
The Center for Satellite and Hybrid Communication Networks is a NASA-sponsored Commercial Space
Center also supported by the Department of Defense (DOD), industry, the State of Maryland, the

University of Maryland and the Institute for Systems Research. This document is a technical report in
the CSHCN series originating at the University of Maryland.

Web site http://www.isr.umd.edu/CSHCN/

TECHNICAL RESEARCH REPORT

Designing Broadcast Schedules for Information
Dissemination through Broadcasting

by Chi-Jiun Su, Leandros Tassiulas

CSHCN T.R. 97-30
(ISR T.R. 97-79)

Broadcast Scheduling for Information Distribution�y

Chi-Jiun Suz Leandros Tassiulasx Vassilis Tsotras

cjsu@isr.umd.edu leandros@isr.umd.edu tsotras@aegean.poly.edu

Electrical Engineering Dept. Electrical Engineering Dept. Computer Science Dept.

Polytechnic University University of Maryland Polytechnic University

Brooklyn NY 11201 College Park MD 20742 Brooklyn NY 11201

Abstract

Broadcast data delivery is encountered in many applications where there is a need to dissem-
inate information to a large user community in a wireless asymmetric communication environ-
ment. In this paper, we consider the problem of scheduling the data broadcast such that average
response time experienced by the users is low. In a push-based system, where the users cannot
place requests directly to the server and the broadcast schedule should be determined based
solely on the access probabilities, we formulate a deterministic dynamic optimization problem,
the solution of which provides the optimal broadcast schedule. Properties of the optimal solution
are obtained and then we propose a suboptimal dynamic policy which achieves average response
time close to the lower bound. The policy has low complexity, it is adaptive to changing access
statistics, and is easily generalizable to multiple broadcast channels. In a pull-based system
where the users may place requests about information items directly to the server, the schedul-
ing can be based on the number of pending requests for each item. Suboptimal policies with
good performance are obtained in this case as well. Finally, it is demonstrated by a numerical
study that as the request generation rate increases, the achievable performance of the pull- and
push-based systems becomes almost identical.

�This research was supported in part by an NSF CAREER award NCR-9502614, by the AFOSR under grant
95-1-0061, by NSF grant IRI-9509527 and by the NYState as part of its Center for Advanced Technology in
Telecommunications.

yPart of this paper was presented in INFOCOM'97, Kobe, Japan
zThe author is currently visiting the University of Maryland, College Park.
xCorrespondence author

1

1 Introduction

Broadcast data delivery is rapidly becoming the method of choice for disseminating information

to a massive user population in many new application areas where client-to-server communication

is limited. This is due to communication asymmetry | physical asymmetry and/or information

ow asymmetry | inherent in these applications. The main advantage of broadcast delivery is

its scalability: it is independent of the number of users the system is serving. Some examples

of the applications in which data broadcasting plays an important role are tra�c information

systems [18], information dispersal systems for volatile time-sensitive information such as stock

prices and weather information [16], and news distribution systems [11]. In [12] and [13], data

broadcasting is also considered as an e�cient way, in terms of energy and bandwidth, for the

distribution of information to a large number of users in a wireless communication environment.

Server

CB Time

"page A"

A

Broadcast Schedule

One Slot

User Community

Figure 1: A Broadcast Data Delivery System in a Wireless Communication Environment

In a broadcast data delivery system, depicted in �gure 1, a server is continuously and repeatedly

broadcasting data to a user community. There are two basic architectures for a broadcast delivery

system: push-based broadcast delivery in which users cannot inform the server about what they

actually need due to the lack of, or, limited uplink communication channel from the users to the

server and pull-based broadcast delivery in which there is an uplink channel available through which

a user can request from the server what it is waiting for.

Information broadcast by the server is organized into units called pages. Time on the broadcast

channel is divided into slots of same size that is equal to the time to broadcast a page. When a

user needs a certain page, it waits until the desired page appears on the broadcast and captures

it for use. Hence, there is some latency from the time the need of a page arises until the time

the page is actually broadcast by the server. This latency depends on the broadcast schedule. For

a push-based system, due to the limitation imposed by the asymmetric communication channel,

the server may know only the past access pattern of the users or an estimate of the user's access

probability. The server relies on this information and broadcasts the pages according to a schedule

that results in low latency for the user's requests. For the pull-based system, the server knows the

2

exact number of pending requests for each page at each slot and can make use of the page request

backlog information to decide which page to broadcast at each slot so as to minimize the response

time experienced by a user.

Two major issues arise in data delivery systems: a) the organization of the data in a broadcast

schedule so as to minimize the average response time ([10], [5], [6], [21], [1], [2], [8], [14], [19] and

[9]) and b) the user's memory management in order to reduce the mismatch between the broadcast

schedule and user's access pattern ([20], [22], [1], [3] and [4]). We addressed the latter problem

in [20] where the optimal memory management policy was identi�ed. Here, we concentrate on the

�rst problem, i.e., how to design broadcast schedules in order to minimize the average response

time of user's requests for both push-based and pull-based systems.

The problem of schedule design for broadcast information distribution systems has been stud-

ied in the past ([5], [6], [9], [10], and [21]). The motivation for that work was teletext systems.

In [6] and [5], Ammar and Wong, using a stochastic Markov Decision Process (MDP) formulation,

concluded that the optimal schedule for a push-based broadcast system will be periodic. They also

proposed a method for designing periodic schedules with near optimal performance. In [9], the

pull-based system was studied and several scheduling policies were evaluated.

In this paper, we formulate the scheduling problem in a push-based system as a deterministic

MDP. Dynamic scheduling policies are considered where the scheduling decision at a slot is based

on the elapsed time since the last transmission of each page. Properties of the optimal policy are

identi�ed. Furthermore, a class of policies are identi�ed which have near optimal performance, of

the same level or slightly better than the periodic scheduling policies proposed in [6]. Our policies

have the advantage of being simple to implement in a real time fashion, adaptive to changes in the

access statistics, and readily generalizable to systems with multiple parallel broadcast channels. In a

pull-based system, the problem is formulated as a stochastic MDP. Properties of the optimal policy

are identi�ed and variations of the real-time scheduling schemes considered for the push-based

system are evaluated and compared with previous results. Comparing the performance of push-

based and pull-based systems, we observed that in certain cases and for su�ciently large request

generation rates, the performance of the two systems is at about the same levels. That is, the

availability of feedback channel for request placement capability does not improve the performance

signi�cantly at heavy load.

The paper is organized as follows. The problem is formulated in section 2. In section 3, the push-

based system is studied. The pull-based system is investigated in section 4. Finally, generalization

of our results for a multi-channel system is given in section 5.

3

2 The Broadcast Model

Slot n is the interval [n; n + 1). At each slot n, one page is broadcast in the channel and it is

denoted by un, un 2 f1; :::;Mg where M is the total number of possible pages. (The results easily

generalize to the case of J parallel broadcast channels as it is discussed in section 5).

Requests for pages are generated by the users. A request for page i generated at time t will

be satis�ed at the next slot after t at which page i will be broadcast. Let li(t) denote the number

of slots from the end of slot n, where t 2 [n; n + 1), until the end of the next slot after n at

which the page is broadcast as shown in �gure 2. Note that the latency of the request is equal to

li(t)+(n+ 1� t). Since the residual time n+1� t from the generation of the request until the end

of the slot is independent of the broadcast schedule, we will ignore it in the following and we will

use li(t) as the measure of the latency that will be experienced by a page i request generated at t.

l i(t)

i i
t

i
w(n)

n n+1

Figure 2: Illustration of li(t) and wi(n) for a sequence of page i broadcasts

Let di(k; t) be the delay, that has been experienced by a page i request generated at time k,

k � t, until time t.

di(k; t) = min
�
li(k); t� k0

�
where k 2 [k0 � 1; k0). Denote the sequence of times at which page i requests are generated as

tin; n = 1; 2; ::: for each page i = 1; :::;M . The aggregate delay, Di(t), of all page i requests up to

time t, is

Di(t) =
X
tin�t

di(t
i
n; t):

Without loss of generality we assume in the rest of the paper that t is an integer. Let Xi(n)

be the total number of pending requests for page i at the beginning of slot n. The aggregate delay

experienced by all page i requests up to time t is related to the page i request backlog as follows:

Di(t) =
t�1X
s=0

Xi(s) (1)

The above formula is essentially Little's law for our system and its validity can be easily veri�ed

by �gure 3 which shows a sample path of the evolution of page i request generation. The request

generation instants correspond to the jumps of the curve which are of magnitude 1. The aggregate

4

i i

li(t2)

1
2

st4t2t1 t

li(t1) t� t
0
k

Xi(s)

li(t4)

tkt
0
k

Figure 3: The evolution of page i request backlog up to time t is depicted. At the end of each page

i broadcast, all pending requests except those that are generated during the page i transmission are

granted. The delay up to time t, di(tj; t), of page i request generated at time tj is also depicted .

delay of page i requests up to time t equals the total shaded area under the curve in the �gure.

Note that all the page i requests generated during a page i broadcast are assumed to have to wait

until the next page i transmission.

Consider the aggregate stream of page requests generated by the whole user population. In the

�nite user population case, the rate of page request generation is a�ected by the number of users

who are waiting for a page broadcast by the server. Since they will not generate a new page request

while they are waiting, the rate of request generation will drop as the number of pending requests

increases. If the user population though is large enough and an individual user request generation

rate is appropriately normalized such that the aggregate rate is equal to �, then we may assume

that the aggregate page request generation rate remains constant and independent of the number

of pending requests while the process of request generation is stationary.

A request is for page i with probability bi, i = 1; :::;M , where
PM

i=1 bi = 1. Hence, requests for

page i are generated according to a stationary process with rate �i = bi �. Let Ai(n) be the total

number of requests for page i generated during slot n. The request backlog for page i evolves as

follows:

Xi(n+ 1) =

(
Ai(n) if un = i
Xi(n) +Ai(n) otherwise

(2)

The push-based and pull-based systems are considered separately next.

3 The Push-based Broadcast System

When the server is not aware about the user's requests, the broadcast schedule is designed based

only on the distribution of page requests, that is, bi, i = 1; :::;M . Designing the broadcast schedule

to minimize delay is a static optimization problem that can be solved o�-line. In [5], a schedule

design method was proposed that results in schedules with good performance. Here, we formulate

the schedule design as a deterministic dynamic optimization problem. The solution to the dynamic

5

problem leads to computationally simple on-line scheduling policies.

Let wi(n) be the elapsed time from the beginning of the last transmission of page i before n

until the beginning of slot n, as illustrated in �gure 2. The evolution of wi(n) can be given as

follows:

wi(n+ 1) =

(
1 if un = i
wi(n) + 1 otherwise

Assume that wi(0) = 1 for i = 1; :::;M without loss of generality. Hence, w(n), n = 0; 1; ::: is a

deterministic MDP controlled by un.

By taking expectations on both sides of equation (1), the expected aggregate delay of page i

requests up to time t is

Di(t) =
tX

s=1

Xi(s)

where a variable with a bar on top represents the expected value of the variable.

The pending requests for page i, Xi(s), are accumulated starting from the beginning of the last

page i transmission before s. Since pages are generated by a stationary process with rate �i, we

have Xi(s) = �iwi(s). The evolution of the expected request backlog of page i is shown in �gure 4.

t1

t1 t2 kt

 -t)(t 12λ i

i i

X (s)
i

λ i

t s0

i

Figure 4: The expected backlog is depicted as a function of time from time 0 to time t. At the end

of each page i broadcast, there is some remaining page i request backlog (shaded portion under the

curve) which accounts for the requests generated during the page i transmission.

The expected aggregate delay can be written as

Di(t) =
tX

n=1

�iwi(n):

The long-term average delay is

Du = lim
T!1

sup
1

T

TX
n=1

MX
i=1

�iwi(n) (3)

where the superscript u signi�es the dependence on the transmission schedule. The optimal trans-

mission schedule is the one that minimizes the long-term average delay in (3).

6

From the MDP theory [7], it follows that the optimal schedule can be speci�ed in terms of a

scheduling policy, that is, a function u :W ! U such that

un = u (w(n))

where W = NM and U = f1; :::;Mg. Hence, characterizing the optimal schedule is equivalent to

characterizing the function u(�). In the following, we show some properties of the optimal schedule.

3.1 Properties of the Optimal Policy

In order to study the optimization problem associated with the long run average cost (3), we need

to consider �rst the optimization problem associated with the �-discounted cost. The �-discounted

cost associated with a policy u is de�ned by

V �
u (w)

4
=

1X
t=0

�tc (w(t); u(t)) ; w(0) = w; w 2 W; 0 < � < 1: (4)

c (w; u) is the cost incurred when the system is in state w and the action taken (the page broadcast

by the server) is u, u 2 U and is given by

c (w; u)
4
=

MX
i=1

1fi 6= ug wi�i

where 1f:g is an indicator function.

A scheduling policy, u�, is said to be �-optimal if it minimizes (4), i.e., if for any other policy u

V �

u�
(w) � V �

u (w); w 2 W:

It is well known [7] that for the cost structure of our problem a stationary �-optimal policy exists.

The �-optimal cost is by de�nition

V �(w) = inf
u
V �
u (w) w 2 W

and satis�es the dynamic programming equation which, for our problem, is

V �(w) =
MX
i=1

�iwi +min
u2U

n
��uwu + �V �(w + 1� wueu)

o

where 1 is a vector with all entries equal to one and ei is a vector with all its elements equal to

zero except the ith element which is one. The �-optimal scheduling policy is

u�(w) = argmin
u2U

n
��uwu + �V �(w + 1� wueu)

o
: (5)

7

The �rst property of the �-optimal scheduling policy is that the priority of a page i to be

scheduled for transmission at a slot n increases with wi(n). The threshold structure of the optimal

policy, as it is expressed in the following lemma, re
ects the above property.

Lemma 1 If u�
�
w1
�
= j, then for all w2 such that w2

l = w1
l , l 6= j, l = 1; :::;M , and w2

j � w1
j ,

we have u�
�
w2
�
= j.

Proof: According to the assumption u�(w1) = j and from (5),

��jw
1
j + �V �(w1 + 1� w1

jej) � ��kw
1
k + �V �(w1 + 1�w1

kek) for k = 1; :::;M (6)

It is enough to show

��jw
2
j + �V �(w2 + 1� w2

jej) � ��kw
2
k + �V �(w2 + 1�w2

kek) for k = 1; :::;M (7)

Since w1
l = w2

l for l 6= j; l 2 f1; :::;Mg and w1
j � w2

j , from (6) we have

��jw
2
j + �V �(w2 + 1� w2

jej) � ��kw
2
k + �V �(w1 + 1�w1

kek) for k = 1; :::;M (8)

Note that if the same scheduling decisions are applied to two systems A and B with initial states

w1+1�w1
kek and w2+1�w2

kek respectively, then the instantaneous cost in system A is less than

or equal to that in system B. It can be easily concluded that

V �(w1 + 1� w1
kek) � V �(w2 + 1� w2

kek): (9)

From (8) and (9), (7) follows. 3

The next property is that, among the pages with the same request generation rates, priority is

given to the page with the largest wi(n).

Lemma 2 . If �i = �j and wi < wj, then u�(w) 6= i.

Proof: By contradiction, assume that u�(w) = i. Then,

��iwi + �V �(w + 1� wiei) � ��jwj + �V �(w + 1� wjej) for j = 1; :::;M (10)

Since �i = �j and wi < wj, from (10)

V �(w + 1�wiei) < V �(w + 1� wjej):

If we apply the same scheduling decisions to two systems A and B with initial states w+ 1�wjej

and w + 1 � wiei respectively except that page i is scheduled to transmit for system A whenever

8

page j is scheduled for system B and vice versa, the instantaneous cost in system A is less than or

equal to that in system B. Then it follows that

V �(w + 1�wjej) � V �(w + 1� wiei):

Therefore, it contradicts the assumption that u�(w) = i and the lemma is proved. 3

Using standard techniques from the theory of Dynamic Programming we can extend the results

of lemma 1 and 2 from the �-discounted cost to the long run average cost [17]. We state the results

for the long run average cost optimal policies without a proof for the sake of brevity.

Theorem 1 If u
�
w1
�
= j minimizes the long run average cost (3), then for all w2 such that

w2
l = w1

l , l 6= j, l = 1; :::;M , and w2
j � w1

j , we have u
�
w2
�
= j as the optimal solution for (3).

Theorem 2 . If �i = �j and wi < wj, then u(w) = i does not optimize the long run average cost

(3).

From theorem 2, it follows immediately that if all pages have the same request generation rate,

the page i with the largest wi(n) will be transmitted at each slot n.

If there are only two pages, then the optimal policy can be completely characterized based on

the threshold property expressed in theorem 1. Without loss of generality assume that �2 � �1.

Theorem 3 The optimal policy, when there are only two pages, is periodic with a period consisting

of one transmission of page 1 followed by m (m � 1) transmissions of page 2 where

m = max

�
1 ; argmin

l2S
Do(l)

�
:

Do(:) is the mean response time of such a policy and S =
njq

2�2
�1

� 1
k
;
lq

2�2
�1

� 1
mo

.

Proof: Note that we can always improve a schedule with two consecutive transmission of page 1

by cancelling one of the transmissions and a schedule with di�erent inter-appearance gaps between

the transmissions of page 1 by selecting the gap with the lowest cost and constructing a schedule

with identical gaps. Therefore, we only need to consider periodic policies with a period consisting

of m consecutive transmissions of page 2 followed by a single transmission of page 1.

Mean response time of the periodic schedule with period m+ 1 is

Davg =
1

(m+ 1)

�
1

2
�1(m+ 1)2 + (m� 1)

1

2
�2 +

1

2
�22

2
�

9

Since Davg is a convex function of m,

argmin
m

Davg =

s
2�2
�1

� 1

and the theorem is proved. 3

Specifying the exact form of the optimal scheduling policy appears to be an intractable problem

in general. In the following, we specify a class of scheduling policies that incorporate some of the

characteristics of the optimal policy shown above and they turn out to achieve average response

time close to the lower bound.

3.2 Near Optimal Real Time Scheduling

There are two quantities related to each page i that a�ect the scheduling decision at each slot n.

The elapsed time wi(n) since the last transmission of page i and the rate �i of request generation

for page i. The likelihood of page i being transmitted at n increases with �i and wi(n). We

consider the policies where the broadcast scheduling is determined based on priority indices of the

pages. The index of page i is the product �
i wi(n) where
 is an exponent that re
ects the relative

importance of �i versus wi(n) in determining the priority. The page scheduled to be broadcast at

slot n is

un = arg max
i2f1;:::;Mg

�
i wi(n) (11)

In the rest we refer to the above class of policies as the priority index policies. Note that when

all the pages have identical request generation rates, the priority index policies for all
's generate

uniform periodic schedules which are optimal in this case.

Certain policies are worth distinguishing among the priority index policies. For
 = 0, the

dependence of the scheduling decision on the request generation rate vanishes and the resulting

schedule is periodic with each page being transmitted once in each period. For
 = 1, the index

�iwi(n) of page i is equal to the expected backlog of page i, Xi(n), and the policy schedules the page

with the largest backlog at each slot n. For
 = 0:5, the index of page i is �0:5wi(n) =
q
�iw2

i (n).

Note that 1
2�iw

2
i (n) is the aggregate expected delay experienced by page i requests since the last

transmission of page i before slot n. Hence, for
 = 0:5, the page with the largest Mean Aggregate

Delay (MAD) is selected for transmission.

We performed an extensive numerical study of the performance of the system under the priority

index policies for various values of
. It turns out that the MAD policy (
 = 0:5) has the best

performance in most cases. Furthermore, the performance of MAD is very close to the lower bound

on the mean response time, that was given in [5].

10

3.2.1 Performance Comparisons Among Priority Index Policies

Comparisons are made for M = 100 to M = 1000 and
 = 0 to 1.0 for the following two cases.

In the �rst case, user access probabilities are assumed to follow the zipf distribution version I [23],

that is, bi =
c
i
; i = 1; :::;M where c is a normalizing constant given by c = (

PM
j=1 1=j)

�1. In

the second case, we assume page access probabilities follow the zipf distribution version II [15]

where bi =
i��(i�1)�

M� where i = 1; :::;M . As � increases, the access pattern becomes increasingly

skewed. The value of � used in this experiment is log(0:8)= log(0:2). Zipf distribution is typically

used to model non-uniform access patterns. The mean response time for the heuristic policies is

also compared to the lower bound for a periodic broadcast schedule which is obtained in [5] and is

given by

1

2

MX
i=1

p
bi

!2

:

Table 1: Mean Response Time in slots for di�erent values of
 using zipf distribution I (L. B.

denotes Lower Bound)

M 1 0.75 0.6 0.5 0.25 0 L. B.

100 48.49 36.61 33.82 33.36 37.60 50.0 33.31

200 97.56 68.92 62.52 61.41 70.42 100.0 61.36

300 145.21 99.75 89.58 87.81 101.72 150.0 87.77

400 193.69 129.72 115.67 113.22 131.65 200.0 113.18

500 244.29 159.06 141.07 137.93 161.15 250.0 137.90

600 295.68 187.86 165.93 162.11 190.65 300.0 162.08

700 343.00 216.37 190.37 185.86 218.91 350.0 185.83

800 389.06 244.60 214.45 209.25 246.71 400.0 209.21

900 437.05 272.26 238.23 232.34 274.10 450.0 232.29

1000 486.86 299.88 261.74 255.15 301.38 500.0 255.13

Table 2: Mean Response Time in slots for di�erent values of
 using zipf distribution II

M 1 0.75 0.6 0.5 0.25 0 L. B.

100 46.63 27.02 23.63 23.14 28.31 50.0 23.08

200 94.62 53.08 46.19 45.13 55.28 100.0 45.03

300 136.23 78.94 68.57 66.95 81.55 150.0 66.86

400 175.98 105.59 91.01 88.69 108.02 200.0 88.58

500 216.31 130.74 113.23 110.35 134.00 250.0 110.25

600 262.66 156.73 135.43 132.06 160.41 300.0 131.94

700 310.82 183.71 157.65 153.66 186.10 350.0 153.57

800 359.62 207.51 179.84 175.22 211.90 400.0 175.18

900 409.25 233.77 202.00 196.80 237.27 450.0 196.77

1000 459.46 260.59 224.17 218.38 262.52 500.0 218.32

According to the results from Table 1 and 2, the MAD policy (
 = 0:5) yields the best per-

formance which is also close to the lower bound for both distributions. MAD also gave the best

mean response time among the priority index polices for various distributions we have tried (not

mentioned here) and its performance is consistently close to the lower bound.

11

Although the algorithm proposed in [5] also yields a mean response time close to the lower

bound, the MAD policy has a number of advantages over other existing methods for designing

broadcast schedules. First, it automatically generates broadcast schedules without requiring to

select the three basic parameters of a periodic schedule | period length, appearance frequencies

and inter-appearance gaps of each page in one period. Second, theMAD policy does not need to

perform any precomputation before the broadcast. It selects the page to transmit at each slot

during the broadcast according to the given user's access probabilities. Thus, the policy can adapt

the schedules as the user access pattern changes. Third, as it is shown in section 5, it can be

generalized easily for multi-channel systems.

Moreover, the MAD policy is easy to implement; it only needs to keep M values of wi(n) at

each slot n in addition to the access probabilities and the only operations required to perform at

each slot n are to update the values of wi(n) and to determine the page with the largest expected

aggregate delay of the current request backlog. Therefore, both the computational complexity and

the storage requirement of the MAD policy is just O(M). On the other hand, the approach in [5] is

an o�-line algorithm which has to construct the whole schedule and store it before the broadcast.

This may require a considerable storage when the period of a schedule is large, which is usually

the case when there are a large number of pages and page access probabilities are non-uniform.

Furthermore, it is easy to show that the MAD policy generates schedules that are periodic.

4 The Pull-based Broadcast System

When there is an uplink channel available for the users to submit page requests, the server knows

the exact number of pending requests for each page at each slot and it can make the scheduling

decision based on that information. The request backlog vector X(n) evolves according to equation

(2) as well. The scheduling decision un at slot n may depend on the backlog evolution up to slot

n. The optimal scheduling policy is the one that minimizes

lim
T!1

sup
1

T

T�1X
n=0

MX
i=1

Xi(n): (12)

The MDP theory suggests that the optimal scheduling policy can be speci�ed in terms of a

function u : X ! f0; 1; :::;Mg such that

un = u (X(n))

where X = ZM
+ .

12

The transition probability of the state process is given by

PXY (u) =

(
pA0 if Y = X +A0 �Xueu
0 Otherwise

where pA0 is the probability that each element A0i, i = 1; :::;M , of the vector A0 is equal to the

number of page i requests generated in one slot. The cost incurred when the system is in state X

and the action taken is u, u 2 U , is

c (X;u)
4
=

MX
i=1

1fi 6= ug Xi:

The �-discounted cost associated with a policy u 2 U can be de�ned in the similar way as in

section 3 and the �-optimal cost associated with scheduling policies satis�es the following dynamic

programming equation:

V �(X) = min
u2U

8><
>:c(X;u) + �

X
A02ZM

+

pA0V �(X +A0 �Xueu)

9>=
>; :

The �-optimal scheduling policy is given by

u� = argmin
u2U

8><
>:c(X;u) + �

X
A02ZM

+

pA0V �(X +A0 �Xueu)

9>=
>; : (13)

The �-optimal scheduling policy exhibits properties similar to those of the push-based system.

The �rst property is that the priority of a page i to be scheduled for transmission at a slot n

increases with Xi(n) and it is expressed in the following lemma.

Lemma 3 . If u�(X1) = j, then for all X2 such that X2
l = X1

l , l 6= j, l = 1; :::;M , and X2
j � X1

j ,

we have u�(X2) = j.

Proof: Since we have assumed that u�(X1) = j and from (13),

�X1
j +�

X
A02ZM

+

pA0V �(X1+A0�X1
j ej) � �X1

k+�
X

A02ZM
+

pA0V �(X1+A0�X1
kek) for k = 1; :::;M

(14)

To prove the lemma, we only need to show that

�X2
j +�

X
A02ZM

+

pA0V �(X2+A0�X2
j ej) � �X2

k+�
X

A02ZM
+

pA0V �(X2+A0�X2
kek) for k = 1; :::;M

(15)

13

Since X2
l = X1

l for l 6= j, l = 1; :::;M , and X2
j � X1

j , from (14) we have

�X2
j +�

X
A02ZM

+

pA0V �(X2+A0�X2
j ej) � �X2

k+�
X

A02ZM
+

pA0V �(X1+A0�X1
kek) for k = 1; :::;M

(16)

If the same scheduling decisions are applied to two systems A and B with initial statesX1+A0�X1
kek

and X2 +A0 �X2
kek respectively and the request generation process is identical for both systems,

then since X1+A0�X1
kek � X2+A0�X2

kek in element-wise sense, it follows that the �-discounted

cost in system A is less than or equal to that in system B,

V �(X1 +A0 �X1
kek) � V �(X2 +A0 �X2

kek) 8A0 2 ZM
+ : (17)

From (16) and (17), (15) follows. 3

Another property of the �-optimal scheduling policy is that among the pages with the same

request generation rate, priority for transmission is given to the page with the largest backlog.

Lemma 4 . If �i = �j and Xi < Xj, then u�(X) 6= i.

Proof: We will give the proof by contradiction. Assume u� = i. Then,

�Xi+�
X

A02ZM
+

pA0V �(X+A0�Xiei) � �Xj+�
X

A02ZM
+

pA0V �(X+A0�Xjej) for j = 1; :::;M (18)

Since Xi < Xj , from (18)

X
A02ZM

+

pA0V �(X +A0 �Xiei) <
X

A02ZM
+

pA0V �(X +A0 �Xjej)

If we apply the same scheduling decisions to two systems A and B with initial statesX+A0�Xjej

and X +A0 �Xiei respectively except that page i is scheduled to transmit for system A whenever

page j is scheduled for system B and vice versa and both systems have the identical request

generation process, then the �-discounted cost in system A is less than or equal to that in system

B,

V �(X +A0 �Xjej) � V �(X +A0 �Xiei) 8A0 2 ZM
+ :

Therefore, it contradicts the assumption that u�(w) = i and the lemma is proved. 3

The following theorems follow from lemmas 3 and 4 using standard methods to relate the

�-discounted and the long run average cost problems in [17].

14

Theorem 4 If u
�
X1
�
= j minimizes the long run average cost (12), then for all X2 such that

X2
l = X1

l , l 6= j, l = 1; :::;M , and X2
j � X1

j , we have u
�
X2
�
= j as the optimal solution for (12).

Theorem 5 . If �i = �j and Xi < Xj, then u(X) = i does not minimize the long run average

cost (12).

An immediate consequence of theorem 5 is that if all pages have the same request generation

rate, the optimal policy is to broadcast the page with the largest backlog at each slot.

For arbitrary request generation rates, the optimal policy appears to resist a simple charac-

terization. We studied a class of heuristic scheduling policies which are of the same
avor as the

priority index policies employed in the push-based system.

They are described as follows:

un = arg max
i2f1;:::;Mg

��
i Xi(n)

Similar to the push-based system, when all the request generation rates are equal, the priority

index scheduling policies also produce the optimal schedule for the pull-based system.

A number of heuristic scheduling policies for the push-based system were proposed in [9]. Two

of them are the Most Request First (MRFL) policy, which selects the page with the largest number

of pending requests and breaks ties in favor of the lowest probability page, and the Longest Wait

First (LWF) policy, which selects the page for which the total waiting time of pending requests

is the largest. The MRFL policy corresponds to the priority index policy with
 = 0. Since,

according to the simulation results in [9], the LWF policy yields signi�cantly better response time

characteristics than other heuristic policies, we compare the priority index policies to the LWF

policy by simulation. The results for 1000 pages with zipf I and zipf II distribution are shown in

�gure 5 and 6 respectively.

For light load, the mean response time is insensitive to the particular scheduling algorithm

employed. As the request generation rates increases, the policy with
 = 0:5 exhibits the best

mean response time (even slightly better than the LWF policy) for all aggregate request generation

rates. The policy with
 = 0:4 performs close to the LWF policy and the policy with
 = 1:0 gives

the worst performance. Note that the policy with
 = 0:5 is easier to implement than the LWF

policy since, at each slot, it only needs to keep track of the request backlog for each page while the

LWF policy has to compute the total waiting time up to the current slot for each page.

4.1 Performance Limits of a Pull-Based Broadcast System

A pull-based system requires the availability of an uplink channel and has the undesirable property

that the uplink channel may become overloaded under heavy aggregate request generation rate.

15

0

50

100

150

200

250

300

350

400

450

500

20 40 60 80 100
M

ea
n

R
es

po
ns

e
T

im
e

Request Generation Rate

lwf
gamma=0

gamma=0.25
gamma=0.4
gamma=0.5

gamma=0.75
gamma=1

Figure 5: Mean Response Time (in slots) vs. Aggregate Request Generation Rate (requests per slot)

for di�erent values of
 using zipf distribution I for 1000 pages

0

50

100

150

200

250

300

350

400

450

500

20 40 60 80 100

M
ea

n
R

es
po

ns
e

T
im

e

Request Generation Rate

lwf
gamma=0

gamma=0.25
gamma=0.4
gamma=0.5

gamma=0.75
gamma=1

Figure 6: Mean Response Time (in slots) vs. Aggregate Request Generation Rate (requests per slot)

for di�erent values of
 using zipf distribution II for 1000 pages

Our simulation results show that the mean response time of a pull-based system approaches that

of a push-based system as the aggregate request generation rate increases.

Figure 7 shows the simulation results for the case of equal request generation rates (�i is the

same for all pages). As the aggregate request generation rate increases beyond 20, the mean

response time of the pull-based system approaches half of the total number of pages which happens

to be the mean response time of the optimal schedule for the push-based system. The intuitive

explanation is as follows. For the case with the same generation rates for all pages, the optimal

schedule for the push-based system is to broadcast the page with the largest wi(n) at each slot n

while that for the pull-based system transmits the page with the largest number of pending requests

Xi(n) at each slot n. The expected value of page i request backlog increases linearly with both

wi(n) and the page i request generation rate �i. Therefore, as the aggregate request generation rate

16

increases, the probability that the backlog of page i in the pull-based system corresponding to the

page with the largest wi(n) in the push-based system is the largest among the backlogs of all other

pages in the pull-based system increases towards one as well. Hence, the probability that the page

transmitted by both the push-based system and the pull-based system is the same, approaches one

as the aggregate generation rate increases.

0

50

100

200

240
250

0 20 50 80

M
ea

n
R

es
po

ns
e

T
im

e
in

 S
lo

t

Generation Rate (Requests per Slot)

Figure 7: Mean Response Time (in slots) vs. Aggregate Request Generation Rate (in request per

slot) for 500 pages with equal generation rates

For the case with unequal request generation rates, consider the policy with
 = 0:5 as an

example for both pull-based and push-based systems. From �gures 5 and 6, the mean response

time of the policy with
 = 0:5 for 1000 pages with zipf distribution I and II for the pull-based

system are 249.59 and 213.09 slots respectively at aggregate request generation rate 100 requests

per slot while the mean response times for the push-based system for zipf distribution I and II are

255.12 and 218.36 slots respectively from tables 1 and 2. Hence as the aggregate request generation

rate increases, the mean response time of a pull-based system is indeed approaching that of a

push-based system for both zipf distributions I and II.

5 Application to a System with Multiple Broadcast Channels

Sometimes, since the available bandwidth for the wireless broadcast channel is considerably large,

the channel has to be divided into a number of subchannels with smaller bandwidth due to im-

plementation constraints. Therefore, there are more than one broadcast channels available and a

number of pages equal to the number of channels is broadcast at each slot. Assume that all the

users have the ability to tune in to any of the broadcast channels and retrieve the corresponding

page. By using a small fraction of the bandwidth, the server may inform the users about which

pages are being broadcast at which channels at each slot so that a user will know which channel

he should tune in at each slot. A system with J broadcast channels is depicted in �gure 8.

The problem of designing broadcast schedules for a push-based system in this case is di�erent

17

Server

Channel 1

Channel 2

Channel J

Multi Broadcast Channels

User Community

Figure 8: A System with Multiple Broadcast Channels

from the single channel case. At each slot n, the server has to select J pages to broadcast to the

users. The request backlog of any of the J pages broadcast during slot n vanishes at the end of

slot n.

The existing algorithms for designing broadcast schedules for a push-based system in literature

are only intended for a single-channel system and they cannot be easily extended for the multi-

channel case. The MAD policy, however, can be readily generalized for the multichannel case as

follows.

At slot n select the J pages, for which the quantity �0:5j wj(n) is largest and broadcast them. In

the same way, the MAD policy can be applied to a pull-based system with multiple channels.

The lower bound to the mean response time for the single channel system can be readily

generalized for a system with J broadcast channels to be

1

2J

MX
i=1

p
bi

!2

The mean response time of the schedules produced by MAD policy is compared to the lower bound

for M = 60 to M = 100. For each M , we consider the number of channels to be approximately 5%

and 10% of the total number of pages. The results are given in Table 3 and 4. The examples show

that, if the number of broadcast channels is increased twofold, the mean response time decreases

nearly by half. Note that, ideally, we would like to get the mean response time reduced exactly by

half when the number of channels is doubled. In all the cases we consider, the schedules produced

by the MAD policy incur mean response time close to the lower bound.

6 Conclusion

We considered the problem of scheduling data broadcasts such that the average response time

experienced by the users is minimized. In a push-based system the problem was formulated as

a deterministic MDP and properties of the optimal solution were obtained. A class of policies

(the priority index policies) were examined and a suboptimal dynamic policy (MAD) that achieved

average response time close to the lower bound was identi�ed. Our policy has low implementation

18

Table 3: Mean Response Time in slots for zipf distribution I

M No. of Channels Lower Bound MAD

60 3 7.08 7.10

60 6 3.54 3.57

70 3 8.11 8.13

70 6 4.05 4.07

80 4 6.84 6.86

80 8 3.42 3.44

90 4 7.59 7.61

90 8 3.79 3.83

100 5 6.66 6.68

100 10 3.33 3.35

Table 4: Mean Response Time in slots for zipf distribution II

M No. of Channels Lower Bound MAD

60 3 4.73 4.79

60 6 2.37 2.47

70 3 5.47 5.50

70 6 2.74 2.82

80 4 4.66 4.70

80 8 2.33 2.37

90 4 5.21 5.28

90 8 2.61 2.69

100 5 4.61 4.62

100 10 2.30 2.31

complexity, it is adaptive to changing access statistics and can be easily generalizable to multiple

broadcast channels. Suboptimal policies with good performance were also obtained for a pull-based

system. Interestingly enough, the numerical results showed that as the request rate increases the

achievable performance of the push- and pull-based systems becomes almost identical; we plan to

investigate this further.

References

[1] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik. \Broadcast Disks: Data Management

for Asymmetric Communication Environments". Technical Report CS-94-43, Dept. of Comp.

Science, Brown University, October 1994.

[2] S. Acharya, M. Franklin, and S. Zdonik. \Dissemination-based Data Delivery Using Broadcast

Disks". IEEE Personal Communications, 2(6):50{60, December 1995.

[3] S. Acharya, M. Franklin, and S. Zdonik. \Prefetching from a Broadcast Disk". In Proc. 12th

Int'l. Conf. Data Eng., New Orleans, LA, February 1996.

[4] M. H. Ammar. \Response Time in a Teletext System: an Individual User's Perspective".

IEEE Transaction on Communication, COM-35(11):1159{1170, November 1987.

19

[5] M. H. Ammar and J. W. Wong. \The Design of Teletext Broadcast Cycles". Performance

Evaluation, 5(4):235{242, December 1985.

[6] M. H. Ammar and J. W. Wong. \On the Optimality of Cyclic Transmission in Teletext

Systems". IEEE Transaction on Communication, COM-35(1):68{73, January 1987.

[7] Dimitri P. Bertsekas. \Dynamic Programming: Deterministic and Stochastic Models".

Prentice-Hall, Inc., Englewood Cli�s, N.J.07632, 1987.

[8] T. Chiueh. \Scheduling for Broadcast-based File Systems". Proc. of the Mobidata Workshop,

November 1994. Rutgers University, NJ.

[9] H. D. Dykeman, M. H. Ammar, and J. W. Wong. \Scheduling Algorithms for Videotex System

under Broadcast Delivery". Proceedings of ICC' 86, pages 1847{1851, 1986.

[10] J. Gecsei. \The Architecture of Videotex Systems". Prentice-Hall, Inc., Englewood Cli�s,

N.J.07632, 1983.

[11] D. K. Gi�ord. \Polychannel Systems for Mass Digital Communication". Communications of

the ACM, 33(2):141{151, February 1990.

[12] T. Imielinski and B. Badrinath. \Mobile Wireless Computing: Solutions and Challenges in

Data Management". Tech. rep., Dept. of Compt. Sci., Rutgers University, NJ, 1992.

[13] T. Imielinski, S. Viswanathan, and B. Badrinath. \Energy E�cient Indexing on Air". ACM

SIGMOD, pages 25{36, 1994.

[14] R. Jain and J. Werth. \Airdisks and AirRAID: Modelling and Scheduling Periodic Wireless

Data Broadcast". Dimacs technical report 95-11, Computer Science Dept., Rutger University,

May 1995.

[15] Donald E. Knuth. The Art of Computer Programming, volume 3. Addison-Wesley, Reading,

Massachusetts, second edition, 1981.

[16] B. Oki, M. P
uegl, A. Siegel, and D. Skeen. \The Information Bus-An Architecture for

Extensible Distributed Systems ". Proc. 14th SOSP, December 1993.

[17] Sheldon M. Ross. Introduction to Stochastic Dynamic Programming. Academic Press, New

York, 1983.

[18] S. Shekhar and D. Liu. \Genesis and Advanced Traveler Information Systems ATIS: Killer

Applications for Mobile Computing ". MOBIDATA Workshop, 1994.

20

[19] C.-J. Su, L. Tassiulas, and V. Tsotras. \A New Method to Design Broadcast Schedules in

a Wireless Communication Environment". Technical report, Institute For Systems Research,

University of Maryland, College Park, 1996.

[20] L. Tassiulas and C. J. Su. \Optimal Memory Management Strategies for a Mobile User in a

Broadcast Data Delivery System". IEEE JSAC Special Issue on Networking and Performance

Issues of Personal Mobile Communications, 1997. Accepted for publication.

[21] J. W. Wong. \Broadcast Delivery". Proceedings of the IEEE, 76(12):1566{1577, December

1988.

[22] S. Zdonik, S. Acharya, R. Alonso, and M. Franklin. \Are `Disks in the Air' Just Pie in the

Sky?". IEEE Workshop on Mobile Computing Systems and Applications, December 1994.

[23] G. K. Zipf. Human Behaviour and the Principle of Least E�ort. Addison-Wesley, Reading,

Massachusetts, 1949.

21

