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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

The No Child Left Behind Act of 2001 (NCLB, 2002) proposed by the 

administration of President George W. Bush requires all states to set standards, establish 

measurable goals and develop assessments to measure student’s progress in reading and 

math annually in grades 3 through 8. Over the past decades, numerous suggestions and 

studies have been proposed to study the measurement of students’ growth over grades. 

Most recently, the administration of President Barack Obama proposed the Race to the 

Top Assessment Program to provide funding to states for developing valid and 

informative assessments to ensure that all students gain the knowledge and skills to 

succeed in college and the workplace (U.S. Department of Education, 2010).  This 

continuous emphasis on assessment and measurement of students’ growth by the federal 

government will likely yield numerous research studies on assessments to track students’ 

achievements across grades as well as research focused on applying psychometric models 

to accurately and efficiently  measure students’ ability increments over time. 

 

1.2 Vertical Scaling 

Vertical scaling is a process to place scores on tests that measure similar 

constructs but at different difficulty levels onto the same scale, and the resulting scale is 

often called a developmental score scale (Kolen & Brennan, 2004).  The purpose of 

constructing such a developmental scale for educational achievement tests is to measure 
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how much students grow from one year (grade) to the next. Once the scale is created and 

maintained over time, not only can the ability of students from different grades be 

compared on this common scale, but the ability of the same students can also be tracked 

across grades to determine their growth over time. Though it is not required by NCLB, 

many states use K-12 testing programs that were developed with vertical scales. 

Examples of such testing programs are the Iowa Tests of Basic Skills, California 

Achievement Test, Stanford Achievement Test, and the Florida Comprehensive 

Assessment Test. 

 

1.3 Definition of Growth 

In order to construct a vertical scale for achievement assessments, a conceptual 

definition of growth needs to be determined. Kolen and Brennan (2004) defined two 

types of growths in constructing a vertical scale: the domain definition and the grade-to-

grade definition.  

Under the domain definition, growth is defined over the entire range of test 

content covered by the domain of content. That is, the domain includes content that is 

typically taught at a given grade as well as content that is typically taught at other grades 

(Kolen & Brennan, 2004). Therefore, the domain-based growth is defined over all of the 

content across grades. However, it is difficult to operationalize growth in this way in 

practice, because a test covering content for all grades would be very long and many 

items will be too difficult for some examinees and too easy for others. That’s why grade-

to-grade growth is usually measured in vertical scaling. 
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Under the grade-to-grade definition, growth is defined over the content that is on 

a test level appropriate for typical students at a particular grade (Kolen & Brennan, 2004). 

In addition, Yen (2007) pointed out that, vertical scales that demonstrate growth over 

grades can be difficult to develop until the content standards/curricula/test blueprints are 

designed to have hierarchical content strands with substantial overlap between grades.  

To operationalize this grade-to-grade growth, a set of common items that is based on 

overlapping content strands between two adjacent grades, is administered to link the two 

level tests together.  

 

1.4 IRT Vertical Scaling, Assumption and Literature 

Item response theory (IRT) has been regularly applied in the construction of 

common item vertical scaling across different grade level assessments. IRT models 

enable psychometricians to locate items and persons on the same scale, and to provide 

item-free person measures and person-free item calibrations (Wright, 1968). With both 

the common items that are designed to link assessments across grades and the IRT 

psychometric models that place students onto the same scale with the common items, a 

common scale can be created for examinees from multiple grades. 

Two underlying assumptions need to be satisfied for IRT vertical scaling. They 

are (1) unidimensionality of tests at each grade level, and (2) test construct invariance 

across grades. Test unidimensionality means that test items measure a single latent trait at 

its targeted grade level; while construct invariance across grades means that tests at 

different grade (or difficulty) levels maintain the same construct. 
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A large body of literature exists on the investigations of the effects of violating 

test unidimensionality on vertical scaling results. For example, Yen and Burket (1997) 

stated that generalizations about the performance of vertical scaling methods will be 

limited unless multidimensionality is taken into account. Smith, Finkelman, Nering, and 

Kim (2008) conducted a simulation study and compared five unidimensional linking 

methods for vertical scaling with both unidimensional and multidimensional data. They 

showed how unidimensional linking methods can fail when using multidimensional data. 

Yao and Mao (2004) compared the performance of separate and concurrent calibration 

methods using both the unidimensional model and the multidimensional model when 

multidimensional data structures were simulated; they concluded that separate calibration 

works better for the unidimensional estimation model, and concurrent calibration works 

better for the multidimensional estimation model.   

Another body of literature has addressed the importance of construct invariance 

over time in discussing change in test scores and warned against the violation of the 

construct invariance assumption. The following citations provide a brief, chronologically 

ordered review of these warnings.  

 

…when dealing with the change scores, one had better watch out that conditions haven’t 

changed so drastically that the test doesn’t measure the same thing on the two occasions. 

If so, it would be meaningless to talk of change on the test (Bereiter, 1963). 

 

…tests given at the beginning and end…must clearly be measures of the same function; 

otherwise, growth measurement is not possible (Angoff, 1971). 
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Studying change or growth in a single variable when the variable measured is not really 

‘the same’ at the different ages poses difficulties (Bergman, Eklund, & Magnusson, 

1991). 

 

…the interpretation of growth depends on the assumption that the same attribute(s) are 

being measured [across time]. If this is not true, one is left with the question, “Growth in 

what?” (Williamson, Appelbaum, & Epanchin, 1991) 

 

That is, the scores [obtained at different grades to measure gain] need to share a common 

metric despite the fact that students in different grades are administered different 

assessment tasks (Linn, 2001). 

 

In summary, these scholars are all concerned about measuring the same constructs 

at different occasions or in different contexts; they suggested that growth can be 

determined only when the same constructs are measured at different time.  

Though warnings against violating construct shift over time were provided several 

decades ago, no study was found on investigating the effects of violating the construct 

shift assumption on vertical scaling until a recent study by Martineau. Martineau (2004) 

demonstrated mathematically that shifts in constructs measured by assessments across 

grades significantly distort the results of models using vertical scales as outcomes.  In 

practice, a common argument against construct invariance across grades is that content 

areas covered on the tests are somewhat different at different grade levels. For example, a 

10th grade math test with more emphasis on geometry may measure something different 

than an 11th grade math test with more emphasis on algebra. 
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Depending upon the subject matter, some tests tend to measure the same construct 

over grades better than others. For example, Skaggs and Lissitz (1988) suggested that 

reading and vocabulary tests might be more unidimensional across grades or may provide 

more invariant vertical scaling results. Wang and Jiao (2009) conducted an empirical 

study using multi-group confirmatory factor analysis (CFA) and found evidence for 

construct invariance across grades in a vertical scale for a K-12 large-scale reading test. 

Different from reading tests, two adjacent grade math tests are expected to measure some 

common constructs and have some unique content emphases, according to national and 

state math content standards. More diversely, the content of science tests is likely to shift 

in many different ways from grade to grade (Reckase & Martineau, 2004). At one grade 

level the emphasis might be on life science, and at the next grade level the emphasis 

might be on earth science. In reality, absolute construct invariance is barely true; different 

degrees of construct shift are likely to exist for different subject matter. 

 

1.5 Assumption Revisit and Gap in Literature 

To consider the two IRT vertical scaling assumptions jointly, four possible joint 

conditions of the two assumptions are listed in the two-by-two table (Table 1.1) below. 

Table 1.1 Joint Conditions of the Two Assumptions for IRT Vertical Scaling 

  Test invariance across grades 

  0 (violated) 1 (satisfied) 

Test unidimensionality 

within grades 

0 (violated) (0, 0) (0, 1) 

1 (satisfied) (1, 0) (1, 1) 
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When both assumptions are satisfied (i.e., cell (1, 1) in Table 1), it presents the 

simplest and also the most unrealistic scenario, where the unidimensional IRT vertical 

scaling methods can be applied. When the tests are unidimensional within grades but 

there is some degree of construct shifts across grades as shown in cell (1, 0), a common 

latent dimension across grades is needed to place the scores from multiple tests on the 

same scale, although it may not exist. When the tests are multidimensional within grades 

and construct invariant across grades as shown in cell (0, 1), the multidimensional test 

structure at each grade level will remain across grades, where the multidimensional IRT 

model can be used for vertical scaling. When the tests are multidimensional within grades 

and the tests’ construct shifts across grades as shown in cell (0, 0), one can either use a 

single common latent dimension across grades, if it exists, to place the scores from 

multidimensional tests on the common scale, or try to obtain and use a set of common 

latent dimensions to place the scores on the set of common scales over grades. 

Currently, a large number of studies (e.g., Hanson & Beguin, 2002; Kang & 

Petersen, 2009; Kim & Cohen, 2002; Meng, 2007; Tong & Kolen, 2007) have explored 

factors affecting IRT vertical scaling for cell (1, 1) when both assumptions hold, which is 

nearly true in reality. For cell (0,1) where tests are multidimensional and construct 

invariant across grades, a few studies (Beguin & Hanson, 2001; Beguin, Hanson, & Glas, 

2000; Patz & Yao, 2007; Simon, 2008) have applied multidimensional IRT models to 

vertical scaling.  Up to the present time, no studies have been found that have been 

conducted for modeling construct shifts when construct invariance across grade is 

violated (i.e.,  cell (1, 0) and cell (0, 0) in Table 1.1). This study aims to deal with vertical 
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scaling issues when test invariance across grades is violated (i.e.,  cells (0, 1) and (0, 0) in 

Table 1.1) no matter the test dimensionality within grades.   

 

1.6 Full-information Bifactor Model for Modeling Construct Shift 

Gibbons and Hedeker (1992) generalized the work of Holzinger and Swineford 

(1937) and derived a full-information bifactor model for dichotomous response data.  

“Full-information” indicates that the full item response data (e.g., 0/1 for dichotomous 

items) are used in the estimation, where its contrast, “limited-information” indicates the 

variance-covariance matrix or correlation matrix are used in the estimation. The full-

information bifactor model requires that (a) each item has a nonzero loading on a general 

factor and only one nonzero loading on the specific factors, and (b) specific factors are 

orthogonal to each other and to the general factor. For a four-item test with two-specific 

factors, the model might have the following factor pattern  
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where ijα represents the loading of item i (i=1,2,3,4) on latent factor j (j=0,1,2).  

To model construct shift across grades in IRT vertical scaling, the bifactor (Figure 

1.1) model is investigated to construct a common factor scale for tests across grades 3 

through 8 while taking grade-specific factors into account. The common factor scale is 

formed across grades by having all items of tests from different grades load on the 

general factor (e.g., the general math ability); the specific grade level content coverage is 
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modeled by allowing items from a specific grade to load on the grade level specific factor 

in addition to the general factor. Besides, the bifactor model requires that all factors (the 

general factor and grade-specific factors) are orthogonal to one another, which allows for 

exclusive decompositions of factor variances. Furthermore, the general factor across all 

grades is maximized in the bifactor model so that the common construct across grades 

can be maximally extracted while allowing variations at grade levels by modeling the 

grade-specific factors. 

 

Figure 1.1 Illustration of a Bifactor Model for Modeling Construct Shift  
 

1.7 Purpose of the Study 

To address the lack of attention in modeling construct shift in IRT vertical scaling, 

a bifactor model is proposed to model both the common dimension for all grades and the 

grade-specific dimension for each grade. In addition, a unidimensional IRT (UIRT) 

model is examined as another estimation model to represent the current practice for 

vertical scaling.  

There are four objectives of this study: (1) to propose a bifactor model for IRT 

vertical scaling which can incorporate construct shifts across grades while extracting a 
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common developmental scale with meaningful interpretability on both the common scale 

and the grade-specific scale, (2) to evaluate how well the proposed bifactor estimation 

model performs in terms of the parameter estimation accuracy under various conditions, 

(3) to evaluate the robustness of the UIRT model in terms of the parameter estimation 

accuracy at various conditions of the hypothesized true model for vertical scaling, and (4) 

to compare the estimated parameters of the bifactor model and the estimated parameters 

of the UIRT model in vertical scaling under various conditions of the hypothesized true 

model . 

To achieve the four objectives of the study, specific research questions are asked: 

1. How would bifactor models be specified in each of the three data 

collection designs (e.g., common item design, non-equivalent group 

design, and scaling test design) for IRT vertical scaling? And how 

would the resulting bifactor scores in both the common factor and the 

grade-specific factors be interpreted? 

2. How well does the proposed bifactor model perform in recovering item 

and person parameters under various conditions of vertical scaling? 

3. How robust is the UIRT model in recovering item and person 

parameters at various conditions of the hypothesized true model for 

vertical scaling? 

4. How would the parameters estimated from the bifactor model and the 

parameters estimated from the UIRT model be different under various 

conditions of the hypothesized true model for vertical scaling? 
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CHAPTER 2 

LITERATURE REVIEW 

 

Kolen and Brennan (2004) pointed out that the results for IRT vertical scaling can 

depend on the IRT model used, the computer program used to implement the estimation, 

whether joint or marginal maximum likelihood methods are used to estimate the item 

parameters, whether concurrent or separate estimation is used across grades, the 

procedure used to link results from different runs when needed, and the type of 

proficiency scores for examinees. In this chapter, many of the studies that applied the 

factors affecting IRT vertical scaling results are reviewed.  

 

2.1 IRT Estimation Model 

2.1.1 Unidimensional IRT Model 

Mathematically, in the unidimensional IRT (UIRT) model the probability of a 

correct response for item i for a two-parameter logistic (2PL) UIRT model is  

( )[ ]iji
iijij ba

baXP
−−+

==
θ

θ
exp1

1),,|1(  

where jθ  represents the latent trait or ability parameter of examinee j, ia  is the 

discrimination parameter for item i, ib  is a difficulty level for item i, 

and ),,|1( iijij baXP θ= is the probability of examinee j responding to item i correctly as a 

function of examinee and item parameters. In addition, id = ia ib  can be called a 

difficulty-related item scalar parameter, for being consistent with id defined for the 

multidimensional IRT model in Section 2.1.2. 
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2.1.2 Multidimensional IRT Model 

Reckase (1985) extended the two-parameter logistic model to a two-parameter 

multidimensional IRT (MIRT) model, 

( )[ ]ikikii
iijij daaa

dXP
++++−+

==
θθθ ...exp1

1),,|1(
2211

aθ  

where kθθθ ,...,, 21  represent the k latent traits or ability parameters of examinee j, 

ikii aaa ,...,, 21  are discrimination parameters corresponding to the k latent dimensions for 

item i, id  is a scalar parameter related to an overall multidimensional difficulty for item i, 

and ),,|1( iijij dXP aθ= is the probability of examinee j responding to item i correctly as 

a function of examinee and item parameters. Reckase (1985) defined id  as follows 

22
2

2
1 ... ikiiii aaabd +++−=  

where ib is much like the difficulty parameter in the UIRT model. 

 

2.1.3 Bifactor Model 

2.1.3.1 Bifactor Model Mathematical Formulation 

Gibbons and Hedeker (1992) generalized the work of Holzinger and Swineford 

(1937) to derive a bifactor model for dichotomous response data.  The model requires 

that (a) each item has a nonzero loading on a general or common factor and only one 

nonzero loading on the group factors, and (b) group factors are orthogonal to each 

another and to the general factor. For example, for a four-item test with two-specific 

factors, the model might have the following factor pattern  
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where ijα represents the loading of item i (i=1,2,3,4) on latent factor j (j=0,1,2).  

In the IRT framework, the probability of a correct response for an item i in the 

bifactor model can be modeled as  

( )[ ]isisi
iiji daa

dXP
++−+

==
θθ00exp1

1),,|1( aθ , 

where 0θ  represent the general factor or ability, sθ (s= 1,2,..,k )  represents one of the k  

group-specific latent traits or abilities parameters that are mutually orthogonal and 

orthogonal to the general latent trait or ability parameter 0θ . Furthermore, 0ia  and isa (s= 

1,2,..,k ) are item discrimination parameters for the general ability and one of the k group-

specific abilities respectively; as seen from the equation, for any item i, only one nonzero 

group-specific loading isa (s= 1,2,..,k ) exists besides the general loading 0ia . Finally, id  

is a scalar parameter related to an overall multidimensional item difficulty as in the MIRT 

model.  

The above general equation with sθ represents one of the k group-specific abilities 

can be further written as a set of equations with group-specific abilities 1θ , 2θ , …, and kθ  

as  

( )[ ]iii
iiji daa

dXP
++−+

==
1100exp1

1),,|1(
θθ

aθ , 
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( )[ ]iii
iiji daa

dXP
++−+

==
2200exp1

1),,|1(
θθ

aθ , 

…,  

            ( )[ ]ikiki
iiji daa

dXP
++−+

==
θθ00exp1

1),,|1( aθ . 

 

2.1.3.2 Bifactor vs. MIRT Models 

The bifactor model is a MIRT model that, conventionally, has uncorrelated 

factors or dimensions. Furthermore, the bifactor model is a complex-structure MIRT 

model. Under MIRT models, if some items load on more than one dimension, it is called 

a complex structure MIRT model; if items load on only one dimension, and there is more 

than one dimension (i.e., different items load on different dimensions), it is called a 

simple structure MIRT model. 

Mathematically, Yung, Thissen, and McLeod (1999) used a generalized Schmid-

Leiman transformation (Schmid & Leiman, 1957) and its inverse and showed that the 

bifactor model is a generalized form of the second-order factor model, or the second-

order factor model is a special case of the bifactor model.  

It is worth mentioning again that in bifactor models every item loads on one 

group-specific factor only in addition to the general factor; therefore, no matter how 

many group-specific factors there are, the number of integrals for any bifactor models is 

always two. Thus, the computational complexity of bifactor models is about the same as 

for two-dimensional MIRT models. 
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2.1.3.3 Bifactor Model Application 

Bifactor models have been applied to empirical data from achievement tests to 

multiple-domain survey instruments along with unidimensional and multidimensional 

models (Gibbons, Bock, Hedeker, Weiss, Segawa, & Bhaumik, 2007; Gibbons & 

Hedeker, 1992; Reise, Morizot, & Hays, 2007). Among these applications, bifactor 

models were shown to be promising in terms of relative model fit over unidimensional 

and/or more complex multidimensional models. For instance, a bifactor model with 4-

group factors fit a 20-item, four-paragraph ACT science test from a sample of 1000 

examinees significantly better than an unrestricted Promax-rotated four-factor model 

(Gibbons & Hedeker, 1992). Similarly, a bifactor model fit a 34-item, seven-subdomain 

instrument from a sample of 586 significantly better than a unidimensional model 

(Gibbons, et al., 2007). Also, a bifactor model fit a 16-item, five-domain instrument from 

a sample of 1000 significantly better than both unidimensional and orthogonal 

multidimensional models (Reise, et al., 2007). In addition, the discussion of bifactor 

model fit has been addressed at the item level by Li and Rupp (in press), which extended 

the item fit statistic studies by Orland and Thissen (2000) as well as Zhang and Stone 

(2008). 

Recently, bifactor models have been applied to testlet-based assessments (Cai, 

Yang, & Hansen, 2010; DeMars, 2006; Jeon & Rijimen, 2010; Li, Bolt, & Fu, 2006; Li & 

Rijimen, 2009). DeMars (2006) applied the bifactor model to testlet-based tests, where 

each test item was treated as a function of a primary dimension plus a nuisance trait due 

to the testlet. As Li et al. (2006) pointed out, the testlet model is a constrained version of 

the bifactor model, where the testlet slopes within the same testlet would be proportional 
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to the primary slopes. Rijmen (2010) proved the equivalence of the testlet model to a 

second-order MIRT model. Therefore, both testlet and second-order MIRT models can be 

seen as constrained FI-bifactor models. 

Li and Rijmen (2009) proposed a bifactor model vertical linking procedure for 

testlet-based tests, and compared its performance with the 2PL IRT model. They 

concluded that the bifactor model is relatively parsimonious and provides more accurate 

estimates for testlet-based tests than either unidimensional or unconstrained 

multidimensional models; they also found that scale shrinkage didn’t occur in bifactor 

model vertical linking, which occurred in the 2PL IRT linking procedure.  

Jeon and Rijmen (2010) proposed a multi-group bifactor model for detecting DIF 

for testlet-based tests and concluded that ignoring group differences in testlet-specific 

dimensions resulted in biased estimates of DIF and item parameters.  

More generally, Cai, Yang and Hansen (2010) extended the bifactor model to a 

multi-group bifactor model for testlet-based tests that enables the estimation of latent trait 

means and variances for multiple population groups. The accuracy of the multi-group 

bifactor model was demonstrated through a simulation study. Furthermore, Cai (2010) 

developed a two-tier item factor analysis model, which subsumes MIRT, bifactor and 

testlet model special cases. The structures of the two-tier model lead to reduction in the 

dimensionality of the latent variable space, and consequently significant computational 

savings. 
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2.1.3.4 Motivation for Applying the Bifactor Model in Vertical Scaling 

Even though the bifactor model, or its restrictive form, the testlet model has been 

successfully applied in testlet based tests to deal with many psychometric issues such as 

vertical scaling (Li & Rijmen, 2009), DIF (Jeon & Rijmen, 2010), and multi-group 

modeling (Cai, et al., 2010; Jeon & Rijmen ,2010), these applications of bifactor models 

are all  limited to testlet-based assessments.  

For one reason, bifactor models may have more roles to play in a much broader 

sense than just being limited to testlet-based tests. The predominant reason for applying 

the bifactor model to broader contexts is its computational simplicity in estimation.  

Because items in bifactor models can load on no more than one group-specific dimension 

in addition to the general dimension, no matter how many group-specific dimensions 

there are, the number of integrals for any bifactor models is always two. Thus, the 

computational complexity of bifactor models is about the same as for two-dimensional 

MIRT models. In other words, the high-dimensional bifactor models have a great 

advantage of computational simplicity over the high-dimensional MIRT models.  

Furthermore, the bifactor model structure (see Figure 1.1) aligns naturally with 

the vertical scaling across grades. The general dimension in the bifactor model can be 

used to model the common vertical scale over grades; the group-specific dimensions can 

be used to model the grade-specific dimensions beyond the general dimension, or the 

shifted constructs. What’s more, this modeling of vertical scaling is not limited to testlet-

based tests, and without any assumption of the test unidimensionality within grades; 

instead, it is applicable to any set of tests that need to be vertically scaled and no matter 

whether the tests are unidimensional or multidimensional by themselves.  
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Therefore, the bifactor model application in vertical scaling is explored in this 

study to explore more generalized applications of the bifactor model in dealing with 

psychometric issues such as vertical scaling. 

 

2.2 Data Collection Design 

To develop assessments with vertical scaling, a series of same subject assessments 

for different grades should be developed simultaneously and linked with one another. To 

link these assessments for different grades, common items are usually developed and 

administered. 

Kolen and Brennan (2004) illustrated three data collection designs for vertical 

scaling: (1) a common item design, (2) an equivalent group design, and (3) a scaling test 

design. 

The common item design links adjacent grade assessments by including a set of 

common items in addition to the grade level items. Figure 2.1 illustrates the designs, 

where C under the items column refers to the common items, and the common item 

blocks are filled with the same color.  

  Items 

 
Grade 3 C 4 C 5 C 6 C 7 

 
C 

 
8 

 
 
Students 

3 GG3           
4   G4         
5     G5       
6       G6     
7         G7   
8           G8 

 
Figure 2.1 Illustration of a common item design 
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The equivalent groups design links adjacent grade assessments by administering 

adjacent grade assessments to two equivalent random samples, which usually are two 

random samples of the same grade students; in other words, students at a certain grade 

(except the lowest grade) are randomly assigned into two groups, and one group is 

administered the test that is appropriate for their grade, and the other group is 

administered the test that is appropriate for their lower grade. For example, one random 

sample of grade 5 students is administered a grade 4 assessment (with common items), 

and another random sample from the same population (grade 5 students) is administered 

a grade 5 assessment (with common items). Figure 2.2 illustrates this design. Note that 

the common items are not necessary to include in the equivalent group design, because 

the links are set up by constraining the equivalent groups to a common mean and 

standard deviation of their latent traits; since the equivalent groups are administered with 

different grade level assessments, the items from different grade levels are put onto the 

same scale with the latent traits.  

  Items 

 
Grade 3 C 4 C 5 C 6 C 7 

 
C 

 
8 

 
 
 
 

Students 

3 G3           
4 G3           
4   G4         
5   G4         
5     G5       
6     G5       
6       G6     
7       G6     
7         G7   
8         G7   
8           G8 

 
Figure 2.2 Illustration of an equivalent groups design 
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The scaling test design linked all grade level assessments together by including a 

set of common items for all grades in addition to grade level items. Figure 2.3 illustrates 

the design.  

   Items 

 
Grade 

 
3 4 5 6 7 

 
8 

 
 

Students 

3  
 

Common 
Item 
(CI) 

G G3G      
4  G4     
5   G5    
6    G6   
7     G7  
8      G8 

 
Figure 2.3 Illustration of a scaling test design 

 

Among the three assessments designs, the common items design is most popular 

and the easiest one to develop and implement, since greater overlap exist in subject 

curricula between adjacent grades for developing the common items. The scaling test 

design is most challenging to develop, since a set of common items that are appropriate 

for all students from grade 3 through grade 8 is quite difficult to create. Currently, the 

Iowa Tests of Basic Skills is the only testing program that uses the scaling test design.  

 
2.3 Concurrent vs. Separate Calibrations 

In order to place assessments from different grades onto the common scale using 

the common items, two linking methods are often employed: concurrent calibration and 

separate calibration.  

Concurrent calibration has only one computer run with response data for 

examinees at all grade levels for estimating item parameters simultaneously. Since 

examinees only take tests that include common items and grade specific items, and all 
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other items are treated at “not reached” items, or missing data (Lord, 1980). Because only 

one calibration is executed, the item parameter estimates from different assessments are 

on the same scale with the unique parameter estimates of the common items. 

Separate calibration involves one computer run for each grade.  Since separate 

runs will result in parameter estimates of the common items at different scales due to 

constraining the latent trait distributions to be standard normal distributions, IRT scale 

transformation methods are needed to place the set of estimates on the same scale as the 

set of estimates for the common items.  

Current literature has compared the two assessment linking methods with both 

UIRT and MIRT models. 

 

2.3.1 Concurrent vs. Separate Calibrations in UIRT  

Petersen, Cook, and Stocking (1983) and Wingersky, Cook, and Eignor (1987) 

concluded that concurrent calibration performed better than separate calibration in terms 

of parameter estimation accuracy when implemented using the computer program 

LOGIST (Wingersky, Barton, & Lord, 1982) using the joint maximum likelihood 

estimation method.  

Using the marginal maximum likelihood estimation method, Kim and Cohen 

(1998) examined the separate calibration method using BILOG (Mislevy & Bock, 1982) 

with the Stocking and Lord method (Stocking & Lord, 1983) and the concurrent 

calibration method using MULTILOG (Thissen, 1991). They concluded that the two 

methods provided similar results except when the number of common items was small 

(e.g., 5 out of 50), where separate calibration provided more accurate results.  
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However, Hanson and Beguin (2002) pointed out that the differences between 

concurrent and separate calibration results in the case of non-equivalent groups in the 

Kim and Cohen (1998) study were confounded with the different computer programs: 

BILOG (Mislevy, & Bock) and MULTILOG (Thissen, 1991). Therefore, Hanson and 

Beguin (2002) used BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 1996) and 

MULTILOG (Thissen, 1991) for both concurrent and separate calibrations; they found 

that concurrent calibration generally resulted in lower error than separate calibration, and 

one reason for the lower error may be that the parameter estimates from the concurrent 

calibration are based on larger samples than that of the separate calibration. 

Beyond the dichotomous items in the unidimensional framework, Kim and Cohen 

(2002) further compared the performance of the two linking methods for polytomous 

items using graded response models and found similar results indicating that concurrent 

calibration yielded slightly smaller root mean square differences for both item and person 

parameters.  

 

2.3.2 Concurrent vs. Separate Calibrations in MIRT  

In practice, it is likely that multidimensional data were misspecified as 

unidimensional data. How would the two calibration methods (e.g., concurrent and 

separate) perform in both unidimensional and multidimensional estimations when the 

data are multidimensional is worth exploring. Beguin, Hanson and Glas (2000) simulated 

two-dimensional compensatory data and compared current and separate calibrations 

using both unidimensional and multidimensional models; they found that in the 

nonequivalent group conditions, (1) the error from misspecifying the unidimensional 
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methods as the true models was very large compared to the error from specifying the true 

multidimensional models; (2) the error increased with an increase in the covariance and 

variance of the latent proficiency dimensions, and the effect was stronger for the 

concurrent calibration than for the separate calibration. 

 Beguin and Hanson (2001) simulated two-dimensional non-compensatory data 

and fit both misspecified unidimensional and true multidimensional models to compare 

the performance of concurrent and separate calibrations. They concluded that, in general, 

unidimensional concurrent estimation resulted in lower or equivalent total error than 

separate estimation, and estimates from the true multidimensional model generally 

resulted in less error than that from the unidimensional model.  

Simon (2008) conducted a study comparing the concurrent and separate 

calibrations for correctly specifying data using multidimensional models with simple 

structure. Specifically, MIRT concurrent calibration and four multidimensional linking 

methods for separate calibrations were implemented and compared. They concluded that 

concurrent calibration generally performed better than separate linking methods even 

when groups were non-equivalent with 0.5 standard deviation differences between group 

means and the correlation of ability dimensions was high. He also believed that 

concurrent calibration benefited more from a larger sample size than did separate linking 

methods with respect to all item parameters, especially for a shorter test form. 

 

2.4 Manipulated Factors  

In the research on IRT vertical scaling, the manipulated factors usually include 

sample size per grade, test length and the number or percent of common items. Some 
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other factors that affect IRT vertical scaling results such as data collection designs and 

types of proficiency scores are also briefly discussed in this section, although they are not 

as often used as design factors. 

 

2.4.1 Sample Size 

For UIRT vertical scaling, sample size is included in examining its effect on the 

performance of vertical scaling in many studies (Beguin & Hanson, 2001; Beguin et al., 

2000; Hanson & Beguin, 2002; Kang & Petersen, 2009; Kim & Cohen, 2002; Lei & Zhao, 

2010; Meng, 2007; Paek et al., 2008; Smith et al., 2008; Tong & Kolen, 2007; Yon, 

2006).  

Using three-parameter logistic (3PL) IRT models (Lord, 1980), Tong and Kolen 

(2007) set the sample size at three levels: 500, 2000, and 8000; Hanson and Beguin (2002) 

set two levels: 1000, and 3000; Kang and Petersen (2009) also set two levels: 500, and 

2000. According to a rule of thumb suggested by Harris (1993), approximately 1500 

examinees per form were adequate for the 3PL IRT model.  

For polytomous response items, Kim and Cohen (2002) applied graded response 

models (Samejima 1969, 1972) and examined the sample size at two levels: 300 and 

1000; Meng (2007) examined mixed format tests with both dichotomous items using 3PL 

IRT models (Lord, 1980) and polytomous items using generalized partial credit models 

(GPCM; Muraki, 1992) at three sample size levels: 500, 1000, and 5000.  According to 

Reise and Yu (1990), at least 500 examinees were needed to achieve an adequate 

calibration for polytomous items.  
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When examining the robustness of UIRT models in vertical scaling for 

multidimensional data, several studies fixed the sample size at 2000 (Beguin et al., 2000; 

Beguin & Hanson, 2001; Smith et al., 2008; Yon, 2006). In the context of small sample 

size UIRT vertical scaling, Paek et al. (2008) used four levels: 200, 300, 500, and 1000; 

Lei and Zhao (2010) used five levels: 50, 100, 250, 500, and 1000.  

For MIRT vertical scaling, sample size is also included as a factor to vary. Simon 

(2008) compared concurrent and separate calibration using two-dimensional 3PL MIRT 

models with simple structure, and the sample size was set at 500, 1000, and 3000.  

 

2.4.2 Test Length and/or Number of Common Items  

According to Kolen and Brennan (2004), at least 20 percent of the total items 

should be used as common items. With this requirement satisfied, some studies fix the 

number of the total items, or test length, and varied the number of the common items 

(Hanson & Beguin, 2002; Kim & Cohen, 2002; Meng, 2007), while other studies fix the 

number or percentage of the common items, and varied the test length (Lei & Zhao, 2010; 

Simon, 2008).  

Hanson and Beguin (2002) fixed the test length at 60 for 3PL IRT models, and 

examined two levels of the number of common items: 10 and 20. Kim and Cohen (2002) 

also fixed the test length at 60 for graded response models, but examined the number of 

common items at 5, 10, and 30. Meng (2007) fixed the test length at 60 for mixed format 

tests, and examined the number of common items at 10 and 20 with different 

combinations of dichotomous and polytomous items.  
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Simon (2008) fixed the number of common items at 20 and varied the test lengths 

at 40 and 60. Lei and Zhao (2010) fixed the common items to be about 25% of the total 

items, and varied the number of the total items at 10, 20, 30 and 40 to examine shorter 

tests in vertical scaling.  

 

2.4.3 Sources of the Common Items 

In practice, common items in a grade level assessment can be obtained from one 

of the following sources: (1) below grade items (except for the lowest grade), (2) above 

grade items (except for the highest grade), and (3) both below and above grade items.  

The third source of obtaining a set of common items seems to be the fairest one 

because it includes items from both adjacent grades. However, there is a more reasonable 

way to develop and obtain the common items for adjacent grades. As Yen (2007) pointed 

out, vertical scales that demonstrate growth over grades can be difficult to develop until 

the content standards/curricula/test blueprints are designed to have hierarchical content 

strands with substantial overlaps between grades.  Therefore, as long as the content 

standards/curricula/test blueprints across grades are developed with substantial overlap, 

common items can be developed based on the overlap between grades to provide the 

fairest content coverage for both grades.  This approach appears to be uncommon in 

practice. 

 

2.4.4 Other Factors  

The effects of data collection design (e.g., common item design and scaling test 

design) on performance of IRT vertical scaling were investigated by a few studies 
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(Hendrickson, Kolen, & Tong, 2004; Hendrickson, Wei, Kolen, & Tong, 2005; Tong & 

Kolen, 2007). Findings from these studies consistently revealed that the common item 

design yielded decreasing variability of latent traits across grades, and larger effect sizes 

(indicating more growth) compared to those from the scaling test design.  

In addition, different proficiency estimates such as expected a posteriori (EAP) 

estimates, modal a posterior (MAP) estimates and maximum likelihood estimates (MLE) 

were also explored by some studies (Hendrickson et al., 2004; Hendrickson et al., 2005; 

Hendrickson, Cao, Chae, & Li, 2006; Meng, Kolen, & Lohman, 2006; Tong & Kolen, 

2007). These studies consistently concluded that MLE yielded larger within-grade 

variability and smaller effect sizes than the Bayesian based methods (e.g., EAP and 

MAP); but all types of proficiency estimates resulted in very similar proficiency means 

and mean difference patterns across grades.  

 

2.5 Evaluation Criteria 

Commonly used criteria to assess the accuracy of parameter estimates over 

replications are bias, and absolute bias, root mean square error (RMSE), and standard 

error (SE). They are computed by averaging each of the values over all items or ability 

parameter estimates across replications: 
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where β  is the true ability or item parameter from the true data generation model, rβ̂  is 

the estimated ability or item parameters at the rth replication (r=1, 2, .., R) from the 

estimation model , and R  is the number of replications.   

Bias is the difference between an estimate and the true value of the parameter; it 

reflects the deviation of an estimate of a parameter from its true value. Since positive and 

negative values of bias can be canceled out when they add up over replications, average 

absolute bias is also computed for parameter estimates, which takes the absolute 

difference between an estimate and the true parameter value. The smaller the absolute 

bias, the more accurate the parameter estimate is. RMSE indicates the overall parameter 

estimation accuracy; the smaller RMSE is, the more accurate the estimate is. Note that 

the difference between absolute bias and RMSE is that RMSE weights the difference by 

the square; thus larger differences are weighted more than smaller differences, where in 

absolute bias, all differences are weighted the same. SE indicates the stability of 

parameter estimates; the smaller the SE, the more stable the estimate is.  

 

So far, factors affecting the IRT vertical scaling results have been reviewed, and 

the upcoming method chapter will determine what factors to fix and what factors to 

manipulate to study bifactor model vertical scaling. 
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CHAPTER 3 

METHODOLOGY 

 
There are four objectives of this study: (1) to propose a bifactor model for IRT 

vertical scaling which can incorporate construct shifts across grades while extracting a 

common developmental scale with meaningful interpretability on both the common scale 

and the grade-specific scale, (2) to evaluate how well the proposed bifactor model 

performs in terms of the parameter estimation accuracy at various conditions, (3) to 

evaluate the robustness of the unidimensional IRT (UIRT) model in terms of the 

parameter estimation accuracy at various conditions of the hypothesized true model for 

vertical scaling, and (4) to compare the estimated general ability of the bifactor model 

and the single latent ability of the UIRT model in vertical scaling under various 

conditions of the hypothesized true model.  

To achieve the four objectives of the study, specific research questions are asked 

as follows: 

1. How would bifactor models be specified in each of the three data 

collection designs (e.g., common item design, non-equivalent group 

design, and scaling test design) for IRT vertical scaling? And how 

would the resulting bifactor scores in both the common factor and the 

grade-specific factors be interpreted? 

2. How well does the proposed bifactor model perform in recovering item 

and person parameters at various conditions of vertical scaling? 
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3. How robust is the UIRT model in recovering item and person 

parameters at various conditions of the hypothesized true model for 

vertical scaling? 

4. Would the parameters estimated from the bifactor model and the 

parameters estimated from the UIRT model be different under various 

conditions of the hypothesized true model for vertical scaling? 

 

In this chapter, the first research question will be answered and illustrated in 

Section 3.1. The second, third and fourth research questions will be approached by a 

simulation study; the simulation design, data generation, data calibration, and evaluation 

criteria will be described in Section 3.2, Section 3.3, Section 3.4, and Section 3.5 

respectively.  

 

3.1 Bifactor Model in Data Collection Design 

3.1.1 Bifactor Model for Modeling Construct Shift 

To model construct shifts across grades in IRT vertical scaling, the bifactor model 

(Figure 1.1 from Chapter 1 is represented here for clarity) is investigated to construct a 

common factor scale for tests across grades 3 through 8 while taking grade-specific 

factors into account. The common factor scale is formed across grades by having all 

items of tests from different grades load on the general factor (e.g., the general math 

ability); the specific grade level content coverage is modeled by allowing items from a 

specific grade to load on the grade level factor in addition to the general factor. 

Furthermore, the general factor across all grades is maximized in the bifactor model so 
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that the common construct across grades can be maximally extracted while allowing 

variations at grade levels by modeling the grade-specific factors. 

 

Figure 1.1 Illustration of a Bifactor Model for Modeling Construct Shift  
 

3.1.2 Bifactor Model Specification under Data Collection Designs  

In the context of vertical scaling, three data collection designs for linking 

assessments were reviewed in Chapter 2: (1) common item design, (2) non-equivalent 

group design, and (3) scaling test design (see Chapter 2 Section 2.2 for details). Multi-

group bifactor models can be specified under all three data collection designs. Generally 

speaking, all the common items load only on the general factor, and grade-specific items 

load on corresponding grade-specific factors in addition to the general factor. Illustrations 

of how multi-group bifactor models can be specified under each of the data collection 

designs follow. 

First, under the common item design, common items are used for adjacent grades. 

For assessments from grade 3 through 8, five sets of common items are needed; they are 

common items for grades 3 and 4 (C34), common items for grades 4 and 5 (C45), 

common items for grades 5 and 6 (C56), common items for grades 6 and 7 (C67), and 
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common items for grades 7 and 8 (C78). As seen in Figure 3.1, to specify a bifactor 

model, all items (both common items and non-common items) load not only on the 

general factor but also on the grade-specific factors. Note that, when common items are 

answered by a certain grade of examinees, common items will load on that grade-specific 

factor in addition to the general factor.  

 

Figure 3.1 Bifactor Models for Common Item Design 

 

For example, as shown in Figure 3.1, when common items for grades 3 and 4 

(C34) are answered by grade 3 examinees, they will load on the grade 3 factor; when the 

same set of common items (C34) are answered by grade 4 examinees, they will load on 
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the grade 4 factor. Therefore, to define the model more accurately, it should be called a 

single-group bifactor model within each grade or a multi-group bifactor model over all 

grades. 

Second, under the equivalent groups design, students at a certain grade (except the 

lowest grade) are randomly assigned into two groups, and then one group is administered 

the test that is appropriate for their grade, and the other group is administered the test that 

is appropriate for their lower grade. For example, one random sample of grade 5 students 

is administered a grade 5 assessment, and the other random sample from the same 

population (grade 5 students) is administered a grade 4 assessment. As shown in Figure 

3.2, the specification of bifactor models for the equivalent group design is based on the 

test items. For example, if the items are grade 3 test items, no matter whether 3rd graders 

or 4th graders take them, they will be loaded on the grade 3 factor in addition to the 

general factor. The latent factor score interpretations for the 4th graders taking the 3 grade 

test are addressed later in Section 3.1.3 on interpretation of scores from bifactor models. 

 

         Figure 3.2 Bifactor Model for Equivalent Groups Design 
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In addition to specifying the bifactor model as shown in Figure 3.2, it is important 

to constrain the equivalent groups (e.g., two groups of the 4th graders) to have a common 

mean and a common standard deviation of the latent traits so that the items from different 

grade levels taken by the groups can be placed onto a common scale.   

 
Figure 3.3 Bifactor Models for Scaling Test Design  

 

Third, under the scaling test design, a set of common items (CI) are used across 

all grade levels from grade 3 through 8. As seen in Figure 3.3, all items (both common 

items and non-common items) load not only on the general factor but also on the grade-
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examinees, they will load on that grade-specific factor in addition to the general factor. 

Again, to define the model more accurately, it should be called a single-group bifactor 

model within each grade or a multi-group bifactor model over all grades. 

In summary, this section illustrated how bifactor models can be specified for each 

of the three data collection designs in vertical scaling. The success of specifying the 

bifactor model for vertical scaling at various designs showed that the bifactor model is a 

general and flexible model that is ready to be applied in vertical scaling. 

 

3.1.3 Interpretation of Scores from Bifactor Models 

For each individual at a specific grade, two scores are available using bifactor 

models. One is a general factor score, representing the relative location of an individual’s 

performance in terms of all other individuals across grades. In addition, if the vertical 

scale is maintained from one year to another, the change of an individual’s general factor 

score can be tracked and interpreted as growth over time. The other score is a grade-

specific factor score, representing the relative location of an individual’s performance in 

terms of his or her fellows at the same grade.  

It is worth mentioning that for the equivalent groups design, because one of the 

two equivalent groups, for example, one group of the 4th graders, is administered the test 

that is appropriate for the lower grade, which is grade 3 in this case, and because grade 3 

items load on the grade 3 factor in addition to the general factor, this group of the 4th 

graders could have a grade 3 factor score in addition to the general factor score. Thus, the 

limitation of specifying bifactor models for the equivalent groups design is that, for the 

equivalent group taking the lower grade test, the lower grade factor score can emerge 
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from those test items instead of the group’s current grade factor score. Therefore, if the 

purpose is only to build up a common vertical scale by yielding the general factor score 

across grades, specifying the bifactor model for equivalent groups design can perform 

well; however, if the purpose is not only creating the common vertical scale, but also 

comparing the relative standing with other individuals at the same grade (such as in the 

bifactor model specifications for common item design and scaling test design), the 

bifactor model for equivalent group design has its limitations.  

 

3.2 Simulation Design 

To address the second research question on how well the proposed bifactor model 

performs in recovering item and person parameters at various conditions in the 

hypothesized true model of vertical scaling, a Monte Carlo simulation study is conducted. 

The following sections discuss the simulation study in terms of fixed factors (Section 

3.2.1), manipulated factors (Section 3.2.2), data generation (Section 3.2.3), data 

calibration (Section 3.2.4), and evaluation criteria (Section 3.2.5) respectively.  

 

3.2.1 Fixed Factors 

Three factors are fixed in the simulation design: (1) the data collection design is 

fixed with the common item design, (2) the bifactor model is used as the true model for 

generating data for vertical scaling with construct shifts, and (3) the calibration approach 

is fixed as concurrent calibration rather than separate calibration.  

Common item design is the most often used data collection design for vertical 

scaling in practice. Many commercial vertically scaled testing programs and statewide 
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vertically scaled testing programs apply the common item design. The reasons for the 

popularity of the common item design over the scaling test design and the equivalent 

groups design are many. It is relatively easy to create common items that are appropriate 

in terms of content and difficulty for adjacent grades compared to the common items for 

all grade levels in the scaling test design; this is because the scaling test design requires a 

set of common items administered to students at all grade levels, which can be too 

difficult for lower grade students and too easy for higher grade students. For another 

reason, the equivalent group design is not selected because its application in bifactor 

modeling is limited to only creating the common vertical scales for comparing 

individuals at different grades; in addition to that, the common item design enables us to 

compare the relative standing with the individuals at the same grade. Therefore, the 

common item design is selected as the preferred data collection design in the study.  

Examinees’ item response data are generated based on what is assumed about 

examinees’ growth (e.g., examinees latent traits) in vertical scaling with construct shifts. 

First, it is assumed that there is a single common scale (e.g., vertical scale) that captures 

examinees’ growth over grades. Second, it is assumed that beyond this single general 

dimension, there are grade-specific dimensions that capture examinees’ ability at the 

corresponding grade-levels, especially when effects of construct shifts (e.g., magnitudes 

of grade-specific dimension variances) are strong.  Third, it is assumed that the single 

general dimension and the grade-specific dimensions are all orthogonal to one another to 

allow unique explanations of their variances. Only three adjacent grade levels, 

conceptually labeled as grades 3, 4 and 5, are considered in this study to represent the 
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simplest scenario in vertical scaling. Figure 3.4 presents the bifactor data generation 

model, 

 
Figure 3.4 Bifactor Data Generation Model for Vertical Scaling with Construct Shifts 

 

where C34 stands for common items for grade 3 and grade 4 assessments, taken by both 

grade 3 and grade 4 examinees; C45 stands for common items for grade 4 and grade 5 

assessments, taken by both grade 4 and grade 5 examinees.  

From the item perspectives, as shown in Figure 3.4, all items load on the general 

factor; items answered by specific grade level students also load on the grade-specific 

factors.  

Concurrent calibration is selected over separate calibration in this study. The main 

purpose of the study was to examine the performance of bifactor models in vertical 

scaling, and concurrent calibration is the most straightforward method to investigate the 

parameter estimation accuracy of the bifactor model in vertical scaling. Concurrent 

calibration avoids applying linking methods and thus avoids the resulting linking errors 

from the separate calibrations. In other words, the use of separate calibration would make 

the results from bifactor model vertical scaling confounded with the linking errors. For 

another, Simon (2008) compared concurrent calibration and separate calibration methods 
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for simple structure MIRT models, and concluded that the concurrent calibration 

generally performed better; he also believed that concurrent calibration benefited more 

from a larger sample size than did separate linking methods with respect to all item 

parameters, especially for a shorter test form. Considering these reasons, concurrent 

calibration is used in the study.  

 

3.2.2 Manipulated Factors 

Three manipulated factors in the population bifactor data generation model for 

investigating their effects on performance of the bifactor model estimation in vertical 

scaling are (1) sample size, (2) number and percentage of common items, and (3) 

variance of grade-specific factors.  

Table 3.1 Simulation Design 

Factor Level 

Sample Size 1000, 2000, and 4000 

% (#) of Common Items Out of 60 20% (12), 30% (18) and 40% (24) 

Variance of Grade-specific Factors 0.25, 0.5, and 1 

 

As shown in Table 3.1, the three (3) levels of sample size, the three (3) levels of 

number of common items, and the three (3) levels of grade-specific factors’ variance, 

together consist of 3x3x3, or 27, fully crossed conditions. 100 replications per condition 

are implemented. 

Sample size was fixed at 2000 per grade in vertical scaling with multidimensional 

data in several studies (Beguin, et al., 2000; Beguin & Hanson, 2001; Smith, et al., 2008; 
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Yon, 2006); many other vertical scaling studies varied the sample size at three levels 

(Meng, 2007; Simon, 2008; Tong & Kolen, 2007). In order to examine the effects of 

sample size on bifactor model vertical scaling in this study, sample size is set at three 

levels: 1000, 2000, and 4000, to represent relatively small, moderate and large sample 

sizes.  

Test length is fixed at 60 in the study, and the percentage of common items varies. 

To ensure at least 20% common items criteria (Kolen & Brennan, 2004), 20%, 30% and 

40% of common items are used, which are 12, 18 and 24 common items out of 60 total 

items respectively.  

In the bifactor data generation model, since the general factor and grade-specific 

factors are orthogonal, grade-specific factors can be regarded as residual after the 

common factor is extracted over all grade levels, which are conceptually the same as the 

testlet factors in the testlet models. Briefly speaking, testlet models have been 

successfully applied in passage-based reading tests and scenario-based science tests in K-

12, where items are clustered within common stimuli. The testlet model has a primary 

dimension, which is the dimension that the test is supposed to measure; it also has several 

testlet dimensions (e.g., residual dimensions) taking into account the dependency of items.  

In testlet models, the variances of testlet factors are often manipulated to represent 

small, moderate and large testlet effects; similarly, in the bifactor data generation models, 

the variances of group-specific factors can be manipulated to represent small, moderate 

and large group-specific effects. When the variances of the testlet factors or the group 

specific factors are zeroes, the testlet model or the bifactor model becomes a 

unidimensional IRT model.  
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To examine small, moderate and large effects of grade-specific factors or shifted 

constructs in vertical scaling, variances of the grade-specific factors are set at 0.25, 0.5, 

and 1 respectively. Only uniform effects of grade-specific factors are considered in the 

study; that is, the same magnitude of variance is used for all grade-specific factors in data 

generation.  

 

3.3 Data Generation 

Examinees’ item response data are generated based on what is believed about 

examinees’ growth (see Figure 3.4) in vertical scaling with construct shifts. Ability 

parameter generation (Section 3.3.1), item parameter generation (Section 3.3.2), and the 

examinee item response data generation (Section 3.3.3) are discussed as follows  

 

3.3.1 Ability Parameter Generation 

Since three grade levels, grades 3, 4, and 5, are considered, there are four 

orthogonal latent dimensions in the population bifactor model as the true data generation 

model: the general ability dimension across grades 3 through 5, the grade 3 ability 

dimension, the grade 4 ability dimension, and the grade 5 ability dimension. 

Mathematically, this can be expressed as 
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where 0θ  represent the general ability; 3θ , 4θ ,and 5θ represent grade-specific ability for 

grades 3, 4, and 5 students respectively. As you can see, for any single examinee, there 

are two orthogonal latent abilities: the general ability and the grade-specific ability.  

Examinee latent ability are generated by four-dimensional (the general dimension 

and the three grade-specific dimensions) multivariate normal distributions. For the 

general dimension with a fixed standard deviation of 1, grade 4 is treated as the base 

grade, with the mean of the general dimension set at 0; thus, the general ability dimension 

for grade 3 has a lower mean set at -0.5, and the general ability dimension for grade 5 has 

a greater mean set at +0.5. For the grade-specific dimensions, they are all set to have a 

standard normal distribution with a mean of 0, and a standard deviation of 1. This is 

summarized in Table 3.2. 

Table 3.2 Latent Trait Parameter Generation 

Grade Level General Dimension Grade-specific Dimension 

 0θ  3θ  4θ  5θ  

Grade 3 N(-0.5, 1) N(0,1)   

Grade 4 N( 0 , 1)  N(0,1)  

Grade 5 N(+0.5, 1)   N(0,1) 

 

3.3.2 Item Parameter Generation 

2PL 2-dimension (e.g., the general dimension and the grade-specific dimension) 

bifactor models are used in the study with both item discrimination parameters and item 

difficulty parameters.  
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3.3.2.1 Discrimination Parameter Generation 

For any single item, it loads on both the general factor and one of the grade-

specific factors. Therefore, any single item has a discrimination parameter for the general 

dimension and a discrimination parameter for its corresponding grade-specific dimension.  

For common items, when they are answered by one of the adjacent grade level 

students (e.g., grade 3 students), they have a set of discrimination parameters for the 

grade 3 dimension, in addition to the general dimension; when they are answered by the 

other of the adjacent grade level students, (e.g, grade 4 students), they have another set of 

discrimination parameters for the grade 4 dimension, in addition to the general dimension. 

Because concurrent calibration will be used in the study, resulting common item 

parameters will be unique and on the same scale; therefore, only one set of discrimination 

parameters are generated and fixed as discrimination parameters for the two adjacent 

grade-specific dimensions.  

To represent moderate and well discriminating items in the tests, item 

discrimination parameters are set deliberately and repeatably at 1.2, 1.4, 1.6, 1.8, 2.0 and 

2.2  for the general dimension and fixed at 1.7 (the mean of 1.2, 1.4, 1.6, 1.8, 2.0 and 2.2) 

on grade-specific dimensions. The reasons for fixing the discrimination parameter on the 

grade-specific dimension are that (1) it is simplifying to fix the discrimination values to 

be a constant, and (2) in order to estimate the variance of the grade-specific dimensions 

(or degree of construct shift), some additional parameters need to be fixed.  Fixing the 

discrimination parameters on the grade-specific dimensions keeps the bifactor model 

identified, while giving up relatively less important elements of the model.  Bifactor 

model identification issues are discussed in details in Section 3.4. 
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3.3.2.2 Difficulty Parameter Generation 

The unidimensional-like difficulty parameter ib  for item i is generated randomly 

from the normal distributions with a fixed standard deviation of 1.  

For non-common items, the ib  parameters are generated to match the grade level 

ability of examinees. Specifically, for grade 4 test items, ib  are randomly generated from 

)1,0(N ; for grade 3 test items, ib  are randomly generated from )1,5.0(−N ; for grade 5 

test items, ib  are randomly generated from )1,5.0(+N . Once, ib  are generated for tests 

at their grade levels, the scalar parameter id is computed by 22
0 ijiii aabd +−=  using the 

ib  parameter and the discrimination parameters 0ia and ija from the general dimension 

and one of the grade-specific dimensions (j= 3, 4, 5) respectively.  

For common items administered to adjacent grades, the difficulty level should be 

appropriate to both grades. In order to achieve this, ib  parameters for common items for 

grades 3 and 4 are randomly generated from a uniform distribution ranging from -1, to 

0.5; ib  parameters for common items for grades 4 and 5 are randomly generated from a 

uniform distribution ranging from -0.5, to 1. The generated ib  parameters are used to 

compute the scalar parameters id .   

Table 3.3 summarizes the generation of the unidimensional-liked difficulty 

parameter ib for both common and non-common items.  
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Table 3.3 Item Difficulty Parameter Generation 

Type of item Distribution of ib  parameters at… 

 Grade 3 Grade 4 Grade 5 

Non-common items N(-0.5,1) N(0,1) N(+0.5,1) 

Common items U(-1,0.5)  

Common items  U(-0.5,1) 

 

3.3.3 Examinee Item Response Data Generation 

With both latent ability and item parameters generated, the last step is to use the 

item response function to generate examinees’ item response data grade by grade. As 

reviewed in Chapter 2, the probability of a correct response for an item i in the bifactor 

model can be modeled as  

( )[ ]isisi
iiji daa

dXP
++−+

==
θθ00exp1

1),,|1( aθ , 

where 0θ  represent the general factor or ability, sθ (s= 1,2,..,k )  represents one of the k  

group-specific latent traits or abilities parameters that are mutually orthogonal and 

orthogonal to the general latent trait or ability parameter 0θ . Furthermore, 0ia  and isa (s= 

1,2,..,k ) are item discrimination parameters for the general ability and one of the k group-

specific abilities respectively; as seen from the equation, for any item i, only one nonzero 

group-specific loading isa (s= 1,2,..,k ) exists besides the general loading 0ia . Finally, id  

is a scalar parameter related to an overall multidimensional item difficulty as in the MIRT 

model.  
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It is worth mentioning again that examinees’ response data are generated grade by 

grade. Specifically, for grade 3, 4, and 5 examinees, the item response function can be 

simplified, respectively, as follows 

( )[ ]iii
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3300exp1
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Examinees item response data matrix is presented in Table 3.4. 

Table 3.4 Illustration of Examinee Item Response Data Matrix 

 Items 

Examinees Grade 3 C 3&4 Grade 4 C 4&5 Grade 5 

 

Grade 

3 

1      

2      

…      

1000      

 

Grade 

4 

1      

2      

…      

1000      

 

Grade 

5 

1      

2      

…      

1000      
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3.4 Identification of the Bifactor Model  

            In order to keep the bifactor models identified, for each of the uncorrelated latent 

dimensions either the discrimination parameters (loadings) or the variance of the latent 

dimension needs to be fixed to make the scale identified.  

            For the general dimension 0θ , as convention, the variance of the general latent 

dimension is fixed to 1, and the discrimination parameters 0ia  (loadings) are freely 

estimated in the study. 

            For the grade-specific dimensions sθ (s= 1,2,..,k ), the discrimination parameters 

isa (s= 1,2,..,k ) (loadings) are fixed to its true parameter value 1.7 (recall that 1.7 is the 

mean of the deliberately generated discrimination parameters 1.2, 1.4, 1.6, 1.8, 2.0 and 

2.2 for the general dimension; see Section 3.3.2.1 for details), so that the variances of the 

grade-specific dimensions are freely estimated. This decision was made because the 

dissertation research is to apply the FI-bifactor models in modeling vertical scaling with 

construct shifts; thus, being able to estimate the magnitudes of construct shifts across 

grades or the variances of the grade-specific dimensions is essential in the study.  

 

3.5 Data Calibration 

The proposed estimation model for vertical scaling with construct shifts was the bifactor 

model, and this study is intended to examine the performance of parameter estimations 

for the proposed bifactor models under various conditions, and to examine the robustness 

of the UIRT estimation model in recovering the parameters of the true bifactor model 

under various conditions.  The side-by-side comparison of the bifactor estimation model 

and the UIRT estimation model is presented in Figure 3.5. 
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Bifactor estimation model UIRT estimation model 

  

Figure 3.5 Bifactor Estimation Model vs. UIRT Estimation Model 

 

As seen in Figure 3.5, the bifactor estimation model is the same as the true 

bifactor data generation model (see Figure 3.4), where all items load on the general factor, 

and items (both non-common and common items) administered to specific grade levels 

also load on the grade-specific factors. The UIRT estimation model, which is currently 

used in practice for vertical scaling, is also examined, where all items load on the single 

latent factor. 

It is expected that the general ability from the bifactor model and the single latent 

ability from the UIRT model will be quite consistent when the variances of the grade-

specific factors are small; it is also expected that the general ability from the bifactor 

model and the single latent ability from the UIRT model will deviate to some degree 

when the variances of the grade-specific factors are moderate or large.  

Multi-group concurrent calibration is implemented. For the general dimension, 

Grade 4 examinees are treated as the reference group and set to have a standard normal 

distribution; the means of the other two groups, Grade 3 and Grade 5 examinees, are 

G3 
 
C34 

G4 
 
C45 
 

G5 
 

G 
factor 
 

C34 

C45 
 

G3 
 
C34 

G4 
 
C45 
 

G5 
 

G3 
 

G4 
 

G 
factor 
 

C34 

C45 
 G5 

 



 49 

freely estimated, and the SDs of the two groups are fixed to 1s assuming that variances 

remain the same over time. Note that the SDs of the non-reference groups are estimable if 

researchers believe that the variances vary over time, which is more realistic.  

As the examinee item response data matrix shown in Table 3.4, students only 

answer their grade level items and common items of their adjacent grades; all other items 

are regarded as “not reached” items. Due to a large number of “not reached” items, it is 

possible that the multi-group concurrent calibration may not converge for some datasets. 

If this happens, new datasets will be generated and estimations will be re-implemented 

till convergence is achieved.   How often this happens, if at all, will be captured and 

reported. 

The Computer program IRTPRO 1

 

 (Cai, du Toit, & Thissen, in press) using 

marginal maximum-likelihood estimation with an EM algorithm is used for concurrent 

calibrations of bifactor models for vertical scaling. It is worth mentioning again that in 

bifactor models every item loads on one group-specific factor only in addition to the 

general factor; therefore, no matter how many group-specific factors there are, the 

number of integrals for any bifactor models is always two. Thus, the computational 

complexity of bifactor models is about the same as for two-dimensional MIRT models. 

3.6 Evaluation Criteria 

Bias, absolute bias, root mean square error (RMSE), and standard error (SE) are used to 

assess the accuracy of parameter estimates over the 100 replications at various simulated 

conditions. They were reviewed in Section 2.5 in Chapter 2. 

                                                 
1 The author thanks Dr. Li Cai at the University of California at Los Angeles for making the program 
available. 
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3.7 Analysis  

Once the bias, absolute bias, RMSE, and SE are computed for both bifactor and 

UIRT estimation models, (1) conclusions can be reached regarding the estimation 

accuracy of the bifactor model under various conditions, (2) conclusions can be reached 

regarding the robustness of the UIRT model in recovering the parameters under various 

conditions of the bifactor data generation model, and (3) comparisons can be made for 

item parameter recovery between the bifactor model and the UIRT model, and the 

general ability estimated from the bifactor model and the single latent ability estimated 

from the UIRT model can be compared to determine how different the estimates are 

under various simulated conditions. 

Three-way analyses of variance (ANOVA) are computed to determine whether 

the simulated three factors (e.g., main effects) and their factorial combinations (e.g., 

interaction effects) are statistically significant (e.g., p-value <= 0.05) in recovering the 

parameters. In addition to the statistical significance, eta-squared is computed using 

results from ANOVA tables (e.g., SSbetween/SStotal) and reported as an effect size index to 

address the practical importance of the examined factor, which describes the ratio of 

variance explained in the dependent variable by a predictor while controlling for other 

predictors. Cohen (1988) created the following categories to interpret strength of 

association: 0.02 (small), 0.13 (medium), and 0.26 (large). Accordingly, the effect is 

interpreted as small when eta-squared is less than 0.07; it is interpreted as medium when 

eta-squared is great than or equal to 0.07 and less than 0.20; it is interpreted as large 

when eta-squared is greater than or equal to 0.20. It is worth noting that a nice feature of 

eta-squared is its additivity to 1, but it is upwardly biased; other effect size indices such 
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as omega-squared or the intra-class correlation (ICC) can be good choices too.  Tables 

are used to provide and compare the four outcome measures (i.e., bias, absolute bias, 

RMSE, and SE) for the two estimation models under various conditions. Figures are used 

to plot and compare aggregated performances of examinees for the two models. Scatter 

plots are used to examine and compare the distribution of examinees’ estimated ability 

across grades from both estimation models. Some other statistics such as correlation and 

reliability are computed for estimated abilities from the two estimation models to 

determine the level of consistency under various conditions. 

 

So far, the design and the analysis of the study have been specified.  The 

upcoming chapter will organize and present the results to the research questions. 
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CHAPTER 4 

RESULTS 

 

In this chapter, results of the simulation study are organized and presented in 

order to answer the second, third, and last research questions. Section 4.1 answers the 

second research question on bifactor model parameter estimation accuracy, Section 4.2 

answers the third research question on the robustness of UIRT model estimation for the 

hypothesized true bifactor data structure, and Section 4.3 answers the last research 

question on comparisons of person parameter estimates from both bifactor and UIRT 

models.  The analyses were carried out to 4 decimal places, although accuracy beyond the 

second decimal is questionable. 

 

4.1 Parameter Recovery of Bifactor Models 

All estimation runs converged successfully. The results of bifactor model 

estimation are described and presented in three sets of parameter estimates, which are 

item parameter estimates (Section 4.1.1), person parameter estimates (Section 4.1.2) and 

group parameter estimates (Section 4.1.3). Then, tests of between-subject effects, or 

three-way analysis of variances (ANOVA) are examined (Section 4.1.4) for the statistical 

effects of the three simulated factors. Finally, a summary of the main findings is 

presented (Section 4.1.5). 
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4.1.1 Item Parameter Recovery 

Average bias, absolute bias, RMSE, and SE of item parameter estimates of 

bifactor models for each of the 27 simulated conditions are presented in Table 4.1. Recall 

that only two item parameters are freely estimated in the bifactor model; they are the item 

discrimination parameter, for the general dimension (item discrimination parameters for 

the grade-specific dimensions are fixed to constants), and item difficulty-related scalar 

parameter.    

Bias is the average difference between an estimate and the true parameter value 

over the replications.  All the bias of discrimination parameter estimates are negative 

values ranging from -0.1317 to -0.0133, which indicates that averaging over the 

replications, discrimination parameters are underestimated. Bias of difficulty-related 

scalar parameter estimates ranges from -0.1706 to 0.0912, indicating that averaging over 

the replications, the difficulty-related scalar parameter estimates are not biased in any 

direction. For both discrimination and difficulty-related parameter estimates, no obvious 

trends are found across simulated factors for their aggregated biases respectively due to 

positive and negative values canceling out over replications.  

Absolute bias takes the absolute difference between an estimate and its true 

parameter value. The aggregated absolute bias summarizes the average magnitude of the 

deviations over replications. The aggregated absolute bias of discrimination parameter 

estimates ranges from 0.0818 to 0.1963, and the pattern across simulated conditions 

indicates that (1) with the increase of grade-specific variances, the absolute bias of item 

discrimination parameters on the general dimension also increases, and (2) with the 

increase of sample sizes, the absolute bias of item discrimination parameters decreases; 
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while no obvious patterns are found for conditions simulated for the number of common 

items. For the difficulty-related scalar parameter estimates, the aggregated absolute bias 

ranges from 0.0681 to 0.2144; with the increase of sample sizes, the absolute bias of item 

difficulty-related scalar parameters decreases; no patterns are observed for other 

simulated conditions. 

RMSE indicates the overall accuracy of parameter estimates. Both RMSE and 

absolute bias are indices for estimation accuracy but on different scales; thus it is 

expected that they differ in magnitudes but present similar trends over the simulated 

conditions. The aggregated RMSE of discrimination parameters ranges from 0.0993 to 

0.2952, and the general pattern across simulated conditions indicates that (1) with the 

increase of grade-specific variances, the RMSE of item discrimination parameters on the 

general dimension also increases, and (2) with the increase of sample sizes, the RMSE of 

item discrimination parameters decreases; no obvious patterns are found for the simulated 

condition for the number of common items. For the difficulty-related scalar parameter 

estimates, the RMSE ranges from 0.0856 to 0.3969; it decreases as the sample size 

increases; no patterns are observed for other simulated factors.  

SE indicates the stability of parameter estimates. The aggregated SE of 

discrimination parameters ranges from 0.0780 to 0.2856, and the general pattern of across 

simulated conditions indicates that (1) with the increase of grade-specific variances, the 

SE of item discrimination parameters on the general dimension also increases, and (2) 

with the increase of sample sizes, the SE of item discrimination parameters decreases; no 

obvious patterns are found for conditions simulated for the number of common items. For 

the difficulty-related scalar parameter estimates, the SE ranges from 0.0767 to 0.3852; it 
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decreases as the sample size increases; no patterns are observed for other simulated 

factors.  

Graphical representations of aggregated bias, absolute bias, RMSE and SE for 

item parameters of bifactor models are shown in Figures 4.11a through 4.18c together 

with that of UIRT models.  
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Table 4.1 Bias, Absolute Bias, RMSE, and SE of Item Parameter Estimate of Bifactor 
Models 

      Discrimination parameter (a) estimate  Scalar parameter (b) estimate 
    VR    VR  
  SS  CI  0.25 0.50 1.00  0.25 0.50 1.00 

BIAS 1000 12 -0.0508 -0.0385 -0.0490  0.0154 0.0559 -0.1706 
  18 -0.0164 -0.0133 -0.0136  -0.0826 -0.0229 -0.0343 
  24 -0.0632 -0.0769 -0.0645  0.0142 0.0912 0.0340 
 2000 12 -0.0369 -0.1034 -0.0797  0.0639 -0.0396 -0.0056 
  18 -0.0511 -0.0379 -0.1317  -0.0828 -0.0577 0.0069 
  24 -0.0764 -0.0930 -0.0727  0.0767 0.0597 0.0335 
 4000 12 -0.0653 -0.0867 -0.1079  -0.0232 -0.0361 -0.1036 
  18 -0.0510 -0.0898 -0.1520  -0.0024 -0.0403 -0.0544 
    24 -0.0567 -0.0998 -0.1272  0.0399 0.0667 0.0195 
Abs_BIAS 1000 12 0.1562 0.1683 0.1861  0.1550 0.1625 0.2144 
  18 0.1529 0.1815 0.1963  0.1837 0.2044 0.1826 
  24 0.1473 0.1735 0.1909  0.1363 0.1675 0.1539 
 2000 12 0.1047 0.1433 0.1384  0.1196 0.1051 0.1031 
  18 0.1088 0.1158 0.1763  0.1287 0.1229 0.1112 
  24 0.1176 0.1336 0.1369  0.1178 0.1087 0.0993 
 4000 12 0.0913 0.1099 0.1277  0.0746 0.0802 0.1180 
  18 0.0846 0.1133 0.1646  0.0728 0.0840 0.0856 
    24 0.0818 0.1168 0.1417  0.0719 0.0896 0.0681 

RMSE 1000 12 0.2172 0.2202 0.2512  0.2538 0.2331 0.2930 
  18 0.2175 0.2952 0.2714  0.3028 0.3969 0.2928 
  24 0.2019 0.2419 0.2700  0.2119 0.2711 0.2472 
 2000 12 0.1309 0.1731 0.1694  0.1506 0.1333 0.1306 
  18 0.1393 0.1527 0.2182  0.1789 0.1822 0.1654 
  24 0.1506 0.1691 0.1670  0.1625 0.1555 0.1251 
 4000 12 0.1106 0.1313 0.1505  0.0935 0.1004 0.1376 
  18 0.1043 0.1410 0.1865  0.0943 0.1210 0.1078 
    24 0.0993 0.1366 0.1632  0.0887 0.1081 0.0856 

SE 1000 12 0.2061 0.2136 0.2413  0.2501 0.2198 0.2215 
  18 0.2089 0.2856 0.2651  0.2820 0.3852 0.2847 
  24 0.1844 0.2168 0.2525  0.2082 0.2456 0.2410 
 2000 12 0.1232 0.1338 0.1458  0.1319 0.1248 0.1294 
  18 0.1251 0.1433 0.1567  0.1487 0.1680 0.1604 
  24 0.1231 0.1328 0.1478  0.1365 0.1392 0.1182 
 4000 12 0.0864 0.0938 0.0996  0.0893 0.0911 0.0828 
  18 0.0855 0.0996 0.1001  0.0923 0.1079 0.0888 
    24 0.0780 0.0864 0.0969   0.0767 0.0811 0.0813 
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4.1.2 Person Parameter Recovery 

4.1.2.1 Aggregated Errors of Person Parameter Estimates 

Aggregated bias, absolute bias, RMSE and SE of person parameter estimates 

(including both the general dimension and the grade-specific dimension person estimates) 

of bifactor models for each of the 27 simulated conditions are presented in Table 4.2. 

Graphical representations of these aggregated errors are presented in Figures 4.1a through 

4.4c for comparisons between the general and the grade-specific dimension person 

estimates; to save space, only Grade 3 dimension is used as a grade-specific dimension 

for illustration purposes. 

Bias of person parameter estimates on both the general and grade specific 

dimension are small in magnitude with both positive and negative values, indicating that 

averaging over replications, the person parameter estimates are not biased in any 

direction. No particular patterns are found for the person parameter estimates over the 

simulated conditions, due to positive and negative bias values canceling out while 

computing the aggregated bias over replications.  

Absolute bias accumulates the effects over replications. The absolute bias of the 

general dimension person estimates ranges from 0.3604 to 0.5214. For the grade-specific 

dimension person estimates, the absolute bias ranges from 0.4873 to 0.6872, which are 

substantial larger than that of the general dimension person estimates; it is expected that 

person estimates of the general dimension should be more accurate than that of the grade-

specific dimension, because the general dimension is estimated using all the items (e.g., 

in the condition of 12 common items, the total number of items is 156), while the grade-

specific dimension is estimated using only its grade-level items (e.g., in the condition of 
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12 common items, the number of grade-level items is 60). No obvious patterns are found 

for the simulated factor on the number of common items. The same pattern is found for 

both the general and grade-specific dimension person estimates for the simulated factor 

on the sample size; that is with the increase of the sample sizes, the absolute bias of 

person estimates decreases. Different patterns are found for the simulated factors on the 

grade-specific variance; that is with the increase of the grade-specific variances, (1) the 

absolute bias of the general dimension person estimates increase, while (2) that of the 

grade-specific dimension person estimates decrease. This indicates that the larger the 

grade-specific factor variances are, the more discrepancy of the general dimension person 

estimates from the true parameters are, and the less discrepancy of the grade-specific 

dimension person parameter estimates from the true parameters are. 

RMSE of the general dimension person parameter estimates ranges from 0.4167 

to 0.6063; while RMSE of the grade-specific dimension person parameter estimates range 

from 0.5608 to 0.7935. No obvious patterns are found for the simulated factor on the 

number of common items. The same pattern is found for both the general and grade-

specific dimension person estimates for the simulated factor on the sample size; that is 

with the increase of the sample sizes, the RMSE of person estimates decreases. Different 

patterns are found for the simulated factors on the grade-specific variance; that is with the 

increase of the grade-specific variances, (1) the RMSE of the general dimension person 

estimates increase, while (2) that of the grade-specific dimension person estimates 

decrease. This indicates that the larger the grade-specific factor variances are, the less 

accurate the general dimension person estimates are, and the more accurate the grade-

specific dimension person parameter estimates are. 
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SE of the general dimension person parameter estimates ranges from 0.2541 to 

0.3828; while SE of the grade-specific dimension person parameter estimates ranged 

from 0.3346 to 0.4216. No obvious patterns are found for the simulated factor on the 

number of common items. The same pattern is found for both the general and grade-

specific dimension person estimates for the simulated factor on the sample size; that is 

with the increase of the sample sizes, the SE of person estimates decreases. Different 

patterns are found for the simulated factors on the grade-specific variance; that is with the 

increase of the grade-specific variances, (1) the SE of the general dimension person 

estimates increase, while (2) that of the grade-specific dimension person estimates 

decrease. This indicates that the larger the grade-specific factor variances are, the less 

stable the general dimension person estimates are, and the more stable the grade-specific 

dimension person parameter estimates are. 
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Table 4.2 Bias, Absolute Bias, RMSE, and SE of Person Parameter Estimates of Bifactor 
Models 

      General dimension estimate  Grade 3 dimension estimate 
    VR    VR  
  SS  CI  0.25 0.50 1.00  0.25 0.50 1.00 

BIAS 1000 12 -0.0039 -0.0562 0.1053  0.0134 0.0285 -0.0460 
  18 0.0330 0.0208 -0.0178  0.0481 -0.0510 0.0235 
  24 0.0046 -0.0366 0.0020  -0.0403 -0.0364 -0.0440 
 2000 12 -0.0319 0.0122 -0.0019  -0.0037 0.0055 0.0068 
  18 0.0554 0.0279 -0.0063  -0.0251 0.0414 -0.0610 
  24 -0.0497 -0.0385 -0.0338  0.0256 -0.0039 0.0142 
 4000 12 0.0123 0.0262 0.0583  0.0032 -0.0036 0.0001 
  18 -0.0025 0.0210 0.0277  0.0257 -0.0226 -0.0050 
    24 -0.0195 -0.0325 -0.0131  -0.0050 -0.0246 0.0106 
Abs_BIAS 1000 12 0.3697 0.4459 0.5214  0.6823 0.6139 0.5234 
  18 0.3635 0.4447 0.5192  0.6548 0.5996 0.5272 
  24 0.3711 0.4400 0.5161  0.6845 0.6019 0.5099 
 2000 12 0.3663 0.4382 0.5038  0.6710 0.6214 0.5090 
  18 0.3683 0.4349 0.5041  0.6841 0.6094 0.5049 
  24 0.3661 0.4305 0.5011  0.6777 0.5777 0.5030 
 4000 12 0.3619 0.4329 0.4986  0.6894 0.5713 0.4926 
  18 0.3640 0.4339 0.5005  0.6629 0.5989 0.4873 
    24 0.3604 0.4320 0.4953  0.6730 0.5968 0.4954 

RMSE 1000 12 0.4298 0.5181 0.6063  0.7699 0.7058 0.6062 
  18 0.4221 0.5157 0.6043  0.7471 0.6871 0.6160 
  24 0.4310 0.5112 0.6006  0.7732 0.6917 0.5921 
 2000 12 0.4233 0.5081 0.5846  0.7498 0.7058 0.5886 
  18 0.4260 0.5025 0.5867  0.7693 0.6944 0.5820 
  24 0.4242 0.4991 0.5806  0.7626 0.6571 0.5817 
 4000 12 0.4186 0.4998 0.5776  0.7696 0.6511 0.5677 
  18 0.4205 0.5015 0.5801  0.7401 0.6803 0.5608 
    24 0.4167 0.4991 0.5740  0.7550 0.6782 0.5718 

SE 1000 12 0.2695 0.3237 0.3820  0.4103 0.4187 0.3719 
  18 0.2636 0.3220 0.3828  0.4216 0.4009 0.3972 
  24 0.2700 0.3198 0.3812  0.4142 0.4058 0.3694 
 2000 12 0.2574 0.3151 0.3649  0.375 0.3897 0.3600 
  18 0.2608 0.3053 0.3711  0.4009 0.3889 0.3507 
  24 0.2616 0.3094 0.3596  0.3974 0.3689 0.3565 
 4000 12 0.2564 0.3029 0.3564  0.3842 0.3677 0.3386 
  18 0.2558 0.3059 0.3592  0.3695 0.3766 0.3346 
    24 0.2541 0.3043 0.3554   0.3862 0.3770 0.3449 
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Table 4.2 (continued) Bias, Absolute Bias, RMSE, and SE of Person Parameter Estimates 
of Bifactor Models 

      Grade 4 dimension estimate  Grade 5 dimension estimate 
    VR    VR  
  SS  CI  0.25 0.50 1.00  0.25 0.50 1.00 

BIAS 1000 12 0.0032 0.0187 0.0180  -0.0213 0.0471 0.0032 
  18 0.0079 0.0306 0.0096  -0.0214 -0.0063 0.0450 
  24 -0.0252 0.0090 -0.0148  -0.0352 -0.0080 -0.0005 
 2000 12 -0.0123 0.0200 0.0101  -0.0177 0.0177 0.0073 
  18 -0.0202 -0.0045 -0.0028  0.0038 -0.0130 0.0116 
  24 -0.0093 -0.0035 0.0050  -0.0089 0.0467 0.0126 
 4000 12 0.0271 -0.0194 0.0078  0.0008 0.0011 0.0011 
  18 0.0076 -0.0059 0.0178  0.0020 0.0322 -0.0031 
    24 -0.006 -0.0139 -0.0045  0.0068 -0.0209 -0.0053 
Abs_BIAS 1000 12 0.6804 0.5920 0.5020  0.6815 0.6184 0.5137 
  18 0.6705 0.6020 0.5009  0.6675 0.6098 0.5219 
  24 0.6872 0.6054 0.5100  0.7047 0.5915 0.5196 
 2000 12 0.6781 0.6000 0.4960  0.6760 0.6013 0.5064 
  18 0.6710 0.5849 0.4944  0.6755 0.5931 0.5046 
  24 0.6738 0.6001 0.4985  0.6748 0.5878 0.5038 
 4000 12 0.6650 0.5957 0.4932  0.6694 0.5973 0.5017 
  18 0.6816 0.5943 0.4993  0.6754 0.5951 0.5016 
    24 0.6716 0.5882 0.4950  0.6645 0.5973 0.4938 

RMSE 1000 12 0.7584 0.6803 0.5790  0.7713 0.7063 0.5981 
  18 0.7496 0.6888 0.5802  0.7462 0.7007 0.6054 
  24 0.7705 0.6937 0.5911  0.7925 0.6739 0.6021 
 2000 12 0.7608 0.6850 0.5734  0.7536 0.6832 0.5822 
  18 0.7562 0.6690 0.5698  0.7569 0.6743 0.5832 
  24 0.7537 0.6861 0.5761  0.7588 0.6723 0.5825 
 4000 12 0.7433 0.6777 0.5678  0.7482 0.6773 0.5778 
  18 0.7651 0.6757 0.5735  0.7563 0.6791 0.5765 
    24 0.7523 0.6711 0.5706  0.7436 0.6783 0.5694 

SE 1000 12 0.3714 0.4021 0.3490  0.4181 0.4028 0.3802 
  18 0.3766 0.3968 0.3558  0.3763 0.4155 0.3780 
  24 0.3946 0.4010 0.3663  0.4133 0.3788 0.3743 
 2000 12 0.3894 0.3908 0.3502  0.3718 0.3780 0.3448 
  18 0.3993 0.3834 0.3439  0.3846 0.3758 0.3550 
  24 0.3802 0.3930 0.3509  0.3933 0.3871 0.3553 
 4000 12 0.3735 0.3768 0.3387  0.3752 0.3707 0.3447 
  18 0.3952 0.3767 0.3375  0.3832 0.3836 0.3406 
    24 0.3821 0.3807 0.3431   0.3749 0.3760 0.3417 
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Figure 4.1a Mean Bias of Bifactor Person Parameter Estimates at Sample Size of 1000 

 
Figure 4.1b Mean Bias of Bifactor Person Parameter Estimates at Sample Size of 2000 

 
Figure 4.1c Mean Bias of Bifactor Person Parameter Estimates at Sample Size of 4000 
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Figure 4.2a Mean Absolute Bias of Bifactor Person Parameter Estimates at Sample Size of 1000 

 
Figure 4.2b Mean Absolute Bias of Bifactor Person Parameter Estimates at Sample Size of 2000 

 
Figure 4.2c Mean Absolute Bias of Bifactor Person Parameter Estimates at Sample Size of 4000 
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Figure 4.3a Mean RMSE of Bifactor Person Parameter Estimates at Sample Size of 1000 

 
Figure 4.3b Mean RMSE of Bifactor Person Parameter Estimates at Sample Size of 2000 

 
Figure 4.3c Mean RMSE of Bifactor Person Parameter Estimates at Sample Size of 4000 
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Figure 4.4a Mean SE of Bifactor Person Parameter Estimates at Sample Size of 1000 

 
Figure 4.4b Mean SE of Bifactor Person Parameter Estimates at Sample Size of 2000 

 
Figure 4.4c Mean SE of Bifactor Person Parameter Estimates at Sample Size of 4000 
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4.1.2.2 Aggregated Correlation and Reliability of Person Parameter Estimates 

In addition to examining the aggregated errors such as bias, absolute bias, RMSE, 

and SE of person parameter estimates, correlations of the true person parameter and 

estimated person parameters for both the general and grade-specific dimension can be 

obtained to investigate how closely the rank order of the true parameters is recovered 

using bifactor models. Before computing the aggregated correlation for each simulated 

condition, the scatter plots are obtained to examine the linearity between the true person 

parameter and estimated person parameters for the general and Grades 3, 4 and 5 

dimensions. Only a single replication under the condition of 12 common items, 1000 

examinees’ per grade and 0.25 grade-specific variance is presented in Figures 4.5a 

through 4.5d for illustration purposes. 

As shown in the Figures, linearity is observed for each of them. It is noticeable 

that the correlation is the strongest for the general dimension with 3000 examinees, and 

the correlations are moderate for the three grade-specific dimensions with 1000 

examinees for each grade.  

After confirming the linearity, aggregated correlations for the general and grade-

specific dimensions are computed for each of the 27 simulated conditions and presented 

in Table 4.3. When the construct shift is small (e.g., grade-specific variances are 0.25), 

the aggregated correlations of the general dimension are highest with values ranging from 

0.9009 to 0.9089, but that of the grade-specific dimensions are lowest with values 

ranging from 0.5291 to 0.5691; when the construct shift is large (e.g., grade-specific 

variances are 1.00), the aggregated correlations of the general dimension are lowest with 

values ranging from 0.7999 to 0.8185, but that of the grade-specific dimensions are 
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highest with values ranging from 0.7557 to 0.7935. In other words, with the increase of 

the degree of construct shift, the recovery of the rank order of the general dimension 

person parameters decreases, and the recovery of the rank order of the grade-specific 

dimension person parameters increases.  

Reliability of person parameter estimates are computed as the squared correlation 

between the true and estimated person parameters. The aggregated reliability for each of 

the 27 simulated conditions is presented in Table 4.4. Similar patterns are found for the 

aggregated reliability; that is with the increase of the degree of construct shift, the 

reliability of the general dimension person parameters decreases, and the reliability of the 

grade-specific dimension person parameters increases.  

Figure 4.5a Scatter Plot of True and Estimated 
Parameters for the Bifactor General Dimension 

Figure 4.5b Scatter Plot of True and Estimated 
Parameters for the Bifactor Grade 3 Dimension 

  
 
Figure 4.5c Scatter Plot of True and Estimated 
Parameters for the Bifactor Grade 4 Dimension 

 
Figure 4.5d Scatter Plot of True and Estimated 
Parameters for the Bifactor Grade 5 Dimension 
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Table 4.3 Aggregated Correlation of Person Parameter Estimates of Bifactor Models and 
Generated True Parameters  

      
 Correlation of person parameter 

estimates and true parameters 
    VR  

  SS  CI  0.25 0.50 1.00 
General Dimension  1000 12 0.9009 0.8563 0.8098 

  18 0.9069 0.8594 0.7999 
  24 0.9036 0.8617 0.8063 
 2000 12 0.9079 0.8577 0.8122 
  18 0.9051 0.8662 0.8037 
  24 0.9027 0.8674 0.8173 
 4000 12 0.9064 0.8632 0.8150 
  18 0.9064 0.8659 0.8129 
   24 0.9089 0.8664 0.8185 
Grade 3 Dimension 1000 12 0.5376 0.6676 0.7605 

  18 0.5493 0.6554 0.7780 
  24 0.5469 0.6617 0.7633 
 2000 12 0.5359 0.6791 0.7818 
  18 0.5318 0.674 0.7878 
  24 0.5375 0.6641 0.7837 
 4000 12 0.5636 0.6729 0.7840 
  18 0.5735 0.6508 0.7867 
   24 0.5581 0.6567 0.7935 
Grade 4 Dimension 1000 12 0.5554 0.6817 0.7557 

  18 0.5291 0.6618 0.7748 
  24 0.5295 0.6513 0.7767 
 2000 12 0.5491 0.6850 0.7880 
  18 0.5526 0.6713 0.7791 
  24 0.5691 0.6679 0.7816 
 4000 12 0.5494 0.6846 0.7907 
  18 0.5592 0.6694 0.7783 
   24 0.5537 0.6789 0.7904 
Grade 5 Dimension 1000 12 0.5444 0.6677 0.7635 

  18 0.5441 0.6788 0.7686 
  24 0.5410 0.6583 0.7670 
 2000 12 0.5432 0.6580 0.7851 
  18 0.5604 0.6611 0.7900 
  24 0.5535 0.6728 0.7742 
 4000 12 0.5508 0.6772 0.7772 
  18 0.5572 0.6775 0.7765 
    24 0.5590 0.6676 0.7824 

 



69 
 

Table 4.4 Aggregated Reliability of Person Parameter Estimates of Bifactor Models 

      
 Reliability of person parameter 

estimates of bifactor models 
    VR  

  SS  CI  0.25 0.50 1.00 
General Dimension  1000 12 0.8116 0.7332 0.6557 

  18 0.8225 0.7386 0.6398 
  24 0.8164 0.7426 0.6501 
 2000 12 0.8243 0.7356 0.6596 
  18 0.8191 0.7502 0.6460 
  24 0.8148 0.7524 0.6680 
 4000 12 0.8216 0.7452 0.6642 
  18 0.8215 0.7498 0.6608 
   24 0.8261 0.7507 0.6700 
Grade 3 Dimension 1000 12 0.2893 0.4458 0.5785 

  18 0.3020 0.4298 0.6053 
  24 0.2993 0.4380 0.5827 
 2000 12 0.2874 0.4612 0.6113 
  18 0.2830 0.4544 0.6206 
  24 0.2891 0.4412 0.6142 
 4000 12 0.3178 0.4529 0.6150 
  18 0.3291 0.4237 0.6189 
   24 0.3116 0.4314 0.6296 
Grade 4 Dimension 1000 12 0.3087 0.4648 0.5711 

  18 0.2802 0.4382 0.6003 
  24 0.2806 0.4244 0.6033 
 2000 12 0.3016 0.4693 0.6209 
  18 0.3055 0.4507 0.6070 
  24 0.3240 0.4462 0.6110 
 4000 12 0.3019 0.4687 0.6252 
  18 0.3128 0.4482 0.6058 
   24 0.3066 0.4609 0.6247 
Grade 5 Dimension 1000 12 0.2966 0.4460 0.5830 

  18 0.2962 0.4609 0.5909 
  24 0.2929 0.4336 0.5884 
 2000 12 0.2952 0.4331 0.6164 
  18 0.3142 0.4371 0.6242 
  24 0.3065 0.4527 0.5994 
 4000 12 0.3034 0.4586 0.6040 
  18 0.3106 0.4590 0.6030 
    24 0.3125 0.4457 0.6122 
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4.1.3 Group Parameter Recovery 

Group mean estimates of the person parameters on the general dimension, and 

variance estimates of the person parameters on the grade-specific dimensions are the two 

group parameter estimates in the bifactor model. The aggregated bias, absolute bias, 

RMSE and SE of the two group parameter estimates are presented in Table 4.5. Graphical 

representations of variance estimates across simulated conditions are shown in Figures 

4.6a through 4.9c; graphical presentations for group mean estimates of the bifactor 

models are shown in Figures 4.23a through 4.26c together with that of the UIRT models 

for comparisons. 

Bias of the group mean estimates of the person parameters on the general 

dimension are small in magnitude with both positive and negative values, indicating that 

averaging over replications, the group mean estimates are not biased in any direction. 

Bias of the variance estimates of the person parameters on the grade-specific dimensions 

are also small in magnitude but all with positive values, indicating that they are 

overestimated. No particular patterns are found for either group parameter estimates over 

the simulated conditions, due to positive and negative bias values canceling out while 

computing the aggregated bias over replications.  

Absolute bias of the group mean estimates ranges from 0.0194 to 0.1506; that of 

the variance estimates ranges from 0.0822 to 0.1618. For both group parameter estimates, 

no patterns are found across simulated factors.  

RMSE of the group mean estimates ranges from 0.0244 to 0.1578; that of the 

variance estimates ranges from 0.0897 to 0.1517. For both group parameter estimates, no 

patterns are found across simulated factors.  
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SE of the group mean estimates ranges from 0.0203 to 0.0607; that of the variance 

estimates ranges from 0.0397 to 0.1160. For both group parameter estimates, no patterns 

are found across simulated factors.  
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Table 4.5 Bias, Absolute Bias, RMSE, and SE of Group Parameter Estimates of Bifactor 
Models 

      
 Group mean estimate for the 

general dimension   
Group variance estimate for the 

grade-specific dimensions  
    VR    VR  
  SS  CI  0.25 0.5 1  0.25 0.50 1.00 

BIAS 1000 12 0.0265 -0.0627 0.1505  0.0864 0.0968 0.0174 
  18 0.0434 0.0609 -0.0132  0.0662 0.0900 0.1160 
  24 0.0287 -0.033 0.0207  0.1038 0.0757 0.0854 
 2000 12 -0.0492 0.0558 0.0058  0.0791 0.1009 0.1007 
  18 0.0592 0.0333 0.0092  0.1167 0.0781 0.1096 
  24 -0.0652 -0.0173 -0.0130  0.1176 0.0818 0.0959 
 4000 12 0.0299 0.0116 0.0637  0.1030 0.0836 0.0870 
  18 0.0074 0.0121 0.0354  0.1115 0.1047 0.0790 
    24 -0.0152 -0.0424 -0.014  0.1104 0.0981 0.1252 
Abs_BIAS 1000 12 0.0501 0.0663 0.1506  0.1181 0.1255 0.0945 
  18 0.0542 0.0672 0.0560  0.1054 0.1099 0.1618 
  24 0.0518 0.0499 0.0504  0.1179 0.0995 0.1157 
 2000 12 0.0586 0.0594 0.0674  0.0895 0.1072 0.1080 
  18 0.0595 0.0447 0.0280  0.1219 0.0855 0.1172 
  24 0.0667 0.0337 0.0432  0.1187 0.0939 0.1102 
 4000 12 0.0319 0.0445 0.0646  0.1035 0.0849 0.0876 
  18 0.0194 0.0274 0.0458  0.1120 0.1048 0.0822 
    24 0.0233 0.0646 0.0716  0.1104 0.0986 0.1263 

RMSE 1000 12 0.0612 0.0785 0.1578  0.1406 0.1517 0.1167 
  18 0.0639 0.0793 0.0719  0.1263 0.1327 0.1842 
  24 0.0626 0.0604 0.0638  0.1437 0.1203 0.1364 
 2000 12 0.0656 0.0650 0.0759  0.1071 0.1217 0.1206 
  18 0.0653 0.0517 0.0353  0.1396 0.1011 0.1292 
  24 0.0743 0.0416 0.0519  0.1366 0.1069 0.1245 
 4000 12 0.0372 0.0511 0.0683  0.1149 0.0950 0.0958 
  18 0.0244 0.0317 0.0496  0.1227 0.1133 0.0897 
    24 0.0284 0.0692 0.0772  0.119 0.1083 0.1342 

SE 1000 12 0.0465 0.0466 0.0456  0.1086 0.1160 0.0984 
  18 0.0441 0.0500 0.0607  0.1025 0.0952 0.1138 
  24 0.0471 0.0477 0.0603  0.0993 0.0823 0.1017 
 2000 12 0.0359 0.0300 0.0376  0.0706 0.0654 0.0616 
  18 0.0275 0.0340 0.0340  0.0748 0.0629 0.0641 
  24 0.0354 0.035 0.0457  0.0695 0.0616 0.0782 
 4000 12 0.0219 0.0257 0.0203  0.0506 0.0440 0.0397 
  18 0.0229 0.0213 0.0214  0.0501 0.0431 0.0416 
    24 0.0215 0.0257 0.0289   0.0441 0.0453 0.0468 
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Figure 4.6a Mean Bias of Grade-specific Variance Parameter Estimates at Sample Size of 1000 

 

Figure 4.6b Mean Bias of Grade-specific Variance Parameter Estimates at Sample Size of 2000 

 

Figure 4.6c Mean Bias of Grade-specific Variance Parameter Estimates at Sample Size of 4000 
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Figure 4.7a Mean Absolute Bias of Grade-specific Variance Parameter Estimates at Sample Size of 1000 

 
Figure 4.7b Mean Absolute Bias of Grade-specific Variance Parameter Estimates at Sample Size of 2000 

 
Figure 4.7c Mean Absolute Bias of Grade-specific Variance Parameter Estimates at Sample Size of 4000 
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Figure 4.8a Mean RMSE of Grade-specific Variance Parameter Estimates at Sample Size of 1000 

 
Figure 4.8b Mean RMSE of Grade-specific Variance Parameter Estimates at Sample Size of 2000 

 
Figure 4.8c Mean RMSE of Grade-specific Variance Parameter Estimates at Sample Size of 4000 
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Figure 4.9a Mean SE of Grade-specific Variance Parameter Estimates at Sample Size of 1000 

 

Figure 4.9b Mean SE of Grade-specific Variance Parameter Estimates at Sample Size of 2000 

 

Figure 4.9c Mean SE of Grade-specific Variance Parameter Estimates at Sample Size of 4000 
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4.1.4 Tests of Between-subject Effects (ANOVA) 

Three-way tests of between-subject effects (ANOVA) of bias, absolute bias, 

RMSE and SE of all the parameter estimates for the three simulated factors are presented 

in Tables 4.6, 4.7, 4.8, and 4.9 respectively. In the ANOVA tables, p-values are reported 

for statistical significance, and eta2 are reported for practical significance. The effects of 

the simulated factors are interpreted only when both statistical significance (p-values ≤ 

0.05) and practical significance (eta2 ≥ 5%) are achieved. Note that based on effect size 

category values by Cohen (1988) reviewed in Section 3.7 in Chapter 3, eta2 ≥ 5% is 

selected arbitrarily by the author and used as a criterion to identify practical importance. 

Bulleted conclusions follow the tables. 
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Table 4.6 Tests of Between-subject Effects on Bias of Item, Person and Group Parameter 

Estimates of Bifactor Models 

Item  a   b           
 p-value eta2 p-value eta2     
CI 0.0000 0.0136 0.0000 0.0641     
SS 0.0000 0.0959 0.0000 0.0036     
VR 0.0000 0.0500 0.0000 0.0127     
CI*SS 0.0000 0.0239 0.0000 0.0069     
CI*VR 0.0000 0.0229 0.0000 0.0286     
SS*VR 0.0000 0.0328 0.0000 0.0209     
CI*SS*VR 0.0000 0.0307 0.0000 0.0225     
Person G   G3   G4   G5   
 p-value eta2 p-value eta2 p-value eta2 p-value eta2 
CI 0.0000 0.0013 0.0611 0.0001 0.0967 0.0001 0.5941 0.0000 
SS 0.0000 0.0002 0.0009 0.0002 0.6057 0.0000 0.6379 0.0000 
VR 0.0000 0.0002 0.0000 0.0005 0.5002 0.0000 0.0088 0.0002 
CI*SS 0.0000 0.0005 0.0000 0.0012 0.4732 0.0001 0.1289 0.0001 
CI*VR 0.0000 0.0010 0.0266 0.0002 0.9833 0.0000 0.4682 0.0001 
SS*VR 0.0000 0.0005 0.0000 0.0009 0.0175 0.0002 0.0687 0.0001 
CI*SS*VR 0.0000 0.0009 0.0000 0.0006 0.8099 0.0001 0.0052 0.0003 
Group mean   variance           
 p-value eta2 p-value eta2     
CI 0.0121 0.1279 0.4225 0.0248     
SS 0.3489 0.0268 0.2946 0.0353     
VR 0.2471 0.0360 0.7070 0.0099     
CI*SS 0.6861 0.0279 0.9477 0.0102     
CI*VR 0.0945 0.1082 0.6417 0.0357     
SS*VR 0.1554 0.0888 0.9082 0.0142     
CI*SS*VR 0.0680 0.2085 0.4900 0.1066         

• The number of common items affects the bias of difficulty-related scalar parameter 

estimates and group mean parameter estimates significantly and explains 6.41% (small 

effect) and 12.79% (medium effect) of the total variances respectively.  

• Sample size affects the bias of discrimination parameter estimates significantly and 

explains 9.59% (medium effect) of the total variance.  

• Degree of construct shift (or grade-specific variance) affects the bias of the group mean 

parameter estimates significantly and explains 12.79% (medium effect) of the total 

variance. 
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Table 4.7 Tests of Between-subject Effects on Absolute Bias of Item, Person and Group 
Parameter Estimates of Bifactor Models 

Item  a   b           
 p-value eta2 p-value eta2     
CI 0.0353 0.0015 0.0345 0.0017     
SS 0.0000 0.0815 0.0000 0.0422     
VR 0.0000 0.0481 0.4364 0.0004     
CI*SS 0.9359 0.0002 0.2432 0.0013     
CI*VR 0.0000 0.0057 0.0655 0.0022     
SS*VR 0.0631 0.0020 0.1220 0.0018     
CI*SS*VR 0.0032 0.0051 0.8217 0.0011      
Person G   G3   G4   G5   
 p-value eta2 p-value eta2 p-value eta2 p-value eta2 
CI 0.1016 0.0000 0.3207 0.0000 0.5983 0.0000 0.6887 0.0000 
SS 0.0000 0.0004 0.0063 0.0002 0.1554 0.0001 0.0007 0.0002 
VR 0.0000 0.0483 0.0000 0.0287 0.0000 0.0345 0.0000 0.0312 
CI*SS 0.6900 0.0000 0.0000 0.0005 0.1206 0.0001 0.8023 0.0000 
CI*VR 0.5938 0.0000 0.0358 0.0002 0.9976 0.0000 0.2208 0.0001 
SS*VR 0.0005 0.0001 0.0463 0.0001 0.9976 0.0000 0.6905 0.0000 
CI*SS*VR 0.8502 0.0000 0.0000 0.0006 0.8443 0.0001 0.1812 0.0002 
Group mean   variance           
 p-value eta2 p-value eta2     
CI 0.0539 0.0886 0.5283 0.0172     
SS 0.0412 0.0978 0.2077 0.0431     
VR 0.1123 0.0645 0.4176 0.0236     
CI*SS 0.3369 0.0648 0.7732 0.0239     
CI*VR 0.1742 0.0936 0.6241 0.0350     
SS*VR 0.1215 0.1093 0.8874 0.0151     
CI*SS*VR 0.4225 0.1146 0.3448 0.1228         

 

• Sample size affects the absolute bias of discrimination parameter estimates and 

the group mean parameter estimates significantly and explains 8.15% and 9.78% 

(medium effects) of the total variances respectively. 
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Table 4.8 Tests of Between-subject Effects on RMSE of Item, Person and Group 
Parameter Estimates of Bifactor Models 

Item  a   b           
 p-value eta2 p-value eta2     
CI 0.0532 0.0014 0.0581 0.0014     
SS 0.0000 0.0439 0.0000 0.0223     
VR 0.0000 0.0101 0.6137 0.0002     
CI*SS 0.8551 0.0003 0.4299 0.0010     
CI*VR 0.5413 0.0008 0.5324 0.0008     
SS*VR 0.8355 0.0004 0.7809 0.0004     
CI*SS*VR 0.2362 0.0025 0.9655 0.0006     
Person G   G3   G4   G5   
 p-value eta2 p-value eta2 p-value eta2 p-value eta2 
CI 0.0478 0.0000 0.3939 0.0000 0.3944 0.0000 0.7289 0.0000 
SS 0.0000 0.0007 0.0000 0.0004 0.0159 0.0001 0.0000 0.0005 
VR 0.0000 0.0671 0.0000 0.0321 0.0000 0.0383 0.0000 0.0341 
CI*SS 0.4768 0.0000 0.0000 0.0005 0.0539 0.0001 0.6528 0.0000 
CI*VR 0.2859 0.0000 0.0232 0.0002 0.9679 0.0000 0.0720 0.0001 
SS*VR 0.0000 0.0001 0.0266 0.0002 0.9205 0.0000 0.5188 0.0000 
CI*SS*VR 0.6343 0.0000 0.0000 0.0008 0.6833 0.0001 0.0223 0.0003 
Group mean   variance           
 p-value eta2 p-value eta2     
CI 0.0597 0.0820 0.6007 0.0125     
SS 0.0069 0.1574 0.0077 0.1291     
VR 0.0942 0.0675 0.4293 0.0208     
CI*SS 0.3504 0.0606 0.8020 0.0198     
CI*VR 0.2313 0.0782 0.5849 0.0347     
SS*VR 0.1274 0.1031 0.8637 0.0155     
CI*SS*VR 0.5020 0.0982 0.3341 0.1134         

 

• Sample size affects the RMSE of group mean and grade-specific variance 

estimates significantly and explains 15.74% and 12.91% (medium effects) of the 

total variances respectively.  

• Degree of construct shift (or grade-specific variance) only affects the RMSE of 

the general dimension person parameter estimates significantly and explains 6.71% 

(small effect) of the total variance. 
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Table 4.9 Tests of Between-subject Effects on SE of Item, Person and Group Parameter 
Estimates of Bifactor Models 

Item  a   b           
 p-value eta2 p-value eta2     
CI 0.0904 0.0011 0.0269 0.0018     
SS 0.0000 0.0714 0.0000 0.0233     
VR 0.0004 0.0037 0.5724 0.0003     
CI*SS 0.4593 0.0009 0.3972 0.0010     
CI*VR 0.6154 0.0006 0.7418 0.0005     
SS*VR 0.3615 0.0010 0.9484 0.0002     
CI*SS*VR 0.9331 0.0007 0.9709 0.0006     
Person G   G3   G4   G5   
 p-value eta2 p-value eta2 p-value eta2 p-value eta2 
CI 0.0000 0.0001 0.0000 0.0008 0.0000 0.0019 0.0729 0.0001 
SS 0.0000 0.0134 0.0000 0.0887 0.0000 0.0123 0.0000 0.0505 
VR 0.0000 0.4785 0.0000 0.1037 0.0000 0.1223 0.0000 0.0834 
CI*SS 0.0000 0.0001 0.0000 0.0074 0.0000 0.0030 0.0000 0.0082 
CI*VR 0.0000 0.0005 0.0000 0.0036 0.0000 0.0036 0.0000 0.0068 
SS*VR 0.0000 0.0011 0.0000 0.0006 0.0000 0.0066 0.0000 0.0023 
CI*SS*VR 0.0000 0.0010 0.0000 0.0198 0.0000 0.0038 0.0000 0.0168 
Group mean   variance           
 p-value eta2 p-value eta2     
CI 0.0449 0.0216 0.4551 0.0023     
SS 0.0000 0.7745 0.0000 0.8503     
VR 0.0056 0.0391 0.0486 0.0094     
CI*SS 0.3241 0.0151 0.0500 0.0149     
CI*VR 0.1155 0.0254 0.0105 0.0214     
SS*VR 0.2369 0.0183 0.6086 0.0040     
CI*SS*VR 0.5265 0.0224 0.1577 0.0184         

• Sample size affects the SE of discrimination parameter estimates, grade 3 and grade 5 

dimension person parameter estimates significantly and explains 7.14%, 8.87% (medium 

effects) and 5.05% (small effect) of the total variances respectively; sample size affects 

the SE of group mean and grade-specific variance parameter estimates significantly and 

explains 77.45% and 85.03% (large effects) of the total variances respectively.  

• Degree of construct shift (or grade-specific variance) affects the SE of person parameter 

estimates on the general dimension significantly and explains 47.85% (large effect); it 

also affects the SE of person parameter estimates on the grades 3, 4 and 5 dimensions 

significantly and explains 10.37%, 12.23% and 8.34% (medium effects) of the total 

variances respectively. 
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4.1.5 Summary of the Main Findings  

Item discrimination parameter estimates on the general dimension and item 

difficulty-related scalar parameter estimates are overall well recovered by the bifactor 

model estimations across the simulated factors. It is expected and confirmed by the 

results that (1) with the increase of the sample size, the estimation accuracy of the two 

item parameters increases; (2) with the increase of the degree of construct shift (or the 

variance of grade-specific dimension), the estimation accuracy of the item discrimination 

parameters on the general dimension decreases.  

Person parameter estimates of the general dimension are better recovered than 

that of the grade-specific dimensions when the degree of construct shift is small or 

moderate (or the variance of grade-specific dimension is 0.25 or 0.50); person parameter 

estimates of the general dimension are about equally recovered to that of the grade-

specific dimensions when the degree of construct shift is large (or the variance of grade-

specific dimension is 1.00). It is also found that (1) the reliability of the person parameter 

estimates of the general dimension is higher than that of the grade-specific dimensions 

for all simulated conditions; (2) with the increase of the sample size, the estimation 

accuracy of the person parameters of both the general and grade-specific dimensions 

increases. 

Group mean parameters are well recovered across the simulated conditions; 

grade-specific variance parameters are also well recovered but overestimated in a very 

little amount.  

 

 



83 
 

4.2 Parameter Recovery of UIRT Models 

The results of UIRT model estimation are described and presented in three sets of 

parameter estimates, which are item parameter estimates (Section 4.2.1), person 

parameter estimates (Section 4.2.2) and group parameter estimates (Section 4.2.3). Then, 

tests of between-subject effects, or three-way analysis of variances (ANOVA) are 

examined (Section 4.2.4) for the statistical effects of the three simulated factors.   Finally, 

a summary of the main findings is presented (Section 4.2.5). 

 

4.2.1 Item Parameter Recovery 

The two item parameter estimates of UIRT models are item discrimination 

parameter estimates on the single latent dimension and the difficulty-related scalar 

parameter estimates (this is to be consistent with the difficulty-related scalar parameter 

estimates in the bifactor models for comparison purposes). Aggregated bias, absolute bias, 

RMSE and SE of item parameter estimates of UIRT models for each of the 27 simulated 

conditions are presented in Table 4.10. 

Biases of discrimination parameter estimates are all positive ranging from 0.1442 

to 0.5783, indicating that they are overestimated quite a lot. Patterns are found for the 

simulated factors on the degree of construct shift and sample size; that is (1) with the 

increase of grade-specific variance, the bias also increases; (2) within the increase of 

sample size, the bias decreases. Biases of difficulty-related scalar parameter estimates are 

not biased toward in any direction due to the existence of both positive and negative 

values ranging from -0.1036 to 0.1046. No trends are found for the simulated factors due 
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to positive and negative values canceling out while computing the aggregated biased over 

replications.  

Absolute biases of discrimination parameter estimates range from 0.1578 to 

0.5794; it provides another indicator that the deviations from the true parameters are quite 

large. Absolute biases of difficulty-related scalar parameter estimates range from 0.0849 

to 0.2289, indicating small deviations from the true parameters. For both discrimination 

and difficulty-related scalar parameter estimates, patterns are found for the simulated 

factors on the degree of construct shift and sample size; that is (1) with the increase of 

grade-specific variance, the absolute bias also increases; (2) within the increase of sample 

size, the absolute bias decreases. 

RMSE of discrimination parameter estimates range from 0.1758 to 0.6070, 

indicating that the overall estimation accuracy is not that satisfactory (compared with that 

from bifactor models); RMSE of difficulty-related scalar parameter estimates range from 

0.1062 to 0.2818, indicating reasonable overall estimation accuracy. For both 

discrimination and difficulty-related scalar parameter estimates, patterns are found for the 

simulated factors on the degree of construct shift and sample size; that is (1) with the 

increase of grade-specific variance, the RMSE also increases; (2) within the increase of 

sample size, the RMSE decreases. 

SE of discrimination parameter estimates range from 0.0684 to 0.1671, indicating 

that the stability of the estimates is small and satisfactory; SE of difficulty-related scalar 

parameter estimates range from 0.0957 to 0.2585, indicating that the stability of the 

estimates is satisfactory. For both discrimination and difficulty-related scalar parameter 

estimates, patterns are found for the simulated factors on the degree of construct shift and 
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sample size; that is (1) with the increase of grade-specific variance, the SE also increases 

slightly; (2) within the increase of sample size, the SE decreases. 

Graphical representations of aggregated bias, absolute bias, RMSE and SE for 

item parameters of UIRT models are shown in Figures 4.11a through 4.18c together with 

that of bifactor models.  
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Table 4.10 Bias, Absolute Bias, RMSE, and SE of Item Parameter Estimate of UIRT 
models 

      Discrimination parameter (a) estimate  Scalar parameter (b) estimate 
    VR    VR  
  SS  CI  0.25 0.50 1.00  0.25 0.50 1.00 

BIAS 1000 12 0.1603 0.3318 0.5379  0.0012 0.0271 -0.1520 
  18 0.1751 0.3233 0.5783  -0.0745 -0.0832 -0.0134 
  24 0.1472 0.2802 0.5322  0.0386 0.1340 0.0797 
 2000 12 0.1670 0.2944 0.5579  0.0552 -0.0597 -0.0180 
  18 0.1692 0.3142 0.5175  -0.0766 -0.0554 -0.0111 
  24 0.1442 0.2750 0.5383  0.1046 0.1200 0.0706 
 4000 12 0.1573 0.2956 0.5342  -0.0362 -0.0559 -0.1036 
  18 0.1662 0.2961 0.4961  -0.0242 -0.0529 -0.0499 
    24 0.1579 0.2804 0.5268  0.0735 0.0961 0.0540 
Abs_BIAS 1000 12 0.1903 0.3403 0.5386  0.1580 0.1761 0.2289 
  18 0.1976 0.3315 0.5794  0.1688 0.1950 0.2061 
  24 0.1736 0.2897 0.5331  0.1577 0.1964 0.2277 
 2000 12 0.1790 0.2978 0.5581  0.1273 0.1407 0.1554 
  18 0.1795 0.3170 0.5178  0.1289 0.1276 0.1661 
  24 0.1587 0.278 0.5383  0.1443 0.1740 0.1622 
 4000 12 0.1624 0.2962 0.5342  0.0918 0.1058 0.1489 
  18 0.1704 0.2971 0.4962  0.0849 0.1046 0.1224 
    24 0.1618 0.2810 0.5268  0.1034 0.1316 0.1310 

RMSE 1000 12 0.2294 0.3745 0.5675  0.2009 0.2203 0.2818 
  18 0.2396 0.3662 0.6070  0.2300 0.2444 0.2640 
  24 0.2084 0.3271 0.5588  0.1969 0.2586 0.2810 
 2000 12 0.2039 0.3190 0.5728  0.1597 0.1744 0.1930 
  18 0.2049 0.3362 0.5330  0.1663 0.1585 0.2073 
  24 0.1818 0.2974 0.5512  0.176 0.2079 0.1999 
 4000 12 0.1785 0.3080 0.5418  0.1132 0.1290 0.1756 
  18 0.1853 0.3084 0.5039  0.1062 0.1263 0.1489 
    24 0.1758 0.2918 0.5335  0.1247 0.1581 0.1590 

SE 1000 12 0.1523 0.1576 0.1671  0.1975 0.2104 0.2238 
  18 0.1538 0.1548 0.1664  0.2125 0.2191 0.2543 
  24 0.1379 0.1493 0.1556  0.1892 0.2096 0.2585 
 2000 12 0.1066 0.1095 0.1178  0.1448 0.1547 0.1749 
  18 0.1039 0.1062 0.1130  0.139 0.1404 0.1912 
  24 0.0988 0.1005 0.1078  0.1363 0.1621 0.1749 
 4000 12 0.0748 0.0770 0.0827  0.1018 0.1046 0.1273 
  18 0.0726 0.0750 0.0775  0.0983 0.1032 0.1253 
    24 0.0684 0.0716 0.0762   0.0957 0.1178 0.1340 
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4.2.2 Person Parameter Recovery 

4.2.2.1 Aggregated Errors of Person Parameter Estimates 

Aggregated bias, absolute bias, RMSE and SE of person parameter estimates of 

UIRT models for each of the 27 simulated conditions are presented in Table 4.11. 

Graphical representations of these aggregated errors of UIRT models are presented in 

Figures 4.19a through 4.22c together with that of bifactor models for comparisons. 

Biases of person parameter estimates are small in magnitude with both positive 

and negative values ranging from -0.0649 to 0.0696, indicating that when averaging over 

replications, the person parameter estimates are not biased in any direction. No particular 

patterns are found for the person parameter estimates over the simulated conditions, due 

to positive and negative bias values canceling out while computing the aggregated bias 

over replications.  

Absolute biases of person parameter estimates range from 0.3884 to 0.6548, 

indicating relatively large deviations from the true parameters. With the increase of 

degree of construct shift (or grade-specific variance), the absolute bias also increases. 

RMSEs of person parameter estimates range from 0.4309 to 0.6876, indicating the 

overall estimation accuracy is large and unsatisfactory. With the increase of degree of 

construct shift (or grade-specific variance), the RMSE also increases. 

SEs of person parameter estimates range from 0.1889 to 0.2115, indicating that 

the estimates are quite stable across replications. With the increase of degree of construct 

shift (or grade-specific variance), the SE decreases slightly.  
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Table 4.11 Bias, Absolute Bias, RMSE, and SE of Person Parameter Estimate of UIRT 

Models 

       Single latent dimension  
    VR  
  SS  CI  0.25 0.50 1.00 

BIAS 1000 12 0.0001 -0.0309 0.0696 
  18 0.0310 0.0444 -0.0139 
  24 -0.0114 -0.0571 -0.0247 
 2000 12 -0.0240 0.0159 0.0037 
  18 0.0496 0.0286 0.0024 
  24 -0.0593 -0.0694 -0.0443 
 4000 12 0.0170 0.0345 0.0448 
  18 0.0094 0.0248 0.0215 
    24 -0.0356 -0.0406 -0.0249 
Abs_BIAS 1000 12 0.4031 0.5150 0.6447 
  18 0.3884 0.5138 0.6481 
  24 0.4056 0.5128 0.6514 
 2000 12 0.4000 0.5195 0.6488 
  18 0.4010 0.5082 0.6548 
  24 0.4042 0.5097 0.6396 
 4000 12 0.3979 0.5132 0.6426 
  18 0.4008 0.5136 0.6466 
    24 0.3975 0.5126 0.6430 

RMSE 1000 12 0.4459 0.5532 0.6775 
  18 0.4309 0.5518 0.6822 
  24 0.4495 0.5508 0.6872 
 2000 12 0.4422 0.5568 0.6803 
  18 0.4423 0.5449 0.6876 
  24 0.4467 0.5482 0.6731 
 4000 12 0.4397 0.5493 0.6738 
  18 0.4420 0.5496 0.6783 
    24 0.4390 0.5501 0.6751 

SE 1000 12 0.2087 0.2024 0.1967 
  18 0.2039 0.2031 0.2011 
  24 0.2115 0.2024 0.2089 
 2000 12 0.2049 0.2001 0.1913 
  18 0.2010 0.1963 0.1964 
  24 0.2058 0.2038 0.1969 
 4000 12 0.2027 0.1952 0.1889 
  18 0.2007 0.1949 0.1909 
    24 0.2021 0.1998 0.1924 
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4.2.2.2 Aggregated Correlation and Reliability of Person Parameter Estimates 

In addition to examining the aggregated errors such as bias, absolute bias, RMSE 

and SE of person parameter estimates, correlations of the true person parameters of the 

general dimension of bifactor models, and estimated person parameters of UIRT models 

can be obtained.  These will help us investigate how closely the rank order of the true 

parameters is recovered using UIRT models. Before computing the aggregated 

correlation for each simulated condition, the scatter plots are obtained to examine the 

linearity between the true person parameter and estimated person parameters. Only a 

single replication under the condition of 12 common items, 1000 examinees’ per grade 

and the 0.25 grade-specific variance condition is presented in Figures 4.10 for illustration 

purposes. 

After confirming the linearity, aggregated correlations of the true and estimated 

parameters are computed for each of the 27 simulated conditions and presented in Table 

4.12. When the construct shift is small (e.g., grade-specific variances are 0.25), the 

aggregated correlations are highest with values ranging from 0.8890 to 0.8975; when the 

construct shift is large (e.g., grade-specific variances are 1.00), the aggregated 

correlations are lowest with values ranging from 0.7132 to 0.7319. In other words, with 

the increase of the degree of construct shift, the recovery of the rank order of the UIRT 

person parameter estimates decreases.  

Reliability of person parameter estimates is computed as the squared correlation 

between the true and estimated person parameters. The aggregated reliability for each of 

the 27 simulated conditions is presented in Table 4.13.  A similar pattern is found for the 

aggregated reliability; that is, with the increase of the degree of construct shift, the 

reliability of the UIRT person parameters decreases. 
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Figure 4.10 Scatter Plot of True Person Parameters of the Bifactor General Dimension and 

Estimated UIRT Person Parameter 

 

Table 4.12 Correlation of UIRT Person Parameter Estimates and Generated True Parameters  

    
 Correlation of UIRT person 

estimated and true parameters 
   VR  

SS  CI  0.25 0.50 1.00 
1000 12 0.8900 0.8206 0.7315 

 18 0.8975 0.8241 0.7223 
 24 0.8898 0.8257 0.7221 

2000 12 0.8938 0.8143 0.7237 
 18 0.8910 0.8288 0.7132 
 24 0.8890 0.8269 0.7319 

4000 12 0.8912 0.8210 0.7254 
 18 0.8912 0.8239 0.7222 
  24 0.8942 0.8257 0.7300 

 
Table 4.13 Reliability of Person Parameter Estimates of UIRT Models 

    
 Reliability of person parameter 

estimates of UIRT models 
   VR  

SS  CI  0.25 0.50 1.00 
1000 12 0.7921 0.6734 0.5351 

 18 0.8056 0.6792 0.5217 
 24 0.7917 0.6818 0.5214 

2000 12 0.7988 0.6631 0.5238 
 18 0.7938 0.6870 0.5087 
 24 0.7903 0.6837 0.5357 

4000 12 0.7943 0.6740 0.5262 
 18 0.7942 0.6787 0.5216 
  24 0.7996 0.6817 0.5329 
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4.2.3 Group Parameter Recovery 

Group mean estimates of the person parameters on the single latent dimension are 

the only group parameter estimates in the UIRT model. The aggregated bias, absolute 

bias, RMSE and SE of the group mean parameter estimates are presented in Table 4.14. 

Graphical presentations for group mean estimates of the UIRT models together with that 

of the bifactor models are shown in Figures 4.23a through 4.26c for comparisons. 

Biases of the group mean estimates of the person parameters are small in 

magnitude with both positive and negative values ranged from -0.0723 to 0.0825, 

indicating that on average, the group mean estimates are not biased in any direction. No 

particular patterns are found for the simulated conditions, due to the fact that positive and 

negative bias values are canceled out while computing the aggregated bias over 

replications.  

Absolute biases of the group mean estimates range from 0.0529 to 0.1667. With 

the increase of the degree of construct shift (or grade-specific variance), the absolute bias 

also increases.  

RMSEs of the group mean estimates range from 0.0611 to 0.1831. With the 

increase of the degree of construct shift (or grade-specific variance), the RMSE also 

increases.  

SEs of the group mean estimates range from 0.0297 to 0.0913. Patterns are found 

for the simulated factors on sample size and degree of construct shift (or grade-specific 

variance); they are (1) as the sample size increases, the SE decreases; (2) as the degree of 

construct shift increases, the SE increases slightly.  
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Table 4.14 Bias, Absolute Bias, RMSE, and SE of Group Mean Parameter Estimates of 
UIRT Models 

      
 Group mean estimate  

for the single latent dimension 
    VR  
  SS  CI  0.25 0.50 1.00 

BIAS 1000 12 0.0294 -0.0343 0.1034 
  18 0.0397 0.0825 -0.0107 
  24 0.0130 -0.0500 -0.0076 
 2000 12 -0.0402 0.0550 0.0070 
  18 0.0504 0.0316 0.0161 
  24 -0.0723 -0.0478 -0.0210 
 4000 12 0.0334 0.0168 0.0432 
  18 0.0192 0.0148 0.0264 
    24 -0.0299 -0.0462 -0.0220 
Abs_BIAS 1000 12 0.0593 0.0937 0.1382 
  18 0.0580 0.1071 0.1667 
  24 0.0612 0.0886 0.1427 
 2000 12 0.0529 0.0884 0.1011 
  18 0.0741 0.0690 0.1485 
  24 0.0828 0.0916 0.1223 
 4000 12 0.0595 0.0651 0.1179 
  18 0.0569 0.0814 0.1184 
    24 0.0530 0.0649 0.0960 

RMSE 1000 12 0.0704 0.1083 0.1505 
  18 0.0690 0.1209 0.1831 
  24 0.0738 0.1013 0.1669 
 2000 12 0.0637 0.1001 0.1142 
  18 0.0809 0.0785 0.1616 
  24 0.0921 0.1064 0.1368 
 4000 12 0.0674 0.0735 0.1253 
  18 0.0644 0.0871 0.1259 
    24 0.0611 0.0739 0.1078 

SE 1000 12 0.0572 0.0639 0.0658 
  18 0.0489 0.0654 0.0787 
  24 0.0672 0.0581 0.0913 
 2000 12 0.0453 0.0517 0.0560 
  18 0.0334 0.0396 0.0638 
  24 0.0481 0.0613 0.0626 
 4000 12 0.0332 0.0340 0.0423 
  18 0.0297 0.0311 0.0425 
    24 0.0354 0.0458 0.0489 
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4.2.4 Tests of Between-subject Effects (ANOVA) 

Three-way tests of between-subject effects (ANOVA) of bias, absolute bias, 

RMSE and SE of all the parameter estimates for the three simulated factors are presented 

in Tables 4.15, 4.16, 4.17, and 4.18 respectively. In the ANOVA tables, p-values are 

reported for statistical significance, and eta2 are reported for practical significance. The 

effects of the simulated factors are interpreted only when both statistical significance (p-

values ≤ 0.05) and practical significance (eta2  ≥ 5%) are achieved. Bulleted conclusions 

follow the tables. 
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Table 4.15 Tests of Between-subject Effects on Bias of Item, Person and Group 
Parameter Estimates of UIRT Models 

Item  a   b   
 p-value eta2 p-value eta2 
CI 0.0000 0.0019 0.0000 0.3238 
SS 0.0000 0.0016 0.0000 0.0106 
VR 0.0000 0.7458 0.0000 0.011 
CI*SS 0.0000 0.0016 0.0000 0.0109 
CI*VR 0.0000 0.0012 0.0000 0.0639 
SS*VR 0.0000 0.0009 0.0000 0.016 
CI*SS*VR 0.0000 0.0024 0.0000 0.048 
Person G       
 p-value eta2   
CI 0.0000 0.0014   
SS 0.0000 0.0001   
VR 0.0699 0.0000   
CI*SS 0.0000 0.0002   
CI*VR 0.0000 0.0003   
SS*VR 0.0083 0.0001   
CI*SS*VR 0.0000 0.0003     
Group mean       
 p-value eta2   
CI 0.2873 0.0793   
SS 0.8844 0.0075   
VR 0.9507 0.0031   
CI*SS 0.9966 0.0050   
CI*VR 0.9439 0.0225   
SS*VR 0.9808 0.0124   
CI*SS*VR 0.9866 0.0507     

• The number of common items affects the bias of difficulty-related scalar parameter 

estimates significantly and explains 32.38% (large effect) of the total variance.  

• Degree of construct shift (or grade-specific variance) affects the bias of the 

discrimination parameter estimates significantly and explains 74.58% (large effect) of the 

total variance.  

• The interaction between the number of common item and the degree of construct shift 

affects the bias of difficulty-related scalar parameter significantly and explains 6.39% 

(small effect) of the total variance. 
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Table 4.16 Tests of Between-subject Effects on Absolute Bias of Item, Person and Group 
Parameter Estimates of UIRT Models 

Item  a   b   
 p-value eta2 p-value eta2 
CI 0.0000 0.002 0.0010 0.0031 
SS 0.0000 0.0042 0.0000 0.0924 
VR 0.0000 0.7358 0.0000 0.0284 
CI*SS 0.0001 0.0015 0.2365 0.0012 
CI*VR 0.0015 0.0011 0.0151 0.0028 
SS*VR 0.4243 0.0002 0.0183 0.0027 
CI*SS*VR 0.0000 0.0026 0.0641 0.0033 
Person G       
 p-value eta2   
CI 0.8847 0.0000   
SS 0.5209 0.0000   
VR 0.0000 0.0550   
CI*SS 0.4139 0.0000   
CI*VR 0.2772 0.0000   
SS*VR 0.8417 0.0000   
CI*SS*VR 0.5040 0.0000     
Group mean       
 p-value eta2   
CI 0.7369 0.0117   
SS 0.3477 0.0415   
VR 0.0006 0.3690   
CI*SS 0.9619 0.0112   
CI*VR 0.9501 0.0131   
SS*VR 0.8673 0.0236   
CI*SS*VR 0.9973 0.0196     

 

• Sample size affects the absolute bias of difficulty-related scalar parameter 

estimates significantly and explains 9.24% (medium effects) of the total variance.  

• Degree of construct shift (or grade-specific variance) affects the absolute bias of 

the discrimination parameter estimates, the UIRT person parameter estimates, and 

the group mean parameter estimates significantly and explains 73.58% (large 

effect),  5.05% (small effect), and 36.90% (large effect) of the total variances 

respectively. 
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Table 4.17 Tests of Between-subject Effects on RMSE of Item, Person and Group 
Parameter Estimates of UIRT Models 

Item  a   b   
 p-value eta2 p-value eta2 
CI 0.0000 0.0024 0.0943 0.0011 
SS 0.0000 0.0141 0.0000 0.0614 
VR 0.0000 0.6978 0.0000 0.0133 
CI*SS 0.0002 0.0016 0.5249 0.0008 
CI*VR 0.0070 0.0010 0.0979 0.0019 
SS*VR 0.5261 0.0002 0.3349 0.0011 
CI*SS*VR 0.0001 0.0023 0.6083 0.0015 
Person G       
 p-value eta2  
CI 0.7096 0.0000   
SS 0.0508 0.0000   
VR 0.9009 0.0000   
CI*SS 0.6296 0.0000   
CI*VR 0.5553 0.0000   
SS*VR 0.0708 0.0000   
CI*SS*VR 0.9666 0.0000     
Group mean       
 p-value eta2  
CI 0.7624 0.0093   
SS 0.1675 0.0648   
VR 0.0002 0.3974   
CI*SS 0.9590 0.0105   
CI*VR 0.9418 0.0129   
SS*VR 0.8103 0.0268   
CI*SS*VR 0.9955 0.0204     

 

• Sample size affects the RMSE of difficulty-related scalar parameter estimates 

significantly and explains 6.14% (small effects) of the total variance.  

• Degree of construct shift (or grade-specific variance) affects the RMSE of the 

discrimination and group mean parameter estimates significantly and explains 

69.78% and 39.74% (large effects) of the total variances respectively. 
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Table 4.18 Tests of Between-subject Effects on SE of Item, Person and Group Parameter 
Estimates of UIRT Models 

Item  a   b   
 p-value eta2 p-value eta2 
CI 0.0009 0.0008 0.6844 0.0002 
SS 0.0000 0.0614 0.0000 0.0715 
VR 0.0000 0.0011 0.0000 0.0097 
CI*SS 0.7572 0.0001 0.6265 0.0006 
CI*VR 0.9779 0.0000 0.5124 0.0008 
SS*VR 0.7148 0.0001 0.8805 0.0003 
CI*SS*VR 0.9993 0.0000 0.9241 0.0007 
Person G       
 p-value eta2   
CI 0.0000 0.0020   
SS 0.0000 0.0065   
VR 0.0000 0.0078   
CI*SS 0.0000 0.0002   
CI*VR 0.0000 0.0011   
SS*VR 0.0000 0.0007   
CI*SS*VR 0.0000 0.0010     
Group M       
 p-value eta2   
CI 0.0000 0.0741   
SS 0.0000 0.5790   
VR 0.0000 0.2189   
CI*SS 0.0105 0.0071   
CI*VR 0.0000 0.0301   
SS*VR 0.0001 0.0154   
CI*SS*VR 0.0000 0.0636     

• The number of common items affects the SE of the group mean parameter estimates 

significantly and explains 7.41% (medium) of the total variance.  

• Sample size affects the SE of discrimination and difficulty-related scalar parameter 

estimates significantly and explains 6.14% (small effect) and 7.15% (medium effect) of 

the total variances respectively; sample size also affects the SE of group mean parameter 

estimates significantly and explains 57.90% (large effect) of the total variance.  

• Degree of construct shift (or grade-specific variance) affects the SE of group mean 

parameter estimates significantly and explains 21.89% (large effect) of the total variance.  
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4.2.5 Summary of the Main Findings  

Item discrimination parameters are greatly overestimated, while item difficulty-

related scalar parameters are well recovered. For both item parameter estimates, it is 

found that (1) with the increase of the sample size, the estimation accuracy increases; (2) 

with the increase of the degree of construct shift (or the variance of grade-specific 

dimension), the estimation accuracy decreases. In addition, large practical and statistical 

effects due to the degree of construct shift are found for the estimation errors of the item 

discrimination parameters.  

Person parameters estimates become less accurate as the degree of construct shift 

(or the variance of grade-specific dimension) increases. Reliability of person parameter 

estimates becomes lower as the degree of construct shift increases. 

Group mean parameter estimates become less accurate as the degree of construct 

shift (or the variance of grade-specific dimension) increases. Furthermore, large practical 

and statistical effects due to the degree of construct shift are found for the estimation 

errors of the group mean parameters.  

 

4.3 Comparison of Estimation Results from Bifactor and UIRT Models  

4.3.1 Comparison of Item Parameter Recovery 

One set of comparisons is made between item discrimination parameter estimates 

of the general dimension in the bifactor model and item discrimination parameter 

estimates in the UIRT model. Graphical comparisons of bias, absolute bias, RMSE and 

SE for item discrimination parameter estimates from both bifactor and UIRT models are 

presented in Figures 4.11a through 4.14c. 
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Figures 4.11a through c on bias indicate that item discrimination parameters of 

bifactor models are underestimated a little bit; that of UIRT models are overestimated 

quite a lot, and the extent of overestimation in UIRT models increases as the degree of 

construct shift (or variance of grade-specific dimensions) increases. 

Figures 4.12 a through c on absolute bias and Figures 4.13 a through c on RMSE 

confirmed the inaccurate estimation of item discrimination parameters in UIRT models 

and relatively accurate estimation in bifactor models. The figures also show that, as the 

degree of construct shift (or variance of grade-specific dimensions) increases, (1) the 

errors of the estimates from bifactor models are smaller and more stable, while (2) that of  

UIRT models are larger and increasing.  

Figures 4.14 a through c on SE indicate that the stability of item discrimination 

parameter estimates of UIRT models are better than that of bifactor models; but which is 

less obvious with the increase of the sample size.  

Another set of comparisons is made between the two item difficulty-related scalar 

parameter estimates in both the bifactor and UIRT models. Graphical comparisons of bias, 

absolute bias, RMSE and SE for item difficulty-related scalar parameter estimates from 

both bifactor and UIRT models are presented in Figures 4.15a through 4.18c. 

Figures 4.15 a through c on bias indicate that item difficulty-related scalar 

parameter estimates from both bifactor and UIRT models are not biased due to the 

positive and negative values canceling out. No patterns are found due to positive and 

negative values canceling while computing the aggregated bias over replications. 



100 
 

Figures 4.16 a through c on absolute bias indicate that the errors of item 

difficulty-related scalar parameter estimates of bifactor models are less than that of UIRT 

models; but the differences are reduce as the sample size increases. 

Figures 4.17 a through c on RMSE and Figures 4.18 a through c on SE indicate 

that the errors of item difficulty-related scalar parameter estimates of bifactor and UIRT 

models are about the same; but as the sample size increases, that of bifactor models tend 

to be a little bit smaller than that of UIRT models. 

 

4.3.2 Comparison of Person Parameter Recovery 

Comparisons are made between the person parameter estimates of the general 

dimension in the bifactor model and the person parameter estimates in the UIRT model. 

This comparison is made because these two parameter estimates would be expected to 

have similar constructs. Another possible comparison can be made between the average 

of the general ability and the grade-specific ability in the bifactor model and the single 

latent ability in the UIRT model.   Averaging the general ability and the grade specific 

ability seems to the author to be questionable and was therefore avoided in these 

comparisons. 

Graphical comparisons of bias, absolute bias, RMSE and SE for the person 

parameter estimates from both bifactor and UIRT models are presented in Figures 4.19a 

through 4.22c. 

Figures 4.19 a through c on bias indicate that person parameters estimates from 

both bifactor and UIRT models are not biased in any direction. No directional patterns 

are found due to positive and negative values canceling out while computing the 

aggregated bias over replications. 
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Figures 4.20 a through c on absolute bias and Figures 4.21 a through c on RMSE 

indicate that the person parameter estimates of UIRT models are always less accurate 

than that of bifactor models even when the degree of construct shift is small; as the 

increase of the degree of construct shift occurs, the difference in accuracy of the 

estimates of UIRT models and that of bifactor models also increases. 

Figures 4.22 a through c on SE indicates that the stability of person parameter 

estimates of UIRT models is always better than that of bifactor models. Different patterns 

of the stability of person parameter estimates are found for bifactor and MIRT models; as 

the degree of construct shift increases, (1) the stability of person parameter estimates of 

bifactor models decreases, and (2) the stability of person parameter estimates of UIRT 

models increases slightly. 

 

4.3.3 Comparison of Group Parameter Recovery 

Comparisons are made between the group mean parameter estimates of the 

general dimension in the bifactor model and the group mean parameter estimates in the 

UIRT model. Graphical comparisons of bias, absolute bias, RMSE and SE for the group 

mean parameter estimates from both bifactor and UIRT models are presented in Figures 

4.23a through 4.26c. 

Figures 4.23 a through c on bias indicate that group mean parameter estimates 

from both bifactor and UIRT models are not biased in any direction due to the positive 

and negative values balancing each other out.  

Figures 4.24 a through c on absolute bias and Figures 4.25 a through c on RMSE 

indicate that the group mean parameter estimates of UIRT models are always less 
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accurate than that of bifactor models; as the increase of the degree of construct shift 

occurs, the degree of the relative inaccuracy of estimates of UIRT models also increases. 

Figure 4.26 a through c on SE indicates that the group mean parameter estimates 

of UIRT models are always less stable than that of bifactor models; as the degree of 

construct shift increases, the stability of estimates from both models keeps about the same; 

as sample size increases, the stability of estimates from both models increases. 
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Figure 4.11a Mean Bias of Item Discrimination Parameter Estimates at Sample Size of 1000 

 

Figure 4.11b Mean Bias of Item Discrimination Parameter Estimates at Sample Size of 2000 

 

Figure 4.11c Mean Bias of Item Discrimination Parameter Estimates at Sample Size of 4000 
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Figure 4.12a Mean Absolute Bias of Item Discrimination Parameter Estimates at Sample Size of 1000 

 
Figure 4.12b Mean Absolute Bias of Item Discrimination Parameter Estimates at Sample Size of 2000 

 
Figure 4.12c Mean Absolute Bias of Item Discrimination Parameter Estimates at Sample Size of 4000 
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Figure 4.13a Mean RMSE of Item Discrimination Parameter Estimates at Sample Size of 1000 

 

Figure 4.13b Mean RMSE of Item Discrimination Parameter Estimates at Sample Size of 2000 

 

Figure 4.13c Mean RMSE of Item Discrimination Parameter Estimates at Sample Size of 4000 
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Figure 4.14a Mean SE of Item Discrimination Parameter Estimates at Sample Size of 1000 

 

Figure 4.14b Mean SE of Item Discrimination Parameter Estimates at Sample Size of 2000 

 

Figure 4.14c Mean SE of Item Discrimination Parameter Estimates at Sample Size of 4000 
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Figure 4.15a Mean Bias of Item Difficulty-related Parameter Estimates at Sample Size of 1000 

 

Figure 4.15b Mean Bias of Item Difficulty-related Parameter Estimates at Sample Size of 2000 

 

Figure 4.15c Mean Bias of Item Difficulty-related Parameter Estimates at Sample Size of 4000 
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Figure 4.16a Mean Absolute Bias of Item Difficulty-related Parameter Estimates at Sample Size of 1000 

 
Figure 4.16b Mean Absolute Bias of Item Difficulty-related Parameter Estimates at Sample Size of 2000 

 
Figure 4.16c Mean Absolute Bias of Item Difficulty-related Parameter Estimates at Sample Size of 4000 
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Figure 4.17a Mean RMSE of Item Difficulty-related Parameter Estimates at Sample Size of 1000 

 

Figure 4.17b Mean RMSE of Item Difficulty-related Parameter Estimates at Sample Size of 2000 

 

Figure 4.17c Mean RMSE of Item Difficulty-related Parameter Estimates at Sample Size of 4000 

 



110 
 

Figure 4.18a Mean SE of Item Difficulty-related Parameter Estimates at Sample Size of 1000 

 

Figure 4.18b Mean SE of Item Difficulty-related Parameter Estimates at Sample Size of 2000 

 

Figure 4.18c Mean SE of Item Difficulty-related Parameter Estimates at Sample Size of 4000 
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Figure 4.19a Mean Bias of Person Parameter Estimates at Sample Size of 1000 

 

Figure 4.19b Mean Bias of Person Parameter Estimates at Sample Size of 2000 

 

Figure 4.19c Mean Bias of Person Parameter Estimates at Sample Size of 4000 
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Figure 4.20a Mean Absolute Bias of Person Parameter Estimates at Sample Size of 1000 

 

Figure 4.20b Mean Absolute Bias of Person Parameter Estimates at Sample Size of 2000 

 

Figure 4.20c Mean Absolute Bias of Person Parameter Estimates at Sample Size of 4000 
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Figure 4.21a Mean RMSE of Person Parameter Estimates at Sample Size of 1000 

 

Figure 4.21b Mean RMSE of Person Parameter Estimates at Sample Size of 2000 

 

Figure 4.21c Mean RMSE of Person Parameter Estimates at Sample Size of 4000 
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Figure 4.22a Mean SE of Person Parameter Estimates at Sample Size of 1000 

 

Figure 4.22b Mean SE of Person Parameter Estimates at Sample Size of 2000 

 

Figure 4.22c Mean SE of Person Parameter Estimates at Sample Size of 4000 
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Figure 4.23a Mean Bias of Group Mean Parameter Estimates at Sample Size of 1000 

 

Figure 4.23b Mean Bias of Group Mean Parameter Estimates at Sample Size of 2000 

 

Figure 4.23c Mean Bias of Group Mean Parameter Estimates at Sample Size of 4000 
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Figure 4.24a Mean Absolute Bias of Group Mean Parameter Estimates at Sample Size of 1000 

 

Figure 4.24b Mean Absolute Bias of Group Mean Parameter Estimates at Sample Size of 2000 

 

Figure 4.24c Mean Absolute Bias of Group Mean Parameter Estimates at Sample Size of 4000 
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Figure 4.25a Mean RMSE of Group Mean Parameter Estimates at Sample Size of 1000 

 

Figure 4.25b Mean RMSE of Group Mean Parameter Estimates at Sample Size of 2000 

 

Figure 4.25c Mean RMSE of Group Mean Parameter Estimates at Sample Size of 4000 
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Figure 4.26a Mean SE of Group Mean Parameter Estimates at Sample Size of 1000 

 

Figure 4.26b Mean SE of Group Mean Parameter Estimates at Sample Size of 2000 

 

Figure 4.26c Mean SE of Group Mean Parameter Estimates at Sample Size of 4000 
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4.3.4 Summary of the Main Findings 

Item discrimination parameter estimates are overestimated in UIRT models due to 

the effect of construct shift (or the variance of grade-specific dimension); item 

discrimination parameters are underestimated to a smaller degree in bifactor models. Item 

difficulty-related scalar parameters are well estimated in both UIRT and bifactor models, 

although bifactor model estimation results in somewhat smaller errors. 

Person parameter estimates of UIRT models are always less accurate than that of 

bifactor models even when the degree of construct shift is small (e.g., variance of the 

grade-specific dimension is 0.25).  

Group mean parameter estimates of UIRT models are always less accurate than 

that of bifactor models; a large effect due to construct shift is found for the group mean 

parameter estimates of UIRT models.  
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CHAPTER 5 

REAL DATA ANALYSIS   

 

This chapter analyzes real data of vertical scaled assessments and provides a real 

example of applying bifactor model for vertical scaling with construct shift. Section 5.1 

lays out the design of vertical scaling data, Section 5.2 poses the three research questions 

related to the data, Section 5.3 describes the analysis, and Section 5.4 presents the results 

and answers to the research questions.   

 

5.1 Data 

Empirical data from the 2006 fall Michigan mathematics assessments were 

obtained for grades 3, 4 and 5. The state had applied the common item design, and the 

vertically linked assessments include seven (7) common items for adjacent grades 3 and 4, 

and eight (8) common items for adjacent grades 4 and 5. Including the common items, 

grade 3, 4 and 5 assessments have test lengths of 60, 64, and 65 respectively. Figure 5.1 

illustrates the data collection design as well as the item distribution for the data analysis. 

4,000 examinees are randomly selected for each grade from the data and are used in the 

data analysis. 

  Items ( # of Items) 

 Grade 

 

G3 

(53) 

C 

(7) 

G4 

(49) 

C 

(8) 

G5 

(57) 

 

Students 

3 GG3     

4   G4   

5     G5 

Figure 5.1 Data collection design and item distribution for the real data 
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5.2 Research Questions 

Three research questions are posed for the real data in the following: 

1. By estimating several models (e.g., constrained bifactor models) for vertical 

scaling with construct shift, which model is the best fitting model for the current 

data? 

2. What is the degree of construct shift for the empirical data in vertical scaling? 

3. How different are the parameter estimates from the best fitting model that 

includes construct shift compared with the parameter estimates from the UIRT 

model that ignores the construct shift? 

 

5.3 Analysis 

To achieve consistency with the simulation study, the same computer program 

IRTPRO (Cai, du Toit, & Thissen, in press) is used for the real data analysis. Several 

bifactor models with different constraints are fit to the data to explore the degree of 

construct shift as well as the best fitting model. Information criteria indices such as AIC 

and BIC are obtained for model selection. Once the best fitting bifactor model is 

determined, a corresponding UIRT model is estimated to compare its parameter estimates 

with that of the bifactor model. Scatter plots and correlations are obtained for comparing 

parameter estimates from the two models. 

 

 

 

 



122 
 

5.4 Results 

First, one should always assume construct shift across grades in vertical scaling. 

In other words, bifactor estimation models are recommended to model vertical scaling 

with construct shift and for quantifying the degree of construct shift.  

Next, wanting to quantify the degree of construct shift implies that the variances 

of the grade-specific dimensions in the bifactor model need to be estimated.  A 

constrained bifactor model needs to be specified to make the estimation model identified 

and to make the variance of the grade-specific dimension estimable.  

Three constrained bifactor models are estimated for the current data. From least to 

most restrictive models, they are a bifactor model with fixed slopes (e.g., fixed to 1s, the 

mean of the discrimination parameter estimates of the general dimension) on the grade-

specific dimensions, a two-parameter testlet model, and a Rasch (one-parameter) testlet 

model. Note that for the general dimension, Grade 4 examinees are treated as the 

reference group and set to have a standard normal distribution; the means of other two 

groups, Grade 3 and Grade 5 examinees, are freely estimated. The SDs of the two non-

reference groups on the general dimension can be either fixed to 1s, or be freely 

estimated; different setups reflect researchers’ different assumptions on the change of 

variances over time. Both setups are run for the data, and few differences are found in 

terms of parameter estimates and fit indices; thus only the results from fixed variances are 

reported to be consistent with the setup in the simulation study discussed in Section 3.5 in 

Chapter 3. Table 5.1 reports the estimated variance of the grade-specific dimensions (or 

the degree of construct shift), estimated group mean, as well as information criteria AIC 

and BIC for relative model fit. 
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Table 5.1 Group Estimates and Information Criteria for Constrained Bifactor 

Models 

 
Estimation model 

Variance of the  
grade-specific 

dimension 

Group mean on the 
general dimension 

Information 
criteria 

G3 G4 G5 G3 G4 G5 AIC BIC 

Constrained 

bifactor 

0.21 0.14 0.18 -0.61 0  0.19  779240 781849 

2P testlet 0.33 0.54 1.06 -0.72 0 0.27 779367 781977 

Rasch testlet 0.32 0.16 0.00 -0.63 0 0.22 789191 790514 

As seen from Table 5.1, the resulting variances of the grade-specific dimensions 

(or the degree of construct shift) vary depending upon the estimation models. Applying 

the information criteria, the smaller AIC and BIC values are, the better model-data fit; 

thus, the best fitting model is the bifactor model with fixed slopes. Accordingly, the first 

research question on the best fitting model has been answered by using the information 

criteria indices. 

It is worth noting that, in the most constrained model, Rasch testlet model, the 

variance of the Grade 5 dimension is estimated as 0. This happened because the program 

encountered some difficulty with estimation and it seems that in one or more of the 

iterations the variance went negative; in that case, the program sets the variances at the 

boundary of 0 and attempts to continue. 

Using the estimated variances (0.21, 0.14 and 0.18) of the grade-specific 

dimensions from the best fitting model, the bifactor model with fixed slopes, it is 

concluded that the degree of the construct shift is small for the current data. Thus, the 

second research question on the degree of construct shift has been answered.  
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To approach the last research question on parameter estimation comparison 

between the best fitting model (a two-parameter bifactor model with fixed slopes on the 

grade-specific dimensions) that models construct shift and the UIRT model that ignores 

construct shift, a two-parameter UIRT model is also estimated for the current data. The 

group estimates and information criteria for the two models are reported in Table 5.2. 

Table 5.2 Group Estimates and Information Criteria: Bifactor vs. UIRT Models 

 
Estimation model 

Variance of the  
grade-specific 

dimension 

Group mean on the 
general dimension 

Information 
criteria 

G3 G4 G5 G3 G4 G5 AIC BIC 

Constrained 

bifactor 

0.21 0.14 0.18 -0.61 0  0.19  779240 781849 

2P UIRT NA NA NA -0.57 0 0.22 779371 781973 

 

The AIC and BIC values in Table 5.2 indicate that the bifactor model with fixed 

slopes has a better model fit than the two-parameter UIRT model. In order to take a 

closer look at the difference between the two estimation models, the item parameter 

estimates (discrimination and difficulty-related scalar parameter estimates) as well as the 

person parameter estimates from the two models are presented in scatter plots in Figures 

5.2 and 5.3 respectively. 
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Item discrimination parameter estimates Item difficulty-related scalar parameter estimates 

  
Figure 5.2 Scatter plots of item discrimination and difficulty-related scalar parameter 

estimates 

 

 
Figure 5.3 Scatter plot of person parameter estimates 

The scatter plots indicate that that the estimates from the two models are highly 

linear-related. The correlations of item discrimination and difficulty-related scalar 

parameter estimates from the two models are 0.987 and 1.000 respectively; the 

correlation of person parameter estimates from the two models is 0.983. 
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So far, the last research question can be answered. That is the differences in 

parameter estimates from the bifactor model with fixed slopes and the UIRT model are 

small and negligible, and the UIRT model provides simple and adequate results for 

vertical scaling for the current data.  
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CHAPTER 6 

DISCUSSION 

 

In this final chapter, major findings of the simulation study are summarized in 

Section 6.1. Discussion is in Section 6.2. Implications for testing practices are addressed 

in Section 6.3. Finally, limitations of the current study and directions for future research 

are discussed in Section 6.4. 

 

6.1 Summary of Findings 

6.1.1 Bifactor Model Estimation 

It is expected and confirmed by the results that (1) with the increase of the sample 

size, the estimation accuracy of the two item parameters and the person parameters of 

both the general and grade-specific dimensions increases; this is because larger sample 

sizes result in each test item being answered by more examinees, thus item parameter 

estimates are more accurate, which further result in more accurate person parameter 

estimates because more accurate item parameter estimates are used in person parameter 

estimation; (2) the reliability of the person parameter estimates of the general dimension 

is higher than that of the grade-specific dimensions for all simulated conditions; this is 

because the general dimension is measured by all the test items, but the grade-specific 

dimensions are measured by only a part of the test items that are corresponding to the 

grade levels.  

Less predictable were the results that (1) item discrimination parameter estimates 

on the general dimension and item difficulty-related scalar parameter estimates are 
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overall well recovered by the bifactor model estimation across the simulated factors; with 

the increase of the degree of construct shift (or the variance of grade-specific dimension), 

the estimation accuracy of the item discrimination parameters on the general dimension 

decreases slightly; (2) person parameter estimates of the general dimension are better 

recovered than that of the grade-specific dimensions when the degree of construct shift is 

small or moderate (or the variance of grade-specific dimension is 0.25 or 0.50); person 

parameter estimates of the general dimension are about equally recovered as that of the 

grade-specific dimensions when the degree of construct shift is large (or the variance of 

grade-specific dimension is 1.00); (3) group mean parameters are well recovered across 

the simulated conditions; (4) grade-specific variance parameters are also well recovered 

but slightly overestimated.  

 

6.1.2 UIRT Model Estimation 

It is expected and confirmed by the results that (1) with the increase of the sample 

size, parameter estimation accuracy increases; (2) with the increase of the degree of 

construct shift (or the variance of grade-specific dimension), parameter estimation 

accuracy decreases; (3) reliability of person parameter estimates becomes lower as the 

degree of construct shift increases; 

Less predictable were the results that (1) item discrimination parameters are 

greatly overestimated, while item difficulty-related scalar parameters are well recovered; 

large practical and statistical effects due to the degree of construct shift are found for the 

estimation errors of the item discrimination parameters; (2) group mean parameter 

estimates become less accurate as the degree of construct shift (or the variance of grade-
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specific dimension) increases; large practical and statistical effects due to the degree of 

construct shift are found for the estimation errors of the group mean parameters.  

 

6.2 Discussion 

6.2.1 Bifactor Model as the True Model 

Bifactor model is treated as the hypothesized true model for vertical scaling and 

thus used as the data generation model in the study. In this vertical scaling context, the 

general factor in the bifactor model is the common dimension that puts examinees from 

different grades onto the same scale; the group factors in the bifactor model are the 

grade-specific dimensions that correspond to the examinees’ grade levels. This 

hypothesized true model simultaneously captures the belief in grade specific constructs 

while maintaining a common scale across the grades. Recall that a common argument 

against construct invariance across grades, or construct shift, is that content areas covered 

on the tests are somewhat different at different grade levels; for instance, a 10th grade 

math test with more emphasis on geometry may measure something different than an 

11th grade math test with more emphasis on algebra. 

In practice, data of a set of vertical scaled assessments are not generated as in the 

simulation studies, which are instead created by actual examinees, thus the true 

psychometric model of the data is not known. Therefore, the choice of the data estimation 

model in practice reflects what we believe is the true model.  The previous paragraph 

explains the belief in the bifactor model as the true model in vertical scaling with 

construct shift; accordingly, it is reasonable to apply the bifactor model as the appropriate 

estimation model in vertical scaling with construct shift.   
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6.2.2 Bifactor Model Identification 

Because the latent dimensions in the bifactor model are all orthogonal to one 

another, for each of the latent dimensions, either the discrimination or slope parameters 

of that dimension or the variance of the dimension needs to be fixed in order to make the 

bifactor model identified.  

For the general dimension, it is common to fix its variance to 1 and leave the 

discrimination or slope parameters to be freely estimated. A similar practice is used when 

estimating a UIRT model, where the variance of the single latent dimension is set fixed to 

1 and discrimination parameters are freely estimated. 

For the group-specific dimensions, the current study fixed the discrimination 

parameters so that the variance of the group-specific dimension can be estimated. This is 

done because the degree of construct shift must be well recovered in the bifactor model 

since it is an important feature when used in vertical scaling. In other circumstances, it 

may be more important to estimate the discrimination parameters of the group-specific 

dimensions, thus the variance of the group-specific dimensions can be fixed to 1 to keep 

the model identified.   

This is an important decision that a practitioner must make.  Deciding which 

elements of the model should be fixed and which should be estimated depends up the 

interest of the researcher and is worthy of careful consideration.  It is suggested that 

practitioners should ask themselves what parameters (discrimination or variance of 

group-specific dimension parameters) they would like to estimate to help them answer 

the inquiries about the test data. 
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6.2.3 Simulated Factors  

Three simulated factors, sample size, variance of grade-specific dimension (or 

degree of construct shift), and number of common items are manipulated in the 

simulation study to see their effects on the bifactor model parameter estimation under 

various conditions.  

Sample size affects parameter estimation accuracy and its stability significantly; 

as sample size increases, parameter estimation accuracy increases, and stability of 

parameter estimates increases. In the K-12 setting, sample size usually is very large, 

which favors the parameter estimation.  

Variance of the grade-specific dimension (or degree of construct shift) affects 

stability of parameter estimates significantly; as the degree of construct shift increases, 

stability of the general dimension estimates decreases, and stability of the grade-specific 

dimension estimates increases. 

No effect was found for the number of common items in the current study. 

Perhaps if larger differences in the number of common items had been chosen, great 

effects might have been obtained. A quick review of the relevant literature suggests that 

under the UIRT linking, it was found that the more common items, the smaller parameter 

estimation errors (e.g., Hanson & Beguin, 2002; Kim & Cohen, 2002; Meng, 2007); 

under the MIRT linking, previous research (e.g., Simon, 2008) also indicated that the 

percent of common items had very small effects on parameter estimation accuracy. 

Specifically, in Simon’s (2008) study on MIRT linking, a fixed number of common items 

(20) and two test lengths (40 and 60 items) were used; less than 1% of total variance of 

estimation errors were explained by the percent of common items. Thus, the finding of 
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the current study on the number of common items is consistent with that of Simon’s 

(2008) study.  

 

6.2.4 Usage of Item and Person Parameter Estimates 

Person parameter estimates from the bifactor model are straightforward results 

that we expect to obtain from the vertical scaling and they are also what we report to 

examinees for their relative standing in the common vertical scale across grades and for 

their relative standing in their grade-specific scales. It is worth noting that the general 

ability estimates are always better recovered than the grade-specific ability estimates 

because there are many more items measuring the general ability dimension than the 

grade-specific ability dimension in the bifactor model. 

Item parameter estimates from the bifactor model vertical scaling can be 

documented and used for constructing future assessments. Recall that the item 

discrimination parameter on the general dimension indicates how well the item can 

discriminate examinees on the common scale across grades; the item discrimination 

parameter on the grade-specific dimension indicates how well the item can discriminate 

examinees on the grade-level scale. Therefore, these item discrimination parameter 

estimates may be documented in item banks for future construction of vertically scaled 

assessments.  

Based on the purposes of the vertical scaled assessments, items can be assembled 

for different purposes by referring to the parameter estimates. Since test assembly is 

expensive, some attention to cost effectiveness is important.  For instance, if the 

assessment purpose is to accurately estimate examinees on both the general and grade-
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specific dimensions, items selected with both parameters high are most appropriate; if 

assessments aim to accurately estimate examinees on the general dimension, items 

selected with that parameter high are good enough; if assessments aim to accurately 

estimate examinees on the grade-specific dimension after the general dimension is 

extracted, items selected from the bank with high grade specific parameters may be good 

enough. 

 

6.2.5 UIRT vs. Bifactor Estimation Models  

In addition to bifactor model estimation, the UIRT model is also applied in the 

study to explore its robustness to vertical scaling with construct shift. Another reason to 

investigate the UIRT estimation model is that it is the current practice in vertical scaling, 

even though there are concerns about construct shift across grades, which violates the 

assumption of UIRT vertical scaling. 

The comparison of parameter estimation accuracy from both UIRT and bifactor 

models provides evidence for practitioners and researchers on the effect of ignoring and 

modeling the construct shift respectively. As seen from the simulation results chapter, 

when UIRT models are used in estimating the bifactor structure data, not only the item 

discrimination parameters are greatly overestimated, but also the person ability 

parameters are less accurately estimated than with the bifactor model even when the 

degree of construct shift is small.  

Therefore, in practice, the main question becomes how to detect construct shift in 

vertical scaling, and when to use UIRT models and when to use bifactor models. The 

following section provides the implications for testing practice.  
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6.3 Implications for Testing Practice 

Recall that the bifactor model is applied in the study for vertical scaling with 

construct shift. In practice, exploratory analysis on the degree of construct shift helps 

practitioners and researchers determine whether and when the bifactor model is an 

improvement. The suggested procedures for testing the degree of construct shift in 

vertical scaling are as follows.  

First, practitioners and researchers should always assume construct shift across 

grades in vertical scaling. In other words, bifactor estimation models are recommended to 

model vertical scaling with construct shift.  

Second, practitioners and researchers need to quantify the degree of construct 

shift in the bifactor model vertical scaling. That is, the variance of the grade-specific 

dimension in the bifactor model needs to be estimated to determine the degree of 

construct shift. This step involves fitting different constrained bifactor models to 

determine the best fitting model and the degree of construct shift . These constrained 

bifactor models can be a testlet model (where the proportion of the general and group-

specific discrimination or slope parameters is fixed), or a bifactor model with fixed 

discriminations or slopes on the grade-specific dimensions.  No matter how bifactor 

models are constrained, the goal is to get the variance of the grade-specific dimension (or 

the degree of construct shift) estimated while keeping the bifactor estimation model 

identified.  

Third, by fitting different constrained bifactor models, the best fitting model can 

be found by obtaining information criteria such as AIC and BIC.  In addition, the 



135 
 

estimated variance of the grade-specific dimension will provide evidence for the degree 

of construct shift.  

Forth, if the estimated variance of grade-specific dimension (or degree of 

construct shift) is small (i.e., less than or equal to 0.25), practitioners and researchers may 

want to apply the UIRT estimation model to see how parameter estimates are different 

from the bifactor models by plotting and correlating the estimates from both models. If 

the differences are small and not meaningful, the results from the simpler UIRT model 

can be used for the vertical scaling.  If the differences are large, the results from the best 

fitting bifactor model should be used for vertical scaling with construct shift. 

Fifth, if the estimated variance of the grade-specific dimensions (or degree of 

construct shift) is not small (i. e., greater than 0.25), practitioners and researchers may 

adopt the best fitting bifactor model without the necessity of fitting a UIRT model.  

The above procedures provide a general guide on how bifactor models can be 

applied in real setting for vertical scaling with construct shift. In addition, the analysis of 

the 2006 fall Michigan mathematics assessments in Chapter 5 provides a real example 

illustrating how the procedures can be implemented in practice.  

Finally, it is worth mentioning that the results of real data analysis suggest that the 

data are closest to the simulated condition where the sample size is largest (e.g., 4000), 

the number of common items is smallest (e.g., 12), and the degree of construct shift is 

smallest (e.g., variance of grade-specific dimension is 0.25). The findings of real data 

analysis are consistent with that of the simulated condition.  
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6.4 Limitations and Directions for Future Research 

This study only examined one of the three data collection designs (e.g., common 

item design) in vertical scaling, though it has been shown in Chapter 3 that the other two 

data collection designs (equivalent group and scaling test designs) can be implemented in 

bifactor model vertical scaling.  Similar simulation studies can be conducted to 

investigate the performance of the bifactor model vertical scaling for the equivalent group 

design and the scaling test design. 

 Only three factors are examined in this study for bifactor vertical scaling. Other 

factors can be examined as well. For example, different proficiency estimates such as 

expected a posteriori (EAP) estimates, modal a posterior (MAP) estimates, and maximum 

likelihood estimates (MLE) can be examined. In addition, bifactor model vertical scaling 

can be examined for small sample sizes such as 300 and 500. 

In terms of item type, the current study only considers tests with dichotomously 

scored items. Future studies can be extended to polytomously scored items, or even 

mixed item format tests. In terms of the bifactor item response function (Rijmen, 2010), 

this study considers a two-parameter (difficulty and discrimination) bifactor model; 

examination of a three-parameter (difficulty, discrimination, and guessing parameters) 

bifactor model, or simplification to a one-parameter (difficulty parameter only) bifactor 

model can also be conducted.  

In bifactor model data generation, equal variances of grade-specific dimensions 

(or uniform degree of construct shift) are generated within a set of assessments over 

grades, which often vary in real tests. Thus, one may consider simultaneously simulating 

different degrees of construct shift for a set of assessments over grades in future research. 
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Another limitation with bifactor model data generation and estimation is that a 

single constant item discrimination or slope parameter value is generated for the grade-

specific dimensions, and the same constant number is fixed in the bifactor model 

estimation. In applications, the true parameter values are not known to practitioners and 

researchers. To deal with this issue, one may simply set the item discrimination 

parameters of the grade-specific dimension to unit values (1s) or the mean of the 

discrimination parameter estimates of the general dimension when it is necessary to 

estimate the variance of the grade-specific dimension. The three constrained bifactor 

models estimated for the real data in Chapter 5 provide good examples of this approach.  

In terms of estimation method, this study applied marginal maximum likelihood 

method (MML) implemented in the computer program IRTPRO (Cai, De Toit, & Thissen, 

in press). It would be interesting to examine and compare different estimation methods 

for the multi-group bifactor model with concurrent calibration. The available estimation 

methods are Bayesian estimation using Markov Chain Monte Carlo (MCMC) method 

implemented using WINBUGS, and marginal maximum likelihood (MML) method with 

EM algorithm implemented using both BNL (A Matlab toolbox for Bayesian networks 

with logistic regression nodes; Rijmen 2006) and IRTPRO (Cai, De Toit, & Thissen, in 

press).  Focus on the parameter estimation accuracy as well as estimation time would be 

worthwhile.  

This study focuses on linking assessments over grades while controlling for 

construct shift. Thus the current study only discusses making the comparison of students 

from different grades available at a single time point. For example, after administering 

the Mathematics assessments for grades 3, 4 and 5 in fall 2010, the general ability 
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estimates will allow the examinees from different grades to be compared with one 

another. In addition, future research could focus on tracking an individual’s growth by 

administering the vertical scaled assessments over a time span. For instance, growth 

patterns (e.g., changes in group means and group standard deviations across grades) can 

be simulated over time, and examining how the bifactor model performs in recovering 

examinees’ growth could be determined.  

Since the grade-specific dimensions are not as well recovered as the general 

dimension in the bifactor model, future study might incorporate covariates (perhaps 

student background variables) to explain the variance of the group-specific latent 

variables for bifactor models.  Adding these covariates has been shown to change the 

results of value-added models (Tekwe, Carter, Ma, Algina, Lucas, Roth, Ariet, Fisher, & 

Resnick, 2004) and perhaps they would do so in this context as well. 
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