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 Optical tweezers (OT) have been developed to successfully trap, orient, and 

transport micro and nano scale components of many different sizes and shapes in a fluid 

medium. They can be viewed as robots made out of light. Components can be simply 

released from optical traps by switching off laser beams. By utilizing the principle of 

time sharing or holograms, multiple optical traps can perform several operations in 

parallel. These characteristics make optical tweezers a very promising technology for 

creating directed micro and nano scale assemblies. In the infra-red regime, they are useful 

in a large number of biological applications as well. This dissertation explores the 

problem of real-time path planning for autonomous OT based transport operations. Such 

operations pose interesting challenges as the environment is uncertain and dynamic due 

to the random Brownian motion of the particles and noise in the imaging based 

measurements. Silica microspheres having diameters between (1-20) µm are selected as 

model components. 



 Offline simulations are performed to gather trapping probability data that serves 

as a measure of trap strength and reliability as a function of relative position of the 

particle under consideration with respect to the trap focus, and trap velocity. Simplified 

models are generated using Gaussian Radial Basis Functions to represent the data in a 

compact form. These metamodels can be queried at run-time to obtain estimated 

probability values accurately and efficiently. Simple trapping probability models are then 

utilized in a stochastic dynamic programming framework to compute optimum trap 

locations and velocities that minimizes the total, expected transport time by incorporating 

collision avoidance and recovery steps. A discrete version of an approximate partially 

observable Markov decision process algorithm, called the QMDP_NLTDV algorithm, is 

developed. Real-time performance is ensured by pruning the search space and enhancing 

convergence rates by introducing a non-linear value function. The algorithm is validated 

both using a simulator as well as a physical holographic tweezer set-up. Successful runs 

show that the automated planner is flexible, works well in reasonably crowded scenes, 

and is capable of transporting a specific particle to a given goal location by avoiding 

collisions either by circumventing or by trapping other freely diffusing particles. This 

technique for transporting individual particles is utilized within a decoupled and 

prioritized approach to move multiple particles simultaneously. An iterative version of a 

bipartite graph matching algorithm is also used to assign goal locations to target objects 

optimally. As in the case of single particle transport, simulation and some physical 

experiments are performed to validate the multi-particle planning approach.  
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Chapter 1 
 
 
INTRODUCTION 

1.1 Background  
 
 Micro and nano components (components with micro or nano scale size and 

features) can be used to exploit new phenomena that take place at those small scales 

[Bhus04]. Potential applications of such components include bio-sensors, electronic 

components, photonic devices, solar cells, and batteries [Niem04, Wils02]. These 

component based devices are expected to revolutionize health care, energy, 

communication, and computing industry [Ratn02].      

 In order to construct useful devices, the components need to be assembled 

together. Assembling micro and nano scale components to make functional devices 

remains a challenge despite rapid advances in imaging, measurement, and fabrication at 

the small scales. Two types of assembly processes are possible. The first type of process 

is self-assembly [Requ06] which is very useful for large scale production. The second 

type of process is directed assembly. This process is useful for prototyping new design 

concepts, small scale production, device repair, and creating templates for certain types 

of self-assembly processes. A number of manipulation techniques for directed assembly 

of components have emerged (e.g., fluid flow based [Yi06, Ong08], magnetic 

manipulation [Bent04, Frie05], dielectrophoresis [Kim06, Li02], scanning probe 

microscope based manipulation [Meye04, Moka07], and optical tweezers [Ashk00, 

Bali05, Grie03]). A comparative survey of different manipulation techniques can be 

found in [Sitt01]. 
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Assembly Cell 

Laser 
beam 

Glass plate 
Lens 

Fluid medium Trapped  
particle

The trapped particle is steered 
by the laser beam 

Figure 1.1: Schematic illustration of optical trapping 

 Broadly speaking, the directed manipulation techniques can be classified into 

three categories: fluid flow based, contact, and non-contact. The first category typically 

uses micron and nanometer sized channels to precisely control and manipulate fluids 

along with the components present in them. In the second category, a physical probe 

(microscopic cantilever beam) with a sharp tip at the end or a micro-electro-mechanical 

gripper is used to push and manipulate components. Atomic force microscope is the most 

common type of scanning probe based techniques. In the last category, an appropriate 

optical, electrostatic, or magnetic field (i.e., trap) needs to be created to trap the 

component. The field is then controlled to move the component in the fluidic workspace. 

A schematic illustration of optical trapping is shown in Figure 1.1. The interaction 

between the field and the component is stochastic in nature due to the Brownian motion 

of the component and the presence of uncertainty in the component location as a result of 

sensor noise. Unfortunately, the offline planning approach that works well at the macro 

scale for optimizing operation efficiency does not work at the nano scale. To cope with 

the stochastic nature of the problem, automated micro and nano scale manipulation 
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requires a new real-time and automated planning paradigm that takes actions based on the 

estimated state of the workspace in a feedback loop.  

  

1.2 Motivation  

As discussed in the previous Section, optical tweezers (OT) are emerging as a 

promising tool for trapping and manipulating micro and nano scale components in a fluid 

medium. If these components can be assembled together to form complex 3D shapes, 

then useful devices can be created with improved electrical, thermal or optical properties. 

However, currently all such assemblies are formed either manually or semi-

automatically.  

Few examples of such assemblies are shown in Figures 1.2 and 1.3 respectively. 

Figure 1.2 (a) represents a T-junction formed using two ZnO nanowires. Figure 1.2 (b) 

shows a cell-liposome assembly that can be potentially used for drug delivery. Both these 

assemblies have been created by manually manipulating the components using rasterized 

scanner based optical tweezers at the Manufacturing Engineering Laboratory in the 

National Institute of Standards and Technology (NIST). Figure 1.3 shows the gradual 

morphing of a 15 µm diamond unit cell from eighteen 1 µm silica spheres that were 

originally arranged in the form of two linear columns. The time at which each video 

frame was taken is shown in the top left corner. Although programmable holographic 

optical tweezers were used to morph the linear columns into a 3D cubical structure 

automatically, initial positioning of the spheres was done manually.    

Consequently, it takes a long time (few minutes to even hours) to complete the 

assembling process. Moreover, during manipulation, due to manual control, some 
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unwanted components also get trapped. Thus, a lot of time is wasted in removing those 

components from the final assembly at a later point of time. Sometimes as a result on 

undesired trapping, collisions between multiple components may result in de-trapping as 

well. By de-trapping, it means that some of the originally trapped components get 

displaced from their stable trap locations, which, in turn, results in them being no longer 

trapped by the tweezers. In a nutshell, the overall process is very tedious and inefficient.  

 

(a) ZnO wires (b) Cell and liposome
 

Figure 1.2: Examples of assemblies formed by optical tweezers (Image courtesy: Arvind 
Balijepalli) 

 

 
 

Figure 1.3: Formation of a 15 µm diamond unit cell from eighteen 1 µm silica spheres 
(Image source: [Sinc04]). 

  
So far, optical tweezers have been primarily used to create directed assemblies 

which can be utilized for limited prototype production, and repair work. However, if this 

technology is coupled with chemical assembly or micro and nano fluidics, then the 

potential is enormous, provided the process can be sped up. As shown in [Cast05], 

complex 3D structures such as micro-wires can be produced if such integration is 
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performed. Then the assemblies formed by optical tweezers will also serve as the 

templates for bulk-scale self-assembly process. 

In the biological domain, recently researchers have shown that sorting of cells can 

be enhanced by attaching silica microspheres coated with antibodies to cell surfaces. The 

notion of attaching microspheres to cells for indirectly manipulating them can also be 

potentially utilized to place a large number of cells precisely on a substrate for 

quantitative studies of inter cell communication. The indirect method will limit both the 

peak and average light exposure of the cells as compared to direct optical trapping, where 

the trap focus is positioned within a cell causing damage due to local heating and 

formation of undesirable free radicals. This idea is shown schematically in Figure 1.4. 

Saccharomyces cerevisiae (type of yeast cells) have been successfully transported 

manually at a laser power of 0.4 W by attaching three 4.74 µm nominal diameter silica 

beads using the holographic BioRyx 200 system (see Figure 1.5). The cell-sphere 

complex was moved together as a single group by using in-built capabilities of the 

system. The individual trap focal positions are shown using ‘ ⊕ ’ symbols. Details about 

the BioRyx set-up are specified in Chapter 4. As expected, the manual operation turned 

out to be quite challenging and time-consuming.  

Hence, there is a need for automating the process of assembling components or 

manipulating biological objects. Automation involves real-time path planning for the 

components that need to be transported from their current locations to some other desired 

locations. This refers to the software code that needs to be fed to the controller hardware 

to automatically set the locations and velocities of the individual optical traps (laser 

beams). Irrespective of whether multiple optical traps are created by time-sharing the 
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laser beam across multiple trap locations, or by generating holograms, the planner should 

take the estimated locations of all the components from the imaging system as the input 

and generate optimum values. This process must be repeated every time a fresh set of 

image data becomes available. This dissertation describes development of such a 

planning system that will enable automated transport operations in the future. 

 

 
 

(a) Initial scene (c) Trapped cell is moved 
to the desired location 

(b) Four microspheres are 
moved to trap the cell 

Figure 1.4: Using microspheres to transport cells (small circles denote microspheres and 
larger ovals denote cells) 

 

 

Untrapped cell 

Trapped microspheres 

Trap focus position 

Cell-sphere complex moved 
manually as a group 

5 µm 

Figure 1.5: Manual indirect transport of yeast cell using three silica microspheres 
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1.3 Research Issues  

 This work identifies three primary research issues or challenges in order to 

perform real-time path planning for transporting particles using optical tweezers with 

minimum amount of manual intervention. They are described in details as follows. 

1. Understanding optical trap-particle interaction: Particles first need to be trapped 

before they can be transported to the desired goal locations in the assembly cell. Thus, 

information that is very useful in this context is the probability with which a particle 

will be trapped in a spatial region close to a stationary or moving optical trap, i.e. 

laser beam. The probability arises as a result of stochastic, Brownian motion 

exhibited by any particle immersed in a fluid medium, due to which it either may 

diffuse towards or away from the trap focal region, where attractive gradient forces 

dominate. Henceforth, this will be referred to as the trapping probability. This 

probability acts as a surrogate measure of the trap robustness as well as reliability as a 

function of trap velocity and the relative position of the particle with respect to the 

trap focus. Any trapping event involves a complex interplay of various forces: optical, 

Brownian, gravity, and buoyancy. In the absence of any analytical expression or 

experimental results for the probability distribution function, this dissertation explores 

the use of physically-accurate simulation to estimate trapping probability values. 

However, simulations need to be performed at very small time intervals (of the order 

of µs); so it takes a very long time to gather relevant data. Hence, real-time 

simulations cannot be used for path planning. On the other hand, offline simulation 

can be used to generate data at discrete points in the parameter space (consisting of 
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spatial coordinates and velocity components) which can then be represented by 

computationally efficient simplified models.   

2. Handling large degree of uncertainty in planning: Once particles have been reliably 

trapped by laser beams, they have to be transported in an optimal manner to the given 

goal locations. However, this problem is challenging due to the presence of two forms 

of uncertainties. Firstly, all the particles are constantly moving around in the 

workspace following the laws of Brownian motion. This means that the actual 

position, velocity and acceleration of any particle cannot be determined exactly ahead 

of time. In other words, during transport operations, random collisions may occur 

between the trapped and originally untrapped particles. This may result in situations 

where certain particles are no longer trapped or additional, undesirable particles are 

trapped by the laser beams, thereby increasing the overall transport time as beams 

have to be switched off and on or re-positioned before resuming the operation. Thus, 

any path planning algorithm needs to consider fast, random motion of untrapped 

particles in the workspace so that such unwanted collisions can be avoided. Secondly, 

imaging based sensors such as Optical Section Microscope used at NIST, provide 

noisy data. The positions of all the particles in the system are known only with a 

certain degree of certainty. Thus, the controller may never be able to position the trap 

focus exactly where it wants to, because the particle itself may be located in a slightly 

different position. Similarly, circumventing other particles to avoid potential collision 

events also becomes more challenging as their true positions are never known. So, 

this dissertation investigates different motion planning paradigms to select the one 
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whose underlying mathematical framework is best suited for tackling such a 

stochastic optimization problem.   

3. Planning to facilitate real-time operations: Unlike many other robot navigation, 

planning and control problems commonly encountered in practice, the time available 

for planning in this case is limited by the imaging interval and/or controller update 

rate, which is typically of the order of few milliseconds. Ideally, the planning time 

should be very short as compared to both the time intervals. This leaves any planner 

with very little time to evaluate different options and select the best one. The problem 

is significantly magnified in the case of transporting multiple particles, where the aim 

is to complete transporting all the particles to their respective goal locations in the 

minimum, expected time. This involves avoiding unwanted collisions not only with 

the freely diffusing particles, but also among the particles that are being transported 

themselves. That is why, all feasible options or control actions that are guaranteed to 

yield sub-optimal solutions need to be pruned to reduce the search space. 

Modifications to the existing planning approaches are explored in this research work 

to compute the optimum control policy that satisfies the rigorous time and 

performance constraints.    

 

1.4 Dissertation Scope and Outline  

 Currently, optical tweezers are primary used in manipulating spherical 

components (glass, silica, latex, polystyrene, metals like silver, gold, and biological 

cells). So, this dissertation will focus on transporting spherical particles using optical 

tweezers. Henceforth, spheres, objects, and particles will be used interchangeably in the 
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text. Although many of the techniques and approaches developed as a part of the current 

research work are equally applicable for other types of components such as nanowires, 

flat particles etc. all the simulation and experimental validation will be carried out on 

spheres only. Amorphous silica is chosen as the sphere material since it can be easily 

procured, maintained, and a lot of experimental work has already been conducted on it. 

Due to the ease of conducting experiments and availability of well-established trapping 

force models, the current work is restricted to dielectric microspheres that are 

homogeneous and isotropic. However, it may be noted here that it is anticipated that all 

the proposed techniques can be generalized to nanometer scales without any significant 

need for altering the basic framework to maintain a similar level of performance. 

Moreover, all the transport operations are performed only in the same horizontal plane.   

 The rest of the dissertation is organized as follows. The next chapter surveys 

state-of-the-art literature in the related areas of micro and nano manipulation, model 

simplification or metamodeling techniques, single and multiple robot motion planning 

approaches under uncertainty, and indirect optical manipulation of cells. Chapter 3 

presents a radial basis function based approach to generate simplified models for 

estimating trapping probability from the offline simulation data. Chapter 4 describes a 

stochastic dynamic programming framework to minimize the expected time taken to 

transport a single particle from its current location to the goal. Chapter 5 describes a 

decoupled and prioritized approach for transporting multiple particles simultaneously 

after assigning goal locations optimally. Finally, Chapter 6 summarizes the intellectual 

contributions of the current work, highlights anticipated benefits to the industry and the 

research community, and outlines scope for future work.  
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Chapter 2 
 
 
LITERATURE SURVEY 

 The current dissertation work is inter-disciplinary. So, a rich body of literature 

existing in different fields of engineering and science needs to be reviewed in this 

Chapter. Since it is not possible to review all the papers available in the literature, 

representative works that are either recent or seminal and are directly relevant are 

discussed in the Chapter.  

 Section 2.1 deals with micro and nano manipulation. This is a vast area of 

research in itself. Keeping in mind the application domain, the survey is primarily 

restricted to optical tweezers. Since this work focuses on spheres, manipulation of 

spheres using optical tweezers has been reviewed in details. Some representative work on 

manipulation of other types of components using optical tweezers, and other 

manipulation techniques has been reviewed later in the same Section. The next Section 

presents a survey of metamodeling techniques as one such technique will be used to 

represent the trapping probability simulation data. After reviewing few survey articles 

covering a wide variety of such approximation or simplification techniques in the first 

part of the Section, the second part exclusively reviews use of radial basis functions for 

several types of applications.  

 Section 2.3 deals with single robot motion planning under uncertainty. This is an 

area of great interest in the robotics community. After briefly discussing some books and 

seminal papers that presented several classical motion approaches, this Section primarily 

reviews state-of-the-art literature on two specific techniques: probabilistic roadmaps and 

stochastic dynamic programming. These two classes of techniques are most commonly 
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used nowadays to deal with planning problems involving stochastic uncertainty. Hence, a 

comparative understanding of both the classes of techniques is essential to select the one 

that is more suitable for the current application. The next Section surveys some of the 

recent work on decoupled motion planning of multiple robots. After briefly mentioning 

the coupled approach, this Section discusses different methods that either relies on a 

centralized or a decentralized architecture within the overall decoupled framework. The 

final Section establishes the need for indirect cell manipulation as opposed to direct 

manipulation and presents some of the recent work in this area. Each Section contains a 

summary where the rationale behind selection of a particular approach or model and the 

need to extend it for the application being investigated in the dissertation has been 

emphasized.   

 

2.1 Micro and Nano Manipulation  

2.1.1 Different Optical Tweezers Systems and Set-ups 

 Light beams or optical traps exert small optical forces of the order of 

picoNewtons (pN), and for components smaller than tens of micrometers and up to few 

nanometers, the forces can be designed to “grasp” and move them to desired positions. 

Using this property of light beams, optical tweezers have been developed to successfully 

trap and transport micro and nano scale components of many different sizes and shapes 

[Ashk00, Frie98]. Optical tweezers do not make physical contact with the trapped 

component and hence do not cause any damage due to deformation. Components can be 

simply released from the optical traps by switching off the laser beams. Moreover, since 

 12



optical tweezers systems use inexpensive lasers, microscopes, telescopes and video 

cameras, the overall cost of the equipment is relatively modest.  

 

 
 

Figure 2.1: Rasterized scanner based optical tweezers set-up (Image source: [Bali06]) 

 Although different types of optical tweezers systems and set-ups exist in various 

universities, industries, and research laboratories across the world, the two most popular 

ones are rasterized scanning mirror based and hologram based. A modular and flexible 

software architecture and system framework for performing assembly operations using 

the former type of set-up is described by Balijepalli et al. [Bali05, Bali06]. In this set-up 

shown in Figure 2.1, the laser source generates the laser beam. The scanning mirrors are 

used to create a variety of trap shapes by rapidly moving the laser beam over a certain 

area. In addition, they are used to create multiple beams by time sharing the beam coming 

out of the laser source among different traps. The telescope is used to steer the beam and 

magnify its size. This beam magnification is needed to fill the entrance aperture of the 

microscope objective, a key requirement to maximize trapping force for optical tweezers. 
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The microscope objective is used to focus the beam and form the trap. Communication 

among different modules such as interface, control/automation, and hardware is 

performed using a protocol known as neutral messaging language. A set of representative 

examples including an assembly of five 3 µm silica spheres, trapped gold dimers, out-of-

plane rotation of alumina silicate nanowires and so on illustrates the capabilities of this 

system.  

 Although components can be observed in the optical microscope, resolution is 

insufficient to estimate 3D locations and parameters such as length, radius etc. with 

sufficient accuracy. Tao et al. [Peng07a, Peng07b] have developed algorithms to compute 

such information from a stack of images at various cross-sections (horizontal planes). In 

case of microspheres, the images are first segmented to obtain areas of interest. The 

image gradient information in the obtained areas is then used to locate the position of 

spheres in the XY plane. Finally, signature curves are computed to obtain the Z-location 

of the spheres. A similar methodology has been used to estimate the length, location, and 

orientation of nanowires by combining additional feature extraction techniques based on 

modified Hough transform.  

 A dynamically reconfigurable version of the second type of set-up is described in 

[Curt02, Grie03]. It is schematically shown in Figure 2.2. Holographic optical tweezers 

use a computer-generated diffractive optical element (DOE) to split a collimated laser 

beam into several separate beams, each of which acts as a conventional optical tweezer. 

Originally implemented with micro-fabricated DOEs, later on they have been 

implemented on computer-addressable liquid crystal spatial light modulators (SLMs). 

The authors have presented new algorithms for computing phase holograms so that real-
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time, dynamic reconfiguration of trap patterns becomes possible. This tweezers set-up 

can sculpt the wavefront of each optical trap separately, so that a mixed array of traps 

based on different light modes can be created, including optical vortices, axial line traps, 

optical bottles, and optical rotators. Representative examples on morphing of 3D patterns 

created by silica and polystyrene particles clearly show that this ability to manipulate 

individually structured optical traps in 3D opens up exciting new possibilities for 

engineering, diagnostics, and manufacturing at the small scales. 

 
 

Figure 2.2: Schematic illustration of dynamic holographic optical tweezers (Image 
source: [Grie03])  

 

 It may be noted here that both the set-ups have their own relative advantages and 

limitations. The extent and complexity of multi-particle patterns that can be formed using 
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scanning mirror based optical tweezers is limited by the time required to re-position each 

of the diffusing particles, since the beam dwells briefly on one particle before moving to 

the other. Even if this scanning is performed at high rates, operations are primarily 

restricted to the focal plane of the lens. Thus, mostly they are useful for organizing planar 

assemblies. Holographic tweezers suffer from no such limitations. However, dynamic 

operations are still much slower as compared to the scanner based tweezers, although 

improved algorithms such as modified Gerchberg-Saxton algorithm has been proposed by 

certain researchers [Sinc04].   

 

2.1.2 Manipulation using Optical Tweezers 

2.1.2.1 Spheres 

Ever since Ashkin et al. [Ashk86] demonstrated that optical gradient forces are 

sufficient to trap small dielectric particles, several researchers have worked on 

manipulation of spheres. Experimental, analytical, and simulation techniques have been 

developed to understand the physics of optical trapping and compute or measure the 

trapping forces. Two models are commonly used to compute the optical trapping forces. 

These models are complementary to each other and are applicable in two different size 

regimes [Wrig93]. The Gaussian beam electromagnetic field (EM) model, originally 

developed by Barton et al. [Bart88, Bart89], gives reasonably accurate results when the 

laser wavelength (λ) is larger than the sphere diameter. In this model, expansion 

coefficients that describe the incident and scattered laser fields are derived from an 

infinite series representation of the electric and magnetic fields. Forces are then computed 

using Maxwell’s stress tensor.  
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 Subsequently, Rohrbach and Stelzer [Rohr01] have generalized this model for 

arbitrary time-invariant laser EM fields. They have obtained the two major components 

of the optical force, namely gradient (acting perpendicular to the beam propagation 

direction) and scattering (acting along the propagation direction) separately. Moreover, 

they have utilized these values to compute experimentally verifiable parameters such as 

force constants (trap stiffness) and trapping potential depths [Rohr02]. In a recent work, 

Rohrbach [Rohr05] has found good quantitative agreement between experimental and 

electromagnetic theory based analytical results in this sub-wavelength regime. He has 

shown that for all the three dimensions, the measured extent of harmonic optical trapping 

potentials comes close to the theoretically predicted extent, provided all the instrument 

parameters are taken into consideration. Moreover, the strong asymmetry of the trapping 

potential is verified in all the three dimensions.  

 The second model is the well-known geometric ray optics one, originally 

developed by Ashkin [Ashk92], which is applicable when λ is much smaller than the 

sphere diameter. This model has been later used by other researchers [Im02, Ukit06] to 

compute the axial and transverse trapping efficiencies with minor modifications. The 

underlying principle behind this model is to decompose the overall light beam (assumed 

to be Gaussian with input beam waist equal to objective lens aperture radius) into 

individual rays, each with appropriate intensity, direction and state of polarization, that 

propagate along straight lines in a homogeneous medium. Although diffractive effects are 

neglected here, each ray can change direction when it reflects, refracts and changes 

polarization at dielectric interfaces following usual Fresnel formulae. Each incident ray is 

partially reflected out of the sphere and partially transmitted inside the sphere. Each 
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transmitted or refracted ray successively undergoes infinite number of internal reflections 

before it eventually emerges from the sphere. As net momentum must be conserved in 

this process, the change in momentum of the ray exerts optical forces (both gradient and 

scattering) on the sphere. The overall force experienced by the sphere can hence be 

obtained by integrating (summing up) the contributions of all such rays that are incident 

on the lens aperture. Actual equations are shown in Appendix A.  

Svoboda and Block [Svob94a] have shown that in the sub-wavelength (Rayleigh) 

regime, metals and dielectrics behave similarly from the light scattering point-of-view. In 

fact, larger polarizability of the metals implies that the optical trapping forces are greater. 

This makes nanometer sized metallic particles very useful for biological applications.  

An analytical solution is available for homogeneous isotropic spheres that lie in 

the intermediate size regime between small and large particle (with respect to laser 

wavelength) approximations. This is known as the Lorenz-Mie theory. The original 

theory was developed for plane waves only, and its extension to non-plane case is known 

as the generalized Lorenz-Mie theory [Gous82]. It has been used quite extensively for 

modeling the optical trapping forces for isotropic spheres [Neve06]. One of the major 

difficulties associated with this theory is the usual paraxial representation of laser beams 

as solutions of the scalar wave equation instead of the vector Helmholtz equation. 

Nieminen et al. [Niem03] have chosen a least squares fit to generate a Helmholtz beam 

with a far field matching that is expected from the tightly focused beam. This implies that 

the incident and the scattering field can be represented in terms of a discrete basis set of 

functions which can be truncated at some finite values. Assuming a linear relationship 

between the incident and scattered fields, the coefficients of the two basis functions are 
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related by a simple matrix (T) equation. Recently, Nieminen et al. [Niem07] have 

developed a MATLAB toolbox to compute the trapping forces and torques using this T-

matrix method, where the basic functions consist of vector spherical wavefunctions.    

 

2.1.2.2 Other Components 

 A detailed history of optical trapping and manipulation of small, neutral 

components, atoms and molecules till the dawn of this millennium can be found in 

[Ashk00]. Special emphasis has been given to biological objects. This list includes 

colloidal tobacco mosaic virus, E. coli bacteria, pigmented red blood cells, green algae, 

amoebas, other protozoans, vesicles, DNA etc. It should be noted here that trapping with 

infra-red Nd:YAG laser at 1.064 µm wavelength reduced the damage due to reduction in 

absorption of water, and molecules such as chlorophyll and hemoglobin. This paper 

highlights the immense potential of optical tweezers to investigate various mechanical 

properties of biological objects, such as compliance and viscoelasticity. It also reports 

several experiments that have been conducted to use “laser scalpels” for cutting and 

moving cells and organelles and to study the behavior of molecular motors, namely 

microtubules and actin filaments. 

 Galajda and Ormos [Gala03] have successfully demonstrated orienting flat 

microscopic particles using linearly polarized light. They have found out that the 

orienting torque originates from the anisotropic scattering of the polarized light. Simple 

viscous, drag force equation for a cylindrical object and ray optics model are used to 

characterize the orientation torque. Thus, the torque exerted can be measured and 

controlled and the position of the particle inside can be completely regulated. This 
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angular trapping effect provides a useful extension of current optical tweezers 

applications. For example, this method provides a way to investigate the torsional 

properties of macromolecules attached to anisotropic objects.  

 Plewa et al. [Plew04] have demonstrated trapping and manipulation of carbon 

nanotubes for the first time using holographic optical tweezers. Carbon nanotubes are 

highly valued for their mechanical, electrical, chemical, and optical properties; hence, 

they form the basic building blocks of most nanotechnological applications. This is a 

rather surprising result because individual nanotubes are substantially smaller than the 

wavelength of light; hence, they should not be amenable to optical trapping. However, 

they have shown that nanotubes bundles, and possibly even individual tubes can be 

transported at high speeds, deposited on substrates, untangled, and even selectively 

ablated. One such operation is shown in Figure 2.3, where a dispersion of single-walled 

nano tubes is gathered into an optical trap and translated in water at up to 100 µm/s. The 

arrows in (c) indicate the direction of motion. This opens up numerous possibilities for 

highly parallel nanotube processing with light that can be used to create many new 

devices.  

 Yu et al. [Yu04] have presented a technique for manipulating and assembling 

one-dimensional CuO nanorods using line optical tweezers. In the presence of line optical 

tweezers, it is found that the nanorods get aligned with their long axis coinciding with the 

direction of the optical field. Moreover, they are found to travel along with the line 

tweezers towards the end with higher intensity. Thus, they can be manipulated to form 

some basic shapes, such as ‘T’, ‘L’, cross and triangle. Another interesting application 
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shown in the paper is bridging a nanorod across two gold electrodes. This will enable the 

study and measurement of electrical properties of the nanorod under consideration.   

 
 

Figure 2.3: Carbon nanotubes processing using holographic optical tweezers (Image 
source [Plew04]) 

 

2.1.2 Other Manipulation Techniques 

 As mentioned earlier in this Chapter, hundreds of published articles can be found 

on various manipulation techniques. Only few recent, representative work spanning both 

micro and nano manipulation of biological as well as inorganic components will be 

reviewed in this sub-Section.  

 Dielectrophoresis refers to the movement of particles in non-uniform electric 

field. It is of two types – negative and positive. During negative dielectrophoresis, the 

dielectric constant of the particle is less than that of the fluid medium and the particle 

moves towards the location having the smallest electric field gradient. The reverse 

phenomenon takes place during positive dielectrophoresis. 

 Li and Bashir [Li02] separated live and heat-treated (dead) cells of Listeria 

innocua bacteria on micro-fabricated devices with interdigitated electrodes using ac 

dielectrophoresis. Difference in dielectric properties between alive and dead cells as a 

function of ac signal frequency is utilized to perform the separation operation. Both the 
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types of cells collect at the center of the electrodes in negative dielectrophoresis, whereas 

they accumulate at the electrode edges in positive dielectrophoresis due to a combination 

of dielectrophoretic and electro-hydrodynamic forces. The authors have shown that the 

behavior of the two types is different in the frequency range from (30-100) kHz, although 

both experience negative dielectrophoresis at lower frequencies and positive 

dielectrophoresis at higher values. More specifically, a 90% separation efficiency is 

achieved at 50 kHz and 1V peak-to-peak potential difference as the live cells experience 

positive dielectrophoresis, while the dead cells still experience negative dielectrophoresis. 

This can be potentially useful in micro scale sample preparation and diagnostic 

applications in biochips.  

 Kim et al. [Kim06] reported an ac and dc dielectrophoresis method to align and 

manipulate semiconductor gallium nitride (GaN) nanowires using variations in the type 

of electric field as well as signal frequency. They observed that the ability to align and 

form an assembly of nanowires (single or a bundle configuration) depends on the 

magnitude of both ac and dc fields. In terms of alignment, ac dielectrophoresis achieves a 

higher yield rate of approximately 80% over the entire array in the chip as compared to 

dc dielectrophoresis. The authors have successfully demonstrated formation of hybrid p-n 

junction structures by assembling n-type GaN nanowires with a p-type Si substrate. 

These hybrid structures show well-defined current biasing behavior with a low reverse, 

leakage current of about 3 X 10-4 A at -25 V. So they can prove to be useful in electronic 

and optoelectronic devices. 

 Bentley et al. [Bent04] have demonstrated manipulation of non-magnetic, CuSn 

metal alloy nanowires by capping them with magnetic (Ni) ends. These nanowires were 
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prepared by sequential electro deposition of nickel and copper/tin bronze alloys into 

alumina membrane with pores 200 nm in diameter. The separated nanowires were 

suspended in solvents and were oriented and spun in circles as “nano stirbars” using 

external magnetic fields. These segmented nanowires were also trapped between 

magnetized Ni stripes. About 66% of the nanowires were aligned within 10° of the 

horizontal with the assistance of a horizontal magnetic field. Most of them touched the 

outer edge of a stripe and extended beyond it to form cantilevers. Few (13%) formed a 

bridge between the two stripes. This method can be used in the future to position a wide 

variety of nano wires (and not merely magnetic ones) for mechanical testing and 

incorporation into nano scale devices. 

 Friedman and Yellen [Frie05] have performed a review of the physical 

fundamentals on the topic of manipulation of colloidal particles based on their magnetic 

and other kinds of properties using magnetic separation techniques. They have 

summarized the relevant models and emphasized the recent work on the use of micro 

systems in separation, assembly, and manipulation of non-magnetic particles in magnetic 

fluids. The focus is on issues pertaining to the scaling of magnetic forces with particle 

size and gradient generating structures. The authors have concluded that inclusion of 

hydrodynamic interactions based on particle concentration and self-consistent 

calculations of fluid velocity profiles in trajectory based models are needed to develop 

more accurate models of handling magnetic beads in micro systems and lab-on-a-chip 

applications.   

 A detailed description of different scanning probe microscopy techniques 

including various force models and modes of operation, with particular emphasis on 

 23



scanning tunneling microscopy and atomic force microscopy, can be found in [Meye04]. 

Mokaberi et al. [Moka07] have described a fully automated system for building arbitrary 

planar patterns of nano particles using atomic force microscope (AFM). For a given, 

random distribution of particles on a substrate surface and a desired pattern, the planner 

determines the paths required to perform the manipulation operations. The planner 

outputs a sequence of primitive commands for positioning and pushing operations 

involving linear motions. The commands are executed by a software that accounts for 

thermal drift, creep and hysteresis by applying Kalman filters and Prandtl-Ishlinskii 

operators suitably. Experimental results on manipulation of 15 nm Au particles on mica 

show that patterns can be built in minutes that would have normally taken a day for an 

experienced user to construct interactively. 

 Mechanical grippers can also be used for handling micron-sized components. A 

review of the existing systems for micro-part handling is available in [Sanc05]. Primarily, 

three types of micro grippers are popularly used: friction, pneumatic, and magnetic. One 

of the key challenges is the effect of the grip principle on the accuracy of the part gripper 

relation. That is why, often sensor control is required to compensate for the inaccuracies 

resulting from the adhesive forces. A recent survey of compliant micro grippers in the 

context of micro-motion device technology for biotechnology applications is available in 

[Ouya08]. The authors have pointed out that various microfabrication techniques are 

being increasingly used to design electrostatically, electrothernally, or 

electromagnetically actuated grippers to grasp objects of different shapes steadily with 

high positioning accuracy and a large number of degrees of freedom.   
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 Microfluidics has been shown to be a useful technology for manipulating a wide 

variety of micro and nano scale objects. A review of the latest advances in manipulating 

magnetic particles for their use in magnetic separation, immuno-assays, magnetic 

resonance imaging, drug delivery, and hyperthermia can be found in [Gijs04]. Yi et al. 

have reviewed the use of microfluidics for the manipulation and subsequent analysis of 

biological cells [Yi06]. Such systems possess lot of advantages in terms of controlled 

transportation and immobilization of cells, as well as separation, mixing, and dilution of 

chemical reagents for analysis of intracellular parameters and detection of cell 

metabolites. They can also be used for cell lysis, cell culture, and cell electroporation. 

Some of the popular microfluidic devices include cytometer, biochemical sensing chip, 

and whole cell sensing chip. A more recent survey of the fundamental principles and 

applications of microfluidics for cell manipulation and DNA amplification is available in  

[Ong08].  

 Several researchers have also worked on combining two or more manipulation 

techniques. For example, Ozkan et al. [Ozka03] have described an electro-optical system 

that uses the physical properties of mammalian cells (charge, dielectric permittivity etc.) 

to rapidly pattern and manipulate cells in a microarray format. It employs electrophoretic 

arraying of cells in a dc field due to intrinsic negative surface charge, and remote optical 

manipulation of individual cells by vertical-cavity surface emitting laser driven infra-red 

optical tweezers. The platform is optically transparent, thereby enabling fluorescent 

reporters of cell events.    

 Sitti has conducted a survey of different nano manipulation systems [Sitt01]. He 

has grouped the various approaches according to starting point (top-down versus bottom-
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up), utilized process (self-assembly versus physical such as electrical, optical etc.), 

interaction type (contact versus non-contact), and operation type (teleoperated, semi-

autonomous, and automatic). The main components of such systems, namely 

manipulators (AFM, optical tweezers etc.), physical models, sensors, actuators, and 

controllers have been discussed in details. He has summarized the applications of nano 

manipulation systems in biology, material science, and computer technology and 

concluded that some of the open areas of research include integration of self-assembly 

with precise physical manipulation, automation, design of nano grippers, and modeling of 

sensing of nano scale forces.           

 

2.1.3 Summary 

It is clear from the preceding discussion that there is no clear winner among the 

different manipulation techniques. Lot of work has been done on each of them to enhance 

their capabilities and currently all of them can successfully manipulate components of 

varying shapes, sizes, and properties. It is due to the versatility in terms of manipulating 

neutral, non-magnetic components and an interest to apply the results of this research 

work to biological systems that optical tweezers have been selected. Although other 

techniques have been used to manipulate and study different biological systems, optical 

tweezers are most popular since the damage on cells, tissues, and macromolecules (DNA, 

proteins etc.) due to light exposure is less than that as a result of external electric or 

magnetic field, or physical contact forces. Although microfluidics is a very useful 

technology for gross motion, fine motion control for transporting individual components 

is difficult to achieve.    
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Spheres form a natural choice for components that will be manipulated using 

optical tweezers. They have been shown to be particularly amenable for trapping 

purposes, as evident from the vast body of literature that exists on different trapping 

models. Although many researchers are actively working on trapping and orienting 

nanowires and nanotubes, the trapping physics is not yet well understood. Hence, it is 

difficult to manipulate them with a high degree of reliability and precision. The reasons 

for selecting silica as the sphere material during simulation are already mentioned in 

Chapter 1. As discussed earlier in the same Chapter, lack of automation hinders fast 

creation of micro and nano scale assemblies using optical tweezers. This dissertation will 

focus on automated transport of spherical particles so that the framework can be utilized 

in automating the entire assembly operation in the future.     

 

2.2 Metamodeling Techniques 

2.2.1 Different Types 

Surface fitting and interpolation are the two major classes of metamodels. 

Detailed comparison of different surface fitting techniques can be found in [Chiv95]. 

Broadly, surfaces can be represented in two ways – algebraic and parametric. Algebraic 

surfaces again can be either represented implicitly or explicitly. Some of the common 

fitting techniques include least squares, least absolute deviation, least median of squares 

fit, and patch method. The last technique is most popular in case of parametric surfaces. 

The authors have proposed several criteria namely, data collection method, intersection 

algorithms, constraint management, surface extension, local control, and data storage 

requirement to compare the two representation schemes. They have concluded that while 
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algebraic surfaces offer greater flexibility in terms of fitting techniques and data 

collection, parametric surfaces are better suited for post-processing or downstream 

operations such as intersections, local control etc. Moreover, since algebraic surfaces are 

infinite and are not bounded by the bounding box of the measured data points unlike their 

parametric counterparts, they are good for extension type of operations. While algebraic 

surfaces provide an attractive option if the data is collected in a random fashion, 

parametric surfaces are better for gridded data. 

Similarly, a comparative study of various scattered data interpolation methods has 

been carried out in [Amid02]. The methods surveyed in this paper can be classified into 

four categories – triangulation or tetrahedrization based methods, inverse distance 

weighted methods or the Shepard family of methods, radial basis function methods, and 

natural neighbor methods. Some of the criteria used for comparing the different methods 

include smoothness in terms of derivative continuity, possibility of extrapolation, local 

versus global control, efficiency, speed, suitability for large data sets, extensibility to 

higher dimensions, need for pre-processing steps, ease of use and so on.  

The authors have concluded that none of the existing methods is universally 

satisfactory and it is the task of the user to select the one that is best suited for his/her 

application. Triangulation methods are local, capable of handling large data sets 

efficiently, computationally simple, and reasonably accurate. However, triangulation or 

tetrahedrization has to be performed before the actual interpolation step. Inverse distance 

weighting methods are usually less accurate and less efficient than the other techniques. 

However, they are commonly used for higher dimensional problems due to their 

simplicity. Radial basis functions (RBFs) are emerging as one of the most promising 
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methods in terms of fitting power and visual smoothness. Natural neighbor interpolation 

methods are quite robust and perform equally well in cluttered as well as sparse areas of 

the given data sets. However, they are computationally more intensive and often require 

elaborate pre-processing operations in the form of construction of Voronoi tessellation. 

Although certain other methods such as Kriging are popularly used in certain applications 

like geology and mining, in general RBFs have been shown to have better performance.  

In the panel discussion summarized in [Simp02], each of the five panelists gave 

one or two examples of use of approximation methods using surrogate models or 

metamodels, described the current state-of-the-art, and identified challenges and future 

research directions. Some of the common challenges include using Kriging techniques as 

opposed to typical response surface based methods for design and analysis of computer 

experiments, visualizing data from such models, capturing uncertainty, and handling 

problems with large number of variables. The merits of using sequential and adaptive 

approximation methods by combining response surface and Kriging techniques were also 

discussed by the panelists. It was pointed out that sequential sampling strategies such as 

Latin hypercube sampling can enhance the accuracy of the model in the regions of 

interest.   

A review of metamodeling techniques from engineering design optimization 

perspective was conducted by Wang and Shan [Wang07]. The authors have discussed the 

pros and cons of several sampling methods, metamodel choices, and fitting techniques. 

They have pointed out that while Kriging and other Gaussian process models are accurate 

for nonlinear problems, they are difficult to obtain and use since a global optimization 

technique is applied to identify the maximum likelihood estimators. On the other hand, 
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polynomial models are easy to construct and easy to use, but they are less accurate. RBFs 

provide a nice tradeoff between Kriging and polynomials. Recent advances in this field 

include use of Multivariate Adaptive Regression Splines, Support Vector Machines, 

Artificial Neural Networks, and hybrid models. As concluded in [Chiv95], each 

metamodel type performs better with a particular set of fitting techniques.  

The authors are of the opinion that in spite of the recent surge in development of 

improved metamodels, approaches are still more or less infeasible for large scale 

problems. Effective decomposition strategies need to be devised in order to tackle the so-

called “curse of dimensionality”. They have also concluded that uncertainties in the 

metamodels themselves pose new challenges in optimization problems, although the 

models themselves can be used to filter out noise from computer simulation data. In 

addition, further work needs to be done to generate minimum number of sample points 

intelligently and develop a generic metamodeling framework so that models of variable 

fidelities can be used in different regions of the design space.  

 A study of metamodeling techniques and ensembles for evolutionary computing 

has been done by Lim et al. [Lim07]. They have studied four different metamodels, 

namely, Gaussian Process (GP), RBF, Polynomial Regression (PR), and Extreme 

Learning Machine (ELM). Empirical results reveal that while all the metamodels show 

improvement as compared to standard Genetic Algorithm (GA), some of the metamodels, 

namely, PR and GP exhibit great robustness. Interestingly enough, an ensemble of 

metamodels and multi-surrogates yields an even better solution quality on the same 

benchmark problems for an identical computational budget. 
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2.2.2 Radial Basis Functions 

As discussed in the previous sub-Section, many of the limitations associated with 

the other techniques have been overcome using RBFs. They are circularly symmetric 

functions centered about a single point known as the mean or the center. They are quite 

popularly used by the computer graphics community over the past two decades or so. 

Other researchers have started applying them in the fields of engineering design, reverse 

engineering, and shape optimization over the past few years.  

 Some of the advantages include their compact representation, sensitivity to local 

features, ability to suppress noise in data, and ability to incorporate varying level of 

smoothness [Juba07]. Some of the common choices for RBFs are thin-plate splines, 

multiquadrics, inverse multiquadrics, polyharmonics, and Gaussians. One of the earliest 

uses of RBFs dates back to 1990, when Hardy [Hard90] applied multiquadrics to 

represent topological surfaces for given sets of sparse and scattered measurements.  

 Goshtasby [Gosh00] has used inverse multiquadric and Gaussian RBFs to 

partition a large set of non-uniformly spaced points in the plane into subsets and fit a 

parametric curve to each subset. This can be used to find patterns among the points and 

describe the physical phenomenon analytically if the points are obtained as measurements 

from a physical or simulation experiment. Similarly, if the points are measured from a 

geometric model, it can be used for model reconstruction purposes. This method is 

particularly well-suited for dense and noisy point sets. Test results show that the number 

and types of ridges and contours (parametric curves) depend on the choice of the basis 

function.     
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 Carr et al. [Carr01] have used polyharmonic RBFs to reconstruct smooth, 

manifold surfaces from point clouds and to repair incomplete meshes. A greedy 

algorithm is used during the fitting process to reduce the number of RBF centers that are 

required to represent a surface. This makes it computationally feasible to represent 

complicated objects of arbitrary topology using RBFs. The scale-independent, 

“smoothest interpolator” characterization of polyharmonic splines makes them 

particularly suitable for fitting to non-uniformly sampled point clouds and partial meshes 

containing large, irregular holes. A non-interpolating approximation is used when the 

data is noisy. Test results on several examples, such as a laughing Buddha, a dragon, an 

asteroid, a human skeleton hand, and a turbine blade containing intricate internal 

structure, highlight the effectiveness of this fitting technique. One such example is shown 

in Figure 2.4, where 544,000 point cloud is represented by 80,000 centers with a relative 

accuracy of 5 X 10-4 in the final frame.  

 
 

Figure 2.4: Iterative RBF fitting to a dense point cloud (Image source: [Carr01]) 

 Turk and O’ Brien [Turk02] have used RBFs to create interpolating implicit 

surfaces. A 3D implicit function is created by specifying 3D locations through this 
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surface must pass (data points), and also identifying locations that are interior or exterior 

to the surface. The iso-surface of this function describes the desired surface. These 

surfaces can be easily used for constructive solid geometry operations, interference 

detections, interactive manipulation or sculpting, polygonal tiling, ray tracing and so on. 

These manipulations are difficult to achieve on other popular types of implicit surfaces, 

such as the sums of spherical or ellipsoidal Gaussian functions, known as blobby balls. 

This particular formulation also enables conversion of a polygonal model to a smooth, 

implicit model and formation of blends between two objects.  

 Weiler et al. [Weil05] have pointed out that although both splines and 

multiquadrics are considered to be accurate, Gaussian RBFs offer certain advantages over 

the other two types because they are computationally less challenging, concise, robust, 

and possess some desirable basis function properties. One such property is that they 

decay to zero rather than tending towards infinity; thus, if a particular region in space is 

poorly fitted by an RBF, then the overall modeling error is restricted. They are also less 

expensive to compute using modern graphics processing units (GPUs). 

 The authors have presented a kd-tree based method to fit Gaussian RBFs to an 

unstructured volumetric vector field. They have used principal component analysis to 

cluster and determine the centers of the Gaussian RBFs. They have also selected some of 

the centers to lie at the crests and the troughs of the low frequency components present in 

the data. An approximate, iterative method is used to solve the system of equation for the 

RBF weights quickly. This fitting framework has been coupled with GPU based volume 

rendering algorithms that proceed by slicing. For each fragment in a slice, a fragment 
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program iterates over the RBF parameters, computes the scalar value at that location, and 

performs a lookup operation of the corresponding color from a 1D texture map.  

 Wu et al. [Wu05] have developed a new scheme for 3D reconstruction of implicit 

surfaces from large scattered point sets using RBFs. A partition of unity (POU) method 

and binary tree is used to organize the point sets into overlapping local sub-domains. A 

local surface is then reconstructed for each of the sub-domains from non-disjunct subsets 

of the points. In contrary to the conventional RBF fitting methods, where a full set of off-

surface points are used in each sub-domain, this scheme uses a single off-surface point 

that avoids a trivial solution to the system of linear RBF equations. Careful choice of this 

offset point is shown to yield an efficient and robust local fitting technique that offers a 

high level of scalability. Global solution is obtained by combining the local solutions 

with the POU equations. The level set propagation methodology for dynamic surfaces is 

adapted to smooth the reconstructed surfaces using curvature diffusion. Test results on 

various standard graphics examples like Stanford bunny, Venus face etc. show 

satisfactory results. 

 Mullur and Messac [Mull05] have combined the effectiveness of multiquadric 

RBFs with the flexibility of non-radial basis functions (N-RBFs) to come up with 

extended radial basis functions (E-RBFs) to explore new frontiers in engineering design. 

The authors have pointed out that although RBFs offer lots of advantages over traditional 

response surface methods (RSMs) in terms of handling multi-dimensional interpolative 

approximations, they are not very useful in uncertainty handling and multi-objective 

optimization. A linear programming based approach has been developed to impose 
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convexity constraints on the E-RBFs. This is another significant modification to the 

characteristics of traditional RBFs.   

 Comparative study of E-RBFs with RBFs and RSMs over seven surface functions 

shows that E-RBFs perform consistently well under widely varying conditions from 

simple polynomial functions to highly non-linear large scale problems. On the other 

hand, RSMs perform well for problems with low non-linearity, and RBFs perform 

satisfactorily for highly non-linear but not very large scale problems. However, further 

work needs to be done to investigate the performance of E-RBFs for problems having 

more than 100 variables. Similarly, the possibility of incorporating constraints other than 

convexity can also be explored.   

 Wu et al. [Wu06] have presented two approaches for 3D surface reconstruction 

from laser scanned data sets using RBFs. In the first method, a point set is organized 

using a balanced binary tree. Similar to the technique proposed in [Wu05], only one off-

surface point in the quasi-normal direction (obtained by Eigen analysis) is used for RBF 

interpolation in every sub-domain. These sub-domains are controlled such that they 

overlap mildly and contain an adequate number of points for efficiency and stability. 

Another least squares RBF fitting technique is proposed that overcomes the problem of 

numerical ill-conditioning and over-fitting of traditional techniques. Although it is time-

consuming, it can represent surfaces with lesser number of RBF centers.   

 Wei and Wu [Wei06] have used RBFs in conjunction with level sets to solve 

structural shape and topology optimization problems. They have come up with a 

parametric representation of level sets, which is shown to have certain advantages over 

the conventional discrete representation. The propagation of the front or the boundary of 
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the implicit surfaces (modeled by RBFs) towards an optimal shape and topology by 

solving the Hamilton-Jacobi partial differential equation is reduced to the evolution of the 

ordinary differential equation of the RBF coefficients or parameters. Steepest descent 

method has been used here to perform gradient based search in the parametric space.  

 Two integration schemes have been applied in this paper for different 

applications. The boundary integration scheme is useful for shape optimization and fluid 

simulation problems, where the velocity extension procedure is time-consuming. On the 

other hand, the volume integration scheme applies velocity extension. Hence, there is no 

need to explicitly trace the front curves of the implicit surface, thereby enhancing the 

efficiency of the numerical computation. Both these schemes avoid the re-initialization 

process that is unavoidable with the discrete level set method. Numerical experiments on 

minimum compliance design of a 2D structure show promising results, although the 

stability and convergence of this method need to be formally investigated in future.  

 

2.2.3 Summary 

 From the discussion in the previous two sub-Sections, it is clear that RBFs form 

an ideal choice for the current application as they can be regarded as some sort of a 

hybrid between pure surface fitting (like response surfaces) and interpolation techniques 

(like Kriging). Not only do they preserve local features that may be present in the high-

dimensional trapping probability surface, they are also robust with respect to outliers that 

typically occur in any stochastic experiment. Among RBFs, Gaussians seem to be the 

most appropriate choice. Although E-RBFs may be very accurate, they are not required 

here as the parametric space is not going to be of very high dimensions (expected to be 
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less than 10). Similarly, an ensemble of metamodeling techniques is not required as 

evolutionary computing will not be carried out here. For implicit surface representation 

of large, noisy data sets, Gaussian RBFs are effective on their own.  

 Arrangement of RBFs in the form of a data structure that allows fast querying 

operations is also important in the current work. Binary trees are well-suited for this 

purpose. That is why, a specialized form of binary tree, namely the kd-tree is utilized in 

the current work. The effectiveness of combining RBFs with a kd-tree based spatial 

partitioning scheme has been already demonstrated by Weiler et al. [Weil05]. Some other 

reasons for selecting kd-trees over octrees (or their higher dimensional versions) have 

been explained later in Chapter 3. However, so far no work has been done to characterize 

the extent of usefulness of any RBF fitting procedure to micro or nano scale assembly 

simulation data. This will be investigated in the current dissertation by repeating the same 

set of simulation experiments for particles of different sizes having varying levels of 

stochastic motions.       

  

2.3 Single Robot Motion Planning under Uncertainty 

2.3.1 Classical Techniques 

 Single robot motion planning has received a lot of attention over the past few 

decades. Broadly, the methods can be classified into two types: planning with complete 

information or with incomplete information. Inspired by the Piano Mover’s problem, a 

large number of problems have been studied in the former domain [Schw86]. Many of 

the approaches utilize the notion of configuration space (C-space) originally introduced 

by Lozano-Perez [Pere83]. In C-space, the robot is shrunk to a point, and the surrounding 
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objects, called obstacles, are expanded accordingly. For polygonal or polyhedral robot 

and obstacles, this amounts to computing the Minkowski sum of the robot polygon (or 

polyhedron) with the image of the obstacle polygon (or polyhedron) under consideration. 

Free subspace of C-space is the complement of the union of the expanded obstacles. Any 

path that lies in a continuous subset of the free space is a physically realizable path for 

the point robot.  

 Latombe has provided a detailed description of the popular methods in this 

complete information or offline planning category, including road map, cell 

decomposition, potential field etc. [Lato91]. In the roadmap approach, the free C-space is 

retracted, reduced to or mapped onto one-dimensional lines. Hence, this approach is also 

known as Retraction, Skeleton, or Highway approach. The search space is limited to this 

network, and hence, it reduces to a graph search problem. Some of the well-known 

roadmaps include Visibility graph, Voronoi diagram, Silhouette, and the Subgoal 

network. In the cell decomposition algorithms, the free C-space is decomposed into a set 

of simple cells and the adjacency relationships among the cells are computed. A 

collision-free path between the start and the goal configurations of the robot is obtained 

by identifying those two points and then connecting them with a sequence of connected 

cells. In the potential field method, a robot is represented in C-space as a point particle 

moving under the influence of an artificial potential field whose local variations represent 

the nature of the free space. This function can be defined as the sum of an attractive 

potential pulling the robot towards the goal configuration, and repulsive potentials 

pushing it away from the obstacles.     
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 The other class of incomplete information based planning problems has been 

studied only in the recent past. Lumelsky has presented a detailed survey of sensing, 

intelligence and motion based approaches to solve these problems [Lume06]. He has 

developed a class of Bug algorithms for a planning in 2D using tactile sensing only in 

unstructured environments consisting of arbitrary-shaped, but finite-sized obstacles. 

These algorithms have been extended to deal with visual sensing, based on the sensor’s 

circular field of vision. Significant modifications to the basic algorithms have made to 

apply them in case of two or three-dimensional robot arm manipulators. Thus, these 

algorithms are potentially very useful in industrial settings where most of the actual job is 

performed by arm manipulators.  

 Masehian and Sedighizadeh [Mase07] have performed a chronological review of 

the existing classical and heuristic approaches in robot motion planning. As expected, the 

heuristic techniques such as artificial neural network, simulated annealing, genetic 

algorithm, fuzzy logic, particle swarm optimization, ant colony optimization, tabu search, 

wavelets etc. have increased in popularity over the past decade or so. Even so, C-space 

and Voronoi diagram based approaches are still being used widely in different 

applications.     

 

2.3.2 Probabilistic Roadmaps 

 Kavraki et al. [Kavr96] first presented the technique of probabilistic roadmaps 

(PRMs) for path planning in higher dimensional, static C-spaces. The technique proceeds 

in two phases: a learning phase and a query phase. In the learning phase, a probabilistic 

roadmap is constructed and stored as a graph. The nodes or vertices of the graph 
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correspond to collision-free configurations and the edges represent feasible paths between 

those configurations. The nodes are selected using uniform random distribution based 

sampling of the free C-space and the paths are computed using a fast, local planner. In the 

query phase, any given start and goal configurations of the robot are connected to two 

nodes of the roadmap and it is then searched for a path joining these two nodes. The 

technique is easy to implement and can be applied to almost any holonomic robot. 

Although efficiency depends on the selection of certain scene and robot dependent 

parameters during the learning phase, this is a relatively easy operation. Experimental 

results on planar, articulated robots with many degrees of freedom show that planning 

can be done in fraction of a second after learning for a few dozen seconds. Theoretical 

results bounding the number of roadmap nodes required for solving planning problems in 

spaces with certain geometric properties have been presented by Kavraki and Latombe 

[Kavr98]. 

 An obstacle based PRM for obtaining high quality roadmaps for crowded scenes 

has been developed by Wu [Wu96]. The salient feature of this approach is that roadmap 

candidate points are chosen on the constraint surfaces corresponding to obstacles present 

in the workspace. Hence, it is likely to contain difficult paths that traverse through long, 

narrow passages. This is useful for contact planning apart from collision-free path 

planning.  

 Boor et al. [Boor99] have presented a new Gaussian sampling strategy for PRM 

based planners. This gives better coverage in the difficult portions of the free C-space. 

Test results on a rectangular robot with three degrees of freedom in scenes involving 

small corridors, and large number of obstacles show significant reduction in the number 
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of nodes as well as the time taken to complete sampling in comparison to random 

sampling based technique. This reduction in time is expected to be even more important 

in case of three-dimensional robots having six degrees of freedom as the time required for 

adding a node is much more than the time required for testing a sample.  

 Branicky et al. [Bran01] have proposed the use of quasi-random sampling 

techniques in the context of PRM framework. Two quasi-random variants of PRM based 

path planner have been implemented in this work: (a) a classical PRM with quasi-random 

sampling, and (b) a quasi-random Lazy-PRM. The main feature of Lazy-PRM is that the 

roadmap is initially constructed without considering collisions. Once a query is given, A* 

search is performed to obtain a solution. If any of the solution edges are in collision, they 

are removed from the roadmap and A* search is repeated. In the worst case, all edges 

may have to be checked for collision; however, the problem is usually solved well before 

this happens. Both the techniques show significant computational benefits in terms of 

reduction in the number of nodes (and corresponding query operations) as compared to 

their randomized counterparts.       

 Apaydin et al. [Apay02a] have extended this technique to develop a new 

algorithm, known as stochastic roadmap simulation (SRS) to explore the kinetics of 

molecular motion by examining multiple pathways simultaneously. This avoids the 

common problem encountered by many other molecular motion simulation techniques, 

such as Monte Carlo, which generates one pathway at a time and, thereby, spends most of 

the time in overcoming local minima of the energy landscape defined over a molecular 

conformation space. SRS encodes all the paths compactly in the form of a graph that is 

constructed by randomly sampling the molecular conformation space. Each edge 
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represents a potential transition of the molecule from one conformation to the other and is 

associated with a probability denoting the likelihood of this transition. This graph can be 

viewed as a Markov chain, leading to efficient computation of ensemble properties. 

Application to two biological problems, namely, probability of protein folding, and 

estimated, expected time to escape from a ligand-protein binding site shows that SRS 

yields slightly more accurate results than Monte Carlo simulation. Moreover, 

computation time is reduced by several orders of magnitude.  

In another related work, Apaydin et al. [Apay06b] have applied SRS in studying 

ligand-protein interactions. They have considered a parameter called escape time, which 

is the expected number of simulation steps required for the ligand to escape from the 

‘funnel of attraction’ of the binding site. This parameter acts as a metric for analyzing the 

interactions. The results for six mutant complexes agree well with biological 

interpretations, while those for seven ligand-protein interactions show the effectiveness 

of the metric to distinguish the catalytic site in five cases.  

 Hsu et al. [Hsu02] have also extended the PRM framework to develop a 

randomized motion planner for robots that must achieve a specified goal under kinematic 

and/or dynamic motion constraints without colliding with moving obstacles having 

known trajectories. Motion constraints are encoded with a control system that samples 

the robot’s state X time space by selecting control inputs randomly, and then integrating 

the equations of motion. The roadmap is not pre-computed here; instead, for every query, 

a new roadmap is generated to connect the initial and the goal state X time point. It is 

shown that if the state X time space satisfies the expansiveness property, then a slightly 

idealized version of the implemented is guaranteed to locate a trajectory, if one exists, 
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with the probability quickly approaching 1, as the number of points increases. This 

planner has been tested both in simulated environments as well as on a real robot. If a 

change in the expected obstacle motion takes place while the robot is executing the 

planned trajectory (based upon visual information regarding obstacle motion before 

planning starts), then the robot recomputes the trajectory on the fly. Extensions to the 

planner have been carried out to deal with time delays and uncertainties that are 

inherently present in any robotic system interacting with the physical world. 

 Leven and Hutchinson [Leve02] have presented a technique similar in nature to 

the PRM approach for generating collision-free paths for robots operating in changing 

environments. Unlike the traditional PRM approach, the graph that represents a roadmap 

in the C-space is not constructed for a specific workspace. Instead, it is constructed for an 

obstacle-free workspace that encodes a mapping from workspace cells to nodes and arcs 

(or edges). When the environment changes, this mapping is used to make appropriate 

modifications in the graph, and plans are generated by searching the modified graph. 

Random samples of the C-space, generated using an importance sampling approach, are 

connected together to form the roadmap. Compression schemes are used to exploit 

redundancy in encoding mapping information. Implementation on serial-link 

manipulators shows that few seconds are required to create the roadmap for a 20 joint 

planar robot and a 6 joint 3D robot. Enhancement of the robustness of the roadmap with 

respect to changes in the environment increases this processing time to minutes and even 

hours depending upon the number of nodes.  

Lot of work has also been carried out on replanning in unknown and dynamic 

environments. Bruce and Veloso [Bruc02] have introduced extensions to previous work 
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on Rapidly-Exploring Random Trees (RRTs), which themselves are variants of the PRM 

technique. Their planning algorithm, known as execution extended RRT, uses a waypoint 

cache and adaptive cost penalty search to improve the replanning efficiency and the 

quality of the generated paths. Simulation and physical experiments on a RoboCup F180 

robot controller show that the robot can travel significantly faster, especially when kd-

tree is used for nearest neighbor searching while reducing oscillations and local minima 

problems encountered by a reactive scheme. However, post-processing steps and better 

heuristics may be required to correct the inaccuracies in the kinematics model and reduce 

the planning time further respectively.  

Zucker et al. [Zuck07] have presented a Multipartite RRT (MP-RRT) algorithm 

that bias the sampling distribution and re-use branches from previous planning iterations 

for rapid replanning in dynamic environments. Simulation experiments show that this 

algorithm outperforms some of the existing RRT techniques in high-dimensional 

configuration spaces with unknown moving obstacles, especially when a greedy 

smoothing heuristic is used to incrementally smooth the path in the configuration space. 

However, it needs to be verified whether the MP-RRT algorithm is capable of generating 

more robust plans as compared to the existing approaches.  

A greedy but probabilistically complete (and hence safe) state space exploration 

strategy for replanning under kinodynamic constraints in non-holonomic systems using 

incrementally updated tree data structure has been presented in [Bekr07]. The authors 

have built upon the previous work using RRTs to reduce the cost of achieving safety by 

controlling the planning cycle duration and employing lazy evaluation. Searching is 

biased using information extracted from sensor data as opposed to “Voronoi-bias” 
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selection strategies employed by previous techniques. Simulated experiments indicate 

favorable computational performance against existing alternatives. However, this 

approach does not account for uncertainty in the form of sensor noise and positioning 

error.  

Rodriguez et al. [Rodr07] have extended the roadmap approach to come up with a 

heuristic framework for motion planning in environments with moving obstacles. This 

approach assumes that the robot has no knowledge about the trajectories of the moving 

obstacles. It also distinguishes the obstacles into two types: hard with which collisions 

must be avoided at all costs, and soft referring to other agents or robots with which some 

collisions are permitted. A global roadmap is first constructed taking the hard obstacles 

into account only. This global map is then integrated with kinodynamic local planning to 

consider the soft obstacles, and neighboring agents to compute safe plans. The local paths 

are updated as the environment changes. Numerical experiment results on various test 

cases including corridors, rotors and attacking agents environments show that successful 

plans can be generated about (70-80) % of the time if about 10-15 soft obstacles are 

present. Typically, few hundred steps are needed to generate a successful plan within few 

tens of milliseconds. However, further work needs to be done to apply this framework in 

real-world settings. 

 A similar notion of global roadmap and local collision avoidance is used by Sud 

et al. [Sud07a] to present an approach for real-time path planning for multiple virtual 

agents in complex, dynamic scenes. They have introduced a new data structure, called 

multi-agent navigation graph (MaNG). This is constructed using first and second order 

Voronoi diagrams. Voronoi diagrams encode the connectivity of the space and provide a 
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path of maximal clearance for a robot from other obstacles. While first order Voronoi 

diagrams contain all the points that are closest to a site, second order diagrams contain all 

the points that are closest to two given sites. Combination of the two avoids the 

computational burden associated with considering every agent separately, and treating all 

the other agents and environment objects as obstacles.  

 MaNG is computed using graphics hardware and culling operations are performed 

to achieve speed-up. Applications of this algorithm in pursuit-evasion (fruit stealing) and 

crowd simulation scenarios consisting of hundreds of moving agents, each with a distinct 

goal, show that 5 to 20 frames per second (fps) performance can be achieved in case of 

15 static obstacles and few (2 to 5) moving obstacles. Running time analysis shows that 

the construction of discrete Voronoi diagram is the bottleneck step and has a cost of 

O(rm2 + m logn) associated with it, where n is the number of sites, m X m is the grid size, 

and r depends on the tightness of the computed Voronoi region bounds. Although this 

approach computes an optimal path for every frame, it does not guarantee coherence of 

paths across frames, or convergence over a period of time.  

 Further work on real-time navigation of independent agents in dynamic 

environments using lazy roadmap based technique has been done by Sud et al. [Sud07b]. 

Another approach for motion planning of multiple robots in dynamic environments has 

been proposed by Gayle et al. [Gayl06]. They have developed a new data structure, 

called the Reactive Deformable Roadmap, such that each link in this roadmap can be 

deformed in response to the motions of other robots or obstacles obeying Newtonian 

physics and Hooke’s law to compute collision-free paths. Yan et al. [Yan06] have 

integrated environment information and constraints for unmanned air vehicle into the 
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procedure for building flight roadmaps for mission-adaptable route planning in uncertain 

and adversial environments. Missiuro and Roy [Miss06] have proposed an extension of 

the PRM algorithm that computes motion plans that are robust to uncertain maps. This 

generates less collision-prone trajectories with fewer samples than the traditional 

approach.    

 

2.3.3 Stochastic Dynamic Programming 

 LaValle and Sharma [LaVa97] have presented a framework for robot motion 

planning in environments that is changing with time, and is not completely predictable. 

They have classified the sources of uncertainty into four types: uncertainty in 

configuration sensing, configuration prediction, environment sensing, and environment 

prediction. Although the paper primarily deals with the last type of uncertainty, several 

extensions have been presented that can handle other types of uncertainties as well.  

 The changing environment is modeled in a flexible manner by combining C-space 

approaches with a Markov process. The notion of a motion strategy has been used to 

provide a motion command to the robot for every contingency plan that it is confronted 

with. A desired performance criterion, such as time or distance, is specified and an 

optimal motion strategy with respect to that criterion is determined using dynamic 

programming based algorithm. Although the paper focuses on a finite environment space 

of reasonably small size, applications on various problems involving changing C-space, 

hazardous regions and shelters, and processing of random service requests clearly 

highlight the benefits of the approach.   
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 LaValle and Hutchinson [LaVa98] have presented an objective based framework 

for motion planning under both and control and sensing uncertainties. They have 

generalized classical preimages [Lato91] to performance preimages and preimage 

planning to motion strategies with information feedback by combining concepts of 

stochastic optimal control and dynamic game theory with preimage planning approaches. 

They have considered the executed robot trajectory as the performance criterion. They 

have presented dynamic programming based algorithms to numerically compute 

performance preimages and motion strategies that will optimize the this performance 

criterion either under nondeterministic uncertainty (worst case analysis) or under 

probabilistic uncertainty (expected or average case analysis). A large number of 

computed examples of performance preimages, and optimal motion strategies show the 

fundamental differences between nondeterministic and probabilistic analysis, and the 

effect of the two types of uncertainties either separately or in conjunction to each other. 

While the isoperformance curves come closer to each other in case of worst case analysis 

as the computed costs are higher, the curves become crowded and do not align perfectly 

with the obstacles if sensor imperfections are included. The sample paths under 

implementation of the optimal strategies also show greater variation from one simulation 

to the other in the latter case. Isoperformance curves and sample trajectories using 

probabilistic analysis for a particular test case involving both forms of uncertainties is 

shown in Figure 2.5. 

 A unified, game-theoretic framework for design and analysis of algorithms to 

solve a wide class of robotics problems has been proposed by LaValle [LaVa00]. This is 

motivated by the similar benefits that were achieved by using a unified C-space approach 
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for basic path planning problems. The proposed approach can handle many kinds of 

complications such as sensing and modeling uncertainties, nonholonomy, robot body 

dynamics, multiple robots and goals, optimality criterion, unpredictability, and 

nonstationarity in addition to geometric workspace constraints. Other than robotics, this 

has potential applications in virtual prototyping, computer graphics, and computational 

biology. By adopting this approach, a general dynamic programming based algorithm has 

been obtained for computing approximate solutions to a broad class of motion planning 

problems. This provides useful flexibility in substituting uncertainty models, 

understanding the relationship between nondeterministic and probabilistic uncertainty 

models, and replacing approximate methods by precise formulations for mathematical 

analysis. 

     
      
(a) Isoperformance curves       (b) Sample trajectories  
 

Figure 2.5: Optimal motion strategies under probabilistic uncertainty and imperfect state 
information using dynamic programming based approach (Image source: [LaVa98]) 

 
 Alterovitz et al. [Alte05] have used a discrete version of the infinite horizon 

dynamic programming to compute an optimal control sequence for steering flexible 

needles with bevel tips inside soft tissues. These needles can be steered around obstacles 
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to reach targets inaccessible to rigid needles by controlling two degrees of freedom at the 

needle base (bevel direction and insertion distance). This is analogous to nonholonomic 

motion planning for a Dubins car without any reversal.  

 By formulating the planning problem as a Markov decision process (MDP), this 

approach handles control action uncertainty in needle motion due to uncertainties in 

tissue properties, needle mechanics, and interaction forces. The expected cost to reach a 

target in the imaging plane due to insertion distance, direction changes, and obstacle 

collisions is minimized. The discretization errors as a result of sampling of the state space 

of needle tip positions and orientations are bounded mathematically. Comparison with the 

deterministic motion case clearly shows that significantly different motion plans are 

obtained in the two cases. However, further work needs to be done to investigate the 

nature of the state transition probability distribution and improve computational 

performance for interactive applications or larger state spaces with smaller discretization 

errors.  

 An attempt to combine probabilistic roadmaps with partially observable Markov 

decision process (POMDP) has been made by Prentice and Roy [Pren07]. They have 

developed a belief-space variant of the probabilistic roadmap algorithm, called the Belief 

Roadmap (BRM), by using a factored form of the covariance matrix associated with 

linear Gaussian systems. This factored form enables combining several prediction and 

measurement steps into a single linear, one-step transfer function, thereby leading to 

more efficient posterior belief prediction during planning. Theories from linear filtering 

and optimal control have been applied to prove the covariance factorization theorem that 

can then be utilized for updating the Extended Kalman filter instead of solving the non-
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linear Riccati equation. Experimental results indicate that BRM provides more accurate 

localization than shortest path planning algorithms under conditions of varying noise and 

small maximum sensor range. Computation time is also reduced by two orders of 

magnitude and scales well with respect to the path length and depth of the search tree. 

 Doshi and Roy [Dosh08a] have utilized the structure of many preference 

elicitation problems to obtain POMDP solutions with exponentially fewer belief points 

while retaining the quality of the solution. In such problems, the agent robots must 

discover some hidden preferences from another (often human) agent. The approach is 

based upon the assumption that the agent’s optimal control action type depends only on 

its uncertainty over states and not on the particular states that it is confused about. 

Empirical simulation results show that computation can be sped up by several orders of 

magnitude; however, more compact encoding schemes for models will be useful for large 

scale problems.   

 Doshi et al. [Dosh08b] have presented an approximate Bayesian reinforcement 

learning technique for obtaining the POMDP model parameters by treating them as 

additional hidden states in a “model-uncertainty” POMDP. This framework of 

simultaneous learning and planning avoids the problem of long training periods of the 

robots or agents to acquire the POMDP parameters from the domain of operation while 

guaranteeing correctness and convergence. The notion of meta-queries has been 

introduced to accelerate learning and infer the effects of potential disasters without 

actually experiencing them. Results on some well-known POMDP examples, involving 

both discrete and continuous-valued parameters, show that this approach performs better 

than the non-learning as well as the passively learning versions. However, more efficient 
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sampling strategies as well as heuristics for allocating more computation to better 

solutions are required for real-time applications. 

 Thrun et al. [Thru05] have presented a comprehensive survey of techniques in the 

emerging field of probabilistic robotics. It is a subfield of robotics pertaining to 

perception and control. By relying on statistical techniques for representing information 

and decision-making, it accommodates the uncertainty that arises in different 

applications. All the algorithms are based on a single, underlying mathematical 

foundation: Bayes rule and its temporal extension, known as Bayes filter. This book 

presents both discrete and continuous versions of the value iteration equation based upon 

Bellman optimality equation for a Markov decision process. A finite world POMDP 

algorithm is also described to capture sensor uncertainty in addition to control action 

uncertainty, and perform value iteration over the belief state instead of the actual state. 

Finally, approximate versions of the previous algorithm are presented to achieve superior 

computational performance. Complete mathematical derivations of all the assumptions 

from first principle, test cases to illustrate behavior, and detailed discussion of the 

strengths and weaknesses of each algorithm make this book particularly useful for 

understanding and comparing different planning approaches capable of dealing with 

uncertainties. 

 An up-to-date, text book style presentation of both geometric and probabilistic 

motion planning approaches, along with techniques for position estimation and 

mechanical control systems can be found in [Chos06]. LaValle [LaVa06] has presented a 

unified treatment of different kinds of planning algorithms. All the dynamic 

programming based approaches have been grouped together under the category of 
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decision-theoretic planning. A detailed study of such algorithms has also been done by 

Kane et al. [Kane06]. Since LaValle’s book covers a wide variety of approaches ranging 

from graph search techniques (like A*, Dijkstra’s algorithm etc.) for discrete planning, to 

probabilistic roadmaps and randomized potential fields for sampling based motion 

planning, and navigation functions for feedback motion planning, it provides a very good 

reference for comparing fundamentally different approaches.               

 

2.3.4 Summary 

 Discussion of different motion planning approaches shows that dynamic 

programming has been used most widely to deal with uncertainty. Although recently 

researchers have started working on extending the probabilistic roadmap framework, 

algorithms that can generate theoretically guaranteed optimum strategies in real-time for 

a large number of unpredictably moving obstacles have not yet been developed. 

Moreover, unlike in other approaches, both forms of uncertainty, namely control action 

and sensing can be easily incorporated within the dynamic programming framework. 

Since the current dissertation focuses on transporting particles in fluid medium where all 

other particles (obstacles) are exhibiting Brownian motions, probabilistic models are 

better suited to represent uncertainties than nondeterministic bounded intervals. This is 

because particle positions obey normal distributions, with mean displacements equal to 

zero, and variances related to the diffusion lengths. In other words, the current planning 

problem can be mathematically represented as a POMDP. One of the approximate 

POMDP algorithms, known as the QMDP algorithm described in [Thru05], has been 

adapted in this work to achieve computational efficiency.  
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 However, in its basic form, this algorithm cannot compute the optimum solution 

within a few milliseconds for environments consisting of as many as 50 or more 

constantly moving obstacles. So pruning conditions have to be developed to reduce the 

search space drastically. Similarly, means of attainting faster convergence of the value 

iteration equation have to be explored. Finally, no POMDP algorithm currently accounts 

for the change taking place in the environment within the time it takes for the planner to 

compute the optimum strategy. This effect needs to be considered here due to the rapidity 

of the changes occurring in the environment.      

 

2.4 Decoupled Multiple Robot Motion Planning 

2.4.1 Methods 

 Most multi-robot planning algorithms can be either categorized as coupled or 

decoupled. Coupled algorithms combine the states of all the individual robots into a 

single state space representation, and plan the paths concurrently. The method developed 

by Svestka and Overmars [Sves98] uses probabilistic roadmaps for static environments. It 

first constructs a roadmap for every robot and then combines these simple roadmaps into 

a composite one. Simulation results on five car-like robots in complex scenes show that 

the problem can be solved in the order of seconds once the pre-processing step is 

completed in few minutes. The primary limitation is that the size of the configuration 

space grows exponentially with the number of robots in the system.  

 On the other hand, decoupled methods plan for the motion of individual robots 

separately. One approach is to decouple path planning with mutual collision avoidance. 

This implies that obstacle-free paths are obtained first. Then, the velocities of the 
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individual robots are adjusted to avoid collisions [Peng05]. Alternatively, a geometry-

based, coordination-diagram approach can be utilized to independently combine the 

generated paths of many robots such that collisions are avoided [Sime02]. A bounding 

box representation is used for every obstacle so that the n-dimensional coordination space 

can be represented implicitly by exploiting the cylindrical structure of the coordination 

diagram obstacles. This method is resolution-complete and is able to efficiently handle up 

to 10 robots in the worst-case and more than 100 robots in practical situations. However, 

extensions are necessary to determine the groups of few robots that may cause deadlocks 

resulting in the approach returning no solution. In that case, a centralized planner may be 

needed to resolve the local conflicts.   

Decoupled methods may also be classified as using a centralized or a 

decentralized architecture. The latter type uses independent planning techniques such as 

potential fields [Barr91]. Lumelsky and Hariharan [Lume97] have used a cocktail party 

model, where they have assumed that the robots have no prior knowledge about the scene 

(consisting of stationary obstacles only) or about the paths and objectives of the other 

robots. The robots do not communicate with each other and no restrictions are imposed 

on the paths or shapes of the robots and the obstacles. Clearly, no provable strategy can 

be employed in this situation; the maze searching based heuristic method demonstrates 

good performance and robustness characteristics in simulation experiments. However, 

like any other decentralized technique, this method cannot guarantee convergence.    

The centralized planners typically compute the individual paths sequentially in a 

single processor and then combine the plans to avoid collisions. Combination of plans 

inherently involves assigning priorities to robots, which affects the quality of the 
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resulting solution. Such priority assignment is carried out either by considering all 

possible combinations of priorities as shown for three robots in [Azar97]. Bennewitz et 

al. [Benn01] have used an optimization process to overcome the limitations of 

incompleteness and lack of optimality. Unlike many other approaches that apply a single 

priority scheme which often fails in cases when valid solutions exist, the authors have 

used a randomized search with hill climbing to generate solutions and minimize the path 

lengths. Constraints obtained from the task specifications are used to focus the search. 

Both physical (on CS-Frieburg RoboCup team as shown in Figure 2.6) and simulation 

experiments (in cyclic corridors and unstructured environments) show the superior 

performance of this method both in terms of the plan efficiency as well as the ability to 

find valid plans.  

 

Figure 2.6: Coordinated path planning for four robots in the CS-Freiburg RoboCup team 
(Image source: [Benn01])  

 
An alternative multiphase planning approach that is scalable to a large number of 

robots linearly has been presented recently in [Peas08]. The authors have used a graph 

and spanning tree representation to create and maintain obstacle-free paths for each robot. 

Simulation in an underground mine environment consisting of tunnels and corridors takes 

less than 1.5 s for 100 robots in a 1.5 GHz processor. However, the process of generating 

a suitable roadmap or graph representation for arbitrary obstacles and nonholonomic 
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motion constraints can be quite challenging. Also, it may be more advantageous to 

consider a hybrid approach that can take advantage of the useful features of both 

sequential and multiphase planners. Further work is also required to implement this 

method on a distributed architecture instead of the current centralized one.    

 

2.4.2 Summary 

 It is clear from the preceding discussion that in general decoupled methods offer 

significant computational benefits over any coupled approach. However, some of the 

decoupled techniques suffer from lack of completeness and optimality. That is why, the 

priority optimization method presented in [Benn01] has been selected as the candidate for 

developing a planning approach to transport multiple particles. Although the multiphase 

method described in [Peas08] has better scalability, in its current form, its usefulness for 

rapidly changing environments is not clear.  

 It is useful to note here that none of the current techniques consider the problem 

of selecting goals for robots. All of them assume that the assignment of goals to 

individual robots is already specified in the problem statement or definition. However, 

that is not necessarily the case for transporting particles using optical tweezers. In certain 

situations, the planner has to generate the assignment automatically based on some 

criterion that will minimize the expected time to complete the full operation. So an 

optimum way of doing that needs to be explored in the current work. Moreover, ways to 

reduce the search space so that optimal priorities can be determined within few hundred 

milliseconds for a reasonable number of particles (10-20) also have to be considered.  
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2.5 Indirect Optical Manipulation of Cells   

2.5.1 Techniques 

 As mentioned earlier in this Chapter, optical tweezers have been used extensively 

to trap and manipulate cells by focusing laser beams directly on them. However, due to 

the tight focusing of the laser, considerable photodamage can be inflicted on trapped 

cells, including the death of cells as noted by Ashkin [Ashk89]. A range of assays have 

shown that focused laser light can also affect cell function without destroying the cell. 

The underlying mechanism for photodamage has been proposed to be due to the creation 

of reactive chemical species [Svob94b, Liu96], local heating [Liu96], two-photon 

absorption [Koni95, Koni96] and singlet oxygen through the excitation of a 

photosensitizer [Neum99]. These studies caution that direct cell trapping may not be 

desirable. 

That is why researchers have recently started investigating the possibility of 

manipulating cells by indirect means. Sun et al. [Sun01] have used irregularly shaped 

diamond microparticles as handles for manipulating cells. Both the direction and speed of 

rotation of the diamond particles can be easily controlled in a linearly polarized beam 

with fundamental Gaussian mode due to the irregular optical shape of the diamond 

particles. The authors have been successful in imparting independent linear translation 

and rotation to the mesophyll protoplast cells.  Ferrari et al. [Ferr05] have mimicked the 

mechanical environment of living cells in tissues by surrounding them with optically 

trapped micron-sized beads as shown in Figure 2.7. They have used two different tweezer 

set-ups, namely one 2D set-up generated by acousto-optical deflectors and another 3D 

set-up using diffractive optical elements. By dynamically varying the configuration 

 58



geometry and the trapping forces, the authors have been successful in creating a 

controlled environment where only mechanical stimuli are present and the biological 

response is monitored.  

Paterson et al. and Dholakia et al. [Pate05, Dhol07] have demonstrated passive 

optical sorting of lymphocytes from a mixed population containing both lymphocytes and 

erythrocytes in the absence of any externally driven fluid flow using Bessel light beam. 

This separation is enhanced by attaching silica microspheres coated with antibodies to a 

subpopulation of lymphocytes by creating a larger difference in effective refractive index 

between the fluid medium and the component being transported. This principle of tagging 

silica microspheres proves to be significantly more efficient than simple passive optical 

separation in case of bone marrow and progenitor/stem cells [Pate07]. The cells collected 

after separation are also viable, as evident from the facts that they are able to clone in 

vitro and show a lack of expression of Caspase 3, a marker of apoptosis. 

 

Figure 2.7: Indirect ND cell manipulation using 2 µm diameter latex beads in an acousto-
optical deflector based optical tweezer set-up (Image source: [Ferr05]) 
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2.5.2 Summary 

From the preceding discussion it is clear that indirect cell trapping and 

manipulation offers considerable advantages over direct trapping in terms of the damage 

incurred to the cells. Successful demonstration of using optically trapped microspheres as 

handles to move, sort, or stimulate cells means that they can also be used to transport 

cells over large distances in the workspace and then form regular arrangements by 

accurate positioning. As mentioned in Chapter 1, such arrangements can be used for 

quantitative studies on cell-signaling. However, this will first require transporting the 

microspheres to the cell boundary before the cell-sphere group can be moved together. 

This dissertation provides a step towards image-guided, autonomous manipulation of 

cells by developing the framework for transporting multiple microspheres 

simultaneously.    
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Chapter 3 

 

GENERATING SIMPLIFIED TRAPPING PROBABILITY MODELS 

FROM TRAP-PARTICLE SIMULATION  

 Simulations have emerged as a powerful tool in the traditional manufacturing and 

assembly areas to facilitate a wide variety of decision making [Vin06, Liu06]. We expect 

simulations to play a major role in micro and nano scale assembly as well. However, 

simulations at the small scales pose new challenges due to the presence of a higher level 

of uncertainty. Since path planning will involve trapping the desired particles and 

avoiding collisions with other particles present in the workspace, knowledge of trapping 

probability is very useful. Many decisions need to be taken within a few milliseconds 

during real-time planning; so the trapping probability estimation method must be 

extremely fast. As already discussed in Chapter 1, trapping physics based simulations are 

computationally intensive. Currently, it takes few seconds to complete a single simulation 

run at any particular point in the space. Moreover, multiple simulation runs are required 

at every point to account for the stochastic nature of the motion. The raw data generated 

by simulation is also expected to be very large in size due to the need for varying several 

different parameters in a combinatorial manner. This Chapter describes a computational 

framework to perform offline micro scale particle motion simulations and proposes a 

model simplification technique to represent the raw data in a compact form to estimate 

probabilities at any arbitrary point in the parameter space at run-time. The approach 

presented in this Chapter is reported in [Bane08a, Bane09a]. 
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3.1 Framework to Simulate Sphere Behavior in Single Beam OT System 

A computational framework has been developed using the C++ programming 

language to simulate the physical behavior of a sphere in a single beam optical tweezers 

system. The laser beam focus is initially placed at the origin of the global coordinate 

system (0, 0, 0). It may be kept either stationary or moved with a constant speed in the 

horizontal plane or along the vertical axis. As shown in Figure 3.1, most of the 

experiments are reported with the coordinate system oriented such that the positive Z-axis 

points vertically downwards and coincides with the beam propagation direction.  

 

Z

Y

X
Sphere  

Assembly cell 

Beam axis 

Direction of 
beam 
propagation 

Laser 
beam 

Beam 
focus

Figure 3.1: Schematic illustration of simulation set-up 
 

 
3.1.1 Simulation of Sphere Motion 
 

A particle moving with a velocity V in a fluid medium experiences a rapidly 

fluctuating force (due to a large number of collisions with the surrounding liquid 

molecules), as well as a hydrodynamic drag force. These forces are related with each 

other and are modeled using Langevin’s equation given by Equation (3.1) [Bali09]. 
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 ( ) ( ) ( )dV t
V t t

dt m m
γ ξ

= − + Γ       (3.1) 

 
This equation assumes a fluid with viscosity η as a function of temperature T (η = 

1.002 x 10-3 Pa-s at T = 293 K for water). For micron-sized particles, the drag coefficient 

γ  is given by Stokes’ law as 6 aRπη , where Ra is the radius of the spherical particle. Slip-

correction factor is ignored as the Knudsen number is much greater than 1. The scaling 

constant 2 BK Tξ γ= , where KB is Boltzmann's constant, is obtained by imposing the 

requirements of the fluctuation-dissipation theorem [Weis89]. The presence of the 

stochastic force term  prevents direct analytical solution of this equation. Therefore, 

the Langevin’s equation needs to be expressed in finite difference form before proceeding 

to integrate it numerically. The difference form of this equation is given by Equation 

(3.2) [Bali08], where the stochastic term 

( )tΓ

( )tΓ  is replaced with a standard normal 

distribution and the scaling constant includes the time-step δt. The external force term, 

Fext, allows one to include gravitational or optical trapping forces. Any fluid flow 

resulting due to thermal currents generated because of laser heating of the medium is not 

taken into account here.  

2( ) ( ) 1( ) ( ) (0,1) ExtB FK TV t t V t A t t V t N
t m m t

γδ γδ
δ δ

+ −
= + = − + +

m  (3.2) 

 
In the simulation, the sphere experiences three external forces – the optical 

trapping force, gravitational force, , and buoyancy, . The latter two forces are 

constant for a sphere of a given size and are given by: 

gF bF

   34
3g sF Rπρ= a g  and 34

3b fF πρ= aR g     (3.3) 
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In Equation (3.3), sρ and fρ are the densities of sphere (silica with sρ = 2000 kg/m3) and 

fluid (water with fρ  = 1000 kg/m3), respectively, and g is the acceleration due to gravity.  

The optical trapping forces for relatively large-sized spheres (5.0 µm or more 

diameter) are calculated by numerically integrating the ray optics model based force 

equations A.1 and A.2 given in the Appendix A using Romberg’s formula (extension of 

Simpson’s 3-point rule). The MATLAB toolbar [Optt07] described in [Niem07] is 

utilized to compute the forces for the smaller sized spheres. It used a vector spherical 

wave function formulation of the generalized Lorentz-Mie theory known as the T-matrix 

method. The trapping laser beam is Gaussian and circularly polarized, its power P is 

chosen to be 100 mW, with wavelength of the incident light, λ = 532 nm. The speed of 

light in free space is, c = 3x108 m/s, the refractive index of water  = 1.33, the refractive 

index of silica  = 1.46, the refractive index of oil  = 1.51 and the numerical aperture 

(NA) of the oil-immersion objective is 1.4.  

1n

2n oiln

Figures 3.2 and 3.3 show the trapping forces along the axial and transverse 

directions for a 5.0 µm diameter sphere that is trapped offset from the trap focus.  Figure 

3.3 shows that the transverse forces are negligible and the axial forces have opposite 

signs above and below the trap focus. Moreover, the axial forces acting on a sphere, 

whose center is located above the trap focus, are much stronger than those acting on a 

sphere, whose center is located below the focus. Figure 3.3 reveals that the transverse 

forces are much stronger than the axial forces and also that the transverse forces are anti-

symmetric about the trap focus while the axial forces are symmetric. Figures 3.2 and 3.3 

agree qualitatively and quantitatively with the data published in the literature [Ashk92, 
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Wrig94]. In order to minimize the computation time, a lookup table of the trapping forces 

was generated with uniform grid spacing of 0.125 µm for spheres having diameters less 

than or equal to 2.0 µm, a spacing of 0.25 µm for spheres having diameters less than or 

equal to 2.0 µm, and 0.5 µm for all other sphere sizes. Bilinear interpolation is then used 

to recover the optical trapping force at run time. 

 

Figure 3.2: Axial and transverse force components when 5.0 µm diameter sphere center is 
displaced along laser beam axis from the focus 

 

The gravitational force, buoyancy and the optical trapping forces are combined 

into the external force term, Fext of Equation (3.2) to calculate the acceleration, A(t + δt) 

at the end of the time-step, δt. The velocity form of the second order Verlet integrator 

[Swop82, Alle87] is used to generate a list of the particle's position, velocity, and 

acceleration at the end of each time step. The time-step is chosen so that it is much 

smaller than the characteristic time-scale of the physical process. From Equation (3.1), it 

 65



is seen that the characteristic time-scale for this model is given by the relaxation time, 

γ
m [Bali09]. Therefore, the time-step is chosen such that

γ
δ mt << . In the simulations, δt is 

selected as the closest multiple of 100 ns that is smaller than the relaxation time. 

 
 

Figure 3.3: Axial and transverse force components when 5.0 µm diameter sphere center is 
displaced along transverse axis from laser beam focus 

 
A particular run is terminated when one of the following conditions are satisfied: 

(a) The sphere is trapped, (b) The sphere goes completely outside the geometric boundary 

of the laser cone, (c) The sphere reaches the bottom of the workspace under the influence 

of gravity, or (d) A fixed number of iterations is completed.  

Termination criterion (a) depends on various factors. A trapped sphere is held at a 

certain distance below the beam focus, where the axial component of optical trapping 

force exactly balances the combined effect of gravity and buoyancy. This depth varies 

based upon the sphere size. Moreover, in case of a stationary laser beam, the 
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displacements along X and Y-axes are comparatively small (of the order of the diffusion 

length), whereas for a moving beam, these displacements can be larger and depend both 

on the direction and magnitude of the beam velocity. To address this issue, first some 

pilot tests were conducted to ascertain the approximate relative position of entrapment of 

a sphere of a given size with respect to a laser beam moving along a particular direction 

with a constant speed. This information was later utilized to quickly determine whether a 

sphere has been trapped. The sphere is considered to be trapped if it moves along with the 

beam by keeping the same relative displacement from the beam focus. 

Termination criterion (b) is suppressed in two cases to incorporate certain 

important physical effects. Firstly, it is not used when a sphere goes outside the laser 

cone boundary sufficiently close to the beam focal region. This needs to be done because 

such a sphere still experiences the effect of strong gradient force due to the proximity of 

the laser and may be trapped eventually. Secondly, it is not applied when a beam is 

moving in the horizontal plane. This is required by the fact that a sphere, which is outside 

the cone boundary at any point of time, will diffuse and fall down under the combined 

action of Brownian motion, gravity, viscous drag, and buoyancy such that it can come 

under the influence of strong optical trapping forces at a later stage which may be 

sufficient to trap it.  

During the simulation runs, the sphere center is initially positioned close to the 

laser beam in the work space. These close locations ensure that the beam motion will 

result in the sphere boundary intersecting the laser beam boundary within one path 

planning time span. Henceforth, this subset of the workspace is referred to as the local 

workspace. The planning time span depends upon the system setup and has been chosen 
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to be equal to 50 ms in the simulations (assuming that the beam position will be updated 

at a frequency of 20 Hz). This also governs the choice of the fixed number of iterations in 

the termination criterion (d). The trapping probability of any sphere that lies outside the 

local workspace or which will not be trapped within 50 ms can be estimated and utilized 

for motion planning purposes at subsequent time steps.  

Figures 3.4, 3.5, and 3.6 show few representative trajectories to depict the 

applicability of the above mentioned termination criteria. Each figure graphs the spatial 

trajectory of a 5.0 µm diameter sphere that is initially placed at different locations inside 

the local workspace. Although simulation is performed at intervals of 2.5 µs (computed 

value of tδ  for 5.0 µm sphere), data generated after every 0.25 ms is used for plotting 

purposes. The laser beam is kept stationary in all the cases, with its focus (shown by a ‘x’ 

mark) located at the origin. It can be seen from Figure 3.4(b) and 3.4(c) that the sphere 

settles within 0.5 µm of the focus and its total displacement along X-axis is significantly 

smaller than the displacements along Y and Z axes. When the sphere center is initially 

not displaced along the X-axis, FExt does not have any X-component and displacement 

occurs purely due to random Brownian motion coupled with viscous drag. However, as 

soon as the sphere drifts away from the origin of X-axis, strong optical trapping forces 

pull it back. It may also be noted that in both in Figures 3.4 and 3.5, the sphere initially 

diffuses randomly around its original position, before diffusion brings it to a stronger 

trapping force region after which it moves directly towards the trap focus. Figure 3.6 

depicts the condition when a sphere that is located quite far away from the focal plane 

does not get trapped. Instead, it starts settling towards the bottom following a random 

trajectory. 
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Fig. 3.4: Trajectory of 5.0 µm diameter sphere positioned above focal plane that is 
trapped by a stationary laser beam 

(a) Sphere starts above the focal plane at (0 µm, 3 µm, -5 µm); 
laser beam stationary with focus at the origin (3D view) 

(b) Above trajectory in XY plane (c) Above trajectory in YZ plane 

t = 0 ms 

t = 23 ms 

t = 5.75 ms 
t = 11.5 ms 

t = 17.25 ms 

t = 0 ms 
t = 5.75 ms 

t = 11.5 ms 
t = 17.25 ms 

t = 23 ms 

t = 0 ms t = 5.75 ms 

t = 11.5 ms 

t = 17.25 ms 

t = 23 ms 
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t = 0 ms

t = 11.5 mst = 8.625 ms

t = 5.75 ms

t = 2.875 ms

Sphere starts below the focal plane at (0 µm, 3 µm, 2.75 
µm); laser beam stationary with focus at the origin  

 
Figure 3.5: Trajectory of 5.0 µm diameter sphere positioned below focal plane that is 

trapped by a stationary laser beam 

 

t = 0 ms

t = 50 ms

t = 37.5 ms

t = 12.5 ms

t = 25 ms

Sphere starts at (0 µm, 9 µm, -7 µm); laser beam stationary 
with focus at the origin 

Figure 3.6: Trajectory of 5.0 µm diameter sphere that is not trapped by a laser beam 
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Fig. 3.7: Trajectories of 5.0 µm diameter spheres that are trapped by moving laser 
beams 

(a) Sphere starts at (0 µm, 20 µm, -6 µm); laser focus starts from origin and moves 
along Y-axis with a speed of 0.65 µm/ms   

(b) Sphere starts at (5 µm, 20 µm, -5 µm); laser focus starts from origin and 
moves along Y-axis with a speed of 0.65 µm/ms   

t = 0 ms 

t = 0 ms 

t = 0 ms 

t = 37.5 ms 
t = 37.5 ms 

t = 9.375 ms 

t = 18.75 ms 

t = 28.125 ms 

t = 35 ms 

t = 35 ms 

t = 26.25 ms 
t = 0 ms 
t = 8.75 ms 

t = 15.5 ms 
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Figure 3.7 represents the trajectories of spheres of the same size, originally 

located quite far above the focal plane, under the influence of moving laser beams. In 

Figure 3.7(a), the sphere center is not originally displaced along the X-axis. It initially 

exhibits a net vertically downward motion. Subsequently, it experiences stronger trapping 

forces as the beam moves closer to it, and is eventually pulled towards the beam focus 

before finally settling at a certain distance away from the beam focus along the direction 

of motion (Y-axis). However, when the sphere center is displaced along all the 3 axes 

(see Figure 3.7(b)), after moving vertically downwards for a short distance, it starts 

moving along a circular path in the horizontal plane before being trapped. 

 

3.1.2 Generating Trapping Probability Estimates using Dynamics 

Simulation 

Simulation is performed N = 100 times at every discrete point in the 4-dimensional space 

(3 spatial coordinates and 1 velocity component) to estimate the trapping probability 

based on the number of times the sphere gets trapped by the laser beam. The reason for 

using only 1 velocity component has been explained later in this section. To restrict the 

error bound in probability estimate within ±0.1 with 95% confidence level, N was chosen 

to be equal to 100. In any particular trial, the outcome can be either 0 (non-trapped) or 1 

(trapped). Thus, it follows a binomial distribution. However, for a sample size greater 

than 30, it can be approximated using a normal distribution with mean (µ) equal to 

estimated probability pe and variance ( 2σ ) equal to ( )1e ep p
N
−

[Mont94]. As 95% 
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confidence interval roughly corresponds to 2μ σ± , the maximum error of  ±0.1 occurs 

when pe = 0.5.    

Overall four separate sets of experiments were performed. Two sphere sizes, 

having diameters of 2.0 µm and 5.0 µm respectively, were used. For each sphere size, 

two experiments were conducted. In the first experiment, the in-plane velocity 

component ( xyv ) was kept zero. In the second experiment, the out-of-plane component 

( ) was kept zero. It is assumed that since the beam will either transport the trapped 

sphere along the transverse plane or along the axial direction, both the velocity 

components need not have non-zero values in the same simulation run. In order to reduce 

the computational burden, the coordinate system is rotated so that the new Y-axis always 

coincides with the direction of the in-plane velocity vector. Thus, in any particular 

simulation, four parameters are present, namely the relative x, y, and z coordinate of the 

sphere with respect to the beam focus and one velocity component. For the sake of 

convenience in setting up experimental conditions, the spatial 3D volume is represented 

in polar coordinates. Discretization is carried out at an interval of every 0.5 µm for both 

the sphere sizes along the radial (

zv

xyr ) and axial directions ( ) and 5° along the azimuthal 

direction (

zr

xyθ ).  

The expressions for maximum permissible laser speeds such that the optical 

trapping force is sufficient to overcome viscous drag are given by: 

   ,max 1
,max 6

tr
xy

a

Q n P
v

c Rπη
=  and ,max 1

,max 6
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z
a

Q n
v

c Rπη
=

P
   (3.4) 

where  and  are the maximum transverse and axial trapping efficiencies 

[Ashk92]. These efficiencies have been chosen to be 0.16 and 0.07 respectively based 

,maxtrQ ,maxaxQ
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upon the peak values of the transverse and axial force components in Figure 3.3. 

Although axial forces have higher peaks when the sphere center is offset axially from the 

trap focus (Figure 3.2), it is reasonable to select the smaller value so that Equation (3.4) is 

applicable for all scenarios. Simulation experiments reveal that the sphere often escapes 

from the trap near the maximum speed limit. This, by itself, is a random phenomenon and 

has a probability associated with it based upon the sphere size and the trap speed. The 

effect is far more pronounced in case of the smaller sphere as it has higher diffusivity. 

Hence, speeds have been restricted to 86% of the maximum value for the 5.0 µm sphere 

and to less than 1% for the 2.0 µm sphere. This restriction is imposed for both the 

velocity components and the domain has been sampled uniformly by 5 points (including 

zero) for estimating trapping probabilities. For an out-of-plane component, both upward 

and downward laser motions have been considered.  

 Combinatorial experiments have then been carried out by varying one parameter 

at a time and keeping all the others constant. However, this means that a large number of 

grid points are constructed for estimating trapping probabilities inside the local 

workspace. In order to obtain results in a reasonably short period of time, 

computationally redundant simulations are avoided based on the insight regarding the 

physical behavior of the system. They are listed below: 

• Azimuthal variation is not considered in the experiments where the laser beam is 

stationary or moves along the axial direction since the x and y-components of the 

optical trapping force are symmetric about the vertical axis.  

• Data points are placed only at the top half-plane at every horizontal cross-section of 

the 3D volume where azimuthal variations need to be taken into account. This is 
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because all points in the bottom half-plane will exhibit symmetry about the transverse 

(Y) axis since the laser velocity has no component along the X-axis.  

• Simulation is not performed at all the data points lying in the top half-plane at any 

particular cross-section even where azimuthal variations have to be taken into 

account. Experiments are carried out at all the points lying along the direction of 

motion (Y-axis) to identify the domain of interest, which refers to the region along Y-

axis within which the estimated trapping probability changes from 1 to 0 or vice 

versa. At the next azimuthal direction, this domain of interest is elongated by 1.5 µm 

at the boundary where trapping probability transitions from a fractional value to 0 or 

vice versa and by 3 µm where it transitions from 1 to a fractional value or vice versa. 

This process is repeated by obtaining the domain of interest iteratively at any xyθ . 

This works well in practice because trapping probability values do not change 

drastically for the same value of xyr  at neighboring values of xyθ .    

 Application of the last strategy has been illustrated in Figure 3.8. About 10 weeks 

were required to gather all the data. Two PCs were used; they consist of Intel Core 2 

Quad processors with 8 GB of RAM and 2.83 GHz clock speed. All the PCs run on 

Microsoft Windows Vista Business operating system. Microsoft Visual Studio 2005 was 

used as the compiler in all the cases. 

Simulation data is used to generate a list of figures that help in visualizing the 

trapping probability estimates meaningfully. These figures show probability contour plots 

for a 5.0 µm diameter sphere in different planes for a stationary or moving laser beam 

that has an in-plane velocity component. The simulation data includes significant noise. 

This noise arises as a result of stochastic (Brownian) forces on the spheres, which 
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introduces variability in the trapping behavior. Thus, the trapping probability at any two 

neighboring grid points may show a local trend that is different from the overall trend. 

For example, in case of a stationary laser beam, instead of exhibiting a monotonically 

decreasing trend at the focal plane, a grid point may actually report higher probability 

value as compared to an adjacent one to the left. Of course, this discrepancy lies within 

the error limits identified at the beginning of Section 3.1.2. Hence, all the contour plots 

have been smoothened out using in-built MATLAB function to filter the noise and 

display the broad trends.  

Figure 3.8 Spatial discretization for conducting offline simulation experiments 
involving laser motion in horizontal plane  

Gridding is shown at intervals of 30° instead of 5° for ease of representation 

+X 

+Y-Y 
Direction of laser motion 

Top half-plane at 
a particular Z 
cross-section 

Increasing values of 
azimuthal angle 

Dark line denotes the 
domain where 

trapping probability 
value transitions 

from 1 to 0 

Increasing radial distance 

O

Scale:       1 µm 

 
 

The first contour plot (Figure 3.9) is a baseline, which represents the trapping 

behavior of a sphere under the influence of a stationary laser beam. The plot is shown 

only in half-YZ plane, as the contours in the other half are symmetric about the Z-axis. 

Similar plot can be observed in the XZ plane. Contours follow circular patterns in XY-
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plane. In Figure 3.9, contours meet the beam axis below the focal plane. However, this 

phenomenon cannot be seen above the focal plane. Instead, higher probability contours 

tend to come towards beam axis, whereas, lower probability contours remain more or less 

vertical. Moreover, they tend to diverge as we move away from the focal plane. This 

occurs due to a combination of Brownian motion and gravitational pull. Any sphere that 

is originally positioned way above the focal plane has a greater chance of moving away 

or towards the beam axis in addition to settling down at the bottom. During its random 

motion, it may either come under the influence of stronger optical trapping forces or may 

go outside the beam boundary. So, the contours span a wider region and move away from 

each other in opposing directions. 

 

Figure 3.9: Estimated trapping probability contours for 5.0 µm diameter 
sphere under influence of a stationary laser beam 
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Figures 3.10 and 3.11 have been drawn for the case when the laser moves along 

+Y-axis with a speed of 0.65 µm/ms. Significantly different behavior from the stationary 

case can be observed. Figure 3.10 reveals that the contours converge in the negative Y-

plane. Higher probability contours occur closer to the origin where optical trapping forces 

are stronger. The contours also tend to shift upwards with increasing positive values in Y 

due to the combined effect of laser motion and gravity. As the laser moves along positive 

Y-axis, spheres that are originally positioned above the focal plane and quite far away 

from origin, may get trapped as they come under the influence of strong trapping forces. 

But the spheres that are positioned below the focal plane may not experience strong 

trapping forces as they may have already moved downwards by the time laser has come 

close enough to them. 

 
Figure 3.10: Estimated trapping probability contours for 5.0 µm diameter sphere in YZ 

plane under influence of a laser beam moving along +Y-axis with a speed of 0.65 µm/ms 
 

 78



 This differential behavior at two horizontal cross-sections has also been 

illustrated in Figure 3.11. At both the cross-sections, the contours do not follow circular 

patterns unlike the stationary beam case; rather they take elliptical shapes and are 

distorted along the direction of laser motion. Significantly less trapping takes place in the 

negative Y-plane as the laser quickly moves away from the origin. It may also be noted 

that the contours below the focal plane move close to each other in the positive Y-plane 

instead of following parallel bands due to the fact that spheres located even slightly 

below the focal plane and quite far away from the origin do not get trapped within the 

planning time span.  

Figure 3.12 represents the contour plot when the laser moves along negative Z-

axis with a constant speed of 0.325 µm/ms. The basic nature is similar to the plot shown 

in Figure 3.9 for the stationary beam case. The only significant difference lies in the span 

or coverage of the contours. In case of the stationary beam, the contours spread out to 

about 20 µm along the transverse axis. They only cover a distance of about 11 µm when 

the laser is moving vertically upwards. The diffusion length of a 5.0 µm sphere is less 

than one micron during the planning time span. Hence, this difference cannot be 

attributed to any stochastic noise. Instead, this phenomenon can be explained by 

considering the fact that due to the upward motion of the laser beam, even spheres that 

are originally located far above the focal plane effectively behave like spheres that are 

placed close to the focus of a stationary beam. Hence, if the centers of such spheres are 

displaced transversally by large amounts, then they do not experience very strong optical 

trapping forces and thus do not get trapped.  
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(a) Plot at z = 2 µm 

(b) Plot at z = -5 µm 

Figure 3.11: Estimated trapping probability contours for 5.0 µm diameter sphere in XY 
plane under influence of a laser beam moving along +Y-axis with a speed of 0.65 µm/ms 
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Figure 3.12: Estimated trapping probability contours for 5.0 µm diameter sphere in YZ 
plane under influence of a laser beam moving along -Z-axis with a speed of 0.325 µm/ms 

Figure 3.13: Estimated trapping probability contours for 2.0 µm diameter 
sphere under influence of a stationary laser beam  
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Figure 3.13 presents the contour plot for a 2.0 µm diameter sphere under the 

influence of a stationary laser beam. Although the overall trend is similar to that of the 

5.0 µm diameter sphere, certain important distinctions can be noted. The major difference 

is that the contours exhibit greater divergence as one moves away from the beam focus in 

the negative Z-plane. This behavior primarily arise due to two reasons – enhanced effect 

of Brownian motion and reduced effect of gravity on smaller sized sphere. A sphere 

located significantly above the focal plane and away from the beam axis can drift close 

enough to the strong trapping force region. Similarly, a sphere located not that far away 

from the axis above the focal plane, can drift sufficiently away so that it never gets 

trapped. This divergence behavior starts from approximately z = -4 µm, instead of z = -10 

µm in the 5.0 µm case. Corresponding span along the Y-axis from where transition 

originates is also somewhat less in this case. Since strong optical trapping forces exist 

approximately up to sphere diameter along both the axes (as can be verified from Figures 

3.2 and 3.3), divergence starts earlier in this case. 

 

3.2 Generating Simplified Models from Simulation Data 

3.2.1 Selecting Model Simplification Technique 

Although offline simulation has presented a lot of data, it cannot be used directly 

for run-time estimation of trapping probability. As already discussed earlier, some form 

of simplified model is necessary to represent this data compactly and then use it 

efficiently to compute the estimated trapping probability at any point in 4-dimensional 

parametric space. Advantages of using Gaussian RBFs over other metamodeling 

techniques have been explained in Chapter 2. Hence, Gaussian RBFs were selected for 

 82



developing simplified models. Each of the four data sets obtained from simulation is 

separately represented and modeled using Gaussian RBFs. Symbolically, it takes the 

following form: 
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is the position vector of the ith RBF center and iσ
→

represents the 

width of the ith RBF. The components of this width vector may be selected 

anisotropically so that it assumes different values along the different axes. However, the 

current work is restricted to axis-aligned RBFs only, thereby sacrificing some generality 

for the sake of a more compact representation. By axis-aligned, it is meant that the axes 

of the hyper-ellipsoidal Gaussian RBF surface are aligned along the axes of the 4-

dimensional parameter space. 

 

3.2.2 Fitting Gaussian RBFs to Simulation Data Sets 

The method reported in [Juba07] has been adapted and extended for this 

application. Specifically, Juba and Varshney have developed a method for fitting 3D 
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volumetric data using RBFs. Here, the parametric space is four dimensional and involves 

both distance and velocity parameters. Hence, a different spatial partitioning scheme had 

to be developed.  

A single RBF is first fitted to a 24 resolution down sampled version of the given 

data set. This down sampling is done by obtaining all possible combinations of the 

minimum and maximum values of each of the four parameters (i.e., 24 points). This is 

taken as the root of the RBF hierarchy, which is represented in the form of a k-

dimensional tree (kd-tree). This fitted RBF is then evaluated at all the data points in the 

entire parameter space. If the root mean square (RMS) error is above 2% and the 

maximum error is above 4%, then the parameter space is partitioned into two halves by a 

hyperplane that is perpendicular to the X-axis such that the two half-spaces have 

approximately same number of data points. These threshold errors are just representative 

values that have been chosen to evaluate the performance of this fitting procedure. 

Henceforth, each sub-space will be termed as a region. It actually represents a node in the 

kd-tree. Thus, it can be seen that kd-tree is a binary tree which will be progressively 

constructed during the fitting operation.  

Two other 24 resolution down sampled versions of the parameter space are then 

obtained in the newly constructed regions by selecting points using uniform, random 

distribution. A new child RBF is fitted to the residual error in each of the two regions 

using the down sampled versions and the error is evaluated using both the child as well as 

the parent RBF at all the data points. If both error measures lie below their respective 

thresholds in any of the two regions, then it is not sub-divided any further. Otherwise, 

that region is partitioned by a hyperplane perpendicular to the Y-axis, the kd-tree is 
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updated and this process continues. If region partitioning is required at the 3rd and 4th 

levels of the kd-tree, then hyperplanes perpendicular to Z and V-axis are used 

respectively. This cycle of choice of partitioning hyperplane is then repeated for 

subsequent levels in the tree. In actual implementation, this process is carried out in a 

depth-wise manner. Moreover, if in the region under consideration some or all of the four 

parameters assume boundary values that are different from the minimum or maximum 

values, then one additional data point is considered from the corresponding neighboring 

region. This avoids noticeable discontinuities at the region boundaries.  

Although down sampling could have been done again by considering minimum 

and maximum parameter values, it is found that random sampling leads to a slightly 

lower number of RBFs. However, it is better to follow the former approach while 

obtaining the root RBF as it enables us to fit a function that can broadly span the entire 

parameter space. The process terminates when all the regions have been adequately fitted 

using varying number of RBFs such that RMS and maximum errors lie below their 

respective thresholds in each and every one of them. It may be argued that the overall 

process can be sped up by using a hex tree (analogous to octree in 3D) decomposition 

method as this directly splits up the space into 16 sub-spaces at one run. However, a kd-

tree is a better choice in this case because of the differences in dimensions of the 

parameters along the 4 axes (3 are distances and 4th is velocity). It also provides a 

convenient way of discretizing the overall space into sub-spaces of roughly equal 

cardinalities by forcing the partitioning plane to pass through the median value of the 

corresponding parameter. Moreover, any dimensionality of the parametric space can be 

easily handled by the kd-tree. This only entails increasing the number of partitioning 
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planes (equal to k) to a higher value. Thus, kd-tree based partitioning offers lot of 

flexibility in incorporating additional parameters in future applications.  

Therefore, obtaining this compact model reduces to a careful selection of the 

constant term , RBF weights, RBF centers, and RBF widths. has been selected as 

zero for all results reported in this work. Thus, this term can be neglected henceforth. The 

initial guess value of the center of the newly created RBF is taken as the position vector 

of the data point that has the maximum residual approximation error. The RBF’s weight 

is set as the RMS error value of the region under consideration. This can be rationalized 

by taking note of the fact that this causes the center data point to have zero error since 

Gaussian RBFs have a value of 1 at their centers.  

0w 0w

The anisotropic widths are selected using maximum likelihood estimation  

scheme which assumes that the data to be fitted to a particular RBF is a histogram of 

samples from a Gaussian (normal) probability density function with the previously 

selected mean or center. Then the width or spread correlates to its standard deviation and 

is computed such that this set of samples will have the highest probability of being 

generated. Since the data values (trapping probabilities) are estimated based upon a set of 

100 simulation runs, it is meaningful to adopt this approach in the current work. The 

relevant equation for computing the x-component of the ith RBF’s width vector ( 2
xiσ ) is 

given below. Other components are obtained similarly.   
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where n is the number of data points that are being approximated by the ith RBF and pj is 

the estimated trapping probability of the jth data point.   

Once the RBF center and all the widths have been obtained, improved values of 

the weights are computed by minimizing the sum of squared errors  

   
/ 2
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n m

i i j
j i

w pψ φ
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This is equivalent to solving the following system of linear equations in the least-squares 

senses, as usually m/ < n.  
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The entire method has been implemented in MATLAB. All the steps are formally 

described in the algorithm FIT-GAUSSIAN-RBFs. Performance of this algorithm on all 

the four data sets has been shown in Table 3.1. The first two data sets correspond to 5.0 

µm diameter sphere, whereas the remaining two correspond to 2.0 µm diameter sphere. 

Odd numbered data sets deal with the cases where horizontal component of laser velocity 

is varied; correspondingly even numbered data sets capture the effect of out-of-plane 

laser velocity component. Even if simulation data is gathered only in the top-half cross-

sectional plane or at few locations using adaptive sampling scheme, probability estimates 

at other data points are stored by copying values suitably using a pre-processor program. 

In actual implementation, the first dimension (x-coordinate) is neglected for the even 

numbered data sets and the second dimension (y-coordinate) is treated as a radial 

coordinate that can only assume positive values. This reduces the fitting time and storage 
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space of RBF representation and follows from the fact that trapping behavior of a sphere 

only depends on its relative axial and radial coordinate for a beam that has no in-plane 

velocity component. 

 
Algorithm: FIT-GAUSSIAN-RBFs 

Input: 

• A set of M data points in 4-dimensional parameter space D = {d1, …, dM}, with an 

estimated trapping probability pi associated with every point di, i = 1, …, M. The 

parameters associated every data point include x, y, z-coordinates of the initial 

location of sphere center under consideration and either in-plane or out of plane 

component of laser velocity. This can be represented by a 4-tuple (xi, yi, zi, vi). 

Output: 

• An incrementally constructed partial kd-tree K that represents the input data concisely 

using M/ number of Gaussian RBFs (same as the total number of tree nodes), such 

that every node corresponding to a region in 4D parametric space is fitted by a single 

RBF. 

Steps: 

1. Obtain a 24 resolution down sampled version from D by obtaining all the points 

whose 4-tuple is formed by some combination of minimum and/or maximum values 

of the parameters. These points represent the boundary points of the local workspace. 

2. Fit a Gaussian RBF to this down sampled data set using the function FIT-SINGLE-

RBF and store it as the root node of previously empty K. 
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3. Estimate the RMS error of approximating the entire parameter space consisting of M 

data points by the single Gaussian RBF 
( )2/

1

M

i i
i

RMS

p p
e

M
=

−
=

∑
, where  is the 

reconstructed trapping probability value using the fitted RBF at the ith data point. 

/
ip

4. Compute the maximum error in approximating the parameter space by the same 

Gaussian RBF ( )/max , 1,...,Max i ie p p i= − ∀ = M . 

5. If > 2% or RMSe Maxe > 4%, then proceed to step 6; else output K and terminate.  

6. Initialize current level (l) to be equal to 1, current parent node (nc) to be equal to 

NULL and current region (rc) as the entire parameter space. 

7. While  > 2% or RMSe Maxe  > 4% in rc and rc contains at least 2 data points, do  

i. Partition rc into two halves by a plane perpendicular to one of the axes such 

that each half-plane roughly contains the same number of points. Choice of 

this axis depends on the level l. If l belongs to the sequence {1, 5, …} select 

X-axis; if it is a part of the sequence {2, 6, …} select Y-axis; if it belongs to 

{3, 7, …} choose Z-axis and if it is a multiple of 4, then choose V-axis. Store 

the two half-planes as children nodes of the root of K. By pre-sorting the 

original data set D along each of the 4 dimensions, median coordinate along 

the corresponding dimension is used to split the current data set.  

ii. Increment l by 1 and update nc as the node corresponding to the current region 

and rc as the left child region.  

iii. Obtain a 24 resolution down sampled version from the points stored in rc by 

random selection.  
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iv. Search whether any of the 4 parameters have a boundary value that is different 

from its minimum and maximum values. If yes, then add another randomly 

selected point from the neighboring region that shares a common partitioning 

hyperplane perpendicular to that parameter axis to the down sampled version. 

v. Fit a new Gaussian RBF to rc by calling the function FIT-SINGLE-RBF. 

vi. Estimate  in approximating pi values in all the data points present in the 

left child region using the newly fitted RBF as well as all of its parent or 

ancestral RBFs spanning up to the root node from current level l. Similarly 

estimate 

RMSe

Maxe  as well.  

8. If < 2% and RMSe Maxe < 4% in all the K regions, then output K and terminate. Else go 

to next step.  

9. If node corresponding to rc is the left child of nc, then update rc as the right child 

region and go to step 7 iii and continue recursively inside the while loop. However, if 

the corresponding node is the right child of nc, then traverse backwards in K until a 

node is reached, such that the previously visited node is its left child. Store this node 

value as nc, update rc as the right child region of nc and set l as the tree level value of 

right child. Then go to step 7 iii. 

 

Function: FIT-SINGLE-RBF 

Input: A down sampled set of data points D/ present in a particular K node region, such 

that /D D⊆ , and corresponding values. /
ip

Output: A newly constructed Gaussian RBF that approximates pi values for all the points 

present in D/ and updated  values. /
ip
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Steps:  

1. Perform a linear search to obtain the data point belonging to set D/ that has maximum 

residual error using the expression ( )/max , 1,...,Max i ie p p i= − ∀ = /n , where is the 

cardinality of D/. Select this data point as the RBF center. If the root RBF is being 

constructed, then the geometric center corresponding to the mean value of each of the 

4 parameters is selected.   

/n

2. Choose the anisotropic widths using Equation (6).  

3. Represent the RBF using Equation (5), with the constant term always set to zero and 

weight being neglected temporarily and obtain updated  only for this down 

sampled data set D/. Updated  is computed by modifying  to incorporate the 

effect of the new RBF. Set the weight to be equal to . 

RMSe

RMSe /
ip

RMSe

4. Obtain final value of weight by performing a lease squares error fitting over the data 

set D/ using Equations (7) and (8). 

 

Table 3.1: Results of fitting Gaussian RBFs to 4 different simulation data sets 

Data set 
number 

Number of 
data points 
(in million) 

Fitting time 
(in s) 

Number of 
fitted RBFs 

(in thousand)

RMS error 
(in %) 

Maximum 
error (in %) 

1 6.354 1456.9 107.53 1.75 3.97 
2 0.066 8.3 0.44 1.97 3.23 
3 0.301 159.7 12.18 1.76 3.98 
4 0.002 0.6 0.03 1.98 3.25 

 
It is found that maximum errors typically occur repetitively in two local zones – 

a) while fitting an RBF to a kd-tree region that has been formed by partitioning parent 

region based on velocity parameter and b) while fitting to a region created by partitioning 
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based on z-coordinate value above the focal plane only when in-plane velocity is taken 

into account. The former scenario arises in all the 4 data sets due to the presence of only 

5 discretization levels in the velocity parameters. However, the latter scenario occurs 

exclusively in odd numbered data sets due to the differential trapping behavior at various 

cross-sections explained using Figure 3.11. The number of fitted RBFs (and hence the 

fitting time) depends on the size of data set, the size of the sphere as well as which 

velocity component is considered. In general, it is lower when the data set size is smaller 

and out-of-plane velocity is considered (lesser features observable in the contour plots as 

compared to the in-plane velocity cases). However, proportionately it is much higher for 

the smaller sized sphere as more complex features are present due to greater diffusivity.      

 

3.2.3 Querying kd-Tree to Compute Estimated Trapping Probability Values 

Once all the data sets have been modeled, it is pretty straightforward to compute 

the estimated trapping probability value online at any point in the parameter space. The 

point of interest need not coincide with any of the grid or data points because one may be 

interested in computing the probability value at any arbitrary location in the parametric 

space. This estimation is done by summing up the values of all the RBFs that overlap that 

point. The steps are outlined below in the form of the algorithm OBTAIN-

PROBABILITY-VALUE.  

 

Algorithm: OBTAIN-PROBABILITY-VALUE 

Input:  
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• A point in local workspace with fully specified 4-tuple ( int, int int int, ,x y z v ) at which one 

is interested in computing the trapping probability. 

• kd-tree K obtained as output of the algorithm FIT-GAUSSIAN-RBFs 

Output:  

• Estimated trapping probability value estp . 

Steps: 

1. Initialize node (ne) and region (re) that are being currently explored as the root of K 

and the entire parameter space respectively.  

2. Initialize a list of explored kd-tree nodes L as an empty set.  

3. While estp  is not computed or both children of ne have not been explored, do 

i. Insert node ne in list L.  

ii. Perform a linear search of all the data points stored in re to ascertain whether 

the given point lies inside re based on all the values specified in the 4-tuple.  

iii. If yes, then go to left child of ne (if one exists) and update ne and re 

accordingly. However, if ne is a leaf node, then carry out a backward traversal 

of K from ne to root node to identify all the parent RBFs and compute estp  

using Equation (5).  

iv. Else backtrack to nearest unexplored node in K (present in the set of nodes of 

K but not in L) as is done in any depth-first tree traversal, update ne and re and 

continue inside the loop recursively.  

4. Output estp . 

 

 93



 One thousand points are randomly chosen from each of the four parametric spaces 

such that none of the points coincides with any of the data points that were used to fit the 

Gaussian RBFs. Simulation experiment is then carried out 100 times at each such point 

and the trapping probability is estimated. The query algorithm is then used to compute 

trapping probabilities at all those selected points. The performance of the algorithm (and 

hence that of the overall fitting technique) in terms of both computational speed as well 

as accuracy is shown in Table 3.2. Timing data clearly reveals the significance of 

developing a simplified model and the impracticality of using offline simulation for real-

time motion planning. As expected, the error measures are slightly higher than the 

corresponding numbers in Table 3.1 because those values are recorded based on grid 

points, whereas these points never coincide with any point that has been used to fit RBFs. 

The increase in error is more for the maximum error measure as diffusion (particularly 

for the 2.0 µm sphere) results in noisy data at certain points in the parametric space. 

However, none of the error values is markedly high which shows the efficacy of the 

fitting technique. 

 

Table 3.2: Performance of query function to estimate trapping probability at 1000 
randomly selected points in 4 parametric spaces 

 

Data set number 

Overall 
simulation 

time 
(in hours) 

Overall query 
time 

(in ms) 

RMS error 
(in %) 

Maximum error 
(in %) 

1 26.37 105.9 1.84 4.34 
2 24.34 6.8 2.06 3.49 
3 153.38 16.4 1.86 4.57 
4 144.12 1.2 2.07 3.62 
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Now, in order to transport one or more spheres from a given initial location to 

target location(s), one needs to develop intelligent motion planning strategies that can 

perform this operation without any manual intervention in the least possible expected 

time. This requires avoiding imminent collisions with other spheres present in the 

workspace because the laser beam may often lose the trapped sphere as a result of such 

impacts. If that happens, then the laser needs to be moved to a new location so that the 

stable trap location is close enough to the displaced sphere center. Due to latency effects 

and limitations in the accuracy of the imaging system, a lot of time may elapse before the 

laser can be positioned satisfactorily. This makes the process inherently inefficient.  

Hence, run-time knowledge of trapping probability at any spatial location close to 

beam focus at any permissible laser speed will help in predicting possible sources of 

collisions. Once potentially colliding spheres are identified, multiple laser beams can be 

switched on so that they can trap those spheres and either hold them stationary or move 

them away from the spheres that are being transported. Alternatively, the controller can 

command currently operational laser beams to go along different paths at a faster or 

slower rate to circumvent those potentially colliding spheres. Circumvention can occur by 

a suitable combination of rotation about Z-axis and horizontal or vertical translation. 

Moreover, trapping probability information gives us greater range in positioning the 

beam focus for trapping purposes. If one can easily estimate the region within which 

trapping probability is greater than 90%, then the beam can be placed anywhere in that 

region knowing that one can almost certainly trap the sphere of interest. This will help in 

developing more robust and efficient algorithms. 
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3.3 Summary 

 In order to automatically manipulate microspheres using optical tweezers, it is 

essential to efficiently compute an estimate of the probability with which they will be 

trapped by a moving laser beam. Since real-time simulation cannot be used in automated 

planning applications, a systematic approach has been developed for generating 

simplified trapping probability models based upon offline simulation data.  

 This Chapter investigates the computational challenges that arise in transport 

operations performed using optical tweezers. It describes the trapping behavior of a 

dielectric sphere in a spatial region close to the focus of a stationary laser beam. This 

behavior is quantified in terms of trapping probability which is estimated by performing 

repeated simulation runs by positioning the sphere center initially at the point of interest. 

It also describes the trapping behavior of a microsphere in a spatial region close the focus 

of a moving laser beam. The Chapter also presents a model simplification technique for 

fast and accurate online computation of trapping probability estimate at any arbitrary 

point in 3D space for any value of laser speed using Gaussian radial basis functions. This 

should be a very useful tool in automated path planning as it can enable us to trap or 

avoid trapping other components during manipulation of the desired components in the 

workspace. Although simulation has been performed only for dielectric microspheres, the 

approach is general in nature and can work with other trapping force models as well.  
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Chapter 4 

 

DEVELOPING A STOCHASTIC DYNAMIC PROGRAMMING 

FRAMEWORK FOR SINGLE-PARTICLE TRANSPORT  

 Optical tweezers (OT) based single-particle transport operation involves trapping 

the desired particle (target object), transporting it to the user-specified goal location, and 

avoiding collisions with other particles (obstacles) present in the workspace if possible. 

This is similar to the single robot motion planning problems that have been discussed in 

Chapter 2. However, as explained in Chapter 1, the current problem has some unique 

characteristics due to the small size scales involved. The environment is constantly 

changing due to the random, Brownian motion of the objects. In addition, OT attracts 

objects into the laser trap centers even as far away as few microns; so care must be taken 

to maintain sufficient separation from all the obstacles. By utilizing synchronized time 

sharing or dynamically created holograms, multiple optical traps can manipulate several 

objects in parallel. Hence, additional traps can be used to keep nearby obstacles 

stationary by trapping them. Due to the uncertainty in identifying object positions using 

an imaging-based sensor, and the time delay between identification and trap placement, 

the event of trapping an object has a non-zero probability of failure associated with it. 

This suggests that the approaches used in the domain of probabilistic robotics need to be 

utilized here. This Chapter develops a stochastic dynamic programming framework to 

perform the above-mentioned planning operation. More specifically, it uses the well-

known Markov assumption to cast a 2D version of the problem as a partially observable 

Markov decision process (POMDP). The automated planner is then validated by 
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performing physical experiments in a holographic tweezer set-up and its performance is 

characterized using simulation. A lot of the material covered in this Chapter is reported in 

[Bane08b, Bane09b].    

 

4.1 Problem Formulation 

 A 3D rectangular parallelepiped shaped assembly cell set-up is considered as the 

workspace W. It is assumed that the laser beam propagates upward along the +z-axis. 

Spherical objects will only be transported in the same horizontal plane. The physics of 

the problem is modeled as follows: 

• Any object in the vicinity of a laser beam in the workspace experiences five forces, 

namely, optical trapping, Langevin/thermal (causing Brownian motion), viscous drag, 

gravity, and buoyancy. 

•  A normal distribution based position sampler is used to generate random, Brownian 

positions of any object at discrete time instants. Mean of the distribution is time-

invariant for every individual object, whereas the standard deviation is equal to the 

diffusion length.  

• Random position sampling is combined with the ray optics model for trapping forces 

(given in Appendix A), drag term given by Stokes’ law, and well-known constant 

expressions for gravity and buoyancy to generate a list of positions, and velocities of 

the objects. It should be pointed out here that the trapping force values obtained from 

the ray optics model are suitably reduced based on the experimental data available for 

smaller-sized beads that are close to 1 µm in diameter ([Wrig93], [Wrig94]). 
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• Diffusion length of an object in 3D as a function of time t is expressed as 6tr D= t , 

where the diffusion coefficient (D) is given by Einstein-Smoluchowski relation to be 

Bk TD
γ

= . Here  is the Boltzmann constant and Bk γ  is the viscous drag coefficient. 

From Stokes’ law, 6 aRγ πη= , where aR  is the radius of the object and η  is the 

viscosity of the fluid medium. It may be noted here that the diffusion length along 

each dimension is independent of one another and is equal to 2Dt .  

• Sensor uncertainty or measurement probability is modeled using two independent 

normal distributions (having identical standard deviations σ) along the two coordinate 

axes. Means of both the distributions coincide with the respective coordinate values 

of the object under consideration.  

• Collisions are modeled using “billiard ball-like” rigid-body, elastic approach. This 

implies that the total kinetic energy also remains conserved in addition to linear 

momentum. At a particular simulation step, only pair-wise collisions are handled and 

chain collisions are ignored. This works well due to the small time interval at which 

object positions are calculated.  

• If multiple objects are trapped by a single laser beam, then they collide with each 

other and consequently either both of them may get trapped (smaller-sized objects) or 

none of them may remain trapped (larger objects). 

• For relatively large objects (diameter more than 10 µm), the maximum permissible 

trap speed ( ) is obtained by equating the viscous drag force with the maximum 

optical trapping force. However, the Brownian motion term dominates for smaller-

maxv
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sized objects. In that case,  is obtained by performing simulation or physical 

experiments.   

maxv

• If multiple traps are switched on, then  is reduced proportionately. However, this 

effect can be compensated by increasing the power up to the maximum, attainable 

value (2.0 W in the holographic tweezer set-up).  

maxv

 

 Based on the trapping probability contour plots (Figures 3.9 and 3.13) shown in 

Chapter 3, traps are modeled by a set of two concentric, horizontal circles such that their 

inner and outer boundaries correspond to trapping probability contours equal to 1 and 0 

respectively. The probability has a value of 1 inside the circle centered at the laser beam 

focus with radius equal to trap radius ( ), is equal to 0 outside the circle with radius 

equal to the sum of trap radius and trap width (

trl

tr twl l+ ), and varies linearly as a function 

of distance of the object center from the trap focus (d) within the annular region, 

determined by  and ( ). This is shown in Figure 4.2. Both the radii of the inner 

circles ( ) and the widths of the transition zones ( ) are functions of laser power, 

object radius, and material properties. Actual values are obtained by performing a large 

number of simulations as described in Chapter 3. In order to account for trap motion, the 

lengths of the major axes of the half-ellipses along the direction of motion (as shown in 

Figure 3.11) at the focal plane for the maximum trap speed are selected as  and .  

trl tr twl l+

trl twl

trl twl

 It may be noted here that, unlike many other problems, the time available for 

planning in this case is limited by the imaging interval ( itΔ ), image processing time ( ), 

controller update interval ( ), and the continuous random motion of all the non-trapped 

dt

ctΔ
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objects. Fig. 4.2 shows the event diagram for the planning and imaging modules. Ideally, 

the average planning time ( ) should be very short as compared to both  and pt itΔ ctΔ  

such that the random motion does not change the obstacle positions so much that the plan 

is rendered ineffective. It is also useful to point out here that the imaging and controller 

update rates are not necessarily equal or synchronized with each other. In that case, the 

last available processed image data is utilized immediately for computing the plan. 

However, the plan is executed only at the next time instant in the AP series representing 

the controller update times.  

d 

d 

Trapping 
probability 

1.0 

0.0 

Trap radius (ltr) Trap width (ltw) 

Optical trap center 
(laser beam focus) 

Spherical object 
Ra 

 
Figure 4.1: Trapping probability model  

 

 The radius of effective obstacle region (centered at the current, estimated object 

position) arising due to presence of optical trap, finite size, and imaging uncertainty is 

then given by: ( )( ) ({ )}max 3 , 2 3Sys tr tw ar l l Rσ σ= + + + . The rationale behind the 

definition of the effective obstacle radius is shown in Figure 4.3. Two objects may collide 

either due to geometric reasons or as a result of one object coming inside the trapping 

probability region of the other one. The greater amongst the two regions must be taken 

for conservative path planning purposes. However, each region must be expanded to 
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account for the uncertainty in sensor readings. This is shown by the grey annular region 

in Figure 4.3. 

 
 

Figure 4.2:  Event diagram for planning and imaging 

 
 

Figure 4.3: Selection of effective obstacle radius  
 

 . Actual (physical or simulated) locations of all the objects in the workspace form 

the true workspace set, whereas the estimated or sensed locations form the estimated 

workspace set. The primary trap is solely used to transport the target object, whereas the 

secondary traps are utilized to keep the obstacles stationary. Mathematical definitions of 

these concepts are given below: 
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Definitions 

 True workspace state is represented as the set { }1 , ,t
t n

tX X X= …  where t
iX  is the 

actual coordinate ( ), ,t t t
i i ix y z  of the ith object in W. Without any loss of generality, the 

first object can always be considered as the target object and the remaining (n-1) can be 

treated as obstacles. 

Estimated workspace state is represented as the set { }1 , ,e
e n

eX X X= …  where e
iX  

is the estimated coordinate ( ),e e
i ix y  of the ith object in W. The estimated z-locations of the 

object centers were only used in Section 4.5. The planner makes all decisions based on 

eX  and not tX . It is useful to point out here that all the objects may not be detected at all 

the times due to limitations in the imaging hardware and feature recognition modules.  

 

Control action set 

• Primary – A 3-tuple ( ) ( ){ }, , , ,x y x ys f f v v  such that the 1st element is a binary integer 

and last two elements are pairs of floating point numbers. Here s denotes whether the 

primary trap that is transporting the target object is switched on (1 if on and 0 if off). 

( ),x yf f  represents the coordinate of the trap center (focus) and ( , )x yv v  is the 

uniform velocity vector assigned to the trap. If ( )0, ,x ys f f φ= =  and ( ),x yv v φ= ; 

else [ ] [ ]max max0, , 0, , ,x y x x y yf x f y v V v∈ ∈ ∈ V∈ . Here xV  and yV  represent the discrete 

set of permissible speeds along the X and Y-axes respectively (including 0).  

• Secondary - A set of 9 doubles ( ){ } ( ){ }{ }1 1 9 9
1 9, , , , , ,x y x ys f f s f f… such that the 1st 

element of every double is a binary integer that denotes whether the corresponding 
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secondary trap is switched on and ( ),i i
x yf f represents the coordinate of the ith trap 

center. If ( )0, , , 1, ,9i i
i x ys f f iφ= = ∀ = … ; else [ ] [ ]max max0, , 0, , 1, ,9i i

x yf x f y i∈ ∈ ∀ = … . 

Figure 4.4 shows a typical workspace consisting of a target object and four obstacles. 

 

 
 

Potentially colliding obstacle can be held 
stationary by switching secondary trap 

Goal location

Obstacles exhibiting 
Brownian motion  

Target object trapped by 
primary trap and moving 

towards goal 

Workspace 
(fluid medium) 

Figure 4.4: An example of workspace in OT based particle transport problem 

  

Objective function  

A motion planning approach can handle collisions in three possible ways: either 

by ignoring them and re-trapping the target object, or by circumventing obstacles, or by 

keeping them stationary at their current locations using a secondary trap. This is 

illustrated in Figure 4.6 and forms the basis of our objective function. Estimated, 

expected transport time  for an estimated workspace stateeT eX , a control action A, and a 

circular circumvention strategy is defined as follows:  

( )
( )

/ /

1max max max

/

1max

, ,

, min

1 1

c

c

n
c sys

c i avg c
i

e e
n

c c
c i

ie

n rF G F Gt p t t
v v

T X A
wn tF Gt w

v t

π

=

=

⎧ ⎫⎛ ⎞ ⎛
Δ + + Δ + +⎪ ⎪⎜ ⎟ ⎜⎜ ⎟ ⎜⎪ ⎪⎝ ⎠ ⎝⎪ ⎪= ⎨ ⎬

⎛ ⎞⎛ ⎞⎛ ⎞⎪ ⎪Δ
⎜ ⎟Δ + + + −⎜ ⎟⎜ ⎟⎪ ⎪⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
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v

p t

⎞
⎟⎟
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 The three terms in the above expression represent the estimated transport time 

using the three different collision handling strategies shown in Figure 4.5. The first term 

allows collisions to occur and then imposes a penalty by introducing the additional time 

taken to recover the target object. The second term explores the option of circumventing 

all the freely diffusing obstacles and the third term considers the possibility of avoiding 

collisions by trapping obstacles to prevent them from moving randomly, which decreases 

the maximum transport speed. �( ) �( )/
x y x yF f i f j v i v j ct= + + + Δ� �  is the new location of the 

primary trap center after a time interval equal to ctΔ .  is the total number of expected 

collisions with obstacles based on the current 

cn

eX  as the primary trap first moves with 

velocity �
x yv v i v j= +

G �  and then along . Such objects are termed as potentially 

colliding obstacles.  is the average time to re-trap an object by positioning it at the 

displaced location or switching the laser off, allowing the objects to drift and then turning 

it back after collision.

/F G

avgt

ip  is the trapping probability of the ith potentially colliding obstacle 

based on the minimum distance of the object from the expected path followed by the 

primary trap. w is the expected probability of avoiding collision by keeping any obstacle 

stationary. This is not equal to 1 as sometimes collision is inevitable because the trap 

many pass through the effective obstacle region and keeping it fixed does not help in any 

way.  is the estimated time to reach G from the current location if the primary trap 

moves with the maximum speed. 

et
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Goal location (G) 

Estimated target object 
location 

Primary control action 

Strategy 1: Collide and recover 

Effective obstacle region 

F/ 

Strategy 3: Switch secondary 
trap to keep obstacle 
stationary 

Strategy 2: Circumvent 
randomly diffusing obstacle 

 
Figure 4.5: Different collision avoidance strategies 

The above expression is valid for circular circumvention. However, the actual 

circumvention path may vary from one approach to the other. This will modify the 

constant multiplicative factor in the 3rd term of the 2nd element. Similarly, the value of w 

may differ as well. However, the basic nature of the definition remains unaltered. 

 

Optimal solution 

A sequence of control actions{ }1, , ,kA A… … such that the total, estimated 

transport time ( ),k k k
e e

k

T T X A= ∑  is minimized, where the superscript k represents the kth 

instant when the planner is invoked.  

 

Dominance of one control action over another 

If ,( ) ( )2,1,k k k k k k
e e e eT X A T X A> k∀  then control action  strictly dominates 

control action .  

2A

1A

If ,( ) ( )2,1,k k k k k k
e e e eT X A T X A≥ k∀  then control action  dominates control action 

. 

2A

1A
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If ( ) ( )1 2, ,k k k k k k k
e e e eT X A T X A ε≥ k− ,∀  where kε  is a random variable that depends 

on k
eX  with mean , then control action  weakly dominates control action . 0kε

−

= 2A 1A

If any one of the above conditions is valid, then  can be pruned as it is expected 

to result in an inferior or sub-optimal solution. If none of the above conditions holds true, 

then and are non-dominated with respect to each other. Both of them need to be 

retained in this case as either one can result in a superior or optimal solution based upon 

the input parameters and

1A

1A 2A

eX . If each one of the elements in a set of control actions 

dominates (in any one of the above mentioned three ways) all the elements of another set 

of control actions, then the former set is said to dominate the latter one. A non-dominated 

control action set is formed by including those control actions such that all of them are 

non-dominated with respect to at least one other control action present in this set. 

  

4.2 Path Planning Approach 

4.2.1 Algorithm Description 

Since two types of uncertainties are present here, namely control action 

uncertainty and measurement uncertainty, this problem can be conveniently modeled as a 

POMDP. The control action uncertainty arises due to a combination of measurement 

uncertainty, trapping probability, and plan execution latency. If the primary trap focus is 

not placed within a distance equal to  from the target object center, then there is a 

probability that the target object will not move exactly to . In that case, it may drift 

slightly away from the inner circle of the trap, and then get pulled back inside it. As a 

result, it may not always move with the trap velocity and may end up in a slightly 

trl

/F
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displaced location. As  is quite large (of the order oftrl aR ), this probability is reasonably 

small. Nevertheless, it needs to be taken into account. A POMDP model is also known as 

hidden Markov model or dynamic Bayes network. It utilizes the well-known Markov 

assumption that the past and future states are independent, provided the current state is 

known or estimated. Although inaccuracies in modeling the state transition and 

measurement probability may violate this assumption, Bayes filters used to derive the 

belief state is quite robust to such violations [Thru05]. Belief state refers to the posterior 

probability distribution of the current true state based on all the past estimated states and 

control actions.  

POMDP algorithms require a planning horizon and an expected cumulative payoff 

function or value function. This function sums values over a number of time steps (T). If 

T is infinite, then one gets the infinite-horizon algorithm. The payoff function is 

analogous to the above described objective function, although the exact form is 

somewhat different. It uses the value iteration formulation of the Bellman equation (Step 

3.a.i.3 in the algorithm pseudo-code) to ensure optimality of the selected control action. It 

initializes the value function and then recursively propagates information in reverse 

temporal order until the Bellman equation converges. The discrete version of an 

approximate POMDP technique, known as QMDP, has been used due to its ease of 

implementation and speed-up obtained over a full POMDP solution. In fact, QMDP is a 

hybrid between Markov Decision Process (MDP) and POMDP and is of the same 

complexity as MDP [Thru05] based on the assumption that the state is fully observable 

after one step of control. It generalizes the MDP-optimal value function defined over the 

estimated state into a POMDP-type value function defined in the belief state by 
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computing the so-called Q function (Step 4.a in the pseudo-code) using the converged 

value function. This Q function is then utilized to select the control action that yields the 

minimum expected value (Step 6). 

The state transition matrix is computed once for all possible locations of the target 

object center and control actions, and stored in the local memory so that it can be used 

every time the planner is invoked. Since only a single objective function is present in this 

case, the problem remains tractable. A rectangular grid with a uniform grid spacing along 

both the orthogonal directions is overlaid on W. The estimated coordinates of the target 

object and the obstacle centers are approximated by the nearest grid point. Based upon 

pilot trial runs, a constant probability value of 0.9 is assigned to the expected grid 

location of the target object corresponding to the given control action ( ,n kx ). Values of 

0.025 are assigned to each of the four other neighboring grid points ( mx ). This is shown 

in Figure 4.6. Belief function values are randomly sampled from the normal distribution 

representing the measurement uncertainty (Step 4.b) and are normalized so that they all 

add up to 1 (Step 5). 

 Certain important modifications have been made to the original QMDP algorithm 

to adapt it for the current application. Firstly, unlike what is commonly done in practice, 

the payoff function does not merely represent the one-step gain associated with that 

particular control action. Instead, it takes into account the overall gain corresponding to 

the given control action. Thus, it is similar in nature to the objective function and, 

consequently to the value function. In other words, the value function no longer iterates 

over the value obtained at the previous iteration added to a one-step gain amount. Rather, 

it iterates over the previous value added to a payoff amount that is of the same order as 
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the value itself. This makes the iteration equation non-linear with respect to the distance 

(estimated, expected transport time in this case) of the goal from the current state, 

provided the given control action is implemented. 

Rectangular workspace 
discretized by uniform grid 

Grid spacing  

Primary trap velocity 
vector corresponding 
to control action uk 

Total no. of grid points: N

xi: Approximate 
location of target object

xm: Neighboring grid point 
of x

xn,k: Approximate location of 
target object after control 

action is implemented 

n,k
xG: Approximate goal 

 

 location
 

Figure 4.6: Approximate representations in QMDP algorithm 
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Figure 4.7: Test set-up for comparing one-step gain payoff function with overall gain 
payoff function 
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A comparison between the vanilla one-step payoff function and the overall gain-

based payoff function is made using a simple 2D test set-up shown in Figure 4.7. The 

workspace is a square enclosure, with the length of each side being equal to 100 units. A 

concave obstacle is placed in the workspace as shown in the same Figure. The task is to 

find the optimum path from the given initial location (5,5) to the given goal location (95, 

95) without passing through the obstacle. Only four possible control actions are 

considered, one each along the four directions that changes the current state by 1 unit 

along either ±X or ±Y-axes.  

Two variants of the discrete, infinite-horizon MDP algorithm are used. The first 

one replicates the standard version that uses a fixed payoff function such that if any 

control action results in a new state that lies within the obstacle, then a penalty of 50 units 

is imposed; a nominal penalty of 1 unit is imposed if the resulting state lies in the free 

region, and a reward of 20 units is assigned if the goal location is reached. The second 

one uses the formulation described in this work. No sensor uncertainty is modeled and 

the effect of state transition probability is also ignored to isolate the effect of the payoff 

function on the convergence time and path quality. It is observed that there is no 

appreciable change in the quality of paths generated by the two algorithms. However, the 

overall gain-based formulation does, indeed, reduce the convergence time by 

approximately 46%. While the number of iterations required for convergence decreases 

by almost 57%, the net computational saving is slightly reduced due to the greater 

amount of time spent in computing the payoff function at every iteration. These values 

are based on the average taken over the entire path from the initial to the goal location. 

Although the exact reduction values will depend upon the shape, size, and number of 
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obstacles, this simple experiment highlights the utility of modifying the payoff function. 

Further reduction in computational time will take place in OT set-ups as the state 

transition  probability matrix need not be computed at run-time unlike in the case of the 

vanilla algorithm.     

The second major modification in the QMDP algorithm is that time is introduced 

as an additional parameter within the convergence loop of the algorithm. As discussed 

earlier in this Chapter, this is necessitated by the fact that certain planning options that 

were optimal at the beginning of the planning time, may lead to inferior solutions with 

the passage of time and vice versa. Since all the non-stationary obstacles are exhibiting 

Brownian motion, it is known that the mean position of all the objects will remain 

unchanged with time. Hence, stochastically speaking, no better solution can be obtained 

by changing the locations of the obstacles from their current, estimated values during the 

course of the computation. However, the same is not always true for the target object. It 

may be still moving with the previous velocity even after it has reached ,n kx  unless it is 

commanded to act otherwise. This usually happens in the case of scanning mirror based 

set-up (but not for the holographic one). If by the time the plan is executed, it has already 

moved quite close to an obstacle, then any further motion along a similar direction will 

definitely result in collision. However, such a motion might have been the best option 

earlier when the planner started the computation. So, if the effect of the motion of the 

target object with time is accounted for, then such moves can be avoided and an 

appropriate circumvention plan can be obtained.  

All the steps are formally described in the algorithm 

QMDP_WithNonLinearTimeDependentValueFunction (QMDP_NLTDV). Discussions 
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on the optimality of the MDP portion of the algorithm and convergence of the Bellman 

equation are presented in Section 4.2.3. An important issue with the approach is the size 

of the control action set. It has to be pruned in order to obtain results within few 

milliseconds. The pruning conditions, based upon the concept of non-dominated control 

action set defined earlier, are explained in the following sub-Section.  

  

Algorithm: QMDP_NLTDV 

Symbols 

• Set of rectangular grid coordinates { }1, , NX x x= … representing the state space 

• Value function V  

• Belief function b  

• Expected payoff function r  

• Time parameter t   

• Iteration counter  q

• Span of a vector  ( ) max mini iii
sp w w w= −

Input 
• Approximate goal location Gx X∈   

• Approximate, estimated location of target object center Tx X∈  

• Set of approximate estimated locations of all the obstacle centers { }1 1, , nE y y −= … , 

where ,iy X i∈ ∀  

• Set of pruned control action sets { }1, , mU u u= …  
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• Set of state transition probability matrices { }1, , mP p p= … , where 

 represents the matrix corresponding to the kth control action 

set 

( )| , ,k k j k ip p x u x i≡ j∀

• aR , , , , , ctΔ dt trl twl σ  

• Maximum trap transport velocity vector 
T

m xm ymv v v⎡ ⎤= ⎣ ⎦ ; max mv v=  

• Previous primary trap velocity vector 
T

p xp ypv v v⎡ ⎤= ⎣ ⎦  

Output 
• Optimum control action set  *u
 
Steps 
1. Initialize  and . dt t= 0q =

2. For i = 1 to N, do ( ), ,q
i cV x E t t= Δ . 

3. Do while  or 1q ≤ ( )1 1q qsp V V −− ≥   

a. For i = 1 to N , do 

i. For k = 1 to m, do 

1. If ( i Tx x== ), compute the new grid location 

( ),n k T p k cx x v t v t= + + Δ , where  corresponds to the primary 

trap velocity vector of control action set ; else 

compute

kv

ku

,n k i k cx x v t= + Δ  

2. If i G ax x R− ≤ , ( ), , , 0i kr x E u t = ; else if ,n k G ax x R− ≤ , 

( ), , ,i kr x E u t tc= Δ ; else 
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∑

∑
 (see note at the 

end of the algorithm for explanation)  

3. Compute

  ( ) ( ) ( ) (
1

, , , , , , , , | ,
N

q
i k i k j j k i

j
V x E u t r x E u t V x E t p x u x
∧

=

= + ∑ )

)kii. Obtain ( ) (, , min , , ,
k

q
i iu

V x E t V x E u t
∧⎡ ⎤= ⎢ ⎥⎣ ⎦

 

b. Increment  by 1 and t  by the actual time taken to complete Step a. q

4. For i = 1 to N, do 

a. For k = 1 to m, do  ( ) ( ) ( ) (
1

, , , , , , , , | ,
N

q
i k i k j j k

j
Q x E u t r x E u t V x E t p x u x

=

= + ∑ )i

b. Sample  randomly from a normal distribution with mean and standard deviation 

equal to 

ib

ix  and σ  respectively and multiply it with the predicted value. 

5. Normalize belief function values such that 
1

1
N

i
i

b
=

=∑ . 

6. Return . ( )
1

* arg min , , ,
k

N

i i k
u i

u b Q x E
=

= ∑ u t

 It should be noted here that all the objects whose effective obstacle regions 

intersect the trajectory of the primary trap as it moves from ix  to ,n kx  and then from ,n kx  

to Gx  along a straight line path are considered to be potentially colliding. sn  is the 

number of activated secondary traps. Trapping probability lp  for the lth potentially 

colliding object is obtained by considering the minimum distance between its estimated 
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location and the trajectory of the primary trap and utilizing  and . The payoff 

function is derived from the objective function defined in Section 4.1, by ignoring the 

common  from all the three terms, not considering the 2nd term, and by substituting  

 for the potentially colliding obstacles that are trapped using secondary traps and 

 for the remaining ones. The selection of obstacles to be trapped is governed by 

pruning condition 4 explained in the following sub-Section. The 2nd (circumvention) term 

is not required in this algorithm as different ways of maneuvering around obstacles are 

automatically considered in the form of primary trap velocity vectors spanning the full 

horizontal plane at every state.  

trl twl

ctΔ

0w =

1w =

 

4.2.2 Control Action Set Pruning Conditions 

Condition 1 
 

Let  be a set of control actions such that the centers of the primary traps 

corresponding to the elements in this set are located either at 

/A

( )1
e

d p pX t t v+ +  or at 1
eX . 

For every element /
j

/A A∈ , let / /
jd dA A∈  be the set of control actions that have identical 

secondary traps but distinctly different primary traps. If , trD lσ <<  (as is usually the 

case), then /
jA  weakly dominates /

jdA j∀ . This is illustrated in Figure 4.8. Hence, we 

retain  and discard /A /
dA  from the set of control actions to be used for computing the 

optimum plan.  
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Rationale 
 

From the physics of optical tweezers, it is clear that if 1
tX  lies inside the circle 

centered at the focus of the primary trap in  with radius equal to the trap radius 

(referred to as the unit trapping probability circle), then the target object is stably trapped 

and is expected to move along with the trap with zero relative velocity. In reality, it may 

still exhibit some diffusion, which can be ignored. If it lies in the annular region with 

inner radius equal to  and outer radius equal to 

/A

trl ( )tr twl l+ , then it is not stably trapped. It 

may either drift towards the stronger trapping force region (with a probability given by 

the trapping probability value at the corresponding d value) or away from it. If it goes 

outside the annular region, then it experiences negligible optical trapping forces and 

undergoes free diffusion.  

Goal location 

Primary trap center placed at 
estimated target object 

location (control action A/) 

Workspace (W) 

Primary trap center placed at 
another arbitrary location is 

not useful (control action Ad
/) 

Obstacle 

 

Figure 4.8: Pruning condition 1 illustration 

Since the sensor provides an estimate of 1
tX  with a certain degree of uncertainty 

(characterized by σ) to the planner, it can never position the primary trap exactly at 1
tX  
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with a probability of 1. However, if the primary trap center is placed at 1
eX , then it has a 

very high probability of lying inside the unit trapping probability circle as trlσ <<  and 

1
eX  lies within a circle of radius 3σ, centered at 1

tX  with a probability of approximately 

0.9996. If we place the trap center at any other location in W, it is going to increase  

value as the target is either not being moved closer to the goal G at all or it is being 

moved after spending additional time in bringing the object to a stable trap position (

eT

/F G  

goes up in both cases).   

Now, due to the image processing time ( ) and the finite amount of time taken 

by the planner to come up with the optimal control action ( ), the target object may get 

displaced in W from

dt

pt

1
tX . If the object is being constantly transported by the primary trap 

(as in the case of scanning mirror based set-up), then its estimated position after time 

 will be equal to dt t t= + p ( )1
e

d p pX t t v+ +  (current iteration is at time ). This 

additional (  term is equal to zero for the holographic set-up. If instead of being 

trapped, the target object is freely diffusing in the fluid medium (due to collision event or 

inaccurate positioning or primary trap), then the diffusion length (

0t =

)d pt t v+ p

d pt tr + ) within this time 

interval will be equal to ( )6 d pD t t+ . As trD l<< , 
d pt t trr + l<  for relatively small values 

of  and of the order of few milliseconds, and hence the target object is expected to lie 

inside the unit trapping probability circle, centered at

dt pt

1
eX , with a very high probability. Of 

course, due to an ensuing collision within this time interval dt t p+ , the object may be 

knocked off from the primary trap and may start diffusing freely. However, this is not 
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expected to occur in practice (again due to small values of  and ). Thus, this 

condition follows from definition of weak dominance of one control action set over 

another. 

dt pt

 
Condition 2 
 

Let  be a set of control actions such that the centers of the secondary traps 

corresponding to the elements present in this set are either null sets or distinctly different 

and located at the obstacle centers

//A

, 2, ,e
iX i = … n .  For every element // //

jA A∈ , let 

// //
jd dA A∈  be the set of control actions that have identical primary traps to that in //

jA , but 

secondary traps where the centers are not positioned at ,e
iX i∀ . Then //

jA  dominates 

//
jdA j∀ . This is shown in Figure 4.9. Hence, we retain  and prune //A //

dA  from the set of 

control actions that will be used to compute the optimum plan. 

Goal location 

Workspace (W) 

Target object 

Secondary trap center 
placed at estimated 
obstacle location 

(control action A//) 

Secondary trap center 
placed at other arbitrary 

location is not useful 
(control action Ad

//) 
 

Figure 4.9: Pruning condition 2 illustration 
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Rationale 
 

If the center ( ),jl jl
x yf f  of the secondary trap corresponding to control action //

jA  

is not a null set,  must be equal to 1. In other words, the lth secondary trap is switched 

on. From the principle of working of optical tweezers, this results in a proportionate 

reduction of . Hence, the objective function value increases. Now, if ( )

ls

maxv ,jl jl
x yf f  is 

placed outside the trapping probability region  centered at e
iX , it will not be able to avoid 

any potential collision. Thus, the value of  remains same and correspondingly  is 

unaffected. If 

cn eT

( , )jl jl
x yf f  is placed anywhere inside the unit trapping probability circle 

(including at e
iX ), the value of  goes down by 1 and the value of  decreases. If cn eT

( , )jl jl
x yf f  is placed inside the annular region, the corresponding trap may or may not be 

able to trap the obstacle and keep it stationary at that position (henceforth referred to as 

grasping). So the value of the objective function may either remain unchanged or at best 

equal that in the last case. Hence, if ( ),jl jl
x yf f  is placed at e

iX , then //
jA  dominates other 

control actions which have lth secondary trap centered anywhere else.  

If we place multiple secondary traps at same e
iX , it is not going to reduce  any 

further. Instead, it is going to decrease  even more and thereby increase the value of 

. Hence, 

cn

maxv

eT ( ),jl jl
x yf f  and ( ),jm jm

x yf f  must correspond to the estimated locations of the 

centers of two different obstacles l m∀ ≠  in order to introduce the possibility of 

decreasing  by eliminating additional collision. In other words, if the secondary traps in eT
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//
jA , centered at various estimated obstacle centers are distinctly different, then it 

dominates the set //
jdA . 

 
Condition 3 
 

Let  be a control action such that the speed of the corresponding primary trap 

velocity vector is equal to the maximum, possible value. Further let  be a set of 

control actions such that the primary traps corresponding to the elements present in this 

set have the same velocity vector direction as that of , have lower speeds than , and 

the secondary traps are all identical to that of . If 

mA

///A

mA mv

mA min cSys td r rΔ> + , where  is the 

distance of the nearest obstacle from the trajectory of the primary trap of , then  

weakly dominates . This is illustrated in Figure 4.10. Hence, we retain  and 

discard  from the set of control actions to be used for computing the optimum plan. 

mind

mA mA

///A mA

///A

Goal location 

Workspace (W) 

Nearest obstacle 

dmin 

Primary trap 
velocity vector with 

maximum value 
(control action Am) 

Primary trap velocity vector with non-
maximum value (control action A///) 

Am is better than A/// as dmin is greater 
than sum of effective obstacle region 
radius and expected diffusion length 

 

Figure 4.10: Pruning condition 3 illustration 
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Rationale 
 

The nearest obstacle is expected to diffuse by an amount equal to  within the 

time interval between the current iteration and when the planner control action will be 

implemented next (equal to ). Hence, the distance may be different from  at time 

 (current iteration is at time 

ct
rΔ

ctΔ mind

ct t= Δ 0t = ). However, in the worst case, it is expected to be 

equal to , when the obstacle moves by min ct
d rΔ−

ct
rΔ directly towards the trajectory of the 

primary trap and the minimum distance condition occurs exactly at time . Even in 

that case, the target object trapped by the primary trap in  is expected to lie just 

outside the effective obstacle region given by . Hence,  is expected to result in the 

least possible objective function value as compared to all the other control actions present 

in , because 

ct t= Δ

mA

Sysr mA

///A /F G  will be shortest in this case since maximum distance towards the 

goal is covered within the time interval ctΔ . This is true since no collision is expected to 

occur when the primary trap is moving at the maximum speed. 

 
Condition 4 
 

Let ////
dA  be a set of control actions such that the first elements of at least p of the 

secondary traps are equal to 1, where 1 9p≤ ≤ . For every element //// ////
jd dA A∈ , let 

//// ////
jA A∈  be the set of control actions that have identical primary traps to that in ////

jdA  but 

different secondary traps such that the first elements of all of them are equal to 0. Also let 

 be the minimum distance between the trajectory of the primary trap of min
id ////

jA  and e
iX . 

If min 3i
Sysd r σ< −  or min c

i
Sys td r rΔ> + , for m obstacles ( [ ]2,m∈ n ), then ////

jA  weakly 
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dominates ////
jdA j∀ , when  and ,p m m= ≤ 9 9, 9p m= > . This is shown in Figure 4.11. 

Hence, we prune ////
dA  from the set of control actions that will be used to compute the 

optimum plan. 

Rationale 
 

From condition 2, it is clear that in order to obtain an optimal solution, the lth 

secondary trap corresponding to any control action will be switched on (i.e.  will be 

equal to 1 and 

ls

( ,l l )x yf f  will not be a null set) only when we want to grasp a particular 

obstacle in W. Moreover, each secondary trap will be used to grasp a different obstacle. 

Even then, under the given conditions, if any one of the secondary trap centers present in 

a control action belonging to the set ////
jdA  is placed at e

iX ,  is expected to increase. If 

the first inequality in the condition statement is satisfied, it is expected that the target 

object (trapped by the common primary trap in  and 

eT

////A ////
jdA ) lies within the effective 

obstacle region of the obstacle that is kept stationary by the secondary trap with a 

probability of approximately 0.9996. And if the second inequality in the condition 

statement is satisfied, the target object is always expected to lie outside the effective 

obstacle region (as explained in condition 3). In both the cases, the corresponding control 

action is not expected to generate any better solution by reducing the value of 

( always decreases).  cn maxv

If  obstacles are present in W that satisfy one of the two inequalities, 

then this argument is valid for any p secondary traps present in the corresponding control 

action. If  obstacles satisfy one of the two inequalities, then this argument holds 

true for all the 9 secondary traps. In other words,

9m p= ≤

9m >

////
jA weakly dominates ////

jdA j∀  as ////
jA  is 
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always expected to yield smaller objective function value. This condition ignores the 

effect due to the interaction between multiple optical traps. If the intersection of multiple 

traps modifies the effective obstacle region, then the inequalities have to be changed. 

Goal location 

Workspace (W) 

d2
min 

Secondary trap centers placed at these two estimated 
obstacle locations are not useful (control action Ad

////) 

d1
min 

Obstacle 1 is 
always expected 
to collide with 
the target object  

1 2 

Obstacle 2 is 
not expected to 
collide with the 
target object 

 

Figure 4.11: Pruning condition 4 illustration 

 
Pruning Strategy 
 
 Non-dominated control action set is discrete and consists of a subset of the control 

action set. Conditions 1, 2, 3, and 4 discretize the control action set by imposing 

restrictions on the choices of control actions from the optimality point of view. This 

subset of the control action set (identified by the four conditions) forms our non-

dominated control action set from basic definition. 

 It should be noted here that since the path planning approach models control 

action uncertainty in the form of state transition probabilities and/or weighing factors in 

the objective function. This makes it robust to violations of the assumptions in condition 

1 and high values of  and . dt pt
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4.2.3 Optimality and Convergence Discussion 
 
Discussion on Optimality 
 
 The optimality of the MDP portion of the QMDP_NLTDV algorithm is believed 

to follow directly from the Proposition 13.13 given in [Gosa03] for the value iteration 

case. Although the payoff function may vary in the current case with time for the state 

corresponding to the estimated target object location, it is always bounded and finite 

since trapping probability, distance to goal, estimated time to reach the goal from current 

location, number of potentially colliding obstacles, and number of secondary traps all lie 

within well-defined ranges. The remaining parameters do not vary with time. Hence, the 

optimality proof remains essentially unchanged as there is no change to the limit as the 

number of iterations tends towards infinity. 

 

Discussion on Convergence 

Unlike in most existing algorithms where the payoff function takes on constant 

values, it depends on several parameters in the current algorithm. Some of the 

parameters, namely, goal location, controller update interval, time to re-trap the target 

object after collision, and maximum trap speed remain constant at all iterations inside the 

convergence loop and thereby do not have any effect on convergence. As mentioned in 

the optimality discussion, the other parameters may change with time if the state 

corresponds to the estimated target object location.  

Now, typically the planning time  is constrained to lie within few tens of 

milliseconds based on  and . Based on the fact that  is usually few µm/s for (1-

20) µm diameter particles considered here, the target object is expected to move less than 

pt

dt ctΔ maxv
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a micron within the time taken for convergence, which is going to be smaller than . As 

a result, it is expected that at most one non-potentially colliding obstacle may become 

potentially colliding and vice versa. Trapping probability values of the other potentially 

colliding obstacles are not expected to change much either since the minimum distances 

of the obstacles from the expected trajectory of the target object do not change 

appreciably. Moreover, the increase in values for certain obstacles is expected to 

counterbalance the effect of decrease in the others in a typical optical tweezer workspace 

where obstacles are likely to be positioned randomly all around the target object. The 

effect of the change in the distance from 

pt

,n kx  to Gx  in the numerator of the 1st element in 

the 2nd term is also counterbalanced by the corresponding change in  in the 

denominator.  

et

Hence, the overall change in the payoff function with time is expected to be 

monotonic and quite small (dominated by whether the number of potentially colliding 

obstacle changes). Even if a switch occurs inside the payoff function from the 1st term to 

the 2nd or vice versa, this switch is only expected to happen once and then it always takes 

the value of the same term throughout the rest of the convergence process. It should also 

be noted that this change in the payoff function for one particular (target object location) 

state may not affect the span based convergence criterion at all since that depends only on 

the maximum and minimum value function. All the above-mentioned hypotheses are 

validated by performing the following set of simulation experiments. More details about 

the simulation framework are mentioned in the following sub-Section.  

50 obstacles, each 2 µm in diameter, are placed in a 90 µm X 80 µm X 50 µm 

workspace. The planner is run when the target object is positioned at (45 µm, 40 µm, 5 
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µm) and the goal is located at (85 µm, 80 µm, 5 µm). Laser power is selected as 0.2 W. 

, , and  are set to be 100 ms, 100 ms, and 80 ms respectively.  is chosen as 7 

µm/s. So, the target object can only move by 0.56 µm in the worst case. The planner is 

run 100 times, every time with an entirely random placement of obstacles in the XY 

plane and fixed Z location, equal to 5 µm. Convergence is always observed; 97% of the 

experiments resulted in convergence within 12 iterations and the remaining 3 converged 

after 15, 16, and 20 iterations respectively. Clearly, this shows that the changes in payoff 

function of the particular state only affected the convergence in 3 cases. Further analysis 

shows that the number of potentially colliding obstacles changed in 13 cases (always by 

one), the payoff function switched in 6 cases, and never switched back and forth in any 

case. The change in payoff function from the original value always lies within 5% and the 

change is monotonic in every experiment. It is also seen that change of more than 0.5% 

only occurs in the 13 cases where a new obstacle becomes potentially colliding or vice 

versa.    

ctΔ dt dt maxv

Based on the above discussion, the convergence of the Bellman equation then 

follows from the Proposition 13.20 given in [Gosa03] for the average reward case. This is 

true since all the states in every Markov chain associated with the MDP algorithm are 

recurrent as any one of them can be visited infinite number of times over an infinitely 

long period of time (i.e. there exists no transient or absorbing state) and every Markov 

chain is regular (discussed below). It may be noted here that since QMDP_NLTDV 

algorithm simply extends the MDP algorithm to the belief space by defining Q function 

and then finding the control action that minimizes the expected Q function value (Steps 

4-6 in the pseudo-code), these additional steps do not have any other convergence 
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requirements. In other words, QMDP_NLTDV algorithm converges when the Bellman 

equation converges.  

Any arbitrary column v of the N X N state transition probability matrix kp  for 

transitioning from any state ix  to any other state jx  for a given control action set  is 

given by

ku

[ ]0 0 1/ 40 0 1/ 40 9 /10 1/ 40 0 1/ 40 0 0 Tv
kp = … … … …  

where 9/10 is the probability value corresponding to the state ,n kx  (as defined in Step 

3.a.i.1 of the pseudo-code) and 1/40 is the probability value corresponding to one of the 

four states mx . 9/10 is always preceded and followed by non-zero entries due to the way 

probabilities are assigned to the neighboring grid points (as shown in Figure 4.6). Clearly, 

, although  may not be necessarily equal to 1. In some cases, if 
1

1
N

uv
k

u

p
=

=∑
1

N
uv
k

v

p
=

∑ ,n kx  

corresponds to a boundary state (state lying on the workspace boundaries), then the 

column vector may look like [ ]9 /10 1/ 30 0 0 1/ 30 1/ 30 0 0 Tv
kp = … …  or 

some equivalent form.  

A probability matrix is defined to be regular if all its entries are strictly positive 

[Sadu08]. Now, in order for every Markov chain to be regular, it needs to be verified 

whether the corresponding kp  or some power of kp  is regular [Gosa03, Sadu08]. In 

other words, if every element of the product matrix ( )  for some positive integer n, 

then it can be concluded that the corresponding Markov chain is regular. This regularity 

property is shown numerically for the following representative 7 X 7 state transition 

probability matrix.  

0n
kp >
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1/ 40 1/ 40 0 9 /10 9 /10 9 /10 9 /10
1/ 40 0 0 1/ 30 1/ 30 1/ 30 1/ 30
9 /10 1/ 40 1/ 40 1/ 30 0 0 0
1/ 40 9 /10 1/ 40 1/ 30 1/ 30 0 0
1/ 40 1/ 40 9 /10 0 1/ 30 1/ 30 0

0 0 1/ 40 0 0 1/ 30 1/ 30
0 1/ 40 1/ 40 0 0 0 1/ 30

kp

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Consequently,  , 

where all the entries are strictly positive and the entries in every column add up to 1 

within the limits of numerical errors.  

( )3

0.8157 0.0752 0.1024 0.1011 0.0747 0.0757 0.0757
0.0313 0.0233 0.0249 0.0050 0.0048 0.0048 0.0048
0.0444 0.7732 0.7916 0.0707 0.0977 0.0977 0.0976
0.0330 0.0536 0.0541 0.0465 0.0473 0.0472 0.0472
0.0708 0.0708 0.0259 0.7352 0.73

kp =
43 0.7333 0.7333

0.0026 0.0014 0.0002 0.0204 0.0203 0.0203 0.0204
0.0019 0.0022 0.0009 0.0209 0.0209 0.0209 0.0209

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

To conclude the discussion on convergence, it can be summarized that the 

QMDP_NLTDV algorithm is always expected to converge for typical optical tweezers 

environments (randomly positioned objects). Indeed, non-convergence has never been 

encountered in any of the experiments reported or conducted as a part of this dissertation. 

If, however, convergence does not occur in a pathological case (expected only in a 

carefully construed scene) due to positioning of target object, goal, and obstacles in some 

particular way resulting in a large change in payoff function values with time, then the 

algorithm is designed to transition to a greedy heuristic described in [Bane08b] when 5 

milliseconds of available planning time is remaining.  
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4.2.4 Simulated Planning Trajectories   

 
 

Figure 4.12: Simulation framework: Connection between simulator, estimator, planner, 
and user interface 

 

δt 

Δti 

Δti 

Δtc 

The overall physical system has been replicated in the form of a simulation 

framework shown in Figure 4.12. The workspace simulator takes physical parameters as 

the input and generates the simulated locations of the object centers after every time 

interval mtδ
γ

<  (as mentioned in Chapter 3), which is the relaxation time of the object. 

Here, m represents the mass of the object. The collision function is replicated from the 
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free source code available online at [Coll3D]. The user interface receives data after every 

 (50-500 ms) time interval from the workspace simulator and decides whether the 

target object has reached the goal location. The workspace state estimator also obtains 

data at the same rate from the simulator and adds noise to the true locations to simulate 

imaging system uncertainty. It passes estimated positions of the object centers to the laser 

path planner with an appropriate delay (  always selected as 50 ms) to simulate imaging 

system latency. The planner then comes up with new locations and velocities of the traps. 

It transfers the latest values every 

itΔ

dt

ctΔ  (50-1000 ms) to the workspace simulator. 

 Four test cases have been presented to visualize sample 2D trajectories generated 

by the QMDP_NLTDV algorithm. It is implemented in C++, using Microsoft Visual 

Studio.Net 2003 as the compiler. OpenGL is used for rendering purposes. Here, 

simulations have been performed on 2.0 µm diameter spheres, immersed in water at 20° 

C. Correspondingly,  and  are chosen to be equal to 1.0 µm and 1.5 µm respectively. 

The dimension of the workspace is 50 µm X 50 µm. All the other parameters have the 

same values as specified earlier in this Section. Figure 4.13 shows the trajectory followed 

by the target object in a moderately crowded scene consisting of 30 obstacles. The 

estimated locations of the object centers are shown by ‘+’ signs, whereas, they have been 

drawn at their actual locations. Brownian motion trajectories of all the untrapped objects 

are also shown in the Figure. This Figure clearly illustrates the capability of the algorithm 

to detect the presence of obstacles and follow a circumvented path in order to avoid 

unnecessary collisions.    

trl twl

Figure 4.14 shows the usefulness of this dynamic programming framework as 

opposed to a simple, conservative scheme, wherein a search strategy can be employed to 
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just follow the safest route based upon increasing collision regions (due to increase in 

diffusion length with time) in the free C-space. Such a conservative scheme will not be 

able to guide the target object through passages that may have opened up with time. 

Thus, it will not always yield the minimum, possible expected transport time. On the 

other hand, the infinite-horizon algorithm presented here is an adaptive and dynamic 

approach that constantly generates an optimum solution based upon the new state of the 

workspace, every time it is invoked. That is why, although the passage was too narrow in 

the initial workspace state (see Figure 4.14(a)), later on it became wider, and the primary 

trap could successfully transport the target object through this widened passage without 

causing any unwanted collision(s) (see Figure 4.14(b)). This results in an overall decrease 

of transport time in the range of (25 – 30) % as compared to the conservative scheme.  

 

 

Followed 
trajectory 

Brownian 
motion 

Annular trapping 
probability region 

 
Figure 4.13: Circumventing obstacles in a moderately crowded scene 
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 (a) Initial state (b) Final state 

Passage widens 
with time

 
Figure 4.14: Transporting the target object through an originally narrow passage that 

became wider with time 
 

 Figure 4.15 shows another interesting phenomenon in a similarly crowded scene 

consisting of 50 obstacles. Initial positions of all the objects are identical to that in the 

last scene. The maximum speed of the primary trap is intentionally reduced by 3 times as 

compared to the value used in the previous two test cases. Naturally, much more time is 

required to transport the target object to the goal location. It can be clearly seen that the 

effect of Brownian motion is also more pronounced in this case, as the diffusion length is 

proportional to the square root of the elapsed time. Now, during the transport operation, 

the planner intentionally allows collision with an obstacle. Due to small size, the 

momentum of the colliding objects is relatively small; hence, they do not move away 

from each other after impact. Instead, they get displaced by such a little amount that both 

of them remain within the inner circle of the trapping probability region. Thus, both of 

them get dragged along by the primary trap towards the goal. Since no secondary trap is 

switched on, there is no reduction in the maximum trap speed. Based upon the current set 
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of parameters, this turns to be the better option as compared to a circumvented route that 

involves no collision. Another collision event takes place with an obstacle that was 

located very close to the goal. We have not implemented switching the trap off, and then 

activating it after the objects have drifted away in the current setting to demonstrate the 

effect of collisions.   

 

 

Object collides and 
gets dragged along 

Collision with another 
obstacle near goal 

 
Figure 4.15: Collision and dragging of obstacle in a crowded scene where the relative rate 

of change in free C-space is quite high 
 

 The developed algorithm provides the option of changing the payoff function 

parameters so that an alternative non-collision path can also be computed if one wants to 

avoid the post-processing steps. This is shown in Figure 4.16 by increasing the value of 

 to 150 ms. The initial state is same as that in the previous two test cases. A much 

longer, circuitous path is followed by the primary trap that not only avoids the first 

collision, but also goes around and above the goal before turning back to avoid trapping 

avgt
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the obstacle lying close to the goal. This kind of flexibility will be very useful in practical 

applications.            

  

 
 

Figure 4.16: Avoiding collision and following a longer route in a crowded scene where 
the relative rate of change in free C-space is quite high 

 

4.3 Experimental Validation 

4.3.1 Optical Tweezer Instrument and Feedback Control 

The optical tweezer used in these experiments was a BioRyx 200 (Arryx, Inc., 

Chicago, IL) holographic laser tweezer. The BioRyx 200 consists of a Nikon Eclipse TE 

200 inverted microscope, a Spectra-Physics Nd-YAG laser (emitting green light of 

wavelength 532 nm), a spatial light modulator (SLM), and proprietary phase mask 

generation software running on a desktop PC. Nikon Plan Apo 60x/1.4 NA, DIC H oil-

immersion objective is used. In order to impose a trajectory on the beads with a SLM, the 

optical trap is moved in a series of closely spaced steps aligned along the intended 
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trajectory; the bead follows the steps of the trap quickly and then remains stationary until 

the next step. The stepping rate and step size determine the speed. The maximum rate at 

which traps can be set is the update rate of the SLM, 15 Hz, and the minimum step size is 

150 nm. 

 The feedback control was achieved with a second PC equipped with a uEye 

camera (IDS, Inc., Cambridge, MA) for imaging the beads and software for executing the 

planning algorithm. A similar optical feedback approach in a system without stochastic 

fluctuations was implemented previously to control unstable crystal growth patterns 

[Pons07]. Beads were identified and located by thresholding the image and then 

calculating the center of mass of all the remaining blobs. For 2.01 µm diameter beads 

used in the physical planner experiments (see Section 4.3.4), this simple algorithm 

provided enough accuracy while maintaining a reasonable frame rate (1-2 frames/sec). 

Commands from the imaging/planning computer to the laser tweezer computer were sent 

via TCP/IP over an Ethernet connection between them. 

 

4.3.2 Sphere Behavior without Optical Traps 

The behavior of both 1.0 and 2.01 µm nominal diameter amorphous silica spheres 

has been observed in water at room temperature. The spheres have been procured from 

Bangs Laboratories, Inc., Chicago, IL. Refractive index of the spheres is 1.46 and density 

is 2000 kg/m3.  In the absence of any optical trap, they freely diffuse in water. Sequence 

of images has been taken for 1.0 µm diameter beads at five different cross-sectional 

planes which clearly show the effect of Brownian motion and the settling of objects at the 
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bottom (cover slip glass plate) due to the effect of gravity. The camera frame rate is 3.68; 

dimension of each image is 512 x 640 pixels, where the length of each pixel is 100 nm.  

 Near the bottom plate, the well-focused beads (seen as bright white spots) are 

stuck to the plate and are more or less stationary. At planes well above the bottom plate, 

many previously bright spots become dark and vice versa as the beads drift in and out of 

the imaging planes. Estimation of the average in-plane diffusion length of ten beads each 

at the four imaging planes other than the bottom one between 10 successive frames 

corresponds well to the theoretically predicted value of 2.16 µm. The same experiment is 

repeated inside the simulator for the same number of silica spheres (with same material 

properties) at identical horizontal planes. The values lie within 5% of the experimental 

and theoretical numbers. This shows that Brownian motion has been accurately modeled 

in the simulator. Application of the image processing and feature recognition modules on 

the images also indicates that 0.25 aR  is a good choice for σ. 

 The number of beads lying at the different imaging planes has been counted at the 

instants when the images have been taken. It is assumed that the first observation at the 

bottom plate starts at time t = 0 s. It must be noted here that the observations (or actual 

planning experiments) cannot be started at the very instant the dilute sample is created. 

Some time will be spent in placing it on the microscope objective, adjusting the z-

position of the objective and so on. However, once we begin our observations, time at 

which all further readings have been taken can be easily recorded. Reading is 

continuously taken for about 16 s at every imaging plane; then the reading is taken at the 

next level and the same cycle is repeated once more for all the five planes.  
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Figure 4.17: 1.0 μm diameter silica sphere number distribution as a function of depth 
from the bottom plate 

 

Four different number values (two each at the beginning and ending of the first 

and second observations) obtained for every imaging plane are used to fit a linear curve. 

Values are extrapolated from the fitted curves to obtain the expected number of beads at 

that particular height (z-value) at a particular time instant. The expected logarithmic 

distribution of spheres at t = 300 s and 400 s are shown in Figure 4.17. Theoretically, the 

distribution should be linear. A progressive settling of beads can be seen at the bottom 

plate accompanied by a corresponding decrease in the number of beads at all the other 

planes. A similar experiment has been repeated inside the simulator by placing exactly 

the same number of spheres at different heights as observed for t = 300 s. XY positions of 

the spheres are assigned randomly. Simulation is allowed to run for 100 s and then the 

number of spheres is counted at different z-levels. Values again correspond within ±5% 

of those occurring in the physical set-up (as shown for t = 400 s). This shows that all the 
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non-trapping forces, namely thermal, viscous drag, gravity, and buoyancy have been 

correctly accounted for in the simulation as the number distribution depends on all these 

forces simultaneously. Physically-obtained number distribution also provides a good 

starting point for all the simulation experiments. Though fluid flow can be observed 

experimentally under some conditions, it does not seem to play a role in the experiments 

shown here.    

 
 

4.3.3 Demonstration of Effective Obstacle Region 

As mentioned earlier in Section 4.2, the trap radius ( ) and the trap width ( ) 

are functions of the object size, material properties, and laser power. Consequently, 

trl twl

sysr  

also depends on these physical parameters. Keeping the object material (silica) and 

overall laser power (0.4 W) fixed, dependence of sysr  on the object size and available 

laser power is shown in the following two figures.  

Figure 4.18 shows the change in sysr  for 2.01 µm diameter spheres based on the 

number of traps that are activated. The size of the effective obstacle region is greater in 

Fig. 4.18(a), when only the target object is trapped, as compared to that in Fig. 4.18(b), 

when both the target object and the nearby obstacle are trapped. In the former case, it is 

approximately equal to 4.0 µm, whereas in the latter case, it is equal to 3.25 µm. These 

values are used to benchmark those obtained from the dynamics simulation so that 

accurate values are used in the simulation results presented in the following Section. This 

variation can be explained based on the fact that multiple trapping reduces the laser 

power available in each of the traps individually. As a result, due to the presence of the 

secondary trap, the obstacle can no longer get attracted into the primary trap, as long as 
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the primary trap is not placed sufficiently close to it. Thus, it can be seen that switching 

secondary traps not only enables one to get rid of the uncertainty arising due to random 

Brownian motion during planning, but also increases the free C-space available for target 

object motion. Figure 4.19 shows a similar trend for the larger 4.74 µm nominal diameter 

silica spheres. It is useful to note here that the value of sysr  is much greater in this case. 

This happens because the optical trapping forces are much stronger for larger-sized 

spheres, till the forces start diminishing beyond a certain radius.  

5 µm Effective 
obstacle 
region 

Trap 
focus 

  

Objects can be 
brought closer 

together if both of 
them are trapped

      (a) Only target object trapped (b) Both target object and obstacle trapped 

Figure 4.18: Change in the effective obstacle region for 2.01 µm diameter silica sphere 
based on the number of set traps 

 

   

5 µm 

 
(a) Only target object trapped    (b) Both target object and obstacle trapped 

 
Figure 4.19: Change in the effective obstacle region for 4.74 µm nominal diameter silica 

sphere based on the number of set traps 
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4.3.4 Sphere Transportation using Automated Planner 

 2.01 µm diameter silica beads have been successfully transported using the 

current planner described in Section 4.2 automatically without any manual intervention. 

The dimension of the camera image is increased to 896 x 800 pixels. An initial and a goal 

location are specified in the controller user interface by manually clicking at two spots in 

the imaged workspace. The bead that is located nearest to the initial location is 

automatically selected as the target bead. It is then transported to the desired goal location 

by the POMDP planner; the planner is terminated when the target bead reaches within 1.0 

µm radius of the second selected spot. Two such representative experimental runs near 

the bottom plate are shown in this paper to illustrate the capability of the system. The trap 

charge is always set to 0.0 to create a point trap. 
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(a) Initial scene     (b) Final scene 
 
Figure 4.20: Obstacle circumvention by automated planner in holographic optical tweezer 

set-up 
 

Figure 4.20 depicts the effective circumvention of an obstacle by the target object 

(represented by ‘*’ sign by its side) moved by an optical trap at a speed of 2.23 µm/s. 

Laser power is set at 0.2 W. The time at which each frame is recorded is shown on the 
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top left-hand corner. The overall trajectory of the target object is displayed using dots in 

Figure 4.20(b). A number is assigned to every object so that it can be easily tracked in the 

two figures. Figure 4.21 shows that even if a straight line path exists between the initial 

position of the target object and the goal, Brownian motion of nearby obstacles and 

diffusion of out-of-plane objects into the plane under consideration will cause the trap to 

follow a circuitous route. The random trajectory of the objects that influence the trap 

motion is also shown in Figure 4.21(b). In this experiment, the trap is moved at a faster 

speed of 4.45 µm/s. 

t = 0 s 

*

Region of 
influence 

5 µm 

St. line 
path to 

goal 

   

t = 24 s *

Brownian 
motion 

Additional 
object diffuses 
into the plane 

 
(a) Initial scene    (b) Final scene 

 
Figure 4.21: Forced deviation of automated planner from linear trajectory due to obstacle 

diffusion  
 

Figure 4.22 shows a combination of obstacle trapping and circumvention by the 

automated planner transporting the target object at a speed of 2.23 µm/s. Laser power is 

set at 0.2 W. The time at which each frame is recorded is shown on the top left-hand 

corner. The overall trajectory of the target object is displayed using dots in Figure 

4.22(e).The planner traps two obstacles and circumvents another. Various stages of the 

first multiple (double) trapping event are shown in Figure 4.22(b)-4.22(d). A rectangular 

box has been drawn to highlight the two objects that are being trapped simultaneously. It 
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can be seen that multiple trapping allows the target object to move much closer to the 

obstacle as compared to circumvention. Thus, by adjusting the payoff function 

parameters, if one type of collision avoidance strategy is made more likely to occur than 

the other, then the planner performance can be improved. For example, multiple trapping 

will be more useful in a crowded scene where the object positions are known with a 

reasonably low degree of uncertainty.   

Collision and multiple trapping of beads are found to occur during transportation 

in crowded scenes after more beads have settled down. Intentionally, the trap is first 

placed at a slightly different position from the estimated bead center (see Figure 4.23(a)). 

As expected, the bead gets pulled in and then the trap starts moving at a speed of 2.23 

µm/s. When obstacles are present in all possible routes to the goal, the planner decides to 

move along a relatively shorter path, allowing the possibility of collision with a nearby 

object. This results in simultaneous transport of multiple objects to the goal (see Figure 

4.23(b)). As in the 3rd simulation test case (Figure 4.15), switching off the laser has not 

been incorporated due to the time it takes for the holographic tweezer to heat up and 

reach full intensity. 
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Figure 4.22: Obstacle trappi
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(a) Initial scene    (b) Final scene 

Figure 4.23: Automated transport involving collision to follow shorter route in a 
workspace having large number of obstacles 

 

4.4 Simulation Results 

Additional experiments have been c out in the validated simulator to 

investigate the performance of the POMDP algorithm under a wide variety of operating 

conditions since it is not possible to perform them in the physical set-up due to the time 

needed to conduct a large number of runs to achieve statistically meaningful results. All 

the experiments are run on a Pentium 4 processor PC with 3.6 GHz clock speed and 1 GB 

of RAM. Every experiment is repeated 100 times and the average transport time is used 

as the performance measure. The workspace size is taken to be 89.6 µm x 80 µm x 50 µm 

(same as that used for planning experiments). ,i ct t

t = 0 s t = 74 s 

Displaced trap 

*

Two objects transported 
simultaneously 

* 

5 µm 

Shorter route 
followed by trap

arried 

Δ Δ  and avgt  are always selected as 0.25 

s, 0.5 s and 0.5 s respectively so that they are consistent with the values observed in the 

holographic tweezer set-up. A silica microsphere, having the same properties as used in 

the physical experiments, is initially positioned at (5 µm, 5 µm) in the XY plane and 

transported to (85 µm, 75 µm) in the same horizontal plane at room temperature in all the 

experiments. However, the z-location of the target object is varied in certain cases. Water 
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is always used as the fluid medium. Laser wavelength and numerical aperture of the 

objecti

at 

r 7200 grid points, an 

initial (non-pruned) primary control action set consisting of 7200 elements at every grid 

point, and 9 secondary traps that can be activated, average planner computation time is 

about 60 ms. However, with time the number of obstacles will change as objects diffuse 

ve lens are also assigned constant values as specified in Section 3.1. Unlike in 

Section 4.2.3, time is not included as a parameter inside the convergence loop of the 

planning algorithm. This maintains consistency with the fact that the trap in the 

holographic tweezer stops once it has reached the intended location for a given control 

action command. However, the algorithm is general enough to deal with other kinds of 

set-ups where the traps continue moving as long as they are not commanded to act 

otherwise.  

In the first two sets of experiments, the laser power and the imaging uncertainty 

standard deviation have been varied respectively, keeping all the other factors constant. 

Laser power and imaging uncertainty are chosen as the independent parameters because 

they are expected to change significantly from one set-up to the other. So simulation will 

enable one to identify the extent of effect on the transport time and correspondingly on 

the quality or effectiveness of the planning algorithm. In both the cases, initially 1.0 µm 

diameter objects are distributed in the workspace following the number distribution 

observed for t = 300 s in Figure 4.17. The first time any experiment is carried out, XY 

locations of the object centers are assigned following a uniform, random distribution. 

However, these values are stored and re-used in the other 99 trials. The target object is 

always placed at the z = 6 µm plane. This implies th the planner initially deals with 50 

obstacles due to 2D imaging restrictions. Under such a situation, fo
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in and out of the horizontal plane. Other parameters remaining constant (as expected in a 

typical physical set-up), the computation time varies almost linearly between (20-115) ms 

if the number of obstacles changes from 10 to 100.  is chosen for every data point by 

carrying out pilot simulation runs before starting the experiments.  

maxv

 

Figure 4.24: Transport time variation with respect to laser power 

Figure 4.24 shows the variation in average transport time with respect to laser 

power. σ is chosen to be 0.125 µm. It can be seen that the time decreases only slightly as 

the power increases. This happens because maxv  increases almost linearly with power; 

however, trl  and twl  also increase correspondingly meaning that less free C-space is 

available. Thus, although the primary trap can transport the target object faster, it has to 

circumvent more or activate more number of secondary traps in order to avoid collisions. 

Figure 4.25 shows the influence of i

 

 

maging uncertainty on the average transport time. 

Laser power is kept constant at 0.2 W. As expected, the transport time increases as the 

imaging uncertainty becomes higher. For higher values of σ, since the sphere positions 
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will be known with a much lesser degree of certainty, more collisions will take place, 

thereby increasing the transport time. 

 

Figure 4.25: Transport time variation with respect to imaging uncertainty 

The last experiment enumerates the extent of performance degradation as a result 

of ignoring the presence of spheres at other cross-sectional planes. Since they 

(particularly those lying relatively close by) may also get trapped by any activated laser 

beam, additional collisions will take place that have not been accounted by the planner. 

Consequently, the overall transport time will increase. As shown in Figure 4.26, this 

effect can only be seen near the bottom of the plate. This occurs due to the fact that many 

more objects are present near the bottom plate; hence, a larger number of objects will be 

undetected and consequently, greater num

 

 

ber of unpredicted collisions will happen. The 

transport time more or less follows an exponential trend in accordance with the 

distribution of objects in the workspace.  

The experiment is performed both for 1.0 and 2.01 µm diameter silica spheres, 

using laser power of 0.2 W and σ equal to 0.25 times the object radius. Initial distribution 
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of the 2.01 µm diameter particles is taken to be the same as shown for t = 300 s in Figure 

4.17. maxv  is more for the 2.01 µm diameter spheres (7 μm/s) as compared to the 1.0 µm 

diameter spheres (4.5 µm/s). On the other hand, diffusivity is half for the larger sphere as 

compared to the smaller one. Together, these two factors counteract the effect of larger 

horizontal trapping regions for the bigger spheres, thereby resulting in smaller transport 

times. However, the overall variation trend is similar in both the cases.  

 
 

re 4.26: Planner performance comparison with (dashed lines) and without (solid 
lines) knowledge about the z-coordinates of the object centers 

 

It should be noted here that the experiments have not been performed at z = 0 and 

1 μm planes because of the fact that additional physical phenomena need to be modeled 

near the cover slip glass surface. Correction to the viscous drag term [Wrig94] (and 

correspondingly to the diffusivity terms which become anisotropic as well) needs to be 

made. Moreover, sliding friction and adhesion forces also have to be taken into account 

in order to transport objects that are stuck to the bottom plate. Another point that should 

be mentioned here is that in the simulation we have not increased the image processing 

Figu
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time when z-locations of the object centers are also determined. But as shown in 

[Peng07a], when data from a stack of images taken at various z-planes are combined 

together to estimate the z-coordinate, computation time is significant. Thus, the planner 

may not be that effective as the scene for which the optimal plan is generated will have 

changed quite a lot by the time the plan is actually implemented. So the planner with 2D 

aging may not perform significantly inferior as compared to the one with full 3D 

al-time operations also mandate that planning should be done 

repeate

im

imaging.    

 
 
4.5 Summary  

 Optical tweezers systems provide environments where obstacles exhibit random, 

Brownian motion and both forms of uncertainty (control action and measurement) are 

inherently present. Re

dly at short intervals of the order of milliseconds based on the latest information 

about the workspace.  

This Chapter presents a stochastic dynamic programming framework to transport 

a single particle using OT from its current location to a given goal location in the 

minimum expected time. In order to utilize the stochastic dynamic programming 

framework, workspace state, control action set, value function, payoff function, and 

belief state are formally defined based upon the underlying physics of the problem. An 

existing, approximate infinite-horizon POMDP algorithm is modified to enhance 

computational speed and accuracy. Several conditions are presented to establish the 

rationale behind pruning the control action space. Discussion on convergence of the 

recursive Bellman equation and optimality of the MDP portion of the modified infinite-
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horizon algorithm show that the planning approach is always guaranteed to yield near-

optimal solutions. Application of the infinite-horizon algorithm on several test cases 

clearly reveals its flexibility and effectiveness. Experiments conducted with silica beads 

provide data to validate the physical accuracy of the simulator. Moreover, successful runs 

show that the automated planner is capable of transporting a specific object by either 

circumventing or trapping freely diffusing obstacles. Finally, simulation experiments are 

characterize the performance of the planning algorithm under varying 

ser power, imaging uncertainty, and object number density.   
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Chapter 5 

RITIZED APPROACH 

FOR 

loped planner. Most of the material 

overed in this Chapter is described in [Bane09c].   

 

DEVELOPING A DECOUPLED AND PRIO

MULTIPLE-PARTICLE TRANSPORT  

A prioritized and decoupled stochastic dynamic programming framework is 

developed for transporting multiple particles simultaneously based upon the modified 

infinite-horizon algorithm presented in the preceding Chapter. Any symbol that is not 

defined in this Chapter has the same meaning as in the previous one. The notion of 

decoupled path planning has been taken from the multiple robot motion planning 

literature. As mentioned in Section 2.4, decoupled planning offers significant 

computational speed-up over a coupled architecture. Unlike in the latter case where 

planning is carried out in the composite configuration space of the movable objects, here 

the single particle transport algorithm is used sequentially to plan the paths of all the 

target objects individually. This is, however, preceded by a goal assignment step, where 

an iterative version of a maximum flow bipartite graph matching algorithm is used to 

assign goal locations to the target objects optimally so that the entire process of 

transporting all the target objects can be completed in the minimum, expected time. Once 

individual plans are computed, a three-step process is followed to assign an optimum set 

of priorities to the target objects for coordinating their motions to come up with collision-

free paths. Just like in Chapter 4, both simulation and physical experimental results are 

presented to highlight the effectiveness of the deve

c
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5.1 

The trappable objects can be further classified 

to transportable and non-transportable. 

 

igure

Problem Formulation 

As mentioned in Chapter 4, a 3D rectangular parallelepiped workspace W is 

considered for transporting spherical objects. We have classified all the objects into two 

basic types- trappable and non-trappable. 

in

 
 

Obstacle exhibiting 
Brownian motion  

Trapped obstacle 

Target 
object 2 

Goal location 2 

F  5.1: A typical workspace cross-section with two target objects and different types 
of obstacles  

 
All the target objects belong to the transportable category, which consists of 

dielectric, colloidal, rigid particles of identical size and material properties. The non-

transportable objects may not be rigid and can have different sizes and material 

properties, (e.g. density, refractive index). The non-trappable objects are just like the 

transportable objects, excepting the fact that they should not be trapped directly. Usually, 

they consist of biological objects such as cells, liposomes, and vesicles, which require 

indirect manipulation. If any of the objects is not perfectly spherical (cells are often oval 

Transportable 
object 

Goal location 1 

Non-
trappable 

object 

Non-transportable Target 

object object 1 
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shaped

tic

s reduced proportionately. However, this effect can be 

compen

us of effective obstacle region (centered at nt

), then it is approximated using the bounding sphere. The diameter of all the 

objects is assumed to vary between (1-20) µm. 

All the target objects are assumed to lie in the same horizontal plane and they will 

be transported to different goal locations in the identical horizontal plane. Figure 5.1 

shows the horizontal cross-section of a typical workspace having multiple target objects 

(moving towards particular goal locations) and different types of obstacles. One such 

transportable obstacle is trapped to avoid collisions, whereas all the others are diffusing 

freely. The physics of the problem is modeled as in the previous Chapter (Section 4.1). It 

may be mentioned here that the optical trapping force values for various axially and 

transversally displaced locations of sphere centers with respect to the trap focus for 

certain spheres of fixed sizes are stored in the form of tables. For any sphere of 

intermediate size, quadra  interpolation is used. If multiple traps are switched on, then 

the overall laser intensity (power) is shared among all the traps and consequently the 

maximum trap speed ( maxv ) i

sated by increasing the power up to the maximum attainable value (2.0 W in the 

holographic tweezer set-up).  

The radi  the curre , estimated obstacle 

position) arising due to the presence of optical trap, finite size, and imaging uncertainty is 

then given by: ( )( ) ( ){ }max 3 , 3t
Sys tr tw a ar l l R Rσ σ= + + + + , where t

aR  is the radius of the 

target objects. Although true and estimated workspace state, goal set, control action set, 

and objective function have been mathematically defined in Chapter 4, the definitions 

lightly modified here to account for multiple target objects, goal locations, 

and presence of different types of objects. The revised definitions are listed as follows:   

need to be s
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Definit
 

True workspace state  the set 

ions 

is

{ } { } { }{ }1 1 1, , , , , ,T

T NT NPn n n…  where i, , NT N NP NPT T t t t tt t
tX X X X X X X= … … TtX  is the actual coordinate 

( ), ,T T Tt t t
i i ix y z  of the center of the i  transportable object, NTt

i
th X  is the actual coordinate of 

the center of the ith non-transportable object, and NPt
iX  is the actual coordinate of the 

center of the ith non-trappable object in W. Without any loss of generality, the first m 

nsportable set can always be consiobjects in the tra s the target objects. Let 

n n=

Estimated workspace state is the set 

dered a

T NT NPn n+ +  be the total number of objects in W.  

{ } { } { }{ }1 1 1, , , , , ,NP

NT NPe n n nX X X X X X= …  where, , NT NT NPT T

T

e e e ee eX… … Te
iX  is the estimated 2D 

coordinate ( ),T T
i i
e ex y  of the center of the i  transportable object, th NTe

iX  is the estimated 2D 

coordinate of the center of the ith non-transportable object, and NPe
iX  is the estimated 2D 

coordinate of the center of the ith non-trappable object in W. Currently, we are not 

esti ting the -locations of the object centers. The planner makes all decisions based 

on e

ma  z

X and not tX . It is useful to point out here that all the objects may not be detected at 

all the t the imaging ha  f

Goa

imes due to limitations in rdware and eature recognition modules.  

l state is the set { }1, mG G G= …  where iG  represents the coordinate 

( ), ,g g g
i i ix y z  of the ith goal location. This set is defined by the user and is known to the 

planner exactly. Every target object is assigned a unique goal location to which it needs 

to be transported. As mentioned earlier, , ,g g
i jz z i= ∀ j  and is also equal to the common z-

bject centers. coordinate of the target o
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Control action set 

Primary – A set of m 3-tuples • ( ) ( ){ } ( ) ( ){ }{ }1 1 1 1
1, , , , , , , , , ,x y x y m x y x ys f f v v s f f v v… , 

where is is a binary integer corresponding to the state of the ith primary trap (1 if on 

 off), ( ),

m m m m

and 0 if i i
x yf f  represents the coordinate of the trap center (beam focus) and 

( ),i i
x yv v  is the uniform velocity vector assigned to the trap. The z-coordinate of the 

trap center is always set to the common z-coordinate of the goal locations and the 

• 

target object centers.    

Secondary - A set of (20-m) doubles ( ){ } ( ){ }{ }1 1 20 20
1 20, , , , , ,x y m x ys f f s f f−…  such 

that the 1st element of every double is a binary that denotes whether the 

corresponding secondary trap is switched on and 

m m− −

integer 

( ),i i
x yf f  represents the coordinate 

of the ith trap center. As in the case of the primary trap, the z-coordinate of the trap 

center is always set to the common z-coordinate of the centers of the target objects. 

The choice of the maximum number of secondary traps is governed by the available 

laser power in the holographic tweezer set-up used for validating the automated 

planner.  

  

 state

Objective function 

  Estimated, expected transport time i
eT  for the ith target object moving to the jth 

goal location (1 ,i j m≤ ≤ ), a given estimated workspace eX , a control action A, and 

a circular circumvention strategy is defined as follows:  
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Estimated, expected total transport time for a given estimated workspace state eX , 

goal state G, and a circular circumvention strategy is defined as { }1max , , m
e eT T T= … e . 

This follows from the fact that a transport operation is completed only when all the target 

objects have reached their respective goal locations. For practical purposes, it is assumed 

that the ith target object reaches the jth goal location when Te
i jX G δ− ≤ , whereδ is 

usually selected as t
aR .    

 

5.2 Path Planning Approach 

5.2.1 Goal Assignment 

Unlike in the case of single particle transport where a given target object is 

transported to the only specified goal location, selection of goals poses an interesting 

challenge in the case of multi-particle transport. Assignment of goals to target objects can 

be done either by the user or by the planner automatically. The former scenario is 

applicable in case of formation of directed assemblies, repair of devices, delivery of 

drugs via liposomes etc. In all such cases, specific target objects need to be transported to 

particular goal locations and positioning any other target object at that location may not 

be useful from the point of view of functional requirements. However, in the current 

work this possibility has not been considered as all target objects are assumed to be 
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dielectric and colloidal having identical size and material properties. It may be mentioned 

here that although such applications will require extensions to our problem formulation, 

implementing user-selected assignment is a simple task. Instead, the focus is on 

developing an iterative optimal strategy for automated goal assignment. This is very 

useful in the kinds of biological applications mentioned in the introductory Chapter.  

For every goal location, compute the estimated, expected transport time for every 

target object present in the workspace W based on the initial estimated workspace state 

using the expression given in Section 5.1. Let  be the value for the ith target object and 

jth goal location. All other target objects are treated as obstacles that should not be 

trapped and kept stationary by activating any secondary trap. It is assumed that the target 

object moves along a straight line path from its current location to the goal. Furthermore, 

it is assumed that all the other goals are occupied by some target object. This ensures that 

in the worst-case scenario, if all other target objects have reached their goal locations 

while the one under consideration is still moving towards its corresponding goal, then 

collision can be avoided if necessary. This condition is modified in the subsequent 

iterations. All the target objects are then sorted in order of non-decreasing estimated, 

expected transport time. The overall process has a time complexity of 

ij
eT

( )2 logO m m , 

where m is the number of target objects. 

Once all the  have been computed, every element in the matrix table is 

traversed. If the corresponding value is greater than the current optimum (initially set to a 

very high positive number), then the algorithm moves over to the next element. 

Otherwise, a feasible assignment 

ij
eT

fA  of target objects to goal locations is determined if 

one exists; the current optimum is also set to the corresponding value and the current best 
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assignment is set to fA . Computation of fA  is explained in details later in this sub-

section. The rationale behind this technique is that the optimum value of the objective 

function must be equal to one of the computed  values (from basic definition). So if all 

the  entries are individually explored and the feasible arrangement can be computed in 

polynomial time, then an optimum solution can be obtained in polynomial time as well. 

This observation makes the optimization problem computationally tractable.  

ij
eT

2m

After all the elements have been traversed, the  values are updated based on 

the obtained feasible assignments. This means while computing the transport time value 

for a given pair of target object and goal location, all other goal locations may not 

necessarily be occupied by the corresponding target objects specified by the feasible 

assignment for the given pair. The goals will be occupied only when the estimated, 

expected transport times are greater than the time taken by the target object to move past 

those goals during transportation. In most cases it is observed that this will not change the 

transport times as majority of the goal locations may not lie anywhere close to the path of 

the target object and, hence, did not cause any effect in the first place. However, few 

values may be reduced. The optimum assignment generation procedure (by first sorting, 

then traversing and obtaining individual feasible assignments) is repeated until the same 

assignment is found in two successive runs. Convergence is ensured by the fact that the 

optimum transport time can never increase from one iteration to the other.   

ij
eT

Computing feasible assignment for a particular pair of target object and goal 

location is the most important step in the entire goal assignment algorithm. The following 

approach has been developed for this purpose. First of all, any other assignment of that 

particular target object and goal location is discarded. The 1st entry among all the 
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remaining ones is searched for every goal location. If the minimum value is greater than 

the corresponding expected, estimated transport time, then we conclude that no feasible 

arrangement exists and terminate the step. The last remaining entry is then searched for 

every goal location. If the maximum value is greater than or equal to the corresponding 

transport time, then it is concluded that the current assignment cannot lead us to the 

optimum solution. So the step is terminated and the algorithm moves on to the next 

element in the matrix table. Otherwise, all the k entries that are less than or equal to the 

corresponding transport time are retained. Clearly, it can be said that . 

If at least one entry is not present for every goal location, then also the step is terminated. 

Otherwise, a bipartite graph is created where the left-side nodes are the goal locations 

and the right-side ones are the target objects. Edges are created between nodes if the 

corresponding matrix table entry is retained. Ford-Fulkerson maximum flow algorithm 

[Corm97] is applied to compute the maximum matching M for the bipartite graph. If the 

cardinality of M is equal to (m – 1), then M yields the desired feasible arrangement. Run-

time complexity of this maximum flow algorithm is 

( )21 1m k m− ≤ ≤ −

( )O mk  [Corm97]. Although the 

Hopcroft and Karp algorithm runs in ( )O mk time [Corm97], Ford-Fulkerson method is 

adopted due to the relative ease of implementation.   

 

5.2.2 Priority Assignment 

Once goals have been assigned to all the target objects, the modified infinite-

horizon algorithm is used sequentially to compute the optimum plan for every target 

object individually. Just as in the case of goal assignment, other target objects are treated 
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as obstacles that should not be trapped by secondary traps. The remaining task is to 

resolve conflicts in the target object motions so that the total transport time is minimized 

in the expected sense. A three-step process, consisting of clustering, classification, and 

branch and bound optimization is adopted to assign priorities to the target objects. This 

priority list determines the sequence in which the final plans are computed for the target 

objects. Thus, if a target object is present lower down in the priority list, then its 

corresponding motion plan may have to be modified to avoid collisions with all the other 

target objects that occur higher up in the list. Each of the three steps is now presented in 

details. 

 
Step 1: Clustering 
 

This step involves clustering all the target objects into multiple clusters such that 

the priorities can be assigned separately in every cluster. This decomposes the overall 

priority assignment problem into several simpler sub-problems so that the assignment 

technique can be applied completely independently to each of the clusters. Before 

formally defining a cluster set, it is useful to introduce the notion of collision circle and 

effective collision circle corresponding to the primary control actions of the target 

objects.  

Based upon the discussion in the previous sections, first the set of feasible 

primary control actions can be defined for the ith target object { }1 , ,i i
p l

iA a a= … , where 

2 /l π θ= Δ  is the cardinality of the set. l  remains same for all the target objects. Here. 

θΔ  is the angular resolution of the planning approach (selected as 5° as in Section 4.2). 

Again, ( ) ({ )}, , ,i i i ij ij
j x y x ya f f v v= , where 2 2

max
ij ij
x yv v v+ ≤ , (1tan /i ij )ij

j y xv vθ −= , and 
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1
i i
j jθ θ+ − = Δθ  for . 1, , 1j l= −… ( ),ij ij

x yv v  represents the velocity vector that can be 

assigned to the primary trap transporting the ith target object that makes an angle of j θΔ  

with the X-axis. As stated in Section 4.2, ( ),i i
x yf f coincides with ( ),T Te e

i ix y .   

Collision circle corresponding to feasible primary control action i
ja  for the ith 

target object is defined as a circle centered at the tip of the corresponding velocity vector 

�( ) �( )i i ij ij
x y x y cf i f j v i v j t+ + + Δ� �  with radius ( ) ( ){ }max 3 , 3i t i i

c a tr twr R l lσ σ= + + + , where  

and  are the trap radius and trap width for that particular target object. Thus, the 

collision circle radius varies for different feasible primary control actions.   

i
trl

i
twl

Effective collision circle for the ith target object is defined as a circle whose center 

lies at ( ,T Te e
i i )x y  with radius ( ) ( ){ }max maxmax 3 , 3i t i i

eff a c tr tw cr R v t l l v tσ σ= + Δ + + + Δ + . In 

other words, the effective collision circle occupies the maximum area among all the 

possible collisions circles for that particular target object.  

Cluster set { }1, , oC c c= …  is defined such that every individual cluster consists of 

a set of target objects where the following condition is satisfied. For every target object 

belonging to the cluster, there exist at least one target object in the same cluster such that 

the collision circles of one or more feasible primary control actions corresponding to the 

1st target object intersect with the collision circles of one or more feasible primary control 

actions corresponding to the 2nd target object. Furthermore, i jc c φ∩ =  for  

 and   spans all the target objects present in the workspace W.  1 , ,i j o i j≤ ≤ ≠
1

o

ii
c

=
∪

Now a naïve way of forming clusters is to check for intersection of every collision 

circle of each target object with every collision circle of all the other target objects 
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present in the system. This is computationally expensive and has a time-complexity of 

. That is why, the notion of effective collision circle has been developed to 

make this computation more efficient. For every target object, it is checked whether its 

effective collision circle intersects with the effective collision circle of all the other target 

objects one by one. If any pair-wise collision occurs, then both the target objects are 

inserted in the same cluster (if one or both of them are not already present in that cluster). 

A list of all the feasible primary control action velocity vectors that lie within the 

intersection region is also maintained in the so-called forbidden list. It is formally defined 

as the set 

( 2 2O m l )

( ) ( ) ( ) ( ){ }1 2 1 2 3 1, , , , , , , , ,m mF f f f f f f f f−= … … m , where ( ),i jf f  contains the 

list of all the velocity vectors that lie within the intersection region for the ith and the jth 

target objects. ( ),i jf f  will be an empty list if these two target objects do not belong to 

the same cluster. Thus, this conservative scheme has a time-complexity of and 

works reasonably well because every target object will try to move the maximum 

possible speed in all the directions, unless it can specifically avoid colliding with the 

nearest obstacle by slowing down. An alternative method of computing polygonal 

intersection formed by the velocity vectors is not considered due to the relative difficulty 

of robust implementation and greater time-complexity of 

( 2O m )

( )( )2 log logO m l l k l+ , where 

k is the output polygon complexity [Berg00]. Formation of two clusters, comprising of 

three and two target objects respectively, is shown in Figure 5.2. For the sake of 

representation clarity, the feasible primary control action velocity vectors that need to be 

inserted in the forbidden list are depicted for only one of the target objects. Exactly the 

 163



same scheme that is used in Figure 5.1 is also applied here to represent the goal locations, 

target objects, and obstacles present in the scene.    

 

 
 

Clusters 

Effective 
collision 

circle 

Velocity 
vectors put 
in forbidden 

list 

Figure 5.2: Clusters formed in a typical multi-particle transport operation 
 
 
Step 2: Classification 
 

The objective of this step is to classify every obtained cluster into two exhaustive 

and mutually exclusive sets such that any random priority can be assigned to the target 

objects present in one of them and an optimization technique can be employed on all the 

target objects remaining in the other set to compute collision-free paths. Let  and  

represent the above-mentioned sets corresponding to the kth cluster obtained in the 

previous step. An easily provable result has been developed to perform this classification 

process. This result can be mathematically stated as follows. 

/
kc //

kc

Let j
iQ  be the jth expected Q function value (obtained as an output of the infinite-

horizon algorithm presented in Chapter 4) of the ith target object. j
iQ  is a function of i

ja  
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and the estimated workspace state eX  and is computed by the algorithm by taking the 

expected value of the product of the converged values of the value function and the state 

transition probability added to the payoff function over the belief state. The payoff 

function is again analogous to the objective function defined in section 4.1. This implies 

that the individual expected, estimated transport time  for a given i
eT i

ja  directly 

correlates to j
iQ . 

Clearly, , and in the absence of any form of coordination among 

multiple target objects, optimum expected Q function value . The optimum 

solution for the overall problem is based on the bottleneck Q function value for all the 

target objects present in the classified cluster set . It is given by 

min maxj
i i iQ Q Q≤ ≤

* m
i iQ Q= in

//
kc { }* *

,max maxk pQ Q=  

where the pth target object is present in . Now, if for every target object q 

present in the set , then any random priority can be assigned in  without degrading 

the estimated, expected total transport time . This follows from the fact that if due to 

collision avoidance constraints, any feasible primary control action velocity vector 

corresponding to an expected Q function value other than the optimum one is chosen for 

any of the target objects present in , then the corresponding  value increases. 

However, since the maximum  value is still less than the bottleneck value (i.e., value 

that constrains the optimum solution for the overall problem) after assigning priorities to 

the target objects present in , remains unchanged.  

//
kc *

,maxkQ Q≥ max
q

/
kc /

kc

eT

/
kc q

eT

q
eT

//
kc eT

This provides a simple and effective way of reducing the overall computational 

burden by sub-dividing every cluster so that the optimization technique only needs to be 
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carried out for a potentially fewer number of target objects. The random assignment of 

priorities in the first set of every cluster is done based on the original numerical indexing 

of the constituent target objects. In other words, if say for example, 2nd, 3rd and 7th target 

objects are present in this set of the 1st cluster, then the 2nd target object has the maximum 

priority (plan computed first), followed by the 3rd and the 7th target object respectively. 

The best (optimum) feasible primary control action is then going to be selected for the 2nd 

target object. All the feasible primary control actions whose velocity vectors lie in the set 

( 2 3, )f f  of the forbidden list will be ignored and the remaining best one will be selected 

for the 3rd target object. Similarly, all actions whose velocity vectors lie in either of the 

two sets ( )2 7,f f  or ( 3 7, )f f  will be ignored for the 7th target object and the best, 

remaining one will be chosen. Assignment of priorities to the second classified set of 

every cluster is explained in the next step.      

 
Step 3: Branch and bound optimization  
 

Depth-first branch and bound algorithm is used to determine the optimal set of 

path planning priorities for the target objects present in the second set of every cluster. 

An empty root node is first created and all the target objects (elements) in that particular 

set are inserted as children nodes in order of non-increasing expected Q function values. 

Highest priority is assigned to the leftmost element of the 2nd level. The feasible primary 

control action velocity vectors of all the remaining target objects that intersect with the 

effective collision circle of the already selected target object are temporarily removed 

from consideration and the set of expected Q function values for the remaining target 

objects are updated accordingly. This is readily done by searching the forbidden list. All 

the remaining target objects are then inserted as children nodes of the already selected 
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element in the same sorted order of non-increasing Q function values. The leftmost 

element is next added to the priority list and this process is repeated until all the target 

objects have been accounted for.  

Attempt is made to refine the solution (i.e. obtain a smaller value than the current 

best) by incrementally constructing and traversing the tree in a depth-wise manner. The 

algorithm is terminated either when an user-specified maximum search time limit is 

exceeded or when all possible nodes have been created and explored. The algorithm may 

also terminate if the global optimum (best possible expected Q function available 

initially) is reached along a particular path from the root to a leaf node. Any path where 

the minimum expected Q function value for the non-added target objects exceeds the 

current optimum is pruned. This technique works well in practice due to the relatively 

small number of target objects that are usually present in the second set of any cluster.   

The overall path planning approach is summarized in the form of a flowchart 

shown in Figure 5.3.  

 

5.3 Experimental Validation 

The holographic optical tweezer set-up described in Section 4.3 is used for 

demonstrating the feasibility of multi-particle transport. Due to memory problems while 

setting a reasonably large number of traps during continuous operation in the currently 

installed version of the Arryx system software, the planner cannot be run in an automatic 

mode. So all the experimental data are generated by directly positioning and controlling 

the traps in the BioRyx user interface instead of invoking the low-level system controller 
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functions using the automated planner. The control actions are based on those generated 

by the planner in the simulated environment described in the next Section. 

 

Figure 5.3: Multiple particle path planning approach flowchart 
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Figure 5.4 is analogous to the situations shown in Figures 4.18 and 4.19 which 

depict the change in the effective obstacle region radius due to the difference in the 

number of activated traps. However, in this particular case, the workspace contains both 

2.01 and 4.74 µm diameter silica spheres. As in Figures 4.18 and 4.19, activating an 

additional secondary trap for the 4.74 µm diameter obstacle enables the smaller target 

object to come closer to the obstacle without resulting in any collision or multiple 

trapping. When both objects are trapped, the target object can be safely brought within 10 

µm of the obstacle, whereas it needs to maintain a separation of 12 µm when the obstacle 

is diffusing freely. Laser power is set at 0.4 W in this experiment.   

5 µm 

  

Target object 
has to be kept 
further away 

    (a) Both target object and obstacle trapped      (b) Only target object trapped 

Figure 5.4: Change in safe distance to avoid trapping depending upon the number of set 
traps in workspace containing both 2.01 µm and 4.74 µm diameter silica spheres 

 
Figures 5.5 and 5.6 show transport of multiple 2.01 µm diameter silica spheres 

simultaneously at 0.8 W and 0.6 W laser power respectively by grouping them together 

and moving the group as a whole with one single velocity. In Figure 5.5, all the five 

target objects are grouped together, whereas, the leftmost target object is not included in 

the group in Figure 5.6. The fact that certain target objects need not move in a particular 

planning step is often useful in preventing collisions among the target objects themselves. 
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However, individual control of the traps is not possible in the existing user interface 

provided by the manufacturers. This results in the inability to move the middlemost target 

object by the trap in Figure 5.5. This demonstrates the need for automated planning that 

can adjust the individual trap speeds, directions, as well as carry out adaptive replanning 

to try and re-trap displaced objects.  

 

  

5 µm 

Target 
objects 

Trap is unable to 
move target 

object 

 
(a) Initial scene    (b) Final scene 
 

Figure 5.5: Transport of multiple 2.01 µm diameter spheres simultaneously  
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objects 

  

Target object 
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(a) Initial scene   (b) Final scene 

 
Figure 5.6: Transport of multiple 2.01 µm diameter spheres with one kept stationary 
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5.4 Simulation Results 

5.4.1 Simulated Trajectories 

Two test cases have been presented to visualize sample trajectories generated by 

the multi-particle transport algorithm. It is implemented in C++, using Microsoft Visual 

Studio.Net 2005 as the compiler. OpenGL is used for rendering purposes. The 

dimensions of the workspace are 89.6 µm X 80 µm X 50 µm. itΔ , ctΔ  and  are always 

selected as 0.25 s, 0.5 s and 0.5 s respectively so that they are consistent with the values 

observed in the holographic tweezer set-up. σ is taken to be 0.25 times the object radius. 

Water at room temperature (20° C) is always used as the fluid medium. Laser wavelength 

and numerical aperture of the objective lens are also assigned constant values as specified 

in Section 4.3. Laser power is chosen based upon the number of target objects such that 

the effective power in every primary trap is equal to 0.1 W. This implies that if three 

target objects are present, then the overall power is 0.3 W, whereas, if ten target objects 

are present, then the overall power is 1.0 W. Although target objects can be transported at 

greater speeds for higher values of laser power, it has been shown in Figure 4.24 that this 

does not correspond to a significant decrease in transport time due to an increase in trap 

radius and trap width values. Once a power value is selected at the start of any transport 

operation, it is not altered during the course of the operation. This means that if any other 

secondary trap is switched on, then the effective power decreases from the baseline value 

of 0.1 W for every trap.   

avgt

All the objects present in the workspace are considered to be trappable. The 

transportable objects are 2.01 µm diameter silica microspheres, whereas the non-

transportable objects consist of a mixture of 10 µm and 15 µm diameter silica particles. 

 171



trl  and  are selected as 1.0 µm and 1.5 µm respectively at the baseline laser power of 

0.1 W for the transportable objects. The corresponding values for the 10 µm diameter 

non-transportable objects are 5.0 µm and 7.0 µm respectively, whereas they are equal to 

7.0 µm and 8.0 µm respectively for the 15 µm diameter objects.  

twl

Figure 5.7 shows the case where three target objects, initially positioned at (5 µm, 

5 µm), (5 µm, 10 µm), and (5 µm, 15 µm) respectively, need to be transported to three 

goal locations whose coordinates are (85 µm, 65 µm), (80 µm, 70 µm), and (85 µm, 75 

µm) respectively. The z-coordinate of all the target objects and the goal locations is equal 

to 5.55 µm. Forty-eight other transportable, twelve 10 µm diameter, and six 15 µm 

diameter non-transportable objects are also present. Initial X and Y coordinates of all the 

object centers are assigned following a uniform, random distribution. However, the z-

coordinates of the object centers are given by an exponential distribution based upon the 

experimental data reported in Figure 4.17. This means that a greater number of objects 

are present closer to the bottom cover slip glass plate.  

The estimated locations of the sensed object centers are shown by ‘+’ signs, 

whereas, they have been drawn at their actual simulated locations. Based on experimental 

observations, an object is currently being sensed if a part of it lies within a 3 µm height 

zone in the workspace, centered about the focal or imaging plane. It can be seen that 

many objects which are sensed in the initial scene (Figure 5.7(a)), are no longer sensed in 

the final scene (Figure 5.7(b)). This occurs due to the settling of the objects at the bottom 

glass plate because of gravity. The size of every drawn object is proportional to its 

distance from the focal plane. If it lies below the focal plane, then it is drawn in a lighter 

shade. Brownian motion trajectories of all the untrapped objects are also shown in Figure 
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5.7(b). This clearly reveals the greater diffusivity of the smaller objects as compared to 

the larger ones.  
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(a) Initial scene    (b) Final scene 

target object slows down

 
Figure 5.7: Simultaneous transport of three 2.01 µm diameter target objects 

 
The goal assignment algorithm assigns the target objects to the identically 

numbered goal location based on the minimum expected time to complete the transport 

operation. Figure 5.7(b) shows how the 2nd target object slows down during the initial 

part of the operation to avoid colliding with the 1st one. In certain situations, although 

some of the obstacles may no longer be sensed in the final scene, they forced one or more 

of the target objects to follow a circuitous path to avoid collisions. Again in some other 

situations, it can be observed that the followed paths of the target objects intersect with 

the drawn obstacles. This does not represent lack of success on the part of the planner to 

effectively avoid obstacle collisions. Instead, they occur due to two reasons. Firstly, the 

Brownian motion of the obstacle may bring it to a significantly different location from 

where it was when the target object moved past it. Secondly, all the obstacles are not 

lying in the same horizontal plane. That is why, the focal plane intersection circles play 
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an important role in ascertaining whether, indeed, geometric collisions took place. Of 

course, the target objects have to maintain a larger separation from all the trappable 

objects to prevent undesired trapping or de-trapping based on the corresponding effective 

obstacle region radius values.  

It took about 17.5 s to complete the transport operation. The 3rd target object 

reached its goal location earliest, followed by the 1st and the 2nd ones. All the primary 

traps are kept switched on until the operation is completed. This prevents unwanted 

drifting of the target objects that have already reached their respective goal locations.   
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(a) Initial scene    (b) Final scene 

 
Figure 5.8: Simultaneous transport of seven 2.01 µm diameter target objects 

 
Figure 5.8 shows another case where seven target objects are transported 

simultaneously. The initial coordinates of the target objects are (15, 60), (10, 55), (15, 

50), (10, 40), (20, 20), (65, 20), and (70, 65) respectively. The coordinates of the goal 

locations are (45, 70), (35, 60), (35, 40), (40, 30), (50, 30), (55, 40), and (55, 60) 

respectively. All units are in microns. The common z-coordinate is same as in the 

previous case. Although the 2nd goal location lies closest to the 1st target object (in terms 

 174



of Euclidean distance), the goal assignment algorithm assigns it to the 2nd target object. 

Correspondingly, all other goal locations are assigned to the identically numbered target 

objects to minimize the expected time to complete the transport operation. It can also be 

seen from Figure 5.8(b) that if an obstacle occupies a goal location and it does not diffuse 

away from that location on its own, then a secondary trap is used to push it away to any 

location in the workspace not occupied by some other goal location. This transport 

operation is completed in 5.5 s and the sequence of target objects in terms of non-

decreasing time to reach the assigned goal location is given by (7, 3, 6, 2, 5, 4, 1). The 

diffusion lengths are much smaller in this case than the previous one due to the shorter 

time interval between the beginning and end of the operation.  

 

5.4.2 Performance Characterization 

As in the case of the single-particle planner, additional experiments have been 

performed in the simulator to investigate the performance of the multi-particle transport 

algorithm. This includes enumerating the change in plan computation time with respect to 

the number of target objects as well as the variation in operation completion time with 

respect to the number of obstacles. The number of target objects and obstacles are 

expected to vary significantly from one experiment to the other. So this characterization 

will enable one to identify the limit of effectiveness of the planning approach and provide 

insight as regards potential improvements. All the experiments are run on an Intel Core2 

Quad processor PC with 2.83 GHz clock speed and 8 GB of RAM. As in the case of the 

simulated trajectories, only trappable objects (silica microspheres) are considered to be 

present in the system. Sizes of the transportable and non-transportable objects and other 
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physical parameters (workspace dimensions, laser power etc.) are also same as in those 

two cases. The target objects are always transported in the z = 5.55 µm plane.   

 
 

Figure 5.9: Planning approach computation time variation with respect to the number of 
target objects 

 

Figure 5.9 plots the computation time of different steps of the planning approach 

versus the number of target objects present in the workspace. The total number of 

transportable objects is always selected as fifty. Twelve other 10 µm diameter and six 

other 15 µm diameter non-transportable objects are also kept in the workspace. Ten 

simulation runs, each with a randomly generated initial scene (X-Y positions of all the 

objects and goal locations), are used to obtain every data point. The goal assignment 

algorithm is invoked only once at the beginning of every transport operation. However, 

all the other steps in the planning approach are called repeatedly after every . The 

average time taken to compute the output over the entire duration of the operation is 

recorded for each of the planning approach steps. The mean of this averaged value taken 

over ten simulation runs is used for generating the plot.  

ctΔ
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It can be seen from the Figure that the goal assignment computation time 

increases as the cubic power of the number of target objects. Although the theoretically 

possible worst-case bound is inferior to this result, in practice many entries in the 

expected transport time matrix table do not have to be considered for obtaining feasible 

assignments. Even if they are considered, often the algorithm terminates before entering 

the maximum bipartite graph matching step. As mentioned in Section 5.2, the clustering 

(and consequently classification) step computation time increases as the quadratic power 

of the number of target objects. The depth-first branch and bound computation time also 

increases in a similar manner, although the actual values are greater than those for 

clustering and classification. From the standpoint of practical usefulness, it is most 

important to know the overall planning time taken to compute all the collision-free paths 

since this will directly affect the attainable controller update rate. The trend is almost 

linear due to the fact that most of the time is spent on computing the individual paths for 

each of the target objects sequentially. Individual particle transport algorithm takes about 

35 ms on an average for the current workspace state. A controller update rate of 2 Hz 

(total computation time of less than 500 ms) is obtainable as long as not more than twelve 

target objects are present. This planning time does not include the one-time effect of 

assigning goals optimally.  

 
Figure 5.10 shows the variation in the time taken to transport six target objects 

from fixed initial locations to specific goal locations under varying workspace conditions. 

The initial locations of the target objects are selected as (5, 5), (5, 10), (5, 15), (5, 20), (5, 

25), and (5, 30) respectively. The corresponding goal locations are (85, 50), (85, 55), (85, 

60), (85, 65), (85, 70), and (85, 75) respectively. All the units are in microns. Eleven 
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workspace states are considered beginning from a relatively sparse setting (twenty five 

transportable objects, seven 10 µm obstacles, and four 15 µm obstacles) to progressively 

more crowded settings. In every successive workspace state, the number of transportable 

objects is increased by five, the number of 10 µm obstacles is increased by 1, and the 

number of 15 µm obstacles is kept constant or increased by one alternatively. The 

average value from ten simulation runs is used to record every data point. X-Y 

coordinates of all the object centers are assigned following a uniform, random 

distribution the first time a particular simulation run is performed for a given workspace 

state. However, these values are stored and re-used in the remaining nine runs. 

 
 

Figure 5.10: Transport time variation with respect to the number of obstacles present in 
the workspace 

 

The trend resembles a linear one because a linear increase in the number of 

obstacles increases the possibility of additional collision avoidance almost linearly when 

the number of objects in the workspace is not very high and almost all of them are 

present near the focal plane, close to the bottom plate. However, this is no longer true for 
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crowded scenes, when at least few obstacles will be positioned quite far above the focal 

plane (following the exponential distribution mentioned in Section 4.3). These obstacles 

are usually not potentially colliding. Hence, the slope of the linear trend decreases with a 

significant increase in the number of obstacles.  

 

Figure 5.11: Transport time variation with respect to differential change in the number of 
obstacles present in the workspace 

 
 Figure 5.11 shows the variation in the time taken to transport six target objects 

when different number of small (2.01 µm diameter), medium (10 µm diameter), and large 

(15 µm diameter) sized obstacles are present in the workspace. The initial locations of the 

target objects and goal location coordinates are same as in the previous case. The number 

of runs and assignment of initial positions of the obstacles are also same as in the last 

case. Three data trends are shown in this Figure. Workspace # 6 represents the condition 

when 50 small objects, 12 medium objects, and 7 large objects are present in all the three 

data plots. The first trend (shown by ‘.’ signs) represents transport time variation with 

respect to change in the smallest sized spheres only, keeping the numbers of other two 
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sphere sizes constant. The second trend (shown by ‘+’ signs) represents the variation with 

respect to change in the number of medium sized spheres only keeping the two other 

numbers constant, whereas the last trend (shown by ‘x’ signs) represents the variation 

with respect to change in the number of largest sized spheres only, keeping the other two 

numbers fixed. The number of smallest sized sphere is always increased by five and the 

number of medium and largest sized sphere is always increased by one between one 

workspace condition and the next higher numbered one.  

 Broadly speaking, all the three trends are more or less linear as observed in Figure 

5.10. However, the slopes are different; change in 2.01 µm diameter sphere number has 

the maximum effect on transport time, followed by the change in 10 µm and 15 µm 

diameter sphere numbers respectively. This can be explained by considering the 

counteracting effects of diffusion and trapping probability region size based upon object 

radius. Since diffusivity is inversely proportional to radius, diffusion length varies 

inversely as the square root of radius. On the other hand, trapping probability radius and 

width both increase with object size, although this dependency does not follow a simple 

mathematical rule. Now, more object diffusivity means a greater possibility of 

unintended collision which will increase the average transport time. Similarly, larger 

trapping probability region means a smaller space is available to transport the target 

objects; this also increases the average transport time as the target objects have to follow 

more circumvented routes. However, the first phenomenon (diffusion) has a greater effect 

on increasing the transport time as can be seen from the differences in the slopes. Another 

observation from this Figure is that the slope decreases towards the higher numbered 

workspace conditions in case of the smallest sphere (as also seen in the previous Figure), 
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whereas no such effect is observed in case of the other two spheres. This happens due to 

the fact that there is a greater spread in the z-distribution of the small spheres when a 

large number of them are present in the workspace.  

 

5.5 Summary 

 In order to prototype or repair micro scale devices and assemblies or to 

manipulate biological objects, multiple particles need to be transported in tandem to 

desired locations in the workspace. Coordinated transport of multiple particles poses 

additional challenges in terms of computation time, and resolving collisions among the 

transported particles.    

This Chapter describes a decoupled and prioritized stochastic dynamic 

programming framework for transporting multiple particles from their current locations 

to given goal locations in the minimum expected time. A physical problem is modeled as 

a path planning problem by removing the constraint that the workspace consists of only 

microspheres of a particular type and size and extending the mathematical framework 

developed in the previous Chapter. An iterative version of a maximum bipartite graph 

matching algorithm is developed to assign goal locations to target objects optimally in 

polynomial time. A three-step approach, comprising of clustering, classification, and 

depth-first branch and bound optimization is developed to assign priorities to the target 

objects for computing collision-free paths during simultaneous motion. Experimental 

validation in the form of manual transport of multiple spheres is carried out to 

demonstrate the feasibility of moving several objects simultaneously. Representative 

simulation trajectories are presented to highlight the optimum assignment of goal 
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locations to target objects and simultaneous motion of multiple target objects by avoiding 

collisions with obstacles as well as other target objects. Finally, simulation experiments 

are conducted to characterize the extent of usefulness of the planning approach at 

different workspace states in terms of the number of target objects and obstacles.  
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Chapter 6 

 

CONCLUSIONS 

This chapter presents the expected intellectual contributions and the anticipated benefits 

to the industry and the research community from the advances reported as a part of this 

dissertation. 

 

6.1 Intellectual Contributions 

The current dissertation work has a significant body of intellectual contributions. They 

are listed as follows. 

 

1. Quantifying trap-particle interaction using trapping probability: Intensive offline 

simulation is performed to estimate trapping probability values for 2.01 and 5.0 μm 

diameter silica spheres under the influence of stationary and moving optical traps. 

The probability contour plots enable visualization of the change in trapping behavior 

with respect to relative particle location, particle size, trap speed, and direction of trap 

motion. Significant insight is obtained from these plots; based on the results, the 

trapping behavior is modeled using two concentric circles at the focal plane. For more 

accurate modeling, circles should be replaced by two ellipse-like curves joined along 

the axis perpendicular to the direction of trap motion for horizontally moving traps. 

One of the curves is stretched out along the direction of the beam motion. This clearly 

reveals strong asymmetric trapping behavior in the horizontal plane. Moreover, this 

asymmetry is non-uniform at different cross-sections. At distances far above the focal 
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plane, trapping behavior is completely absent in the half-plane in which no motion 

takes place. In the other half-plane, ellipse-like curves can be used again but with a 

major difference from the previous case. Here, the lower probability contours can be 

represented by larger curves than the higher probability ones. Vertical trap motion 

opposite to the beam propagation direction shows that all the probability contours 

move closer to the beam axis. This dissertation investigates and explains such 

interesting phenomena for the first time.   

2. Effectiveness of spatial-partitioning based RBF fitting technique for querying 

stochastic simulation data: The merits of fitting Gaussian RBFs to large simulation 

data sets inherently containing noisy data (due to random processes occurring in the 

environment) is clearly shown in the current dissertation. This fitting technique not 

only enables compact representation of large data sets, it also mitigates noise and yet 

captures all the local and global features. Thus, it is accurate for planning purposes. 

Arrangement of the fitted RBFs in the form of kd-trees allows fast data querying 

operations and provides lot of flexibility in terms of encoding additional parameters 

such as laser power, additional geometric attributes of the components under 

consideration etc. in the future. As diffusivity increases with decreasing particle size, 

the effects of Brownian motion become more pronounced. This increases the 

complexities in the pattern shapes, as well as the level of noise present in the data. 

This dissertation work demonstrates that Gaussian RBFs can support compact 

representation (in terms of the number of fitted functions) and fast query operations at 

those small size scales which will provide useful guidelines to future users in the 

simulation, modeling, and data mining communities.   
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3. Faster, dynamic POMDP framework: An improved, time-dependent version of an 

approximate, discrete POMDP algorithm, called the QMDP_NLTDV algorithm, is 

presented in this dissertation. Discussion on the optimality and convergence of this 

algorithm shows that a theoretically sound and practically useful motion planning 

approach is now available to the research community. This algorithm demonstrates 

the benefit of using stochastic dynamic programming in solving real-world planning 

problems (since it inherently models uncertainties). It reveals how the mathematical 

nature of the value function can be modified (made non-linear) by changing the form 

of the payoff function from one-step gain to overall gain in order to enhance 

convergence rates without compromising optimality. It also highlights the importance 

of developing control action pruning conditions to reduce the search space drastically 

so that results can be computed within a few milliseconds. The notion of dominance 

is important so that no control action that can possibly lead to an optimum solution is 

ever excluded, and any control action that can never yield an optimum solution is 

always excluded. Inclusion of a time parameter within the algorithm framework also 

negates the effect of plan execution latency on performance degradation to a large 

extent.  

4. Decoupled multi-particle planner with optimum goal assignment: A decoupled 

approach for transporting multiple particles simultaneously is developed as a part of 

the dissertation work. The fact that collision-free paths for all the target objects can be 

computed in less than a second (and often in less than half a second) for relatively 

crowded scenes shows the practical utility of this approach as opposed to a much 

more computationally intensive (combinatorially hard) coupled method. Clustering 
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and classification ensure that the final optimization technique only runs on few target 

objects to assign the priorities in which their paths are determined. This is true 

because more than twenty particles are not expected to be transported in tandem in a 

typical workspace and based upon practical observations, more than five or six are 

not expected to remain clustered together. The problems of generating incomplete and 

sub-optimal solutions as in the case of many other decoupled approaches are avoided 

by employing the branch and bound optimization algorithm. Optimum goal 

assignment algorithm is invoked as a pre-processing step to ensure that the best 

possible of selection of target objects to goal locations is made from the very 

beginning. This is necessary so that the whole operation can be completed in the 

shortest possible time instead of encountering a situation where certain objects reach 

the goal locations quickly, and others take too long to reach their respective 

destinations. Underlying characteristics of the problem are utilized along with an 

iterative version of a bipartite graph matching algorithm to obtain results within a 

reasonable amount of time by avoiding combinatorial searching.    

5. Experimentally validated real-time path planner: Both simulation and physical 

experiments are performed to demonstrate the practical utility of the real-time 

planner. Single particle transport simulation shows that it works well in crowded 

scenes, and is able to detect and transport the target object through corridors that were 

originally too narrow but widened over the course of time. Again, flexibility in 

choosing the objective function parameters provides an option to the user to entirely 

avoid collisions, or ignore them, and transport multiple objects to the goal location 

simultaneously. Physical experiments on fully automated transport of 2.01 µm 
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diameter silica particles show the capability of transporting a specific object by either 

circumventing or trapping freely diffusing obstacles. The planner may sometimes 

allow collisions to prevent a much longer, circuitous route in relatively crowded 

scenes. Multiple particle transport simulation highlights the optimum assignment of 

goal locations to target objects and simultaneous motion of multiple target objects by 

avoiding collisions with obstacles of varying sizes and material properties as well as 

other target objects. It also shows that certain target objects may be slowed down and 

obstacles may be pushed away from a goal location if necessary. Manual transport of 

multiple particles in the physical set-up demonstrates the feasibility of moving several 

particles in tandem. Thus, the planner provides the first step towards automating a 

wide variety of manipulation operations using optical tweezers. It is capable of 

working with both scanning mirror and holographic optical tweezers set-ups and can 

be attached with any basic imaging and controller system to move around particles in 

the XY plane in a stochastically optimum manner. 

6. Performance characterization using simulation: Since it is very time-consuming and 

challenging due to hardware restrictions to evaluate the performance of the path 

planner under a wide variety of operating conditions in the physical set-up, simulation 

is used for this purpose. This provides useful guidelines and insight regarding the 

applicability or the extent of effectiveness of the planning approach at different 

situations. The performance of the single particle planning algorithm is enumerated 

under varying conditions of laser power, imaging uncertainty, and object number 

density as a function of height from the bottom plate. Increase in laser power is not 

found to decrease the overall transport time appreciably, whereas increase in imaging 
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uncertainty is found to have a significant effect in increasing the transport time. 

Performance degradation as a result of not considering the z-location of the object 

centers only arises relatively close to the bottom plate and will be further reduced if 

the increase in planning computation time is taken into account. Simulation 

experiments are also conducted to characterize the performance of the multiple-

particle planning approach at different workspace states in terms of the number of 

target objects and obstacles. Plots show that planning can be completed in less than a 

second for 20 target objects in reasonably crowded scenes and the actual transport 

operation time varies more or less linearly with respect to the number of obstacles. 

Moreover, change in the number of smaller sized obstacles has a greater effect on the 

transport time as compared to a change in the number of bigger obstacles. 

  

6.2 Anticipated Benefits  

 This dissertation work provides a step towards realizing the full benefits of micro 

and nanotechnology. As discussed earlier in Chapter 1, lack of automation seriously 

limits the rate at which new component-based devices can be invented and hence delays 

the introduction of these devices to the market. Due to superior strength, stiffness, 

electrical, and thermal conductivities, nanowires and nanotubes form the basic building 

blocks for many devices such as p-n junction diodes, transistors, drug delivery vessels 

etc. It is only in the recent past that researchers have successfully demonstrated trapping 

nanowires and nanotubes using optical tweezers; well-established trapping force models 

are not yet available. That is why this dissertation used spheres to illustrate the real-time 

planning approach. However, the computational framework developed as a part of the 
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current dissertation work can be extended to deal with nanowires and nanotubes. By 

replacing the force models suitably, Langevin dynamics simulation can be performed for 

those components. Kd-trees can be effectively used to incorporate additional parameters 

or attributes such as length, angle of tilt etc. associated with nanowires within the 

Gaussian RBF fitting framework. Since they have been shown to be trapped by orienting 

them vertically along the beam axis, the dynamic programming framework can be used 

directly to transport them in the horizontal plane or along the vertical direction just by 

modifying the configuration space (or effective collision space) using Minkowski sums. 

Any in-plane orientation of a horizontally aligned nanowire or nanotube can also be 

incorporated within this framework by introducing an additional dimension (analogous to 

2D robot orientation) in the workspace state vector. 

 Another anticipated benefit of this dissertation work is in the field of medicine. 

Pushing one or more beads against a cell membrane or wall after transporting them to the 

cell boundary can give an estimate of the cell stiffness. It is observed that in case of many 

diseases, healthy cells behave significantly differently from diseased ones in terms of 

such mechanical properties. This provides an alternative mechanism to chemical 

treatment or imaging based techniques for detecting occurrence of diseases at an early 

stage, or in detecting the extent of spread, and acuteness of the afflicted diseases at a later 

stage. Although this can be done by manual control of optical tweezers in the case of a 

single cell and few beads, automation is a must for rapid testing of several cells 

simultaneously in practice. Moreover, automated transport of drug-carrying liposomes to 

selective cells will help in drug discovery and delivery, especially in cancer treatment. 

This will open up new avenues in exploring the effect of a larger number of drugs on 
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sample cells and provide an alternative treatment methodology to chemotherapy, where 

patients often suffer from various side effects owing to the death of healthy cells in the 

neighborhood of the diseased ones due to radiation exposure. An ensemble of trapped 

microspheres can be used to bring cells together and form a relatively stable and 

stationary cluster to investigate the effect of cells to certain pathogens over a long period 

of time. And last but definitely not the least, the current dissertation work will facilitate 

the process of positioning a larger number of cells of different types faster and with a 

higher degree of precision on a substrate, where they can form desired arrangements. 

Such arrangements will be useful for carrying out quantitative studies of inter cell 

communication and cell motility. Control over cell-cell interactions will provide new 

insights into cell signaling pathways and open up fresh opportunities for medical 

diagnosis and treatment.       

 

6.3 Future Work  

Although it is anticipated that the dissertation will provide the foundations for 

automating micro and nano scale assembly operations and manipulating biological 

components, further work needs to be done in the following areas to address both the 

problems.      

1. Developing imaging of 3D workspace: This will require development and integration 

of the planning system with a 3D imaging system that can provide estimates about the 

z-locations of the object centers as well other than the xy-coordinates. Either optical 

section microscopy or confocal microscopy can be used to obtain a stack of images of 

the workspace at various horizontal cross-sections. A gradient function based 
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approach mentioned in Section 2.1 can be used to combine the information present in 

various images to estimate the 3D coordinate of the object centers. However, this 

approach needs to be generalized for biological objects. This is a challenging task due 

to translucency effects and irregular-shaped boundaries. Hence, extensions to the 

method are required which will also enable users to reliably distinguish between 

biological objects and non-biological ones and among different types of biological 

and non-biological components themselves. The latter task will require developing 

image processing algorithms to identify components based on differences in 

properties such as refractive index, density etc.  

2. Extending the framework to deal with nanoparticles: The current planning framework 

needs to be extended to deal with nanometer sized particles for several useful 

applications. This requires using electromagnetic field-based optical trapping force 

calculations only unlike what is done in the dissertation. Such calculations are more 

time-consuming; moreover, the time-step used during simulation also needs to be 

reduced so that it is less than the particle relaxation time, which is directly 

proportional to the square of the particle radius. Thus, significantly greater time will 

be required to acquire trapping probability data and simulate planning operations. 

This may necessitate using parallel computing techniques to run multiple simulations 

simultaneously in several computers. Graphics Processing Units (GPUs) may also be 

used to achieve computational speed-up as shown in [Bali09]. Some modifications to 

the current multi-particle transport algorithm may also be required to reduce the 

planning time to compensate for the greater diffusivities of the smaller particles.  
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3. Planning for non-spherical components: As mentioned in the previous Section, many 

useful devices can be created out of nanowires and nanotubes. So planning needs to 

be performed for these components to create micro and nano scale assemblies 

automatically in the future. This will require use of suitable optical trapping, thermal, 

and viscous drag force models that are applicable for such cylindrical or flat 

components. Although established models exist in the literature for the latter two 

forces, researchers are still working on developing experimentally-validated trapping 

force models for non-spherical components. Thus, planning may entail working on 

development and validation of trapping force models in conjunction with physicists 

from ab initio principles. Once force models are available, the planning approach 

needs to be modified significantly to deal with additional parameters such as length, 

orientation etc. This will increase the dimensionality of the configuration space and 

alter the shape of the extended obstacles formed by taking the Minkowski sums of the 

target components and the diffusing obstacles. Increased dimensionality means that 

the size of the workspace set, control action set, state transition probability matrix, 

and the belief function space will also grow, thereby, increasing the planning time 

considerably. So, additional pruning conditions and other mathematical techniques 

need to be developed based on the insight about the problem to reduce the 

computational burden.    

4. Planning in three dimensions: The current planner needs to be extended to perform 

transport operations in 3D space. This will require using 3D trapping probability data 

generated using offline simulation in the planning algorithm. Querying Gaussian 

RBF-based simplified models will then be useful as it will not be possible to use 
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simple shapes such as circles to represent the trapping probability data. Rotations of 

components such as nanowires and nanotubes may also need to be considered to 

enable stable trapping under different circumstances and maneuvering in narrow free 

spaces. However, simultaneous translation and rotation in 3D may be computationally 

intractable and theoretically hard to formulate. So, sets of decoupled motions, such as 

translation in xy-plane, translation along ±z-axis, and rotation about the 3 different 

coordinate axes may be considered separately and one at a time. This will reduce the 

dimensionality of the individual configuration spaces as well. However, even such 

decoupled motion planning will require significant extensions to the current problem 

formulation and planning approach. Moreover, adhesion of objects to each other and 

with the cover slip glass plate, effect of laser beam occlusion due to the presence of 

objects whose parallel projections intersect on a horizontal plane, and anisotropic and 

reduced diffusitivities near the glass surface have to be modeled to evaluate the 

planner performance correctly.   

5. Transporting multiple biological objects together using dynamically reconfigurable 

grippers: Automating biological object transport operations involves several 

additional challenges. First, it includes learning and following the proper protocols 

for handling biological objects safely so that they can be kept in a healthy state and 

useful physical experiments can be performed. Second, problem modeling has to be 

significantly modified to take into account the compliant behavior and 

inhomogenities in the structure and material properties (for example, inside a cell, the 

nucleus and the other organelles are significantly denser with higher refractive indices 

as compared to the fluid portion of the cytoplasm). Accordingly, the force models 
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have to be changed. Third, extensions to the planning approach need to be developed 

in order to grasp the object in a stable configuration using particles such as silica 

microspheres. Multiple particles need to approach the biological object from different 

directions and at different locations with certain approach angles synchronously for 

stable griping. The number of such particles also needs to be determined adaptively at 

run-time for different types of biological objects so that the right balance between 

grasping strength and transport speed can be obtained. Last, plans have to be 

developed to impart fine motions to the individual gripping particles in addition to the 

overall motion of the object-particle cluster to take into account the effect of slight 

drifting of the object or one of the particles during motion.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 194



Appendix 

 

A. Ashkin’s Ray Optics Model for Optical Trapping Forces 
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Fig. A1. Schematic illustration of optical trapping forces using ray optics model 
 

 Schematic illustration of the ray tracing method for computing trapping forces is 

shown in Fig. A1. Assuming that we are working with a TEM00 laser beam and it 

propagates along +z-direction, the infinitesimal forces along the axial and transverse 

directions can be written as [Ashk92]: 

( )sin cos cosz s gdF q q dPα μ α= +      (A.1) 
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and  (A.2) ( )cos cos cos sin cos sin siny s g gdF q q q dPα β μ α β μ β= − + +

where 
2

2 2
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rPdP r dr d
w w

β
π

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
.    (A.3) 

 Here, P is the laser power,  is the laser beam waist radius at the lens 

aperture,

0w

β  is the azimuthal angle and  is the radial variable which will be integrated 

over suitable ranges to give the final force values. The scattering and gradient force 

coefficients for a single incident ray are computed using the following equations 

respectively: 
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 Here,  is the refractive index of fluid medium, c is the speed of light in free 

space,

1n

θ  is the angle of incidence and r is the angle of refraction. For a circularly 

polarized light, Fresnel transmission (T) and reflection (R) coefficients are calculated as 

follows:  
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 Here s and p components of the electric field vector are resolved parallel and 

perpendicular to the plane of incidence respectively. Finally, the angles α  (forward 
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projection angle made by an incident ray passing through the focus with the horizontal 

plane) and μ  are given by: 

    1 1 2

1 2
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   where                 (A.10b) 
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 Here f is the focal length of the lens. Assuming that its numerical aperture NA is 

also known, the radial limit of integration  is given by: maxr

    ( )max maxtanr f φ=      (A.12) 

where half laser cone angle 1
max sin

oil

NA
n

φ − ⎛ ⎞
= ⎜

⎝ ⎠
⎟  for oil-immersion objective  (A.13) 

 Ashkin’s derivation is based on the assumption that the coordinate system is 

rotated such a way that the horizontal component of the sphere center lies on the Y-axis. 

Thus for any arbitrary location of sphere center, we first need to compute the relative 

radial distance and the angle made by the sphere center with the Y-axis ( /θ ). After 

computing the axial ( ) and transverse (zF yF ) components of the optical trapping force by 

integrating Equations (A.1) and (A.2) respectively, the forces need to be distributed along 

the 3 orthogonal axes as follows: 

   /sinx yF F θ= , /cosy yF F θ= and zF Fz=    (A.14) 
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