CRB-ADMM) [Son+16] are implemented and reported for comparison. Hyper-

parameters of these methods are set as suggested by their creators. The initial

penalty is fixed at τ0 = 1 for all methods unless otherwise specified.

Convergence results Table 5.4 reports the convergence speed in iterations and wall-

clock time (secs) for various test cases. These experiments are performed with

128 cores on a Cray XC-30 supercomputer. CADMM with default penalty τ =

1 [Boy+11] is often slow to converge. ACADMM outperforms the other ADMM

variants on all the real-world datasets, and is competitive with AADMM on two

homogeneous synthetic datasets where the curvature may be globally estimated

121

with a scalar.

ACADMM is more reliable than AADMM since the curvature estimation be-

comes difficult for high dimensional variables. RB is relatively stable but sometimes

has difficulty finding the exact optimal penalty, as the adaptation can stop because

the difference of residuals are not significant enough to trigger changes. RB does

not change the initial penalty in several experiments such as logistic regression on

RCV1. CRB achieves comparable results with RB, which suggests that the relative

sizes of local residuals may not always be very informative. ACADMM significantly

boosts AADMM and the local curvature estimations are helpful in practice.

Robustness and sensitivity Fig. 5.9a shows that the practical convergence of

ADMM is sensitive to the choice of penalty parameter. ACADMM is robust to the

selection of the initial penalty parameter and achieves promising results for both

homogeneous and heterogeneous data, comparable to ADMM with a fine-tuned

penalty parameter.

We study scalability of the method by varying the number of workers and train-

ing samples (Fig. 5.9b). ACADMM is fairly robust to the scaling factor. AADMM

occasionally performs well when small numbers of nodes are used, while ACADMM

is much more stable. RB and CRB are more stable than AADMM, but cannot com-

pete with ACADMM. Fig. 5.9c (bottom) presents the acceleration in (wall-clock

secs) achieved by increasing the number of workers.

Finally, ACADMM is insensitive to the safeguarding hyper-parameters, corre-

lation threshold εcor and convergence constant Ccg. Though tuning these parameters

122

may further improve the performance, the fixed default values generally perform well

in our experiments and enable ACADMM to run without user oversight. In further

experiments in the supplementary material, we also show that ACADMM is fairly

insensitive to the regularization parameter ρ in our classification/regression models.

5.3.7 Summarization

We propose ACADMM, a fully automated algorithm for distributed optimiza-

tion. Numerical experiments on various applications and real-world datasets demon-

strate the efficiency and robustness of ACADMM. By automating the selection of

algorithm parameters, adaptive methods make distributed systems more reliable,

and more accessible to users that lack expertise in optimization.

5.4 Nonconvex Problems

5.4.1 Introduction

The alternating direction method of multipliers (ADMM) has been applied

to solve a wide range of constrained convex and nonconvex optimization problems.

ADMM decomposes complex optimization problems into sequences of simpler sub-

problems that are often solvable in closed form. Furthermore, these sub-problems

are often amenable to large-scale distributed computing environments [Gol+16;

Tay+16]. ADMM solves the problem

min
u∈Rn,v∈Rm

H(u) +G(v), subject to Au+Bv = b, (5.156)

123

where H : Rn→ R̄, G : Rm→ R̄, A ∈ Rp×n, B ∈ Rp×m, and b ∈ Rp, by the following

steps,

uk+1 = arg min
u
H(u) + 〈λk,−Au〉+

τk
2
‖b− Au−Bvk‖2

2 (5.157)

vk+1 = arg min
v
G(v) + 〈λk,−Bv〉+

τk
2
‖b− Auk+1 −Bv‖2

2 (5.158)

λk+1 =λk + τk(b− Auk+1 −Bvk+1), (5.159)

where λ∈Rp is a vector of dual variables (Lagrange multipliers), and τk is a scalar

penalty parameter.

The convergence of the algorithm can be monitored using primal and dual

“residuals,” both of which approach zero as the iterates become more accurate, and

which are defined as

rk = b− Auk −Bvk, and dk = τkA
TB(vk − vk−1), (5.160)

respectively [Boy+11]. The iteration is generally stopped when

‖rk‖2 ≤ εtol max{‖Auk‖2, ‖Bvk‖2, ‖b‖2} and ‖dk‖2 ≤ εtol‖ATλk‖2, (5.161)

where εtol > 0 is the stopping tolerance.

ADMM was introduced by Glowinski and Marroco [GM75] and Gabay and

Mercier [GM76], and convergence has been proved under mild conditions for convex

problems [Gab83; EB92; HY15]. The practical performance of ADMM on convex

124

problems has been extensively studied, see [Boy+11; Gol+14b; Xu+17b] and refer-

ences therein. For nonconvex problems, the convergence of ADMM under certain

assumptions are studied in [Wan+14; LP15; Hon+16; Wan+15]. The current weak-

est assumptions are given in [Wan+15], which requires a number of strict conditions

on the objective, including a Lipschitz differentiable objective term. In practice,

ADMM has been applied on various nonconvex problems, including nonnegative

matrix factorization [Xu+12], `p-norm regularization (0 < p < 1)[Bou+13; CW13],

tensor factorization [LS15; Xu+16b], phase retrieval [Wen+12], manifold optimiza-

tion [LO14; Kov+15], random fields [Mik+14], and deep neural networks [Tay+16].

The penalty parameter τk is the only free choice in ADMM, and plays an impor-

tant role in the practical performance of the method. Adaptive methods have been

proposed to automatically tune this parameter as the algorithm runs. The residual

balancing method [He+00] automatically increase or decrease the penalty so that

the primal and dual residuals have approximately similar magnitudes. The more

recent AADMM method [Xu+17b] uses a spectral (Barzilai-Borwein) rule for tuning

the penalty parameter. These methods achieve impressive practical performance for

convex problems and are guaranteed to converge under moderate conditions (such

as when adaptivity is stopped after a finite number of iterations).

In this manuscript, we study the practical performance of ADMM on several

nonconvex applications, including `0 regularized linear regression, `0 regularized im-

age denoising, phase retrieval, and eigenvector computation. While the convergence

of these applications may (not) be guaranteed by the current theory, ADMM is one

of the (popular) choices to solve these nonconvex problems. The following questions

125

are addressed using these model problems: (i) does ADMM converge in practice, (ii)

does the update order of H(u) and G(v) matter, (iii) is the local optimal solution

good, (iv) does the penalty parameter τk matter, and (v) is an adaptive penalty

choice effective?

5.4.2 Nonconvex applications

`0 regularized linear regression. Sparse linear regression can be achieved

using the non-convex, `0 regularized problem

min
x

1

2
‖Dx− c‖2

2 + ρ‖x‖0, (5.162)

where D ∈ Rn×m is the data matrix, c is a measurement vector, and x is the regres-

sion coefficients. ADMM is applied to solve problem (5.162) using the equivalent

formulation

min
u,v

1

2
‖Du− c‖2

2 + ρ‖v‖0 subject to u− v = 0. (5.163)

`0 regularized image denoising. The `0 regularizer [DZ13] can be sub-

stituted for the `1 regularizer when computing total variation for image denoising.

This results in the formulation [Cha07]

min
x

1

2
‖x− c‖2

2 + ρ‖∇x‖0 (5.164)

126

where c represents a given noisy image, ∇ is the linear discrete gradient operator,

and ‖ · ‖2/‖ · ‖0 is the `2/`0 norm. We solve the equivalent problem

min
u,v

1

2
‖u− c‖2

2 + ρ‖v‖0 subject to ∇u− v = 0. (5.165)

The resulting ADMM sub-problems can be solved in closed form using fast Fourier

transforms [GO09].

Phase retrieval. Ptychographic phase retrieval [Yan+11; Wen+12] solves

the problem

min
x

1

2
||abs(Dx)− c||22, (5.166)

where x ∈ Cn, D ∈ Cm×n, and abs(·) denotes the elementwise magnitude of a

complex vector. ADMM is applied to the equivalent problem

min
u,v

1

2
||abs(u)− c||22 subject to u−Dv = 0. (5.167)

Eigenvector problem. The eigenvector problem is a fundamental problem

in numerical linear algebra. The leading eigenvalue of a matrix D is found by

computing

max ‖Dx‖2
2 subject to ‖x‖2 = 1. (5.168)

127

ADMM is applied to the equivalent problem

min−‖Du‖2
2 + ι{z: ‖z‖2=1}(v) subject to u− v = 0, (5.169)

where ιS is the characteristic function defined by ιS(v) = 0, if v ∈ S, and ιS(v) =∞,

otherwise.

5.4.3 Experiments & Observations

Experimental setting. We implemented “vanilla ADMM” (ADMM with

constant penalty), and fast ADMM with Nesterov acceleration and restart

[Gol+14b]. We also implemented two methods for automatically selecting penalty

parameters: residual balancing [He+00], and the spectral adaptive method

[Xu+17b]. For `0 regularized linear regression, the synthetic problem in [ZH05;

Gol+14b; Xu+17b] and realistic problems in [Efr+04; ZH05; Xu+17b] are investi-

gated with ρ = 1. For `0 regularized image denoising, a one-dimensional synthetic

problem was created by the process described in [ZH05], and is shown in Fig. 5.12.

For the total-variation experiments, the ”Barbara” , ”Cameraman”, and ”Lena” im-

ages are investigated, where Gaussian noise with zero mean and standard deviation

20 was added to each image (Fig. 5.13). ρ = 1 and ρ = 500 are used for the synthetic

problem and image problems, respectively. For phase retrieval, a synthetic problem

is constructed with a random matrix D ∈ C15000×500, x ∈ C500, e ∈ C15000 and

c = abs(Dx+ e). Three images in Fig. 5.13 are used. Each image is measured with

21 octanary pattern filters as described in [Can+15]. For the eigenvector problem,

128

a random matrix D ∈ R20×20 is used.

L0 LinReg

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
510

0

10
1

10
2

10
3

Initial penalty parameter

Ite
ra

tio
ns

Vanilla ADMM
Residual balance
Adaptive ADMM

L0 ImgRes Phase Retrieval

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
510

0

10
1

10
2

10
3

Initial penalty parameter

Ite
ra

tio
ns

Vanilla ADMM
Residual balance
Adaptive ADMM

Eigenvector

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
510

1

10
2

10
3

10
4

10
5

Initial penalty parameter

O
bj

ec
tiv

e

Vanilla ADMM
Residual balance
Adaptive ADMM

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
510

0

10
1

10
2

Initial penalty parameter

PS
N

R

Vanilla ADMM
Residual balance
Adaptive ADMM

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5-10

0

10

20

30

40

50

60

70

Initial penalty parameter

O
bj

ec
tiv

e

Vanilla ADMM
Residual balance
Adaptive ADMM

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
522

23

24

25

26

27

28

29

Initial penalty parameter

PS
N

R

Vanilla ADMM
Residual balance
Adaptive ADMM

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
510

0

10
1

10
2

Initial penalty parameter

Ite
ra

tio
ns

Vanilla ADMM
Residual balance
Adaptive ADMM

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
510

0

10
1

10
2

Initial penalty parameter

Ite
ra

tio
ns

Vanilla ADMM
Residual balance
Adaptive ADMM

Figure 5.10: Sensitivity to the (initial) penalty parameter τ0 for the `0 regularized linear
regression, eigenvector computation, ”cameraman” denoising, and phase retrieval. (top)
Number of iterations needed as a function of initial penalty parameter. (bottom) The
objective/PSNR of the minima found for each non-convex problem.

Does ADMM converge in practice? The convergence of vanilla ADMM is

quite sensitive to the choice of penalty parameter. For vanilla ADMM, the iterates

may oscillate, and if convergence occurs it may be very slow when the penalty

parameter is not properly tuned. The residual balancing method converges more

often than vanilla ADMM, and the spectral adaptive ADMM converges the most

often. However, none of these methods uniformly beats all others, and it appears

that vanilla ADMM with a highly tuned stepsize can sometimes outperform adaptive

variants.

Does the update order of H(u) and G(v) matter? In Fig. 5.10, ADMM is

performed by first minimizing with respect to the smooth objective term, and then

the nonsmooth term. We repeat the experiments with the update order swapped,

and report the results in Fig. 5.11 of the appendix. When updating the non-smooth

129

term first, the convergence of ADMM for the phase retrieval problem becomes less

reliable. However, for some problems (like image denoising), convergence happened

a bit faster than with the original update order. Although the behavior of ADMM

changes, there is no predictable difference between the two update orderings.

Is the local optimal solution good? The bottom row of Fig. 5.10 presents

the objective/PSNR achieved by the ADMM variants when varying the (initial)

penalty parameter. In general, the quality of the solution depends strongly on the

penalty parameter chosen. There does not appear to be a predictable relationship

between the best penalty for convergence speed and the best penalty for solution

quality.

Does the adaptive penalty work? In Table 5.5, we see that adaptivity not

only speeds up convergence, but for most problem instances it also results in better

minimizers. This behavior is not uniform across all experiments though, and for

some problems a slightly lower objective value can be achieved using a finely tuned

constant stepsize.

5.4.4 Appendix: implementation details

5.4.4.1 `0 regularized linear regression

`0 regularized linear regression is a nonconvex problem

min
x

1

2
‖Dx− c‖2

2 + ρ‖x‖0 (5.170)

130

Application Dataset
#samples ×
#features1

Vanilla
ADMM

Residual
balance [He+00]

Adaptive
ADMM [Xu+17b]

`0 regularized
linear regression

Synthetic 50 × 40
2000+(.621) 2000+(.604) 39(.018)

1.71e4 1.71e4 15.2

Boston 506 × 13
2000+(.598) 2000+(.570) 1039(.342)

1.50e5 1.50e5 1.34e5

Diabetes 768 × 8
2000+(.751) 2000+(.708) 28(.014)

384 648 285

Leukemia 38 × 7129
2000+(15.3) 78(.578) 63(.477)

19.0 19.0 19.0

Prostate 97 × 8
2000+(.413) 2000+(.466) 29(.013)

1.14e3 380 324

Servo 130 × 4
2000+(.426) 2000+(.471) 45(.014)

267 267 198

`0 regularized
image restoration

Synthetic1D 100 × 1
2000+(.701) 1171(.409) 866(.319)

40.6 45.4 45.4

Barbara 512 × 512
200+(35.5) 200+(35.1) 18(3.33)

24.7 24.7 24.7

Cameraman 256 × 256
200+(5.75) 200+(5.60) 6(.190)

25.9 25.9 27.8

Lena 512 × 512
200+(35.5) 200+(35.8) 11(1.98)

25.9 25.9 27.9

phase retrieval

Synthetic 15000× 500 200+(19.4) 94(9.01) 46(4.45)

Barbara 512 × 512 × 21
59(91.1) 59(89.6) 50(88.1)

81.5 81.5 81.5

Cameraman 256 × 256 × 21
59(29.6) 55(19.4) 48(20.8)

75.7 75.7 75.7

Lena 512 × 512 × 21
59(90.1)) 57(87.4) 52(92.0)

81.4 81.5 81.5

1 width × height for image restoration; width × height × filters for phase retrieval

Table 5.5: Iterations (with runtime in seconds) and objective (or PSNR) for the vari-
ous algorithms and applications described in the text. Absence of convergence after n
iterations is indicated as n+.

131

L0 LinReg L0 ImgRes Phase Retrieval Eigenvector

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
510

0

10
1

10
2

10
3

Initial penalty parameter

Ite
ra

tio
ns

Vanilla ADMM
Residual balance
Adaptive ADMM

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5-10

0

10

20

30

40

50

60

70

Initial penalty parameter

O
bj

ec
tiv

e

Vanilla ADMM
Residual balance
Adaptive ADMM

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
510

0

10
1

10
2

Initial penalty parameter

Ite
ra

tio
ns

Vanilla ADMM
Residual balance
Adaptive ADMM

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
522

23

24

25

26

27

28

29

Initial penalty parameter

PS
N

R

Vanilla ADMM
Residual balance
Adaptive ADMM

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
510

0

10
1

10
2

10
3

Initial penalty parameter

Ite
ra

tio
ns

Vanilla ADMM
Residual balance
Adaptive ADMM

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
540

45

50

55

60

65

70

75

80

Initial penalty parameter

O
bj

ec
tiv

e

Vanilla ADMM
Residual balance
Adaptive ADMM

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
510

0

10
1

10
2

Initial penalty parameter

O
bj

ec
tiv

e

Vanilla ADMM
Residual balance
Adaptive ADMM

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
510

0

10
1

10
2

Initial penalty parameter

Ite
ra

tio
ns

Vanilla ADMM
Residual balance
Adaptive ADMM

Figure 5.11: Convergence results when the non-smooth objective term is updated first,
and the smooth term is updated second. Sensitivity to the (initial) penalty parameter τ0

is shown for the synthetic problem of `0 regularized linear regression, eigenvector compu-
tation, the ”cameraman” denoising problem, and phase retrieval. The top row shows the
convergence speed in iterations. The bottom row shows the objective/PSNR achieved by
the final iterates.

where D ∈ Rn×m is the data matrix, c is the measurement vector, and x is the

regression coefficients. ADMM is applied to solve problem (5.170) by solving the

equivalent problem

min
u,v

1

2
‖Du− c‖2

2 + ρ‖v‖0 subject to u− v = 0. (5.171)

The proximal operator of the `0 norm is the hard-thresholding,

hard(z, t) = arg min
x
‖x‖0 +

1

2t
‖x− z‖2

2 = z � I{z:|z|>√2t}(z), (5.172)

where � represents element-wise multiplication, and IS is the indicator function of

the set S: IS(v) = 1, if v ∈ S, and IS(v) = 0, otherwise. Then the steps of ADMM

132

can be written

uk+1 = arg min
u
‖Du− c‖2

2 +
τ

2
‖0− u+ vk + λk/τ‖2

2 (5.173)

=


(DTD + τIn)−1(τvk + λk +DT c) if n ≥ m

(In −DT (τIm +DDT)−1D)(vk + λk/τ +DT c/τ) if n < m

(5.174)

vk+1 = arg min
v
ρ‖v‖0 +

τ

2
‖0− uk+1 + v + λk/τ‖2

2 (5.175)

= hard(uk+1 − λk/τ, ρ/τ) (5.176)

λk+1 = λk + τ(0− uk+1 + vk+1). (5.177)

5.4.4.2 `0 regularized image denoising

The `0 regularizer [DZ13] is an alternative to the `1 regularizer when com-

puting total variation [GO09; Gol+14b]. `0 regularized image denoising solves the

nonconvex problem

min
x

1

2
‖x− c‖2

2 + ρ‖∇x‖0 (5.178)

where c represents a given noisy image, ∇ is the linear gradient operator, and

‖ · ‖2/‖ · ‖0 denotes the `2/`0 norm of vectors. The steps of ADMM for this problem

133

are

uk+1 = arg min
u

1

2
‖u− c‖2

2 +
τ

2
‖vk + λk/τ −∇u‖2

2 (5.179)

= (I + τ∇T∇)−1(c+ τ∇T (vk + λk/τ)) (5.180)

vk+1 = arg min
v
ρ‖v‖0 +

τ

2
‖0−∇uk+1 + v + λk/τ‖2 (5.181)

= hard(∇uk+1 − λk/τ, ρ/τ) (5.182)

λk+1 = λk + τ(0−∇uk+1 + vk+1) (5.183)

where the linear systems can be solved using fast Fourier transforms.

5.4.4.3 Phase retrieval

Ptychographic phase retrieval [Yan+11; Wen+12] solves problem

min
x

1

2
||abs(Dx)− c||22, (5.184)

where x ∈ Cn, D ∈ Cm×n, and abs(·) denotes the elementwise magnitude of a

complex-valued vector. ADMM is applied to the equivalent problem

min
u,v

1

2
||abs(u)− c||22 subject to u−Dv = 0. (5.185)

134

Define the projection operator of a complex valued vector as

absProj(z, c, t) = minx
1
2
‖abs(x)− c‖2

2 + t
2
‖x− z‖2

2 (5.186)

=
(

t
1+t

abs(z) + 1
1+t

c
)
� sign(z), (5.187)

where sign(·) denotes the elementwise phase of a complex-valued vector. In the

following ADMM steps, notice that the dual variable λ ∈ Cm is complex, and the

penalty parameter τ ∈ R is a real non-negative scalar,

uk+1 = arg min
u

1

2
‖abs(u)− c‖2

2 +
τ

2
‖Dvk + λk/τ − u‖2

2 (5.188)

= absProj(Dvk + λk/τ, c, τ) (5.189)

vk+1 = arg min
v

0 +
τ

2
‖0− uk+1 +Dv + λk/τ‖2

2 = D−1(uk+1 − λk/τ) (5.190)

λk+1 = λk + τ(0− uk+1 +Dvk+1). (5.191)

5.4.4.4 Eigenvector problem

The eigenvector problem is a fundamental problem in numerical linear alge-

bra. The leading eigenvector of a matrix can be recovered by solving the Rayleigh

quotient maximization problem

max ‖Dx‖2
2 subject to ‖x‖2 = 1. (5.192)

135

ADMM is applied to the equivalent problem

min−‖Du‖2
2 + ι{z: ‖z‖2=1}(v) subject to u− v = 0, (5.193)

where ιS is the characteristic function of the set S: ιS(v) = 0, if v ∈ S, and

ιS(v) =∞, otherwise. The ADMM steps are

uk+1 = arg min
u
−‖Du‖2

2 +
τ

2
‖0− u+ vk + λk/τ‖2

2 = (τI − 2DTD)−1(τvk + λk)

(5.194)

vk+1 = arg min
v
ι{z: ‖z‖2=1}(v) +

τ

2
‖0− uk+1 + v + λk/τ‖2 =

uk+1 − λk/τ
‖uk+1 − λk/τ‖2

(5.195)

λk+1 = λk + τ(0− uk+1 + vk+1). (5.196)

5.4.5 Appendix: synthetic and realistic datasets

We provide the detailed construction of the synthetic dataset for our linear re-

gression experiments. The same synthetic dataset has been used in [ZH05; Gol+14b;

Xu+17b]. Based on three random normal vectors νa, νb, νc ∈ R50, the data matrix

136

D = [d1 . . . d40] ∈ R50×40 is defined as

di =



νa + ei, i = 1, . . . , 5,

νb + ei, i = 6, . . . , 10,

νc + ei, i = 11, . . . , 15,

νi ∈ N(0, 1), i = 16, . . . , 40,

(5.197)

where ei are random normal vectors from N(0, 1). The problem is to recover the

vector

x∗ =


3, i = 1, . . . , 15,

0, otherwise

(5.198)

from noisy measurements of the form c = Dx∗ + ê, with ê ∈ N(0, 0.1)

0 20 40 60 80 100
-10

0

10

20

30

40

50

Groundtruth
Noisy
Recovered

Figure 5.12: The synthetic one-dimensional signal for `0 regularized image denoising.
The groundtruth signal, noisy signal (PSNR = 37.8) and recovered signal by AADMM
(PSNR = 45.4) are shown.

137

Groundtruth Noisy Recovered

Figure 5.13: The groundtruth image (left), noisy image (middle), and recovered image
by AADMM (right) for `0 regularized image denoising. The PSNR of the noisy/recovered
images are 21.9/24.7 for ”Barbara”, 22.4/27.8 for ”Cameraman”, 21.9/27.9 for ”Lena”.

138

5.4.6 Summarization

We provide a detailed discussion of the performance of ADMM on several non-

convex applications, including `0 regularized linear regression, `0 regularized image

denoising, phase retrieval, and eigenvector computation. In practice, ADMM usually

converges for those applications, and the penalty parameter choice has a significant

effect on both convergence speed and solution quality. Adaptive penalty methods

such as AADMM [Xu+17b] automatically select the penalty parameter, and per-

form optimization with little user oversight. For most problems, adaptive stepsize

methods result in faster convergence or better minimizers than vanilla ADMM with

a constant non-tuned penalty parameter. However, for some difficult non-convex

problems, the best results can still be obtained by fine-tuning the penalty parame-

ter.

139

Part II

GAN, Network Acceleration and Image Processing

140

Chapter 6: Stochastic Alternating Methods

We have shown how to solve min-max saddle point problem derived from con-

strained problem. We also show how to distribute large scale problem on a large

number of computing nodes. Now let us consider the more general min-max prob-

lem and how we can efficiently optimize it by stochastic method without distributed

computing. In this chapter, we review our theoretical insights on stochastic alter-

nating method and prediction method, and refer readers to [Yad+18] for empirical

performance of applying prediction step to stabalize generative adversarial network

(GAN) training. In the following chapters, we will apply GAN for image processing

in Chapter 7, and GAN for network acceleration in Chapter 8.

6.1 Stochastic Alternating Methods with Prediction Step

Let us consider optimizing the minimax problem that is more general than the

Lagrangian saddle point problem (2.2),

min
u

max
v
L(u, v). (6.1)

141

An attractive application of the minimax problem is the training of generative ad-

versarial networks (GANs).

Deep neural networks achieve state-of-the-art performance in many machine

learning applications. Despite the complicated network architectures and the non-

convexity in the training objective, the relatively simple solver, stochastic gradient

descent (SGD), often performs well in practice. Though it is not fully understood

why SGD works so well in practice, recent theoretical study [Cho+15; Kaw16;

Din+17; Kaw+17; San+19] and empirical study [Goo+14b; Kes+16; Cha+16b;

Li+18b] provided a lot of insightful explanation. We consider the stochastic version

of the alternating optimization methods for general minimax problems (6.1). One

of the appealing applications of this method is training generative neural networks

(GANs). GANs have been extensively studied over recent years, and we recently

applied GANs for accelerating neural networks [Xu+18b], transferring image styles

[Xu+19a], and dehazing images [Yan+18], andin computer vision. The stochastic

alternating gradients method for training GANs can be written as

uk+1 = uk − τkL′u(uk, vk) | gradient descent in u (6.2)

vk+1 = vk + σkL′v(ūk+1, v
k) | gradient ascent in v, (6.3)

where {τk, σk} are the stepsizes.

The training of GANs is not well understood and is also known to be unsta-

ble. We showed that the stochastic alternating methods for training GANs can be

stabilized by introducing the prediction step inspired by the primal-dual gradient

142

methods [CP11; Gol+15], which enables users to choose bigger stepsizes and achieve

better models [Yad+18],

uk+1 = uk − τkL′u(uk, vk) | gradient descent in u (6.4)

ūk+1 = uk+1 + (uk+1 − uk) | predict future value of u (6.5)

vk+1 = vk + σkL′v(ūk+1, v
k) | gradient ascent in v. (6.6)

6.2 Background and Advantage of Prediction Step

In the convex optimization literature, saddle point problems are well stud-

ied. One popular solver is the primal-dual hybrid gradient (PDHG) method [ZC08;

Ess+09], which has been popularized by Chambolle and Pock [CP11], and has been

successfully applied to a range of machine learning and statistical estimation prob-

lems [Gol+15]. PDHG relates closely to the method proposed here - it achieves

stability using the same prediction step, although it uses a different type of gradient

update and is only applicable to bi-linear problems.

Stochastic methods for convex saddle-point problems can be roughly divided

into two categories: stochastic coordinate descent [DL14; LZ15; ZL15; ZS15; ZS16;

WX17; ST17] and stochastic gradient descent [Che+14; Qia+16]. Similar opti-

mization algorithms have been studied for reinforcement learning [WC16; Du+17].

Recently, a “doubly” stochastic method that randomizes both primal and dual up-

dates was proposed for strongly convex bilinear saddle point problems [Yu+15].

For general saddle point problems, “doubly” stochastic gradient descent methods

143

are discussed in Nemirovski et al. [Nem+09],Palaniappan and Bach [PB16], in which

primal and dual variables are updated simultaneously based on the previous iterates

and the current gradients.

However, stochastic alternating method can be unstable and inaccurate. Let

us look at the behavior of (6.2)-(6.3) on a simple bi-linear saddle of the form

L(u, v) = vTKu (6.7)

where K is a matrix. When exact (non-stochastic) gradient updates are used, the

iterates follow the path of a simple dynamical system with closed-form solutions.

We give here a sketch of this argument, and show that, as the learning rate gets

small, the iterates of the non-prediction method rotate in orbits around the saddle

without converging, while the iterates of the prediction method converge.

When the (non-predictive) gradient method is applied to the linear problem

(6.7), the resulting iterations can be written

uk+1 − uk
α

= −KTvk,
vk+1 − vk

α
= (β/α)Kuk+1.

When the stepsize α gets small, this behaves like a discretization of the system of

differential equations

u̇ = −KTv, v̇ = β/αKu

where u̇ and v̇ denote the derivatives of u and v with respect to time. These

144

equations describe a simple harmonic oscillator, and the closed form solution for u

is

u(t) = C cos(Σ1/2t+ φ)

where Σ is a diagonal matrix, and the matrix C and vector φ depend on the initial-

ization. We can see that, for small values of α and β, the non-predictive algorithm

approximates an undamped harmonic motion, and the solutions orbit around the

saddle without converging.

The prediction step (6.5) improves convergence because it produces damped

harmonic motion that sinks into the saddle point. When applied to the linearized

problem (6.7), we get the dynamical system

u̇ = −KTv, v̇ = β/αK(u+ αu̇) (6.8)

which has solution

u(t) = UA exp(−tα
2

√
Σ) sin(t

√
(1− α2/4)Σ + φ).

From this analysis, we see that the damping caused by the prediction step causes

the orbits to converge into the saddle point, and the error decays exponentially fast.

6.3 Convergence for Convex-concave Problem

In this section, we prove that for convex-concave saddle point problems, the

above stochastic steps have worst-caseO(1/
√
k) convergence rate, and the prediction

145

step stabilizes the optimization in theory.

We assume that the function L(u, v) is convex in u and concave in v. We

can then measure convergence using the “primal-dual” gap, P (u, v) = L(u, v?) −

L(u?, v) where (u?, v?) is a saddle. Note that P (u, v) > 0 for non-optimal (u, v), and

P (u, v) = 0 if (u, v) is a saddle. Using these definitions, we formulate the following

convergence result. The proof is in the supplementary material.

Theorem 6.3.1. Suppose the function L(u, v) is convex in u, concave in v, and that

the partial gradient L′v is uniformly Lipschitz smooth in u (‖L′v(u1, v)−L′v(u2, v)‖ ≤

Lv‖u1 − u2‖). Suppose further that the stochastic gradient approximations satisfy

E‖L′u(u, v)‖2 ≤ G2
u, E‖L′v(u, v)‖2 ≤ G2

v for scalars Gu and Gv, and that E‖uk −

u?‖2 ≤ D2
u, and E‖vk − v?‖2 ≤ D2

v for scalars Du and Dv.

If we choose decreasing learning rate parameters of the form αk = Cα√
k

and

βk =
Cβ√
k
, then the SGD method with prediction converges in expectation, and we

have the error bound

E[P (ûl, v̂l)] ≤ 1

2
√
l

(
D2
u

Cα
+
D2
v

Cβ

)
+

√
l + 1

l

(
CαG

2
u

2
+ CαLvG

2
u + CαLvD

2
v +

CβG
2
v

2

)

where ûl = 1
l

∑l
k=1 u

k, v̂l = 1
l

∑l
k=1 v

k.

A few things are worth noting about Theorem 6.3.1. First, the theorem guar-

antees convergence for learning rates of the form αk = Cα√
k

and βk =
Cβ√
k
, where

the constants Cα, Cβ can be any positive scalars. Even if the minimization learning

rate is much larger than the maximization rate (or visa versa), the method is still

asymptotically stable.

146

Also, we make a variety of smoothness assumptions about f and bounded-

ness assumptions on the stochastic gradients, in addition to an assumption about

the boundedness of the iterates. These assumptions are standard; indeed they are

required to prove convergence of standard SGD methods for weakly convex (non-

saddle) problems. Note that some of these assumptions could be dropped, and a

faster rate could be proved, if we assume strong convexity.

6.4 Proof of Theorems

Assume the optimal solution (u?, v?) exists, then L′u(u?, v) = L′v(u, v?) = 0. In

the following proofs, we use gu(u, v), gv(u, v) to represent the stochastic approxima-

tion of gradients, where E[gu(u, v)] = L′u(u, v), E[gv(u, v)] = L′v(u, v). We show the

convergence of the proposed stochastic primal-dual gradients for the primal-dual gap

P (uk, vk) = L(uk, v
?)− L(u?, vk). We prove the O(1/

√
k) convergence rate in The-

orem 6.3.1 by using Lemma 6.4.1 and Lemma 6.4.2, which present the contraction

of primal and dual updates, respectively.

Lemma 6.4.1. Suppose L(u, v) is convex in u and E[‖gu(u, v)‖2] ≤ G2
u, we have

E[L(uk, vk)]−E[L(u?, vk)] ≤
1

2αk

(
E[‖uk − u?‖2]− E[‖uk+1 − u?‖2]

)
+
αk
2
G2
u (6.9)

147

Proof. Use primal update in (1), we have

‖uk+1 − u?‖2 = ‖uk − αk gu(uk, vk)− u?‖2 (6.10)

= ‖uk − u?‖2 − 2αk 〈gu(uk, vk), uk − u?〉+ α2
k ‖gu(uk, vk)‖2. (6.11)

Take expectation on both side of the equation, substitute with E[gu(u, v)] = L′u(u, v)

and apply E[‖g2
u(u, v)‖] ≤ G2

u to get

E[‖uk+1 − u?‖2] ≤ E[‖uk − u?‖2]− 2αk E[〈L′u(uk, vk), uk − u?〉] + α2
kG

2
u. (6.12)

Since L(u, v) is convex in u, we have

〈L′u(uk, vk), uk − u?〉 ≥ L(uk, vk)− L(u?, vk). (6.13)

(6.9) is proved by combining (6.12) and (6.13).

Lemma 6.4.2. Suppose L(u, v) is concave in v and has Lipschitz gradients,

‖L′v(u1, v)− L′v(u2, v)‖ ≤ Lv‖u1 − u2‖; and bounded variance, E[‖gu(u, v)‖2] ≤ G2
u,

E[‖gv(u, v)‖2] ≤ G2
v; and E[‖vk − v?‖2] ≤ D2

v, we have

E[L(uk, v
?)]− E[L(uk, vk)] ≤

1

2βk

(
E[‖vk − v?‖2]− E[‖vk+1 − v?‖2]

)
+
βk
2
G2
v + αkLv (G2

u +D2
v).

(6.14)

148

Proof. From the dual update in (1), we have

‖vk+1 − v?‖2 = ‖vk + βk gv(ūk+1, vk)− v?‖2 (6.15)

= ‖vk − v?‖2 + 2βk 〈gv(ūk+1, vk), vk − v?〉+ β2
k ‖gv(ūk+1, vk)‖2.

(6.16)

Take expectation on both sides of the equation, substitute E[gv(u, v)] = L′v(u, v),

and apply E[‖g2
v(u, v)‖] ≤ G2

v to get

E[‖vk+1 − v?‖2] ≤ E[‖vk − v?‖2] + 2βk E[〈L′v(ūk+1, vk), vk − v?〉] + β2
k G

2
v. (6.17)

Reorganize (6.17) to get

E[‖vk+1 − v?‖2]− E[‖vk − v?‖2]− β2
k G

2
v ≤ 2βk E[〈L′v(ūk+1, vk), vk − v?〉]. (6.18)

The right hand side of (6.18) can be represented as

E[〈L′v(ūk+1, vk), uk − v?〉] (6.19)

=E[〈L′v(ūk+1, vk)− L′v(uk, vk) + L′v(uk, vk), vk − v?〉] (6.20)

=E[〈L′v(ūk+1, vk)− L′v(uk, vk), vk − v?〉] + E[〈L′v(uk, vk), vk − v?〉], (6.21)

149

where

E[〈L′v(ūk+1, vk)− L′v(uk, vk), vk − v?〉] (6.22)

≤E[‖L′v(ūk+1, vk)− L′v(uk, vk)‖ ‖vk − v?‖] (6.23)

≤E[Lv ‖ūk+1 − uk‖ ‖vk − v?‖] (6.24)

=E[2Ly ‖uk+1 − uk‖ ‖vk − v?‖] (6.25)

=E[2Ly ‖αkgu(uk, vk)‖ ‖vk − v?‖] (6.26)

≤Lyαk E[‖gu(uk, vk)‖2 + ‖vk − v?‖2] (6.27)

≤Lyαk (G2
u +D2

v). (6.28)

Lipschitz smoothness is used for (6.24); the prediction step in (1) is used for (6.25);

the primal update in (1) is used for (6.26); bounded assumptions are used for (6.28).

Since L(u, v) is concave in v, we have

〈L′v(uk, vk), vk − v?〉 ≤ L(uk, vk)− L(uk, v
?). (6.29)

Combine equations (6.18, 6.21, 6.28) to get (6.29)

1

2βk

(
E[‖vk+1 − v?‖2]− E[‖vk − v?‖2]

)
− βk

2
G2
v

≤ Lvαk (G2
u +D2

v) + E[L(uk, vk)]− E[L(uk, v
?)].

(6.30)

Rearrange the order of (6.30) to achieve (6.14).

We now present the proof of Theorem 6.3.1.

150

Proof. Combining (6.9) and (6.14) in the Lemmas, the primal-dual gap P (uk, vk) =

L(uk, v
?)− L(u?, vk) satisfies,

E[P (uk, vk)] ≤
1

2αk

(
E[‖uk − u?‖2]− E[‖uk+1 − u?‖2]

)
+
αk
2
G2
u

+
1

2βk

(
E[‖vk − v?‖2]− E[‖vk+1 − v?‖2]

)
+
βk
2
G2
v + αkLv (G2

u +D2
v).

(6.31)

Accumulate (6.31) from k = 1, . . . , l to obtain

l∑
k=1

E[P (uk, vk)] ≤

1

2α1

E[‖u1 − u?‖2] +
l∑

k=2

(
1

2αk
− 1

2αk−1

)E[‖uk − u?‖2] +
l∑

k=1

αk(
G2
u

2
+ LvG

2
u + LvD

2
v)

+
1

2β1

E[‖v1 − v?‖2] +
l∑

k=2

(
1

2βk
− 1

2βk−1

)E[‖vk − v?‖2] +
l∑

k=1

βk
G2
v

2
.

(6.32)

Assume E[||uk − u?‖2] ≤ D2
u, E[||vk − v?‖2] ≤ D2

v are bounded, we have

l∑
k=1

E[P (uk, vk)] ≤
1

2α1

D2
u +

l∑
k=2

(
1

2αk
− 1

2αk−1

)D2
u +

l∑
k=1

αk(
G2
u

2
+ LvG

2
u + LvD

2
v)

+
1

2β1

D2
v +

l∑
k=2

(
1

2βk
− 1

2βk−1

)D2
v +

l∑
k=1

βk
G2
v

2
.

(6.33)

Since αk, βk are decreasing and
∑l

k=1 αk ≤ Cα
√
l + 1,

∑l
k=1 βk ≤ Cβ

√
l + 1,

151

we have

l∑
k=1

E[P (uk, vk)] ≤
√
l

2

(
D2
u

Cα
+
D2
v

Cβ

)
+
√
l + 1

(
CαG

2
u

2
+ CβLvG

2
u + CαLvD

2
v +

CβG
2
v

2

)
(6.34)

For ûl = 1
l

∑l
k=1 uk, v̂

l = 1
l

∑l
k=1 vk, because L(u, v) is convex-concave, we

have

E[P (ûl, v̂l)] = E[L(ûl, v?)− L(u?, v̂l)] (6.35)

≤ E[
1

l

l∑
k=1

(L(uk, v
?)− L(u?, vk))] (6.36)

=
1

l

l∑
k=1

E[L(uk, v
?)− L(u?, vk)] (6.37)

=
1

l

l∑
k=1

E[P (uk, vk)]. (6.38)

Combine (6.34) and (6.38) to prove

E[P (x̂l, ŷl)] ≤ 1

2
√
l

(
D2
u

Cα
+
D2
v

Cβ

)
+

√
l + 1

l

(
CαG

2
u

2
+ CαLvG

2
u + CαLvD

2
v +

CβG
2
v

2

)
.

(6.39)

6.5 Generative Adversarial Network

We apply stochastic alternating method with prediction step to stabalize the

training of GAN, as shown in Fig. 6.1. We refer readers to [Yad+18] for more details

on our GAN experiments.

152

0 20 40 60 80 100
Epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

L(
D

)

0 20 40 60 80 100
Epochs

1
2
3
4
5
6
7
8
9

L(
G

)

(a) With G prediction

0 20 40 60 80 100
Epochs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

L(
D

)

0 20 40 60 80 100
Epochs

0

5

10

15

20

25

30

L(
G

)

(b) DCGAN [Rad+16]

0 20 40 60 80 100
Epochs

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

L(
D

)

0 20 40 60 80 100
Epochs

0

5

10

15

20

25

30

L(
G

)

(c) Unrolled
GAN [Met+16]

Figure 6.1: Comparison of GAN training algorithms for DCGAN architecture on Cifar-10
image datasets. Using default parameters of DCGAN; lr = 0.0002, β1 = 0.5.

153

Chapter 7: Adversarial Network for Image Processing

In this chapter, we use GAN framework to boost the performance of image

processing tasks: image style transfer and image dehazing. In Section 7.1, we apply

adversarial network to learn from multi-domain artistic images for arbitrary style

transfer. In Section 7.2, we introduce a simple yet effective network as a strong

baseline for singe image dehazing. We show that the performance of deep network

can be improved with the help of normalization layers and pre-trained encoder. We

also use GAN framework of image dehazing so that we can train network without

using paired clean and hazy images that are difficult to acquire. The encoder-

decoder architecture and fully convolutional network in this chapter can also be

used for other tasks such as semantic segmentation [Hsu+18]. This chapter is based

on our work presented in [Xu+18a; Xu+19a; Yan+18]

7.1 Image Style Transfer

7.1.1 Introduction

Image style transfer is a task that aims to render the content of one image

with the style of another, which is important and interesting for both practical

154

and scientific reasons. The style transfer techniques can be widely used in image

processing applications such as mobile camera filters and artistic image generation.

Furthermore, the study of style transfer often reveals the intrinsic property of images.

Style transfer is challenging as it is difficult to explicitly separate and represent the

content and style of an image.

In the seminal work of Gatys et al. [Gat+16], the authors represent content

with deep features extracted by a pre-trained neural network, and represent style

with second order statistics (i.e. the Gram matrix) of the deep features. They pro-

pose an optimization framework with the objective that the generated image has

similar deep features to the given content image, and similar second order statistics

to the given style image. The generated results are visually impressive, but the opti-

mization framework is far too slow for real-time applications. Later works [Joh+16;

Uly+17b] train a feed-forward network to replace the optimization framework for

fast stylization, with a loss similar to Gatys et al. [Gat+16]. However, they need to

train a network for each style image and cannot generalize to unseen images. More

recent approaches [HB17; Li+17f] tackle arbitrary style transfer for unseen content

and style images, which still represent style with second order statistics of deep fea-

tures. The second order statistics of style representation is originally designed for

textures [Gat+15], and style transfer is considered as texture transfer in previous

methods.

Another line of research considers style transfer as conditional image genera-

tion, and apply adversarial networks to train an image to image translation network

[Iso+17; Tai+17; Zhu+17b; Hua+18]. The trained image translation networks can

155

transfer image from one domain to another domain, for example, from a natural

image to sketch. However, they cannot be applied to arbitrary style transfer as the

input images are from mutliple domains.

In this paper, we combine the best of both worlds by adversarially training

a single feed-forward network for arbitrary style transfer. We introduce several

techniques to tackle the challenging problem of adversarial training from multi-

domain data. In adversarial training, the generator (stylization network) and the

discriminator are alternatively updated. Both our generator and discriminator are

conditional networks. The generator is trained to fool the discriminator, as well

as satisfy the content and style representation similarity to inputs. Our generator

is built upon a state-of-the-art network for abitrary style transfer [HB17], which

is conditioned on both content image and style image, and uses adaptive instance

normalization (AdaIN) to combine the two inputs. AdaIN shifts the mean and

variance of the deep features of content image to match those of the style image.

Our discriminator is conditioned on the coarse domain categories, which is trained to

distinguish the generated images with real images from the the same style category.

Comparing with previous arbitrary style transfer methods, our approach uses

the discriminator to learn a data-driven representation for styles. The combined

loss for our generator considers both instance-level information from style loss and

category-level information from adversarial training. Comparing with previous ad-

versarial training methods, our approach handles multi-domain inputs by using a

conditional generator designed for arbitrary style transfer and a conditional dis-

criminator. Moreover, we propose a mask module to automatically control the level

156

of stylization by predicting a mask to blend the stylized features and the content

features. Finally, we use the trained discriminator to rank and find the represen-

tative generated images in each style category. We release our code and model at

https://github.com/nightldj/behance_release

7.1.2 Related work

Style transfer. We briefly review the neural style transfer methods, and

recommend [Jin+17] for a more comprehensive review. Gatys et al. [Gat+16] pro-

posed the first neural style transfer method based on an optimization framework,

which uses deep features to represent content and Gram matrix to represent style.

The optimization framework was replaced by a feed forward network to achieve

real-time performance in [Joh+16; Uly+16b; Wan+17]. Ulyanov et al. [Uly+17b]

showed that instance normalization is particularly effective for training a fast style

transfer network. Other works focused on controlling spatial, color, and stroke for

stylization [Gat+17; Fri+16; Jin+18], and exploring other style representation such

as mean and variance [Li+17e], histogram [Wil+17b], patch-based MRF [LW16a],

and patch-based GAN [LW16b]. Comparing with [Gat+16], these fast style transfer

methods sometimes compromise on the visual quality, and need to train one network

for each style.

Various methods have been proposed to train a single feed forward network

for multiple styles. Dumoulin et al. [Dum+17] proposed conditional instance nor-

malization, which learned the affine parameter for each style image. Chen et al.

157

https://github.com/nightldj/behance_release

[Che+17a] learned the “style bank”, which contains several layers of filters for each

style. Zhang and Dana [ZD17] proposed comatch layers for multi-style transfer.

These methods only work with limited number of styles, and cannot apply to an

unseen style image.

More recent approaches are designed for arbitrary style transfer, where both

the content and the style inputs can be unseen images. Ghiasi et al. [Ghi+17]

extended conditional instance normalization (IN) by training a separate network

to predict the affine parameter of IN. Falong Shen and Zeng [FSZ18] learned a

meta network to predict filters in the transformation networks. Huang and Belongie

[HB17] proposed adaptive instance normalization (AdaIN) that adjusts the mean

and variance of content image to match those of the style image. Li et al. [Li+17f;

Li+18c] used feature whitening and coloring transforms (WCT) to match the statis-

tics of the content image to the style image. Sheng et al. [She+18] proposed feature

decoration that generalizes AdaIN and WCT. Note that the optimization frame-

work [Gat+16] and path-based non-parametric methods (e.g., style swamp [CS16],

deep image analogy[Lia+17], and deep feature reshuffle [Gu+18]) can also be ap-

plied to arbitrary style transfer, but these methods can be much slower. Zhang

et al. [Zha+18b] proposed to separate style and content and then combine them

with bilinear layer, which requires a set of content and style images as input and

has limited applications. Our approach is the first to explore adversarial training

for arbitrary style transfer.

Generative adversarial networks (GANs). GANs have been widely stud-

ied for image generation and manipulation tasks since [Goo+14a]. Elgammal et al.

158

Block 4

Co
nv

 5
12

*3
*3

Block 3

Co
nv

 2
56

*3
*3

Co
nv

 2
56

*3
*3

Co
nv

 2
56

*3
*3

Co
nv

 2
56

*3
*3

Input

Block 1

Co
nv

 6
4*

3*
3

Co
nv

 6
4*

3*
3

Block 2

Co
nv

 1
28

*3
*3

Co
nv

 1
28

*3
*3

Encoder: pre-trained

CatCatCat

Co
nv

 3
*3

*3

Content

Style

Encoder
AdaIN

Mask
Decoder

Discriminator

Encoder

Fake/Style
Real/Style

Content & Style Loss

Generator

PoolingPoolingPooling

Figure 7.1: Proposed network: (left) encoder-decoder as generator; (right) pre-
trained VGG as encoder. The decoder architecture is symmetric comparing to
encoder. We use the conventional texture loss based on pre-trained encoder features,
and adversarially train mask module, decoder and discriminator.

[Elg+17] applied GANs to generate artistic images. Isola et al. [Iso+17] used con-

ditional adversarial networks to learn the loss for image to image translation, which

is extended by several concurrent methods [Zhu+17b; Kim+17; Yi+17; Liu+17]

that explored cycle-consistent loss when training data are unpaired. Later works

improved the diversity of generated images by considering multimodality of data

[Zhu+17a; Alm+18; Hua+18]. Similar techniques have been applied to specific im-

age to image translation tasks such as image dehazing [Yan+18], face to cartoon

[Tai+17; Roy+17] and font style transfer [Aza+18]. These methods successfully

train a transformation network from one image domain to another. However, they

cannot handle multi-domain input and output images, and it is known to be difficult

to generate images with large variance [Che+16c; Ode+17; MK18]. Our approach

adopt conditional generator and discriminator to tackle the multi-domain input and

output for arbitrary style transfer.

159

7.1.3 Proposed method

We use an encoder-decoder architecture as our transformation network, and

use the convolutional layers of the pre-trained VGG net [SZ14; Xu+18a] as our en-

coder to extract the deep features. We add skip connections and concatenate the

features from different levels of convolutional layers as the output feature of the en-

coder. We adopt adaptive instance normalization (AdaIN) [HB17] to adjust the first

and second order statistics of the deep features. Furthermore, we generate spatial

masks to automatically adjust the stylization level. Our transformation network is

a conditional generator inspired by the state-of-the-art network for arbitrary style

transfer. Our network is trained with perceptual loss for content representation,

Gram loss for style representation as in [Gat+16; Joh+16; Uly+16b], as well as the

adversarial loss to capture the common style information beyond textures from a

style category. We show the proposed network in figure 7.1, and provide details in

the following sections.

7.1.3.1 Network architecture

Our encoder uses the convolutional layers of the VGG net [SZ14] pre-trained

on Imagenet large-scale image classification task [Rus+15]. VGG net contains five

blocks of convolutional layers, and we adopt the first three blocks and the first con-

volutional layer of the forth block. Each block contains convolutional layers with

ReLU activation [Kri+12], and the width (number of channels) and size (height and

width) of the convolutional layers are shown in figure 7.1. There is a maxpooling

160

layer of stride two between blocks, and the width of convolutional layer is doubled

after the downsampling by maxpooling. We concatenate the features from the first

convolutional layer of each block as the output of the encoder. These skip connec-

tions help to transfer style captured by both high-level and low-level features, as

well as make the training easier by smoothing the loss surface of neural networks

[Li+18b].

Our decoder is designed to be almost symmetric to the VGG encoder, which

has four blocks and between blocks are transposed convolutional layer for upsam-

pling. We add LeakyReLU [He+15] and batch normalization [IS15] to each convolu-

tional layer for effective adversarial training [Rad+16]. The decoder is trained from

scratch.

Adaptive instance normalization (AdaIN) has been shown to be effective

for image style transfer [HB17]. AdaIN shifts the mean and variance of deep features

of content to match style with no learnable parameters. Let x, y ∈ RN×C×H×W

represent the features of a convolutional layer from a minibatch of content and style

images, where N is the batch size, C is the width of the layer (number of channels),

H and W are height and width, respectively. xnchw denotes the element at height

h, width w of the cth channel from the nth sample, and adaIN layer can be written

as,

Anchw(x, y) = σnc(y)

(
xnchw − µnc(x)

σnc(x)

)
+ µnc(y) (7.1)

where µnc(x) = 1/HW
∑H,W

h,w=1 xnchw, σnc(x) =
√

1/HW
∑H,W

h,w=1(xnchw − µnc)2 + ε, ε is

a very small constant, and µnc(x), σ2
nc(x) represent the mean and variance for the

161

cth channel of the nth sample of feature x.

The mask module in our network contains a few convolutional layers operated

on the concatenation of content feature x and style feature y. The output is a

spatial soft mask M(x, y) ∈ [−1, 1]N×C×H×W that has the same size as feature and

each value is between −1 and 1. The generated mask M(x, y) is used to control

the stylization level by linearly combine the adaIN feature A(x, y) and the original

content feature s as the input of the decoder,

z = M(x, y)× x+ (1−M(x, y))× A(x, y), (7.2)

where the element-wise operations are used for combining these features.

Our discriminator is a patch-based network inspired by [Iso+17]. To handle

the multi-domain images for arbitrary style transfer, our discriminator is conditioned

on the style category labels. Inspired by AC-GAN [Ode+17], our discriminator

predicts the style category and distinguish the real image and fake image at the

same time. We also adopt the projection discriminator [MK18] to make sure the

style category conditioning will not be ignored.

7.1.3.2 Adversarial training

We alternatively update the generator (mask module and decoder) and dis-

criminator during training, and apply prediction optimizer [Yad+18] to stabilize the

training.

Generator update. Our generator takes a content image and a style image

162

as input, and outputs the stylized image. The generator is updated by minimizing

the loss combined of adversarial loss LA, style classification loss LDS, content loss

Lc and style loss Ls,

min
G
LG = LA + λDSLDS + λcLc + λsLs, (7.3)

where λDS, λc, λs are hyperparameters for the weights of different losses. Let us

denote the feature map of the lth layer in our encoder as x(l), y(l), the input content

and style images as x(0), y(0), the generator network as G(·, ·), and the discriminator

network as D(·). When the discriminator D(·) is fixed, the output stylized images

x̂ = G(x(0), y(0)) aim to fool the discriminator, and also be classified to same style

category s as the input style image,

LA = E[log Prob(Real|D(x̂))],

LDS = E[log Prob(s|D(x̂))].

(7.4)

LA and LDS are learned loss that capture the category-level style of images from

the training data. We also use the traditional content and style loss based on deep

features and Gram matrix,

Lc = E[‖x(4) − x̂(4)‖1],

Ls = E[
4∑
l=1

‖Gram(y(l))−Gram(x̂(l))‖1].

(7.5)

We use the deep feature from the forth block of pre-trained VGG net for content

163

Content Style GAN Mask GAN+Mask

Figure 7.2: Benefits of adversarial training and mask module. We show the encoder-
decoder network with adversarial training only, mask module only, and the combina-
tion of adversarial training and mask module. Mask module only does not improve
the visual quality of generated images, which have artifacts and undesired textures.
GAN only can generate collapsed images with corrupted eyes and noses.

representation, and use the Gram matrix from all the blocks for style representation.

We find `1 norm is more stable than `2 when combining with the adversarial loss.

Discriminator update. Our discrimintor is conditioned on style category to

handle the multi-domain generated images, inspired by [Che+16c; Ode+17; MK18;

Xu+18b]. When the generator is fixed, the discriminator is adversarially trained to

distinguish the generated images and the real style images,

min
D
LD = L̂A + λDSL̂DS, (7.6)

where L̂A = E[log Prob(Fake|D(x̂)) + log Prob(Real|D(y))], and L̂DS =

E[log Prob(s|D(x̂)) + log Prob(s|D(y))] .

Discriminator for ranking. The adversarilly trained discriminator char-

acterizes the real style images, and hence can be used to rank the generated im-

164

ages. We rank the stylized images x̂ based on the likelihood score Prob(s|D(x̂)) ∗

Prob(Real|D(x̂)).

7.1.3.3 Ablation study

The encoder-decoder architecture and adaIN module have been shown to be

effective in previous work [HB17]. We use visual examples to show the importance

of mask module and adversarial training in the proposed method in figure 7.2. We

present results from adversarially trained network without mask module, network

with mask module but trained without adversarial loss, and the proposed method.

When trained without adversarial loss, the network produces visually similar results

with or without mask module as the network is over-parameterized.

vectorart 3D graphics comic graphite oil paint pen ink water color all
AdaIN [HB17] 0.2849 0.2029 0.2314 0.1277 0.3018 0.2151 0.2118 0.2199
WCT [Li+17f] 0.1134 0.1957 0.2066 0.4754 0.3350 0.2868 0.4409 0.3001

Ours 0.6017 0.6014 0.5620 0.3969 0.3632 0.4981 0.3473 0.4800

Table 7.1: Quantitative evaluation for style transfer. Our method is preferred by
human annotators and outperforms baselines.

Our adversarial training significantly improves the visual quality of the gen-

erated images in general. The block effects and many other artifacts are removed

through adversarial training, which makes the generated images look more “natu-

ral”. Moreover, the data-driven discriminator learns to distinguish foreground and

background well; adversarial training cleans the background and adds more details

to the foreground. Our mask module controls the stylization level at different spa-

tial location of the image, which significantly improves the stylization of salient

165

Content

Style

AdaIN

Gatys

WCT

Ours

Figure 7.3: Qualitative evaluation for style transfer. We shown examples of trans-
ferring photos to seven different styles. AdaIN and WCT will generate artifacts and
undesired textures. Gatys’ results are more visually appealing, but the optimiza-
tion is slow, and it is hard to choose the parameter to control stylization level. Our
method efficiently generate clean and stylized images.

components like eyes, nose and mouth of a face. The salient regions are repeatedly

captured by the deep features from high-level layers, which can make them difficult

to handle when adjusting the statistics of the features. By controlling the styliza-

tion level, the mask module prevents over-stylization of salient region, and also helps

adversarial training by relieving the mode collapse of salient regions.

7.1.4 Experiments

We qualitatively and quantitatively evaluate the proposed method with exper-

iments. We extensively use the Behance dataset [Wil+17a] for training and testing.

Behance [Wil+17a] is a large-scale dataset of artistic images, which contains coarse

166

category labels for content and style. We use the seven media labels in Behance

as style category: vector art, 3D graphics, comic, graphite , oil paint, pen ink, and

water color. We create four subsets from the Behance images for face, bird, car, and

building. Our face dataset is created by running a face detector on a subset of im-

ages with people as content label and contains roughly 15,000 images for each style.

The other three are created by selecting the top 5000 ranked images of each media

for the content, respectively. We add describable textures Dataset (DTD) [Cim+14]

as another style category to improve the robustness of our method. We add natural

images as both content images and an extra style for each subset. Specifically, we

use labeled faces in the wild (LFW) [Hua+07], the first 16,000 images of CelebA

dataset [Liu+15], Caltech-UCSD birds dataset [Wel+10], cars dataset [Kra+13],

and Oxford building dataset [Phi+07]. In total, we have nine style categories in

our data. We split both content and style images into training/testing set, and

use unseen testing images for our evaluation. The total number of training/testing

images are 122,247 / 11,325 for face, 35,000 / 3,505 for bird, 36,940 / 3,700 for car,

and 34,374 / 3,444 for building.

We train the network on face images, and then fine-tune it on bird, car, and

building. We use Adam optimizer with prediction method [Yad+18] with learning

rate 2e− 4 and parameter β1 = 0.5, β2 = 0.9. We train the network with batch size

56 for 150 epochs and linearly decrease the learning rate after 60 epochs. It takes

about 8 hours to complete on a workstation with 4 GPUs. We set all weights in

our combined loss (7.3) as 1 except for λs = 200 for the style loss. The weights are

chosen so that different components of the loss have similar numerical scales. The

167

training code and pre-trained model in Pytorch are released in https://github.

com/nightldj/behance_release.

We compare with arbitrary style transfer methods, the optimization framework

of neural style transfer (Gatys) [Gat+16], and two state-of-the-art methods, adaptive

instance normalization (AdaIN) [HB17] and feature transformation (WCT) [Li+17f].

Note that our approach, AdaIN and WCT apply feed-forward network for style

transfer, which are much faster than Gatys method.

Content Style AdaIN Gatys WCT Ours Ours-FT

Figure 7.4: Qualitative evaluation for general objects. This task is more difficult for
our GAN-based method because the training data is more noisy, especially for bird
images with large diversity. Our method can generate clean background, detailed
foreground, and better stylized strokes.

168

https://github.com/nightldj/behance_release
https://github.com/nightldj/behance_release

vectorart 3D graphics comic graphite oil paint pen ink water color all
AdaIN [HB17] 0.2119 0.2703 0.3089 0.3260 0.2778 0.3944 0.3654 0.3203
WCT [Li+17f] 0.4503 0.4865 0.3740 0.1547 0.4383 0.2310 0.1731 0.3145

Ours 0.3377 0.2432 0.3171 0.5193 0.2840 0.3746 0.4615 0.3652

Table 7.2: Quantitative evaluation for style transfer of building. Different methods
are competitive for different styles. The overall performance of our method is better.

Discriminator

Classifier

Random

Figure 7.5: Qualitative evaluation for style ranking.

7.1.4.1 Evaluation of style transfer

We qualitatively compare our approach with previous arbitrary style transfer

methods, and present some results in figure 7.3. We show seven pairs of content

and style images from our face dataset, and the style images are from testing set

of vector art, 3D graphics, comic, graphite , oil paint, pen ink, and water color,

respectively. For Gatys method [Gat+16], we tune the weight parameter, and select

the best visual results from either Adam or BFGS as optimizer. For AdaIN [HB17]

and WCT [Li+17f], we use their released best models. The content and style images

are from the separate testing set that have not been seen for our approach and the

baseline methods.

Gatys method [Gat+16] is sensitive to parameter and optimizer setting. We

169

may get results that are not stylized enough even after parameter tuning due to

the difficulty of optimization. AdaIN [HB17] often over-stylizes the content image,

creates undesirable artifacts, and sometimes changes the semantic of the content

image. WCT [Li+17f] suffers from severe block effect and artifacts. The previous

methods all create texture-like artifacts because of the texture-based style represen-

tation. For example, the stylized images of baselines in the first column of figure 7.3

have stride artifacts. Our approach generate more visually appealing results with

clean background, vivid foreground, and more consistent with the style of the input.

We conduct user study on Amazon Mechanical Turk, and present quantitative

results in table 7.1. We compare with the two recent fast style transfer methods

in this study. We randomly select 10 content images and 10 style images from

each Behance style category to generate 700 testing pairs. For each pair, we show

the stylized images by our approach, AdaIN [HB17], and WCT [Li+17f], and ask 10

users to select the best results. We remove the unreliable results that are labeled too

soon, and show preference (click) ratio for different style categories. WCT [Li+17f]

performs well on graphite and water color, where the style images themselves are

visually not “clean”. Our approach achieves the best results in the other five cate-

gories and is overall the most favorable.

7.1.4.2 Evaluation of style transfer for general objects

We evaluate the performance of the proposed approach on general objects

beyond face. Specifically, we test for bird, car, and building. In figure 7.4, we show

170

Top

Medium

Bottom

Comic

Top

Medium

Bottom

Vector art

Figure 7.6: Ranking stylized images by our discriminator.

171

the stylized images generated by our network trained on face (Ours), as well as fine-

tuned for each object (Outs-FT). Our network trained on face generalizes well, and

generates images look comparable, if not better than, the baseline methods. Fine-

tuning on bird does not help the performance. The adversarial training may be

too difficult for bird because the given training style images are noisy and diverse.

Fine-tuning on car and building brings more details to the foreground object of

our generated images. The training images of car and building are also noisy and

diverse, but these objects are more structured than bird. We show more results on

our performance on general object tasks in the supplementary material.

We conduct the user study for building images and report results in table

7.2. Our approach achieves good results for graphite and water color because of the

clean background in our generated images. For the other categories, our results are

comparable with baselines. Our overall performance is still the best.

7.1.4.3 Evaluation for style ranking

We apply the trained discriminator to rank the generated images for a style

category. Figure 7.5 show the top five generated images by stylizing with all the

testing images in comic style. The stylized images are generated by our network,

and ranked by our discriminator, a style classifier, and random selection, respec-

tively. The style classifier use the same network architecture as our discriminator

and training data as our method. The hyper parameters are tuned to achieve the

best style classification accuracy on the separate validation dataset, which makes

172

Content Style AdaIN Gatys WCT Ours

Figure 7.7: Qualitative evaluation for style transfer on texture-centric cases in previ-
ous papers. Our method generates stylized images with clean background, which are
visually competitive to the previous methods that targeted only on texture transfer.

the style classifier a strong baseline. Our generator network produced good results,

and even random selected images look acceptable. The top selected results of our

discriminator are more diverse, and more consistent to the comic style because of

the adversarial training.

Figure 7.6 shows more ranked images by our discriminator at top, in the

middle, and at the bottom for two content images stylized by images from two

categories. The top ranked results are more visually appealing, and more consistent

with the style category.

Finally, we conduct user study to compare the ranking performance of our dis-

criminator and the baseline classifier. We generated images by stylizing ten content

173

images with all the testing images for each of the seven Behance styles, and rank the

70 sets of results. We comparing the rank of each generated image by discriminator

and classifier, and select five images that are ranked higher by our discriminator,

and five images that are ranked higher by the baseline classifier. We show the ten

images to ten users and ask them to select five images for each set. The preference

ratio of our discriminator is 0.5068 comparing to 0.4932 of classifier. We beat a

strong baseline in a highly subjective and challenging evaluation.

7.1.5 Supplemental experiments

In this section, we present supplemental experiments to show interesting side

effects of the proposed method. We first demonstrate our method can be applied

to previous style transfer test cases which focus on transferring textures of the style

image. We then show that the proposed method can be applied to destylization and

generate images look more realistic than baselines.

7.1.5.1 Examples for general style transfer

In figure 7.7, we evaluate on test cases from previous style transfer papers.

The style images have rich texture information, and the content images vary from

face to building. Our network is trained on our face dataset described in section

7.1.4. Our network generalizes well and produces comparable results, if not better

than, comparing with baselines. Particularly, our approach often generates clean

background without undesired artifacts.

174

Content Style AdaIN Gatys WCT Ours

Figure 7.8: Qualitative evaluation for destylization.

7.1.5.2 Destylization

We show that if we also use artistic images as content images during training,

the exact same architecture can be used to destylize images (figure 7.8). Destyliza-

tion is a difficult task because we only use one network to destylize diverse artistic

images. The training also becomes much more difficult as the number of pairs in-

crease square to the samples. Though there is still room to improve, our adversarial

training and network architecture look promising in limited training time. The last

row in 7.8 also suggests our network can transfer style of photorealistic images,

which is difficult for the baselines.

175

7.1.6 Summarization and discussion

We propose a feed-forward network that uses adversarial training to enhance

the performance of arbitrary style transfer. We use both conditional generator and

conditional discriminator to tackle multi-domain input and output. Our generator

is inspired by the recent progress in arbitrary style transfer, and our discriminator

is inspired by the recent progress in generative adversarial networks. Our approach

combines the best of both worlds. We propose a mask module that helps in both

adversarial training and style transfer. Moreover, we show that our trained dis-

criminator can be used to select representative stylized image, which has been a

long-standing problem.

Previous style transfer and GAN-based image translation methods only target

on one domain, such as transferring the style of oil paint, or transforming from

natural images to sketches. We systematically study the style transfer problem on a

large-scale dataset of diverse artistic images. We can train one network to generate

images in different styles, such as comic, graphite, oil paint, water color and vector

art. Our approach generates more visually appealing results than previous style

transfer methods, but there is still room to improve. For example, transferring

image into 3D graphics with the arbitrary style transfer network is still challenging.

176

7.2 Image Dehazing

7.2.1 Introduction

Images captured in the wild are often degraded in visibility, colors, and con-

trasts caused by haze, fog and smoke. Recovering high-quality clear images from

degraded images (a.k.a. image dehazing) is beneficial for both low-level image pro-

cessing and high-level computer vision tasks. Dehazed images are more visually

appealing to generate for image processing tasks. Dehazed images can improve the

robustness of vision systems that often assume clear images as input. Typical ap-

plications that benefit from image dehazing include image super-resolution, visual

surveillance, and autonomous driving. Image dehazing is highly desired because of

the increasing demand of deploying visual system for real-world applications.

Image dehazing is a challenging problem. The effect of haze is caused by

atmospheric absorption and scattering that depend on the distance of the scene

points from the camera. In computer vision, the hazy image is often described by

a simplified physical model, i.e., the atmospheric scattering model [McC76; NN02;

He+11; Li+17b],

I(x) = J(x)t(x) + A(1− t(x)), (7.7)

where I(x) is the observed hazy image, J(x) is the scene radiance (clear image), t(x)

is the medium transmission map, and A is the global atmospheric light. When the

atmosphere is homogeneous, t(x) can be further expressed as a function of the scene

depth d(x) and the scattering coefficient β of the atmosphere as t(x) = exp(−βd(x)).

177

The goal of image dehazing is to recover clear image J(x) from hazy image I(x).

Single image dehazing is particularly challenging. It is under-constrained because

haze is dependent on many factors, including the unknown depth information that

is difficult to recover from a single image.

The atmospheric scattering model (7.7) has been extensively used in previous

methods for single image dehazing [Fat08; Tan08; TH09; He+11; Men+13; Fat14;

BA+16; Che+16b]. These works either separately or jointly estimate the transmis-

sion map t(x) and the atmospheric light A to generate the clear image from a hazy

image. Due to the under-constrained nature of single image dehazing, the success

of previous methods often relies on hand-crafted priors such as dark channel prior

[He+11], contrast color-lines [Fat14], color attenuation prior [Zhu+15], and non-

local pior [BA+16]. However, it is difficult for these priors to be always satisfied in

practice. For example, dark channel prior is known to be unreliable for areas that

are similar to the atmospheric light.

More recent works learn convolutional neural networks (CNNs) to estimate

components in the atmospheric scattering model for image dehazing [Cai+16;

Ren+16; Li+17a; Li+18a; ZP18; Yan+18]. These methods are often trained with

limited (synthetic) images, and use only a few layers of convolutional filters. The

learned shallow networks have limited capacity to represent or process images, mak-

ing them difficult to surpass the prior-based methods. In contrast, training deep

neural networks with large-scale data has made significant progress and achieved

state-of-the-art performance in many vision tasks [Kri+12; SZ14; He+16]. More-

over, the deep features extracted by a pre-trained deep network are used as pow-

178

erful image representation in many applications, such as domain invariant recogni-

tion [Don+14], perceptual evaluation [Zha+18a], and characterizing image statistics

[Gat+16]. More recently, the architecture of CNNs itself has been recognized as a

prior for image processing [Uly+17a]. In this paper, we study how to release the

power of deep network for single image dehazing.

We propose an encoder-decoder architecture as an end-to-end system for single

image dehazing. We exploit the representation power of deep features by adopting

the convolutional layers of the deep VGG net [SZ14] as our encoder, and pre-train

the encoder on large-scale image classification task [Rus+15]. We add skip con-

nections with instance normalization between the encoder and decoder, and then

train decoder with both `2 reconstruction loss and VGG perceptual loss [Zha+18a].

We show that the recently proposed instance normalization [Uly+16a], which is de-

signed for image style transfer, is also effective in image dehazing. The proposed

method effectively learns the statistics of clear images based on the deep feature rep-

resentation, which benefits the dehazing process on the input image. Our approach

outperforms the state-of-the-art results by a large margin on a recently released

benchmark dataset [Li+17b], and performs surprisingly well in several cross-domain

experiments. Our method depends on neither the explicit atmospheric scattering

model nor the hand-crafted image priors, and only exploits the deep network archi-

tecture and pre-trained models to tackle the under-constrained single image dehazing

problem. Our simple yet effective network can serve as a strong baseline for future

study in this topic.

179

7.2.2 Related work

Traditional methods focus on representing human knowledge as priors for im-

age processing. Tan [Tan08] assumes higher contrast of clear images and proposes

a patch-based contrast-maximization method. Fattal [Fat08] assumes the transmis-

sion and surface shading are locally uncorrelated, and estimates the albedo of the

scene. Dark channel prior (DCP) [He+11] assumes local patches contain low inten-

sity pixels in at lease one color channel and hence estimates the transmission map.

Fast visibility restoration (FVR) [TH09] is a filtering approach by atmospheric veil

inference and corner preserving smoothing. Meng et al. [Men+13] uses boundary

constraint and contextual regularization (BCCR), and Chen et al. [Che+16b] uses

gradient residual minimization (GRM) to surpress artifacts. Tang et al. [Tan+14]

combines priors by learning with random forests model. Color attenuation prior

(CAP) [Zhu+15] assumes a linear model of brightness and the saturation and then

learns the coefficients. Berman and Avidan [BA+16] assumes each color cluster in

the clear image becomes a line in RGB space, and proposes non-local image dehazing

(NLD).

There is an increasing interest in applying convolutional neural networks

(CNNs) for image dehazing. DehazeNet [Cai+16] and multi-scale convolutional

neural networks (MSCNN) [Ren+16] are trained to estimate the transmission map.

AOD-Net[Li+17a] estimates a new variable based on the transformation of the at-

mospheric scattering model. Zhang et al. [Zha+17b] and Zhang and Patel [ZP18]

and Li et al. [Li+18a] estimate transmission map and atmospheric light by sepa-

180

rate CNNs. Yang et al. [Yan+18] adversarially train generators for components of

the atmospheric scattering model. Ren et al. [Ren+18] train network to fuse three

derived inputs from an original hazy image. These methods use relatively small

CNNs and do not exploit the pre-trained deep networks for image representation.

A few days before our submission, we notice a preprint [Che+18] that also uses the

pre-trained deep networks. The proposed method is quite different from [Che+18]:

we use encoder-decoder with skip connections, while Cheng et al. [Che+18] only

use feature maps extracted from one layer of the pre-trained network as input; we

study instance normalization and demonstrate its effectiveness; we train an end-to-

end system from hazy image to clear image, while Cheng et al. [Che+18] estimate

transmission map and atmospheric light; we can generate impressive results without

explicitly applying the atmospheric scattering model.

Deep neural networks can be used as “priors” for image generation and image

processing. The architecture of CNNs itself can be a constraint for image processing

[Uly+17a] and image generation [KW13; Goo+14a]. A pre-trained deep networks

can be used as general purpose feature extractors [Don+14] and perceptual metric

[Zha+18a]. The second-order information of the features extracted by a pre-trained

network describes the style of images [Gat+16]. Instance normalization layers that

effectively change the statistics of deep features are widely used for image style

transfer [Uly+16a; Dum+17; Ghi+17; HB17; Xu+19a]. Image translation tasks

with adversarial networks are often trained with batch normalization and batch size

one [Iso+17], which may suffer from the statistics mismatch between training and

testing.

181

Block 2

TC
on

v
12

8*
4*

4
Co

nv
 1

28
*3

*3
Co

nv
 2

56
*3

*3
Co

nv
 2

56
*3

*3

Block 4

Co
nv

 5
12

*3
*3

Block 3

Co
nv

 2
56

*3
*3

Co
nv

 2
56

*3
*3

Co
nv

 2
56

*3
*3

Co
nv

 2
56

*3
*3

Hazy input

Clear output

Block 1

Co
nv

 6
4*

3*
3

Co
nv

 6
4*

3*
3

Block 2

Co
nv

 1
28

*3
*3

Co
nv

 1
28

*3
*3

Block 1
TC

on
v

25
6*

3*
3

Co
nv

 2
56

*3
*3

Co
nv

 5
12

*3
*3

Encoder: pre-trained

CatCatCat

INININ

TC
on

v
64

*4
*4

Co
nv

 6
4*

3*
3

Block 3

Cat

IN

Co
nv

 3
*3

*3

Block 4

Decoder

Figure 7.9: The proposed network: encoder-decoder with skip connections and in-
stance normalization (IN); convolutional layers of pre-trained VGG [SZ14] are used
as encoder; `2 reconstruction loss and VGG perceptual loss are used for training
decoder and IN layers.

182

7.2.3 VGG-based U-Net with instance normalization

We propose an end-to-end encoder-decoder network architecture for single

image dehazing, as shown in Fig. 7.9. The input is a hazy image, and the output is

the desired clear image. We introduce different components of the network in the

following paragraphs of this section.

Encoder. Our encoder uses the convolutional layers of the VGG net [SZ14]

pre-trained on Imagenet large-scale image classification task [Rus+15]. VGG net

contains five blocks of convolutional layers, and we use the first three blocks and

the first convolutional layer of the forth block. Each block contains several con-

volutional layers, and each convolutional layer is equipped with ReLU [Kri+12] as

activation function. The width (number of channels) and size (height and width)

of convolutional layers are shown in Fig. 7.9. There is a maxpooling layer of stride

two between blocks, which enlarges the receptive field of higher layers. The width of

convolutional layer is doubled after the subsampling of feature maps by maxpooling.

The pre-trained VGG net is a powerful feature extractor for perceptual metric

[Zha+18a] and image statistics [Gat+16]. Our encoder is deep and wide, and the

extracted deep features are capable to capture the semantic information of the input

image. We fix the encoder during training to exploit the power of pre-trained VGG

net as “priors”, and avoid overfitting from relatively small number of samples in

image dehazing dataset.

Decoder and skip connection. Our decoder is designed to be roughly

symmetric to the encoder. The decoder also contains four blocks, and each block

183

contains several convolutional layers. The last layer of the first three blocks of the

decoder uses transposed convolutional layer to upsample the feature maps. We use

ReLU activation for convolutional and transposed convolutional layers except for

the last layer, where we use Tanh as activation function.

We add skip connections from the output of the first convolutional layer of

encoder block 1,2,3 to the input of decoder block 4,3,2 by concatenating (cat) the

feature maps, respectively. Hence our deep encoder-decoder network has a U-Net

[Ron+15; Iso+17] structure except that our skip connections are based on blocks

instead of layers . We use trainable instance normalization for skip connections, and

have instance normalization before each convolutional layer in decoder except the

first one. Our deep encoder-decoder network has large capacity, and skip connections

make the information smoothly flow to easily train a large network [He+16; Li+18b].

Instance normalization. We briefly review instance normalization

[Uly+16a], and discuss our motivation in applying instance normalization for single

image dehazing. Let x ∈ RN×C×H×W represent the feature map of a convolutional

layer from a minibatch of samples, where N is the batch size, C is the width of

the layer (number of channels), H and W are height and width of the feature map.

xnchw denotes the element at height h, width w of the cth channel from the nth

sample, and instance normalization layer can be written as,

IN(xnchw) = γnc

(
xnchw − µnc

σnc

)
+ βnc, where

µnc =
1

HW

H∑
h=1

W∑
w=1

xnchw, σnc =

√√√√ 1

HW

H∑
h=1

W∑
w=1

(xnchw − µnc)2 + ε,

(7.8)

184

γnc, βnc are learnable affine parameters, ε is a very small constant, and µnc, σ
2
nc

represent the mean and variance for each feature map per channel per sample.

If we replace instance level variables γnc, βnc, µnc, σ
2
nc with batch level variables

γc, βc, µc, σ
2
c that are estimated for all samples of a minibatch, we get the well-known

batch normalization layer [IS15]. We show instance normalization is preferred than

batch normalization for single image dehazing in our experimental ablation study.

The learnable affine parameters γnc, βnc of instance normalization shift the

first and second order statistics (mean and variance) of the feature maps. Instance

normalization is effective for image style transfer, and the style of images can be

represented by learned affine parameters [Dum+17]. Shifting the statistics of deep

features extracted by pre-trained networks has achieved impressive results for arbi-

trary style transfer [HB17]. Shifting the statistics of images is intuitive for dehazing,

however, it can be difficult to decide the exact amount to change because haze de-

pends on the unknown depth. The deep features extracted by a pre-trained VGG

net contain semantic information to effectively infer depth for haze, and hence the

learned affine parameters effectively shift the statistics of images. We apply in-

stance normalization on the deep features extracted by pre-trained VGG net for

single image dehazing.

Training loss. Our network is trained with both reconstruction loss and

VGG perceptual loss. Denoting the training pairs of hazy image and clear image as

185

(In, Tn), n = 1, . . . , N , we use the mean squared loss,

min
F

1

N

N∑
n=1

‖F (In)− Tn‖2 + λ‖g(F (In))− g(Tn)‖2, (7.9)

where F represents the trainable instance normalization and decoder layers in our

network, g represents the perceptual function, and λ is a hyperparameter. We set

λ = 1 , and use the features extracted by the first convultional layer of the third

block from the pre-trained VGG net as perceptual function.

7.2.4 Experiments

In this section, we conduct various experiments on both synthetic and natural

images to demonstrate the effectiveness of the proposed method. The atmospheric

scattering model is widely used to synthesize images for both training and testing.

The hazy images are synthesized from groundtruth clear images and grountruth

depth images [Li+17b; Anc+16], or estimated depth images [Sak+17].

We train our model on the recently released RESIDE-standard dataset

[Li+17b]. RESIDE-standard contains 13,990 images for training, and 500 im-

ages for testing. These images are generated by existing indoor depth datasets,

NYU2 [Sil+12] and Middlebury stereo [Sch+14]. The atmospheric scattering model

is used, where atmospheric lights A is randomly chosen between (0.7, 1.0) for each

channel, and scattering coefficient β is randomly selected between (0.6, 1.8).

We also apply our model trained on RESIDE-standard for cross-domain eval-

uation on D-Hazy [Anc+16], I-Haze [Anc+18a] and O-Haze [Anc+18b] dataset.

186

D-Hazy dataset [Anc+16] is another synthetic dataset, which contains 23 images

synthesized from Middlebury and 1449 images synthesized from NYU2, with atmo-

spheric lights A = (1, 1, 1) and scattering coefficient β = 1. Though D-Hazy dataset

use the same clean images as RESIDE-standard, the generated hazy images are

quite different. I-Haze [Anc+18a] and O-Haze [Anc+18b] are two recent released

datasets on natural indoor and outdoor images, respectively. I-Haze contains 35

pairs of indoor images and O-Haze contains 45 pairs of outdoor images, where the

hazy images are generated by using a physical haze machine.

We compare our results quantitatively and qualitatively with previous meth-

ods. We compare with prior-based methods, DCP [He+11], FVR [TH09],

BCCR [Men+13] , GRM [Che+16b], CAP [Zhu+15] and NLD [BA+16] . We also

compare with learning-based methods DehazeNet [Cai+16], MSCNN [Ren+16] ,

and AOD-Net [Li+17a]. We have provided a brief review of these baseline methods

in Section 7.2.2. We use peak signal-to-noise ratio (PSNR) and structural similarity

(SSIM) as metrics for quantitative evaluation. For the benchmark evaluation on

RESIDE-side, all the learning-based methods are trained on the same dataset. For

cross-domain evaluation on D-Hazy, O-Haze and I-Haze, we use the released best

pre-trained model for the learning-based baseline methods.

We train our model by SGD with minibatch size 16 and learning rate 0.1 for 60

epochs, and linearly decrease the learning rate after 30 epochs. We use momentum

0.9 and weight decay 10−4 for all our experiments. We will release our Pytorch code

and pre-trained models 1.

1https://github.com/nightldj/dehaze_release

187

https://github.com/nightldj/dehaze_release

DCP FVR BCCR GRM CAP
PSNR 16.62 15.72 16.88 18.86 19.05
SSIM 0.8179 0.7483 0.7913 0.8553 0.8364

NLD DehazeNet MSCNN AOD-Net Ours
PSNR 17.29 21.14 17.57 19.06 27.79
SSIM 0.7489 0.8472 0.8102 0.8504 0.9556

Table 7.3: Quantitative results on RESIDE-standard dataset [Li+17b].

7.2.4.1 Quantitative evaluation on benchmark dataset

We present the performance of our network and baseline methods on the

RESIDE-standard benchmark dataset [Li+17b] in Table 7.3. Our network and the

learning-based baselines [Cai+16; Ren+16; Li+17a] are trained on the provided

synthetic data, and evaluated on the separate testing set. We evaluate our results

by metrics provided by [Li+17b], and compare with the baseline results reported in

[Li+17b]. The learning-based methods perform slightly better than the prior-based

method. CAP [Zhu+15] performs best in prior-based method, which has a learning

phase for the coefficients of the linear model. DehazeNet [Zhu+15] performs best in

baseline methods, which uses a relatively small network to predict components.

Our approach outperforms all the baseline methods on both PSNR and SSIM

by a large margin. The synthetic data for both training and testing are generated

by the atmospheric scattering model, and the baseline methods explicitly use the

atmospheric scattering model. In contrast, our approach only uses instance normal-

ization to transform the statistics of deep features . The superior performance of our

network on the benchmark dataset demonstrate the effectiveness of deep networks

and instance normalization for single image dehazing.

188

Hazy Clear NA-NA IN-IN IN-IN-Percep

Figure 7.10: An example of qualitative results in ablation study. We zoom in the
bottom left corner of the images to show more details in the second row.

Skip NA BN IN NA BN
Dec NA NA NA BN BN

PSNR 18.24 25.67 26.00 25.99 26.38
SSIM 0.7945 0.9442 0.9414 0.9385 0.9519

Skip IN NA BN IN Perceptual
Dec BN IN IN IN loss

PSNR 26.89 26.57 27.67 27.75 27.79
SSIM 0.9535 0.9381 0.9543 0.9549 0.9556

Table 7.4: Ablation study on RESIDE-standard dataset.

7.2.4.2 Ablation study

We provide more discussion on the proposed network. We verify the effective-

ness of instance normalization with ablation study on network structures, as shown

in Table 7.4. We use no normalization (NA), batch normalization (BN), or instance

normalization (IN) for skip connections and decoders, respectively. The normaliza-

tion layers are added before each convolutional layer of the decoder except for the

first layer. All the results in Table 7.4 are obtained by only using reconstruction

loss (λ = 0 in loss function (7.9)) except for the last one, where IN and combined

loss (λ = 1) are used. We train and evaluate our network on the RESIDE-standard

dataset.

189

First, comparing the NA results in Table 7.4 with previous best results in

Table 7.3, our encoder-decoder only achieves competitive results. Second, adding

normalization to either skip connections or decoder significantly improves the per-

formance of our network. The normalization layers for decoder are implicitly applied

to the features from the skip connections, which makes the result of only normaliz-

ing decoder slightly better than only normalizing skip connections. Third, instance

normalization works better than batch normalization, which demonstrates the ef-

fectiveness of shifting the mean and variance of deep features at instance level.

Finally, the perceptual loss only helps a little for quantitative evaluation, but

it can help generate more visually appealing output images. We show an qualitative

example in Fig. 7.10, where the hazy input, the groundtruth clear image, outputs

of our network without normalization layers and no perceptual loss (NA-NA), our

network with instance normalization and no perceptual loss (IN-IN), and our net-

work with instance normalization and perceptual loss (IN-IN-Percep). We enlarge

the bottom left corner of the results to show more details. The results of IN-IN

look much better than NA-NA. The enlarged area of the result with perceptual loss

(IN-IN-Percep) looks sharper and clearer.

7.2.4.3 Cross-domain evaluation

In this section, we focus on the cross-domain performance by evaluat-

ing our network trained on RESIDE-standard [Li+17b] on the cross domain

datasets, D-Hazy [Anc+16], I-Haze [Anc+18a] and O-Haze [Anc+18b]. We com-

190

D-Hazy-NYU D-Hazy-MB I-Haze O-Haze
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DCP 11.56 0.6695 12.13 0.6752 13.41 0.4930 17.01 0.4875
CAP 13.29 0.7266 14.36 0.7526 15.27 0.5603 16.68 0.4810

DehazeNet 13.02 0.7256 13.78 0.7342 16.73 0.6263 17.90 0.5514
MSCNN 13.67 0.7413 13.97 0.7488 15.93 0.5896 16.27 0.4947
AOD-Net 12.44 0.7147 13.48 0.7470 15.00 0.5828 16.22 0.4142

Ours 18.11 0.8268 15.63 0.7338 16.04 0.6332 17.46 0.5337

Table 7.5: Quantitative results for cross-domain evaluation.

pare with baseline methods that have publicly available code, and these are strong

baselines according to benchmark evaluation in Table 7.3. For learning-based

methods DehazeNet [Cai+16], MSCNN [Ren+16], and AOD-Net [Li+17a], we

use the best model the authors have released. MSCNN [Ren+16] and AOD-

Net [Li+17a] are trained with synthetic images similar to RESIDE-standard, while

DehazeNet [Cai+16] is trained with patches of web images.

We present the quantitative results in Table 7.5, where we use bold to label the

best results and underline to label the second best results. Our approach achieves

best results, or close to the best results for all the cross-domain evaluations. Our

first observation is that the learning-based methods [Cai+16; Ren+16; Li+17a],

including ours, generalize reasonably well and perform equally or better than the

prior-based methods [He+11; Zhu+15].

Our network performs well on the cross-domain D-Hazy dataset [Anc+16].

Particularly, our approach outperforms all baseline methods by a large margin on

the images synthesized from NYU depth dataset. D-Hazy dataset is synthesized

by the same clear images as our training data RESIDE-standard, but uses different

parameters of the atmospheric scattering model. Our trained network has effectively

191

captured the statistics of the deep features of the desired clear images.

I-Haze [Anc+18a] and O-Haze [Anc+18b] images look quite different from our

training images, and our network may have difficulty to infer the exact statistics

of deep features for these images. DehazeNet [Cai+16] may have gained some ad-

vantage on these two datasets because it is trained on patches of web images. Our

approach still produces competitive results compared with DehazeNet [Cai+16], and

outperforms all the other baselines. Notice again that our network does not use the

powerful atmospheric scattering model, and is only trained on a limited number

of indoor synthetic images. The cross-domain evaluation further demonstrates the

power of deep features and instance normalization in our approach.

7.2.4.4 Qualitative evaluation

Hazy Clear DCP CAP DehazeNet MSCNN AOD-Net Ours

Figure 7.11: Qualitative evaluation on cross-domain dataset. The four examples
are from D-Hazy-NYU [Anc+16], D-Hazy-MB [Anc+16], I-Haze [Anc+18a] and O-
Haze [Anc+18b], respectively. Best viewed in color and zoomed in.

We present qualitative results from cross-domain evaluation in Fig. 7.11. The

images are from D-Hazy-NYU [Anc+16], D-Hazy-MB [Anc+16], I-Haze [Anc+18a]

192

and O-Haze [Anc+18b], respectively. We show the hazy image and groundtruth

clear image, and compare our results with DCP [He+11], CAP [Zhu+15], De-

hazeNet [Cai+16], MSCNN [Ren+16], and AOD-Net [Li+17a]. We use the best

released model for the learning-based baselines [Cai+16; Ren+16; Li+17a], and

train our network on RESIDE-standard [Li+17b].

Our network makes the best efforts to remove haze and recover the real color

of images, as shown in Fig. 7.11. The results of baselines still have a large amount of

undesired haze and look blurry (row 2,3,4). Particularly, the baselines have difficulty

in dark areas of the image, and DCP also has difficulty in area of white and blue

walls (row 1,3). For the outdoor image (row 4), our network produces a little

artifact due to the significant domain difference between the desired images and the

training indoor images. Use regularizers such as total variation [Rud+92] may help

reduce these artifacts, and we plan to investigate it in the future. Our simple yet

effective network has generated visually appealing results, without depending on

extra constraints like the atmospheric scattering model.

7.2.5 Discussion

We proposed a simple yet effective end-to-end system for single image de-

hazing. Our network has an encoder-decoder architecutre with skip connections.

We manipulated the statistics of deep features extracted by pre-trained VGG net

and demonstrated the effectiveness of instance normalization for image dehazing.

Moreover, without explicitly using the atmospheric scattering model, our approach

193

outperforms previous methods by a large margin on the benchmark datasets. Notice

that both the training and testing data are generated by the atmospheric scatter-

ing model, and the baseline methods all explicitly use the model. Our network

effectively learns the transformation from hazy image to clear image with limited

synthetic data, and generalizes reasonably well.

The atmospheric scattering model is powerful and has been successfully de-

ployed for image dehazing in the past decade. However, the atmospheric scattering

model, as a simplified model, also constrained the learnable components to be “lin-

early” combined by element-wise multiplication and summation, which may not be

ideal for training deep models. Our study sheds light on the power of deep neural

networks and the deep features extracted by pre-trained network for single image

dehazing, and encourages the rethinking on how to effectively exploit the physical

model for haze. How will physical model help when training powerful deep net-

works? It is still an open question, and our approach serves as a strong baseline for

future study.

Our network outperforms state-of-the-art methods by a large margin on the

benchmark dataset, and achieves competitive results on cross-domain evaluation.

The key idea of our approach is to apply instance normalization to shift the statistics

of deep features for image dehazing. For cross-domain evaluation, it may be difficult

to effectively infer the desired statistics of deep features of clear images that is quite

different from the training data. Our generalization ability can be significantly

improved by training from large-scale natural images. In the future, we will explore

adversarial training to use unpaired hazy and clear images that are easier to collect

194

from the web.

7.2.6 GAN-based Loss without Paired Training Images

(240,	238,	237)

GAN	Loss

L1	Loss

Hazy	images Haze-free	images

(a)

(b)
Figure 7.12: (a) Unpaired dataset with natural hazy images and haze-free images.
(b) Overall architecture of our Disentangled Dehazing Network. GJ , Gt, GA indi-
cate the generators for the scene radiance, the medium transmission and the global
atmosphere light, respectively.

Single image dehazing is a challenging under-constrained problem because of

the ambiguities of unknown scene radiance and transmission. Many methods solve

this problem using various hand-designed priors or by supervised training on syn-

thetic hazy image pairs. In practice, however, the pre-defined priors are easily vio-

lated and the paired image data is unavailable for supervised training. We further

195

propose Disentangled Dehazing Network, an end-to-end model that generates real-

istic haze-free images using only unpaired supervision. Our approach alleviates the

paired training constraint by introducing a physical-model based disentanglement

and reconstruction mechanism. A multi-scale adversarial training is employed to

generate perceptually haze-free images. Experimental results on synthetic datasets

demonstrate our superior performance compared with the state-of-the-art methods

in terms of PSNR, SSIM and CIEDE2000. Through training on purely natural haze-

free and hazy images from our collected HazyCity dataset, our model can generate

more perceptually appealing dehazing results.

We present our GAN-based architecture in Fig. 7.12 for training with unpaired

natural and hazy images. We refer readers to [Yan+18] for more details on our

GAN-based dehazing.

196

Chapter 8: Knowledge Distillation with Conditional Adversarial

Networks

We have applied GAN framework for image processing in Chapter 7, which is

one of the most popular tasks since GAN was proposed. In this chapter, we show

GAN framework can be used for tasks besides image processing and generation. We

use conditional adversarial network to design effective loss for knowledge distillation

to transfer knowledge from a pre-trained large teacher network to train a small

student network. The small student network is fast during inference, and can be

easier to deploy to devices with limited computing power. We study the trade-

off between accuracy and acceleration, and the proposed network can achieve 7×

acceleration without loss of accuracy. We now introduce our GAN-based knowledge

distillation presented in [Xu+18b].

8.1 Introduction

Deep neural networks (DNNs) achieve massive success in artificial intelligence

by substantially improving the state-of-the-art performance in various applications.

The accuracy of DNNs for large-scale image classification has become comparable

to humans on several benchmark datasets [Rus+15]. The recent progress towards

197

such impressive accomplishment is largely driven by exploring deeper and wider

network architectures [He+16; ZK16]. However, it is difficult to deploy the trained

modern networks on embedded systems for real-time applications because of the

heavy computation and memory cost. In the meantime, the demand for low cost

networks is increasing for applications on mobile devices and autonomous cars.

Do DNNs really need to be deep and wide? Early theoretical studies sug-

gest that shallow networks are powerful and can approximate arbitrary functions

[Cyb89; Hor+89]. More recent theoretical results show depth is indeed beneficial

for the expressive capacity of networks [ES16; Tel16; LS17; SS17]. Moreover, the

overparameterized and redundant networks, which can easily memorize and overfit

the training data, surprisingly generalize well in practice [Zha+17a]. Various expla-

nations have been investigated, but the secret of deep and wide networks remains

an open problem.

Empirical studies suggest that the performance of shallow networks can be

improved by learning from large networks following the student-teacher strategy

[BC14; Urb+17]. In these approaches, the student networks are forced to mimic the

output probability distribution of the teacher networks to transfer the knowledge

embedded in the soft targets. The intuition is that the dark knowledge [Hin+15],

which contains the relative probabilities of “incorrect” answers , is informative and

representative. For example, we want to classify an image over the label set (dog, cat,

car). Given an image of a dog, a good teacher network may mistakenly recognize

it as cat with small probability, but should seldom recognize it as car; the soft

target of output distribution over categories for this image, (0.7, 0.3, 0), contains

198

more information such as categorical correlation than the hard target of one-hot

vector, (1, 0, 0). The student is trained by minimizing a predetermined loss which

measures similarity between student and teacher output, such as Kullback-Leibler

(KL) divergence.

In previous studies, knowledge transfer has been used to train shallow but

wide student networks, which potentially have more parameters than the teacher

networks [BC14; Urb+17]; ensemble of networks are used as teacher, and a student

network with similar architecture and capacity can be trained [Hin+15]; partic-

ularly, a small deep and thin network is trained to replace a shallow and wide

network for acceleration [Rom+15], given the best teacher at that time is the shal-

low and wide VGGNet [SZ14]. Since then, the design of network architecture has

advanced. ResNet [He+16] has significantly deepened the networks by introducing

residual connections, and wide residual networks (WRNs) [ZK16] suggest widening

the networks leads to better performance. It is unclear whether the dark knowledge

from the state-of-the-art networks based on residual connections, which are both

deep and wide, can help train a shallow and/or thin network (also with residual

connections) for acceleration.

In this paper, we focus on improving the performance of a shallow and thin

modern network (student) by learning from the dark knowledge of a deep and wide

network (teacher). Both the student and teacher networks are convolutional neural

networks (CNNs) with residual connections, and the student network is shallow

and thin so that it can run much faster than the teacher network during inference.

Instead of adopting the classic student-teacher strategy of forcing the output of a

199

student network to exactly mimic the soft targets produced by a teacher network,

we introduce conditional adversarial networks to transfer knowledge from teacher to

student. We empirically show that the loss learned by the adversarial training has

the advantage over the predetermined loss in the student-teacher strategy, especially

when the student network has relatively small capacity.

Our learning loss approach is inspired by the recent success of conditional

adversarial networks for various image-to-image translation applications [Iso+17].

We show that adversarial nets can benefit a task that is very different from image

generation. In the student-teacher strategy, forcing a student network to exactly

mimic one of the soft targets (or the average/ensemble of several teacher networks)

is not only unnecessary (because of the multi-modality 1), but also difficult (because

the student has smaller capacity). Our approach preserves the multi-modality by

introducing an auxiliary network for learning the loss to transfer the knowledge.

8.1.1 Related work

Network acceleration techniques can be roughly divided into three cate-

gories: low precision, sparse parameter pruning, and knowledge distillation. Low

precision methods use limited number of bits to store and operate the network

weights [Ras+16; Li+17c], which often achieve conceptual acceleration because

mainstream GPUs have limited support for low precision computation. Net-

works can be directly modified by pruning and factorizing the redundant weights

1For the previous example, the output distribution for a dog image can also be (0.8, 0.2, 0). In
fact, there are infinite number of soft targets that can correctly predict the label.

200

[How+17], which aim to construct networks of similar architecture with reduced

number of weights by assuming sparsity. Moreover, network pruning papers mostly

report indirect speedup measured in the number of basic operations, rather than by

inference time.

Knowledge distillation is a principled approach to train small neural net-

works for acceleration. We slightly generalize the term knowledge distillation to

represent all methods that train student networks by transferring knowledge from

teacher networks. Bucilu et al. [Buc+06] pioneered this approach for model com-

pression. Ba and Caruana [BC14] and Urban et al. [Urb+17] trained shallow but

wide student by learning from a deep teacher, which were not primarily designed for

acceleration. Hinton et al. [Hin+15] generalized the previous methods by introduc-

ing a new metric between the output distribution of teacher and student, as well as a

tuning parameter. Variants of knowledge distillation has also been applied to tasks

in other domains [She+16; Luo+16; Che+17b; Teh+17] A recent preprint [KK17]

presented promising preliminary results on CIFAR-10 by learning a small ResNet

from a large ResNet. Another line of research focuses on transferring intermediate

features instead of soft targets from teacher to student [Rom+15; Wan+16; ZK17;

Yim+17; HW17; You+17]. Our approach is complementary to those methods by

using adversarial networks to learn a new metric between the output distribution of

teacher and student.

Generative adversarial networks (GAN) has been extensively studied

over recent years since [Goo+14a]. GAN trains two neural networks, the genera-

tor and the discriminator, in an adversarial learning process that alternatively up-

201

conv3x3

BN,	ReLU
Dropout

BN,ReLU

conv3x3

BN
Dropout

linear

ReLU

al al

al+1 al+1

(a) Residual blocks for convolutional neural
networks [ZK16] (left) and multi-layer per-
ceptron (right). Blocks are equipped with
batch normalization (BN), activation ReLU,
and dropout. al is the output of the lth
block.

Student
F (·)

Teacher
(pre-trained)

dog{li : }

{xi : }

Discriminator

Real/Fake

tiLS
logits

LGAN

(b) Proposed adversarial training. The deep
and wide teacher is pre-trained offline. The
student network and discriminator are up-
dated alternatively. Additional supervised
loss is added for both student and discrimi-
nator.

Figure 8.1: Network architectures.

dates the two networks. We use adversarial networks conditioned on input images

[Iso+17; Ode+17; Xu+19a]. Unlike previous works that focused on image genera-

tion, we aim at learning a loss function for knowledge distillation, which requires

quite different architectural choices for our generator and discriminator. A recent

preprint [Bel+18] appears a few months later than ours has a similar approach for

network compression. We are the first to apply adversarial training for knowledge

distillation. Moreover, we provide systematical study on choosing the student.

8.2 Learning loss for knowledge distillation

In this section, we introduce the learning loss approach based on conditional

adversarial networks. We start from a recap of modern network architectures (sec-

tion 8.2.1), and then describe the dark knowledge that can be transferred from

teacher to student networks (section 8.2.2). Our approach with adversarial net-

202

works for learning loss is detailed in section 8.2.3.

8.2.1 Neural networks with residual connection

Residual blocks are shown to be effective for training deep CNNs to achieve

state-of-the-art performance [He+16; ZK16; Li+18b]. We build both student and

teacher networks by stacking the residual convolutional blocks shown in Figure 8.1a

(left). The first layer contains 16 filters of 3× 3 convolution, followed by a stack of

6n layers, which is 3 groups of n residual blocks, and each block contains two convo-

lution layers equipped with batch normalization [IS15], ReLU [Kri+12] and dropout

[Sri+14]. The output feature map is subsampled twice, and the number of filters

are doubled when subsampling . After the last residual block is the global average

pooling, and then fully-connected layer and softmax. In the following sections, the

architecture of wide residual networks (WRNs) is denoted as WRN-d-m following

[ZK16], where the total depth is d = 6n+4, and m is the widen factor that increases

the number of filters by m times in each residual block. Our teacher network is deep

and wide WRN with large d and m, while student network is shallow and thin WRN

with small d and m.

8.2.2 Knowledge distillation

The output of neural networks for image classification is a probability dis-

tribution over categories, which is generated by applying a softmax function over

the output of the last fully connected layer (known as logits). Rich information

203

is embedded in the output of a teacher network, and we can use logits to transfer

the knowledge to student network [Buc+06; BC14; Urb+17; Hin+15]. We review

[Hin+15] that generalized previous methods, which provides a metric between stu-

dent and teacher logits for knowledge distillation (KD).

The logits vector generated by pre-trained teacher network for an input image

xi, i = 1, . . . , N is represented by ti, where the dimension of vector ti = (t1i , . . . , t
C
i)

is the number of categories C. We now consider training a student network F to

generate student logits F (xi). By introducing a parameter called temperature T ,

the generalized softmax layer can convert logits vector ti to probability distribution

qi,

MT (ti) = qi, where qji = exp(tji/T)/
∑
k exp(tki /T). (8.1)

where higher temperature T produces softer probability over categories. The regular

softmax for classification is a special case of the generalized softmax with T = 1.

Hinton et al. [Hin+15] proposed to minimize the KL divergence between

teacher and student,

LKD(F, T) = 1/N
N∑
i=1

KL(MT (ti)‖MT (F (xi))), (8.2)

and show that when T is very large, LKD becomes the Euclidean distance between

teacher and student logits. Given the image-label pairs {xi, li}, the cross-entropy

loss for supervised training of a neural network is

LS(F) = 1/N

N∑
i=1

H(li, M1(F (xi))), (8.3)

which is widely used for standard supervised learning. Finally, Hinton et al. [Hin+15]

proposed to minimize the weighted sum of LKD and LS to train a student network,

204

L1(F, T) = 1/2LS(F) + T 2LKD(F, T). (8.4)

8.2.3 Learning loss with adversarial networks

Overview. The main idea of learning the loss for transferring knowledge

from teacher to student is depicted in Figure 8.1b. Instead of forcing the student

to exactly mimic the teacher by minimizing KL-divergence in L1(F, T) of Equation

(8.4), the knowledge is transferred from teacher to student through a discriminator

in our approach. This discriminator is trained to distinguish whether the output

logits is from teacher or student network, while the student is adversarially trained

to fool the discriminator, i.e., output logits that are indistinguishable to the teacher

logits.

There are several benefits of the proposed method. First, the learned loss is

often effective, as has already been demonstrated for several image to image transla-

tion tasks [Iso+17]. Moreover, our approach relieves the pain for hand-engineering

the loss. Though the parameter tuning and hand-engineering of the loss is replaced

by hand-engineering the discriminator networks in some sense, our empirical study

shows that the performance is less sensitive to the discriminator architecture than

the temperature parameter in knowledge distillation. The second benefit is closely

related to the multi-modality of network output. As discussed before, it is unnec-

essary and difficult to exactly mimic the output of teacher networks. The trained

discriminator can capture the relative similarities between the categories from the

multi-modal logits of teacher, and directs the student to produce correct but not

205

necessarily same outputs as the teacher.

Discriminator update. We now describe the proposed method in a more rigorous

way. The student and discriminator in Figure 8.1b are alternatively updated in the

proposed approach. Let us first look at the update of the discriminator, which is

trained to distinguish teacher and student logits. We use multi-layer perceptron

(MLP) as discriminator. Its building block — residual block is shown in Figure 8.1a

(right). The number of nodes in each layer is the same as the dimension of logits,

i.e., the number of categories C. We denote the discriminator that predicts binary

value “Real/Fake” as D(·). To train D, we fix the student network F (·) and seek

to maximize the log-likelihood, which is known as binary cross-entropy loss,

LA(D,F) = 1/N

N∑
i=1

(
logP (Real|D(ti)) + logP (Fake|D(F (xi)))

)
. (8.5)

The plain adversarial loss LA for knowledge distillation, which follows the original

GAN [Goo+14a], faces two major challenges. First, the adversarial training process

is difficult [Yad+18]. Even if we replace the log-likelihood with advanced techniques

such as Wasserstein GAN [Arj+17] or Least Squares GAN [Mao+16], the training is

still slow and unstable in our experiments. Second, the discriminator captures the

high-level statistics of teacher and student outputs, but the low-level alignment is

missing. The student outputs F (xi) for xi can be aligned to a completely unrelated

teacher sample tj by optimizing LA, which means a dog image can generate a logits

vector that predicts cat. One extreme example is that the student always mispredicts

dog as cat and cat as dog, but the overall output distribution may still be close to

the teacher’s.

206

To tackle these problems, we modify the discriminator objective to also predict

the class labels, where the output of discriminator D(·) is a C+1 dimensional vector

with C Label predictions and a Real/Fake prediction. We now maximize

LDiscriminator(D,F) = 1/2(LA(D,F) + LDS(D,F)), (8.6)

where LA is the previously defined adversarial loss over Real/Fake, LDS is the su-

pervised log-likelihood of discriminator over Labels, written as

LDS(D,F) = 1/N

N∑
i=1

(
logP (li|D(ti)) + logP (li|D(F (xi)))

)
. (8.7)

We assume Label and Real/Fake are conditionally independent in Equation (8.6).

To avoid using this assumption, we can maximize the log-likelihood of discriminator

to predict the tuple { Label, Real/Fake }, which requires D(·) to predict a 2C

dimensional vector. In our experiments, optimizing the proposed method with or

without the independent assumption achieves almost identical results. Hence we will

always use the independent assumption for a more compact discriminator. Note

that equation (8.6) has the same form as the auxiliary classifier GANs [Ode+17;

Xu+19a].

The adversarial training becomes much more stable when the proposed dis-

criminator also predicts category Labels besides Real/Fake. Moreover, the discrimi-

nator can provide category-level alignment between outputs of student and teacher.

The student outputs of a dog image are more likely to learn from the teacher outputs

that predict dogs. However, the proposed method still lacks instance-level knowl-

edge. To further boost the performance, we start with investigating conditional

207

discriminators, in which the input of discriminators are logits concatenated with a

conditional vector. We tried the following conditional vectors: image with convolu-

tional embedding; label one-hot vector with embedding; and the extracted teacher

logits. However, it turns out the conditional vectors are easily ignored during the

training of the discriminator and does not help in practice. We will introduce a

direct instance-level knowledge for training student network later.

Student update. We update the student network after updating the discriminator

in each iteration. When updating the student network F (·), we aim to fool the

discriminator by fixing discriminator D(·) and minimizing the adversarial loss LA.

In the meantime, the student network is also trained to satisfy the auxiliary classifier

of discriminator LDS. Besides the category-level knowledge in LDS, we introduce

instance-level knowledge by aligning outputs of teacher and student,

LL1(F) = 1/N

N∑
i=1

‖F (xi)− ti‖1. (8.8)

The L1 norm has been found helpful in the GAN-based image to image translation

[Iso+17].

Finally, we combine the learned loss with the supervised loss LS in (8.3), and

minimize the following objective for the student network F (·),

LStudent(D,F) = LS(F)+LL1
(F)+LGAN (D,F),where LGAN (D,F) =

1

2
(LA(D,F)−LDS(D,F)).

(8.9)

The sign of LDS is flipped in (8.6) and (8.9) because both the discriminator and

student are trained to preserve the category-level knowledge.

Our final loss LStudent(D,F) in (8.9) is a combination of the learned loss for

208

knowledge distillation and the supervised loss for neural network, and may look

complicated at the first glance. However, each component of the loss is relatively

simple. Moreover, since both student F and discriminator D are learned, there is

no explicit parameters to be tuned in the loss function. Our experiments suggest

the performance of the proposed method is reasonably insensitive to the discrimi-

nator architecture and the learned loss can outperform the hand-engineered loss for

knowledge distillation.

8.3 Experiments

After presenting experimental settings, we show the benefits of our proposed

method in section 8.3.1 and perform ablation study in section 8.3.2. We present the

effect of depth and width of the student network in section 8.3.3, followed by the

discussion of trade-off between classification accuracy and inference time in section

8.3.4.

We consider three image classification datasets: ImageNet32 [Chr+17],

CIFAR-10 and CIFAR-100 [KH09], and use wide residual networks (WRNs) [ZK16]

for both student and teacher networks. The teacher network is a fixed WRN-40-10,

while the student network has varying depth and width in different experiments.

We use multi-layer preceptron (MLP) as the discriminator in our approach. 3-layer

MLP is used for most of the experiments except for section 8.3.2, in which we study

the effect of discriminator depth. To speed up the experiments, the logits of teacher

network are generated offline and stored in memory. We use stochastic gradient

209

descent (SGD) as optimizer and follow standard training scheduler, and set dropout

ratio to 0.3 for both discriminator and student networks. The results below are the

median of five random runs.

CIFAR-10 CIFAR-100 ImageNet32
Student 7.46 28.52 48.2
Teacher 4.19 20.62 38.41

KD (T=1) 7.27 28.62 49.37
KD (T=2) 7.3 28.33 49.48
KD (T=5) 7.02 27.06 49.63
KD (T=10) 6.94 27.07 51.12

Ours 6.09 25.75 47.39

Table 8.1: Error rate achieved on benchmark datasets.

8.3.1 Benefits of learning loss

We first show the proposed method is effective for transferring knowledge

from teacher to student. Table 8.1 shows the error rate of classification on the

three benchmark datasets. The teacher is the deep and wide WRN-40-10. The

student is much shallower and thinner, WRN-10-4 for CIFARs, and WRN-22-4

for ImageNet32. We choose a larger student network for ImageNet32 because it

contains more samples and categories. We will have more discussion on wisely

choosing the student architecture in sections 8.3.3 and 8.3.4 . The first two rows

of Table 8.1 show the performance of standard supervised learning for student and

teacher networks, without knowledge transfer. We then compare our approach with

knowledge distillation (KD) in [Hin+15]. We choose the temperature parameter

T ∈ {1, 2, 5, 10} following the original work. No parameter is tuned for our method.

In Table 8.1, the deep and wide teacher performs much better than the shal-

210

0 50 100 150 200
Epoch

0

20

40

60

80

100

E
rr

or
 r

at
e

2

4

6

8

10

12

D
is

cr
im

in
at

or
 lo

ss

Student-train
Student-test
Ours-train
Ours-test
Discriminator

(a) The training curve on CIFAR-
100.

(Student) (Ours) (Teacher)

(Student) (Ours) (Teacher)

(b) The distribution of prediction for category 85 in
CIFAR-100..

Figure 8.2: Analysis of the proposed method.

low and thin student with standard supervised learning, and lower bounds the error

rate of the small network trained with student-teacher strategy. Baseline method

KD helps the training of small networks for the two CIFARs, but does not help for

ImageNet32. We conjecture the reason to be that the capacity of the student is too

small to learn from knowledge distillation for larger dataset such as ImageNet32.

The temperature parameter T introduced in KD is useful. For CIFARs, KD per-

forms better when T is large, and T = 5 and T = 10 performs similarly. The

proposed method improves the performance of small network for all three datasets,

and outperforms KD by a margin.

8.3.2 Analysis of the proposed method

We discuss the proposed method in more details. Figure 8.2a presents the

training curve of the small student network, WRN-10-4, on CIFAR-100 dataset.

The loss of the discriminator (blue solid line) is gradually decreasing, which suggests

the adversarial training steadily makes progress. The error rates of the proposed

method for both training and testing data are decreasing. The testing error rate

of the proposed method is consistently better than the pure supervised training of

211

Loss composition CIFAR-10 CIFAR-100
LS 7.46 28.52
LGAN 14.82 47.04

LS + LGAN 6.56 27.27
LS + LL1 6.44 26.66

LS + LL1 + LGAN 6.09 25.75

Table 8.2: The effect of different components of the loss in the proposed method.

Depth 1 2 3 4
Error rate 26.13 25.88 25.75 27.42

Table 8.3: The effect of discriminator depth on CIFAR-100.

the student model, and looks more stable between epoch 50-100. The training error

rate of the proposed method is slightly worse than pure supervised learning, which

suggests knowledge transfer can benefit generalization.

Next, we performing ablation study on components of the proposed approach,

as shown in Table 8.2. By combining the adversarial loss and the category-level

knowledge transfer (Equation (8.6)), the learned loss LGAN performs reasonably

well. However, the indirect knowledge provided by LGAN alone is not as good

as standard supervised learning LS. Both category-level knowledge transferred by

LGAN and instance-level knowledge transferred by LL1 can improve the performance

of training student network. Our final approach combines these components and

performs the best without parameter tuning.

We present the effect of the depth of MLP as discriminator in Table 8.3.

The error rate is relatively insensitive to the depth of discriminator. The error rate

slightly decreases as the depth increases when the discriminator is generally shallow.

When the discriminator becomes deeper, the error rate increases as the adversarial

training becomes unstable. Decreasing the learning rate of discriminator sometimes

helps, but it may introduce parameter tuning. The 3-layer MLP works reasonably

212

well and is used for all our experiments to keep the proposed method simple.

Finally, we present qualitative visualization for the proposed approach. Figure

8.2b shows the scaled histogram for the prediction of category 85 in CIFAR-100. The

histogram is calculated on the 10K testing samples, in which 100 samples are from

category 85 and labeled as positive (green in figure), and the other 9.9K are labeled

as negative (blue in the figure). The histogram is normalized to sum up to one

for positives and negatives, respectively. The three plots represent the distribution

predicted by student network trained by standard supervised learning, the student

network trained by the proposed approach, and the teacher network. The histogram

in the middle is similar to the histogram on the right, which suggests the proposed

approach effectively transfers knowledge from teacher to student.

8.3.3 Does WRN need to be deep and wide?

Urban et al. [Urb+17] asked the question for convolutional neural networks

and claimed the network should at least has a few layers of convolutions. In this

section, we study the modern architecture WRN of residual blocks, and show that

WRN Size (M) Time (s) Student KD (T=5) Ours
10-2 0.32 0.14 33.22 32.74 32.1
10-4 1.22 0.32 28.52 27.16 25.75
10-6 2.72 0.60 27.27 25.39 24.39
10-8 4.81 0.82 26.23 24.31 23.38
10-10 7.49 1.17 26.04 23.49 23.02
16-4 2.77 0.71 24.73 22.9 22.73
22-4 4.32 1.07 23.61 22.02 21.66
28-4 5.87 1.44 23.2 21.61 21.00
34-4 7.42 1.73 23.22 21.2 20.73
40-10 55.9 8.73 20.62 - -

Table 8.4: The effect of depth and width in student network; the parameter size, inference
time and error rate on CIFAR-100.

213

0 0.5 1 1.5 2
Inference time on CPU (second/minibatch)

15

20

25

30

35

E
rr

or
 r

at
e

Teacher
Student
KD(T=5)
Ours

(a) Inference time versus error rate.

0 2 4 6 8
Parameter size of student #106

15

20

25

30

35

E
rr

or
 r

at
e

Teacher
Student
KD(T=5)
Ours

(b) Network size versus error rate.

Figure 8.3: Trade-off of error rate to inference time and parameter size. The figure is
generated from Table 8.4. Networks WRN-10-m are labeled as circles, and WRN-d-4 are
labeled as crosses for the proposed approach. The largest student is 7x smaller and 5x
faster than the teacher WRN-40-10.

even for the modern architecture WRN, the network has to be deep and wide to

some extent. Table 8.4 presents the results of standard supervised learning, knowl-

edge distillation [Hin+15] and the proposed approach for different student networks

trained on CIFAR-100. We first fix the depth of WRN as 10, and change the widen

factor from 2 to 10. We then fix the width as 4, and increase depth from 10 to 34.

The parameter size is in millions, and the inference time is measured in seconds per

minibatch of 100 samples on CPU.

When the student is very small, such as WRN-10-2, it is difficult to transfer

knowledge from teacher to student because the student is limited by its capacity.

When the student is large, such as WRN-34-4, both KD and the proposed approach

can improve the performance to approximate the teacher. The advantage of the

proposed method is observed at all depths and widths but is most pronounced for

relatively small students such as WRN-10-4. Increasing depth is more effective than

width. For example, WRN-34-4 has less parameter than WRN-10-10, but achieves

lower error rate.

214

8.3.4 Training student for acceleration

The shallow and thin network is much easier to deploy in practice. We present

the trade-off between error rate, inference time and parameter size in Figure 8.3.

The figure is generated by changing the architecture of the student network. Larger

student network is more accurate but also slower. For network with similar size,

such as WRN-10-10 and WRN-34-4, deeper network achieves lower error rate, while

wider network runs slightly faster. When the student network is relatively large,

such as WRN-34-4, the student network trained by the proposed approach can

achieve competitive error rate as the teacher WRN-40-10, while being 7x smaller

and 5x faster. The proposed approach also decreases the absolute error rate by 2.5%

compared to the standard training without knowledge transfer.

8.4 Summarization and discussion

We study the student-teacher strategy for network acceleration in this paper.

We propose to use adversarial networks to learn the loss for transferring knowledge

from teacher to student. We show that the proposed approach can improve the

training of student network, especially when the student network is shallow and

thin. Moreover, we empirically study the effect of network capacity when adopting

modern network as student and provide guidelines for wisely choosing a student to

balance error rate and inference time. We can train a student that is 7x smaller and

5x faster than teacher without loss of accuracy.

The proposed approach is stable and easy to implement after applying several

215

advanced techniques in the GAN literature. The current implementation uses the

stored logtis from teacher network to save GPU memory and computation. Gen-

erating teacher logits on the fly can be more reliable for the adversarial training.

Moreover, the proposed approach can be naturally extended to use ensemble of

networks as teacher. The logits of multiple teacher networks can be fed into the

discriminator for better performance. We will investigate these ideas for future

work.

216

Part III

Adversarial Training for Robustness

217

Chapter 9: Universal Adversarial Training

In Chapter 9 and Chapter 10, we discuss another form of minimax problem

that rises from the interest of training robust machine learning models. Adversar-

ial examples can be generated by adding small perturbation to samples, which is

imperceptible to humans but will mislead the trained model to provide wrong pre-

dictions. In practice, adversarial training, which train a model based on adversarial

examples generated on-the-fly, is a well-recognized method for training robust mod-

els that can defend against adversarial attacks. The adversarial training process can

be formulated as optimizing a minimax problem. We discuss effective and efficient

adversarial training algorithm based on [Sha+18; Sha+19; Xu+19b].

9.1 Introduction

Deep neural networks (DNNs) are vulnerable to adversarial examples, in which

small and often imperceptible perturbations change the class label of an image

[Sze+13; Goo+15; Ngu+15; Pap+16]. Because of the security concerns this raises,

there is increasing interest in studying these attacks themselves, and also designing

mechanisms to defend against them.

Adversarial examples were originally formed by selecting a single base image,

218

Universal
Perturbation

Figure 9.1: A universal perturbation made using a subset of ImageNet and the VGG-
16 architecture. When added to the validation images, their labels usually change.
The perturbation was generated using the proposed Algorithm 6. Perturbation pixel
values lie in [−10, 10] (i.e. ε = 10).

and then sneaking that base image into a different class using a small perturba-

tion [Goo+15; CW17b; Mad+17]. This is done most effectively using (potentially

expensive) iterative optimization procedures [Don+17; Mad+17; Ath+18].

Different from per-instance perturbation attacks, Moosavi-Dezfooli et al.

[MD+17b; MD+17a] show there exists “universal” perturbations that can be added

to any image to change its class label (Fig. 9.1) with high probability. Universal

perturbations empower attackers who cannot generate per-instance adversarial ex-

amples on the go, or who want to change the identity of an object to be selected

later in the field. What’s worse, universal perturbations have good cross-model

transferability, which facilitates black-box attacks.

Among various methods for hardening networks to per-instance attacks, ad-

versarial training [Mad+17] is known to dramatically increase robustness [Ath+18].

In this process, adversarial examples are produced for each mini-batch during train-

ing, and injected into the training data. While effective at increasing robustness,

the high cost of this process precludes its use on large and complex datasets. This

219

cost comes from the adversarial example generation process, which frequently re-

quires 5-30 iterations to produce an example. Unfortunately, adversarial training

using cheap, non-iterative methods generally does not result in robustness against

stronger iterative adversaries [Mad+17].

Contributions This paper studies effective methods for producing and deflecting

universal adversarial attacks. First, we pose the creation of universal perturbations

as an optimization problem that can be effectively solved by stochastic gradient

methods. This method dramatically reduces the time needed to produce attacks as

compared to [MD+17b]. The efficiency of this formulation empowers us to consider

universal adversarial training. We formulate the adversarial training problem as

a min-max optimization where the minimization is over the network parameters

and the maximization is over the universal perturbation. This problem can be

solved quickly using alternating stochastic gradient methods with no inner loops,

making it far more efficient than per-instance adversarial training with a strong

adversary (which requires a PGD inner loop). Prior to our work, it was argued

that adversarial training on universal perturbations is infeasible because the inner

optimization requires the generation of a universal perturbation from scratch, which

requires a lot of computation and many iterations [Per+18]. We further improve

the defense efficiency by providing a “free” algorithm for defending against universal

perturbations. Through experiments on CIFAR-10 and ImageNet, we show that this

“free” method works well in practice.

220

9.2 Related work

We briefly review per-instance perturbation attack techniques that are closely

related to our paper and can be used during the universal perturbation update

step of universal adversarial training. The Fast Gradient Sign Method (FGSM)

[Goo+15] is one of the most popular one-step gradient-based approaches for `∞-

bounded attacks. FGSM applies one step of gradient ascent in the direction of the

sign of the gradient of the loss function with respect to the input image. When

a model is adversarially trained, the gradient of the loss function may be very

small near unmodified images. In this case, the R-FGSM method remains effective

by first using a random perturbation to step off the image manifold, and then

applying FGSM [Tra+17]. Projected Gradient Descent (PGD) [Kur+16b; Mad+17]

iteratively applies FGSM multiple times, and is one of the strongest per-instance

attacks [Mad+17; Ath+18]. The PGD version of [Mad+17] applies an initial random

perturbation before multiple steps of gradient ascent. Finally, DeepFool [MD+16] is

an iterative method based on a linear approximation of the training loss objective.

This method formed the backbone of the original method for producing universal

adversarial examples [MD+17b].

Adversarial training, in which adversarial examples are injected into the

dataset during training, is an effective method to learn a robust model resistant

to per-instance attacks [Mad+17; Ath+18; Hua+15; Sha+15; Sin+18]. Robust

models adversarially trained with FGSM can resist FGSM attacks [Kur+16b], but

can be vulnerable to PGD attacks [Mad+17]. Madry et al. [Mad+17] suggest strong

221

attacks are important, and they use the iterative PGD method in the inner loop

for generating adversarial examples when optimizing the min-max problem. PGD

adversarial training is effective but time-consuming. The cost of the inner PGD

loop is high, although this can sometimes be replaced with neural models for attack

generation [BF18; Pou+18; Xia+18]. These robust models are adversarially trained

to fend off per-instance perturbations and have not been designed for, or tested

against, universal perturbations.

Unlike per-instance perturbations, universal perturbations can be directly

added to any test image to fool the classifier. In [MD+17b], universal perturba-

tions for image classification are generated by iteratively optimizing the per-instance

adversarial loss for training samples using DeepFool [MD+16]. In addition to classi-

fication tasks, universal perturbations are also shown to exist for semantic segmen-

tation [Met+17]. Robust universal adversarial examples are generated as a universal

targeted adversarial patch in [Bro+17]. They are targeted since they cause misclas-

sification of the images to a given target class. Moosavi-Dezfooli et al. [MD+17a]

prove the existence of small universal perturbations under certain curvature con-

ditions of decision boundaries. Data-independent universal perturbations are also

shown to exist and can be generated by maximizing spurious activations at each

layer. These universal perturbations are slightly weaker than the data dependent

approaches [Mop+17]. As a variant of universal perturbation, unconditional gener-

ators are trained to create perturbations from random noises for attack [RM+18a;

RM+18b].

There has been very little work on defending against universal attacks. To the

222

best of our knowledge, the only dedicated study is by Akhtar et al., who propose

a perturbation rectifying network that pre-processes input images to remove the

universal perturbation [Akh+18]. The rectifying network is trained on universal

perturbations that are built for the downstream classifier. While other methods of

data sanitization exist [Sam+19; MC17] , it has been shown (at least for per-instance

adversarial examples) that this type of defense is easily subverted by an attacker

who is aware that a defense network is being used [CW17a].

Recent preprints [Per+18] model the problem of defending against universal

perturbations as a two-player min-max game. However, unlike us, and similar to

per-instance adversarial training, after each gradient descent iteration for updating

the DNN parameters, they generate a universal adversarial example in an iterative

fashion. Since the generation of universal adversarial perturbations is very time-

consuming [Akh+18], this makes their approach very slow in practice and prevents

them from training the neural network parameters for many iterations.

9.3 Optimization for universal perturbation

Given a set of training samples X = {xi, i = 1, . . . , N} and a network f(w, ·)

with frozen parameter w that maps images onto labels, Moosavi-Dezfooli et al.

[MD+17b] propose to find universal perturbations δ that satisfy,

‖δ‖p ≤ ε and Prob(X, δ) ≥ 1− ξ, (9.1)

223

Algorithm 5 Iterative solver for universal perturbations [MD+17b]

Initialize δ ← 0
while Prob(X, δ) < 1− ξ do

for xi in X do
if f(w, xi + δ) 6= f(w, xi) then

Solve minr ‖r‖2 s.t. f(w, xi + δ + r) 6= f(w, xi)

by DeepFool [MD+16]
Update δ ← δ + r, then project δ to `p ball

end if
end for

end while

Prob(X, δ) represents the “fooling ratio,” which is the fraction of images x whose

perturbed class label f(w, x+δ) differs from the original label f(w, x). The parameter

ε controls the `p diameter of the bounded perturbation, and ξ is a small tolerance

hyperparameter. Problem (9.1) is solved by the iterative method in Algorithm 5

[MD+17b]. This iterative solver relies on an inner loop to apply DeepFool [MD+16]

to each training instance, which makes the solver slow. Moreover, the outer loop of

Algorithm 5 is not guaranteed to converge.

Different from [MD+17b], we consider the following optimization problem for

building universal perturbations,

max
δ
L(w, δ) =

1

N

N∑
i=1

l(w, xi + δ) s.t. ‖δ‖p ≤ ε, (9.2)

where l(w, ·) represents the loss used for training DNNs. This simple formulation

(9.2) searches for a universal perturbation that maximizes the training loss, and

thus forces images into the wrong class.

The naive formulation (9.2) suffers from a potentially significant drawback;

224

Algorithm 6 Stochastic gradient for universal perturbation

for epoch = 1 . . . Nep do
for minibatch B ⊂ X do

Update δ with gradient variant δ ← δ + g
Project δ to `p ball

end for
end for

the cross-entropy loss is unbounded from above, and can be arbitrarily large when

evaluated on a single image. In the worst-case, a perturbation that causes misclas-

sification of just a single image can maximize (9.2) by forcing the average loss to

infinity. To force the optimizer to find a perturbation that fools many instances, we

propose a “clipped” version of the cross entropy loss,

l̂(w, xi + δ) = min{l(w, xi + δ), β}. (9.3)

We cap the loss function at β to prevent any single image from dominating the

objective in (9.2), and giving us a better surrogate of misclassification accuracy. In

Section 9.5.2, we investigate the effect of clipping with different β.

We directly solve Eq. (9.2) by a stochastic gradient method described in Al-

gorithm 6. Each iteration begins by using gradient ascent to update the universal

perturbation δ to maximize the loss. Then, δ is projected onto the `p-norm ball

to prevent it from growing too large. We experiment with various optimizers for

this ascent step, including Stochastic Gradient Descent (SGD), Momentum SGD

(MSGD), Projected Gradient Descent (PGD), and ADAM [KB14].

We test this method by attacking a naturally trained WideResnet 28-10 archi-

225

texture on the CIFAR-10 dataset. We use ε = 8 for the `∞ constraint for CIFAR-10

following [Mad+17]. Stochastic gradient methods that use “normalized” gradients

(ADAM and PGD) are less sensitive to learning rate and converge faster, as shown in

Fig. 9.2. We visualize the generated universal perturbation from different optimiz-

ers in Fig. 9.3. Compared to the noisy perturbation generated by SGD, normalized

gradient methods produced stronger attacks with more well-defined geometric struc-

tures and checkerboard patterns. The final evaluation accuracies (on test-examples)

after adding universal perturbations with ε = 8 were 42.56% for the SGD perturba-

tion, 13.08% for MSGD, 13.30% for ADAM, and 13.79% for PGD. The clean test

accuracy of the WideResnet is 95.2%.

0 20 40 60 80 100 120 140 160

No. of iterations

0

20

40

60

80

100

A
cc

u
ra

cy
on

tr
ai

n
in

g
m

in
i-

b
at

ch
(%

)

Robustness of naturally trained CIFAR-10 model

SGD

MSGD

ADAM

PGD

Figure 9.2: Classification accuracy on adversarial examples of universal perturba-
tions generated by increasing the cross-entropy loss. PGD and ADAM converge
faster. We use 5000 training samples from CIFAR-10 for constructing the universal
adversarial perturbation for naturally trained Wide ResNet model from [Mad+17].
The batch-size is 128, ε=8, and the learning-rate/step-size is 1.

Our proposed method of universal attack using a clipped loss function has sev-

226

(a) SGD (b) MSGD (c) ADAM (d) PGD

Figure 9.3: Visualizations of universal perturbations after 160 iterations of the op-
timizers depicted in Fig. 9.2.

eral advantages. It is based on a standard stochastic gradient method that comes

with convergence guarantees when a decreasing learning rate is used [Bot+18]. Also,

each iteration is based on a minibatch of samples instead of one instance, which ac-

celerates computation on a GPU. Finally, each iteration requires a simple gradient

update instead of the complex DeepFool inner loop; we empirically verify fast con-

vergence and good performance of the proposed method (see Section 9.5).

9.4 Universal adversarial training

We now consider training robust classifiers that are resistant to universal per-

turbations. Similar to [Mad+17], we borrow ideas from robust optimization. We use

robust optimization to build robust models that can resist universal perturbations.

In particular, we consider universal adversarial training, and formulate this problem

as a min-max optimization problem,

min
w

max
δ
L(w, δ) =

1

N

N∑
i=1

l(w, xi + δ)

s.t. ‖δ‖p ≤ ε,

(9.4)

227

Algorithm 7 Alternating stochastic gradient method for adversarial training
against universal perturbation

Input: Training samples X, perturbation bound ε, learning rate τ , momentum µ
for epoch = 1 . . . Nep do

for minibatch B ⊂ X do
Update w with momentum stochastic gradient

gw ← µgw − Ex∈B[∇w l(w, x+ δ)]
w ← w + τgw

Update δ with stochastic gradient ascent
δ ← δ + ε sign(Ex∈B[∇δ l(w, x+ δ)])

Project δ to `p ball
end for

end for

where w represents the neural network weights, X = {xi, i = 1, . . . , N} repre-

sents training samples, δ represents universal perturbation noise, and l(·) is the

loss function. Here, unlike conventional adversarial training, our δ is a universal

perturbation (or, more accurately, mini-batch universal). Previously, solving this

optimization problem directly was deemed infeasible [Per+18], but we show that

Eq. (9.4) is efficiently solvable by alternating stochastic gradient methods shown in

Algorithm 7. We show that unlike [Mad+17], updating the universal perturbation

only using a simple step is enough for building universally hardened networks. Each

iteration alternatively updates the neural network weights w using gradient descent,

and then updates the universal perturbation δ using ascent. As we show later in our

experiment, the choice of the ascent optimizer does have a large impact on universal

robustness.

We compare our formulation (9.4) and Algorithm 7 with PGD-based adversar-

ial training in [Mad+17], which trains a robust model by optimizing the following

228

0 10K 20K 30K 40K 50K

No. of iterations

60

65

70

75

80

85

90

95

100

105

A
cc

u
ra

cy
on

tr
ai

n
in

g
m

in
i-

b
at

ch
(%

)

Universal Adv. Training – FGSM used for maximization

Adv Before Ascend

Adv After Ascend

Clean

0 10K 20K 30K 40K 50K

No. of iterations

60

65

70

75

80

85

90

95

100

105

A
cc

u
ra

cy
on

tr
ai

n
in

g
m

in
i-

b
at

ch
(%

)

Universal Adv. Training – ADAM used for maximization

Adv Before Ascend

Adv After Ascend

Clean

Figure 9.4: Classification accuracy for (adversarial) training of (robust) models with
(top) FGSM update and (bottom) ADAM update. We show the accuracy before
and after the gradient ascent for δ in Algorithm 7. We omitted the figure for SGD
update because the gap between the two curves for SGD is invisible.

min-max problem,

min
w

max
Z

1

N

N∑
i=1

l(w, zi) s.t. ‖Z −X‖p ≤ ε. (9.5)

The standard formulation (9.5) searches for per-instance perturbed images Z, while

our formulation in (9.4) maximizes using a universal perturbation δ. Madry et

al. [Mad+17] solve (9.5) by a stochastic method. In each iteration, an adversarial

example zi is generated for an input instance by the PGD iterative method, and

the neural network parameter w is updated once [Mad+17]. Our formulation (Al-

gorithm 7) only maintains one single perturbation that is used and refined in all

iterations. For this reason, we need only update w and δ once per step (i.e., there is

no expensive inner loop), and these updates accumulate for both w and δ through

training.

In Fig. 9.4, we present training curves for the universal adversarial training

process on the WideResnet model from [Mad+17] using the CIFAR-10 dataset. We

229

consider different rules for updating δ during universal adversarial training,

FGSM δ ← δ + ε · sign(Ex∈B[∇δl(w, x+ δ)]), (9.6)

SGD δ ← δ + τδ · Ex∈B[∇δl(w, x+ δ)], (9.7)

and ADAM [KB14]. We found that the FGSM update rule was most effective when

combined with the SGD optimizer for updating neural network weights w.

One way to assess the update rule is to plot the model accuracy before and

after the ascent step (i.e., the perturbation update). It is well-known that adversarial

training is more effective when stronger attacks are used. In the extreme case

of a do-nothing adversary, the adversarial training method degenerates to natural

training. In Fig. 9.5, we see a gap between the accuracy curves plotted before and

after gradient ascent. We find that the FGSM update rule leads to a larger gap,

indicating a stronger adversary. Correspondingly, we find that the FGSM update

rule yields networks that are more robust to attacks as compared to SGD update

(see Fig. 9.5).

Interestingly, while our universal adversarial training alg. 7 is for training

models that are robust to universal perturbations, we see that when using a strong

update rule, the hardened models become robust against `∞ per-instance white-box

attacks generated using a 20-step PGD attack. While training with the “normal-

ized” (FGSM and ADAM) universal perturbation update rules result in models that

resist universal perturbations, the FGSM update rule produces models that are more

resistant against per-instance attacks compared to the ADAM update rule. The ac-

230

0 50 100 150 200 250 300 350 400

No. of iterations

0

20

40

60

80

100

A
cc

u
ra

cy
on

tr
ai

n
in

g
m

in
i-

b
at

ch
(%

)

Robustness of hardened CIFAR-10 models

trained on uFGSM

trained on uSGD

trained on FGSM

trained on PGD

Figure 9.5: Classification accuracy on training data when the universal perturbations
are updated with the ADAM optimizer. We use 5000 training samples from CIFAR-
10 for constructing the universal adversarial perturbation for an adversarially trained
WideResnet model from [Mad+17]. The batch-size is 128, ε=8, and the learning-
rate/step-size is 1.

curacy of a universally hardened network against a white-box per-instance PGD

attack is 17.21% for FGSM universal training, and only 2.57% for ADAM univer-

sal training. When compared to FGSM per-instance adversarial training, which

has comparable computation cost, the universally robust model is even more ro-

bust against per-instance attacks! FGSM per-instance adversarial training achieves

0.00% accuracy on per-instance adversarial examples built using the same PGD

attack setting. More per-instance comparisons are provided in the supplementary

material.

9.4.1 Attacking hardened models

We evaluate the robustness of different models by applying Algorithm 6 to

try to find universal perturbations. We attack universally adversarial trained mod-

231

(a) FGSM (b) PGD (c) uFGSM (d) uSGD

(e) FGSM (f) PGD (g) uFGSM (h) uSGD

Figure 9.6: The universal perturbations made using PGD and ADAM for 4 different
robust models trained on CIFAR-10: adversarially trained with FGSM or PGD, and
universally adversarially trained with FGSM (uFGSM) or SGD (uSGD). Perturba-
tions were made using 400 iterations. The top row perturbations are made using
PGD and the bottom row perturbations are made using ADAM.

232

els (produced by Eq. (9.4)) using the FGSM universal update rule (uFGSM), or

the SGD universal update rule (uSGD). We also consider robust models from per-

instance adversarial training (Eq. (9.5)) with adversarial steps of the FGSM and

PGD type [Mad+17].

The training curves for the robust WideResnet models on CIFAR-10 are plot-

ted in Fig. 9.5. Robust models adversarially trained with weaker attackers such as

uSGD and FGSM are relatively vulnerable to universal perturbations, while robust

models from PGD [Mad+17] and uFGSM can resist universal perturbations. We

apply PGD (using the sign of the gradient) and ADAM in Algorithm 7 to generate

universal perturbations for these robust models, and show such perturbations in

Fig. 9.6. Comparing Fig. 9.6 (a,b,c,d) with Fig. 9.6 (e,f,g,h), we see that universal

perturbations generated by PGD and ADAM are different but have similar patterns.

Universal perturbations generated for weaker robust models have more geometric

textures, as shown in Fig. 9.6 (a,d,e,h).

We apply the strongest attack to the validation images of the natural model

and various universal adversarially trained models using different update steps. The

result are summarized in Table 9.1. Our models become very robust against univer-

sal perturbations and have higher accuracies on natural validation examples com-

pared to per-instance adversarial trained models. Note that the PGD trained model

is trained on a 7-step per-instance adversary and requires about 4× more computa-

tion than ours.

233

Validation Accuracy on
UnivPert Natural

(Robust)
models
trained

with

Natural 9.2% 95.2%
FGSM 51.0% 91.42%
PGD 86.1% 87.25%

uADAM (ours) 91.6% 94.28%
uFGSM (ours) 91.8% 93.50%

Table 9.1: Validation accuracy of hardened WideResnet models trained on CIFAR-
10. Note that Madry’s PGD training is significantly slower than the other training
methods.

9.4.2 Universal adversarial training for free!

As shown in Table 9.1, our proposed algorithm 7 was able to harden the

CIFAR-10 classification network. This comes at the cost of doubling the training

time. Adversarial training in general should have some cost since it requires the

generation or update of the adversarial perturbation of the mini-batch before each

minimization step on the network’s parameters. However, since universal pertur-

bations are approximately image-agnostic, results should be fairly invariant to the

order of updates. For this reason, we propose to compute the image gradient needed

for the perturbation update during the same backward pass used to compute the

parameter gradients. This results in a simultaneous update for network weights

and the universal perturbation in Algorithm 8, which backprops only once per it-

eration and produces approximately universally robust models at almost no cost in

comparison to natural training. The “free universal adversarial trained” model of

CIFAR-10 is 86.1% robust against universal perturbations and has 93.5% accuracy

on the clean validation examples. When compared to the non-free version in Ta-

ble 9.1, the robustness has only slightly decreased. However, the training time is

234

Algorithm 8 Simultaneous stochastic gradient method for adversarial training
against universal perturbation

Input: Training samples X, perturbation bound ε, learning rate τ , momentum µ
Initialize w, δ
for epoch = 1 . . . Nep do

for minibatch B ⊂ X do
Compute gradient of loss with respect to w and δ

dw ← Ex∈B[∇w l(w, x+ δ)]
dδ ← Ex∈B[∇δ l(w, x+ δ)]

Update w with momentum stochastic gradient
gw ← µgw − dw
w ← w + τgw

Update δ with stochastic gradient ascent
δ ← δ + εsign(dδ)

Project δ to `p ball
end for

end for

cut by half. This is a huge improvement in efficiency, in particular for large datasets

like ImageNet with long training times.

9.5 Universal perturbations for ImageNet

To validate the performance of our proposed optimization on different archi-

tectures and more complex datasets, we apply Algorithm 6 to various popular archi-

tectures designed for classification on the ImageNet dataset [Rus+15]. We compare

our method of universal perturbation generation with the current state-of-the-art

method, Iterative DeepFool (iDeepFool for short) [MD+17b]. We use the authors’

code to run the iDeepFool attack on these classification networks. For fair compar-

ison, we execute both our method and iDeepFool on the exact same 5000 training

data points and terminate both methods after 10 epochs. We use ε = 10 for `∞

constraint following [MD+17b], use a step-size of 1.0 for our method, and use sug-

235

gested parameters for iDeepFool. Similar conclusions could be drawn when we use

`2 bounded attacks. We independently execute iDeepFool since we are interested

in the accuracy of the classifier on attacked images – a metric not reported in their

paper 1.

(a) InceptionV1 (b) VGG16 (c) InceptionV3

Figure 9.7: Universal perturbations generated using our Algorithm 6 for different
network architectures on ImageNet. Visually, these perturbations which are for
naturally trained models are structured.

9.5.1 Benefits of the proposed method

We compare the performance of our stochastic gradient method for Eq. (9.2)

and the iDeepFool method for Eq. (9.1) in [MD+17b]. We generate universal per-

turbations for Inception [Sze+16] and VGG [SZ14] networks trained on ImageNet

[Rus+15], and report the top-1 accuracy in Table 9.2. Universal perturbations

generated by both iDeepFool and our method can fool networks and degrade the

classification accuracy. Universal perturbations generated for the training samples

generalize well and cause the accuracy of the validation samples to drop. However,

1They report “fooling ratio” which is the ratio of examples who’s label prediction changes after
applying the universal perturbation. This has become an uncommon metric since the fooling ratio
can increase if the universal perturbation causes an example that was originally miss-classified to
become correctly classified.

236

InceptionV1 VGG16

Natural
Train 76.9% 81.4 %
Val 69.7% 70.9%

iDeepFool
Train 43.5% 39.5%
Val 40.7% 36.0%

Ours
Train 17.2% 23.1%
Val 19.8% 22.5%

iDeepFool time (s) 9856 6076
our time (s) 482 953

Table 9.2: Top-1 accuracy on ImageNet for natural images, and adversarial images
with universal perturbation.

when given a fixed computation budget such as number of passes on the training

data (i.e., epochs), our method outperforms iDeepFool by a large margin. Our

stochastic gradient method generates the universal perturbations at a much faster

pace than iDeepFool. About 20× faster on InceptionV1 and 6× on VGG16 (13×

on average).

After verifying the effectiveness and efficiency of our proposed stochastic gra-

dient method2, we use our Algorithm 6 to generate universal perturbations for more

advanced architectures such as ResNet-V1 152 [He+16] and Inception-V3 [Sze+16]

(and for other experiments in the remaining sections). Our attacks degrade the val-

idation accuracy of ResNet-V1 152 and Inception-V3 from 76.8% and 78% to 16.4%

and 20.1%, respectively. The final universal perturbations used for the results pre-

sented in this section are illustrated in Fig. 9.7.

2Unless otherwise specified, we use the sign-of-gradient PGD for our stochastic gradient opti-
mizer in Algorithm 6.

237

9.5.2 The effect of clipping

In this section we analyze the effect of the “clipping” loss parameter β in

Eq. (9.2). For this purpose, similar to our other ablation experiments, we gener-

ate universal perturbations by solving Eq. (9.2) using PGD for Inception-V3 on

ImageNet.

Since the results and performance could slightly vary with different random

initializations, we run each experiment with 5 random subsets of training data.

The accuracy reported is the classification accuracy on the entire validation set of

ImageNet after adding the universal perturbation. The results are summarized in

Fig. 9.8a. The results showcase the value of our proposed loss function for finding

universal adversarial perturbations.

β = 3 β = 9 β = 27 β =∞0

5

10

15

20

25

30

ac
cu

ra
cy

on
va

lid
at

io
n

%

validation accuracy vs. β

(a) Attack performance varies with clip-
ping parameter β in Eq. (9.2). Attack-
ing Inception-V3 (with natural valida-
tion accuracy 78%) is more successful
with clipping (β = 9) than without clip-
ping (β =∞).

500 1000 2000 4000
0

10

20

30

40

50

60

70

ac
cu

ra
cy

on
va

lid
at

io
n

%

validation accuracy vs. N

(b) The attack performance signifi-
cantly improves when the number of
training points is larger than the num-
ber of classes. For reference, Inception-
V3’s top-1 accuracy is 78%. Using only
a small fraction of the training-data
(4,000 / 1,281,167) is enough to de-
grade the validation and train accuracy
to around 20%.

238

0 50 100 150 200 250 300 350 400

No. of iterations

0

10

20

30

40

50

60

70

A
cc

u
ra

cy
on

tr
ai

n
in

g
m

in
i-

b
at

ch
(%

)
Universally Adversarially Trained

Natural

(a) Generating universal
perturbations

0 50 100 150 200

0

25

50

75

100

125

150

175

200

(b) Natural AlexNet
0 50 100 150 200

0

25

50

75

100

125

150

175

200

(c) Universal Train-
ing

0 50 100 150 200

0

25

50

75

100

125

150

175

200

(d) Free Universal
Training

Figure 9.9: Training universal perturbation can fool naturally trained AlexNet on
ImageNet, but fails to fool our robust AlexNets. We smoothed the curves in (a)
for better visualization. The universal perturbations generated for the universal
adversarial trained AlexNets on ImageNet have little geometric structure compared
to that of the naturally trained network. (b) Universal perturbation of natural
model. The accuracy of the validation images + noise is only 3.9% (c) Perturbation
for our universally trained model using Algorithm 7. The accuracy of the validation
images + noise for our robust model is 42.0%. (d) Perturbation for the model
trained with our free universal training variant (Algorithm 8). The accuracy of the
validation images + noise is 28.3%. While the universal noise for the free variant of
universal adversarial training has some structure compared to the non-free variant,
when compared to that of the natural model (b), it is structure-less.

9.5.3 How much training data does the attack need?

As in [MD+17b], we analyze how the number of training points (|X|) affects

the strength of universal perturbations in Fig. 9.8b. In particular, we build δ using

varying amounts of training data. For each experiment, we report the accuracy on

the entire validation set after we add the perturbation δ. We consider four cases for

|X|: 500, 1000, 2000, and 4000 3.

3The number of epochs (Nep in Algorithm 6) was 100 epochs for 500 data samples, 40 for 1000
and 2000 samples, and 10 for 4000 samples.

239

9.6 Universal adversarial training on ImageNet

In this section, we analyze our robust models that are universal adversarially

trained by solving the min-max problem (Section 9.4) using Algorithm 7. We use

ε = 10 for ImageNet following [MD+17b].

Since our universal adversarial training algorithm (Algorithm 7) is cheap, it

scales to large datasets such as ImageNet. To illustrate this, we train an AlexNet

model on ImageNet. We use the natural training hyper-parameters for universal

adversarially training our AlexNet model. Also, we separately use our “free universal

training” algorithm to train a robust AlexNet with no overhead cost. We then attack

the natural, universally trained, and no-cost universally trained versions of AlexNet

using universal attacks.

As seen in Fig. 9.9 (a), the AlexNet trained using our universal adversarial

training algorithm (Algorithm 7) is robust against universal attacks generated using

both Algorithm 5 and Algorithm 6. The naturally trained AlexNet is susceptible to

universal attacks. The final attacks generated for the robust and natural models are

presented in Fig. 9.9 (b,c,d). The universal perturbation generated for the robust

AlexNet model has little structure compared to the universal perturbation built for

the naturally trained AlexNet. This is similar to the trend we observed in Fig. 9.3

and Fig. 9.6 for the WideResnet models trained on CIFAR-10.

The accuracy of the universal perturbations on the validation examples are

summarized in Table 9.3. Similar to CIFAR-10, the free version of universal adver-

sarial training is robust but not as robust as the main method.

240

Training
Evaluated Against

Natural Images Universal Attack
Top-1 Top-5 Top-1 Top-5

Natural 56.4% 79.0 % 3.9 % 9.4 %
Universal 49.5% 72.7% 42.0% 65.8 %
Free Univ. 48.4% 72.4% 28.3% 48.3 %

Table 9.3: Accuracy on ImageNet for natural and robust models.

9.7 Summarization

We proposed using stochastic gradient methods and a “clipped” loss func-

tion as an effective universal attack that generates universal perturbations much

faster than previous methods. To defend against these universal adversaries, we

proposed to train robust models by optimizing a min-max problem using alternat-

ing or simultaneous stochastic gradient methods. We show that this is possible

using certain universal noise update rules that use “normalized” gradients. The si-

multaneous stochastic gradient method comes at almost no extra cost compared to

natural training and is “free”. Due to the relatively cheap computational overhead

of our proposed universal adversarial training algorithms, we can easily train robust

models for large-scale datasets such as ImageNet.

241

Chapter 10: Exploiting Adaptive Networks for Robustness

In this chapter, we further exploit the practical robustness of neural networks

by using our fast algorithm for adversarial training [Sha+18; Sha+19]. We study the

effect of network architectures, and present preliminary results on adapting network

to be robust to test samples.

10.1 Introduction

Deep neural networks have achieved impressive performance on many machine

learning tasks, which has led to growing interests in deploying these models in

practical applications. Many research studies have revealed that models trained on

benign examples are susceptible to adversarial examples, examples crafted by an

adversary to control model behavior at test time [Big+13; Sze+13; Goo+15]. The

adversarial noise overlaid on top of the benign examples are small enough to be

imperceptible for humans. For a classification task, the most common goal of the

adversary is to cause the model to misclassify the adversarial example.

The existence of adversarial examples has raised security concerns for many

high-stakes real-world applications such as street sign detection for autonomous

vehicles. While initial works stated that adversarial examples built for sign-detection

242

may not be a real threat since the camera can view the objects from different

distances and angles [Lu+17], more recent attacks were proposed for making stronger

adversarial examples that are invariant to various transformations by optimizing over

the expected value of a set of pre-defined transformations [Ath+17]. These security

concerns and threats have guided researchers to create models that are both accurate

in prediction and robust to attacks.

Various methods have been proposed for defending against adversarial exam-

ples. One popular approach is to detect and reject or project adversarial examples

[Ma+18; MC17; Xu+17a; Lam+18; Sam+19], which is less effective when the adver-

sary is aware of the detection method and can adopt accordingly [CW17a]. Another

approach is to introduce regularization for training robust models [Cis+17; JG18],

which can only increase robustness to a limited level. Athalye et al. [Ath+18] showed

that many proposed defenses give a false sense of security by obfuscating the gradi-

ents, as accurate gradient information is necessary for optimization based attacks.

Athalye et al. [Ath+18] broke these defenses by attacks that build good approx-

imations for the gradients. Among various defense methods, adversarial training

[Mad+17; Kan+18; Xie+19] is one of the most common methods for training robust

models. In adversarial training, a robust model is trained on adversarial examples

that are generated on-the-fly, which is effective but also makes adversarial training

expensive.

Robustness and robust models have some interesting properties which have

been revealed in recent studies. First, it is argued that there exists trade-off be-

tween accuracy and robustness [Tsi+18; Zha+19a; Su+18]. It is difficult to make a

243

model robust to all samples while maintaining the same level of accuracy. Second, it

is difficult to adversarially train robust models which generalize since adversarially

robust generalization requires more data [Sch+18] and models with high capacity

[Mad+17]. Training high capacity models on large datasets increases the cost of

adversarially training robust models. Third, while adversarial training is expen-

sive, it is shown that adversarially trained models learn feature representations that

align well with human perception [Tsi+18]. These feature embeddings can produce

clean inter-class interpolations similar to generative models in Generative Adversar-

ial Networks (GANs) [Goo+14a].

Recently, conditional normalization, built upon instance normaliza-

tion [Uly+16a] or batch normalization [IS15], has been successful in generative mod-

els [Kar+19] and style transfer [HB17]. Conditional normalization can be seen as

an adaptive network that shifts the statistics of a layers activations by applying net-

work parameters conditioned on the latent factors such as style and classes [DV+17;

Dum+17]. Inspired by these studies, we propose to exploit adaptive networks in the

adversarial training framework.

We propose building hardened networks by adversarially training adaptive net-

works. To build adaptive networks, we introduce a normalization module condi-

tioned on inputs which allows the network to “adapt” itself for different samples.

The conditional normalization module includes a meta convolutional network that

changes the scale and bias parameter for normalization based on input samples.

Conditional normalization is a powerful module that enlarges the representative ca-

pacity of networks. Adversarially trained adaptive nets can be potentially more

244

robust than conventional non-adaptive nets as they can adapt the network to be

robust to adversarial attacks on a specific sample instead of all samples.

Our experiments on the CIFAR-10 and CIFAR-100 benchmarks empirically

show that our proposed adaptive networks are better than their non-adaptive coun-

terparts. The adaptive networks even outperform larger networks with more param-

eters both in terms of accuracy on validation examples and robustness. As we were

building strong baselines for our experiments, we observed that adversarial training

starting from a naturally trained initialized network helps in improving robustness

generalization. Adversarially training our adaptive nets even outperform this new

strong baseline.

10.2 Related work

Here we provide a brief overview of robustness and normalization layers which

are closely related to our proposed adaptive networks. Given that adversarial train-

ing plays a critical role in our method, we also provide an overview on adversarial

training.

Robustness is commonly measured by computing the accuracy of the model

on adversarial examples constructed by gradient-based optimization methods for

validation samples. This evaluation method provides an upper-bound on robustness

as there is no theoretical guarantee (at least for all classes of problems) that ad-

versarial examples crafted using first-order gradient information are optimal. From

a theoretical point of view, finding optimal adversarial examples is difficult. Some

245

recent works have proposed finding the optimal solution by modeling neural net-

works as Mixed Integer Programs (MIPs) and solving those MIPs using commercial

solvers [Tje+17]. However, finding the optimal solution of an MIP is generally

NP-hard. Although recent advancements have been made in their formulations by

enforcing some properties on the network [Xia+19], finding the optimal solution is

only feasible for small networks and is very time consuming. That is why certified

methods in practice provide lower-bounds on the size of perturbation needed for

causing misclassification by solving a relaxed version of the problem.

Raghunathan et al. [Rag+18] propose certified defences by including a differen-

tiable certificate as a regularizer. Many studies follow this line of work and propose

certified defenses [Wan+18; Won+18; Coh+19]. While from a theoretical point of

view certified defenses are interesting, in practice, adversarial training is still the

most popular method for hardening networks – leaders of various computer vision

defense competitions and benchmarks utilize adversarial training in their approach

[Xie+19; Zha+19a; Mad+17; Sha+18].

Adversarial training, in its general form, corresponds to training on the

following loss function,

minimize
θ

∑
i

κJ(xi, yi, θ) + (1− κ)J(xi + δi, yi, θ) (10.1)

where J is a differentiable surrogate loss used for training the neural network such as

the cross-entropy loss, (xi, yi) is the ith data-point and its correct label, θ is the nets

trainable parameters, κ is a hyper-parameter which controls how much weight should

246

be given to training on natural examples, and δi corresponds to the adversarial

perturbation for the ith datapoint. To keep the perturbation unrecognizable to

humans, δi is usually bounded by some norm. Throughout this paper, we will use

the common `∞-norm bound on δ. Effectively, this adversarial training loss has two

terms, one term which trains on natural examples and the second term which trains

on adversarial examples. This corresponds to training on batches which have both

natural and adversarial examples.

Early adversarial example generation methods required many iterations since

their goal was to help an attacker build an adversarial example which has minimum

perturbation [Sze+13; MD+16; CW17b]. However, from a defenders perspective,

the goal is to train on fast and bounded adversarial examples. With speed in mind,

Goodfellow et al. [Goo+15] proposed training on a single-step `∞ attack called

the Fast Gradient Sign Method (FGSM). FGSM computes ∇xJ(x, y, θ) and sets

δ = ε · sign(∇xJ(x, y, θ)), where ε is the perturbation bound. Later, it was shown

that stronger attacks such as BIM [Kur+16a], completely break FGSM adversarially

trained models. The BIM attack can be seen as an iterative version of FGSM where

during each iteration, the perturbation is updated using an FGSM-type step but

with a step-size εs which is usually smaller than ε,

δk = δk−1 + εs · sign(∇δJ(x+ δk−1, y, θ)) (10.2)

where δk is the perturbation at iteration k of the BIM attack. After every iteration

of the BIM attack (equation 10.2), δk is clipped such that δk ∈ [−ε, ε]. We refer to

247

the K-iteration BIM attack as BIM-K.

Adversarial training started blooming when Madry et al. [Mad+17] proposed

training on adversarial examples generated using the PGD attack. The PGD attack

is the BIM with a random initialization. Through experiments, they showed that the

PGD attack is the strongest first-order adversary. This was later verified by Athalye

et al. [Ath+18] as well. Consequently, almost all of the successful adversarial trained

robust models use the PGD algorithm to generate adversarial examples .

Training on adversarial examples generated using PGD increases the cost of

training by a factor ofK, whereK is the number of iterations of the PGD attack (i.e.,

number of times we update δ using equation 10.2). While we will use PGD-K attacks

for evaluating the robustness of all our models, due to the high computation cost as-

sociated with PGD adversarial training, we perform most of our adversarial training

using a recently proposed algorithm for speeding up adversarial training [Sha+19].

Normalization layers such as batch normalization [IS15] and instance nor-

malization [Uly+16a] have become important modules in modern neural networks.

Normalization layers standardize input to have zero mean and one variance and

then shift these statistics using scaling and bias parameters. Zhang et al. [Zha+19b]

suggest scaling and bias parameters can be even more important than standardiza-

tion. Conditional normalization, where scaling and bias are adaptively determined

by latent factors, has shown to be powerful in many computer vision tasks including

style transfer [HB17; Dum+17] and generative adversarial networks [Kar+19].

248

10.3 Adaptive Networks

We introduce adaptive networks with conditional normalization modules in

this section. Our motivation for adding conditional normalization modules is two-

fold. First, by introducing adaptive layers conditioned on inputs, we can “adapt’ a

trained network to be more robust to individual input sample.

Second, conditional normalization can increase the expressiveness and effective

capacity of the network, which has been shown to have a positive effect in improving

model robustness. Adversarially trained models with more expressive capacities

are more robust than their less expressive alternatives [Mad+17; Sha+19]. At a

high level, these conditional normalization modules can be considered as adding

multi-branch structures to a network which is known to be effective in improving

accuracy on validation examples [Hua+17]. As we will see in the experiments, our

normalization module indeed does improve the clean validation accuracy and is more

effective1 than simply widening or concatenating features in practice.

Below, we show how to create an adaptive network by adding conditional

normalization modules to the wide residual network (WRN) [ZK16] architecture.

We also briefly review the fast adversarial training algorithm we will use to make

our adaptive networks robust.

1The adversarially trained adaptive nets have higher validation accuracy and robustness com-
pared to networks with more trainable parameters.

249

conv3x3

(a)	ResBlock

BN,ReLU

conv3x3

al

al+1

BN,	ReLU
conv3x3

(b)	ResBlock in	adaptive	network	

BN,ReLU

conv3x3

al

al+1

BN,	ReLU

normalize

CNN

a1
<latexit sha1_base64="XNgBnrgeoHkqdIfbSMBcr6/2Ad4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cKpi20oWy2m3bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTxqmSTTjPsskYnuhNRwKRT3UaDknVRzGoeSt8Px3cxvP3FtRKIecZLyIKZDJSLBKFrJp/3cm/arNbfuzkFWiVeQGhRo9qtfvUHCspgrZJIa0/XcFIOcahRM8mmllxmeUjamQ961VNGYmyCfHzslZ1YZkCjRthSSufp7IqexMZM4tJ0xxZFZ9mbif143w+gmyIVKM+SKLRZFmSSYkNnnZCA0ZygnllCmhb2VsBHVlKHNp2JD8JZfXiWti7p3WXcfrmqN2yKOMpzAKZyDB9fQgHtogg8MBDzDK7w5ynlx3p2PRWvJKWaO4Q+czx+tuI6X</latexit>

Conditional
Normalization

Figure 10.1: Network architecture with adaptive layers.

10.3.1 Network architecture

Let x ∈ RN×C×H×W represent the feature maps of a convolutional layer for

a minibatch of samples, where N is the batch size, C is the width of the layer

(number of channels), and H and W are the feature map’s height and width. If

xnchw denotes the element at height h, width w of the cth channel from the nth

sample, the conditional normalization module transforms the feature maps as,

Norm(xnchw|z) = ν(z)nc xnchw + µ(z)nc, (10.3)

where ν(z), µ(z) ∈ RN×C are scale and bias parameters of the normalization module.

The network with conditional normalization becomes adaptive to the latent factor

z as ν(z), µ(z) are outputs of convolutional networks with learnable parameters.

Equation 10.3 represents normalization in a general form: when latent factor z is a

style image and x is normalized by its mean and variance, equation 10.3 becomes

adaptive instance normalization for image style transfer [HB17]; when latent factor z

250

is latent code like random noise, equation 10.3 becomes the building module for the

generator in StyleGAN [Kar+19]. We provide details on how we use input sample

as latent factor z as below.

We now add conditional normalization module to wide residual network

(WRN) [ZK16] to create adaptive networks for classification. WRN is an derivative

of ResNet [He+16] and is one of the state-of-the-art architectures used for image

classification. WRN is a stack of residual blocks (Fig. 10.1(a)). To specify WRNs,

we follow [ZK16] and denote the architecture as WRN-β-α, where β represents the

depth and α represents the widening factor of the network.

The WRN architecture for the CIFAR-10 and CIFAR-100 datasets we use

in this paper consists of a stack of three groups of residual blocks. There is a

downsampling layer between two groups, and the number of channels (width of a

convolutional layer) is doubled after downsampling. In the three groups, the width of

convolutional layers is {16α, 32α, 64α}, respectively. Each group contains βr residual

blocks, and each residual block contains two 3×3 convolutional layers equipped with

ReLU activation and batch normalization. There is a 3× 3 convolutional layer with

16 channels before the three groups of residual blocks. And there is a global average

pooling, a fully-connected layer and a softmax layer after the three groups. The

depth of WRN is β = 6βr + 4.

We add conditional normalization for the first residual block of each of the

three groups. The normalization module is applied between the two convolutional

layers in a block, as shown in Fig. 10.1(b). The inputs to the conditional normal-

ization module are the feature maps produced by the first convolutional layer. Our

251

conditional normalization module consists of a three layer convolutional network:

two 3×3 convolutional layers with 16α, and one 1×1 convolutioinal layer to match

the dimension of the three different residual blocks, 2×{16α, 32α, 64α}, respectively.

We use average pooling as the last layer to get ν(z), µ(z) for equation 10.3. Our

adaptive network is only slightly larger than the original WRN, and becomes more

robust when adversarially trained, as shown in Section 10.3.2.

10.3.2 Adversarial training

Well-known robust networks on MNIST and CIFAR-10 were adversarially

trained by Madry et al. [Mad+17] by setting κ = 0 in equation 10.1. When κ = 0,

training is only done on adversarial examples. Training just on adversarial examples

is justified from a robust optimization framework. In this framework, adversarial

training is modeled as a two-player constant sum game between the adversary which

is in charge of the perturbation δ and the minimizer which controls the network’s

parameters θ. Formally, the adversarial training they propose and the one we use

in this paper is based on the following saddle point formulation,

minimize
θ

maximize
δi

∑
i

J(xi + δi, yi, θ) subject to: ‖δi‖∞ ≤ ε ∀i (10.4)

Madry et al. [Mad+17] solved the optimization problem in equation 10.4 in an

alternating fashion. Before each minimization step on the network parameters θ,

they compute δ using a PGD-K attack on the fly. Every perturbation update step of

the PGD-K attack (equation 10.2) requires computing ∇δJ(xj + δk−1
j , yj, θ

j), where

252

δk−1
j are the adversarial perturbations of the jth mini-batch after the previous k− 1

times δ update step, and θj represents network parameters at the jth minimization

iteration. To compute ∇δJ(xi + δk−1
i , yi, θ), required for every step of PGD-K, we

need to do a complete forward and backward pass on the network. As a result,

every minimization iteration of PGD adversarial training costs (K + 1)× every

minimization iteration of natural training. For CIFAR-10 a typical value used for

K is 7 [Mad+17].

To speed up training robust models by solving the optimization problem ex-

pressed in equation 10.4, we adopt a fast adversarial training algorithm recently

proposed by Shafahi et al. [Sha+19]. Shafahi et al. [Sha+19] showed that they

can achieve comparable robustness to PGD adversarial training [Mad+17] on the

datasets of our interest (CIFAR-10 and CIFAR-100) while being roughly (K + 1)-

times faster. Where K is the number of steps the PGD algorithm.

The fast algorithm (Free-m) has a perturbation parameter δb of shape N×C×

H ×W which is updated once during every minimization iteration. To accelerate

robust training, Free-m applies simultaneous updates for the network parameters θ

and perturbation δ, which makes its computation cost almost the same as natural

training. During the jth minimization iteration, both ∇δJ and ∇θJ are computed

for the current mini-batch (xj, yj) and network parameters θj,

∇θJ = E{(xj ,yj)}[∇θ J(xj + δjb , yj, θ
j)]

∇δJ = ∇δ J(xj + δjb , yj, θ
j)]

253

Then θ and δ are updated as,

θj+1 = θj − τ∇θJ

δj+1
b = clip(δjb + εs · sign(∇xJ),−ε, ε).

In Free-m, each mini-batch is replayed m times. For example, if m = 2, we move

on to the next mini-batch every m steps and therefore the data for the first two

iterations would be the same (i.e., (x1, y1) = (x2, y2)). Since we train on the same

mini-batch m-times in a row, the hyper-parameter m is more-or-less analogous to

the number of iterations of the PGD training algorithm K. We use the same number

of minibatch updates for Free-m adversarial training and natural training on clean

images, i.e., we train Free-m for 1/m number of epochs in total.

In this section, we train robust models on CIFAR-10 and CIFAR-100. In all

the experiments, we train WRN without dropout for 120 epochs and with minibatch

size 256. We start with learning rate 0.1 and decrease the learning rate by a factor

of 10 at epochs 60 and 90. We use weight decay 1e-4 and momentum 0.9. For

evaluating the robustness of the models, we attack them with PGD-K attacks. For

the PGD attacks, we use εs = 2 and ε = 8, and vary the number of attack iterations

K.

10.3.3 Quantitative evaluation on CIFAR-10 and CIFAR-100

We summarize our quantitative evaluation on CIFAR-10 and CIFAR-100 in

Table 10.1, Table 10.2, and Table 10.3. In Table 10.1 and Table 10.2, unless oth-

254

(Robust) model
Evaluated Against #Parameter

(million)Natural PGD-20 PGD-100

Natural 94.10% 0.00% 0.00% 5.85

PGD-7-small [Mad+17] 83.84% 40.03% 39.38% 5.85
Free-10-small [Sha+19] 81.04% 40.56% 40.03% 5.85
Free-10-adaptive-small 85.00% 43.16% 42.68% 6.05

Free-10 [Sha+19] 77.75% 45.10% 44.77% 5.85
Free-10-WRN-28-5 77.81% 45.99% 45.77% 9.13

Free-10-init 80.60% 46.88% 46.67% 5.85
Free-10-adaptive 80.99% 48.09% 47.87% 6.05

Table 10.1: Performance of (robust) CIFAR-10 models. We inject adaptive layers
in WRN-28-4, and compare with WRN-28-4 and WRN-28-5 with more parameters.

(Robust) model
Evaluated Against #Parameter

(million)Natural PGD-20 PGD-100

Natural 74.84% 0.00% 0.00% 5.87

PGD-7-small [Mad+17] 57.18% 18.38% 18.13% 5.87
Free-10-small [Sha+19] 54.18% 19.21% 18.98% 5.87
Free-10-adaptive-small 61.19% 21.95% 21.68% 6.07

Free-10 [Sha+19] 50.52% 23.08% 23.02% 5.87
Free-10-WRN-28-5 51.02% 23.12% 23.03% 9.16

Free-10-init 55.93% 24.86% 24.61% 5.87
Free-10-adaptive 57.26% 25.86% 25.69% 6.07

Table 10.2: Performance of (robust) CIFAR-100 models. We inject adaptive layers
in WRN-28-4, and compare with WRN-28-4 and WRN-28-5 with more parameters.

erwise explicitly specified through the name of the model, the architecture used for

producing these results is WRN-28-4. We report validation accuracy on natural

images and adversarial images generated using PGD attacks with K = 20 iterations

and K = 100 iterations. We also compare our method with adversarially trained

robust models following [Mad+17] and [Sha+19]. Note that the PGD-7 adversar-

ially trained model [Mad+17] requires ≈ 7× more time than natural training on

clean images, while the Free-10 models [Sha+19] have similar computation cost as

natural training. Models with the suffix “small” are adversarially trained using a

step-size of εs = 2. The adversarially trained models without the small suffix are

255

(Robust) model
Evaluated Against #Parameter

(million)Natural PGD-20 PGD-100

Natural 94.76% 0.00% 0.00% 46.16

PGD-7 from [Mad+17] 87.3% 45.8% 45.3% 45.90
Free-8 from [Sha+19] 85.96% 46.82% 46.19% 45.90

Free-10 [Sha+19] 79.45% 48.03% 47.9 % 46.16
Free-10-init 84.03% 50.23% 49.93% 46.16

Free-10-adaptive 84.39% 50.93% 50.68% 47.28

Table 10.3: Performance of (robust) CIFAR-10 WRN-34-10 models. We directly
compare with previously reported results in [Mad+17; Sha+19].

trained with a step-size εs = 6.

We first evaluate robust models trained with step-size εs = 2 for perturba-

tion updates following [Mad+17] (rows 2-4 in Table 10.1 and Table 10.2). We can

train a robust WRN-28-4 with PGD-7-small [Mad+17] that achieves about 40%

accuracy under strong PGD attacks. Our alternative adversarial training mecha-

nism, Free-10-small [Sha+19] achieves slightly better robust accuracy under PGD

attacks with a drop in natural accuracy on clean validation images. Since Free-10

is significantly faster than PGD adversarial training, we also use it to adversarially

train our adaptive networks. Our adaptive network with conditional normalization

built off of WRN-28-4 (Free-10-adaptive-small) outperforms the PGD adversarially

trained WRN-28-4 (PGD-7-small) and Free-10-small in both natural accuracy and

robust accuracy illustrating the advantage of our adaptive networks. Shafahi et

al. [Sha+19] reported results based on a larger stepsize for perturbation updates

(εs = ε). As we show in the 5th row of Table 10.1 and Table 10.2, by comparing

Free-10 and Free-10-small, we can see that the larger step-size used for training does

improve the robustness of free training but again at an additional cost of decreasing

natural validation accuracy.

256

0 20 40 60 80 100 120
epoch

20

30

40

50

60

70

80

90

a
cc

PGD-7

Free-10

Adaptive

(a) Training accuracy.

0 20 40 60 80 100 120
epoch

40

45

50

55

60

65

70

75

80

85

a
cc

PGD-7

Free-10

Adaptive

(b) Natural validation accu-
racy.

0 20 40 60 80 100 120
epoch

20

25

30

35

40

45

50

55

60

65

a
cc

PGD-7

Free-10

Adaptive

(c) PGD-3 validation accu-
racy.

0 20 40 60 80 100 120
epoch

0

10

20

30

40

50

60

70

80

a
cc

PGD-7

Free-10

Adaptive

(d) Training accuracy.

0 20 40 60 80 100 120
epoch

10

20

30

40

50

60

a
cc

PGD-7

Free-10

Adaptive

(e) Natural validation accu-
racy.

0 20 40 60 80 100 120
epoch

5

10

15

20

25

30

35

a
cc

PGD-7

Free-10

Adaptive

(f) PGD-3 validation accu-
racy.

Figure 10.2: Training curves for robust models for (top) CIFAR-10 and (bottom)
CIFAR-100: (left) accuracy on adversarial training samples; (middle) accuracy on
clean validation samples; (right) accuracy on PGD-3 validation samples.

We provide two more stronger baselines: adversarially train a larger model

WRN-28-5 (row 6), and train WRN-28-4 with a naturally trained model as initial-

ization (row 7). Our Free-10-adaptive-small model had slightly more parameters

compared to the adversarially trained PGD-7-small and Free-10-small models. The

baseline with more capacity was added to ensure that the superiority of our adap-

tive network is not solely due to having (slightly) more parameters. Our adaptive

network is slightly larger than the non-adaptive WRN-28-4, and is much smaller

than WRN-28-5. A good initialization surprisingly helps both natural accuracy and

robust accuracy. Our adaptive network outperforms the best strong baseline for

both natural accuracy and robust accuracy.

In Table 10.3, we report results on a larger network WRN-34-10, which is

257

widely used for the CIFAR-10 benchmark. Besides baseline models trained by Free-

10 and Free-10-init (Free-10 with good initialization), we also directly compare with

the accuracy values reported in the literature on an almost identical network with

slightly different training settings in [Mad+17] and [Sha+19]. Like before, our adap-

tive network outperforms Free-10 and Free-10-init on both natural accuracy and

robust accuracy. Comparing with previously reported results, our adaptive network

achieves better robust accuracy and only slightly worse natural accuracy.

10.3.4 Training curves and qualitative analysis

We plot the training and validation accuracy of the Free-10, Free-10-adaptive,

and PGD-7 adversarially trained (PGD-7) models after each epoch in Fig. 10.2.

The training accuracies are computed for the adversarial examples they are being

trained on and do not correspond to the natural training accuracy. They can be

thought of as robustness on training examples. In Figs. 10.2a and 10.2d, the PGD-

7 model fits the adversarial examples built for the training samples to a rather

high accuracy, while Free-10 seems to never overfit to the training-set adversarial

training samples. The training accuracy of Free-10 [Sha+19] is quite close to the

final adversarial validation accuracy in Figs. 10.2c and 10.2f. The natural validation

accuracy of PGD-7 increases faster than Free-10 at the beginning, while the accuracy

at the end of training become close, as shown in Figs. 10.2b and 10.2e. Free-10

consistently improves robust accuracy against adversarial validation samples, while

PGD-7 seems to saturate after the fast increase at the beginning (see Figs. 10.2c

258

Input

Free-10

Adaptive

Natural

Frog

Deer

Deer

Dog

Cat

Frog

Horse

Horse

Ship

Bird

Car

Car

Horse

Frog

Dog

Frog

Ship

Cat

Car

Frog

Deer

Frog

Dog

Dog

Truck

Frog

Ship

Ship

Horse

Bird

Cat

Dog

Dog

Cat

Car

Bird

Figure 10.3: Visualization of adversarial examples generated for natural and ro-
bust WRN-34-10 for CIFAR-10 with large ε = 30 following [Tsi+18]. The large ε
adversarial examples generated for robust models align well with human perception.

and 10.2f). Our adaptive network (blue curve) always has higher natural and robust

validation accuracy than the non-adaptive WRN-28-4 models except for a short

range around epoch 60 in Figs. 10.2b and 10.2c, where the accuracy of the adaptive

network decreases. Tuning the learning rate could potentially prevent this decrease

and further boost the performance of adaptive networks.

Tsipras et al. [Tsi+18] presented an interesting side effect of robust models:

largely perturbed adversarial examples for adversarially robust models align with

human perception. That is, they “look” like the class which they are getting misclas-

sified to. We use PGD-50 to generate adversarial images with large perturbations

(ε = 30). The generated images for our adversarially trained adaptive nets have

characteristics that align well with human perception.

259

10.4 Summarization

Inspired by recent research in conditional normalization [HB17; Kar+19] and

properties of robustness [Mad+17; Tsi+18; Sch+18], we introduced an adaptive

normalization module conditioned on inputs for boosting the robustness of net-

works. Our adaptive networks combined with a fast adversarial training algorithm

[Sha+19], can effectively train robust models that outperform their non-adaptive

parallels and also non-adaptive networks with more parameters. Our experiments

on CIFAR-10 and CIFAR-100 benchmark and WRN networks verified the effective-

ness and efficiency of adaptive networks.

260

Chapter 11: Conclusion and Discussion

We studied optimization problems from the training procedure of data driven

machine learning models, with a particular focus on minimax problems and their ap-

plications. Specifically, we study constrained problem, which is popular in classical

convex and nonconvex optimization regime and linear statistical learning problems;

then adversarial networks, which are widely used for (conditional) generative models

and image processing tasks; and robust models defend against adversarial attacks.

In Part I, we first study minimax problem of the Lagrangian saddle point prob-

lem for constrained problems. Many objective can be formulated in a general form

of summation of two functions with a linear constraint, and a versatile procedure

named ADMM can be applied to solve the equivalent Lagrangian of such problem.

Typical applications include sparse regularized linear regression, support vector ma-

chine classifier, total variational image denoising, phase retrieval, consensus problem

in distributed computing, as introduced in Chapter 2. We focus on adaptively choos-

ing free hyperparameter in ADMM (and its variants), and provide both theoretical

and empirical analysis. In Chapter 3, we provide moderate conditions to theo-

retically guarantee the O(1/k) convergence rate of ADMM with adaptive penalty

parameters. In Chapter 4, we propose adaptive ADMM (AADMM) with spectral

261

stepsize selection, which is a fully automated solve that can be easily used by non-

experts to solve constrained problems. AADMM achieves fast practical convergence

with a theoretical convergence guarantee. In Chapter 5, we further exploit the key

idea of the adaptive schema and propose various variants of AADMM: ARADMM

with faster practical convergence, especially for difficult problems like total varia-

tional image denoising; ACADMM tackles the difficulty of stepsize estimation in

consensus problem for large-scale distributed optimization; AMADMM for splitting

optimization problem into multi-blocks; and applying AADMM to nonconvex prob-

lems, in which we care about not only the convergence speed but also the quality of

solution. We verified the performance of our solver on various optimization problems

and benchmark datasets.

In Part II, we study one of the most popular minimax problem in recent years,

which is the training of generative adversarial networks (GANs). In Chapter 6, we

present prediction step to stabilize stochastic alternating gradient method, inspired

by classical convex-concave saddle point optimization. In Chapter 7, we apply adver-

sarial networks to image processing tasks, image style transfer and image dehazing.

We adversarially train a single feed-forward network to learn from multi-domain

artistic images for arbitrary style transfer; we propose a simple yet efficient net-

work that is difficult to outperform by complicated dehazing methods, and apply

GAN framework to train without paired images that are difficult to harness. In

Chapter 8, we use adversarial networks for an unconventional application, network

acceleration, and provide a systematical study on how to choose a proper network

for acceleration.

262

In Part III, we study the training of robust models against adversarial attacks.

Machine learning models may make wrong prediction for adversarial examples that

can be generated by adding small perturbations to test samples by gradient based

method. In Chapter 9, we study fast algorithm for both attack and defense of

universal perturbations that can be added to a set of samples to generate adversarial

examples. In Chapter 10, we study adaptive network that can boost the robustness

of networks by fast adversarial training.

The recent success of machine learning models benefits from the large-scale

data harnessed from internet and labeled through crowd sourcing, the advanced

computing power such as GPUs, and models like neural networks to learn strong

representation. Besides the powerful back propagation and methods to enhance

backprop like batch normalization and residual connections, the progress of deep

neural networks often relies on simply more data, larger models and training longer.

The limited success of machine learning models has mostly been on perception tasks

which depend on memorizing representations. There remains many challenges and

questions in this exciting research area. It is not necessary for intelligent machines

to mimic the behavior and mechanism of humans, but is momerizing and fitting

large-scale data enough? Even for fitting large scale data, is neural networks, which

are more advanced in practice and dominate a lot of applications with sate-of-the-

art performance while rely on many mysterious practical experience to tune, the

answer? As it is difficult and expensive to harness data with labels, how to efficiently

utilize unsupervised data on the web, and how to protect users’ privacy in various

applications when data are used? If neural network is the right choice for learning,

263

how to design architecture for joint optimization of performance and training?

Specifically, the optimization problem of training neural networks relies on ef-

ficient back prop, which is one of the reasons for the success of batch normalization

and residual connections. We exploit ADMM [Tay+16] as an alternative to SGD

for training neural networks, which achieves limited success. Is backprop necessary

and how to further improve the efficiency of backprop? The training of networks on

large-scale data needs a lot of computation power, and the current practical solution

is to simply distribute the computation with data parallelism of large minibatchs.

Large minibatch training quickly reaches bottleneck of scalability and can only use

limited distributed computing power due to underfitting, generalization and com-

munication. How to design more powerful distributed optimization method for large

scale training? The computation resources are not only limited but also expensive,

how to design algorithm in a low resource setting? The simple SGD method re-

mains powerful in training neural networks. “Adaptive” methods like ADAM and

K-FAC got mixed results, and have more hyper-parameters to tune. Learned meta-

optimizers incorporate the design of conventional optimizer as features, and cannot

generalize well to unseen data and models. How to develop fast and automated

optimizer for large-scale, high-dimensional, nonconvex and nonsmooth problem of

neural network training?

More specifically, the minimax problem, especially for training neural net-

works, is more difficult. The optimization of GAN is still difficult and mysterious.

Adversarial training for robust models is another popular minimax problem for neu-

ral networks. GAN and adversarial training are related but quite different. It seems

264

that GAN targets on saddle point solution while adversarial training is more like

robust optimization because of the bounded constraint. Another interesting obser-

vation is that our fast adversarial training algorithm never overfits training data,

but still achieves strong robustness comparing to conventional adversarial training

[Xu+19b]. We will continue studying the connection between GAN and adversarial

training, and seeking inspiration from classical optimization methods.

With the growing interest in applying machine learning in various practical

applications, more and more challenging problems appear. While designing efficient

algorithms to tackle domain specific problems is a nontrivial task, both fundamental

study and empirical practice are important, especially for the large-scale optimiza-

tion problem in machine learning.

265

Bibliography

[Akh+18] Naveed Akhtar, Jian Liu, and Ajmal Mian. “Defense against Universal
Adversarial Perturbations”. In: CVPR (2018).

[Alm+18] Amjad Almahairi, Sai Rajeswar, Alessandro Sordoni, Philip Bach-
man, and Aaron Courville. “Augmented CycleGAN: Learning Many-
to-Many Mappings from Unpaired Data”. In: ICML (2018).

[Anc+16] Cosmin Ancuti, Codruta O Ancuti, and Christophe De Vleeschouwer.
“D-HAZY: A dataset to evaluate quantitatively dehazing algorithms”.
In: ICIP. IEEE. 2016, pp. 2226–2230.

[Anc+18a] Codruta O Ancuti, Cosmin Ancuti, Radu Timofte, and Christophe
De Vleeschouwer. “I-HAZE: a dehazing benchmark with real hazy and
haze-free indoor images”. In: arXiv preprint arXiv:1804.05091 (2018).

[Anc+18b] Codruta O Ancuti, Cosmin Ancuti, Radu Timofte, and Christophe
De Vleeschouwer. “O-HAZE: a dehazing benchmark with real hazy
and haze-free outdoor images”. In: arXiv preprint arXiv:1804.05101
(2018).

[Arj+17] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein
GAN”. In: ICML (2017).

[Ath+17] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok.
“Synthesizing robust adversarial examples”. In: arXiv preprint
arXiv:1707.07397 (2017).

[Ath+18] Anish Athalye, Nicholas Carlini, and David Wagner. “Obfuscated gra-
dients give a false sense of security: Circumventing defenses to adver-
sarial examples”. In: ICML (2018).

[Aza+18] Samaneh Azadi, Matthew Fisher, Vladimir Kim, Zhaowen Wang, Eli
Shechtman, and Trevor Darrell. “Multi-Content GAN for Few-Shot
Font Style Transfer”. In: CVPR (2018).

[BA+16] Dana Berman, Shai Avidan, et al. “Non-local image dehazing”. In:
CVPR. 2016.

[BB88] Jonathan Barzilai and Jonathan Borwein. “Two-point step size gradi-
ent methods”. In: IMA J. Num. Analysis 8 (1988), pp. 141–148.

[BC14] Jimmy Ba and Rich Caruana. “Do deep nets really need to be deep?”
In: NIPS. 2014, pp. 2654–2662.

266

[Bel+18] Vasileios Belagiannis, Azade Farshad, and Fabio Galasso. “Adversarial
Network Compression”. In: arXiv preprint arXiv:1803.10750 (2018).

[BF18] Shumeet Baluja and Ian Fischer. “Adversarial transformation net-
works: Learning to generate adversarial examples”. In: AAAI (2018).

[Big+13] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim
Šrndić, Pavel Laskov, Giorgio Giacinto, and Fabio Roli. “Evasion
attacks against machine learning at test time”. In: ECML-PKDD.
Springer. 2013, pp. 387–402.

[BM03] Samuel Burer and Renato DC Monteiro. “A nonlinear programming
algorithm for solving semidefinite programs via low-rank factorization”.
In: Mathematical Programming 95.2 (2003), pp. 329–357.

[Bot+18] Léon Bottou, Frank E Curtis, and Jorge Nocedal. “Optimization meth-
ods for large-scale machine learning”. In: SIAM Review 60.2 (2018),
pp. 223–311.

[Bou+13] Sofien Bouaziz, Andrea Tagliasacchi, and Mark Pauly. “Sparse iterative
closest point”. In: Computer graphics forum. Vol. 32. 5. Wiley Online
Library. 2013, pp. 113–123.

[Boy+11] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan
Eckstein. “Distributed optimization and statistical learning via the al-
ternating direction method of multipliers”. In: Found. and Trends in
Mach. Learning 3 (2011), pp. 1–122.

[Bro+17] Tom B Brown, Dandelion Mané, Aurko Roy, Mart́ın Abadi, and Justin
Gilmer. “Adversarial patch”. In: arXiv preprint arXiv:1712.09665
(2017).

[Buc+06] Cristian Bucilu, Rich Caruana, and Alexandru Niculescu-Mizil. “Model
compression”. In: KDD. ACM. 2006, pp. 535–541.

[Byr+95] Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. “A
limited memory algorithm for bound constrained optimization”. In:
SIAM Journal on Scientific Computing 16.5 (1995), pp. 1190–1208.

[Cai+14] Xingju Cai, Deren Han, and Xiaoming Yuan. “The direct extension
of ADMM for three-block separable convex minimization models is
convergent when one function is strongly convex”. In: Optimization
Online 4 (2014).

[Cai+16] Bolun Cai, Xiangmin Xu, Kui Jia, Chunmei Qing, and Dacheng Tao.
“Dehazenet: An end-to-end system for single image haze removal”. In:
IEEE TIP 25.11 (2016), pp. 5187–5198.

[Can+15] Emmanuel J Candes, Xiaodong Li, and Mahdi Soltanolkotabi. “Phase
retrieval via Wirtinger flow: Theory and algorithms”. In: IEEE Trans-
actions on Information Theory 61.4 (2015), pp. 1985–2007.

267

[Cha+16a] Tsung-Hui Chang, Mingyi Hong, Wei-Cheng Liao, and Xiangfeng
Wang. “Asynchronous distributed alternating direction method of mul-
tipliers: Algorithm and convergence analysis”. In: 2016 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE. 2016, pp. 4781–4785.

[Cha+16b] Pratik Chaudhari, Anna Choromanska, Stefano Soatto, and Yann Le-
Cun. “Entropy-sgd: Biasing gradient descent into wide valleys”. In:
arXiv preprint arXiv:1611.01838 (2016).

[Cha07] Rick Chartrand. “Exact reconstruction of sparse signals via noncon-
vex minimization”. In: IEEE Signal Processing Letters 14.10 (2007),
pp. 707–710.

[Che+14] Yunmei Chen, Guanghui Lan, and Yuyuan Ouyang. “Optimal primal-
dual methods for a class of saddle point problems”. In: SIAM Journal
on Optimization 24.4 (2014), pp. 1779–1814.

[Che+16a] Caihua Chen, Bingsheng He, Yinyu Ye, and Xiaoming Yuan. “The di-
rect extension of ADMM for multi-block convex minimization problems
is not necessarily convergent”. In: Mathematical Programming 155.1-2
(2016), pp. 57–79.

[Che+16b] Chen Chen, Minh N Do, and Jue Wang. “Robust image and video
dehazing with visual artifact suppression via gradient residual mini-
mization”. In: ECCV. Springer. 2016, pp. 576–591.

[Che+16c] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever,
and Pieter Abbeel. “Infogan: Interpretable representation learning by
information maximizing generative adversarial nets”. In: NIPS. 2016.

[Che+17a] Dongdong Chen, Lu Yuan, Jing Liao, Nenghai Yu, and Gang Hua.
“Stylebank: An explicit representation for neural image style transfer”.
In: CVPR. 2017.

[Che+17b] Yuntao Chen, Naiyan Wang, and Zhaoxiang Zhang. “DarkRank: Accel-
erating Deep Metric Learning via Cross Sample Similarities Transfer”.
In: arXiv preprint arXiv:1707.01220 (2017).

[Che+18] Ziang Cheng, Shaodi You, Viorela Ila, and Hongdong Li. “Semantic
Single-Image Dehazing”. In: arXiv preprint arXiv:1804.05624 (2018).

[Cho+15] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben
Arous, and Yann LeCun. “The Loss Surfaces of Multilayer Networks.”
In: AISTATS. 2015.

[Chr+17] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. “A Downsam-
pled Variant of ImageNet as an Alternative to the CIFAR datasets”.
In: arXiv preprint arXiv:1707.08819 (2017).

[Cim+14] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi. “De-
scribing Textures in the Wild”. In: CVPR. 2014.

268

[Cis+17] Moustapha Cissé, Piotr Bojanowski, Edouard Grave, Yann Dauphin,
and Nicolas Usunier. “Parseval Networks: Improving Robustness to
Adversarial Examples”. In: ICML. 2017, pp. 854–863.

[CL11] Chih-Chung Chang and Chih-Jen Lin. “LIBSVM: a library for support
vector machines”. In: ACM Transactions on Intelligent Systems and
Technology (TIST) 2.3 (2011), p. 27.

[Coh+19] Jeremy M Cohen, Elan Rosenfeld, and J Zico Kolter. “Certified ad-
versarial robustness via randomized smoothing”. In: arXiv preprint
arXiv:1902.02918 (2019).

[CP11] Antonin Chambolle and Thomas Pock. “A first-order primal-dual algo-
rithm for convex problems with applications to imaging”. In: Journal
of Mathematical Imaging and Vision 40.1 (2011), pp. 120–145.

[CS16] Tian Qi Chen and Mark Schmidt. “Fast patch-based style transfer of
arbitrary style”. In: arXiv preprint arXiv:1612.04337 (2016).

[CW13] Rick Chartrand and Brendt Wohlberg. “A nonconvex ADMM algo-
rithm for group sparsity with sparse groups”. In: 2013 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing. IEEE.
2013, pp. 6009–6013.

[CW17a] Nicholas Carlini and David Wagner. “Adversarial examples are not
easily detected: Bypassing ten detection methods”. In: ACM Workshop
on Artificial Intelligence and Security. ACM. 2017, pp. 3–14.

[CW17b] Nicholas Carlini and David Wagner. “Towards evaluating the robust-
ness of neural networks”. In: 2017 IEEE Symposium on Security and
Privacy (SP). IEEE. 2017, pp. 39–57.

[Cyb89] George Cybenko. “Approximation by superpositions of a sigmoidal
function”. In: MCSS 2.4 (1989), pp. 303–314.

[Din+17] Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio.
“Sharp minima can generalize for deep nets”. In: ICML (2017).

[DL14] Cong Dang and Guanghui Lan. “Randomized first-order methods for
saddle point optimization”. In: arXiv preprint arXiv:1409.8625 (2014).

[Don+14] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang,
Eric Tzeng, and Trevor Darrell. “Decaf: A deep convolutional activa-
tion feature for generic visual recognition”. In: ICML. 2014, pp. 647–
655.

[Don+17] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Xiaolin Hu,
Jianguo Li, and Jun Zhu. “Boosting adversarial attacks with momen-
tum”. In: CVPR (2017).

[Du+17] Simon S Du, Jianshu Chen, Lihong Li, Lin Xiao, and Dengyong Zhou.
“Stochastic Variance Reduction Methods for Policy Evaluation”. In:
ICML (2017).

269

[Dum+17] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. “A
learned representation for artistic style”. In: ICLR (2017).

[DV+17] Harm De Vries, Florian Strub, Jérémie Mary, Hugo Larochelle, Olivier
Pietquin, and Aaron C Courville. “Modulating early visual processing
by language”. In: Advances in Neural Information Processing Systems.
2017, pp. 6594–6604.

[DY14] Damek Davis and Wotao Yin. “Faster convergence rates of relaxed
Peaceman-Rachford and ADMM under regularity assumptions”. In:
arXiv preprint arXiv:1407.5210 (2014).

[DY16] Wei Deng and Wotao Yin. “On the global and linear convergence of the
generalized alternating direction method of multipliers”. In: Journal of
Scientific Computing 66.3 (2016), pp. 889–916.

[DZ13] Bin Dong and Yong Zhang. “An efficient algorithm for `0 minimization
in wavelet frame based image restoration”. In: Journal of Scientific
Computing 54.2-3 (2013), pp. 350–368.

[EB92] Jonathan Eckstein and Dimitri Bertsekas. “On the Douglas-Rachford
splitting method and the proximal point algorithm for maximal mono-
tone operators”. In: Mathematical Programming 55.1-3 (1992), pp. 293–
318.

[Efr+04] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani.
“Least angle regression”. In: The Annals of statistics 32.2 (2004),
pp. 407–499.

[Elg+17] Ahmed Elgammal, Bingchen Liu, Mohamed Elhoseiny, and Marian
Mazzone. “CAN: Creative Adversarial Networks, Generating” Art” by
Learning About Styles and Deviating from Style Norms”. In: arXiv
preprint arXiv:1706.07068 (2017).

[ES16] Ronen Eldan and Ohad Shamir. “The power of depth for feedforward
neural networks”. In: COLT. 2016, pp. 907–940.

[Ess+09] Ernie Esser, Xiaoqun Zhang, and Tony Chan. “A general framework
for a class of first order primal-dual algorithms for TV minimization”.
In: UCLA CAM Report (2009), pp. 09–67.

[Ess09] Ernie Esser. “Applications of Lagrangian-based alternating direction
methods and connections to split Bregman”. In: CAM report 9 (2009),
p. 31.

[Fan+15] Ethan X Fang, Bingsheng He, Han Liu, and Xiaoming Yuan. “Gen-
eralized alternating direction method of multipliers: new theoretical
insights and applications”. In: Mathematical Programming Computa-
tion 7.2 (2015), pp. 149–187.

[Fat08] Raanan Fattal. “Single image dehazing”. In: ACM TOG 27.3 (2008),
p. 72.

270

[Fat14] Raanan Fattal. “Dehazing using color-lines”. In: ACM TOG 34.1
(2014), p. 13.

[FFD17] Li Fei-Fei and Jia Deng. “ImageNet: Where are we going? And where
have we been?” In: CVPR Workshop on Beyond ILSVRC (2017).

[Fle05] Roger Fletcher. “On the Barzilai-Borwein method”. In: Optimization
and control with applications. Springer, 2005, pp. 235–256.

[Fri+16] Oriel Frigo, Neus Sabater, Julie Delon, and Pierre Hellier. “Split and
match: Example-based adaptive patch sampling for unsupervised style
transfer”. In: CVPR. 2016, pp. 553–561.

[FSZ18] Shuicheng Yan Falong Shen and Gang Zeng. “Neural Style Transfer
Via Meta Networks”. In: CVPR. 2018.

[Gab83] Daniel Gabay. “Applications of the method of multipliers to variational
inequalities”. In: Studies in mathematics and its applications 15 (1983),
pp. 299–331.

[Gat+15] Leon Gatys, Alexander S Ecker, and Matthias Bethge. “Texture syn-
thesis using convolutional neural networks”. In: NIPS. 2015.

[Gat+16] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. “Image style
transfer using convolutional neural networks”. In: CVPR. 2016.

[Gat+17] Leon A Gatys, Alexander S Ecker, Matthias Bethge, Aaron Hertz-
mann, and Eli Shechtman. “Controlling perceptual factors in neural
style transfer”. In: CVPR. 2017.

[GB16] Pontus Giselsson and Stephen Boyd. “Linear Convergence and Metric
Selection in Douglas-Rachford Splitting and ADMM”. In: (2016).

[Gha+15] Euhanna Ghadimi, André Teixeira, Iman Shames, and Mikael Johans-
son. “Optimal parameter selection for the alternating direction method
of multipliers: quadratic problems”. In: IEEE Trans. Autom. Control
60 (2015), pp. 644–658.

[Ghi+17] Golnaz Ghiasi, Honglak Lee, Manjunath Kudlur, Vincent Dumoulin,
and Jonathon Shlens. “Exploring the structure of a real-time, arbitrary
neural artistic stylization network”. In: BMVC (2017).

[GM75] Roland Glowinski and A Marroco. “Sur l’approximation, par éléments
finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de
problémes de Dirichlet non linéaires”. In: ESAIM: Modlisation Math-
matique et Analyse Numrique 9 (1975), pp. 41–76.

[GM76] Daniel Gabay and Bertrand Mercier. “A dual algorithm for the solution
of nonlinear variational problems via finite element approximation”. In:
Computers & Mathematics with Applications 2.1 (1976), pp. 17–40.

[GO09] Tom Goldstein and Stanley Osher. “The split Bregman method for
L1-regularized problems”. In: SIAM Journal on Imaging Sciences 2.2
(2009), pp. 323–343.

271

[Gol+13] Donald Goldfarb, Shiqian Ma, and Katya Scheinberg. “Fast alternating
linearization methods for minimizing the sum of two convex functions”.
In: Mathematical Programming 141.1-2 (2013), pp. 349–382.

[Gol+14a] Tom Goldstein, Christoph Studer, and Richard Baraniuk. “A Field
Guide to Forward-Backward Splitting with a FASTA Implementation”.
In: arXiv preprint arXiv:1411.3406 (2014).

[Gol+14b] Tom Goldstein, Brendan O’Donoghue, Simon Setzer, and Richard
Baraniuk. “Fast alternating direction optimization methods”. In: SIAM
Journal on Imaging Sciences 7.3 (2014), pp. 1588–1623.

[Gol+15] Tom Goldstein, Min Li, and Xiaoming Yuan. “Adaptive primal-dual
splitting methods for statistical learning and image processing”. In:
NIPS. 2015, pp. 2089–2097.

[Gol+16] Tom Goldstein, Gavin Taylor, Kawika Barabin, and Kent Sayre. “Un-
wrapping ADMM: Efficient Distributed Computing via Transpose Re-
duction”. In: AISTATS. 2016.

[Goo+14a] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
“Generative adversarial nets”. In: NIPS. 2014.

[Goo+14b] Ian J Goodfellow, Oriol Vinyals, and Andrew M Saxe. “Qualita-
tively characterizing neural network optimization problems”. In: ICLR
(2014).

[Goo+15] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explain-
ing and harnessing adversarial examples”. In: ICLR (2015).

[Gu+18] Shuyang Gu, Congliang Chen, Jing Liao, and Lu Yuan. “Arbitrary
Style Transfer with Deep Feature Reshuffle”. In: CVPR (2018).

[HB17] Xun Huang and Serge Belongie. “Arbitrary Style Transfer in Real-Time
With Adaptive Instance Normalization”. In: CVPR. 2017, pp. 1501–
1510.

[He+00] BS He, H Yang, and S Wang. “Alternating direction method with self-
adaptive penalty parameters for monotone variational inequalities”. In:
Jour. Optim. Theory and Appl. 106.2 (2000), pp. 337–356.

[He+11] Kaiming He, Jian Sun, and Xiaoou Tang. “Single image haze removal
using dark channel prior”. In: IEEE TPAMI 33.12 (2011), pp. 2341–
2353.

[He+15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Delving
deep into rectifiers: Surpassing human-level performance on imagenet
classification”. In: ICCV. 2015, pp. 1026–1034.

[He+16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep
residual learning for image recognition”. In: CVPR. 2016, pp. 770–
778.

272

[Hin+15] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the knowl-
edge in a neural network”. In: arXiv preprint arXiv:1503.02531 (2015).

[HL12] Mingyi Hong and Zhi-Quan Luo. “On the linear convergence of
the alternating direction method of multipliers”. In: arXiv preprint
arXiv:1208.3922 (2012).

[Hon+16] Mingyi Hong, Zhi-Quan Luo, and Meisam Razaviyayn. “Convergence
analysis of alternating direction method of multipliers for a family of
nonconvex problems”. In: SIAM Journal on Optimization 26.1 (2016),
pp. 337–364.

[Hor+89] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer
feedforward networks are universal approximators”. In: Neural net-
works 2.5 (1989), pp. 359–366.

[How+17] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
“Mobilenets: Efficient convolutional neural networks for mobile vision
applications”. In: arXiv preprint arXiv:1704.04861 (2017).

[Hsu+18] Yen-Chang Hsu, Zheng Xu, Zsolt Kira, and Jiawei Huang. “Learning to
Cluster for Proposal-Free Instance Segmentation”. In: IJCNN. IEEE.
2018, pp. 1–8.

[Hua+07] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller.
Labeled Faces in the Wild: A Database for Studying Face Recognition
in Unconstrained Environments. Tech. rep. 07-49. University of Mas-
sachusetts, Amherst, 2007.

[Hua+15] Ruitong Huang, Bing Xu, Dale Schuurmans, and Csaba Szepesvári.
“Learning with a strong adversary”. In: arXiv preprint arXiv:
1511.03034 (2015).

[Hua+17] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q Wein-
berger. “Densely connected convolutional networks”. In: CVPR. 2017.

[Hua+18] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz. “Multi-
modal Unsupervised Image-to-Image Translation”. In: ECCV (2018).

[HW17] Zehao Huang and Naiyan Wang. “Like What You Like: Knowl-
edge Distill via Neuron Selectivity Transfer”. In: arXiv preprint
arXiv:1707.01219 (2017).

[HY12a] Deren Han and Xiaoming Yuan. “A note on the alternating direction
method of multipliers”. In: Journal of Optimization Theory and Appli-
cations 155.1 (2012), pp. 227–238.

[HY12b] Bingsheng He and Xiaoming Yuan. “On the O(1/n) Convergence Rate
of the Douglas-Rachford Alternating Direction Method”. In: SIAM
Journal on Numerical Analysis 50.2 (2012), pp. 700–709.

273

[HY15] Bingsheng He and Xiaoming Yuan. “On non-ergodic convergence rate
of Douglas-Rachford alternating direction method of multipliers”. In:
Numerische Mathematik 130 (2015), pp. 567–577.

[IS15] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating
deep network training by reducing internal covariate shift”. In: ICML.
2015, pp. 448–456.

[Iso+17] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. “Image-
to-image translation with conditional adversarial networks”. In: CVPR
(2017).

[JG18] Daniel Jakubovitz and Raja Giryes. “Improving DNN robustness to
adversarial attacks using Jacobian regularization”. In: ECCV. 2018,
pp. 514–529.

[Jin+17] Yongcheng Jing, Yezhou Yang, Zunlei Feng, Jingwen Ye, Yizhou Yu,
and Mingli Song. “Neural style transfer: A review”. In: arXiv preprint
arXiv:1705.04058 (2017).

[Jin+18] Yongcheng Jing, Yang Liu, Yezhou Yang, Zunlei Feng, Yizhou Yu, and
Mingli Song. “Stroke Controllable Fast Style Transfer with Adaptive
Receptive Fields”. In: ECCV (2018).

[Joh+16] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. “Perceptual losses
for real-time style transfer and super-resolution”. In: ECCV. Springer.
2016, pp. 694–711.

[Kad+15] Mojtaba Kadkhodaie, Konstantina Christakopoulou, Maziar Sanjabi,
and Arindam Banerjee. “Accelerated alternating direction method of
multipliers”. In: Proceedings of the 21th ACM SIGKDD. 2015, pp. 497–
506.

[Kan+18] Harini Kannan, Alexey Kurakin, and Ian Goodfellow. “Adversarial
logit pairing”. In: arXiv preprint arXiv:1803.06373 (2018).

[Kar+19] Tero Karras, Samuli Laine, and Timo Aila. “A style-based generator
architecture for generative adversarial networks”. In: CVPR (2019).

[Kaw+17] Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. “General-
ization in Deep Learning”. In: arXiv preprint arXiv:1710.05468 (2017).

[Kaw16] Kenji Kawaguchi. “Deep Learning without Poor Local Minima”. In:
NIPS (2016).

[KB14] Diederik Kingma and Jimmy Ba. “Adam: A method for stochastic
optimization”. In: ICLR (2014).

[Kes+16] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail
Smelyanskiy, and Ping Tak Peter Tang. “On large-batch training for
deep learning: Generalization gap and sharp minima”. In: ICLR (2016).

[KH09] Alex Krizhevsky and Geoffrey Hinton. “Learning multiple layers of
features from tiny images”. In: (2009).

274

[Kim+17] Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jungkwon Lee, and Jiwon
Kim. “Learning to discover cross-domain relations with generative ad-
versarial networks”. In: ICML (2017).

[KK17] Seung Wook Kim and Hyo-Eun Kim. “Transferring Knowledge to
Smaller Network with Class-Distance Loss”. In: ICLR Workshop
(2017).

[Kov+15] Artiom Kovnatsky, Klaus Glashoff, and Michael M Bronstein.
“MADMM: a generic algorithm for non-smooth optimization on man-
ifolds”. In: arXiv preprint arXiv:1505.07676 (2015).

[Kra+13] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. “3D Ob-
ject Representations for Fine-Grained Categorization”. In: 4th Interna-
tional IEEE Workshop on 3D Representation and Recognition (3dRR-
13). Sydney, Australia, 2013.

[Kri+12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet
classification with deep convolutional neural networks”. In: NIPS. 2012,
pp. 1097–1105.

[Kur+16a] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. “Adversarial ex-
amples in the physical world”. In: arXiv preprint arXiv:1607.02533
(2016).

[Kur+16b] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. “Adversarial ma-
chine learning at scale”. In: ICLR (2016).

[KW13] Diederik P Kingma and Max Welling. “Auto-encoding variational
bayes”. In: arXiv preprint arXiv:1312.6114 (2013).

[Lam+18] Alex Lamb, Jonathan Binas, Anirudh Goyal, Dmitriy Serdyuk,
Sandeep Subramanian, Ioannis Mitliagkas, and Yoshua Bengio. “For-
tified networks: Improving the robustness of deep networks by mod-
eling the manifold of hidden representations”. In: arXiv preprint
arXiv:1804.02485 (2018).

[LeC+98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
“Gradient-based learning applied to document recognition”. In: Pro-
ceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[Lee+06] Su-In Lee, Honglak Lee, Pieter Abbeel, and Andrew Ng. “Efficient L1
regularized logistic regression”. In: AAAI. Vol. 21. 2006, p. 401.

[Li+17a] Boyi Li, Xiulian Peng, Zhangyang Wang, Jizheng Xu, and Dan Feng.
“Aod-net: All-in-one dehazing network”. In: ICCV. 2017, pp. 4770–
4778.

[Li+17b] Boyi Li, Wenqi Ren, Dengpan Fu, Dacheng Tao, Dan Feng, Wenjun
Zeng, and Zhangyang Wang. “RESIDE: A Benchmark for Single Image
Dehazing”. In: arXiv preprint arXiv:1712.04143 (2017).

275

[Li+17c] Hao Li, Soham De, Zheng Xu, Christoph Studer, Hanan Samet, and
Tom Goldstein. “Training Quantized Nets: A Deeper Understanding”.
In: NIPS (2017).

[Li+17d] Wen Li, Zheng Xu, Dong Xu, Dengxin Dai, and Luc Van Gool.
“Domain Generalization and Adaptation using Low Rank Exemplar
SVMs”. In: IEEE Transactions on Pattern Analysis and Machine In-
telligence (TPAMI) (2017).

[Li+17e] Yanghao Li, Naiyan Wang, Jiaying Liu, and Xiaodi Hou. “Demystifying
neural style transfer”. In: IJCAI (2017).

[Li+17f] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu, and Ming-
Hsuan Yang. “Universal style transfer via feature transforms”. In:
NIPS. 2017, pp. 385–395.

[Li+18a] Chongyi Li, Jichang Guo, Fatih Porikli, Huazhu Fu, and Yanwei Pang.
“A Cascaded Convolutional Neural Network for Single Image Dehaz-
ing”. In: arXiv preprint arXiv:1803.07955 (2018).

[Li+18b] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Gold-
stein. “Visualizing the Loss Landscape of Neural Nets”. In: NeurIPS
(2018).

[Li+18c] Yijun Li, Ming-Yu Liu, Xueting Li, Ming-Hsuan Yang, and Jan Kautz.
“A Closed-form Solution to Photorealistic Image Stylization”. In:
ECCV (2018).

[Lia+17] Jing Liao, Yuan Yao, Lu Yuan, Gang Hua, and Sing Bing Kang. “Visual
attribute transfer through deep image analogy”. In: ACM (TOG) 36.4
(2017), p. 120.

[Lin+11] Zhouchen Lin, Risheng Liu, and Zhixun Su. “Linearized alternating
direction method with adaptive penalty for low-rank representation”.
In: NIPS. 2011, pp. 612–620.

[Lin+15] Tianyi Lin, Shiqian Ma, and Shuzhong Zhang. “On the global linear
convergence of the ADMM with multiblock variables”. In: SIAM Jour-
nal on Optimization 25.3 (2015), pp. 1478–1497.

[Liu+09] Jun Liu, Jianhui Chen, and Jieping Ye. “Large-scale sparse logistic
regression”. In: ACM SIGKDD. 2009, pp. 547–556.

[Liu+13] Risheng Liu, Zhouchen Lin, and Zhixun Su. “Linearized alternating
direction method with parallel splitting and adaptive penalty for sepa-
rable convex programs in machine learning.” In: ACML. 2013, pp. 116–
132.

[Liu+15] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. “Deep Learn-
ing Face Attributes in the Wild”. In: ICCV. 2015.

[Liu+17] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. “Unsupervised Image-
to-Image Translation Networks”. In: NIPS (2017).

276

[LN89] Dong C Liu and Jorge Nocedal. “On the limited memory BFGS
method for large scale optimization”. In: Mathematical programming
45.1 (1989), pp. 503–528.

[LO14] Rongjie Lai and Stanley Osher. “A splitting method for orthogonal-
ity constrained problems”. In: Journal of Scientific Computing 58.2
(2014), pp. 431–449.

[LP15] Guoyin Li and Ting Kei Pong. “Global convergence of splitting meth-
ods for nonconvex composite optimization”. In: SIAM Journal on Op-
timization 25.4 (2015), pp. 2434–2460.

[LS15] Athanasios P Liavas and Nicholas D Sidiropoulos. “Parallel algorithms
for constrained tensor factorization via alternating direction method of
multipliers”. In: IEEE Transactions on Signal Processing 63.20 (2015),
pp. 5450–5463.

[LS17] Shiyu Liang and R Srikant. “Why Deep Neural Networks for Function
Approximation?” In: ICLR (2017).

[Lu+17] Jiajun Lu, Hussein Sibai, Evan Fabry, and David Forsyth. “No need to
worry about adversarial examples in object detection in autonomous
vehicles”. In: arXiv preprint arXiv:1707.03501 (2017).

[Luo+16] Ping Luo, Zhenyao Zhu, Ziwei Liu, Xiaogang Wang, Xiaoou Tang, et
al. “Face Model Compression by Distilling Knowledge from Neurons.”
In: AAAI. 2016, pp. 3560–3566.

[LW16a] Chuan Li and Michael Wand. “Combining markov random fields and
convolutional neural networks for image synthesis”. In: CVPR. 2016,
pp. 2479–2486.

[LW16b] Chuan Li and Michael Wand. “Precomputed real-time texture syn-
thesis with markovian generative adversarial networks”. In: ECCV.
Springer. 2016, pp. 702–716.

[LZ15] Guanghui Lan and Yi Zhou. “An optimal randomized incremental gra-
dient method”. In: arXiv preprint arXiv:1507.02000 (2015).

[Ma+18] Xingjun Ma, Bo Li, Yisen Wang, Sarah M Erfani, Sudanthi Wijewick-
rema, Grant Schoenebeck, Dawn Song, Michael E Houle, and James
Bailey. “Characterizing adversarial subspaces using local intrinsic di-
mensionality”. In: arXiv preprint arXiv:1801.02613 (2018).

[Mad+17] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu. “Towards deep learning models resistant
to adversarial attacks”. In: ICLR (2017).

[Mao+16] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang,
and Stephen Paul Smolley. “Least squares generative adversarial net-
works”. In: arXiv preprint (2016).

277

[MC17] Dongyu Meng and Hao Chen. “Magnet: a two-pronged defense against
adversarial examples”. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM. 2017,
pp. 135–147.

[McC76] Earl J McCartney. “Optics of the atmosphere: scattering by molecules
and particles”. In: New York, John Wiley and Sons, Inc., 1976. 421 p.
(1976).

[MD+16] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal
Frossard. “Deepfool: a simple and accurate method to fool deep neural
networks”. In: CVPR. 2016, pp. 2574–2582.

[MD+17a] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, Pas-
cal Frossard, and Stefano Soatto. “Analysis of universal adversarial
perturbations”. In: arXiv preprint arXiv:1705.09554 (2017).

[MD+17b] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and
Pascal Frossard. “Universal Adversarial Perturbations”. In: CVPR.
2017, pp. 1765–1773.

[Men+13] Gaofeng Meng, Ying Wang, Jiangyong Duan, Shiming Xiang, and
Chunhong Pan. “Efficient image dehazing with boundary constraint
and contextual regularization”. In: ICCV. IEEE. 2013, pp. 617–624.

[Met+16] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein.
“Unrolled generative adversarial networks”. In: arXiv preprint
arXiv:1611.02163 (2016).

[Met+17] Jan Hendrik Metzen, Mummadi Chaithanya Kumar, Thomas Brox,
and Volker Fischer. “Universal adversarial perturbations against se-
mantic image segmentation”. In: ICCV. 2017.

[Mik+14] Ondrej Miksik, Vibhav Vineet, Patrick Pérez, Philip HS Torr, and FR
Cesson Sévigné. “Distributed non-convex admm-inference in large-scale
random fields”. In: British Machine Vision Conference, BMVC. 2014.

[MK18] Takeru Miyato and Masanori Koyama. “cGANs with projection dis-
criminator”. In: ICLR (2018).

[Mop+17] Konda Reddy Mopuri, Utsav Garg, and R Venkatesh Babu. “Fast fea-
ture fool: A data independent approach to universal adversarial per-
turbations”. In: BMVC (2017).

[Nem+09] Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander
Shapiro. “Robust stochastic approximation approach to stochastic pro-
gramming”. In: SIAM Journal on optimization 19.4 (2009), pp. 1574–
1609.

[Ngu+15] Anh Nguyen, Jason Yosinski, and Jeff Clune. “Deep neural networks
are easily fooled: High confidence predictions for unrecognizable im-
ages”. In: CVPR. 2015, pp. 427–436.

278

[Nis+15] R. Nishihara, L. Lessard, B. Recht, A. Packard, and M. Jordan. “A
General Analysis of the Convergence of ADMM”. In: ICML. 2015.

[NN02] Srinivasa G Narasimhan and Shree K Nayar. “Vision and the atmo-
sphere”. In: International Journal of Computer Vision 48.3 (2002),
pp. 233–254.

[Ode+17] Augustus Odena, Christopher Olah, and Jonathon Shlens. “Condi-
tional image synthesis with auxiliary classifier gans”. In: ICML (2017).

[Pap+16] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z
Berkay Celik, and Ananthram Swami. “The limitations of deep learning
in adversarial settings”. In: EuroS&P. IEEE. 2016, pp. 372–387.

[PB16] Balamurugan Palaniappan and Francis Bach. “Stochastic Variance
Reduction Methods for Saddle-Point Problems”. In: NIPS. 2016,
pp. 1408–1416.

[Per+18] Julien Perolat, Mateusz Malinowski, Bilal Piot, and Olivier Pietquin.
“Playing the Game of Universal Adversarial Perturbations”. In: arXiv
preprint arXiv:1809.07802 (2018).

[Phi+07] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. “Object Re-
trieval with Large Vocabularies and Fast Spatial Matching”. In: CVPR.
2007.

[Pou+18] Omid Poursaeed, Isay Katsman, Bicheng Gao, and Serge Belongie.
“Generative Adversarial Perturbations”. In: CVPR (2018).

[Qia+16] Linbo Qiao, Tianyi Lin, Yu-Gang Jiang, Fan Yang, Wei Liu, and Xi-
cheng Lu. “On Stochastic Primal-Dual Hybrid Gradient Approach for
Compositely Regularized Minimization”. In: ECAI. 2016.

[Rad+16] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised repre-
sentation learning with deep convolutional generative adversarial net-
works”. In: ICLR (2016).

[Rag+18] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. “Cer-
tified defenses against adversarial examples”. In: arXiv preprint
arXiv:1801.09344 (2018).

[Ras+16] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali
Farhadi. “XNOR-net: Imagenet classification using binary convolu-
tional neural networks”. In: ECCV. Springer. 2016, pp. 525–542.

[RDC14] Arvind Raghunathan and Stefano Di Cairano. “Alternating direction
method of multipliers for strictly convex quadratic programs: Optimal
parameter selection”. In: American Control Conf. 2014, pp. 4324–4329.

[Ren+16] Wenqi Ren, Si Liu, Hua Zhang, Jinshan Pan, Xiaochun Cao, and Ming-
Hsuan Yang. “Single image dehazing via multi-scale convolutional neu-
ral networks”. In: ECCV. Springer. 2016, pp. 154–169.

279

[Ren+18] Wenqi Ren, Lin Ma, Jiawei Zhang, Jinshan Pan, Xiaochun Cao, Wei
Liu, and Ming-Hsuan Yang. “Gated fusion network for single image
dehazing”. In: CVPR (2018).

[RM+18a] Konda Reddy Mopuri, Phani Krishna Uppala, and R Venkatesh Babu.
“Ask, Acquire, and Attack: Data-free UAP Generation using Class
Impressions”. In: ECCV. 2018, pp. 19–34.

[RM+18b] Konda Reddy Mopuri, Utkarsh Ojha, Utsav Garg, and R Venkatesh
Babu. “NAG: Network for adversary generation”. In: CVPR. 2018,
pp. 742–751.

[Roc70] R. Rockafellar. Convex Analysis. Princeton University Press, 1970.

[Rom+15] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine
Chassang, Carlo Gatta, and Yoshua Bengio. “Fitnets: Hints for thin
deep nets”. In: ICLR (2015).

[Ron+15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Con-
volutional networks for biomedical image segmentation”. In: MICCAI.
Springer. 2015, pp. 234–241.

[Roy+17] Amélie Royer, Konstantinos Bousmalis, Stephan Gouws, Fred Bertsch,
Inbar Moressi, Forrester Cole, and Kevin Murphy. “XGAN: Unsuper-
vised Image-to-Image Translation for many-to-many Mappings”. In:
arXiv preprint arXiv:1711.05139 (2017).

[Rud+92] Leonid I Rudin, Stanley Osher, and Emad Fatemi. “Nonlinear total
variation based noise removal algorithms”. In: Physica D: Nonlinear
Phenomena 60.1 (1992), pp. 259–268.

[Rus+15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, et al. “Imagenet large scale visual recognition chal-
lenge”. In: IJCV 115.3 (2015), pp. 211–252.

[Sak+17] Christos Sakaridis, Dengxin Dai, and Luc Van Gool. “Semantic
Foggy Scene Understanding with Synthetic Data”. In: arXiv preprint
arXiv:1708.07819 (2017).

[Sam+19] Pouya Samangouei, Maya Kabkab, and Rama Chellappa. “Defense-
gan: Protecting classifiers against adversarial attacks using generative
models”. In: ICLR (2019).

[San+19] Karthik A Sankararaman, Soham De, Zheng Xu, W Ronny Huang, and
Tom Goldstein. “The Impact of Neural Network Overparameterization
on Gradient Confusion and Stochastic Gradient Descent”. In: arXiv
preprint arXiv:1904.06963 (2019).

[Sch+07] Mark Schmidt, Glenn Fung, and Rómer Rosales. “Fast optimization
methods for l1 regularization: A comparative study and two new ap-
proaches”. In: ECML. Springer, 2007, pp. 286–297.

280

[Sch+14] Daniel Scharstein, Heiko Hirschmüller, York Kitajima, Greg Krath-
wohl, Nera Nešić, Xi Wang, and Porter Westling. “High-resolution
stereo datasets with subpixel-accurate ground truth”. In: German Con-
ference on Pattern Recognition. Springer. 2014, pp. 31–42.

[Sch+18] Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar,
and Aleksander Madry. “Adversarially robust generalization requires
more data”. In: NeurIPS. 2018, pp. 5014–5026.

[SF14] Dennis L Sun and Cédric Févotte. “Alternating direction method
of multipliers for non-negative matrix factorization with the beta-
divergence”. In: 2014 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE. 2014, pp. 6201–6205.

[Sha+15] Uri Shaham, Yutaro Yamada, and Sahand Negahban. “Understanding
adversarial training: Increasing local stability of neural nets through
robust optimization”. In: arXiv preprint arXiv:1511.05432 (2015).

[Sha+18] Ali Shafahi, Mahyar Najibi, Zheng Xu, John Dickerson, Larry S
Davis, and Tom Goldstein. “Universal Adversarial Training”. In: arXiv
preprint arXiv:1811.11304 (2018).

[Sha+19] Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John Dickerson,
Christoph Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein.
“Adversarial Training for Free”. In: arXiv preprint (2019).

[She+16] Jonathan Shen, Noranart Vesdapunt, Vishnu N Boddeti, and Kris M
Kitani. “In Teacher We Trust: Learning Compressed Models for Pedes-
trian Detection”. In: arXiv preprint arXiv:1612.00478 (2016).

[She+18] Lu Sheng, Ziyi Lin, Jing Shao, and Xiaogang Wang. “Avatar-Net:
Multi-scale Zero-shot Style Transfer by Feature Decoration”. In: CVPR
(2018).

[Sil+12] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus.
“Indoor segmentation and support inference from rgbd images”. In:
ECCV (2012), pp. 746–760.

[Sin+18] Aman Sinha, Hongseok Namkoong, and John Duchi. “Certifying some
distributional robustness with principled adversarial training”. In:
ICLR (2018).

[Son+16] Changkyu Song, Sejong Yoon, and Vladimir Pavlovic. “Fast ADMM
Algorithm for Distributed Optimization with Adaptive Penalty”. In:
AAAI (2016).

[Sri+14] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. “Dropout: a simple way to prevent neural
networks from overfitting.” In: JMLR 15.1 (2014), pp. 1929–1958.

[SS17] Itay Safran and Ohad Shamir. “Depth-Width Tradeoffs in Approxi-
mating Natural Functions with Neural Networks”. In: ICML. 2017,
pp. 2979–2987.

281

[ST17] Atsushi Shibagaki and Ichiro Takeuchi. “Stochastic Primal Dual Co-
ordinate Method with Non-Uniform Sampling Based on Optimality
Violations”. In: arXiv preprint arXiv:1703.07056 (2017).

[Su+18] Dong Su, Huan Zhang, Hongge Chen, Jinfeng Yi, Pin-Yu Chen, and
Yupeng Gao. “Is Robustness the Cost of Accuracy?–A Comprehensive
Study on the Robustness of 18 Deep Image Classification Models”. In:
Proceedings of the European Conference on Computer Vision (ECCV).
2018, pp. 631–648.

[SZ14] Karen Simonyan and Andrew Zisserman. “Very deep convolutional
networks for large-scale image recognition”. In: arXiv preprint
arXiv:1409.1556 (2014).

[Sze+13] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Du-
mitru Erhan, Ian Goodfellow, and Rob Fergus. “Intriguing properties
of neural networks”. In: ICLR (2013).

[Sze+16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. “Rethinking the inception architecture for computer
vision”. In: CVPR. 2016, pp. 2818–2826.

[Tai+17] Yaniv Taigman, Adam Polyak, and Lior Wolf. “Unsupervised cross-
domain image generation”. In: ICLR (2017).

[Tan+14] Ketan Tang, Jianchao Yang, and Jue Wang. “Investigating haze-
relevant features in a learning framework for image dehazing”. In:
CVPR. 2014, pp. 2995–3000.

[Tan08] Robby T Tan. “Visibility in bad weather from a single image”. In:
CVPR. 2008.

[Tay+16] Gavin Taylor, Ryan Burmeister, Zheng Xu, Bharat Singh, Ankit Patel,
and Tom Goldstein. “Training Neural Networks Without Gradients: A
Scalable ADMM Approach”. In: ICML (2016).

[Tay+17] Gavin Taylor, Zheng Xu, and Tom Goldstein. “Scalable Classifiers
With ADMM and Transpose Reduction”. In: AAAI workshop on dis-
tributed machine learning. 2017.

[Teh+17] Yee Whye Teh, Victor Bapst, Wojciech Marian Czarnecki, John Quan,
James Kirkpatrick, Raia Hadsell, Nicolas Heess, and Razvan Pas-
canu. “Distral: Robust Multitask Reinforcement Learning”. In: arXiv
preprint arXiv:1707.04175 (2017).

[Tel16] Matus Telgarsky. “Benefits of depth in neural networks”. In: arXiv
preprint arXiv:1602.04485 (2016).

[TH09] Jean-Philippe Tarel and Nicolas Hautiere. “Fast visibility restoration
from a single color or gray level image”. In: ICCV. IEEE. 2009,
pp. 2201–2208.

282

[Tje+17] Vincent Tjeng, Kai Xiao, and Russ Tedrake. “Evaluating Robustness of
Neural Networks with Mixed Integer Programming”. In: arXiv preprint
arXiv:1711.07356 (2017).

[Tra+17] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow,
Dan Boneh, and Patrick McDaniel. “Ensemble adversarial training:
Attacks and defenses”. In: arXiv preprint arXiv:1705.07204 (2017).

[Tsi+18] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander
Turner, and Aleksander Madry. “Robustness may be at odds with ac-
curacy”. In: ICLR 1050 (2018), p. 11.

[TY11] Min Tao and Xiaoming Yuan. “Recovering low-rank and sparse compo-
nents of matrices from incomplete and noisy observations”. In: SIAM
Journal on Optimization 21.1 (2011), pp. 57–81.

[TY16a] Min Tao and Xiaoming Yuan. “Convergence analysis of the direct ex-
tension of ADMM for multiple-block separable convex minimization”.
In: arXiv preprint arXiv:1609.07221 (2016).

[TY16b] Wenyi Tian and Xiaoming Yuan. “Faster Alternating Direction Method
of Multipliers with a Worst-case O (1/n2) Convergence Rate”. In:
(2016).

[TZ15] Da Tang and Tong Zhang. “On the Duality Gap Convergence of
ADMM Methods”. In: arXiv preprint arXiv:1508.03702 (2015).

[Uly+16a] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. “Instance
Normalization: The Missing Ingredient for Fast Stylization”. In: CoRR
abs/1607.08022 (2016).

[Uly+16b] Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Victor S Lem-
pitsky. “Texture Networks: Feed-forward Synthesis of Textures and
Stylized Images.” In: ICML. 2016, pp. 1349–1357.

[Uly+17a] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. “Deep Im-
age Prior”. In: CoRR abs/1711.10925 (2017).

[Uly+17b] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. “Improved
texture networks: Maximizing quality and diversity in feed-forward
stylization and texture synthesis”. In: CVPR. 2017.

[Urb+17] Gregor Urban, Krzysztof J Geras, Samira Ebrahimi Kahou, Ozlem
Aslan, Shengjie Wang, Rich Caruana, Abdelrahman Mohamed,
Matthai Philipose, and Matt Richardson. “Do Deep Convolutional Nets
Really Need to be Deep and Convolutional?” In: ICLR (2017).

[Wan+14] Fenghui Wang, Zongben Xu, and Hong-Kun Xu. “Convergence of Breg-
man alternating direction method with multipliers for nonconvex com-
posite problems”. In: arXiv preprint arXiv:1410.8625 (2014).

[Wan+15] Yu Wang, Wotao Yin, and Jinshan Zeng. “Global convergence of
ADMM in nonconvex nonsmooth optimization”. In: arXiv preprint
arXiv:1511.06324 (2015).

283

[Wan+16] Jingdong Wang, Zhen Wei, Ting Zhang, and Wenjun Zeng. “Deeply-
fused nets”. In: arXiv preprint arXiv:1605.07716 (2016).

[Wan+17] Xin Wang, Geoffrey Oxholm, Da Zhang, and Yuan-Fang Wang. “Mul-
timodal Transfer: A Hierarchical Deep Convolutional Neural Network
for Fast Artistic Style Transfer”. In: CVPR. 2017, pp. 5239–5247.

[Wan+18] Shiqi Wang, Yizheng Chen, Ahmed Abdou, and Suman Jana. “Mix-
train: Scalable training of formally robust neural networks”. In: arXiv
preprint arXiv:1811.02625 (2018).

[WC16] Mengdi Wang and Yichen Chen. “An online primal-dual method
for discounted Markov decision processes”. In: Decision and Control
(CDC), 2016 IEEE 55th Conference on. IEEE. 2016, pp. 4516–4521.

[Wel+10] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie,
and P. Perona. Caltech-UCSD Birds 200. Tech. rep. CNS-TR-2010-001.
California Institute of Technology, 2010.

[Wen+10] Zaiwen Wen, Donald Goldfarb, and Wotao Yin. “Alternating direc-
tion augmented Lagrangian methods for semidefinite programming”.
In: Mathematical Programming Computation 2.3-4 (2010), pp. 203–
230.

[Wen+12] Zaiwen Wen, Chao Yang, Xin Liu, and Stefano Marchesini. “Alternat-
ing direction methods for classical and ptychographic phase retrieval”.
In: Inverse Problems 28.11 (2012), p. 115010.

[Wil+17a] Michael J. Wilber, Chen Fang, Hailin Jin, Aaron Hertzmann, John
Collomosse, and Serge Belongie. “BAM! The Behance Artistic Media
Dataset for Recognition Beyond Photography”. In: ICCV. 2017.

[Wil+17b] Pierre Wilmot, Eric Risser, and Connelly Barnes. “Stable and con-
trollable neural texture synthesis and style transfer using histogram
losses”. In: arXiv preprint arXiv:1701.08893 (2017).

[Won+18] Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J Zico Kolter.
“Scaling provable adversarial defenses”. In: NeurIPS. 2018, pp. 8400–
8409.

[Wri+09a] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma. “Robust face
recognition via sparse representation”. In: IEEE Trans. Pattern Anal-
ysis and Machine Intelligence 31 (2009), pp. 210–227.

[Wri+09b] John Wright, Arvind Ganesh, Shankar Rao, Yigang Peng, and Yi Ma.
“Robust principal component analysis: Exact recovery of corrupted
low-rank matrices via convex optimization”. In: Advances in neural
information processing systems. 2009, pp. 2080–2088.

[Wri+09c] Stephen Wright, Robert Nowak, and Mário Figueiredo. “Sparse recon-
struction by separable approximation”. In: IEEE Trans. Signal Pro-
cessing 57 (2009), pp. 2479–2493.

284

[WX17] Jialei Wang and Lin Xiao. “Exploiting Strong Convexity from Data
with Primal-Dual First-Order Algorithms”. In: ICML (2017).

[Xia+18] Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan Liu, and
Dawn Song. “Generating adversarial examples with adversarial net-
works”. In: IJCAI (2018).

[Xia+19] Kai Xiao, Vincent Tjeng, Nur Muhammad Shafiullah, and Aleksander
Madry. “Training for Faster Adversarial Robustness Verification via
Inducing ReLU Stability”. In: ICLR (2019).

[Xie+19] Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan Yuille, and
Kaiming He. “Feature denoising for improving adversarial robustness”.
In: CVPR (2019).

[Xu+12] Yangyang Xu, Wotao Yin, Zaiwen Wen, and Yin Zhang. “An alternat-
ing direction algorithm for matrix completion with nonnegative fac-
tors”. In: Frontiers of Mathematics in China 7.2 (2012), pp. 365–384.

[Xu+14] Zheng Xu, Wen Li, Li Niu, and Dong Xu. “Exploiting Low-Rank Struc-
ture from Latent Domains for Domain Generalization”. In: ECCV.
2014.

[Xu+15] Zheng Xu, Xue Li, Kuiyuan Yang, and Tom Goldstein. “Exploiting
Low-rank Structure for Discriminative Sub-categorization”. In: BMVC,
Swansea, UK, September 7-10, 2015. 2015.

[Xu+16a] Zheng Xu, Soham De, Mário A. T. Figueiredo, Christoph Studer, and
Tom Goldstein. “An Empirical Study of ADMM for Nonconvex Prob-
lems”. In: NIPS workshop on nonconvex optimization. 2016.

[Xu+16b] Zheng Xu, Furong Huang, Louiqa Raschid, and Tom Goldstein. “Non-
negative Factorization of the Occurrence Tensor from Financial Con-
tracts”. In: NIPS workshop on tensor methods. 2016.

[Xu+17a] Weilin Xu, David Evans, and Yanjun Qi. “Feature squeezing: Detect-
ing adversarial examples in deep neural networks”. In: arXiv preprint
arXiv:1704.01155 (2017).

[Xu+17b] Zheng Xu, Mario AT Figueiredo, and Tom Goldstein. “Adaptive
ADMM with Spectral Penalty Parameter Selection”. In: AISTATS
(2017).

[Xu+17c] Zheng Xu, Gavin Taylor, Hao Li, Mario AT Figueiredo, Xiaoming
Yuan, and Tom Goldstein. “Adaptive Consensus ADMM for Dis-
tributed Optimization”. In: ICML (2017).

[Xu+17d] Zheng Xu, Mario AT Figueiredo, Xiaoming Yuan, Christoph Studer,
and Tom Goldstein. “Adaptive Relaxed ADMM: Convergence Theory
and Practical Implementation”. In: CVPR (2017).

[Xu+17e] Zheng Xu, Mario AT Figueiredo, and Tom Goldstein. “Practical Guide
to Penalty Parameter Selection for ADMM”. In: journal draft in prepa-
ration (2017).

285

[Xu+18a] Zheng Xu, Xitong Yang, Xue Li, and Xiaoshuai Sun. “Strong baseline
for single image dehazing with deep features and instance normaliza-
tion”. In: BMVC. Vol. 2. 3. 2018, p. 5.

[Xu+18b] Zheng Xu, Yen-Chang Hsu, and Jiawei Huang. “Training Student Net-
works for Acceleration with Conditional Adversarial Networks”. In:
BMVC (2018).

[Xu+19a] Zheng Xu, Michael Wilber, Chen Fang, Aaron Hertzmann, and Hailin
Jin. “Beyond textures: Learning from multi-domain artistic images for
arbitrary style transfer”. In: Expressive (2019).

[Xu+19b] Zheng Xu, Ali Shafahi, and Tom Goldstein. “Exploiting Adaptive Net-
work for Robustness”. In: anonymous conference submission (2019).

[Yad+18] Abhay Yadav, Sohil Shah, Zheng Xu, David Jacobs, and Tom Gold-
stein. “Stabilizing Adversarial Nets With Prediction Methods”. In:
ICLR (2018).

[Yan+11] Chao Yang, Jianliang Qian, Andre Schirotzek, Filipe Maia, and Stefano
Marchesini. “Iterative algorithms for ptychographic phase retrieval”.
In: arXiv preprint arXiv:1105.5628 (2011).

[Yan+18] Xitong Yang, Zheng Xu, and Jiebo Luo. “Towards Perceptual Image
Dehazing by Physics-based Disentanglement and Adversarial Train-
ing”. In: AAAI (2018).

[Yi+17] Zili Yi, Hao Zhang, Ping Tan, and Minglun Gong. “DualGAN: Unsu-
pervised Dual Learning for Image-To-Image Translation”. In: CVPR.
2017, pp. 2849–2857.

[Yim+17] Junho Yim, Donggyu Joo, Jihoon Bae, and Junmo Kim. “A Gift from
Knowledge Distillation: Fast Optimization, Network Minimization and
Transfer Learning”. In: CVPR (2017).

[You+17] Shan You, Chang Xu, Chao Xu, and Dacheng Tao. “Learning from
Multiple Teacher Networks”. In: KDD. ACM. 2017, pp. 1285–1294.

[Yu+15] Adams Wei Yu, Qihang Lin, and Tianbao Yang. “Doubly Stochastic
Primal-Dual Coordinate Method for Empirical Risk Minimization and
Bilinear Saddle-Point Problem”. In: arXiv preprint arXiv:1508.03390
(2015).

[YY13] Junfeng Yang and Xiaoming Yuan. “Linearized augmented Lagrangian
and alternating direction methods for nuclear norm minimization”. In:
Mathematics of Computation 82.281 (2013), pp. 301–329.

[ZC08] Mingqiang Zhu and Tony Chan. “An efficient primal-dual hybrid gra-
dient algorithm for total variation image restoration”. In: UCLA CAM
Report (2008), pp. 08–34.

[ZD17] Hang Zhang and Kristin Dana. “Multi-style generative network for
real-time transfer”. In: arXiv preprint arXiv:1703.06953 (2017).

286

[ZH05] Hui Zou and Trevor Hastie. “Regularization and variable selection via
the elastic net”. In: Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 67.2 (2005), pp. 301–320.

[Zha+17a] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and
Oriol Vinyals. “Understanding deep learning requires rethinking gen-
eralization”. In: ICLR (2017).

[Zha+17b] He Zhang, Vishwanath Sindagi, and Vishal M Patel. “Joint transmis-
sion map estimation and dehazing using deep networks”. In: arXiv
preprint arXiv:1708.00581 (2017).

[Zha+18a] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver
Wang. “The Unreasonable Effectiveness of Deep Features as a Percep-
tual Metric”. In: CVPR (2018).

[Zha+18b] Yexun Zhang, Wenbin Cai, and Ya Zhang. “Separating Style and Con-
tent for Generalized Style Transfer”. In: CVPR (2018).

[Zha+19a] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing, Laurent
El Ghaoui, and Michael I Jordan. “Theoretically Principled Trade-off
between Robustness and Accuracy”. In: ICML (2019).

[Zha+19b] Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. “Fixup Initializa-
tion: Residual Learning Without Normalization”. In: ICLR (2019).

[Zho+06] Bin Zhou, Li Gao, and Yu-Hong Dai. “Gradient methods with adap-
tive step-sizes”. In: Computational Optimization and Applications 35
(2006), pp. 69–86.

[Zho+10] Zihan Zhou, Xiaodong Li, John Wright, Emmanuel Candes, and Yi Ma.
“Stable principal component pursuit”. In: 2010 IEEE International
Symposium on Information Theory. IEEE. 2010, pp. 1518–1522.

[Zhu+15] Qingsong Zhu, Jiaming Mai, and Ling Shao. “A fast single image haze
removal algorithm using color attenuation prior”. In: IEEE TIP 24.11
(2015), pp. 3522–3533.

[Zhu+17a] Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A
Efros, Oliver Wang, and Eli Shechtman. “Toward multimodal image-
to-image translation”. In: NIPS. 2017, pp. 465–476.

[Zhu+17b] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. “Un-
paired Image-To-Image Translation Using Cycle-Consistent Adversar-
ial Networks”. In: CVPR. 2017, pp. 2223–2232.

[ZK14] Ruiliang Zhang and James T Kwok. “Asynchronous Distributed
ADMM for Consensus Optimization.” In: ICML. 2014, pp. 1701–1709.

[ZK16] Sergey Zagoruyko and Nikos Komodakis. “Wide residual networks”.
In: arXiv preprint arXiv:1605.07146 (2016).

[ZK17] Sergey Zagoruyko and Nikos Komodakis. “Paying more attention to
attention: Improving the performance of convolutional neural networks
via attention transfer”. In: ICLR (2017).

287

[ZL15] Yuchen Zhang and Xiao Lin. “Stochastic Primal-Dual Coordinate
Method for Regularized Empirical Risk Minimization.” In: ICML.
2015, pp. 353–361.

[ZP18] He Zhang and Vishal M Patel. “Densely Connected Pyramid Dehazing
Network”. In: CVPR (2018).

[ZS15] Zhanxing Zhu and Amos J Storkey. “Adaptive stochastic primal-dual
coordinate descent for separable saddle point problems”. In: ECML-
PKDD. 2015, pp. 645–658.

[ZS16] Zhanxing Zhu and Amos J Storkey. “Stochastic parallel block coordi-
nate descent for large-scale saddle point problems”. In: AAAI. 2016.

288

	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Organization
	Contribution

	I Constrained Problem and Adaptive ADMM
	Constrained Problem and ADMM
	ADMM and penalty parameter
	Residuals and stop condition

	Multi-block ADMM
	Residuals and stop condition

	Minimax optimization problems
	Residuals and stop condition

	Exemplar applications
	Elastic net regularized linear regression
	Low rank least squares
	Support vector machine and quadratic programming
	Basis pursuit
	Consensus 1-regularized logistic regression
	Semidefinite programming
	Unwrapped SVM
	Total variation image denoising

	Benchmark datasets
	Convergence and related work

	Convergence Analysis of ADMM
	Generalized ADMM with diagonal penalty parameters
	Preliminaries
	Convergence criteria
	Appendix: proof of lemmas

	Adaptive ADMM
	Background and related work
	Parameter tuning and adaptation
	Dual interpretation of ADMM
	Spectral stepsize selection

	Spectral penalty parameters
	Spectral stepsize for DRS
	Spectral stepsize estimation
	Safeguarding
	Adaptive ADMM
	Convergence

	Experiments
	Experimental setting
	Convergence results
	Sensitivity

	Summarization

	Variants of ADMM
	Adaptive Multi-block ADMM
	Residual balancing for multi-block ADMM
	Dual interpretation of multi-block ADMM
	Spectral stepsize for multi-block DRS
	Spectral penalty parameter for multi-block ADMM
	Experiment: elastic net regularized linear regression
	Experiment: robust principal component analysis

	Adaptive Relaxed ADMM
	Introduction
	Convergence theory
	Dual interpretation of relaxed ADMM
	Spectral adaptive stepsize rule
	Proofs of convergence theorems
	Appendix:proofs of lemmas and theorems
	Experiments
	Summarization

	Adaptive Consensus ADMM
	Introduction
	Dual interpretation of generalized ADMM
	Generalized spectral stepsize rule
	Stepsize estimation for consensus problems
	Safeguarding and convergence
	Experiments & Applications
	Summarization

	Nonconvex Problems
	Introduction
	Nonconvex applications
	Experiments & Observations
	Appendix: implementation details
	Appendix: synthetic and realistic datasets
	Summarization

	II GAN, Network Acceleration and Image Processing
	Stochastic Alternating Methods
	Stochastic Alternating Methods with Prediction Step
	Background and Advantage of Prediction Step
	Convergence for Convex-concave Problem
	Proof of Theorems
	Generative Adversarial Network

	Adversarial Network for Image Processing
	Image Style Transfer
	Introduction
	Related work
	Proposed method
	Experiments
	Supplemental experiments
	Summarization and discussion

	Image Dehazing
	Introduction
	Related work
	VGG-based U-Net with instance normalization
	Experiments
	Discussion
	GAN-based Loss without Paired Training Images

	Knowledge Distillation with Conditional Adversarial Networks
	Introduction
	Related work

	Learning loss for knowledge distillation
	Neural networks with residual connection
	Knowledge distillation
	Learning loss with adversarial networks

	Experiments
	Benefits of learning loss
	Analysis of the proposed method
	Does WRN need to be deep and wide?
	Training student for acceleration

	Summarization and discussion

	III Adversarial Training for Robustness
	Universal Adversarial Training
	Introduction
	Related work
	Optimization for universal perturbation
	Universal adversarial training
	Attacking hardened models
	Universal adversarial training for free!

	Universal perturbations for ImageNet
	Benefits of the proposed method
	The effect of clipping
	How much training data does the attack need?

	Universal adversarial training on ImageNet
	Summarization

	Exploiting Adaptive Networks for Robustness
	Introduction
	Related work
	Adaptive Networks
	Network architecture
	Adversarial training
	Quantitative evaluation on CIFAR-10 and CIFAR-100
	Training curves and qualitative analysis

	Summarization

	Conclusion and Discussion
	Bibliography

