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Abstract

Manufacturing and Engineering processes use both large scale data and knowledge bases,
and the use of expert systems in such environments has become a necessity. Expert
Database Systems have evolved from conventional database systems to meet the require-
ments of current Artificial Intelligence applications. However, future Expert Database
Systems will contain knowledge bases of significant size which makes main memory
insufficient and the use of a database system a necessity. We propose an effective way of
building High Performance Expert Database Systems to support manufacturing and
engineering environments. These systems are based on Incremental Computation Models;
such models utilize results of previous computations by merging them with newly derived
results of computations on small increments representing changes in the database. Our
system will be able to support very large knowledge bases by utilizing novel structures
and access methods and by using a very sophisticated inference engine based on incre-

mental computation models.
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1. Introduction

Traditionally Database Management Systems (DBMS) have been used in business applica-
tions to efficiently store and organize large amounts of data. The main thrust of database
research has focused on designing data structures and algorithms so that operations, common in

this environment, can be processed efficiently.

Recently, there has been considerable interest in providing a framework for information
sharing and exchange in engineering environments. A lot of attention has been given to consoli-
date the engineering support environments that have been and are being developed to support
design automation, manufacturing, resource management, planning, etc. Along this direction,
there has already been some work in extending existing Database Management Systems to
accommodate engineering applications. In particular, relational DBMS’s have been used in sup-
port of Computer Aided Design (CAD) [16,23], Computer Integrated Manufacturing (CIM)
[19,20], and Artificial Intelligence and Expert Systems [17,18]. The main difference between the
business applications and the ones mentioned above lies in the kind of information that the two
types of applications are using. Business applications are mainly concerned with large volumes
of structured data, while Artificial Intelligence or Engineering Applications usually involve a
sophisticated control mechanism that handles structured and unstructured data. Therefore, a
system of the second type should be able to support the storing and handling of control informa-

tion in addition to data.

Using a data manager with full capabilities offers the advantages of better data organiza-
tion, simple user interface, integrity of data in multi-user environments and recovering from
hardware or software crashes. Given these advantages, there have been various attempts to
build systems that support non-traditional database applications over large volumes of data. In

general, there are three different approaches that can be taken
e  One can enhance a specific application system with a specialized data manager
e  One can interface a specific application to a general purpose DBMS

e  Finally, one can extend a general purpose data manager by enhancing it with more sophisti-

cated capabilities (e.g. inference, triggers, etc).



The first approach suffers from two major disadvantages. First, considerable effort must be
put into designing and building several modules that DBMS’s already include. Second, such spe-
cialized data managers are very narrow, in the sense that they cannot be easily modified to sup-
port applications other than the ones they were originally written for. In the second approach
the DBMS acts as a server to the application program by supplying on demand the data that the
latter requires. However, the major disadvantage of this approach lies in the difficulty to define
exactly where the two systems must be interfaced. [2] provides a good criticism of this

approach.

Because of the above mentioned difficulties, data managers with extended capabilities have
been proposed. The work of [29,44,50] in semantic data models, of [5,7] in the design of systems
based on the object oriented programming paradigm and of [47] in extending INGRES to support
expert system applications, are representative of this approach. The basic idea is to come up
with a simple system that gives to the user the capability to build on top of a basic set of func-
tions whatever constructs are required by specific applications. Moreover, it has been assumed
that minimal extensions to the relational model should be attempted. An ekample of such
efforts have been Engineering Databases [1,24]. The assumption here is that complex objects can
be supported by normalizing them into relational structures connected via the concept of surro-

gates.

Another example of a similar approach is the work on Deductive Databases [12]. The direc-
tion there was to provide basic support for expert systems applications. In a deductive database
system both deductive aspects of the world (rules) and asserted information (facts) are stored in
the same system. The framework represented by logic programming [21] and typified by the pro-
gramming language PROLOG, is used as a common example. However, because of well known
problems with the query processing algorithm (tuple-at-a-time), the artificial control strategies
used (cut,fail) and the lack of organizational principles for large knowledge bases in PROLOG,
various researchers have been engaged in designing extensions of DBMS’s instead of trying to
interface PROLOG or a general inference engine to a data manager. In [6,49,51] several designs
for database systems enhanced with inference capabilities are proposed, each being a specific

implementation of the above model of rules and facts.



Although the above mentioned proposals suggest basic models for engineering complex
objects and deductive systems, they do not explore in detail all expert systems requirements that
need be incorporated into relational database systems. Engineering and deductive databases are
severely handicapped by their performance. Little work has been done to improve access
methods for storing large rule bases, redundant structures, intelligent query processing and
efficient support for procedural and heuristic knowledge. In this paper we discuss such issues and

suggest solutions.

Section 2 briefly presents what are the basic expert systems requirements. In Section 3 we
show how such requirements can be handled by minimally extended relational database systems.
Section 4 discusses the various performance and optimization issues and suggests various solu-
tions. Then in Section 5 we report on the implementation status of this effort. Finally, we con-

clude with Section 6 by summarizing our ideas and pointing out areas of future research.

2. Expert Systems Requirements

The ultimate goal of Expert Database Systems (EDS’s) is to provide an efficient alternative
testbed for the implementation of expert systems. The main reason for following such an
approach is the constantly increasing size of the information that needs be managed by current
and future expert systems. Systems like INTERNIST-1 [28], R1 [30], PROSPECTOR [8] and
DENDRAL [22] manipulate (not necessarily in an efficient way) information in the order of
thousands of facts and rules. Frederick Hayes-Roth very recently mentioned in [14] that he
expects knowledge bases to have in the order of 100,000 rules by 1990, instead of 3-10,000 which
is the current figure. Organizing the information using the well defined principles of database
systems would clearly be an advantage. However, one must first look in a systematic way at all
the basic expert systems’ requirements in order to get a good understanding of the kind of exten-

sions that need be made to current database systems. This section provides such a discussion.

We shall first introduce a simple example and use this as a medium for the subsequent dis-

cussion. The system is shown in Figure 1.
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Figure 1: An Example EIS

The example illustrates a simplified model of an information system for Manufacturing and
Resource Planning (MRP) integrated with an information system for Computer Aided Design
(CAD). The MRP system contains a variety of information, in particular the Bill of Material
(B.O.M.) describing part explosion and the Part Master record containing the individual part
descriptions and versions. The CAD system contains designs and drawings in various versions.
As we shall see later, there is a number of situations where deductive rules are needed for com-
plex data and information retrieval from the two systems. There is a considerable amount of
overlap and redundancy between the data stored and used by the two systems. The update

dependencies of such redundant data systems require explicit representations to be used by the
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redundancy controller in maintaining consistency, in supporting data exchange and change pro-

pagation between the two systems.

By definition, an Expert System (ES) is a computer system which attempts to behave like a
human expert in some limited application domain [4]. Looking closer at the architecture of most
ES’s, we can identify as its major components the Knowledge Base (KB), the Inference
Engine (or "control engine") and the Learning Module. In the following we analyze in more

detail the structure of those components.

2.1. The Knowledge Base

The knowledge base contains all the information needed to carry out the tasks that the ES
will be given. It consists of Specific Knowledge (or data) and General Knowledge. Specific
knowledge corresponds to data that has been acquired, like for example measurements or statisti-
cal data, and it is usually stored in the system in a very structured way. The main difference
between an ES and another piece of software is that data is stored in a declarative way and is
not hidden somewhere in a piece of code. General knowledge can be thought of as the inten-
tional part of the knowledge base. It contains general principles, rules and problem-solving
heuristics and corresponds to the human expert’s accumulated empirical and/or technical

knowledge.

We will now briefly look at the properties that a knowledge base usually has. First, in the
same way a database system uses a specific model to describe the data, several techniques exist
to represent the general knowledge required for an expert system (Knowledge Representation
Schemes). Second, knowledge can be static or dynamic. For example, data stored in the system
can be retrieved while on the other hand general knowledge can be used to derive new facts.
Finally, a significant component of the knowledge base, called Meta—Knowledge, is used to

describe the scope, precision, reliability and other properties of the stored knowledge.

2.1.1. Representation schemes

There are several knowledge representation techniques (see [29] for a thorough discussion).

However, the following four are the most commonly used ones



1.

3.

First-Order Logic: In this scheme, specific knowledge is r;apresented through first—order predi-
cates and general knowledge is expressed through axioms. PROLOG is a typical example of
a system that represents its knowledge base using a subset of first—order logic (Horn clauses).
Although this scheme offers well defined semantics, simple notation, representational unifor-
mity and the simplicity of being only declarative, it suffers from two major drawbacks,
namely the lack of good organizational principles for large knowledge bases and the absence

of any mechanisms to represent procedural and heuristic knowledge.

Semantic Networks: Networks are also a very natural way to organize knowledge. In addi-
tion they provide efficient organization and offer good heuristic mechanisms for manipulating
the knowledge. Their major drawback stems from the lack of formal semantics and the lack

of mechanisms for storing procedures.

Frames: This scheme offers a very general and powerful representation model. Frames pro-
vide good organizational principles and they are quite general and powerful. Both declarative
and procedural knowledge can be represented through types, values and procedures attached

to slots of frames. Perhaps their major problem is efficient implementation.

Production Rules: This is probably the most popular form of knowledge representation in
expert systems. The major advantage of production rules is that they offer a very general
framework under which most of the expert systems’ knowledge bases can be represented.

They share the advantages and disadvantages mentioned above for frames.

2.1.2. Dynamic vs static knowledge

One possible classification of the knowledge components can be based on the way they are

used during the inference process. There is a static (or "passive") component, which corresponds

to data stored explicitly in the KB. And, there is a dynamic (or "active") component which can

produce knowledge. Rules or attached procedures in the case of frames are examples of dynamic

knowledge components. In some cases knowledge is retrieved from the system and combined in

various ways to produce new knowledge, like for example PROLOG does when applying a rule

on ground facts. In other cases, specific new knowledge can be constructed and actually stored or

removed from the KB. This is the case when procedures are used to modify the KB with the

addition of new or deletion of old data.



2.1.3. Describing the knowledge base

Another component of the knowledge base is Meta—Knowledge. This is used to describe

the knowledge base itself. Examples of meta—knowledge include

o Description of the semantics of data (e.g. types, constraints)
e Importance and precision of knowledge

e Heuristics to improve the performance of the inference engine

In most systems meta—knowledge is expressed in a procedural way and mainly represents heuris-

tics that cannot be otherwise incorporated into the system.

2.2. Inference Engine

The inference engine of an ES clearly depends on the knowledge representation scheme
used. For example, a production-rule based system may support forward chaining. That is,
given a situation X and a goal G, find a series of rules which if applied starting from X will lead
to G. Another approach however may be backward chaining where one really tries to "prove" G
by establishing X through further analysis. Finally, bidirectional chaining is a combination of

the above.

Reasoning in semantic networks corresponds to network traversals and matching. Frames
are handled similarly with the addition of procedure fire—ups while rules in first-order logic based
systems are interpreted using a backward chaining procedure. In general, some combination of
the above methods can be used for the inference engine of an ES. Because rules seem to be the
most widely used representation scheme, the discussion to follow in section 3, is restricted to

backward /forward chaining only.

2.3. Learning Module

The learning module is used to enrich the knowledge base of the system using past experi-
ence. Although several research issues have been studied in the past or are under investigation
in the general area of Al learning, we have not yet seen any of these ideas specifically applied in

the area of expert systems. There are a few ideas on learning by experience that can be explored



An ES can learn to be fast in certain cases. In that sense, the ES simply optimizes its rule

processing mechanism to work efficiently in some pre—determined cases.

An ES can enhance its knowledge by storing previously made derivations. For example, in a
first-order logic based system, the system may choose to store the results of some previous
computations. If the same requests are issued frequently, the response time of the system will

be greatly improved.

An ES can gather data and statistics from user sessions to improve performance based on

heuristic procedures for cost estimation, etc.

An ES can observe regularities in the given data, and perform induction and generalizations,

that is, suggest new rules that are hidden behind the regularities.

Of course these are just a few of the issues that may arise in this area. However, we feel that

the learning by experience module is an important component of an ES.

Before turning our attention to the impact that intelligent database systems may have to

the development of expert systems, we provide a classification of the basic operations performed

by an ES. These are

Specific or general knowledge retrieval, either as end result to the user or as an intermediate

step in the inference engine operation.
Inference, through either of the methods mentioned above.

Reasoning. The ES must be able to reason about its work. This is especially useful for the

user to understand how the system reached a specific result.

Maintenance of knowledge base. This corresponds to the result of modifications made to

either general or specific knowledge.

Given these expert system characteristics we move now to discuss how advanced database

management systems can play a key role in the development of large scale expert systems.

3. Mapping Expert Systems Components to DBMS Features

In this section we suggest schemes for mapping expert systems characteristics to relational

database systems features. Although the discussion to follow presents ideas mainly applicable to
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production-rule based systems, semantic networks and frames could also be supported. The
basic features discussed are data, rules, meta—knowledge and the inference mechanism.
Throughout the discussion we will illustrate our proposals through the MRP/CAD system of sec-

tion 2.

Specific knowledge can be clearly stored using relations. For example, the realization of
a predicate bom(part,sub-part) is done using a relation BOM (we will use all-capital names to
distinguish DBMS entities from ES ones) with two fields PART and SUBPART and specific domains

for these two fields.

Rules can be also mapped to database entities. We will discuss two types of rules here.
First, consider simple inference rules such as those used in deductive databases. For example, a

rule may be used to define the contains predicate as follows
contains(cover,part) + bom(cover,X) A bom(X,part)

The above rule can be expressed using relational views as follows (we use SQL to describe the
view)
CREATE VIEW CONTAINS (COVER,PART)
AS SELECT FIRST.PART, SECOND.SUBPART

FROM  BOM FIRST, BOM SECOND
WHERE FIRST.SUBPART = SECOND.PART

The semantics are exactly the same, that is, they both define the cover—part entity in the same

way by examining the bom entity.
A different type of rules are general production rules of the form
IF <CONDITION> THEN <ACTION>

where ACTION is a general operation such as an insertion or deletion, not just a retrieval from
the KB as deductive rules assume. Hence, this kind of rules incorporate procedural semantics in
ES’s. Notice that this type of rules corresponds to the idea of triggers or alerters [3] in database
systems. They can be used to generally model such activities as well as protection and security

mechanisms.

This kind of rules can be modeled in a database system using the idea of Update Dependen-
cies. The update dependency formalism was originally suggested in [25,26] to support a wide

variety of applications, such as walk-through guidance control systems, cause—effect systems,
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statistical information gathering, knowledge acquisition, database integrity enforcement, data-
base view updates, policy enforcement, and production control. An update dependency has the

following format
ON <OPERATION> PERFORM <ACTION,,ACTION,,...>

where OPERATION is an operation on the database that results to a series of actions ACTION,,
ACTION,, etc. Using update dependencies one can implement production rules by simply defining
the OPERATION and ACTION parts. As an example, we consider again the MRP/CAD system.
Suppose there are two databases, the CAD and the MRP database with the following format

respectively

CAD drawing id

part# |description| u.o.m. | status |revision_no

MRP  part_master

part# |description| lead time | cost | status |revision_no

The following example illustrates a rule that calls for implied operations on the MRP database
when a new design is completed in the CAD database.

ON [ complete,,(drawing id.,,(P,D,U,S,R)) A -drawing id,,(P, ,_ ,S,R) ]

PERFORM [ create,,(part master,,(P,D, , ,S,R)),
assert(drawing_id, (P,D,U,S,R)) ]

ON [ complete,,,(drawing id., (P,D,U,S,R)) A drawing id,,(P, , ,S,R) ]
PERFORM [ write("Drawing already exists for",P) ]

The rule checks if a given drawing already exists in the database, and if not it adds it to the

CAD database making the corresponding insertions in the MRP database as well.

Update dependencies are based on the logic programming formalism [21]. It can, therefore,
be used to implement all known trigger mechanisms. However, because logic programming is

found difficult by a large class of programmers, we have extended the formalism to include fami-
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liar control structures from ordinary programming languages such as while, case, and repeat

statements [25].

A very significant part of a knowledge base lies in the Meta—Knowledge. This is an issue
that has received very little attention in previous proposals for the implementation of expert
database systems. Most of these proposals assume that meta—knowledge is hidden somehow in
the various operations or the search algorithm. One exception may be in the design of
POSTGRES [47] where priorities set for rules as well as extended data type definitions are actu-
ally themselves stored in the database. In this proposal we look for better and more complete
means of describing meta—knowledge. Recent work in Self-Describing Databases and Meta—data
Management [25,27] is applicable to the management of meta-knowledge. A self-describing
database system maintains an Intension-Extension Dimension of data description that consists of
four levels, each of which is the extension of the level above it and the intension for the level
below it. The intension—extension dimension provides an active and integrated Data Dictionary
System as part of a self-describing database system and is therefore ideal for meta—data manage-
ment. The key issue in expert database systems will be to find an appropriate database struc-
ture for representing and retrieving rules and meta-rules. This issue is discussed in more detail
in the next section. However, what is really significant here, is that the mechanism incorporat-

ing meta—knowledge exists and has been studied in detail.

Finally, we discuss briefly the implementation of an inference engine in an EDS. As illus-
trated above, both simple deductive rules and more general procedural rules can be supported;
hence, the inference engine really maps to the query processing and data manipulation engines of
the database system. Backward chaining is handled already through query modification for view
processing [45]. For example, if one asks for the part containing boltl, the database query will

be

SELECT COVER
FROM CONTAINS
WHERE PART = "bolti"

which is in turn changed using query modification to
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SELECT FIRST.PART

FROM  BOM FIRST, BOM SECOND
WHERE FIRST.SUBPART = SECOND.PART
AND SECOND . SUBPART = "bolti1*"

The query modification module needs to be extended to handle recursive view definitions [15] as
well as multiple view definitions, but conceptually the mechanism exists already in database sys-
tems. Forward chaining can be implemented based on the triggering mechanism offered by
update dependencies. Hence, appropriate design and implementation of an EDS can take advan-
tage of all existing database technology to support expert systems. However, the major question
arising in such an environment will be performance. This is really the focus of this paper and

our ideas are discussed in the following section.

4. Optimization Issues

Expert Database Systems and Object Oriented Databases are severely handicapped by the
performance of existing DBMS’s. The database access and the real time response requirements
are well beyond the capabilities of classical query optimization and buffer management tech-
niques. Classical methods are based on static compilation of data processing access patterns.
These patterns are very different from the very dynamic and specialized EDS ones necessary to
support a general inference mechanism that an ES may employ. Adaptive access mechanisms for

improving performance are necessary.

We propose the idea of Incremental Learning as a solution to the high cost of repetitive
access patterns observed in Expert Systems. Incremental learning is a concept that enables a
system to avoid unnecessary search by remembering some of the computation search it did
before. It allows the generation of ever improving systems. The foundation of Incremental

Learning is a new class of Incremental Computation Models [39].

In this section we discuss several optimization and implementation solutions based on Incre-
mental Models. The issues that we will deal with include efficient processing of rules, specialized
storage structures for incremental access methods, and ideas on indexing both large fact and rule

bases.
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4.1. Incremental Computation Models

Let C be a computation performed at time ¢; on input I;. An Incremental Computation
Model (ICM) performs C at time t; by merging the result obtained at time #; with the result
obtained by performing C on the differential of the inputs (dI=I,—I;). An ICM can be
employed in any distributive computation. The advantage of an ICM is clearly in performance
because, at any time, the computation is only performed on the increments which are typically
very small, and get emptied after each use. For example, if we need to produce the set of all

cover—parts in our database, we merge the previously generated set with the recent ones.

The above incremental approach can be extended to account not only for identical compu-
tations but to those that are derivable from others. We can perform a derivable computation
using the differential between the two computations dC=C"'—C. Incrementally derivable compu-
tations are applicable to any monotonic computation. For example, extracting from the data-
base only the parts including boltil, can be done using the set CONTAINS produced before, i.e.
the parts containing other parts, appropriately updated to reflect all the new containments intro-

duced due to additions of new parts.

A wide class of computations performed by real-time systems can be accommodated by
incremental computation models. Dramatic performance improvement is obtained when the
increments are small. Expert Systems doing deductive search are the most representative ones
because of the tiny increments between the huge number of one—fact—at—a—time access requests.
ICM’s also facilitate the dynamic establishment of learned search patterns pertinent to the appli-
cation. Other classes of systems that will be greatly improved by ICM’s include surveillance sys-
tems, control and command systems, air-traffic control systems, control of manufacturing
processes, etc. Such systems receive data arriving in real time from simultaneous sensor and
human observations and require rapid and intelligent assimilation of them with the help of fac- -
tual information stored in the database. Most of these systems have very high input frequency
that results in extremely small input increments. Therefore, ICM’s can improve performance by

at least an order of magnitude.
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4.2. Rule processing and optimization

Currently, most expert systems and simple solutions to building EDS’s, such as interfacing
PROLOG with a DBMS, are characterized by one—fact-ai-a—time access which drives the deduc-
tive search. Very often, access to a single fact requires a long database search. Consider the
example of the previous section, where the join of the BOM relation with itself is performed to
determine whether or not CONTAINS(partl,boltl) is true. Imagine a search where a large list
of CONTAINS pairs had to be checked using an ordinary system. For each pair, the join is to be
constructed, accessed, and thrown away. Only to be repeated again, and again. The solution to
this problem is to utilize existing database access paths to avoid such high searching costs. Since
the join will be the most used operation in such a system, efficient support for its computation is

needed.

We can exploit the idea of Incremental Learning for avoiding the high cost of repeating the
same relational operators over and over. This can be done by saving a view storing what was
learned in previous searches. In our parts example, a system could learn which of the part/sub—
part pairs joined with other part/sub-part ones during the processing of the first query on CON-
TAINS, and short cut the join for the rest of the queries that may come in the future. This incre-

mental learning avoids all the database search needed to reconstruct the join.

Incremental models and their learning capability generalize the utilization of common
access paths, and permit a framework for the reuse of the optimization performed by the query
optimizer. The optimization techniques will be transformed into inter—query incremental algo-

rithms that will amortize their cost over a series of queries.

Another expensive computation is performed in Expert Systems because queries involve
rules with more than one definition (more than one rule with the same "head" in deductive
definitions). This expands the initial query to a set of queries to be processed by the system. In
this case, support for multiple-query processing is needed. It is often advantageous to process a
collection of queries differently than at the query—at-a-time manner. The reason is that queries
may share data and therefore elimination of redundant page accesses may be possible. In [40,41]
we study this problem and suggest several multiple—query processing algorithms. Performance
improvements can be achieved at a very high degree depending on the extend that queries access

common data. Since many expert systems applications have a lot of rules defining the same
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entity, support for multiple-query processing will be a significant part of the query optimizer.

4.3. Indexing of specific knowledge

As mentioned in the previous section, specific knowledge can be approximated by relations,
each fact stored as a tuple. With few exceptions [48] expert systems assume that the knowledge
base fits in main memory. When stored on disk, conventional indexing techniques can then be
used to speed—up searching. We propose the use of multi-attribute hashing [33] to index large
fact bases. The main advantage of multi-attribute hashing is speed, due to the reduced I/O
activity it achieves. Using the Incremental Computation approach on top of multi-attribute

hashing is rather easy. We expect that the combination will achieve excellent response times.

The basic idea behind multi-attribute hashing is clustering similar records in the same or
consecutive buckets which results to better I/O performance. According to multi-attribute hash-
ing, each record yields a bit—string? of size n ("record signature"), by applying a hashing func-
tion to each attribute value and combining (eg., concatenating) the binary representations of the
hash values ("attribute signatures"). The binary value (7;)2 decides the bucket that the record is

stored. For example, assume that the BOM relation contains the tuples

PART SUBPART
big-tank fuel-tank
big-tank large—compartment

large—compartment wheels
fuel-tank fuel-pipe

and that the hashing functions A4(), ko) for the first and second attribute respectively are

0 ifkey< k

Thus, the attribute signature of "big-tank" is h;(big—tank) — O, while the record signature of
the tuple (big-tank,fuel-tank) is "00". In this example, the hash table consists of four buck-

ets, with the following contents:
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signature PART SUBPART

00 big-tank fuel-tank
fuel-tank fuel-pipe

01 big-tank large—-compartment

10

11 large—compartment| wheels

Notice that, on partial match queries, we need only search a fraction of the hash table. For

example, when searching for the sub-parts of "big-tank", we need only examine the first two

buckets. Also, notice that the records of a bucket have identical signatures, and therefore simi-

lar attribute values. It is probable that such records will qualify for the same query. Thus, one

bucket (= disk) access will retrieve many qualifying tuples. Specifically, the advantages of

multi-attribute hashing are the following [10]:

(1)
(2)

The automatic "clustering" of similar records as described above, that saves disks accesses.

The address of a record is determined immediately from the record itself, without the need
of consulting an inverted index or traversing a tree structure. Maintenance of an index
under many insertions and deletions is a time consuming task, which is avoided with

multi-attribute hashing.

The method does not require merging of pointer lists on partial match queries. Moreover,
the amount of work to answer such a query decreases exponentially with the number of
attribute values specified in the query [32]; in contrast, for the inverted file method the

work increases because of the increased number of pointer lists to merge.

Used in conjunction with an ICM, multi-attribute hashing will accelerate the materializa-
tion of views, because the tuples of interest will be nicely clustered and will be retrieved in

few disk accesses.

Even in the case where re—execution is necessary, multi-attribute hashing will probably
save disk accesses over a random placement of tuples. These savings will be more obvious

if the re—execution involves joins.

- 17



4.4, Indexing of rules

Another subject of interest is how to search the intension of the knowledge efficiently. As
mentioned in the previous section, resolving a task can be done either with backward or with for-
ward chaining. The problem of quickly finding the rules that need be applied on a given situa-
tion constitutes the problem of indexing the rule base. In the case of backward chaining, the
index is defined on the head of each rule. Most methods up to now build an index on the predi-
cate name [11] or use superimposed coding techniques [31], to take the arguments into account.
Multiattribute hashing on predicates and arguments seems promising again, exactly because it
will group similar rules on the same disk page. Thus, all the relevant rules for a query will be

retrieved with few disk accesses, avoiding the I/O bottleneck.

In the case of forward chaining, one is interested in finding quickly which rules satisfy a

given condition. For example, given a collection of rules
IF <CONDITION> THEN <ACTION>

one has to index these rules based on their CONDITION part so that given a specific situation, all
rules that are applicable can be efficiently recovered. The situation is more complicated than
before, since conditions involve general expressions (such as selections or joins) instead of just
predicate names and attributes. Our proposal here lies in transforming conditions on relations to
geometric objects in some high-dimensionality geometric space [42,46] where relation attributes
are thought of as the coordinates. Then, a given state of the database can be modeled as an
object in this space (described by the values of the various attributes) and the problem of detect-
ing applicable rules maps to a geometric intersection problem. For example, assuming a relation
BOLTS (ID#,LENGTH,WITDH), a condition 0.6<WIDTH<0.8 and 1.0<LENGTH<1.5 can be
represented as a rectangle in a two—dimensional space with coordinates LENGTH and WIDTH (see
Figure 2). A scheme based on multi-attribute hashing or multi-dimensional trees (R-trees [13],
R*-trees [9,43]) can then be used to limit the search by rejecting quickly many non-applicable

rules, thus improving the search performance and response time.

5. Implementation Status

We have implemented the access methods of a database system on the principles of ICM’s.

Our just finished prototype, called ADMS [34,35,38|, exhibits tremendous speeds in accessing
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Figure 2: Rules as geometric entities
learned access paths based on incremental computing. The improvement over conventional re-
execution systems ranges from four to eighty times faster, depending on the size of the incre-

ments of the utilized access paths. Our expectations were verified by the implementation:
(a) the smaller the increments, and

(b) the higher the complexity of the computation

the higher the improvement. The second characteristic is due to the fact that multilevel compu-
tations observe a lot of access path locality that subsumes a lot of the computation that ordi-

nary re-execution models would have to repeat.

Another important characteristic of the ADMS incremental algorithms is that they are
one—pass and, thus, permit interleaving of the update and cache of the access paths. This allows
ADMS to produce the result much earlier than any re-execution model. Thus, the response time
is very close to zero simply because ADMS starts displaying records of the previous computations
while updating [38]. In simulations performed on a VAX 8600, the response to display the first
record was below 2 seconds. After that, the flow of display is bounded by the speed of the termi-
nal which is much slower than the rate of production of the incremental algorithms. This is very
important for real-time systems because no existing system can come close to such response

times in queries that involved two and three join operations.

Another advantage of using ADMS is that an extension of it to work in an integrated main-

frame and multi-workstation environment using incremental bindings of distributed data objects
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has been already studied [36,37]. This is important considering the fact that expert systems
implemented by means of expert database systems will be readily available for multi-user works-
tation based environments. The suggested prototype will be the first locally—distributed high

performance expert database system.

In summary, ADMS is a very powerful database system with a sophisticated view system
and access methods that are especially useful for an efficient implementation of rules, as men-

tioned in sections 3 and 4.

We are currently focusing on two major subjects. First, we study the theoretical founda-
tions, the algorithms, and the design issues of the various components. Second, we have ini-
tiated an efforts towards the implementation of our ideas on top of ADMS. Among others, we
study the design of knowledge base catalogs and rule and meta-rule definition languages. The
multi-attribute hashing and R*—tree access methods are under implementation. In terms of
query processing algorithms we have implemented relational operators using cache techniques
and have initiated an effort towards the implementation of multiple—query optimization algo-
rithms. Finally, algorithms for the compilation and optimization of large rule bases have been

devised. We expect that a working version of our prototype will be available in 18 months.

6. Conclusion

In this paper we have suggested efficient means for supporting expert systems. Our design

goals can be summarized as follows
a) support large knowledge bases
b) provide very fast query processing

¢) provide basic mechanisms that can be used to support various kinds of inference mechan-

isms ranging from simple deductive rules to general production systems.
The novelties in our approach are:

(1) The use of incremental data models. Results of previous queries are stored in cache struc-
tures which speed up tremendously the resolution of the same or similar queries in the
future. ADMS, a prototype database system is now operational, and it will be used to

build upon. Preliminary simulation results with ADMS show speed ups of orders of magni-
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(2)

tude.

Global query optimization techniques A deductive query may expand to many database
queries. Traditional database systems optimize one query at a time, which does not neces-

sarily yields a global optimal for a set of queries.

Efficient methods to store and search facts and rules. We propose the use of multi-
attribute hashing and multi-dimensional trees, which both cluster similar facts and rules on
the same disk pages. Thus, one disk access retrieves many relevant items, avoiding the I/O
bottleneck, which can cripple the performance of Expert Systems.

Use of a sophisticated trigger mechanism based on update dependencies. Such a mechanism

will be useful in implementing production systems.
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