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Biodiversity modeling techniques at the community- and species-level can be used to 

address questions in ecology, management, and conservation. I addressed aspects of 

community-level and specie-level models using virtual and inventoried species in 

North and South America. Firstly, I assessed the effectiveness of two weighting 

schemes in reducing impacts (if any) of five sampling routines (simulating 

unrepresentative sampling in presence-only data) on the model performance of 

Generalized dissimilarity model (GDM). Unrepresentative sampling lowers model 

performance, but weighting species can reduce this negative impact to a certain 

extent. However, PO data severely impacts GDM’s ability to detect the relative 

contribution of environmental gradients. Secondly, I examined the potential of 

(GDM) transformed environmental variables in improving the performance of 

Maxent models (presence-only) along with the influence of range size, sample size, 

and species dependence type. Transformed environmental variables improved model 



 

  

performance, especially when used with small-ranged species and/or low sample 

sizes. 
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Overview 

Biodiversity modeling techniques are used to quantify and map various aspects of 

biodiversity – from species distributions to assemblage-level patterns such as 

community composition or species richness – across a geographic area of interest 

using empirical relationships between distributions of species (expressed as a set of 

point locations at which the species is known to occur) and coincident environmental 

variables (typically derived from digital maps of interpolated climatic data, Elith et 

al., 2006; Elith & Leathwick, 2009; McMahon et al., 2011; D’Amen et al., 2015). 

Predictions and projections from these models not only provide insight into the state 

of biodiversity in the present and the future, but have also been used as tools for 

resource management and conservation planning (Franklin 2013, Guisan et al. 2013). 

However, the success of these applications is contingent upon the legitimacy of the 

relationships and patterns derived from the models, which are in turn dependent upon 

proper use of the model themselves. This thesis is divided into two chapters, each of 

which addresses aspects of biodiversity models for predicting patterns of biodiversity 

and species distributions.  

Chapter 1 focuses on Generalized dissimilarity modeling (GDM; Ferrier et al. 

2007) a community-level technique that relates community composition turnover 

between sites to environmental differences between the same sites. Although GDM 

has been used with PO data in the past (Fitzpatrick et al. 2013, Mokany et al. 2015), 

the affect of unrepresentative sampling present in PO datasets on model performance 

has not been previously assessed. Methods to mitigate the influence of 
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unrepresentative sampling in the form of weights for site-pairs (Ferrier et al. 2007) 

are present, but have not been evaluated either. As such, this chapter assesses the 

suitability of using GDM with PO data and tests methods to mitigate any issues that 

may arise. 

Chapter 2 analyzes the impacts of using preprocessed environmental 

variables as predictors on the model performance of a species-level model (Maxent; 

Phillips et al. 2004, 2006). Although species distribution models (SDMs) are 

generally fit using abiotic variables (such as climate, soils, topography, etc), there are 

limitations to their explanatory ability. Using environmental variables that have been 

preprocessed using information from community-level patterns may help address 

several primary challenges related to fitted SDMs, such as the lack of species co-

occurrence information (Elith et al. 2006, Maguire et al. 2016), the use of only abiotic 

variables (Wisz et al. 2013), and sample size limitations (Hernandez et al. 2006, Wisz 

et al. 2008, Feeley and Silman 2011, Bean et al. 2012). 
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Chapter 1: Impacts of presence-only data on community-level 

modeling and the effectiveness of weighting schemes in 

mitigating these impacts 

Abstract 

Biodiversity modeling techniques at the community level can be used to address 

questions in ecology, resource management, and conservation. Generalized 

dissimilarity modeling (GDM) is one such technique that models compositional 

dissimilarity between sites as a function of their geographic separation and 

environmental conditions. Though GDM has been used with presence-only (PO) data, 

the impacts of unrepresentative sampling on model performance are unknown. 

Additionally, weighting site-pairs has been used to mitigate impacts of PO data, but 

the effectiveness of weighting schemes remains untested. In this study, I assessed the 

impacts of five sampling routines (sampling biases) and the effectiveness of two 

weighting schemes (richness and expected-vs-observed species richness ratio) in 

reducing the impacts of biases using virtual communities and inventory data in North 

and South America. Unrepresentative sampling lowered model explanatory power 

and resulted in misidentification of the contribution of environmental gradients to 

compositional turnover. However, weighting by richness improved model 

explanatory power while using observed-vs-expected species richness ratio resulted 

in spatial patterns of turnover similar to unbiased models, especially in cases when 

the sampling bias was inversely related to species richness. As such, PO data can be 

used with GDM to understand explanatory power of variables used to model 
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community characteristics or to examine spatial patterns of community turnover. 

However, using PO data with GDM to understand the relationships between 

compositional turnover and environmental characteristics can lead to misleading 

results.  
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Introduction 

Ongoing and anticipated impacts of global change on natural systems have led 

to increased concerns regarding the future of biodiversity (Dillon et al. 2010, 

McMahon et al. 2011, Bellard et al. 2012). Advances in computation, biodiversity 

databases, and the availability of comprehensive gridded data layers characterizing 

abiotic conditions have supported the development and application of spatial 

modeling to understand and predict biodiversity patterns – from species distributions 

to assemblage-level patterns such as community composition or species richness – 

and how they might be altered by human activities. The dominant paradigm is to 

model species individually and in isolation of co-occurring taxa using species 

distribution models (SDMs, also called Environmental Niche Models or ENMs; 

Guisan and Thuiller 2005). However, recent work has demonstrated that community-

level models (CLMs; Ferrier and Guisan 2006, D’Amen et al. 2015), which 

simultaneously consider all species in an assemblage, may offer some benefits over 

SDMs (Elith et al. 2006, Ferrier and Guisan 2006, D’Amen et al. 2015, Maguire et al. 

2016). 

CLMs use biological records from multiple species to model community-level 

characteristics either instead of, or in addition to, species-level information (Ferrier 

and Guisan 2006, D’Amen et al. 2015). CLMs can be divided into three strategies– (i) 

“assemble [the community] first, predict later”, which treats communities as static 

sets of co-occurring species that are classified into community types and then 

predicted, (ii) “predict [each species] first, assemble [the community] later” that treats 

communities as coincidental assemblages of individual species such that species are 
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first modeled and predicted individually, and then classified or aggregated to get 

community level information, and (iii) “assemble [all species] and predict together” 

that is an intermediate between the former two (Ferrier and Guisan 2006, D’Amen et 

al. 2015). The “assemble and predict together” strategy is of particular interest for 

modeling biodiversity as it incorporates all available species occurrence data into a 

single modeling process, while offering an effective balance between assuming 

communities are fixed entities (strategy and that species exist in isolation (strategy 2) 

(Ferrier and Guisan 2006, D’Amen et al. 2015). Incorporating flexibility in what 

constitutes a community into CLMs is important as changes across the global 

landscape can lead to alterations in biotic interactions, interacting organisms, and 

composition of the community (Montoya and Raffaelli 2010, Walther 2010, Mokany 

et al. 2015, Maguire et al. 2016). This is supported by evidence from analysis of fossil 

records showing that communities do not remain fixed through time (Williams et al. 

2013).  

Generalized dissimilarity modeling (GDM) is one example of the “assemble 

and predict together” strategy that is used to model compositional dissimilarity 

between locations (i.e., beta diversity) as a function of geographic separation and 

differences in environmental characteristics between locations. It is a non-linear, 

generalized extension of matrix regression that incorporates two types of non-

linearities commonly observed in biological data (Ferrier et al. 2007). First, GDM 

incorporates the non-linear relationship between ecological separation and 

compositional dissimilarity by following a generalized linear model approach on a 

matrix regression (Ferrier et al. 2007). Second, variation in compositional turnover 
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along environmental gradients is represented by fitting non-linear monotonic 

combinations of I-spline basis functions (Ramsay 1988) to each predictor variable 

(Ferrier et al. 2007). GDM thus allows flexibility in the formulation of the models 

based on available data that are especially important for analysis conducted over large 

spatial extents and extrapolation across unsampled regions or times (Ferrier et al. 

2007, Fitzpatrick et al. 2011).  

GDM is increasingly being used in assessing biodiversity patterns at the 

community level (Jones et al. 2013, Valdujo et al. 2013, Bell et al. 2013, Fitzpatrick 

et al. 2013, Loiseau et al. 2017), analyzing genetic dissimilarity (Fitzpatrick and 

Keller 2015, Hermoso et al. 2016), comparing compositional turnover across time 

(Blois et al. 2013), incorporating phylogenetic information into biodiversity analyses 

(Rosauer et al. 2014), and informing conservation and management decisions 

(Leathwick et al. 2011, Thomassen et al. 2011, Willis et al. 2012, Prober et al. 2012). 

However, few studies have examined how the quality of species occurrence data 

impacts GDM. Although GDM facilitates the use of all data and can incorporate 

record-poor species (Ferrier and Guisan 2006, D’Amen et al. 2015), it may be 

particularly sensitive to incomplete sampling of modeled communities as unobserved 

species will artificially inflate biologically distances between sites. For instance, 

when calculating dissimilarity between two sites, each containing three species, the 

difference between the actual and the estimated compositional dissimilarity could be 

substantial if one species is not represented in the data. For this reason, GDM ideally 

should be fit using high-quality abundance or presence-absence (PA) data, which 

document both presence and absence of all study species at a site.   
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Although PA data are considered more robust from a statistical modeling 

perspective, presence-only (PO) data, which contain only species presence 

information and are often collected by ad hoc surveys rather than systematic 

sampling, are considerably more common (Suarez and Tsutsui 2004, Graham et al. 

2004) and, therefore, more often used in biodiversity modeling, including GDM. 

When PO data are used to fit GDM, taxa are considered to be absent at a site if there 

are no presence records for that species at that location. In essence, the lack of an 

observation is equated with absence (Ferrier et al. 2007). Although this assumption 

may be valid for comprehensive inventory data, where failure to observe implies 

absence, it is unlikely to be valid for PO data. PO data may be unrepresentative of 

actual communities due to biases associated with sampling design (or lack thereof) 

and/or preferential sampling of certain locations and/or taxa over others (Meyer et al. 

2016). Although PO data have been used in some studies (Fitzpatrick et al. 2011, 

Mokany et al. 2015), how such data influence GDM remains largely unknown.  

 To reduce the influence of biases associated with the use of PO data, 

individual site-pairs can be weighted to alter their relative contribution in model 

fitting (Ferrier et al. 2007). The effect of PO data on GDM and the handling of PO 

data with or without weighting schemes has not been formally studied. Weighting 

sites according to species richness is the standard method for mitigating 

incomplete/biased sampling in PO data. Weighting by species richness reduces the 

influence of sites with fewer species, which are most sensitive to PO sampling bias 

from a distance metric perspective (Ferrier et al. 2007). However, while species 

richness observed at a site may be related to sampling intensity, it also varies as a 
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function of the environment. In cases where low richness sites are well (or even 

completely) sampled and contain information valuable to the modeling process, naïve 

richness weighting would lead to loss of information. Thus, sampled richness at a site 

might be a result of the environment or unrepresentative sampling. The lack of 

discrimination here can be especially problematic when the richness patterns arise 

due to the environment rather than sampling bias. As an alternative, I propose to 

compare richness weighting to an approach that represents the disparity between real 

and observed community composition using the ratio of observed (species richness in 

sampled data) to expected richness (total richness) as a proxy of sampling 

completeness at each site. This method would therefore give greater weight to sites 

that are more fully sampled rather than sites with the most species. A downside is that 

the index of sampling completeness requires an estimate of species richness at each 

site.  

 In this study, I assessed how unrepresentative PO data influence GDM and the 

relative merits of different weighting schemes for dealing with these biases. I fit 

GDMs using both virtual communities constructed from a large set of simulated 

species and inventory data across North and South America. By using both real and 

simulated community data in two regions that differ in environmental gradients and 

patterns of biodiversity, I was able to more fully assess the performance of GDM fit 

with PO data. I aimed to answer two broad questions: 

1) How does the degree and type of unrepresentative sampling influence model 

performance? 
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2) Which weighting scheme (no weights, weighting by species richness, 

weighting by observed/actual species richness) best corrects for 

unrepresentative sampling in terms of model explanatory power, ability to 

identify the contribution of the environmental gradients to compositional 

turnover, and accurately map spatial patterns?  

I predict that unrepresentative sampling will reduce model performance and 

that weighted models will perform significantly better than unweighted models with 

regard to both explanatory power and ability to map spatial patterns. I also predict 

that weighting by sampling completeness (ratio of observed to actual species 

richness) will outperform naïve species richness weighting because it will serve as a 

proxy for sampling completeness, thereby ensuring the inclusion of information from 

well-sampled low richness sites. 

Materials and Methods 

Generalized Dissimilarity Modeling 

GDM quantifies the relationship between species and environmental turnover and can 

predict spatial patterns of compositional dissimilarity. The compositional 

dissimilarity between all pairs of sites (site-pairs, dij) is calculated using any distance 

metric scaled between 0 and 1, mostly commonly Sorensen’s distance or Sorenson 

similarity index is used for species composition data. The calculated dissimilarity can 

be weighted equally for all site-pairs, by richness, or using a custom weight. Here I 

used the presence-absence version of Bray-Curtis dissimilarity (eq1), which is 1 – 

Sorenson similarity index:  
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𝑑!" = 1− !!
!!!!!!

     (eq1) 

where 𝑑!" = compositional dissimilarity between sites i and j, A = number of species 

in common between the two sites, B = number of species at site i, C = number of 

species at site j.  

To relate compositional dissimilarity to environmental gradients, I-spline 

basis functions are first derived for each environmental variable (x1 to xn). I-splines 

allow for the incorporation of non-linearity while maintaining monotonicity (apk ≥ 0) 

and allowing for greater or lesser complexity depending on the number of knots used 

(three knots is the default). The maximum height of I-splines for each predictor 

indicates the relative contribution of that predictor to explaining species turnover, and 

the shape demonstrates the variation in the rate of turnover along the predictor’s 

gradient. The value of the environmental variables at each site is derived using the 

fitted I-splines and the pairwise differences at all site-pairs are calculated (eq2). In 

addition to the environmental variables, geographical distance can also be included as 

a predictor. These I-splines can be used to transform environmental variables to a 

biological scale and include their biological importance. Finally, a non-negative 

iteratively re-weighted least squares regression is fitted using the compositional 

dissimilarity as the response variable and the pairwise differences of the 

environmental predictors and geographical distance previously derived using I-splines 

(eq2): 

− ln 1− 𝑑!" =  𝑎! +  𝑎!"
!!
!!! | 𝐼!" 𝑥!" −  𝐼!" 𝑥!" |!

!!!     (eq2) 
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where ao is the intercept, n = number of environmental variables, m = number of 

splines used, Ipk = kth spline for variable xp, and apk = fitted coefficient for Ipk such 

that apk ≥ 0. 

Study region 

I fit GDMs using two study regions that differ in climate and therefore the length and 

structure of environmental gradients. I used two study regions to enable the 

comparison of the impact of unrepresentative sampling and weighting methods in 

regions with different environmental characteristics. I selected Eastern North America 

(ENA) to represent a region with comparatively low environmental turnover across 

space and northern South America and Central America (SACA) to represent a region 

with higher environmental turnover (Buckley & Jetz 2008). It should be noted that the 

two regions also differ in extent, with SACA being approximately three times larger 

than ENA. 

Environmental data 

I used four climate variables from the WorldClim database (Hijmans et al. 2005) at 

10 arc minute resolution: annual mean temperature (bio1), temperature seasonality 

(bio4), annual precipitation (bio12), and precipitation seasonality (bio15) to 

characterize environmental gradients. These variables were selected for simulating 

species habitat preferences (probability of occurrence) because of their known 

relationship with species richness patterns, distributions, and community composition 

(McCain 2007, Buckley and Jetz 2008, Wang et al. 2009, Ulrich et al. 2014). These 
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four variables were used both to simulate individual species distributions (from which 

virtual communities were created) and to fit the GMDs. 

Community composition data 

Simulated species distributions 

The “virtual ecologist” approach (Zurell et al. 2010) is an effective means of 

generating “virtual species” (and communities; Hirzel et al. 2001) based on ecological 

processes and rules, which can be used to test ecological theory or methodological 

approaches (Meynard and Kaplan 2013, Leroy et al. 2016). Virtual species and 

community data, while not necessary reflective of real biodiversity patterns, allows 

control and complete knowledge of the factors determining species distributions. 

These “perfect” data can also be subsampled in different ways to mimic field 

sampling and observational biases present in PO data (Zurell et al. 2010). 

Comparisons of models fit with biased and unbiased data are therefore akin to 

traditional experimentation. 

I used the ‘virtualSpecies’ package (Leroy et al. 2016) in R (RStudio Team 

2016, R Core Team 2015) to simulate two sets of 500 species in each study region. 

The virtualSpecies package allows users to create individual species with either user 

defined or random responses to environmental (either real or simulated) patterns. To 

create a community using the virtualSpecies package, it is necessary to generate 

multiple species using environmental data and some information regarding the 

response of each virtual species to these variables (Fig.1.1). Once species  
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Figure 1. 1 Procedure used to simulate the presence-absence of one virtual species. 
(a) Four environmental variables are used to constrain the niche of the species, with 
niche width being determined by (b) the standard deviation of a Gaussian function 
over the first two axes of a PCA on the four environmental predictors. This function 
is then used to generate (c) the probability of occurrence of the species across the 
study region. Last, the probability of occurrence is converted to (d) presence-absence 
(green indicates presence). 



 

 15 
 

distributions have been simulated, species occurring in the same location are 

combined to form a ommunity. When communities are generated using this method, 

interactions between species are not incorporated into the creation of a community 

unless some proxy of interaction is included as an environmental variable (for 

inclusion of interactions in community simulation, see below).  

To ensure that the simulated species have realistic responses to environmental 

gradients, the environmental suitability for each species was based on Gaussian 

response functions with varying means and standard deviations over the first two axes 

of a Principal Component Analysis. Leroy et al. (2016) recommend that this method 

be used in cases where multiple species are being simulated based on multiple 

predictor variables since defining response functions for each of the predictor 

variables individually can result in unrealistic environmental combinations. Instead of 

specifying the means and standard deviations of the response functions for each 

species, I varied the species niche-breadths (i.e., the standard deviation of the 

Gaussian response functions) such that the two regions had different proportions of 

narrow-niche-width (low standard deviation) and wide-niche-width (high standard 

deviation) species. Approximately 60% of the species had narrow niches in SACA 

and 40 % had wide niches (vice versa for ENA). Niche-breadth variation was 

implemented to reflect the patterns of niche breadth across various latitudes. The 

resultant probabilities of occurrence were subsequently converted to presence-

absence using a probabilistic approach where a logistic curve with random values for 

the slope and the inflection point was used to determine the relationship between the 
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environmental suitability of a species and its probability of occurrence (Leroy et al. 

2016). 

Of the 500 species in each region, the distribution of 400 depended solely on 

environmental characteristic (termed “climate-dependent virtual species”). The 

remaining 100 species were simulated such that their distributions depended on both 

environmental characteristics and a proportion of the climate-dependent species 

present in that location (termed “community-dependent virtual species”). To generate 

the 100 community-dependent virtual species, I first generated the 400 climate-

dependent species and then selected a random proportion of the 400 climate-

dependent virtual species in each location. I summed the presences of this random 

subset to create communities in each location (grid cell), resulting in a raster that 

represented the number of selected species in each cell. Next, I used a range of 

thresholds from 0.2 to 0.8 in increments of 0.2 to create variation in the degree of 

dependence on other species. The resulting raster was then used as an additional niche 

axis for simulating the remaining 100 species. This process allowed me to create a 

subset of species that depend both on the abiotic environment as well as the set of 

species present at each location, thus introducing some level of interaction among 

species in the simulated communities (Fig.1.2). 
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Figure 1. 2 Simulated pattern of species richness produced by assembling 
communities from the distributions of 500 virtual species in (a) northern South 
America and Central America (SACA) and (b) eastern North America (ENA) 
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Species inventory data 

Though simulated communities offer great flexibility in conducting model 

experiments, they will not necessarily mimic natural patterns. Therefore, the 

simulations were complemented with analyses of actual biological survey data from 

the United States Forest Service Forest (USFS) Inventory Analysis (FIA) in the 

eastern United States (Fig.1.3). The FIA data contain species-level inventory 

information of permanent forested plots (>= 0.4 ha and >= 10% canopy cover) 

coordinated by the USFS, where all tree species with greater than 12.7 cm diameter at 

breast height are inventoried (Woudenberg et al. 2010, Gray et al. 2012). These plots 

are distributed across a majority of the United States in forested lands with varying 

ownership types (Woudenberg et al. 2010, Gray et al. 2012). 

I used the 2003-2008 plot inventory data (Fig. 3), which consists of 77,734 

sites and 143 tree species after the full dataset was cropped to a region comparable to 

that of the simulated ENA community. I first aggregated the information from all the 

sites to 10 arcmin grid cells (based on the climate data) by taking the mean, thus 

reducing the number of sites to 10477. After this, I converted counts (abundance) to 

PA such that a species was considered present if at least one individual of that species 

had been identified at a site. Although some sites in the FIA database have degraded 

spatial accuracy (an offset of 1.6 km or switched site survey within forest-class, 

owner-class and county) to maintain privacy of private landowners and integrity of 

the plot (Woudenberg et al. 2010, Gray et al. 2012), my aggregation of plot data to 10 

arcmin grid cells should reduce the influence of this lack of spatial accuracy. 
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Figure 1. 3 Observed tree species richness based on USFS Forest Inventory Analysis 
(FIA) data for eastern North America. The value in each pixel is the sum of all 
observed tree species obtained by aggregating FIA plots falling within the same 10 
arcmin grid cell.  

 

Biasing species occurrence data 

I compared models fit with “unbiased” and “biased” species occurrence data. The 

unbiased datasets contained observations of all species at a site, whereas the biased 

datasets contained observations for a subset of species at each site (see below; 

Fig.1.4). To create the unbiased datasets for both the virtual communities and the 

inventory data, I selected 1000 sites at random from each geographic region 

(hereafter siteSets). I repeated this procedure 100 times to create 100 different 
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random siteSets. Each of these 100 unbiased datasets were used to fit GDM (hereafter 

unbiased models) against which the models fitted using the biased data were 

compared.  

 

 

Figure 1. 4 Subsampling routines applied to the completely sampled communities to 
simulate unrepresentative sampling. This plot shows one siteSet of 1000 sites in 
northern South America and Central America. The unbiased data (the true richness) is 
represented by the black line while the blue lines indicate observed richness after the 
sampling routine has been applied. For a) FixedProportionBias, each blue line 
represents a fixed proportion of the species retained per site with the proportion 
written above the lines. 

 

To replicate unrepresentative sampling present in PO data, I degraded the 

unbiased siteSets by randomly subsampling species occurrences with or without a 

specific bias. Each of the following routines were performed 100 times for every 



 

 21 
 

siteSet, thereby creating 100 random biased datasets for each type of sampling bias 

described below. 

1. FixedProportionBias – I removed a fixed proportion of species at random 

from each site using proportions from 0.2 to 0.8 at increments of 0.1. This 

created datasets where all sites had only 20% of species observed, 40% of 

species observed, etc in each grid cell. This bias was implemented to assess 

the impacts of degrading the unbiased dataset and the ability of different 

weighting schemes to correct for incomplete sampling of community 

composition.  

2. RandomProportionBias – I removed a different random proportion (between 

0.2 and 0.9) of species from each of the 1000 sites. This created datasets 

where sites had anywhere from between 10% to 80% of species observed in 

each grid cell. This sampling routine was implemented to simulate a case 

where sampling completeness is random across sites and probably best 

replicates sampling bias in PO data.  

3. HighSiteRichnessBias – Communities were subsampled such that the number 

of species observed at each site was proportional to the species richness of 

that site. HighSiteRichnessBias simulates a situation where higher richness 

sites are of greater interest or more easily accessibly and therefore are more 

completely sampled.  

4. LowSiteRichnessBias – The sampling completeness of each site is inversely 

proportional to the species richness at that site. The implementation of 

LowSiteRichnessBias is the opposite that of HighSiteRichnessBias and 
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simulates a case where low richness sites are more completely sampled than 

high richness sites. 

5. SpeciesPrevalenceBias – I calculated the prevalence of each species in a 

siteSet as the sum of all cells occupied by the species. I then converted 

presences to absences for a random set of occupied cells for each species 

based upon the prevalence of that particular species. The probability that a 

species is observed at a site is proportional to the prevalence of the species in 

the dataset, such that common species are more likely to be observed. For this 

routine, sampling completeness is based on the species prevalence rather than 

properties of the community at a site. This simulates sampling were common 

species are more likely to be observed than rare species.  

Model fitting 

GDMs were fit to both biased and unbiased data using the ‘gdm’ package (Manion et 

al. 2016) in R. Because I was interested in the impact of unrepresentative sampling 

and weighting scheme combinations on the fitted relationship between the 

environmental and compositional turnover, I did not include geographic distance as a 

predictor. The degree to which the sample data accurately reflect community 

composition will affect model fitting. When complete community composition data 

are available, model performance should be highest because Bray-Curtis distance will 

not be artificially inflated due to missing species observations. Because community 

composition is perfectly known in the unbiased datasets, there is no need to 

implement weighting to account for bias. Biases associated with incomplete sampling 
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can be partially corrected for using weights. For example, if available, prior 

information regarding the sampling completeness can be used to weight the influence 

of the site on the model. Here, I compared three weighting schemes to attempt to 

correct for biased data: 

1. No weights (Wnone) – Sites are weighted equally and so contribute equally 

to the model. This is a demonstration of a case where the incompleteness 

of the community composition data is ignored.  

2. Weighting by richness (Wrichness) – Sites with higher richness have a 

greater influence on the model and reflects the assumption that higher 

richness sites are more completely sampled than sites with lower richness. 

Additionally, unrepresentative sampling will affect high richness sites less 

than low richness sites. 

3. Weighting by the ratio of observed to expected species richness (Wobs/exp) – 

Here the ratio of the observed species richness to the expected (or actual) 

species richness acts as a proxy for sampling completeness. Actual species 

richness was calculated as the count of the number of species present in 

each cell, whereas observed richness was the number of species present 

after the application of sampling biases described above.  

Analysis of weighting schemes 

I evaluated model performance using three methods: (i) model fit using percent 

deviance explained, (ii) predictor contribution using sums of coefficients of I-splines, 

and (iii) ability to accurately predict spatial patterns of compositional turnover using 
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Procrustes analysis. I assessed model explanatory power by comparing the percent 

deviance explained amongst biased models using ANOVA or Kruskal-Wallis test 

based on the heteroscedastcity of the data followed by multiple comparisons (Games-

Howell and Mann-Whitney-Wilcoxon tests respectively) and to the percent deviance 

explained of the unbiased models.  

In addition to model explanatory power, I wanted to assess how well biased 

models fit using different weights can correctly identify the primary environmental 

gradients associated with compositional turnover. To do this, I summed the 

coefficients of the I-splines to quantify the relative contribution of different 

environmental variables. I then examined how the relative contributions of variables 

changed in the presence of unrepresentative sampling and with the three weighting 

schemes.  

Finally, to examine the congruence between the biased and unbiased models 

in terms of spatial predictions of compositional turnover, I implemented a Procrustes 

analysis using the ‘vegan’ package (Oksanen et al. 2017) in R. Procrustes analysis 

involves the superimposition of two datasets by rotating, scaling and translating the 

data to minimize the sum of squared deviations between them. The measure of fit of a 

Procrustes analysis is the m2 statistic, with lower values of m2 indicating higher 

concordance between two datasets (Jackson 1995, Peres-Neto and Jackson 2001). 

Additionally, examining the vector residuals can quantify similarity of the two 

datasets. In order to assess the concordance between models fitted to biased vs. 

unbiased data, I followed the procedure outlined in Pitcher et al. (2012) for the 

comparison of model predicted dissimilarity. I first obtained the transformed 
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environmental variables to biological space using the fitted models and subjected the 

transformed environmental variables to a scaled Principle Component Analysis 

(PCA). The results of the PCA were then subjected to a Procrustes superimposition. 

Results 

Unbiased (completely sampled and fully representative) data 

The explanatory power of GDM varied by data type (virtual vs. survey) and region. 

Explanatory power (percent deviance explained) was greatest for models fit using 

virtual species in ENA (94.22 ± 0.04 %) followed by SACA (65.92 ± 0.14 %) and 

lowest for survey data (FIA; 36.27 ± 0.14 %; Fig.1.5). Models fitted with fully 

sampled datasets (unbiased models) explained a higher percentage of the deviance 

than biased models regardless of the communities used or the weighting scheme 

employed, with the exception of models fit in SACA to data with 

HighSiteRichnessBias.		

 The relative contribution of each environmental gradient in explaining 

turnover also varied by region and dataset. The sums of coefficients of I-splines fitted 

to the unbiased data in ENA indicate that compositional turnover was greatest along 

gradients of mean annual precipitation (bio12; 1.09 ± 0.00 %), followed by 

precipitation seasonality (bio15; 1.08 ± 0.01 %), temperature seasonality (bio4; 1.04 

± 0.01 %), and mean annual temperature (bio1; 0.35 ± 0.01 %; Fig.1.6). In contrast, 

for SACA, compositional turnover was greatest along the precipitation seasonality 

gradient (bio15; 0.78 ± 0.01 %) and least along temperature seasonality (0.38 ± 0.00 



 

 26 
 

%; Fig.1.6), whereas for the FIA data, this variable (2.29 ± 0.02 %) was associated 

with the most turnover and precipitation seasonality the least (1.55 ± 0.03 %; Fig.1.6). 

 
Figure 1. 5 Deviance explained. The explanatory power of the unbiased models for all 
siteSets in ENA, SACA and FIA. The lower and upper hinges represent the 25th and 
75th percentiles respectively, and the whiskers extend no more then the furthest values 
1.5* inter-quartile range from the hinges.  

FixedProportionBias 

As expected, there was a positive relationships between the proportion of species 

observed at a site and the explanatory power of GDM, with the least amount of 

degradation (80% of species retained at each site) producing percent deviance 

explained values closest to those of the unbiased models in all regions, data types, and 

weighting schemes (Figures 1.7, 1.8, 1.9). Weighting by species richness produced 

the best models for all fixed proportions except for 20% species retention in FIA, for  
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Figure 1. 6 Relative variable importance. Variable importance was inferred from the 
sums of coefficients for each variable for models fitted in ENA, SACA, and FIA. The 
sampling routines are along the y-axis and represent the unbiased  or completely 
sampled data (CS), FisedProportionBias (FPB), RandomProportionBias (RPB), 
HighSiteRichnessBias (HRB), LowSiteRichnessBias (LRB), and 
SpeciesPrevalenceBias (SPB). FixedProportionBias is further divided into the various 
fixed proportions used. Each column represents a weighting scheme. 
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which Wobs/exp produced the best model (6.28 ± 0.07 %; Fig.1.10). While weighting 

by sampling completeness (Wexp/obs) was statistically better than no weighting (Wnone) 

for the FIA data, for most cases in the simulated communities there was no 

statistically significant difference between Wnone and Wrichness (Fig.1.10).  

 

 

Figure 1. 7 Deviance explained by biased models fitted in ENA. The sampling 
routines represented here are FixedProportionBias with 80% species retained at each 
site (FPB_0.8), FixedProportionBias with 20% species retained at each site 
(FPB_0.2), RandomProportionBias (RPB), HighSiteRichnessBias (HRB), 
LowSiteRichnessBias (LRB), and SpeciesPrevalenceBias (SPB). The y-axes are 
variable in order to display the results with clarity. The lower and upper hinges 
represent the 25th and 75th percentiles respectively, and the whiskers extend no more 
then the furthest values 1.5* inter-quartile range from the hinges.  

 

Fixed proportion sampling also influenced the ability of GDM to correctly quantify 

the relative contribution of each environmental gradient to species turnover, as 

compared to models fitted with the unbiased data (Fig.1.6). The relative contribution 
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of predictors changed the least for models fit in SACA; the contribution of bio15 

increased while that of bio1 decreased. For biased models in both ENA and FIA, the 

greatest difference was a decrease in relative contribution of bio12. Concordance 

between mapped spatial patterns of compositional dissimilarity using the unbiased 

and the biased data was greatest for GDMs fit using richness weighting produced the 

most similar patterns for models fitted in ENA (Fig.1.11; Appendix 1.1). For models 

fitted in SACA (Fig.1.12) and using the FIA data (Fig.1.13), on the other hand, using 

Wnone tended to result in the highest concordance, with some exceptions (Appendix 

1.1). 

 

 
 

Figure 1. 8 Deviance explained by biased models fitted in SACA. The sampling 
routines represented here are FixedProportionBias with 80% species retained at each 
site (FPB_0.8), FixedProportionBias with 20% species retained at each site 
(FPB_0.2), RandomProportionBias (RPB), HighSiteRichnessBias (HRB), 
LowSiteRichnessBias (LRB), and SpeciesPrevalenceBias (SPB). Note that the plot 
contains variable y-axes. The lower and upper hinges represent the 25th and 75th 
percentiles respectively, and the whiskers extend no more then the furthest values 
1.5* inter-quartile range from the hinges 
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Figure 1. 9 Deviance explained by biased models fitted in FIA. The sampling routines 
represented here are FixedProportionBias with 80% species retained at each site 
(FPB_0.8), FixedProportionBias with 20% species retained at each site (FPB_0.2), 
RandomProportionBias (RPB), HighSiteRichnessBias (HRB), LowSiteRichnessBias 
(LRB), and SpeciesPrevalenceBias (SPB). Note that the plot contains variable y-axes. 
The lower and upper hinges represent the 25th and 75th percentiles respectively, and 
the whiskers extend no more then the furthest values 1.5* inter-quartile range from 
the hinges.   

RandomProportionBias 

RandomProportionBias reduced percent deviance explained when compared to 

unbiased models by a larger degree for the simulated communities than for the 

inventory data. Biased models fitted in ENA had significantly higher percent 

deviance explained when fit with Wobs/exp (36.59 ± 0.03 %) than Wnone (32.10 ± 0.02 

%; Fig.1.7), but Wrichness produced models with significantly higher percent deviance 

explained both in SACA (26.13 ± 0.02 %; Fig.1.8) and for the FIA dataset (16.24 ± 

0.01 %; Fig.1.9). The relative contribution of predictors was consistent across 
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weighting schemes for all datasets and similar to that of models produced using 

FixedProportionBias in ENA and SACA (Fig.1.6).  

 

 

Figure 1. 10 Heatmap of results from Games-Howell test for deviance explained by 
models fitted in ENA, SACA, and FIA. The colors indicate the mean differences 
between comparisons of models (Comp1: Wnone / Wrichnes ; Comp2: Wnone / Wobs/exp; 
Comp3: Wrichness / Wobs/exp) and the asterisks represent the significance level of the 
differences(* p < 0.05, ** p <0.01, *** p < 0.001). The sampling routines represented 
here are FixedProportionBias with 80% species retained at each site (FPB_0.8), 
FixedProportionBias with 20% species retained at each site (FPB_0.2), 
RandomProportionBias (RPB), HighSiteRichnessBias (HRB), LowSiteRichnessBias 
(LRB), and SpeciesPrevalenceBias (SPB).  
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RandomProportionBias greatly increased the importance of bio1 and reduced 

that of bio15 compared to the unbiased models when used on the FIA dataset 

(Fig.1.6); these variables were fairly similar in contribution for the unbiased models. 

Procrustes analysis of the mapped spatial patterns of compositional 

dissimilarity from unbiased models to biased models (Appendix 1.1) showed that 

Wobs/exp had the greatest degree of concordance in both ENA and SACA, and Wnone 

the least (Figures 1.11 and 1.12). For models fitted using the FIA data, Wnone resulted 

in the highest concordance between the unbiased and the biased models while 

Wrichness produced the lowest (Fig.1.13). 

SpeciesPrevalenceBias 

Results for data biased with SpeciesPrevalenceBias were similar to that of 

RandomProportionBias for all aspects of model performance assessed in this study 

for the two simulated communities. Percent deviance explained by biased models 

fitted in ENA was intermediate across all sampling routines and Wobs/exp had the 

highest values (36.82 ± 0.02%; Fig.1.7). For models in SACA, the highest percent 

deviance explained was for the models fit with Wrichness (26.15 ± 0.02%), followed by 

Wexp/obs (24.60 ± 0.02%; Fig.1.8). The explanatory power for models for the FIA data 

was also the highest for Wrichness (16.23 ± 0.01%; Fig.1.9). The relative contribution 

of predictors showed greatly increased the importance of bio1 and reduced that of 

bio15 compared to the unbiased models for the FIA data (Fig.1.6) compared to 

unbiased models. Spatial patterns of disagreement of compositional turnover between 
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unbiased models and models using data with SpeciesPrevalenceBias were also similar 

to those of RandomProportionBais (Figures 1.11, 1.12, and 1.13, Appendix 1.1). 

 

Figure 1. 11 Sum of squared deviations (m2) from Procurstes analysis of models fitted 
in ENA. The sampling routines represented here are FixedProportionBias with 80% 
species retained at each site (FPB_0.8), FixedProportionBias with 20% species 
retained at each site (FPB_0.2), RandomProportionBias (RPB), 
HighSiteRichnessBias (HRB), LowSiteRichnessBias (LRB), and 
SpeciesPrevalenceBias (SPB). Note that the plot contains variable y-axes. The lower 
and upper hinges represent the 25th and 75th percentiles respectively, and the whiskers 
extend no more then the furthest values 1.5* inter-quartile range from the hinges.  

 

HighSiteRichnessBias 

Of all the sampling bias types, LowSiteRichnessBias had the least influence on 

explanatory power and produced models with percent deviance explained values 

comparable to that of the unbiased models for the two simulated communities. 

Weighting by richness (93.36 ± 0.00 %) produced significantly better models than 

both Wnone (93.03 ± 0.00 %, p << 0.001) and Wobs/exp (93.03 ± 0.00 %, p << 0.001) in 
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ENA (Fig.1.7). In SACA, LowSiteRichnessBias produced models with greater 

explanatory power than unbiased models; Wrichness had the highest percent deviance 

explained (80.88 ± 0.01 %) followed by Wobs/exp (78.89 ± 0.01 %) and Wnone (76.80 ± 

0.01 %; Fig.1.8). In contrast, FIA data subjected to high richness bias produced 

models with much lower percent deviance explained compared to unbiased models. 

Wrichness performed the best (21.32 ± 0.01 %) followed by Wobs/exp (18.92 ± 0.02 %) 

and Wnone (15.69 ± 0.01 %; Fig.1.9). Variables contributions for all communities were 

altered relative to the unbiased model (Fig.1.6). The variable contributions in ENA 

and SACA were similar to FixedProportionBias, RandomProportionBias and 

SpeciesPrevalenceBias across all weighing schemes (Fig.1.6). For FIA data, variable 

contributions were comparable to RandomProportionBias and SpeciesPrevalenceBias 

but not FixedProportionBias (Fig.1.6). Comparing the sums of squared deviations 

from the Procrustes analysis among weighting schemes indicates that unweighted 

biased models performed the best both in SACA and for the FIA data (Figures 1.12 

and 1.1; Appendix 1.1). On the other hand, Procrustes analysis showed that Wrichness 

resulted in the highest concordance between biased and unbiased models, followed by 

Wobs/exp in ENA (Fig.1.11; Appendix 1.1). 
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Figure 1. 12 Sum of squared deviations (m2) from Procurstes analysis of models fitted 
in SACA. The sampling routines represented here are FixedProportionBias with 80% 
species retained at each site (FPB_0.8), FixedProportionBias with 20% species 
retained at each site (FPB_0.2), RandomProportionBias (RPB), 
HighSiteRichnessBias (HRB), LowSiteRichnessBias (LRB), and 
SpeciesPrevalenceBias (SPB). Note that the plot contains variable y-axes. The lower 
and upper hinges represent the 25th and 75th percentiles respectively, and the whiskers 
extend no more then the furthest values 1.5* inter-quartile range from the hinges. 

 

LowSiteRichnessBias 

LowSiteRichnessBias resulted in the lowest percent deviance explained values for all 

weighting schemes and regions/datasets except FIA. Wobs/exp (14.26 ± 0.02 % in ENA; 

6.94 ± 0.01 % in SACA) performed better than Wrichness (7.73 ± 0.01 % in ENA; 5.24 

± 0.01 % in SACA), both of which were significantly better than Wnone (3.54 ± 0.01 

% in ENA; 3.77 ± 0.01 % in SACA; Figures 1.7 and 1.8). Biased models for FIA data 

were not as comparatively poor as those for the other two regions and Wrichness (19.31 

± 0.02 %) outperformed the other weighting schemes (Fig.1.9). The predictor 
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contributions were the most different from those of the unbiased models for this bias 

in both ENA and SACA; in ENA, the contribution of both bio1 and bio15 increased 

and that of bio4 and bio12 decreased while in SACA the contribution of bio15 

dramatically decreased accompanied by increases in the contribution of bio1 and bio4 

(Fig.1.6). The impact on coefficients of the I-splines was similar to 

RandomProportionBias, SpeciesPrevalenceBias and LowSiteRichnessBias (Fig.1.6). 

Sum of squared deviations for biased models weighted with Wobs/exp had the lowest 

values across all communities studied (Figures 1.11, 1.12, and 1.13). 

 

 

Figure 1. 13 Sum of squared deviations (m2) from Procurstes analysis of models fitted 
in FIA. The sampling routines represented here are FixedProportionBias with 80% 
species retained at each site (FPB_0.8), FixedProportionBias with 20% species 
retained at each site (FPB_0.2), RandomProportionBias (RPB), 
HighSiteRichnessBias (HRB), LowSiteRichnessBias (LRB), and 
SpeciesPrevalenceBias (SPB). Note that the plot contains variable y-axes. The lower 
and upper hinges represent the 25th and 75th percentiles respectively, and the whiskers 
extend no more then the furthest values 1.5* inter-quartile range from the hinges. 
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Discussion 

Given the volume and accessibility of PO species occurrence records, it is important 

to assess how well such data can be used to understand and predict patterns of 

biodiversity. PO data are plagued by a number of issues, and in particular a better 

understanding of how sampling biases impact community-level models will help 

improve the application of biodiversity modeling for management purposes. GDM 

uses community-level data and distances matrices to model compositional patterns. 

Unrepresentative sampling in PO datasets can artificially inflate community 

dissimilarity, the response variable of GDM, and while weighting schemes (Ferrier et 

al. 2007) have been used to remediate biases, their effectiveness remains unknown. In 

this study, I examined how biases in PO data influence GDM and the ability of 

different weighting schemes to correct for these biases. Overall, I found that all types 

of PO biases I simulated using different sampling routines reduced the performance 

of GDM, with sampling biased inversely to richness causing the greatest decline in 

model performance. I also found that the use of weights can partially mitigate the 

impacts of unrepresentative sampling, but no single weighting scheme proved 

appropriate for all situations. Richness weighting tended to perform better than 

weighing by the ratio of observed versus expected species richness in terms of 

explanatory power for a majority of the sampling routines. Weighting site-pairs by 

the observed versus expected species richness ratio also improved model explanatory 

power relative to no weighting and in some cases provided predictions that had 

greater similarity to those of the unbiased models compared to richness weighting. 

However, none of the biased models – either without any weights or with the two 
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weighting schemes – were able to correctly assess the relative contribution of 

different environmental gradients to compositional turnover. 

Impacts of unrepresentative sampling on model performance 

As expected, unrepresentative sampling lowered model explanatory power (with a 

few exceptions) and resulted in misidentification of the contribution of environmental 

gradients to compositional turnover. FixedSamplingBias, in which the same 

proportion of species are removed at random from all sites, demonstrates that 

incomplete sampling reduces model robustness and that, regardless of the identity of 

the species (not) observed, a more complete dataset results in higher explanatory 

power. Subsampling data using either RandomProportionBias (random proportion of 

species retained at each site) or SpeciesPrevalenceBias (common species are more 

completely detected) has a similar effect on GDM and reduced model performance to 

intermediate levels when compared to the other sampling routines. The comparable 

performance of GDM may be attributed to the similarity in how 

RandomProportionBias or SpeciesPrevalenceBias altered richness and species 

prevalence. Models fit with data biased using HighSiteRichnessBias (sampling bias is 

proportional to site richness) had some of the highest percent deviance explained 

values, while those fit with data biased using LowSiteRichnessBias (sampling bias is 

inversely proportional to site richness) had the lowest. Though models fitted with 

biased data had lower deviance explained than models fitted with unbiased data, 

GDM models fitted with the biased data produce spatially similar results to the 

unbiased models. The regions of higher disagreement (higher residuals) were 
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concentrated to regions with lower species richness. However, whether sampling bias 

was directly or inversely proportional to site richness, the concordance of spatial 

patterns of compositional turnover was the lowest for all biased models, suggesting 

that when sampling is biased by species richness (either directly or inversely), the 

fitted relationship between the environmental and compositional turnover is altered. 

Of all the sampling routines, biasing data by LowSiteRichnessBias had the greatest 

affect on the contribution of environmental variables for the two virtual communities. 

However, when data is biased in accordance with site richness or even randomly, the 

impact of unrepresentative sampling, while still present, is reduced. The lack of 

agreement between unbiased and biased models indicates that failure to fully 

document community composition can lead to a misidentification of the gradients of 

turnover. The most striking effect of the sampling routines, in terms of ranking the 

relative contribution of environmental variables, was observed on communities in the 

FIA dataset where the contribution of precipitation related variables decreased 

dramatically and the contribution of mean annual temperature increased. The 

predictor variables used in modeling communities in the FIA dataset were not 

selected specifically for this dataset. As such, the variable set used may not include 

gradients most important to turnover in tree compositions or does not contain all 

variables that explain community turnover patterns in FIA, as demonstrated by the 

low percent deviance explained even by the unbiased models. 
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Impacts of weighting schemes on model performance 

Although no weighting scheme was superior for all cases, both richness and the 

observed versus expected richness ratio had unique advantages and disadvantages. 

Taken together, my findings support the use of richness weights to improve the 

explanatory power of GDM as richness weights produced models with highest 

percent deviance explained in the majority number of community-sampling routine 

combinations. However, improvements in explanatory power using richness 

weighting did not translate into an improved ability to map spatial patterns of species 

turnover. For mapping of spatial patterns of compositional turnover, observed versus 

expected richness ratio performed intermediately compared to the other weighting 

schemes. However, a major downside of observed-vs-expected-richness weighting is 

that is requires an estimate of site richness. Though there have been attempts to 

quantify species richness (Kreft and Jetz 2007, Kier et al. 2009, Jenkins et al. 2013, 

Pimm et al. 2014, Jenkins et al. 2015, Jenkins and Van Houtan 2016), these analyses 

are limited to a handful of taxa and regions, which limits the application of this 

weighting scheme for broader assessments of biodiversity. However, methods 

developed for estimating species richness (eg, using occupancy modeling (e.g., using 

occupancy modeling; Guillera-Arroita 2017) may aid in the use of observed versus 

expected species richness ratio as weights. 

Recommendations for use of GDM with PO data 

Modeling biodiversity patterns enables the understanding of ecological 

relationship between organisms and environmental characteristics and the application 
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of this knowledge for management purposes (Ferrier and Guisan 2006, D’Amen et al. 

2015). When the goal of a study is to understand explanatory potential of variables 

used to model community characteristics or examine spatial patterns of community 

turnover PO data can be used with GDM with caution. Weighting by richness 

improved model explanatory power while, Wobs/exp emerges as a much better 

weighting scheme with respect to the concordance of spatial patterns of turnover 

between biased and unbiased models, especially in cases when the sampling bias was 

inversely related to species richness.  

On the other hand, when GDM is used to assess the relationship between 

compositional turnover and environmental characteristics, PO data can lead to 

misleading results. None of the weighting schemes were able to correctly identify the 

relative contribution of environmental gradients regardless of community studied or 

the types of bias present in the data. Although the richness at each site is an important 

aspect of communities, the identity of species present and absent is also important. 

Weights implemented in this study were solely associated with the richness present at 

each site and are unable to fully rectify sampling issues with respect to which species 

are sampled. As such, weighting schemes that address both site richness and species 

identity may be better suited to applications where identification of environmental 

contributions is the main aim.  

Conclusion 

Overall, this study suggests that PO data can be used with GDMs with caution as PO 

data always impacts model performance even when used with weighting schemes. 
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Biased data will have poorer model performance when explanatory power, 

identification of contribution of explanatory variable and spatial mapping are all 

taken into account. However, weighting the influence of site-pairs can overcome 

issues associated with unrepresentative sampling in PO data to a certain extent. The 

use of both weighting schemes assessed in this study lead to improved explanatory 

power in a majority of the biased models. However, if the types of biases or 

inaccuracies present in the sampling data are known, especially with respect to the 

identity of the species present or absent at each site, then using a weighting scheme 

that reflects this information will lead to the most robust models. Additionally, I 

recommend using caution when assessing the relative contributions of environmental 

variables as the type of bias in the data and the environmental variables used for 

model fitting will impact GDM. 
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Chapter 2: Transforming raw environmental variables for 

improved species distribution modeling 

Abstract 

Species distribution models (SDMs) can enable the understanding of relationships 

between species distributions and environmental variables and support assessment of 

impacts of global changes at the species-level. Environmental variables that have 

been preprocessed or transformed using community-level information can be used as 

predictors in SDMs so that the predictor variables reflect ecological patterns. 

However, the effectiveness of transformed variables in improving model performance 

has not been assessed. Generalized dissimilarity models (a community level model) 

can be used to transform raw environmental variables into ecological space based on 

community compositional turnover patterns. In this study, assessed whether the 

transformed environmental variables obtained from GDM can improve the 

performance of Maxent models (an SDM) using virtual and inventoried species in 

regions of North and South America. I also assessed the influence of species range 

size, sample size, and species dependence type on the ability of transformed 

environmental variables to improve model performance. Overall, using transformed 

environmental variables as predictors in Maxent models improved model 

discrimination and ability to map habitat suitability, especially for species with small 

ranges and/or fewer occurrences. The differences between model performance of the 

two predictor types, though significant, were relatively small.  
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Introduction 

Impacts of global changes can be assessed at the species-level with statistical 

modeling techniques referred to collectively as species distribution models (SDMs). 

SDMs relate information on species occurrence to concurrent environmental 

conditions to model their probability of occurrence, probability of presence, or 

relative habitat suitability (Guisan and Zimmermann 2000, Guisan and Thuiller 2005, 

Elith and Leathwick 2009, Franklin 2010). These models are based on the niche 

concept (Hutchinson 1957, Guisan and Thuiller 2005, Elith and Leathwick 2009) and 

can be used to assess species distributions and their relationships with environmental 

variables for the purposes of ecological and biogeographical research, and as tools for 

decision making in conservation and resource management (Franklin, 2013; Guisan et 

al., 2013).  

SDMs like any model are approximations of reality and are sensitive to the 

information used to fit the models and the algorithm used to establish relationships 

between species and environmental characteristics and are subject to a number of 

working assumptions and caveats. Numerous studies have examined how data and 

statistical assumption influence model performance. For instance, the number of 

records required to produce reliable models (Hernandez et al. 2006, Wisz et al. 2008, 

Feeley and Silman 2011, Bean et al. 2012), selection of pseudoabsences (Phillips et 

al. 2009, Barbet-Massin et al. 2012), and spatial autocorrelation (F. Dormann et al. 

2007, Václavík et al. 2012, Crase et al. 2012, Record et al. 2013), among other issues, 

have all been previously studied and led to recommendations for effective 

implementation of SDMs. 
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One aspect of the SDM framework that has received relatively less attention 

than others is the selection of predictor variables and incorporation of additional 

information in the form of altered predictor variables. Studies that have assessed 

environmental variable selection have mostly focused on the impacts of scale and 

resolution of the environmental data (e.g., Guisan et al. 2007, Franklin et al. 2013) 

and few have focused on the type of predictors (e.g., climate, soil, topography, etc.) to 

be selected (Williams et al. 2012). SDMs primarily employ abiotic variables (e.g., 

temperature, precipitation, soils, etc) to model the distribution of species, and have 

often been criticized for the lack of realism therein (Araújo and Luoto 2007, Wisz et 

al. 2013) as they may poorly represent actual conditions that the organisms are 

responding to and incompletely explain the variance in the dataset. There have been 

advances in incorporating population level demographic processes like dispersal 

(Engler and Guisan 2009, Midgley et al. 2010, Bocedi et al. 2014, Dytham et al. 

2014) and biotic predictors (Heikkinen et al. 2007, Meier et al. 2010, Araújo et al., 

2014) in predictions of species responses to changes in the environment. However, 

incorporating individual species level demographic and biotic information still poses 

a major challenge due to the lack of complete knowledge and availability of data for 

most species. 

An alternative, but largely untested, approach to incorporating biotic 

information into SDMs involves ‘preprocessing’ abiotic variables using community-

level information such that raw abiotic variables better reflect ecological patterns 

(Ferrier et al 2007). Most SDM frameworks do not incorporate species co-occurrence 

information (Elith et al. 2006, Maguire et al. 2016), but previous studies have found 
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congruence between the community composition turnover of different taxa (Buckley 

and Jetz 2008, Jones et al. 2013, Duan et al. 2016) and demonstrated that the 

inclusion of community dissimilarity of one group (e.g., ferns) as a predictor for 

another (e.g., trees) can increase the explanatory power (Jones et al. 2013) of 

community-level models (CLM). Although the underlying cause behind the 

congruence in community turnover of different taxa is not well understood, it can be 

attributed broadly to a similarity in response to either abiotic or biotic conditions 

(Duan et al. 2016). In either case, turnover in community composition can represent 

some pertinent features of the environment that may not be captured by abiotic 

variables typically used in biodiversity modeling (Elith et al. 2006, Maguire et al. 

2016). 

Preprocessed variables can include aspects of the environment not 

characterized by abiotic variables or have an implicit biotic component. In either case, 

using preprocessed variables as predictors in SDMs have the potential to increase the 

variance explained by the models. Although there is a lack of consensus regarding the 

aspect of the niche that is modeled by SDMs (Guisan and Thuiller 2005, Elith and 

Leathwick 2009), most studies suggest that SDMs quantify the realized niche rather 

than the fundamental niche (Hutchinson 1957) or even the potential niche (Ackerly 

2003) because of the impacts of biotic interactions and resource limitations already 

present in species observations (Guisan and Thuiller 2005, Elith and Leathwick 

2009). Within this context, the “preprocessed” environmental variables that contain 

some aspect of community responses to the environmental characteristics would be 

part of the realized niche of a species.   
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One method to incorporate additional information into species level modeling 

approaches is through the use of Generalized Dissimilarity Modeling (GDM; Ferrier 

et al. 2007), a CLM that relates compositional turnover to environmental turnover. In 

addition to predicting compositional dissimilarity between sites, GDM identifies the 

primary environmental variables that contribute to the variation of turnover across 

space and transforms these variables to reflect their role in driving community 

turnover (Ferrier and Guisan 2006, Ferrier et al. 2007). As such, GDM uses 

community information to transform the environmental predictors such that they 

better reflect ecological patterns. Ferrier et al. (2007) suggested that these gradients 

could be used as predictor variables for individual species distributions, and Elith et 

al. (2006) demonstrated that “preprocessing” of environmental variables using GDM 

resulted in robust predictive performance for individual species. This improvement in 

predictive performance can be attributed to the additional information contained in 

the underlying response of the communities as a whole to abiotic or biotic drivers 

(Elith et al. 2006, Maguire et al. 2016), which is absent from the “raw” environmental 

information typically used in fitting SDMs. Using transformed variables to fit SDMs 

is expected to include biological responses of communities to alterations in climatic 

conditions. Additionally, combining GDM and SDMs could be beneficial for the 

modeling of low-sampled species because the response of the community as a whole 

can potentially supplement the lack of occurrence records.  

In this study, I assess whether the use of transformed variables leads to 

improved predictions of habitat suitability at the species level using Maxent (Phillips 

et al. 2006). To accomplish this, I fit SDMs using complementary simulated and 
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inventory data in Eastern North America (ENA) and northern South America and 

Central America (SACA) with untransformed and transformed variables. Specifically, 

I aimed to answer the following questions with respect to models fitted with 

untransformed and transformed environmental variables: 

1) Does the use of transformed environmental variables improve SDMs in 

terms of discriminatory ability, model quality, and ability to map spatial 

patterns of environmental suitability? 

2)  How do sample size, species range sizes, and species dependence influence 

model performance when they are used with untransformed or transformed 

variables? 

I expect transformed environmental variables will improve fit of all models 

with the degree of improvement varying with characteristics of the species and the 

input data. Overall, models for species with low prevalence will exhibit greater 

improvement than those with higher prevalence and models for species with high 

dependence on other species will exhibit greater improvement than models for 

species with low or no dependence on other species. Furthermore, models fitted with 

fewer observations will show a larger difference in performance with regard to 

simulated species. 
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Materials and Methods 

Study area 

I fit both GDMs and Maxent in Eastern North America (ENA) and northern South 

America and Central America (SACA). These two regions were selected because of 

their difference in climatic characteristic. ENA has relatively low environmental 

turnover across space while SACA has higher turnover (Buckley & Jetz 2008). In 

addition to this, the varied climatic gradients also allowed for differences in the 

characteristics of the species that were simulated. 

Environmental data 

I used a subset of the 19 bioclimatic variables from the WorldClim database (Hijmans 

et al. 2005) at 10 arc minute resolution for both the simulation of virtual species and 

model fitting.  Annual mean temperature (bio1), temperature seasonality (bio4), 

annual precipitation (bio12), and precipitation seasonality (bio15) were selected for 

simulating species habitat preferences (probability of occurrence) because of their 

known relationship with species richness patterns, distributions, and community 

composition (McCain 2007, Buckley and Jetz 2008, Wang et al. 2009, Ulrich et al. 

2014). These variables were not used in the model-fitting step. Instead, variable 

selection was carried out such that the final variable set would have minimal 

collinearlity. As such, GDMs were fit in each community using a unique set of 

explanatory variables (Table 1). For fitting the Maxent models, two sets of predictor 

variables were used – either climatic variables in their original state or after 

transformation using GDM. 
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Species and community data 

I used both observational (real) and simulated (virtual) data to balance their strengths 

and weaknesses.   

Virtual data allows the user to control the factors driving species distributions 

and community patterns (Zurell et al. 2010), whereas observational data are subject to 

errors and uncertainty. I used simulated communities in ENA and SACA, each 

consisting of 500 species, to assess model performance with the use of two types of 

predictor variables. Detailed explanation of species simulation was presented in the 

previous chapter (see the methods section of chapter 1, pg 16-17) but briefly, I 

simulated species based on a PCA of four environmental variables with differing 

niche-breadths using the “virtualSpecies” R package (Leroy et al. 2016). Of the 500 

species in each community, 400 were based solely on the PCA of the environmental 

conditions (hereafter referred to as “climate-dependent virtual species”). The 

remaining 100 species were dependent on the presence of a variable proportion of the 

climate-dependent species (hereafter referred to as “community-dependent virtual 

species”). I introduced this variation to assess whether the interactions of species 

leads to any differences in model performance. 

Though virtual species offer great flexibility and control, the lack of realism can be 

problematic as results obtained using virtual data may not be applicable to studies of 

real patterns, an issue that is addressed in this study with the use of “real” inventory 

data. Biological survey data from the United States Forest Service Forest (USFS) 

Inventory Analysis (FIA) in the eastern United States was used to complement the 
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analyses conducted on the simulated species. I used the 2003-2008 plot inventory 

data, averaged to 10 arcmin grid cells and converted to presence-absence. For further 

detail in the inventory data, see Methods section of chapter 1 (pg 18-19).  

I created sampled data for each community by selecting a random set of 2000 

sites in order to ensure a large enough sample size for modeling the species 

distributions. These “sampled communities” were then treated as inventoried sites 

such that presences were absolute presences and absences were true absences. I used 

these sampled sites to fit the GDMs and the Maxent models. 

Table 2. 1 Predictor variables obtained from WorldClim. The analysis step that the 
variables were used in is indicated by an “X” in the table. 

 
Bioclimatic variable Community 

simulation 
ENA 

Models 
SACA 
Models 

FIA 
Models 

BIO1 = Annual Mean Temperature X    
BIO2 = Mean Diurnal Range  X  X 

BIO3 = Isothermality   X  
BIO4 = Temperature Seasonality X    

BIO7 = Temperature Annual Range  X X  
BIO8 = Mean Temperature of Wettest 

Quarter  X  X 

BIO10 = Mean Temperature of Warmest 
Quarter  X X X 

BIO12 = Annual Precipitation X    
BIO15 = Precipitation Seasonality X    

BIO16 = Precipitation of Wettest Quarter  X  X 

BIO17 = Precipitation of Driest Quarter  X  X 
BIO18 = Precipitation of Warmest 

Quarter   X  
BIO19 = Precipitation of Coldest Quarter   X  
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Statistical modeling 

GDM quantifies the relationship between species and environmental turnover across 

pairs of sites (site-pairs) and can predict spatial patterns of compositional 

dissimilarity. The compositional dissimilarity between all site-pairs is calculated 

using any distance metric (here Bray-Curtis distance is used) scaled between 0 and 1 

and is related to environmental gradients using a non-negative iteratively re-weighted 

least squares regression fitted using the compositional dissimilarity as the response 

variable and the pairwise differences of the environmental predictors and 

geographical distance as the covariates. The pairwise differences of the predictors are 

obtained using I-spline basis functions that allow for the incorporation of non-

linearity and flexibility in complexity while maintaining monotonicity. As such, in 

addition to quantifying the relationship between compositional and environmental 

turnover, GDM creates turnover functions that can be used to transform 

environmental variables into a biologically relevant scale (Ferrier et al. 2007). These 

functions describe the relationship between environmental turnover and the turnover 

of community composition with respect to that predictor variable (Fig.2.1). To 

accomplish this, raw environmental distances between each pair of sites are converted 

into I-splines and the information regarding how these splines relate to the 

compositional turnover is used to transform the predictor variables. The transformed 

predictor variables represents the spatial variation in species composition as a 

function predictor gradients and their relative importance in driving these biological 

patterns. These transformed variables can then be used as predictor variables in 

SDMs like Maxent. 
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Maxent is an implementation of the principle of maximum entropy on a set of 

presences (PO data) and background locations (where presence is unknown) from a 

defined landscape along with predictor variables across this landscape to get the 

species’ potential geographic distribution (Phillips et al. 2006). The Maxent function 

is fitted over multiple features (transformations of predictors) such that the 

coefficients match the constraints put on their means without overfitting. To do this, 

Maxent maximizes the gain function (a penalized maximum likelihood function) and 

finds a model that can differentiate between presences and absences. Constraints are 

set by the characteristics of the environmental predictors in the background locations; 

in the environmental space Maxent constrains the mean of the environmental 

predictors at the presence and the background locations to be close to one another 

while minimizing the distance between the conditional density of the predictors at the 

occurrence sites and their marginal density at the background locations (Elith et al. 

2011). In terms of the geographical space, Maxent derives the probability that a 

species in found in each cell or pixel in the landscape such that there is maximum 

entropy in the geographical space, i.e., a distribution that is most spread out and 

closest to uniform (Phillips et al. 2006, Merow et al. 2013).  

Model fitting 

I first fit GDMs using the selected variable set using the “gdm” package (Manion et 

al. 2016) in R (RStudio Team 2016, R Core Team 2015) . The GDM model was fit 

with the default settings with respect to number of knots and geographic distance was 

not used as a predictor. I then used the turnover functions obtained from the fitted 
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models to transform the environmental variables into a biologically relevant scale 

with respect to compositional turnover.   

As the second step, I fit Maxent models (using default setting) using the 

“biomod2” R package (Thuiller et al. 2016). I first selected all species present in the 

2000 sampled sites that had greater than ten occurrences. I also selected 50 presences 

and 50 absences from the total community for each species to create an evaluation 

dataset that was used to assess the model; sites present in the sampled community 

were excluded from being selected to ensure independence of the evaluation dataset. 

Species for which this dataset could not be created were also excluded from the 

analysis. As such, the distribution of 470 (374 climate-dependent and 96 community-

dependent virtual species), 367 (273 climate-dependent and 94 community-dependent 

virtual species), and 122 species were modeled for ENA, SACA, and FIA 

respectively. To assess the influence of sample size on model performance of models 

fitted with either type of predictor variable, for these species, the number of 

occurrences was divided into three sample sizes – 10 to 20, 21 to 50, and 51 to 100. 

Species with a total number of occurrences between 10 and 20 were modeled once 

using all records. Those with a total number of occurrences between 21 and 50 were 

modeled twice, once with 20 observations and the second time with all observations. 

Those with greater than 50 total occurrences were modeled three times – with 20, 50 

and 100 (or all) observations. Selection of the occurrences at each sample size was 

repeated 5 times for each species and Maxent models were fitted with 15 training 

testing splits (75% training and 25% testing) of the occurrence data once with each 

predictor type resulting in two types of models – model fit using the untransformed 
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variables (untransformed models or MU and models fit using the transformed 

variables (transformed models or MT). 

 

 

Figure 2. 1 Examples of transformation of environmental variable. Spatial pattern of 
a) mean temperature of warmest quarter (left) and precipitation of wettest quarter 
(right), is transformed using the using the relationship presented in b), a plot of the I-
spline basis function for each variable. In b), the x-axis contains the raw values for 
the environmental variable that will be transformed to values along the y-axis, which 
is in units of Bray-Curtis distance. Thus, the c) transformed variables for Eastern 
North America contains information regarding community turnover (y-axis of plot b) 
based on the environmental gradient (x-axis of plot b). 
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Analysis of model performance 

I assessed the ability of the model to discriminate between known presences and 

background data and to map patterns of environmental suitability for the species as 

measures of model performance. To assess model discrimination, I used the 

continuous Boyce index, a presence-only method that assesses how much model 

predictions deviate from randomness (Boyce et al. 2002, Hirzel et al. 2006). The 

habitat suitability range obtained from Maxent is classified into multiple bins using a 

moving window and the ratio of predicted frequency and expected frequency 

(expected from a random distribution) of the evaluation points is calculated. The 

Boyce index ranges from -1 to 1 with negative values indicating an incorrect model, 

values close to zero indicating a model that is no different than random, and values 

close to 1 indicating a model whose predictions are compatible with the evaluation 

data. The Boyce index also enables the assessment of model quality in terms of model 

robustness across cross-validation sets and habitat suitability resolution. To assess the 

model’s ability to map spatial patterns of environmental suitability, I used the I 

similarity statistic that ranges from 0 to 1, where higher values indicate greater 

similarity (Warren et al. 2008). Although the I similarity statistic was conceived as a 

method to measure niche equivalency, it is an effective way of comparing the 

pairwise differences between the true habitat suitability to the predicted habitat 

suitability of the species. I calculated the Boyce index using the “ecospat” package 

(Di Cola et al. 2017) and the I similarity statistic using the “SDMTools” package 

(VanDerWal et al. 2014) in R. 
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I compared the overall value of the evaluation metrics for MU and MT using 

the Mann-Whitney-Wilcoxon test. I also assessed the relationship between predictor 

type, sample size, species range size, and dependence (only for simulated species) of 

the species on model performance using linear mixed models (LMMs) fit to a normal 

distribution in R using the “nlme” package (Pinhiero et al. 2017). For the LMMs, I 

used Boyce index, and I similarity statistic (for simulated species only) as the 

response variables. Species were considered random effects, while predictor type, 

sample size, range size, and dependence or independence were the fixed effects.  

Results 

The explanatory power of GDM varied amongst the three communities with the 

model in ENA having the highest percent deviance explained (87.38 %), followed by 

GDM for the FIA dataset (42.19 %) and finally in SACA (34.33 %). The accuracy of 

SDMs over all regions with respect to Boyce index varied widely from -1 to 1 

(Figures 2.2, 2.3, and 2.4). This was also the case for I similarity statistic (0.033 to 

1.00, Figures 2.2, 2.3). Although some models performed worse than random, the 

majority of models (> 90%) performed well, with a mean Boyce index of 0.60 ± 0.00 

for species in ENA (Fig.2.2), 0.74 ± 0.00 SACA (Fig.2.3), and 0.78 ± 0.00 FIA 

(Fig.2.4). The fitted models also produced mapped patterns that were similar to the 

true habitat suitability of the simulated communities. The mean vales of the I 

similarity statistic for species in ENA and SACA were 0.88 ± 0.00 (Fig.2.2) and 

0.75± 0.00 (Fig.2.3) respectively. 
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Comparisons of models fitted with untransformed and transformed predictors 

Assessment of the accuracy of the models across predictor type using the Mann 

Whitney Wilcoxon test showed that MT preformed better for all metrics in ENA, but 

the differences between the models were relatively small (Table.2.2). In SACA MT 

performed better with respect to I similarity statistic (p < 0.001; Table.2.2) but the 

differences between the two predictor types were not statistically significant for 

Boyce index (p = 0.887, Table.2.2). For SDMs fit to the inventory data, using the 

transformed predictors resulted in lower values of Boyce Index (p < 0.001; Table2.2). 

For the simulated communities, when the species were separated into climate-

dependent and community-dependent virtual species, in all cases using the 

transformed predictors lead to better model performance (Table.2.3). 

Effects of range size, sample size, and community dependence 

When model performance was assessed as a function of species range sizes, number 

of observations, and species dependence (for simulated species only), predictor type 

had a significant (positive) impact on model performance though the impact varied by 

data type, study region, and evaluation metric. Species range size had a significant 

and negative influence on model performance with respect to Boyce index in all 

communities; in other words, models for species with larger ranges had lower 

discrimination (Fig.2.5). The affect of species range was positive for the I similarity 

statistic for both simulated communities (Fig.2.6).  For species in both FIA and 

SACA, models fitted with fewer observations had reduced model performance 

(Figures 2.5 and 2.6). In ENA, SDMs with sample sizes between 21and 50 had higher 
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Boyce indices than models fit using between 51 and 100 occurrence records; in all 

other cases, lower sample sizes reduced model performance (Fig.2.5). Species 

dependence in the simulated communities did not affect the model when considered 

in isolation.  

 

Figure 2. 2 Comparisons of model performance for models fitted with untransformed 
and transformed predictor variables in ENA. The values of the evaluation metrics 
(Boyce index and I similarity statistic) are given on the y-axis and the x-axis shows 
the sample sizes. Values of both metrics closer to 1 indicate a good model. The lower 
and upper hinges represent the 25th and 75th percentiles respectively, and the whiskers 
extend no more then the furthest values 1.5* inter-quartile range from the hinges. 
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Interactive effects of predictor type, and species and data characteristics 

The LMMs were also used to assess the interactive affects of predictor type and other 

explanatory variables. The lowest sample sizes performed better when used with 

transformed variables for all communities when I similarity statistic were considered.  

 

 

Figure 2. 3 Comparisons of model performance for models fitted with untransformed 
and transformed predictor variables in SACA. The values of the evaluation metrics 
(Boyce index and I similarity statistic) are given on the y-axis and the x-axis shows 
the sample sizes. Values of both metrics closer to 1 indicate a good model. The lower 
and upper hinges represent the 25th and 75th percentiles respectively, and the whiskers 
extend no more then the furthest values 1.5* inter-quartile range from the hinges. 



 

 61 
 

However, the Boyce index showed mixed results for the influence of both the 

smallest and lowered model performance of medium sample sizes with transformed 

predictor variables (Fig.2.5). Larger ranges were associated with lowered Boyce 

index values when used with transformed variables in FIA and ENA (Fig.2.5). Boyce 

indices in SACA were not affected by range size, but were negatively related to I 

similarity statistic when used with transformed predictors (Figures 2.5 and 2.6). 

Species dependence characteristics had different results for the two virtual 

communities – in SACA, using transformed predictors for modeling climate-

dependent species consistently lowered model performance, while in ENA, it 

increased Boyce indices and I similarity statistics (Figures 2.5 and 2.6). 

 

Figure 2. 4 Comparison of model performance for models fitted with untransformed 
and transformed predictor variables in FIA. The Boyce index is given on the y-axis 
and the sample sizes on x-axis. Values closer to 1 indicate a good model. The lower 
and upper hinges represent the 25th and 75th percentiles respectively, and the whiskers 
extend no more then the furthest values 1.5* inter-quartile range from the hinges. 
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Table 2. 2 Summary statistics from Mann-Whitney-Wilcoxon test on model 
evaluation metrics. Comparison was made between models fitted with untransformed 
climate variables (MU) and models fitted with transformed variables (MT) for all 
species regardless of range, dependence, or number of observations. 

 
Community Evaluation metrics W Mean MU Mean MT 

ENA Boyce Index 4.43E+09 *** 0.921 0.933 
ENA I similarity statistix 5.18E+09 0.879 0.882 

SACA Boyce Index 2.47E+09 *** 0.842 0.848 
SACA I similarity statistix 2.84E+09 *** 0.749 0.753 

FIA Boyce Index 3.11E+08 0.838 0.841 
*** p << 0.001 
 
 
Table 2. 3 Summary statistics from Mann-Whitney-Wilcoxon test on model 
evaluation metrics based on species dependence. Comparison was made between 
models fitted with untransformed climate variables (MU) and models fitted with 
transformed variables (MT) for all species regardless of range or number of 
observations. 

 
Community Species 

dependence Evaluation metric W Mean 
MU 

Mean 
MT 

ENA Climate-
dependent Boyce Index 2.08E+09 *** 0.594 0.606 

ENA Community-
dependent Boyce Index 6.37E+08 *** 0.605 0.607 

ENA Climate-
dependent I similarity statistic 3.19E+09 * 0.883 0.887 

ENA Community-
dependent I similarity statistic 2.41E+08 * 0.862 0.865 

SA Climate-
dependent Boyce Index 1.04E+09 ** 0.734 0.722 

SA Community-
dependent Boyce Index 4.61E+08 *** 0.746 0.751 

SA Climate-
dependent I similarity statistic 1.61E+09 *** 0.750 0.753 

SA Community-
dependent I similarity statistic 1.73E+08 *** 0.747 0.752 

* p < 0.05, ** p < 0.01, *** p << 0.001 
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Figure 2. 5 Summary of results from Linear Mixed Models fitted with Boyce index as 
the response variable. The estimate for each predictor variable (listed on the y-axis) is 
represented by the colors and the significance of the estimate is given by the *s such 
that *** = p < 0.001.  
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Figure 2. 6 Summary of results from Linear Mixed Models fitted with I similarity 
statistic as the response variable. The estimate for each predictor variable (listed on 
the y-axis) is represented by the colors and the significance of the estimate is given by 
the *s such that ** = p < 0.01 and *** = p < 0.001. Note that this analysis was only 
conducted for the simulated communities. 

 

Discussion 

Although most SDM frameworks do not incorporate species co-occurrences and 

community characteristics, this additional information can be useful in describing the 

relationship between environmental variables and species responses (Elith et al. 2006, 

Maguire et al. 2016). Here, I compared SDMs fit with and without GDM transformed 

environmental variables to test whether community-level information improves 

predictions. In general, the results showed support for the use of transformed 

predictor variables in SDMs, especially when sample sizes are smaller; however, the 
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differences between model performance of models using the untransformed or 

transformed predictor variables, while significant, were generally small. 

Influence of transformed variables on model performance 

In all communities, models fit using the transformed environmental variables 

performed better. Instances of poorer performance were limited to the discrimination 

ability (Boyce index) of models fit to the FIA. This shows that using transformed 

environmental variables can improve model quality and lead to spatial predictions of 

habitat suitability that more closely match actual species distributions.  However, the 

differences in the mean values of model performance were small. Maxent is a robust 

model that has been shown to outperform other SDMs (Elith et al. 2006, Hernandez et 

al. 2006). However, the robustness of Maxent can sometimes come at the cost of 

overfitting due to high model complexity (Warren and Seifert 2011, Radosavljevic 

and Anderson 2014), especially when the default settings are used. Further study is 

required to determine whether other SDMs algorithms also realize improvements in 

model performance. As such, future analysis that includes a variety of modeling 

algorithms and with varying complexity may provide further insight into the degree 

of improvement that using transformed variables can provide. 

 

Influence of species characteristics and sample size 

Maxent models for species in all communities were influenced by species range size 

and the number of occurrences used to fit the models. The influence of number of 

occurrences on the model performances of various SDMs, including Maxent, has 
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been previously documented (Hernandez et al. 2006, Pearson et al. 2007, Wisz et al. 

2008). Though Maxent has been shown to perform well with sample sizes as low as 

5, lowered sample size can impact the individual sites that are included in the sample 

and affect model performance as a reduction (Hernandez et al. 2006, Pearson et al. 

2007). My results show that higher sample sizes lead to better model performance and 

agree with results from previous studies (Stockwell and Peterson 2002, Hernandez et 

al. 2006, Pearson et al. 2007, Wisz et al. 2008).  

SDMs fitted with the smallest sample size performed better when used in 

concert with transformed environmental variables. This improvement in performance 

likely can be attributed to the additional ecological information given by transformed 

environmental variables (compared to untransformed variables), which may 

supplement information that is missing due to the lower sample size. For instance, 

species in a community might follow similar distribution patterns as a result of which 

the transformed environmental variables can supplement the information provided by 

presences.   

In addition to sample size, range size of a species was also important, though 

its effect was relatively small. Previous studies have found that models perform better 

with smaller-ranged species (Hernandez et al. 2006, Tessarolo et al. 2014), and 

suggest that species with larger ranges also need a larger number of observations (van 

Proosdij et al. 2016). I found that SDMs of species with smaller ranges performed 

better, especially when used with transformed environmental predictors. As such, 

models of small-ranged species can be improved with the use of transformed 



 

 67 
 

environmental variables. Although transformed variables improve model 

performance, this is not uniformly true for all regions and range sizes. For example, 

in this study, models for species in SACA did not benefit from the use of transformed 

environmental variables, while those for ENA performed better with respect to Boyce 

index and I similarity statistic. The differences in regional characteristics may also be 

exaggerated by the niche-breadths of the species simulated in ENA and SACA. As 

such, the affect of range sizes may be small, but still needs to be taken into 

consideration when modeling species distributions.  

Species dependence also impacted model performance, but not uniformly for 

the two virtual communities. In SACA, SDMs for community-dependent species 

performed better when used with transformed variables, while those for climate-

dependent species saw no improvement. On the other hand, SDMs for climate-

dependent species in ENA performed better with transformed predictor variables.  

Conclusion 

Overall, this study suggests that transformed environmental variables can improve 

Maxent models, especially when modeling the distributions of species with relatively 

small ranges and/or relatively few occurrence records. Future studies that consider 

other SDM algorithms would help provide insight into which algorithms would most 

benefit from the use of transformed predictor variables. More broadly, my results 

suggest a potential means of harnessing community-level information for the 

prediction of individual species distributions.   
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APPENDICES 

Appendix 1.1. Results from Procrustes analysis  
 
 
 

 

Appendix 1.1.1. Mapped patterns of residuals of Procrustes analysis for biased and 
unbiased models in ENA. Higher values show the areas of lower agreement between 
models fitted to the unbiased and the biased data. 

Wnone Wrichness Wobs/exp 
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Appendix 1.1.2. Mapped patterns of residuals of Procrustes analysis for biased and 
unbiased models in SACA. Higher values show the areas of lower agreement between 
models fitted to the unbiased and the biased data. 
 

 

Wnone Wrichness Wobs/exp 
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Appendix 1.1.3. Mapped patterns of residuals of Procrustes analysis for biased and 
unbiased models in FIA. Higher values show the areas of lower agreement between 
models fitted to the unbiased and the biased data. 
 

Wnone Wrichness Wobs/exp 
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Appendix 2.1. Transformation functions obtained GDM models 
 

 
 

Appendix 2.1.1 Splines obtained from GDM that were then used to transform raw 
environmental variables for ENA. The x-axis shows the raw values of the 
environmental variable and the y-axis shows the transformed value. 
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Appendix 2.1.2 Splines obtained from GDM that were then used to transform raw 
environmental variables for SACA. The x-axis shows the raw values of the 
environmental variable and the y-axis shows the transformed value. 
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Appendix 2.1.3 Splines obtained from GDM fitted data from FIA. These functions 
used to transform raw environmental variables. The x-axis shows the raw values of 
the environmental variable and the y-axis shows the transformed value. 
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