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Photolithographic patterning of photoresist materials and transfer of these 

images into electronic materials using directional plasma etching techniques plays a 

critical role in the fabrication of integrated circuits. As critical device dimensions are 

reduced below 100 nm, precise control of the interactions of process plasmas with 

materials is required for successful integration. This requires a scientific 

understanding of plasma-surface interaction mechanisms that control the properties of 

the ultimate devices and ICs produced. Fluorocarbon discharges are commonly used 

for dielectric etching, e.g. SiO2. In this work we have studied surface-chemical 

aspects of the interaction of C4F8/Ar discharges with SiO2 and Si. Free fluorine atoms 

that are liberated from fluorocarbon species during ion bombardment are driven to the 

  



surface and react with the substrate, a process called defluorination. The 

defluorination is dependent on the plasma properties and the penetration of reactive 

species is limited within 10nm below the surface. Future device requires novel 

materials, i.e. nanoporous silica, to replace conventional SiO2.When some O atoms in 

Si-O matrix are replaced with nano cavities (pores), the plasma-induced 

modifications are extended to the deep subsurface region and the modification scale 

can be a few hundred nanometers. This modification is correlated with overall 

porosity and also strongly depends on plasma properties. O2 N2 and H2 discharges 

likely induce carbon depletion and material densification on nanoporous silica. Novel 

approach, i.e. shutter approach, is employed to study the issues of plasma processing 

of advanced photoresist materials at nanometer dimension. Hydrogen depletion, 

material densification and graphitization of these polymers are important processes 

during short exposure time with the plasma. High roughening rates are also observed 

within this time range.  Subsequently, dedensification, i.e. surface roughening, 

dominates in the plasma-photoresist interactions. Depending on the molecular 

structures, the roughness scale can be well beyond the molecular size and RMS 

roughness does not saturate even after a long exposure time. For the etching of 

features, rough edges induced by initial plasma exposure on the top of the lines in the 

features form local masks and striations are formed on the sidewalls during long 

exposure times, which could lead failures of the devices.   
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                    Discharges were generated using 1000 W source power,  
                   a pressure of 10mTorr, and 50sccm as total gas flow rate  
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Chapter 1 Introduction 

1.1 Basics of Plasma Processing of Thin Films 

Plasma, an electrified gas consisting of electrons, ions, and neutral atoms, is 

by far the most abundant state of matter in the universe, comprising more than 99% of 

the mass of the visible universe. It is produced by adding energy to a gas, which strips 

electrons from atoms and molecules.  In neutral plasmas, free atoms or molecules are 

partially or fully ionized while the whole body is electrically neutral on average. 

Charged particles in a plasma interact simultaneously with many others due to the 

long range nature of the electric force.  Because of this plasmas exhibit collective 

behavior. Plasma can be accelerated or steered by electric and magnetic fields. The 

object of this section is to introduce the main concepts of plasma science, and explain 

how these concepts relate to materials processing applications.  

The plasma state can exist over a broad temperature range (102~109K) and 

plasma density(103~1033m-3).1.1,1.2 It can be cool and tenuous like aurora, or very hot 

and dense like the central core of a star. Partially ionized low temperature plasmas are 

used extensively for thin-film materials processing applications such as etching and 

deposition.1-4 In this type of plasma, the degree of ionization is typically only 10-4, so 

the gas consists mostly of neutrals. The positive charge is mostly in the form of singly 

ionized atoms or molecules formed by removal of a single electron from neutral 

species. The majority of negatively charged particles are usually free electrons, but in 

very electronegative gases such as chlorine, negative ions can be more abundant. For 

typical process plasmas, the electron and ion densities are in the range of 109 –1012 

cm-3 and the neutral species density is in range of 1013-1016 cm-3.1.3,1.4 Electrons are 
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the main current-carriers because they are light and mobile. The energy transfer from 

electrons to gas molecules is inefficient due to the mass of an electron being much 

smaller than that of neutral gas species, generally by a factor of  ~5 x 10-6 to 5 x  10-4. 

Therefore, electrons are not in thermal equilibrium with ions and neutral species and 

can attain a high average energy, often many electron volts (equivalent to tens of 

thousands of degrees above the gas temperature). The high electron temperature in 

plasmas enables high-temperature type reactions to take place. These occur as a result 

of inelastic electron-molecule collisions. Reactive free radicals and ionized species 

are formed in this way in a low-temperature neutral gas. The fact that high-

temperature active species (electrons) and a warm gas coexist in plasma distinguishes 

the plasma reactor from conventional thermal processing.  

The second unique property of plasma is that ions can be drawn from the 

plasma at energies ranging from tens to hundreds of eV. The ions are incident on 

substrates normal to the surface, thus enabling anisotropic etching and deposition 

processes. Both ions and electrons diffuse to the walls and recombine on the 

boundary surfaces. This tends to deplete charge in the adjacent gas phase and forms a 

thin boundary layer called a “sheath”.1.1,1.2 The average velocity of electrons is 

enormous relative to those of the ions and neutrals because of both the high 

temperature and low mass of the electrons. Since the number density is the same for 

positively and negatively charged particles in plasma, the initial electron flux that 

strikes a surface in contact with the plasma is much greater than initial flux of 

positive charges. Hence, the boundary surface builds up a negative charge and a 

negative potential with respect to the plasma is generated. The voltage across the 
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sheath ranges from a few volts to thousands of volts, depending on discharge 

properties and whether the substrate is biased or not. The positive ions that diffuse 

into the sheath region are accelerated by the sheath electric field and strike the 

substrate at near normal incidence and at high energy. 

Although the ions strike the surface with high energy, the current is low when 

the plasma density is in the range of 10-9-10-12cm-3. Heating of the substrate is 

prevented by efficient thermal mounting of the substrates on a temperature controlled 

electrode.  

Because of these unique properties, plasmas have become indispensable for 

advanced materials processing in many high-tech industries. Pattern transfer by dry 

etching and plasma-enhanced chemical vapor deposition are two of the cornerstone 

techniques for modern integrated circuit fabrication. The microelectronics industry 

employs plasma-based etching to produce submicron device features in thin films 

with precisely controlled dimensions, and uses plasma-enhanced chemical vapor 

deposition methods to synthesize insulators, conductors, diamond thin films, and 

high-temperature superconductors. Plasmas are also used to harden the surfaces of 

cutting tools and to modify surfaces of plastics so paint will stick to them. The 

success of these methods have also sparked interest in their application to other 

techniques, such as surface-mircomachined sensors, read/write heads for data storage 

and magnetic random access memory (MRAM).  

The development of plasma processing of materials has been especially 

stimulated by its application to the manufacture of microelectronic devices. 

Photolithography and plasma etching have enabled the enormous shrinkage of 
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transistors, one of the basic building blocks of the integrated circuit (IC).  In an IC, 

individual transistors are connected by metallic interconnects. An example of a 

multilevel metalization scheme of an interconnect structure is shown in Fig. 1.1 (from 

JSR Microelectronic Inc.): M1, M2, M3 refer to the multi metal layers which are 

separated by insulating layers that are formed of SiO2 and JSR dielectric materials. 

The JSR dielectric is a nanoporous silica, essentially SiO2 with nanoscale pores, and 

its plasma processing characteristics will be described in this Thesis (chapters 4 and 

5). The width of interconnects nowadays is of the order of 100 nm, 200 times 

narrower than a human hair!  

 

 

 

 

 

 

 

 

 

The patterning scheme of these dielectrics is redundantly outlined in Fig. 1.2. 

Panel a) shows a portion of a partially completed integrated circuit. In the next step 

(b), a dielectric film is deposited. The dielectric film is then patterned by 

photolithohraphy. A light-sensitive polymer, referred to as photoresist, is spun onto 

the dielectric. The interconnect routing is mirrored in the photoresist film using light 

Figure 1.1: An example of a multilevel interconnect structure (From JSR Microelectronics 
Inc.). 
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and imaging techniques (step c). The light alters the chemical composition of the 

photoresist in the exposed areas, which can then be dissolved using wet chemicals 

(step d). The pattern in the photoresist is subsequently transferred into the dielectric 

using plasma etching (step  

e). When SiO2 is applied as a dielectric, it is common to use fluorocarbon gases 

(CxFy) to produce a plasma, since the ions and radicals that are formed are highly 

effective for directional etching of SiO2. Fluorocarbon gases allow for a highly 

anisotropic etch of SiO2 and straight sidewalls can be obtained (step f).1.5-1.9 Using 

optimized processing conditions, it is possible to etch the SiO2 much faster than the 

photoresist mask and the material below the dielectric layer. Once the etching of the 

trench or hole in the SiO2 is completed upon reaching the underlying film, the 

remaining photoresist can be stripped by using an O2 plasma. The intermediate 

pattern that is obtained can be filled with a metal to make a connection with the 

underlying circuitry. At this point, steps a) through f) can be repeated to build a 3-

dimensional structure.  
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Figure 1.2: Patterning scheme for forming trenches and holes in dielectric materials 
that will be filled with metal to form the interconnecing wiring of an IC (called 
damascene process10). 

 

1.1.1 Plasma Sources for Plasma Processing of Thin Films 

Direct current plasma sources are not commonly used in processing 

applications because DC power cannot be coupled through insulating substrates, the 

pressure required is relatively high, the discharge is not efficient and the cathode 

voltage is not controllable. Radio frequency (rf) or microwave powers are generally 

used to produce and sustain the plasma in plasma processing tools. Many types of rf 

plasma sources are available for plasma processing and they normally classified into 

capacitive, inductive, and wave sources. 1.2,1.4  In this work, an inductively coupled 

plasma is used and will be discussed in detail. A brief description of capacitive 
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coupled plasma is also present since it is widely used and important for dielectric 

etching. 

 

A. Capacitively Coupled Plasma 

  Capacitive sources are often referred to as parallel plate, or reactive ion etch 

(RIE) sources.1.3,1.4 The energy is coupled from the rf to the electrons by several 

mechanisms: Free electrons in the plasma bulk gain energy from the rf electric field 

and release the energy gained once their oscillatory motion is interrupted by collisions 

with other particles. Energetic electrons are also created at the cathode because of 

secondary emission from ion bombardment. These electrons are accelerated by the 

sheath into the body of the plasma. Stochastic heating due to the moving sheath 

boundary is another mechanism for rf  power coupling in capacitive sources. The 

plasma density of capacitive source is typically limited to 1010cm-3. To increase the 

density, more rf power is required. This results in many issues, including low 

efficiency of plasma heating, and a wider sheath leading to more ion-neutral 

collisions in the sheath.  Another shortcoming of this source is that no independent 

control of plasma density and the substrate bias voltage is possible. To solve this 

problem, CCP reactors employ two different RF frequencies. The high frequency RF 

supply is used to produce the plasma (source) and the low frequency RF supply is 

used to bias the substrate. This design is based on the fact the electrons can respond to 

high frequency rf power because they are light. Ions are heavy, but can gain energy 

from low frequency rf electric fields. The dual frequency capacitive plasma reactor is 

currently used in the semiconductor industry for dielectric etching. 
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Figure 1.3: Schematic of a capacitive plasma source.  

 

 

 

B. High Density Plasma---Inductively Coupled Plasma 

This section reviews the basic principles of a high-density plasma. These 

principles will be illustrated using a planar-coil inductively coupled plasma (ICP) 

reactor employed for this work. The ICP reactor used in this work is shown in Fig. 

1.4. A planar, stovetop-like coil is placed on top of a quartz coupling window. The 

region below the quartz window is evacuated to a pressure of the order of 10 mTorr 

(10-5 bar). When a RF current is driven through the coil, an electromagnetic field is 
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coupled into the vacuum below the window. Due to their low mass, electrons have 

high mobility and are able to respond to the applied electromagnetic fields varying at 

13.56 MHz. Ions, on the other hand, have a much lower mobility and respond only to 

a time-averaged electromagnetic field. An electron current runs below the quartz 

window in the opposite direction of the coil current and shields the electromagnetic 

fields. Low energy electrons in this current cannot efficiently transfer their kinetic 

energy to the much heavier neutrals. Hence, electrons are heated by the 

electromagnetic fields while their direction is randomized by neutral collisions. The 

electron temperature is 3 to 5 eV for typical processing conditions and is much higher 

than the ion-neutral temperature which is of the order of 0.05 eV. Energetic electrons 

can transfer their energy to neutrals and ions through inelastic collisions which leads 

to ionization, attachment, recombination, dissociation, excitation, or a combination of 

these. The electron energy required for these processes ranges typically from 1 to 20 

eV. 

 The electron temperature is adjusted such that the electron generation through 

ionization balances the electron loss in the plasma. In addition to recombination and 

attachment, electrons are lost due to ambipolar diffusion. Since the plasma is 

generated just below the window, electrons diffuse towards the quartz window, 

chamber wall, and substrate. As electrons diffuse from the plasma generation area, an 

electric field builds up between the electrons and ions that accelerates the ions but 

slows down the electrons. This electric field rises the potential of the plasma 

generation area and assures that the flux of electrons balances the flux of ions. The 

diffusion of electrons is thus enhanced by the relatively high electron temperature, but 
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is impeded by the relatively slow ions.  Additionally, all floating surfaces in contact 

with the plasma charge up negatively while a positive space charge builds up near the 

surface. This space charge is referred to as a sheath. The sheath thickness is on the 

order of 1 mm and is the only region where charge separation exists. All other areas 

can be considered quasi-neutral over a length scale larger than ~15 µm. The potential 

across the sheath (the floating potential) is typically 10-30 V and accelerates the ions 

that enter the sheath towards the floating surfaces. It is important to realize that the 

flux of ions and electrons is governed by ambipolar diffusion, not by the floating 

potential (which is a result of the electron loss to the surface). 

The energy of the ions bombarding the substrate can be increased by applying 

an rf bias to the substrate. The flux of electrons and ions to the substrate is not 

affected by the rf bias. However, during the first rf cycles electrons are collected 

faster at the electrode which charges up more negatively while the positive sheath 

near the substrate expands. This increases the sheath voltage and, consequently, the 

average energy of impacting ions. The ability to control ion energies independent of 

plasma density is an important feature of high-density plasma systems and is absent 

in medium-density plasma systems such as reactive ion etching (RIE) tools, where the 

substrate electrode is used for plasma generation.1.2 
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 Figure 1.4: Schematic of inductive coupled plasma reactor used in this work  

1.1.2 Facility of the Laboratory for Plasma Processing of Materials  

The inductively coupled plasma reactor described above is housed in the 

laboratory for plasma processing of materials, University of Maryland. The major 

scientific theme of this laboratory is the characterization and understanding of the 

processes at the plasma-material interface that control the properties of the material or 

structure that is ultimately produced. This research requires a variety of equipment, 

including reactors that can generate the plasmas, instruments that characterize the 

plasma and the plasma-treated materials, and measurement tools that evaluate the 

crucial variables that determine the ultimate usefulness of the materials and structures 

thus produced. Main equipments are shown in Fig. 1.5. Various reactors, such as 

inductively coupled plasma reactor, capacitively coulpled plasma reactor/microwave-

based remote plasma processing chamber, and magnetically enhanced plasma, and 
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surface analysis chamber (Vacuum Generator ESCA Mk II) are all connected in the 

cluster system. This enables the vacuum transfer of samples treated with plasma 

process, which eliminates the surface modification due to the air exposure. To 

understand the plasma properties, measurements are conducting to obtain information 

of radical or ion species using mass spectroscopy, ion sampling system, and optical 

emission spectroscopy. These tools provide real time information on plasma 

properties and enhance the process control. Furthermore, in situ ellipsometries are 

installed in each reactor to monitor the surface modification of the sample.   

 

 

 

 

 

 

 

 

Figure 1.5: University of Maryland cluster system for plasma processing of materials 
 

The studies in this thesis involve many collaborative efforts with industrial 

laboratories and universities throughout the world, in particular for the 

characterizations of the samples after plasma process done at University of Maryland 

(UMD). I am grateful to these collaborators. To emphasize their contributions, a 

summary of overall measurements involved in this thesis is shown below. 
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1.2 Patterning of Advanced Dielectrics Based on Plasma Processing 

 Fluorocarbon based plasmas are widely used for dielectric etching because 

they remove SiO2 preferentially over silicon. In the past few decades, plasma etching 

of SiO2 using fluorocarbon discharges has been a widely studied topic. This is 

explained by both its practical importance, and its scientific complexity. Fluorocarbon 
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plasmas are very complex, with an enormous number of possible reactions that can 

take place in the plasma gas phase and at the plasma-substrate boundary. In order to 

understand plasma processing mechanisms, the information of species incident on the 

surface is required. Extensive efforts have been devoted to the characterization of the 

properties of fluorocarbon based plasmas both experimentally and numerically.1.11-1.16 

In that work, absolute densities of important neutral or ion species were determined 

for fluorocarbon based discharges. It was found that adding argon to a fluorocarbon 

gas results in dramatic change in radical to ion ratio. For instance, neutral species 

dominate the gas phase of pure C4F8 discharges. Upon changing the composition of 

the feedgas to C4F8/ 90% Ar, ions become abundant in the discharges and more than 

70% of ions are Ar+. C4F8/Ar discharges are useful for understanding important 

processes in fluorocarbon etching for the conditions where fluorocarbon radical 

fluxes are higher or comparable to the total ion flux. With this knowledge, this thesis 

is focused on the plasma surface interactions during nanoscale pattern transfer of 

advanced electronic materials using fluorocarbon/Ar discharges. 

It is well known that in fluorocarbon plasma processing, RF biasing of the 

substrate is required to increase ion energies sufficiently to enable SiO2 etching. If the 

ion energy is below a certain threshold, only fluorocarbon deposition on the substrate 

occurs.1.17-1.21 In the plasma etching process, the SiO2 or Si film is covered by a 

steady state thin fluorocarbon. Although significant research efforts have studied this 

topic, the physics and chemistry of the transition from deposition to etching is still 

poorly understood. For plasma processing at nanometer dimension, fundamental 

understanding of plasma surface interactions at the atomic and molecular level is 
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required for a precise control of the removal or addion of materials at nanometer 

scales. Studies of plasma surface interactions using C4F8/Ar is expected to provide 

important insights, since a broad range of ion to neutral ratios is available and this 

enables to determine specific roles that ions or neutrals play for the plasma process. 

As integrated circuit dimensions continue to shrink, RC delay, crosstalk noise 

and power dissipation of the interconnect structure become the limiting factors for 

circuit performance.1.22 To solve these problems, new materials with lower resistance 

and dielectric constant have to be developed for metal lines and interconnects to 

replace the conventional Al/SiO2 interconnect structure. Cu interconnects have 

successfully replaced Al in ICs in 1997. However, the implementation of low 

dielectric constant insulators has been delayed due to the challenges associated with 

the thermal, mechanical and processing properties of low dielectric constant k 

materials.  

Low k materials can be generated based on the SiO2 structure by replacing an 

O atom in the Si-O bond with methyl carbon group -CH3. The resulting organosilicate 

glass (OSG) is one candidate low k material and typically, the resulting k value is in 

the range 2.6 to 2.9. A comparison of OSG etching with SiO2 is discussed in chapter 

3. For future ICs, materials with k values below 2.6 are required. This can be 

achieved by introducing porosity in the dielectric. Nanoporous silica (NPS), a silica 

matrix containing nano cavities, can be created by removing organic carbon groups, a 

sacrificial phase, through thermal processes from the silica matrix. Porosity degrades 

the thermal and mechanical properties of NPS relative to those of SiO2. Investigations 

of the influence of the presence of the nanopores on plasma-surface interaction 
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mechanisms, and overall plasma processing of nanoporous silica, are crucial to 

develop satisfactory integration of these materials in future devices and circuits. 

For manufacturing of integrated circuits featuring devices with sub-0.13 µm 

critical dimensions, 193 nm photolithography is being introduced to produce the 

polymer mask for the pattern transfer to the dielectrics. However, conventional 

polymer masks containing aromatic rings are not suitable due to the high absorption 

of C=C bonds at 193 nm.1.23,1.24 New polymer designs are required for 193 nm 

photolithography. Unfortunately, plasma-based pattern transfer of lithographically 

produced nanoscale patterns in 193 nm photoresist materials is often accompanied by 

photoresist surface roughening and line edge roughening due to factors which are not 

well understood. Scientific understanding of these issues is required to design reliable 

polymer mask for successful fabrication of integrated circuits with sub-100 nm 

critical dimensions. 

 

1.3 Challenges of Plasma Processing at Nanoscale Dimension 

Nanometer control of plasma etching and deposition processes of materials is 

required for devices with critical dimensions approaching 50 nm. For nanometer scale 

modifications of a substrate  using plasmas, the plasma- substrate interaction time 

should be of the order of seconds. This is based on typical process plasmas, for which 

etching and deposition rates range from a fraction of a nm/s to many nm/s, and the 

requirement to add or remove nm thick layers. Simultaneously, a fully established 

plasma needs to interact with the work piece, rather than a plasma with discharge 

properties that are still evolving as a function of time. Slow evolution of plasma 
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properties is especially important for chemical reactive discharges, for which it may 

take up to 20s to establish a stable plasma 1.25,1.26.  

Current technology suffers from several disadvantages when applied to 

plasma processing of nanoscale layers. The default of conventional technology is that 

the substrate is in contact with the plasma during all phases of the plasma process 

such as initialization of the discharge, biasing of the substrate, desired plasma 

processing by plasma/substrate interaction and plasma extinction. This sequence is 

schematically depicted in Fig. 1.6. The relative importance of the exposure of a 

substrate to a transient plasma increases as the total plasma exposure time decreases. 

This initial exposure of the substrate to a rapidly changing discharge rather than a 

stabilized discharge may dominate the consequences of plasma-surface interactions 

for the short-time plasma processing of layers with nanoscale dimensions leading to a 

loss of control which may be unacceptable. Any changes of the substrate introduced 

by the inadvertent interaction of the substrate with the plasma during one of the 

undesirable periods, such as initiation of the plasma, biasing the substrate, stabilizing 

the plasma, plasma extinction, and decay of long lived neutrals, may reduce the 

efficacy of the plasma process. For instance, for fluorocarbon (FC) based plasma 

etching processes used to transfer lithography defined features into dielectric films, 

fluorocarbon film deposition takes place after the plasma has been ignited and before 

RF biasing has been applied to the substrate electrodes. This deposition process can 

have unacceptable consequences for profile control of ultra-fine features 

(~20nm).1.27,1.28  
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In order to add or remove materials with a thickness of one to several 

nanometers, the plasma/surface interaction process must be tightly controlled. A 

shutter approach was developed to achieve this goal. A moving shutter containing 

slits in close contact with the substrate is used to control the interaction time of 

stabilized gas discharges with the substrate for nanoscale layer/nanostructure 

processing. Both substrate and shutter can be biased relative to the plasma. The 

choice of slit width and shutter velocity determines the exposure time of the initially 

covered substrate to the plasma. This technique enables precise nanoscale layer 

etching or deposition on both blanket and patterned substrates employing gas 

discharges. The shutter method enables nanoscale surface modifications of a substrate 

with a degree of control that cannot be achieved using conventional technology, as 

shown in our previous publication.1.29 The shutter made of silicon contacts a substrate 

to eliminate the volume between shutter and substrate, and the bulk plasma properties 

remain essentially unchanged during the movement of shutter. In this thesis, shutter 

approach is employed in the study of 193 and 248 photoresist materials for 

understanding the mechanisms of surface roughness formation during fluorocarbon 

based plasma etching.  
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Figure 1.6: Schematic of time evolution of plasma properties as a function of time  
during conventional schedule of plasma processing of a substrate. For clarity, 
 the durations of the various regimes have been exaggerated or diminished and  
are not to scale(see reference 30).  

 

1.4 Thesis Outline 

Important themes that will be addressed in the current PhD thesis are 1) the 

formation of vias and trenches in nanomaterials, i.e. nanoporous silica, which may 

ultimately replace SiO2 as the dielectric material in the interconnect structure; 2) the 

precise formation of vias and trenches at nanometer dimension; 3) fundamental 

understanding of plasma processing at molecular level.  

In chapter 2, a mechanistic study of fluorocarbon plasma etching of silicon 

and silicon dioxide is presented. This work clarifies the relative roles of neutrals and 

ions in the etching process and the main mechanistic factors controlling the etching 

process. We show that substrate etching requires that mobile carbon and fluorine 

atoms are produced by ion bombardment of the fluorocarbon (FC) films deposited on 
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a substrate due to fluorocarbon radical adsorption on the substrate from the plasma. 

Mobile fluorine atoms diffuse through the FC layer to the dielectric surface and 

etching reactions then take place. This work is a preparation for the study of plasma 

etching of advanced dielectric materials using fluorocarbon based plasmas.  

The general effect of the substrate chemical composition on the plasma 

etching process has been investigated in chapter 3. A comparison of etching 

behaviors of OSG, SiO2, Si3N4,  SiC and Si will be discussed there. Additionally, the 

contribution of Ar additives on the ionization of molecular gases such as O2 and N2, is 

studied.  

Novel phenomena that take place during plasma processing of nanoporous 

silica will be described in chapter 4 and 5. The materials modification caused by the 

plasma process is dramatically enhanced by the presence of pores. In chapter 4, 

fluorocarbon discharges are used for transfer of photoresist patterns into nanoporous 

silica. We observe severe surface roughening, deep fluorine permeation and 

fluorocarbon accumulation in the sub-surface region. The nature of the surface 

modifications varies strongly with the plasma properties. We also describe the results 

of the interactions of non-polymerizing discharges, i.e. O2, H2 and N2 discharges, 

with NPS materials. Such discharges are of interest for the removal of photoresist 

masks from the nanoporous silica after completion of the pattern transfer step. The 

NPS surface and bulk modifications that result from these discharges include material 

densification and pore size reduction and are discussed in chapter 5.  

 Photoresist is used as the etching mask for pattern transfer of dielectrics. 193 

nm photoresist requires significant modification in molecular structure with the 

 20



respect of 248 nm photoresist. In chapter 6, an evaluation of this modification on 

etching behavior and plasma-polymer surface interactions with fluorocarbon 

discharges will be present.  

Finally, chapter 7 will summarize the main conclusions of these studies. 
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Chapter 2: Role of Fluorocarbon Radicals and Ions in SiO2 or Si 

Surface Etching Mechanism with Fluorocarbon-Based Discharges  

                         To be submitted to J. Vac. Sci. Technol. A., 2005 

Xuefeng Hua and G.S.Oehrlein  

ABSTRACT 

To provide information on the synergistic and respective roles of fluorocarbon 

(FC) radical and ion fluxes in SiO2 and Si surface etching mechanisms, we measured 

the surface chemical changes of deposited/steady-state FC films, and etching rates of 

SiO2 and Si in C4F8/Ar inductively coupled  discharges. Argon addition to C4F8 

strongly increases the plasma density relative to pure C4F8 and results in a dramatic 

increase of the ion/neutral flux ratio for C4F8/90%Ar discharges relative to C4F8. 

Nevertheless, the x-ray photoelectron spectra of FC films formed on SiO2 and Si 

surfaces without RF bias remain remarkably similar to those of films produced in 

pure C4F8 discharges, which is characterized by a much lower ion/neutral ratio. Upon 

applying an RF bias, etching of FC, SiO2 or Si films commences. At a dc self bias 

voltage of –125V the C (1s) spectra of FC surface films for C4F8/90%Ar discharges 

become strongly fluorine-deficient relative to conditions without RF bias, whereas the 

C (1s) spectra of FC films in C4F8 discharges change little. The surface chemical 

characteristics of FC films remain similar as to those of FC films deposited at floating 

voltage as the ion bombardment energy increases up to the Si or SiO2 etching 

threshold energy. This indicates that the loss of the fluorine content in the FC layers 

during substrate steady-state etching is mainly caused by interaction with the 

substrate. Ion bombardment defluorinates the FC layer, the fluorine diffuses through 
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the FC layer, interacts with the substrate and substrate etching occurs.  An etching 

model based on the carbon and fluorine mass balance between fluorocarbon 

deposition, fluorocarbon etching, and substrate etching is presented that describes the 

relationship of substrate etching rate, fluorocarbon deposition rate (DR), FC layer 

defluorination, and FC layer thickness. 
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2.1  INTRODUCTION 

 Fluorocarbon gas plasmas are extensively used for dielectric etch etching due 

to the ability to selectively etch SiO2 and related materials with respect to photoresist 

masking layers, Si and Si3N4. As semiconductor devices continue to shrink to below 

100nm critical dimension, precise control of etching processes becomes necessary 

and high selectivity of SiO2 relative to photoresist, Si or Si3N4 is desirable. To 

achieve this, it is required to understand the fundamental mechanisms during the 

etching process of different films. Recently, significant efforts in both experiments 

and simulations have been focused on exploring the mechanism of silicon dioxide 

etching using fluorocarbon plasmas (see references 2.1-2.13).  

Studying all species to model the interactions in the fluorocarbon plasma is 

not practical because of the multitude of different species and the complexity of the 

interactions in both gas phase and at the substrate surface. However, measuring 

important plasma-surface interaction parameters, e.g. ion current density and 

composition, ion energy, fluorocarbon deposition and surface chemical information 

can provide key insights on the most important elements of the etching mechanism. It 

is well known that the self-bias voltage on the substrate is required to exceed the 

etching threshold to achieve the steady state etching in fluorocarbon discharges. 

Below the energy threshold, a net growth of fluorocarbon film on the substrate occurs. 

During steady state etching, the surfaces of SiO2 or Si are covered by a dynamic 

fluorocarbon (CFx) layer 2.5-2.9, which blocks the direct interaction of the plasma with 

the substrate. Since this layer limits the arrival rate of etchant species at the substrate 

by diffusion, it is often considered as an inhibitor for substrate etching. More recent 
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work1 has shown that the fluorine content of this fluorocarbon layer can be 

transferred to the substrate by ion bombardment. It was found that the substrate 

etching rate is linearly proportional to the ion-induced defluorination of the steady-

state fluorocarbon film and the fluorocarbon film was suggested to be the dominant 

etchant source for the conditions studied. These studies shed some light on the 

mechanisms of the plasma surface interaction with fluorocarbon discharges. But it is 

still unclear how the ion energy contributes to the transition from deposition to 

etching, how ion energy affects on the chemistry of the fluorocarbon films during this 

transition. Respective roles that ions and neutrals play in the interaction between 

substrate and plasma are still to be identified. To improve our understanding, a 

system enabling the study of a large range of ion-to-neutral ratios is preferred, which 

will enable us to evaluate the relative importance of ions and neutrals during the 

etching process more clearly.   

Argon addition to fluorocarbon discharges is widely used since it enables 

achievement of dense and highly dissociated plasmas. This is explained by the fairly 

high electron temperature of these discharges, which is explained by the high electron 

impact energy thresholds of Ar. Furthermore, the presence of argon metastables that 

carry a relatively high energy (11.6 eV) can enhance fluorocarbon dissociation and 

ionization2.14. The relative importance of ions and neutrals can be easily changed by 

varying the percentage of argon in the Ar/C4F8 gas mixture. The ions become the 

dominant species in highly diluted fluorocarbon discharges, for >90%Ar addition, 

which are characterized by low polymerization rates. Thus the picture of plasma 

surface interaction during steady state etching is significantly different from high 
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polymerization conditions since in the latter case the extent of ion bombardment is 

typically low and most energy released from ion bombardment is consumed by the 

relatively thick fluorocarbon overlayer while significant ion induced reaction between 

plasma and surface is expect in the case of ion-rich plasmas.   

 In this work, we investigated the mechanism of silicon and silicon dioxide 

etching in C4F8/Ar plasmas using this approach. Their substrate specific abilities to 

consume carbon are different, leading to different steady-state fluorocarbon layer 

thicknesses and different surface chemistry. Ar was introduced into the gas mixture to 

enhance the plasma density and ion current density incident on the substrate. 

Simultaneously, the fluorocarbon deposition rates changed significantly owing to the 

reduced fluorocarbon flow for C4F8/Ar. The composite of etching behavior and 

surface studies provides a fairly detailed view of the dominant surface etching 

mechanism and ion/neutral synergy.  

2.2 EXPERIMENTAL SETUP AND PROCEDURES 

Plasma processing of SiO2 or Si in C4F8/Ar was performed in an inductively 

coupled plasma reactor described in Reference 2.14. The discharge was maintained at 

10 mTorr, 50 sccm gas flow and 1000 W source power (13.56 MHz). The self-bias 

voltage of the substrate varied from no bias to –200 V and was produced using an 

additional RF bias power supply (13.56 MHz). A Langmuir probe was used to 

measure the ion current density with the probe tip biased at –100 V to avoid surface 

polymerization by fluorocarbon radicals. Etch rates were measured by in situ real-

time single wavelength (632.8 nm) ellipsometry. X-ray photoelectron spectroscopy 

(XPS) analysis of partially processed SiO2 or Si specimens was performed after 
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transfer in vacuum to an ultra-high vacuum chamber at 900 take-off angle using a 

nonmonochromatized Mg K-alpha X-ray source (1253.6 eV) to obtain the surface 

information of partially etched samples. The pass energy of the hemispherical 

analyzer was fixed at 20 eV. We have previously presented results of absolute density 

measurements of CF, CF2 and COF2 for these discharges by IR laser diode absorption 

measurement2.15. Ion compositional analysis of these discharges has also been 

performed2.16. 

2.3  RESULTS: 

2.3.1 Ar addition effect on fluorocarbon plasma characteristics: Ion current 

density and surface polymerization rate 

 Figure 2.1 a) shows the effect of argon addition on the ion current density 

measured with a Langmuir probe. At low Ar concentration (<60%), the ion current 

density is nearly unaffected by the argon addition. It rises dramatically as a function 

of the percentage of argon at high Ar flow (>80%). Ion compositional measurements 

performed for these conditions revealed that in inductively coupled 

fluorocarbon/argon discharges, the flux of fluorocarbon ionic species decreases with 

argon addition especially for the heavier ions like C2F4
+. More than 70% of the total 

ion flux is Ar+ for a C4F8/90%Ar gas mixture2.16. 

 In infrared laser absorption spectroscopy (IRLAS) measurements2.15, an 

increased dissociation of C4F8 was observed when a low Ar percentage was added to 

C4F8 ( ). The fluorocarbon radical densities decreased as the percentage of Ar 

is increased in C

%20≤

4F8/Ar discharges above 20%. The fluorocarbon deposition rate vs. 

% Ar (Fig. 2.1 b)) shows a qualitatively similar behavior as the fluorocarbon radical 
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densities. At high C4F8 concentration, a saturation of fluorocarbon deposition rate was 

observed, which is plausible since the neutral radicals are abundant for these 

conditions, especially the dominant radical species CF2
2.15

. The fluorocarbon 

deposition rate drops steeply when the Ar percentage was increased to above 80%, 

providing evidence of a neutral limited regime. This behavior qualitatively mirrors 

the increase of the total ion current density, indicating that ions may play an 

important role in the surface polymerization.  
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Figure 2.1: Ion current density (a) and fluorocarbon deposition rate (b) as a function 
of Ar addition in C4F8 discharge. Pressure, source power and total gas flow rate were 
fixed at 10mTorr, 1000w, 50sccm, respectively. 
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2.3.2 SiO2 or Si etching in C4F8/Ar discharges with fixed bias voltage 

a. Etch rate, etching selectivity and etch yield versus argon proportion 

 Blanket samples of SiO2 and Si were etched in C4F8/Ar discharges at two 

different self-bias voltages: -125V or –200V. The argon addition effect is shown in 

Fig. 2.2. An increase in the absolute SiO2 etching rate was achieved by adding up to 

80% Ar to C4F8 (Fig.2.2 a)) at both bias voltages. Because the fluorocarbon ion fluxes 

decrease with argon addition, this observation is not consistent with the direct 

reactive ion etching model suggested by Steinbruchel2.17 where reactive ions provide 

the constituents required for producing SiO2  etch products. A different etching 

mechanism is required to explain the present data. Since the etching rate of Si does 

not change much when the Ar percentage is increased to 80%, a maximum of the 

SiO2 /Si etching selectivity exists at about 80% argon addition.  When the argon 

proportion is above 90%, the SiO2 etching rates drop quickly while the Si etching 

rates increase for both  –125V or –200V. This leads to a reduction of the SiO2/Si 

etching selectivity. The SiO2/Si etching selectivity decreases when the RF bias 

voltage is increased. To explain this, surface analysis is necessary which will be 

discussed in the next section. 

 Beam experiments 2.18,2.19 have shown that the etching yield strongly depends 

on the neutral to ion ratio of the incident species fluxes. We can change the neutral to 

ion ratio by changing the argon fractions of the gas mixture. The etching yields of 

SiO2 or Si are shown in the Fig.2.2 (c). The trend of the Si etching yield using 

different Ar percentages (below 80%) is qualitatively more similar to the behavior 

observed in beam experiments using Ar+ with F rather than Ar+ with CF2
2.14. 
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However, quantitatively the data is much closer to the CF2/Ar+ case. This implies that 

CF2 is probably responsible for the surface polymerization and fluorine is the major 

etchant for Si etching. The increase of the etching yield for Ar percentage greater than 

80% is plausible keeping the reduction of the fluorocarbon coverage in mind (see 

below). In terms of SiO2 etching, the yields measured here are similar to the F/Ar+ 

yields, with the values of CF2/Ar+ a little lower2.15. This indicates that fluorine is also 

a possible etchant source for SiO2. The saturation of the SiO2 etching yield in the case 

of a selfbias voltage of –125V (for Ar percentage greater than 80%), but lack of 

saturation for–200V, indicates that etching is limited in the –125V case by energy 

deposition. 
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Figure 2.2: Etch rate a), selectivity b) and etch yield versus Ar addition into C4F8. 
Pressure, source power and total gas flow rate were fixed at 10mTorr, 1000w, 
50sccm, respectively. RF bias voltage was –125V or –200V. 
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Figure 2.3:  C (1s) photoemission spectra of steady-state fluorocarbon films on Si or 
SiO2thin films and passively deposited films produced in C4F8 or C4F8/90%Ar 
discharge. The spectra were obtained at a collection angle of 900. 
 

b. Surface Analysis 

Since argon addition to C4F8 changes the fluorocarbon plasma characteristics, 

and therefore the plasma-surface interactions, surface chemical information is 

essential for the interpretation of the results. Blanket SiO2 or Si samples were 

characterized by XPS after processing using C4F8/Ar plasmas. We examined both 

samples without RF bias (passive FC film deposition) and with RF bias (partially 

etched). Figure 2.3 shows the C (1s) photoemission spectra (electron take-off angle 

900) for SiO2 or Si samples and two extreme conditions: ion-limited (pure C4F8) and 

neutral-limited (C4F8/90%Ar) processing. For the passively deposited samples, the C 

(1s) spectra are remarkably similar. The intensities of CF2 and CF3 bonds are a little 
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lower in the C4F8/90%Ar case than for pure C4F8, consistent with the limitation of the 

fluorocarbon content of the gas mixture. Upon applying an RF bias (-125V), substrate 

etching commences and the stoichiometry of partially etched samples changes from 

those measured for deposited samples: an additional bond (C-Si/C-C) contribution is 

evident in the spectra and it suggests the presence of silicon at the fluorocarbon 

film/substrate interface when etching occurs. The C-Si /C-C bond component 

contribution is similar between SiO2 and Si in pure C4F8 plasma while it is enhanced 

dramatically on Si etched in C4F8/90%Ar discharge The C-Si intensity does not vary 

significantly for SiO2 samples partially etched in pure C4F8 or C4F8/90%Ar plasmas. 

The structures of the various C-F bonds for C4F8 etched samples remain similar to 

those observed for deposited films produced in pure C4F8. This means that for pure 

C4F8 discharges, energetic ion bombardment (fluorocarbon ions) cannot change 

dramatically the fluorine content of the surface fluorocarbon film. The fluorocarbon 

radical flux at the surface is high enough to maintain the F/C ratio even with energetic 

ion bombardment. For C4F8/90%Ar, the fluorocarbon layer is strongly fluorine-

deficient when an RF bias is applied as compared with FC films deposited without RF 

bias, indicative of neutral-limited surface chemistry. Overall, the C (1s) 

photoemission spectrum intensity on Si is higher than for SiO2 implying there is a 

thicker fluorocarbon layer on the Si surface during steady-state etching. This is the 

basis of the observed SiO2/Si etching selectivity.  
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Figure 2.4: Normalized Si (2p) photoemission spectra of partially etched Si samples 
in C4F8 or C4F8/90%Ar discharge. The spectra were obtained at a collection angle of 
900. 
 

 

It is well known that an amorphous fluorocarbonsilyl mixing layer (SixFyCz) 

exists on the SiO2 or Si during the steady-state etching 2.1. Since it is difficult to 

differentiate Si-Fy bonds from SiO-bonding due to their similar binding energy, we 

only focus on Si(2p) spectra of Si samples. To eliminate the effect of overlayer (FC) 

on Si (2p) intensity, the intensity of Si (2p) spectra was normalized to 6000 counts per 

second at the main elemental Si contribution (99.7eV).  In Fig.2.4, a significant 

increase of Si-Fy contribution was observed when adding 90% Ar to the gas mixture. 

This indicates that the fluorination of Si strongly depends on the ion to neutral ratio. 

For a higher ion bombardment flux (in the C4F8/90%Ar case), more fluorine can be 

driven to the substrate even though in this case the fluorine is much less in the gas 
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phase than for the C4F8 case due to the dilution effect. The effect of ion bombardment 

on the interface mixing will be discussed further in the next section. 

 

 

 

 

 

 

 

 

Figure 2.5: F/C ratios in the steady-state fluorocarbon film on Si or SiO2 samples at
RF bias voltage –125V or –200V and passively deposited films at floating voltage 
processed by C

 

4F8 with different argon addition discharges. 
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Figure 2.5 shows the change in F/C ratio of FC films by ion bombardment at 

dc self bias voltages of –125V or –200V as a function of argon addition. The F/C 

ratio of the fluorocarbon films formed on SiO2 or Si during steady-state etching or 

deposition is calculated from the C1s spectra using the method describing the 

reference 2.14. Deposited fluorocarbon films have similar F/C ratio for different 

argon percentage up to 90%Ar. When etching is induced by RF biasing, 

defluorination occurs. For higher argon percentages more fluorine-deficient 

fluorocarbon layers are formed. The defluorination of the fluorocarbon layer also 

reflects the change in total ion energy as the bias voltage is increased from –125V to -

200V, and also the substrate type (SiO2 or Si). This partially explains the increase of 

SiO2 etching rate as a result of argon addition (for Ar percentage less than 85%).  
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The fluorocarbon layer on SiO2 has a higher F/C ratio than on Si suggesting 

the abilities to consume fluorocarbon are different for SiO2 and Si. Angle resolved x-

ray photoelectron spectroscopy provides more insight into the surface chemistry. The 

results for SiO2 and Si films etched in pure C4F8 or C4F8/90%Ar are shown in Fig.2.6. 

In the case of silicon, the F/C ratio with take-off angle 200 is higher than at 900, 

suggesting that the surface of the fluorocarbon film is more fluorinated and a fluorine 

gradient exists towards the silicon interface. It is opposite in the case of SiO2 etching. 

A possible mechanism is the removal of carbon in the fluorocarbon layer by the 

oxygen release from SiO2, leading to a higher F/C ratio relative to the F/C ratio at the 

FC- film surface (take-off angle 200). A more detailed discussion of this will be 

provided below. 
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Figure 2.6: Angle resolved XPS analysis on the steady-state fluorocarbon film formed 
on Si (a) or SiO2 (b). The electron emission angles were 900 or 200. 
 

 During steady-state substrate etching, the competition between fluorocarbon 

deposition and etching along with substrate consumption results in the formation of a 

steady-state fluorocarbon layer on the substrate surface. The thickness of this layer is 

thought to strongly depend on the polymerization rate of the plasma, which in turn is 

determined by the FC mass flow and the fluorine-deficiency of the feed gas, along 

with the composition of the substrate. Figure 2.7 shows the FC steady-state film 
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thickness versus percent argon added. In the case of Si etching, argon addition 

enhances the FC film thickness, despite the decrease of the deposition rate as a result 

of reduced fluorocarbon gas flow 2.20. Argon ion bombardment of the surface 2.21-2.23 

produces a fluorine-deficient carbonaceous film (see Fig. 2.3), which is hard to etch 

because of the lack of fluorine. The FC film thickness on Si strongly supports the 

conclusion that the etching rate decreases as a function of the FC film thickness. 

Oxygen from the SiO2 substrate etching is considered to be an effective reactant to 

remove the carbonaceous film24. The FC film thickness decreases for SiO2 with argon 

addition and behaves qualitatively similar as the deposition rate.  
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Figure 2.7: The steady-state FC film thickness formed on SiO2 or Si etched by C4F8 
with different argon addition discharges at RF bias voltage –125V or –200V. 
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2.3.3 SiO2 or Si etching in C4F8/Ar discharges with various bias voltages: 

 In the process regime investigated, no significant influence of RF biasing of 

the substrate on the bulk plasma is observed. The ion energy dependence of the 

fluorocarbon etching mechanism can therefore be explored in detail by varying the 

bias voltage. In order to understand specific roles of different ion species like 

CFx
+(x=1,2,3) and Ar+, two gas chemistries are used: pure C4F8 and C4F8/80%Ar. Ar+ 

is by far the dominant ion species in the latter case (our plasma sampling 

measurements show that around 60-70% of the total ion flux is Ar+ in this case and 

CF+ is dominant for pure C4F8). Etching rates measured for these conditions are 

plotted in Fig.2.8. Steady-state fluorocarbon film thicknesses are shown in Fig.2.9. It 

is clear that the ion energy is an important parameter in the etching process. Initially, 

at low bias voltage fluorocarbon deposition occurs (negative values). As the bias 

voltage exceeds a threshold, net substrate etching starts. No significant threshold shift 

between SiO2 and Si was observed, implying the etching energy threshold mainly 

depends on the fluorocarbon removal, which in turn depends on fluorocarbon 

deposition and ion energy. A lower etching energy threshold exists in C4F8/80%Ar, 

consistent with the lower surface polymerization (see Fig.2.1 (b)). The etching rate of 

SiO2 in C4F8/80%Ar saturates more quickly as a function of bias voltage than in a 

pure C4F8 discharge, indicative of the different characteristics of these two 

discharges. It is interesting that the FC steady-state film thickness is very sensitive to 

the voltage near the threshold and varies only weakly if the bias voltage is high. In the 

saturation regime of the etching rate, the FC steady-state film thickness is almost a 
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constant. We now show that the role of ion energy is to enhance the etching rate of 

the substrate by ion-induced defluorination of the fluorocarbon film.  
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Figure 2.8: SiO2 or Si etch rate (positive values) and fluorocarbon deposition rate 
(negative values) processed in C4F8 or C4F8/80%Ar discharge with different RF bias 
voltages. 
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Figure 2.9: The thickness of the fluorocarbon film formed on SiO2 or Si during 
steady-state etching with different RF bias voltages in C4F8 or C4F8/80%Ar 
discharge. 
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Figure 2.10 shows F/C ratios of the FC steady-state film for various bias 

voltages and substrates. Low energy ion bombardment (above plasma potential) does 

not appear to have a significant effect on the fluorocarbon surface composition in 

both pure C4F8 and C4F8/80%Ar. This implies that for low energy ion bombardment, 

the fluorocarbon stoichiometry is primarily determined by the fluorocarbon radical 

fluxes, rather than the high Ar+flux in C4F8/80%Ar plasma. The coincidence of 

substrate etching with ion-induced defluorination of the fluorocarbon layer suggests 

that this process dominates the etching process. The fluorocarbon layer becomes more 

fluorine-deficient as the ion energy increases leading to an enhancement in the 

etching rate of the substrate. The F/C ratio drops more quickly in C4F8/80%Ar than 

for pure C4F8, showing that at this high Ar+/fluorocarbon radical flux ratio the radical 

flux (primarily CF2) is insufficient to maintain the F/C ratio seen for low energy 

bombardment conditions. The leveling off of the F/C ratio of the FC film appears to 

coincide with the regime where the SiO2 and Si etching rates vary only weakly with 

bias voltage for C4F8/80%Ar. 
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Figure 2.10: F/C ratios in the fluorocarbon film formed on SiO2 or Si processed with 
C4F8 or C4F8/80%Ar discharge as a function of RF bias voltage. 
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 As discussed above, the silicon-fluoride reaction layer on the Si surface 

observed for steady-state etching is related to the ion bombardment of the FC 

overlayer. The equivalent thickness of SiFy layer is shown in Fig. 2.11 a) as a 

function of RF bias voltage for C4F8 or C4F8/80%Ar steady-state etching. An increase 

in the SiFy thickness was observed as the RF bias voltage increases in both cases. In 

the ion-limited regime, this layer is weakly dependent on the ion bombardment 

energy (pure C4F8 case). When the ion to neutral ratio increases, ion bombardment 

can efficiently drive the fluorine to the substrate and the SiFy layer thickness 

increases much more quickly with RF bias voltage (the C4F8/80%Ar case). This is 

consistent with the defluorination of FC layer (see Fig. 2.10). The thicker SiFy layer 

does not result in a higher etching rate in the C4F8/80%Ar case (see Fig.2.8). In 

addition, the increase of the etching rate in the C4F8 case with RF bias voltage does 

not seem strongly correlated with this layer. All of these imply that the SiFy layer 

mirrors the ion-induced defluorination of FC layer, but does not show a perfect 

correlation with the substrate etching rate. The intensity of C-Si/C-C bonds, which is 

plotted in Fig. 2.11 b), also reflects the defluorination of the FC layer. The dramatic 

increase of the C-Si/C-C intensity with bias voltage coincides with the quick drop of 

the F/C ratio in the C4F8/80%Ar case (see Fig. 2.10). For C4F8, the RF bias voltage 

increase changes the F/C ratio of the steady-state FC layer only weakly and the 

intensity of the C-Si/C-C bonds also increases slowly with bias voltage. The process 

of driving the fluorine to the interface between the FC layer and the substrate and the 

formation of the mixing layer has been treated by a molecular dynamics simulation 2.  
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Figure 2.11: a) The thickness of the SiFy layer formed on Si (a) and C-Si/C-C 
intensity from C(1s) spectra of the CFx film (b) during steady-state etching with 
different RF bias voltages in C4F8 or C4F8/80%Ar discharge. 
 
2.3.4 FC film etching 

To maintain the steady state, the adsorbing fluorocarbon species fluxes must 

be balanced by desorbing fluorocarbon fluxes. Therefore fluorocarbon film etching is 

also very important in the etching mechanism. We studied the argon addition effect 

on the etching rate of the deposited fluorocarbon films, which is shown in Fig. 2.14. 

The fluorocarbon film was deposited at a floating substrate (>600nm) before an RF 

bias voltage (-125V) was applied using the same gas mixture discharges and etching 

started. The etching rate of the thick fluorocarbon film exhibits a similar behavior as 

the fluorocarbon deposition rate as a function of argon concentration in the gas 
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mixture and also is of similar magnitude. For C4F8/Ar discharges, fluorocarbon film 

etching my also be CFx-based, e.g. through the reaction of gas phase CFx with surface 

CFy to form volatile species. Other possibilities exist as well. The surface analysis 

shows that the stoichiometry of the partially etched semi-infinite FC film is similar to 

that of passively deposited FC film (Fig. 2.15), and the change with increasing Ar 

content is small, but definite. In extremely fluorine deficient case (95% Ar added), the 

fluorine content drop is obvious. This indicates that fluorine can be preferentially 

released from C-F network upon ion bombardment and enhance the etching of the FC 

film. The stoichiometry of the film measured by XPS is primarily determined by the 

first 2~3nm layer2.9. A comparison with the data presented in Fig.2.5 shows that ion-

induced defluorination of the FC film during steady-state etching is greatly increased 

by Si or SiO2 substrate etching. The fluorine released from fluorocarbon ion species 

or fluorocarbon radicals, either by ion impact fragmentation or film dissociation can 

be transported to the substrate and converted into a stable product by reaction with the 

substrate. 
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Figure 2.12:A comparison of semi-infinite FC film etching rate with RF bias 
voltage:-125V and deposition rate on a floating sample. 
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Figure 2.13:A comparison of the F/C ratio of a partially etched semi-infinite FC film 
using an RF bias voltage of  –125V with that of a passively deposited FC film 
(substrate at floating voltage relative to plasma). 
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2.3.5 Physical sputtering of FC film with argon discharges 

It has been shown that defluorination of C-F network enhances the etching. 

The fluorine is driven to underlying substrate and fluorination occurs. The bond 

energy of C-F is 5.18eV. Since the plasma potential for our experimental conditions 

is in the range of 20~30eV, the energy of incident ions is sufficient to break the C-F 

bond even without applying RF bias power. However, no etching takes place at the 

floating potential. This implies that defluorinatin of the FC film is not sufficient to 

initiate the etching process. To evaluate this, we studied physical sputtering of FC 

film initially passively deposited on Si wafer using pure C4F8 discharges. Various 

bias power were applied to argon discharges produced using 400W source power at a 

pressure of 10mTorr. The etching rates of the FC film are plotted in Fig. 2.14 (a). At 

floating potential, no significant etching of the FC film was observed. According to 

the trend shown in the plot, a bias voltage of ~-10V is required to initiate the FC film 

removal. Thus the energy threshold is the range of 30~40eV, consistent with the 

carbon atom displacement energy in graphite obtained in ion beam studies 2.25. This 

suggests that carbon atoms need to be liberated from the C-F network for etching. No 

etching occurs at the floating potential since the ion energy is only 10eV to 20 eV, 

sufficient for releasing fluorine from the FC network. Surface analysis of the samples 

treated with argon discharge at floating potential confirms this picture. The data are 

shown in Fig. 2.14 (b). The CF2 and CF3 intensities drop significantly after the Ar 

etching process. On the other hand, the C-C bond is created and the intensity of C-

CFx bonds increases. Argon ion bombardment knocks off fluorine atom from the FC 

network, and generates dangling C-C bonds. Some C-C dangling bonds can be cross-
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linked. This indicates that both mobile carbon and fluorine atoms are required to 

achieve FC film etching in pure argon discharges. In fluorocarbon discharges, lots of 

fluorocarbon radicals are absorbed at surface along with ion bombardment and the 

process is more complicate. The threshold of etching is expected to be higher since 

more fluorocarbon species need to be broken, consistent with the results shown in 

Fig. 2.8.  
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Figure 2.14: Argon sputtering of FC film: (a) etch rates as a function of bias voltage; 
(b) XPS C1s spectra of FC film after argon plasma sputtering at floating potential. 
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2.4       MODELING OF THE DATA 

In order to provide a framework of C4F8/Ar plasma processing, we summarize 

some important data of our IRLAS and ion sampling measurements, the 

corresponding ion or neutral surface fluxes, and the measured surface chemistry data 

in Table 2.1 for two extreme conditions: C4F8 and C4F8/90%Ar.The ion to neutral 

ratio is enhanced dramatically in the 90% Ar case and as we saw above this high 

ion/neutral ratio leads to a very different surface chemistry for high (corresponding to 

plasma potential) ion bombardment energies. For ion bombardment at low ion 

energies the surface remains similar for the two gas mixture. In the table, we only list 

CF2, which is the dominant neutral radical species2.15. We assume a CF2-based 

deposition process in C4F8/Ar discharges. 

 D. F/C Ratio CF2 Flux 
(mL/s) 

Total Ion 
Flux 

(mL/s) 

Ion 
Composition 

 C4F8 C4F8/ 
90%Ar 

C4F8 C4F8/ 
90%Ar

C4F8 C4F8/ 
90%Ar

C4F8 C4F8/ 
90%Ar

Floating  
Voltage 

~1.4 ~1.25 >4000 <500 ~50 ~120 100% 
CxFy

+
>70% 

Ar+

RF Bias 
-125V 

~1.2 ~0.6 >4000 <500 ~50 ~120 100% 
CxFy

+
>70% 

Ar+

 
Table 2.1: Summary of ionic or dominant neutral fluxes and surface chemistry 
information during processing conditions: C4F8 (ion-limited) or C4F8/90%Ar 
(neutral-limited) with a floating substrate or with a substrate biased –125V. 

 

Based on the result that an inversely proportionalities exist between the 

etching rate and the FC layer thickness, Oehrlein et al.2.26,2.27 proposed an etchant 

transport limitations, e.g. due to a diffusion process, for low ion density etching. 

However, in high ion density discharges the role of ions contributing to the etching 

becomes very important. Figure 2.9 shows that ion-induced defluorination of the FC 
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overlayer accompanies substrate etching. The etching rates correlate to the 

defluorination of the FC layer2.1. During steady-state etching, the F/C ratio at the 

interference between the FC layer and bulk plasma is determined by the plasma 

characteristics, e.g. for our conditions by the CF2 that is incorporated into the FC film. 

The defluorination of the FC layer therefore reflects the gradient of the fluorine 

concentration towards the substrate. According to Fick’s law, the atomic fluorine flux 

that migrates through the FC layer is proportional to this gradient. In order to specify 

the role of the defluorination of the FC layer in the etching mechanism, it is necessary 

to clarify how the carbon content is consumed. In steady state, the adsorbing and 

desorbing (through fluorine etching) carbon fluxes are balanced with substrate 

consumption. The question arises how the substrate etching contributes to the 

removal of the fluorocarbon film. Clearly for Si etching, the etching substrate has no 

ability to remove the carbon formed by defluorination of the fluorocarbon. In oxide 

etching, the substrate can be etched through various reaction channels, for example 

through the formation of SiF4, COF2, CO and CO2, contributing to the removal of 

both constituents of the FC overlayer. 

The etching of the FC layer by fluorine results in the formation of volatile 

products, e.g. C2F4, CF4 and so forth. Surface analysis shows that for SiO2 etching, 

the F/C ratio of the FC layer is lower at the top than at the interface with the SiO2. 

Therefore, during SiO2 etching the following or equivalent reactions should occur: 

                             (1) ↑+↑>−++ COSiFFCSiO 242 42
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Figure 2.15: Schematic of the model presented. The left-hand portion shows the basic 
processes in the FC layer and on the substrate. The right-hand portion indicates 
carbon or fluorine mass flux balance during the steady-state etching. 
 

A schematic picture of the model is presented in Fig. 2.15 based on the above 

discussion. During steady state, the FC film interacts with fluorocarbon ions and 

fluorocarbon radicals. The arrival of energetic ions at the FC film surface is 

accompanied by fragmentation of the molecular ions and surface molecules, 

providing atomic fluorine for the substrate etching by diffusion. Fluorocarbon 

fragment with relatively high energy can also produce volatile species in the FC 

overlayer.  If the substrate is able to react with carbon to form volatile species, e.g. 

SiO2, a different gradient of carbon density will exist than for a substrate where a 

reaction of the substrate with C cannot produce volatile species. The former is likely 

achieved by the ion-induced interaction of O from the SiO2 with the FC overlayer, 

 50



and oxidation of the FC film. In this case, the steady-state FC film becomes much 

thinner than for the substrate without oxygen and etching selectivity is achieved. Due 

to the ion bombardment, the FC film is in an energetic state. There should be a 

gradient in the energy density, which is important for the diffusivity of the species. 

Because of the energetic state, it may not be necessary to distinguish between free F 

(no bonds with carbon atoms) and bound F (F bound to C in the FC layer). Therefore 

in this work, we only consider the mass flow balance for both carbon and fluorine 

during the steady-state substrate etching. 

 

2.4.1 Mathematical Description 

 The above discussion suggests that during the steady state etching, the balance 

between FC deposition, FC etching and substrate etching controls the steady state FC 

film thickness. This balance can be written as 

                              
XXX CFCFCF CRERDRtd

dt
d

−−=)(                                  (2) 

where d(t) is the FC film thickness, DRCFx is the FC deposition rate during etching, 

ERCFx is the total FC etch rate due to the plasma, and CRCFx is the FC consumption 

rate due to the substrate etching. During the steady state etching, the FC film 

thickness is constant, and the mass flow (fluorine or carbon) balance is given by  

                                                  iSubiCFxi Γ+Γ=Γ 0                                             (3) 

here i represents fluorine or carbon component, 0Γ is the mass flux adsorbed by the 

surface, is the desorbing mass flux through the FC etching and  is the 

consumption by the substrate etching. Here we follow the approach presented by 

CFxΓ SubΓ
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Standaert et al9. Fluorine flux diffuses through the FC film down to the substrate, 

meanwhile reacts with the FC film and substrate and forms volatile species, e.g. 

fluorocarbon, SiF4 or CO in the case of SiO2 etching. Detailed mathematical 

description is available in Reference 2.5.  

During a small length dx in the FC film, the consumption of fluorine is 

proportional to the fluorine density n(x) and a reaction rate constant k. The fluorine 

flux change  is given by Γd

                                                dxxknd )(−=Γ                                           (4) 

According to Fick’s law,  

                                                )(xn
dx
dD−=Γ                                          (5) 

where D is a diffusion constant, and Eq.(4) can be rewritten as 

                                            0)()(2

2

=− xknxn
dx
dD                                    (6)   

Using the following boundary conditions: 

                                                   n(0)=n0, 

                                                     dSubdx Knxn
dx
dD =Γ=− =|)(                              (7) 

the expression for the fluorine flux 0Γ into the FC film is derived as 

                                  
)cosh(2

)sinh(2 0

0

d
D
k

d
D
kkDn SubΓ+

=Γ                            (8) 

For rather thick steady state FC film, i.e. kDd /3≥ , the fluorine flux  into FC 

layer is nearly independent of the layer thickness d: 

0Γ
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                                             kDn00 ≈Γ                                                   (9) 

The substrate etch rate can be expressed in terms of FC layer thickness d: 

                          
)cosh()]tanh(/[2

0

d
D
kd

D
kKkD

kDn
Sub

+
=Γ                  (10) 

 

 

2.4.2 The role of FC film thickness in SiO2 and Si etching with fluorocarbon 

based plasmas 

The fluorocarbon layer formed during the steady-state etching process has a 

thickness of more than ~1nm for almost all conditions examined here. The FC layer 

likely inhibits direct reactions of the reactive radicals with the substrate and probably 

blocks most direct substrate interactions since most of the energy of impacting ions 

(~150eV) is dissipated by the first few monolayers (~1nm)2.28. Thus the CFx 

thickness strongly correlates with the etch rate of the substrate materials. A general 

trend is that the substrate etch rate is inversely proportional to the thickness of this 

fluorocarbon film. It also has been found that the etch yield rather than etch rate is 

controlled by the FC film thickness when the ion density varies2.29. Figure 2.16 a) 

shows the relationship between etching rate and FC film thickness measured in all of 

the above experiments (see section III B and C). The general trend mentioned above 

was observed but a great deal of scatter was also seen. Furthermore, the etching yield 

shows a much weaker correlation with the FC film thickness in the presence of 

C4F8/Ar discharges (Fig. 2.16 (b)). The FC steady-state film thickness also reflects 

the surface polymerization rate.  
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Figure 2.16:  (a) Etch rate and  (b) etch yield as a function of CFx film thickness. 

 

From Eq. (8), the etching rate is not only controlled by the FC layer thickness, 

but also fluorine flux . This probably results in the scatter seen in Fig. 2.16 (a). It is 

not practically to measure the latter parameter, since this flux is partially from the gas 

phase and ion induced dissociation and fragmentation of FC species also provide the 

etchant source for the substrate or FC layer etching. FC layer. Recent work revealed 

that the latter process may dominate in the etching mechanism for fluorine deficient 

gas discharge, e.g. CHF

0Γ

3 or C4F8.2.1 In our experiments, the atomic fluorine or 
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fluorine ion density are believed to be very low and major fluorine content exists in 

fluorocarbon radicals or ions especially for high Ar addition conditions. To provide a 

transparent picture how the substrate ER is influenced by the plasma gas phase 

properties, which can be mirrored by measurable parameter, e.g. DR, it is assumed 

that there is no significant fluorine flux directly from the gas phase. Ion induced 

defluorination of the FC layer provides major etchant source for both FC and 

substrate etching. We assume that CF2-based deposition dominates (consistent with 

the flux data shown in Table 1), but validity of the model does not really depend on 

this. From Eq. (9), the substrate covered with a very thick FC layer has no significant 

effect on the fluorine flux . Based on these assumptions, the mass fluorine flux 

into a very thick FC layer (i.e. 

0Γ

0Γ kDd /3≥ ) is given by  

                                
2/0 CFCFDs Γ••=Γ                                      (11) 

where s is the sticking coefficient of CF2 radicals, DF/C is the fluorine to carbon ratio 

of the passively deposited FC film shown in Fig. 2.5. The reason to introduce DF/C in 

Eq. (10) is that it is noted that the F/C ratio of the passively deposited FC film is not 

equal to 2 (see Fig. 2.5). However, XPS results showed that the C1s intensities of 

these passively deposited films are all similar but the F1s intensities change with 

conditions. The fluorine density at the interface between plasma and FC layer is 

determined by the plasma characterization and n(0) is similar for different substrates. 

From Eq. (8), (9)&(10) and assuming ∞→K , we have  

                      )sinh(2/
)sinh(2

2/
0 d

D
kDs

d
D
k

kDn
CFCFSub Γ••≈=Γ               (11) 
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At the floating voltage, a FC layer grows and the growth rate DR is given by 

                                                                                        (13) FCCFsDR ρ/'
2

Γ•=

here s’ is the sticking coefficient at the floating voltage and FCρ is the carbon atomic 

density of FC layer. On the other hand, the consumption of fluorine flux by the 

substrate is related to the measured substrate ER 

                                          
Sub

SubER
ρ4
Γ

=                                                         (14) 

where Subρ  is the silicon atomic density of the substrate, i.e. ~2.3x1023 cm-3 for SiO2 

and 5.0x1022 cm-3 for Si. The factor “4” was introduced because of the fact that one 

silicon atom requires 4 fluorine atoms to form volatile specie SiF4. A general 

relationship between ER and DR (for corresponding conditions) correlated with the 

steady state FC film thickness d is as following  

                          )sinh(/
'8

/ / d
D
kD

s
sDRER CF

Sub

FC −•≈
ρ
ρ

                              (15) 

The value of )/( / CFSub DDRER •• ρ  is plotted as a function of )sinh(/1 d
D
k  in Fig. 

2.17. with 1~
D
k . The data points in the ellipse are obtained at high Ar addition 

conditions (>90%). The deviation of these points implies that direct ion reaction with 

the substrate becomes important at those conditions since the FC layer thickness is 

low. A linear regression (excluding the deviated points) shows that the slope is ~2, 

which means 2~
'8 FCs

s ρ . This suggests that the sticking coefficients are similar at 

the biasing cases, consistent with the fact that most of our biasing conditions were 
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operated within the suppression regime due to the energetic ion bombardment and the 

sticking coefficient may be saturated at this regime. With energetic ion bombardment, 

the sticking coefficient is about several times greater than the value at the floating 

voltage.  
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Figure 2.17: Modeling result of )/( / CFSub DDRER •• ρ ~ )sinh(/1 , data in 

ellipse are obtained at high Ar addition conditions (>

d
D
k

90%). 
 
2.4.3. Ion-induced Defluorination of FC film 

 Above discussion reveals how the steady state FC film controls the substrate 

etching. But it is not clear how the adsorbed fluorine converts into etchant source. 

Recent work shows that the substrate etching rate scales linearly with the fluorine 

depletion of the fluorocarbon film2.10. It is important to note that that work was 

performed with pure fluorocarbon gas discharges. Some important parameters such as 

deposition rate did not vary significantly in that work. We have determined the 

change in fluorine content of steady state FC layers. The defluorination is defined as 
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the difference between the F/C ratio DF/C of a thick fluorocarbon film (~300nm) 

deposited at floating potential and the F/C ratio EF/C of the steady-state fluorocarbon 

film:

                                                              F/CF/C E-D=DF                                                     (16) 

The present work shows that the fluorine liberation in the fluorocarbon film does not 

enhance the substrate etch rate linearly (Fig.2.18a)).  In order to account for changes 

in deposition rate, the ratio of substrate etching rate to deposition rate is plotted as a 

function of defluorination. The ratio of etching rate (ER) to deposition rate (DR) 

scales linearly with DF (see Fig. 2.18b)), which indicates that the fluorine depletion 

of the fluorocarbon film is an important process in SiO2 and Si etching. With linear 

regression, the slope is 1.607 for SiO2 etching and 0.362 for Si. The ratio between the 

slopes (1.607: 0.362) is much greater than the ratio of the silicon atomic density to the 

SiO2 density (5:2.3). One may conclude from this that ion-induced defluorination 

process does not directly contribute to the substrate etching. The fluorine released by 

the ion induced defluorination needs to be driven down to the substrate, e.g. by 

diffusion process. 
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Figure 2.18: Etch rate (a) or the ratio of etch rate to deposition rate (b) versus the 
defluorination in the CFx film.  
 

During the steady state etching, the ratio of desorbing fluorine flux to carbon 

flux may change for different conditions, for instance, carbonaceous specie can be 

removed upon high ion energy sputtering. We assume that this ratio is equal to the 

F/C ratio of the steady-state FC film measured with XPS. This is consistent with the 

etching results of semi-infinite FC films (see section III-D). In those cases, the F/C 

ratios of removed species are similar as the F/C ratios of etched films. Thus remained 
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films have similar F/C ratios during the etching (see Fig. 2.13). According to Eq. 2, 

we have 

                            
SubCC

SubFF
CFE

Γ−Γ
Γ−Γ

=
0

0
/                                            (17) 

For Si etching, 0=ΓSubC , since silicon does not contribute in carbon removal. In the 

case SiO2 etching,                                             

                                            SubSubC ER ρ•=Γ 2                                          (19) 

Based on Eq. (8), (9), (11), (13), (14),(18)&(19), it is possible to obtain an express of 

ER/DR in term of DF/C, EF/C, and FC layer thickness d: 
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2SiOX

                                                                        SiX

                                    
)

)cosh(2

11(4

)tanh(

'

//

d
D
k

Ed
D
kD

s
s CFCF

SuB

FC

−

−
••

ρ
ρ

          for Si etching 

 60



DRER Sub /ρ• ~ or XSi is plotted in Fig. 2.19. Again, a deviation was seen for 

high Ar addition conditions. In this case, linear regression indicates 

2SiOX

12~
' FCs

s ρ . The 

discrepancy of FCs
s ρ
'

 value obtained by these two fittings may be explained by the 

overestimation of fluorine flux F0Γ  shown in Eq. (11). Since ion induced dissociation 

or fragmentation of fluorocarbon species cannot completely deplete the fluorine from 

those species, one part of  can participate in the diffusion process. But in Eq. (17) 

the mass flows of fluorine or carbon are considered.  
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Figure 2.19: SiO2 or Si etching rate versus the parameter presented in the model 
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2.5 CONCLUSIONS 

 All data presented in this work are consistent with a picture where ion-induced 

defluorination of a thin FC layer formed on the substrate surface is the main source of 

substrate etchant in fluorine deficient fluorocarbon discharges. The fluorine released 

by ion fragmentation, and dissociation of the FC film network as a result of energetic 

ion bombardment is transported to the substrate by a diffusion-like process, where it 

will react and form volatile etching product. Through this indirect process, the 

substrate etching rate becomes strongly dependent on substrate stoichiometry and 

bond strength, and the relative magnitudes of the species fluxes incident from the 

plasma on the substrate overlayer surface, and the amount of energy deposited per gas 

phase species incorporated in the substrate overlayer. The difference in fluorine and 

carbon gradients seen for SiO2  and Si seen in this work are consistent with the well-

known model that during SiO2 etching, oxygen from the substrate leads to more 

efficient volatilization of deposited fluorocarbon material than for Si, resulting in a 

thinner steady-state fluorocarbon film for SiO2 than for Si, and enabling the 

achievement of SiO2/Si etching selectivity.  
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Chapter 3: Study of C4F8/N2 and C4F8/Ar/N2 plasmas for highly 

selective Organosilicate Glass (OSG) etching over Si3N4 and SiC 

J. Vac. Sci. Technol. A., 21,1708 (2003) 

Xuefeng Hua, X.Wang, D.Fuentevilla, G.S.Oehrlein, F. G. Celii and  

K. H. R. Kirmse 

Abstract: 

We report the effect of N2 addition to C4F8 and C4F8/Ar discharges on plasma 

etching rates of Organosilicate Glass (OSG) and etch stop layer materials (Si3N4 and 

SiC), and results of surface chemistry studies performed in parallel. N2 addition 

exhibits different effects in C4F8 and C4F8/Ar plasmas, which may be explained by a 

higher plasma density, electron temperature and possibly the presence of argon 

metastable species in the C4F8/Ar plasma, all of which serve to dissociate N2 more 

effectively. When N2 is added to a C4F8/Ar plasma, a reduction of the steady-state 

fluorocarbon surface layer thickness, one of the key parameters that controlls the 

etching rate and etching selectivity, on partially etched samples is observed. This 

effect leads to a loss of etching selectivity for C4F8/Ar/N2 discharges. Adding N2 to 

C4F8 plasmas without Ar enhances the steady-state fluorocarbon layer thickness. X-

ray photoelectron spectroscopy analysis shows in this case that there is an important 

change in the stoichiometry of either passively deposited films or the fluorination 

reaction layers formed on etching samples: a significant amount of nitrogen is 

incorporated in the fluorocarbon film for deposited films, which implies that CxNy 

needs to be removed to achieve an etching condition. The incorporation of nitrogen in 

fluorocarbon films could reduce the etchant supply for Si3N4 or OSG from the gas 
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phase, especially for C4F8/Ar/N2 plasmas, but not for SiC owing to the differences of 

the chemical compositions. SiO2 and Si are also studied for comparison materials: 

SiO2 has similar etching behavior as OSG and Si3N4, while Si behaves more similar 

to SiC during fluorocarbon etching. In addition, a comparison of N2 and O2 addition 

to C4F8 or C4F8/Ar plasma in terms of consequences on etching behavior of the above 

materials is presented. 
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3.1 Introduction:  

The signal delay caused by the resistance of the metal lines and parasitic 

capacitance between adjacent interconnect lines is expected to be greater than the gate 

related signal delay and dominate device performance as the device feature size of 

ULSI circuits shrink to less than 250 nm. Integrating low-k or ultralow-k dielectric 

materials into the backend of the line (BEOL) processing is required to reduce the RC 

delays.  A variety of novel low dielectric constant (low-k) materials having dielectric 

constants below 3.0, including organic and inorganic films, have been investigated to 

replace conventional SiO2 for advanced devices3.1. Organosilicate glass (OSG) with a 

dielectric constant (k) ranging from 2.6 to 3.1 is a promising low-k material for next 

generation devices, since OSG is thermally stable and mechanically strong. SiC is a 

potential candidate to replace Si3N4 as an etch stop layer (ESL), since it has a lower 

dielectric constant than Si3N4. 

Fluorocarbon plasmas are widely used for etching silicon dioxide layers, but 

to effectively determine the best composition of fluorocarbon plasmas to etch these 

new low-k materials with high selectivity relative to the etch stop layers, basic 

understanding of the gas-phase reaction and plasma-surface interaction mechanisms 

is necessary. As a result of the interaction of the fluorocarbon plasma and a biased 

surface, a thin steady-state fluorocarbon layer is formed3.2-3.4 on the surface of the 

etching material and has been identified as one of the key parameters in the etching of 

various substrate materials. This layer inhibits the ions or neutrals from directly 

reacting with the substrate. Normally, etch rates are thought to decrease with the 

fluorocarbon thickness3.5. On the other hand, ion-induced defluorination of the 
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fluorocarbon layer enhances the etch rate, by providing additional etchant for the 

substrate3.6. In this work, we introduced nitrogen into the discharge in an effort to 

increase OSG/ESL etching selectivity. N2 addition to C4F8 or C4F8/Ar makes the gas-

phase and surface reactions more complex, especially when argon is additionally 

present.  

 

3.2 Experimental setup and procedures 
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Figure 3.1: Schematic outline of the planar coil ICP 

The inductively coupled high-density plasma-etching reactor used for this 

study is schematically shown in Fig. 3.1. A planar coil is placed on top of a quartz 

window and powered through an L-type matching network by a 13.56 MHz, 0-2000 

W power supply to generate plasma which is confined to a narrow region 2- 
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3cm below the window by induced electromagnetic fields. The ion bombardment 

energy at the substrate electrode (300mm diameter) is controlled by applying a RF 

bias voltage using another 13.56 MHz power supply (0-1000 W). The wafers are 

located at the center of the electrode that is cooled by circulation of a cooling liquid to 

15 0C. Total gas flow into the reactor was set at 50 sccm. An operating pressure of 10 

mTorr was maintained by using an automatic throttle valve in the exhaust line. Before 

each experiment, the chamber was cleaned using an O2 plasma, followed by a 3 

minute chamber seasoning using the conditions for the next experiment. After that, 

the sample is loaded and the experiment of interest is conducted. A thin metal mesh is 

installed around the discharge region to ensure stable processing conditions and 

reproducibility. The temperature of the vessel wall was kept constant at 50 oC using 

heating straps. 

A Langmuir probe was used to measure the ion current density. The probe tip 

was biased at –100V to avoid surface polymerization by fluorocarbon radicals. In the 

process regime investigated, no significant influence of rf biasing of the substrate on 

the ion current density in the bulk plasma is observed, consistent with the observation 

that the rf power coupled to the substrate electrode is linearly proportional to the self-

bias voltage developed at that electrode. The ion current density can also be 

calculated by the slope of this linear relationship3.6. 

Blanket film etching of OSG, Si3N4, SiO2, SiC, and Si were studied in 

discharges fed with C4F8/N2 and C4F8/Ar/N2 gas mixtures discharge using a total flow 

rate of 50 sccm (in the latter case, the ratio of C4F8 to Ar was fixed at 1:9). The source 

power and RF bias voltage were fixed at 1000 W and –125 V, respectively. In situ 
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real-time single wavelength (632.8 nm) ellipsometry was employed to measure the 

etch rates and the surface modification during etching. X-ray photoelectron 

spectroscopy (XPS) analysis was performed at 900 take-off angle using a 

nonmonochromatized Mg K-alpha X-ray source (1253.6 eV) to obtain the 

photoemission spectra of partially etched samples. The pass energy of the 

hemispherical analyzer was fixed at 20 eV. 

 

3.3 Experimental Results: 

3.3.1 C4F8/N2 plasmas: 

1. Effect of N2 addition on etch rates, deposition rates and steady-state 

fluorocarbon film thickness: 

Blanket OSG, Si3N4, SiO2, SiC and Si films were etched in C4F8/N2 discharges 

which are maintained at 10 mTorr, using 1000 W source power and –125 V self-bias 

voltage with respect to ground. The etch rates were determined by in-situ 

ellipsometry (632.8 nm) and are plotted in Fig.3.2. Negative etch rates correspond to 

flurocarbon film deposition, which is observed with the substrate at floating voltage. 

The etch rates remain almost the same for different proportions of N2 in the feed gas, 

implying that the etchant density was not changed strongly by nitrogen addition. This 

is also confirmed by the fact that the ion current density changed only little as a 

function of the percentage N2 added to C4F8 (see discussion section). When N2 is 

added to C4F8, higher fluorocarbon deposition rates were observed, indicative of a 

reaction of nitrogen and fluorocarbon radicals, and further characterized by XPS (see 

below). The deposition rate  
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reaches a saturation level when the concentration of N2 increases above 20%, and 

may be explained by the simultaneous reduction of the fluorocarbon gas flow rate. In 

this work the nitrogen concentration was limited to 40% or lower. Although the 

etching rates of all above materials dropped slightly as nitrogen was added, the 

selectivities of OSG/Si3N4 and OSG/SiC are increased to around 4 when 40% N2 is 

added. 
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Figure 3.2: Etch rate a) and selectivity b) as a function of N2 addition into C4F8.
Pressure, source power and total gas flow rate were fixed at 10mTorr, 1000w,
50sccm, respectively. 
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In order to explore the mechanism of N2 addition effect on the etching 

behavior, the key parameter of the fluorocarbon etching—the steady-state 

fluorocarbon layer thickness on a Si stop layer was studied carefully with 

ellipsometry: First a pure C4F8 plasma was ignited in the reactor, and the substrate 

was RF biased at –125 V. This formed a steady-state fluorocarbon layer. 

Subsequently, nitrogen is added into the reactor. Fig.3.3 shows that a slight increase 

of the steady-state film thickness was observed as a result of N2 injection, leading to a 

drop of the Si etch rate.  
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Figure 3.3: N2 effect on the steady-state fluorocarbon film thickness on Si sample
when added into C4F8. Pressure, source power and total gas flow rate were fixed
at 10mTorr, 1000w, 50sccm, respectively. 
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Figure 3.4: a) C (1s), b) N (1s) and c) F (1s) photoemission spectra of steady-state 
fluorocarbon films on SiC or Si3N4 thin films and passively deposited films produced 
in C4F8 or C4F8/N2 discharge. The spectra were obtained at a collection angle of 900. 
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2. Surface Analysis: XPS 

The stoichiometry of the films formed during passive deposition was 

significantly changed by nitrogen addition. In Fig. 3.4 a), a comparison of C (1s) 

photoemission spectra of deposited films in either C4F8 or C4F8/40%N2 is shown. 

Nitrogen was strongly incorporated into the film, identified as CxNy, which is  

responsible for the enhancement of the deposition rate. The fluorocarbon film 

stoichiometry of etching samples of SiC or Si3N4 did not show a significant 

difference when etched in either C4F8 or C4F8/N2. This indicates that CxNy is 

effectively removed from the surface when an RF bias is turned on. Without CxNy, in 

steady state, the fluorocarbon layer thickness does not change as a function of time 

and the fluorocarbon etching and substrate etching balance fluorocarbon deposition. 

But if CxNy is present in the process, a thicker film may be expected because of a 

higher deposition rate and the fact that the ion energy flux and the fluorine flux are 

partly consumed by etching CxNy, explaining the drop of the substrate etching rate. 

Figure 3.4 b) c) show N (1s) and F (1s) respectively. These data demonstrate 

that nitrogen also remains on the surface of a partially etched sample in the case of 

C4F8/N2 discharges. As mentioned above, the amount of nitrogen incorporated into 

the fluorocarbon film in the etching case is small. It is important to determine where 

nitrogen exists on the sample surface. In Fig.3.5, N (1s) photoemission spectra of 

partially etched Si3N4 using a C4F8/N2 plasma show low nitrogen incorporation on the 

surface next to Si-N. Both Si (2p) and F (1s) show additional peak components. The 

C (1s) spectrum clearly shows the various bonds between carbon and fluorine atoms 

(C-C/C-Si and C-Fi, i=1,2,3) dominate the spectrum. Carbon may also be bonded to a 
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small amount of nitrogen. In addition, the smaller peaks could be due to SimFnNt, 

which exists as an interaction layer between the steady-state fluorocarbon layer and 

the substrate. XPS analysis performed on other etched materials such as SiC, Si, SiO2 

and OSG also showed that the contribution from carbon atoms bonded to nitrogen 

was small for in the C (1s) spectra of partially etched samples.  
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Figure 3.5: C(1s), Si(2p), F(1s) and N(1s) photoemission spectra of steady state 
fluorocarbon film on Si3N4 processed by C4F8/N2 plasma. 

 

Normally, the steady-state fluorocarbon layer thickness is estimated by using 

Si (2p) or C (1s) spectra, as described in references 3.8, 3.9. Since materials like OSG 

and SiC contain carbon, it is more accurate to estimate the fluorocarbon layer 

thickness from Si (2p) spectra instead of C (1s). Furthermore, typical hydrocarbon 

contamination of the materials and significant stoichiometric differences between 
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passively deposited samples and etched samples also make it difficult to calculate the 

fluorocarbon layer thickness using C (1s) spectra. In this work, the fluorocarbon layer 

thickness was measured from the decrease in Si (2p) intensity by comparison with 

that of untreated material as follows3.8: 

passively deposited samples and etched samples also make it difficult to calculate the 

fluorocarbon layer thickness using C (1s) spectra. In this work, the fluorocarbon layer 

thickness was measured from the decrease in Si (2p) intensity by comparison with 

that of untreated material as follows3.8: 

θλ sin)/ln( )2()2( opsipSiCF IId −=                 (1)                                           

Here the escape depth )2( pSiλ of Si (2p) photoelectrons in the CFx layer is assumed to 

be 3.0 nm, and θ  is the photoelectron take-off angle, which is 900 in this work; 

 and are the Si(2p) photoemission spectrum intensities of partially etched or 

untreated samples respectively. Fig.3.6 shows the relationships between steady-state 

etch rates and the steady-state fluorocarbon film thickness for different materials 

processed using C

)2( psiI oI

4F8 or C4F8/40%N2 plasmas. N2 addition results in a slight increase 

of the fluorocarbon film thickness, leading to a reduction of etch rate. 

 

Figure 3.6: Etch rate as a function of the steady-state FC film thickness of 
OSG, Si3N4, SiC, SiO2 and Si etched by C4F8 or C4F8/N2
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Figure 3.7: F/C and N/C ratios in the fluorocarbon film on Si sample 
processed by C4F8/N2 or C4F8 discharge as a function of bias voltage.  

Studies performed using different self-bias voltages helped develop the 

picture of the influence of ion bombardment on surface etching and chemistry further. 

Fig.3.7 shows the changes in Si surface stoichiometry as a function of the  

 

self-bias voltage. The Si samples were analyzed by XPS after processing in the 

plasma. N/C and F/C ratios were calculated from XPS data for the C4F8/40%N2 

discharge, while for pure C4F8 only the F/C ratio was obtained. It is important to note 

that the F/C ratio presented here is the ratio of the fluorine in the fluorocarbon film to 

the intensity of C (1s), and fluorine may also exist in the interaction layer for partially 

etched samples. The fluorine in the fluorocarbon layer can be expressed by the atomic 

fluorine to carbon ratio (F/C) and is defined as3.5
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where I(…) is the area of the fitted Gaussian function for the chemically shifted 

contribution indicated between the parentheses. A higher energy threshold is required 

to change the film stoichiometry for a C4F8/40%N2 discharge than for a pure C4F8 

discharge. This may indicate that the ion energy is dissipated not only by the etching 

of the fluorocarbon film but also of CxNy species when N2 is added to C4F8. In 

C4F8/40%N2 discharge, the F/C ratio is enhanced when more CxNy is removed as the 

bias voltage is increased, but drops slightly when substrate etching starts since the 

fluorine is consumed by the substrate after fluorine has diffused through the 

fluorocarbon layer3.8. For a pure C4F8 discharge, ion bombardment does not change 

the film stoichiometry in the deposition region and F/C decreases quickly when 

substrate etching occurs, resulting from ion-induced defluorination. The ion energy 

consumption by CxNy removal could be comparable to CFx etching in the case of 

C4F8/40%N2 plasma due to the fact that the deposition rate increases nearly twice, 

therefore the ion-induced defluorination is less and the fluorocarbon film is more 

fluorine-rich in C4F8/40%N2 than in pure C4F8. It is interesting that the N/C ratio 

remains constant once etching has started, suggesting that nitrogen incorporation in 

the interaction layer is not a dominant factor of the etching mechanism3.9.  

3.3.2 C4F8/Ar/N2 plasmas: 

1. Effect of N2 addition on etch rates, deposition rates and steady-state 

fluorocarbon films: 
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 Although C4F8/N2 plasmas exhibit several interesting phenomena, the effects 

on etching behavior are weak because of the stability of the N2 molecule. Argon is 

commonly used for the plasma processing, and can enhance the dissociation and 

ionization of molecular gases3.10, 3.11. A C4F8/Ar/N2 mixture was used in the etching of 

blanket films of OSG, Si3N4, SiO2, SiC and Si, in which the ratio of C4F8 to Ar was 

fixed at 1:9. In our previous studies of Ar addition to C4F8 and C4F6 we found that for 

this C4F8/Ar ratio the SiO2/Si etching selectivity and SiO2 etching rates are 

optimized12.  
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Figure 3.8: Etch rate & deposition rate a) and selectivity b) as a
function of N2 addition into C4F8/90%Ar. Pressure, source power and
total gas flow rate were fixed at 10mTorr, 1000w, 50sccm, respectively.
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The measured etch rates and the film deposition rate are plotted in Fig.3.8 as a 

function of percentage N2 added. SiC and Si exhibit similar dependence on the 

percentage N2 added: the etching rates increase initially, and then saturate at a high 

concentration of N2. For OSG, Si3N4, and SiO2 the etching rate always decrease as N2 

is added. A different mechanism is indicated for these materials, and the reduced 

etching rates may in part be explained by the reduced C4F8/Ar flow as the percentage 

of N2 increases. The fluorocarbon film deposition rate was reduced when N2 was 

added to C4F8/Ar owing to the reduced flow of the fluorocarbon gas. Thus a reduced 

steady-state fluorocarbon film thickness may be expected, especially for Si and SiC.  

 In order to verify this expectation, a similar experiment as described in the 

C4F8/N2 plasma section was also performed with spectroscopic ellipsometry: First 

C4F8 /Ar gas mixture was injected to the reactor to form a steady-state fluorocarbon 

layer. Subsequently nitrogen is added into the reactor. In Fig.3.9, a significant steady-

state film reduction was observed after nitrogen had been added, which is opposite to 

the behavior seen for C4F8/N2. An enhancement of the Si etch rate may be expected 

from the reduction of the fluorocarbon film thickness, consistent with the observation 

that the Si and SiC etching rates were increased in C4F8/Ar/N2 plasmas. Since this is 

not the case for OSG, Si3N4, and SiO2, the steady-state fluorocarbon film thickness is 

not the dominant factor that controls the etch rate of these material when the etchant 

flow (C4F8/Ar) is very low.  
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Figure 3.9: N2 effect on the steady-state fluorocarbon film thickness on Si
sample when added into C4F8/Ar. Pressure, source power and total gas flow rate
were fixed at 10mTorr, 1000w, 50sccm, respectively. 

 

2. Surface analysis: XPS 

 A comparison of surface stoichiometry between C4F8/Ar and C4F8/Ar/N2 is 

shown in Fig.3.10. Nitrogen addition to C4F8/Ar exhibits several similar 

characteristics as adding N2 to C4F8, such as high nitrogen incorporation in the 

fluorocarbon layer for passively deposited samples and shown in Fig.3.10 a), and 

nitrogen incorporation beneath the steady-state fluorocarbon layer on etched samples 

(see Fig.3.10b)). But in the case of nitrogen addition to C4F8/Ar the fluorocarbon 
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layer on partially etched sample is much fluorine-deficient relative to adding nitrogen 

to C4F8 even though the passively deposited fluorocarbon layers are quite similar.   
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Figure 3.10:  a) C (1s), b) N (1s) and c) F (1s) photoemission spectra of steady-state 
fluorocarbon films on SiC, Si3N4 and passively deposited samples in C4F8/Ar or 
C4F8/Ar/N2 discharge. The spectra were obtained at a collection angle of 900. 
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The fluorocarbon film thicknesses on different materials were calculated using 

the method described in the C4F8/N2 section, and are plotted along with the etching 

rates in Fig.3.11. In this plot, only C4F8/Ar and C4F8/Ar/40%N2 data are shown. 

Adding N2 resulted in a reduction of the fluorocarbon film thickness, which is 

different from adding N2 to pure C4F8. This reduction leads to a strong enhancement 

of etching rates of SiC or Si, as expected. For OSG, SiO2 and Si3N4 etched in the 

C4F8/90%Ar plasmas, the fluorocarbon film thickness is much smaller than for Si and 

SiC. When adding 40% N2 to C4F8/Ar, a reduction of the film thickness is seen, but 

this does not have a dominant effect on the SiO2, OSG or Si3N4 etching rates. In 

C4F8/Ar/N2, CxNy was also completely removed from the fluorocarbon film when 

etching occurred. The reduction of the fluorocarbon film may be caused by the 

additional interaction with N atoms, and possibly an enhancement of this interaction 

by Ar+ bombardment. A more detailed discussion of this will be provided in the 

Discussion section. 
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 Figure 3.11: Etch rate as a function of the steady-state FC film thickness of 
OSG, Si3N4, SiC, SiO2 and Si etched by C4F8/Ar or C4F8/Ar/N2
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 Figure 3.12 show the RF bias effect on the fluorocarbon layer stoichiometry. 

For C4F8/Ar/N2, within the deposition region, the F/C ratio was increased significantly 

due to the carbon removal, and dropped quickly after etching occurred. The N/C ratio 

remained constant when etching took place, implying that the N/C ratio is not 

dramatically different for etching or deposition conditions. The F/C ratio is slightly 

lower in the case of C4F8/Ar/N2 than for C4F8/Ar, different from C4F8/N2, indicating 

nitrogen could also remove fluorine in the fluorocarbon layer. 

The comparison of the etch rates of different materials in C4F8/Ar/N2 plasma 

clearly shows that the chemical composition of the substrate plays an important role 

during the etching and ultimately results in different steady-state fluorocarbon film 

thicknesses. For selective etching, SiC is preferred as an etch stop layer material 

because of the qualitative difference in its etching behavior relative to OSG; OSG and 

Si3N4 behave chemically more similar, which limits the etching selectivity that can be 

achieved. 
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Figure 3.12: F/C and N/C ratios in the fluorocarbon film on Si sample 
processed by C4F8/Ar/N2 or C4F8/Ar discharge as a function of bias voltage.  
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3.3.3 A comparison of O2 addition and N2 addition into C4F8 or C4F8/Ar plasma: 

 In order to clarify the mechanism of the effect of N2 addition, O2 addition was 

also investigated since both of them are molecular gases. The difference between 

nitrogen and oxygen is that N2 gas is much more stable than O2. Fig.3.13 shows a 

comparison of the effects of N2 and O2 addition on etching rates. From this figure, it 

is clear that adding N2 or O2 into C4F8/Ar (closed symbols) caused similar changes, 

but for pure C4F8 (open symbols), the etch rate was enhanced if O2 was added, which 

is different from N2 addition.  
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Figure 3.13: Etch rates of (a) OSG, Si3N4& SiO2 and (b) SiC&Si for O2 (the up row) 
and N2 addition (the down row) into C4F8 or C4F8/Ar. Pressure, source power self-
bias voltage and total gas flow rate were fixed at 10mTorr, 1000w, -125V and 
50sccm, respectively. 
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The effect on the steady-state fluorocarbon film thickness when adding O2 is 

plotted in Fig.3.14. Adding O2 into C4F8 or C4F8/Ar resulted in both cases in the 

reduction of the steady-state fluorocarbon film thickness. The reduction in case of 

C4F8/O2 leads to the increase in etching rates of all materials, while with the presence 

of argon, OSG, SiO2 and Si3N4 behave different from SiC or Si. The etching rates of 

SiC and Si were enhanced when O2 was added.  
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 Figure 3.14: O2 effect on the steady-state fluorocarbon film thickness on Si
sample when added into C4F8 or C4F8/Ar. Pressure, source power self-bias
Voltage and total gas flow rate were fixed at 10mTorr, 1000w, -125V and
50sccm, respectively. 
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Figure 3.15: Comparison of important electron impact dissociation or ionization 
energies (for C4F8) and thermal dissociation or ionization energies (for N2 and O2). 
Ar*: argon metastable. According to measurements by Cosby (J. Chem. Phys., Vol. 98 
, No.12, 15 June 1993), the cross section for electron induced dissociation of N2 
becomes significant (within the uncertainty of the measurement) above 18eV electron 
energy.  
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3.4 Discussions: 

 The electron impact or thermal dissociation and ionization energetics3.13 for 

related species in N2, O2, Ar or C4F8 are presented in an energy level diagram in Fig. 

3.15. To ionize N2 or O2 into atomic ions (N+ or O+) 3.9, 3.10, higher electron impact 

energies are required than for producing molecular ions (N2
+, or O2

+). Y.Wang, et al, 

investigated the ion energy distribution in N2: Ar and O2: Ar3.9.. The intensities of 

atomic ions are enhanced by Ar addition due to the formation of argon metastables 

(Ar*), which carry 11.6 eV of energy. For pure O2 or N2, O+ contributes more to the 

total ion flux than N+ because of the lower formation energy required for O+. Ar* 

does not play a significant role in the dissociation of N2, since the degree of N2 

dissociation is very small3.10. Fig.3.16 shows the effect on ion current densities for N2 

and O2 addition into fluorocarbon discharge in our system. N2 or O2 addition does not 

change the total ion current density significantly, which basically stays constant when 

these gases are added to pure C4F8. When argon is introduced to C4F8, the ion current 

density is nearly doubled, but decreases when either O2 or N2 are also added. 
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Figure 3.16: Ion current densities for N2 and O2 addition into C4F8 or C4F8/Ar 
discharges. Pressure, source power self-bias voltage and total gas flow rate were 
fixed at 10mTorr, 1000w, -125V and 50sccm, respectively. 
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 When nitrogen is added into the gas mixture, the following reactions can 

occur in both the gas phase and the steady-state fluorocarbon layer:  

                                                 Cx + Ny —› CxNy           (3) 

                                      CFx + N  —› CNFx           (4) 

                                                    F3 + N—> NF3                   (5)  

CxNy would deposit on the substrate without bias and can be etched if an RF bias is 

turned on.  CNFx is volatile, so if reaction (4) occurs in the steady-state layer,  

its thickness would be reduced. The reactions, (4) and (5), are expected to be much 

more important in C4F8/Ar/N2, due to Ar+ ion bombardment. In addition, the presence 

of argon metastables increases the intensity of N+ and may in part be responsible for 

the fluorine and fluorocarbon radical removal and the reduction of the fluorocarbon 

thickness. Because of that, the CFx film becomes carbon rich and thinner after N2 is 

added to C4F8/Ar, while thicker if N2 is added to C4F8; the F/N ratio (corrected with 

photoemission crossection) of the passively deposited film is reduced to 1.167 in 

C4F8/Ar/40%N2 plasma from 6.390 in the case of C4F8/40%N2. For O2 addition, 

oxygen also reacts with fluorocarbon radicals to form species that are volatile, and 

thus reduces the thickness of the fluorocarbon film in both cases. 

 Based on the previous work done by this group3.12, fluorocarbon radicals, 

especially CF2 are believed to become major etchants for Si3N4, SiO2 and OSG thin 

films after surface adsorption and subsequent ion-induced reaction with substrate 

atoms. For SiO2, OSG, and Si3N4 the steady-state fluorocarbon film thickness is small 

in C4F8/Ar and likely not rate limiting. Reducing the film thickness, while at the same 

time reducing the supply of the etchant (lower C4F8/Ar flow) results in a lower 
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etching rate overall. For SiC and Si substrate the fluorocarbon film thickness is large 

and fluorine diffuses through the steady-state layer and reacts with the substrate3.8. In 

that case, fluorocarbon film thickness dominates the etching. The etching rates of SiC 

or Si increase due to the reduction of the fluorocarbon film thickness in C4F8/Ar/N2 or 

C4F8/Ar/O2. Fig.3.8 shows that the etch rate ratio of SiO2 to Si dropped from 7.75 

(C4F8/Ar) to 1.78 (C4F8/Ar/40%N2). Without N2 addition for C4F8/90%Ar, the SiO2 

and OSG etching rates are nearly 400 nm/min, whereas the Si and SiC etching rates 

are almost 50 nm/min. The SiO2 and OSG etching rate are starved for etchant, but not 

the Si and SiC etching rate. As N2 is added, the SiO2 and OSG etching rate decrease, 

and the Si and SiC etching rate increase (fluorocarbon film reduction). The OSG 

etching rate always remains the highest and for 20% and 40% N2 addition is 

approached by the SiC etching rate. 

 

3.5 Conclusions: 

 Although argon has frequently been considered an inert gas in low pressure 

discharges, it can activate molecular gases like nitrogen and oxygen when added to 

gas mixtures containing a large proportion of Ar, e.g. fluorocarbon/argon containing 

discharges. The presence of argon metastables can affect the composition of ionic and 

neutral species in the gas phase of the plasma. A change in the discharge electron 

temperature due to the high electron impact energy thresholds of Ar relative to 

fluorocarbon gases can also produce this effect.  

For OSG, SiO2, Si3N4, SiC and Si, deposition of fluorocarbon films followed 

by ion-induced activation which defluorinates the fluorocarbon films and drives a 
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reaction with the substrate is important. The steady-state film thickness will reflect 

differences in substrate chemistry, e.g. Si, SiC exhibit no consumption rate of the 

fluorocarbon film and therefore the steady-state fluorocarbon film thickness is greater 

than for OSG, Si3N4 and SiO2 for which the consumption rates of fluorocarbon film 

are fairly high. A change of the steady-state fluorocarbon film thickness caused by the 

addition of N2 to C4F8/Ar gas mixture will have a small effect, for OSG, SiO2, and 

Si3N4, which is more than over-compensated by the simultaneously lowered C4F8/Ar 

etchant flow rate. For SiC and Si, N2 addition produces thinner fluorocarbon surface 

layers and increases the etching rate. For selective etching, SiC is preferred as an etch 

stop layer material over Si3N4 because of its different chemical behavior due to its 

composition relative to OSG. 
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ABSTRACT 

We have investigated plasma surface interactions of nanoporous silica (NPS) 

films with porosities up to 50%, and SiO2 with C4F8/Ar discharges used for plasma 

etching.  The pore size was about 2~3nm for all films. In highly polymerizing 

plasmas (e.g., pure C4F8 discharges), the porous structure of NPS material favors 

surface polymerization over etching and porosity-corrected etching rates (CER) were 

suppressed and lower than SiO2 etching rate for the same conditions.  The etching 

rates of NPS were dramatically enhanced in ion rich discharges (e.g. C4F8/90%Ar) 

and the CER in this case is greater than the SiO2 etching rate.  Both X-ray 

Photoelectron Spectroscopy (XPS) and Static Secondary Ion Mass Spectroscopy 

(Static SIMS) show that fairly thick (~2-3 nm) fluorocarbon layers exist on the NPS 

surface during C4F8 etching. This layer blocks the direct interaction of ions with the 

NPS surface and results in a low etching rate.  For C4F8/90%Ar discharges, little 

fluorocarbon coverage is observed for NPS surfaces and the direct ion surface 

interaction is significantly enhanced, explaining the enhancement of CER.  We can 

deduce from analysis of angular resolved XPS data that the surface of NPS materials 
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and SiO2 remain smooth during C4F8 etching. For C4F8/90%Ar etching, the NPS 

surfaces became rough. The surface roughening is due to angle-dependent ion etching 

effects. These surface models were directly verified by the transmission electron 

microscopy (TEM).  Depth profiling study of NPS partially etched using C4F8 or 

C4F8/90%Ar discharges using Dynamic SIMS indicates that the plasma induced 

modification of NPS was enhanced significantly compared with SiO2 due to the 

porous structure, which allows the plasma attack of the sub-surface region.  The 

modified layer thickness is related to the overall porosity and dramatically increases 

for NPS with an overall porosity of 50%. The distinct etching behavior of high 

porosity NPS (~50%) in fluorocarbon-based discharges relative to NPS material with 

lower overall porosity is possibly due to interconnected pores, which allow plasma 

species to more easily penetrate into the subsurface region.    
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4.1 INTRODUCTION 

As microelectronic device sizes shrinks, low dielectric constant (low k) or 

ultra-low dielectric constant material are being investigated for integration into the 

backend of the line (BEOL) processing to reduce the parasitic capacitance between 

adjacent interconnect lines.  The next generation of interlayer dielectric materials for 

microelectronics must have an ultra-low dielectric constant of less than 2.0 to meet 

the National Technology Roadmap for Semiconductors.4.1 The entire semiconductor 

industry is currently poised at an important junction as device performance dictates a 

transition from vapor-deposited silicon dioxide (having a dielectric constant, k = 4.0), 

and organosilicate glass (k<3), to a material with a dielectric constant less than 2.0.  

Unfortunately, there are few known materials with dielectric constants this low, and 

none are compatible with semiconductor manufacturing requirements.  Nanoporous 

materials are compelling candidates for the future microelectronic and optoelectronic 

applications requiring ultra-low dielectric constant and /or refractive indices, 

respectively.  The presence of the pores lowers the dielectric constant of the 

nanoporous film as the dielectric constant of air is 1.0.  One of the nice features of a 

porous material is the ability to control porosity and hence tailor the performance of 

the material to meet the requirements of successive generations of future integrated 

circuits.  

Recently there has been a great deal of activity focused on NPS 

characterization 4.2-4.6, and NPS processing 4.7-4.9.  There are still many unresolved 

issues related to plasma etching of NPS materials. Standaert and co-

workers4.7investigated fluorocarbon plasma etching of NPS (xerogel) of varying 
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porosity using an inductively coupled plasma source, and compared their results with 

SiO2.  The etching rates of NPS materials were found to be strongly dependent on 

plasma polymerization.  The simulation4.8 of their data based on the integration of a 

Monte-Carlo Feature Profile Model and the Hybrid Plasma Equipment Model 

revealed that the ratio between the steady state polymer thickness L and pore radius r 

is a critical parameter for the mass corrected etching rate comparison between NPS 

and SiO2.  The porous structure of the NPS material not only increases the plasma 

surface interaction area in the near surface region, but also enhances the transport in 

the bulk material and thus increases the importance of subsurface reactions.   

In the present work, we have studied etching characteristics of MSQ based 

NPS material in fluorocarbon plasmas. In addition, we employed various techniques 

to characterize the properties of NPS material before/after plasma etching in an effort 

to improve our knowledge of plasma-surface processes for fluorocarbon plasmas 

interacting with NPS surfaces. 

 

4.2 EXPERIMENTAL SETUP AND PROCEDURES 

The nanoporous materials used in this work are porous methyl silsesquioxane 

(MSQ) thin films with a dielectric constant in the range 1.90~2.6, pore size on the 

order of 2~3 nm, and overall porosity of up to ~50%.  The porosity is estimated using 

Looyenga’s effective medium approximation using the dielectric constant. In this 

work, we assume that the porosity of conventional solid material SiO2 is 0%. In most 

of the experiments the thickness of untreated NPS films is 400 nm, except for 

samples used for depth profiling work. The pores (nano-cavities) of NPS material are 
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created by the removal of the organic carbon groups, a sacrificial phase, from the 

matrix.  The location of the residual content of carbon groups is important in terms of 

compatibilities with plasma processes. For instance, O2 plasmas used for resist mask 

stripping strongly modify the properties of Organosilicate Glass (OSG) by the 

depletion of carbon groups4.10.  The untreated NPS films were analyzed by XPS. The 

intensities corrected for the photoelectron emission cross sections are shown in Fig. 

4.1.  The C 1s background is independent of the porosity of NPS (except 0% porosity 

that is SiO2), implying that the methyl carbon groups are related to the matrix instead 

of the pores.  The lower O 1s intensity of NPS also confirms this fact.  These 

measurements indicate that the present NPS materials are SiO2 containing methyl 

groups and pores, rather than SiO2 with pores.  
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Figure 4.1: Integrated photoemission intensity C1s (a), Si2p and O1s (b) 
from untreated NPS films. 
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Huang et al 4.7 studied pore size distribution of nanoporous methyl 

silsesquioxane films over a porosity range of 5~50% with small angle x-ray scattering 

(SAXS) measurements. They found that the average pore size increased with 

porosity. The sacrificial organic component (porogen) in those porous MSQ films is 

removed by thermolysis. The pore formation process in the films used for the present 

work is different and the deposition technique of these films is still proprietary. Both 

nitrogen adsorption-desorption method and TEM results (see TEM section) indicate 

that the average pore size of 30% NPS used in this work is of order of 2~3nm, which 

is consistent with the measurement done by Das et al4.11 with ellipsometry 

porosimetry method but much smaller than the one in Huang’s work for NPS 

materials with the same porosity. The pore size distribution of the present NPS 

material is narrow as compared with distributions reported by Huang4.7. We assume 

that the average pore size of the films used in this work is similar over the whole 

porosity range. In high porosity (~50%) NPS, a great number of pores are likely to be 

connected. For instance, Wu et al4.3 determined that (22.1+0.5%) of the pores have 

connective paths to the surface in (53%+1)% porosity NPS. Pore interconnectivity 

may be a very important parameter governing the NPS etching mechanism in 

fluorocarbon plasma, since sub-surface reaction can occur through the connective 

paths and the modification induced by the plasma may penetrate much deeper than 

the plasma-substrate interface. However, the pore morphology of NPS could be 

modified as a result of fluorocarbon plasma exposure, i.e. the pore size, porosity, and 

pore shape may be different from those of untreated NPS after the interaction with the 

plasma. 
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Plasma processing of NPS was performed in an inductively coupled plasma 

reactor described previously4.7.  The discharges were maintained at 10 mTorr, 50 

sccm gas flow and 1000 W source power (13.56 MHz) for C4F8/Ar discharges.  The 

self-bias voltage of the substrate was fixed at –125 V and was produced using an 

additional RF bias power supply (13.56 MHz).  The temperature of the substrate was 

maintained at 100C during the processing. Samples of approximately 2cm×  2cm in 

size were positioned at the center of the electrode. Etch rates were measured using in 

situ single wavelength (632.8 nm) ellipsometry. The etch time varied with conditions 

and in most cases was much greater than the time required to achieve a constant 

etching rate. This was determined by in situ ellipsometry and is used as the criterion 

for steady-state in this work. X-ray photoelectron spectroscopy (XPS) analysis of 

partially processed specimens was performed after transfer under vacuum to a ultra-

high vacuum chamber at 90°, 30° and 20° electron take-off angles using a 

nonmonochromatized Mg K-alpha X-ray source (1253.6 eV).  The pass energy of the 

hemispherical analyzer was fixed at 20 eV.  

Fluorocarbon based plasmas have been used in the semiconductor industry for 

high fidelity pattern transfer in integrated circuit fabrication processes, and have been 

widely studied. A recent review with numerous references has been provided by 

Schaepkens et al4.12.   

For the present work we employed both C4F8 and C4F8/90%Ar discharges. We 

summarize key data of our previous studies4.13-4.15 of C4F8 or C4F8/90%Ar plasmas in 

Table 4.1, which provides an understanding of the change of plasma properties when 

a high percentage of Ar is added to C4F8. The absolute density of the dominant 
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neutral species, CF2, was measured using a infrared laser absorption spectroscopy 

(IRLAS). A Langmuir probe was used to obtain the ion current data and the probe tip 

was biased at –100V to prevent FC deposition on the metal surface and collect the 

ions in the ion saturation regime. Ion compositional analysis was performed using a 

combined ion energy analyzer-mass spectrometer. The results of these 

characterization studies clearly show that C4F8 and C4F8/90%Ar represent neutral-rich 

or ion rich plasma processing regimes. These measurements4.13-4.15 were performed in 

an ICP reactor that was very similar to the one used for the present study, except for 

the size of the process chamber. It was impractical to reproduce these extensive 

experiments in the present processing chamber. However, etching experiments 

performed in both reactors showed identical trends as a function of operating 

parameters. In addition, we measured certain key parameters of C4F8/Ar plasma 

surface interactions, e.g. FC deposition rates, the ion current density, thin film etching 

rates, and selfbias voltage as a function of %Ar added to C4F8
4.16. We observed nearly 

identical behavior in these experiments when argon was added to C4F8 as measured in 

the more completely characterized ICP reactor. Our data for the present reactor also 

showed directly that C4F8/90%Ar and C4F8 discharges represent neutral-rich and ion-

rich processing conditions. Our previous ion energy distribution studies revealed that 

the plasma potential in these FC based discharges varies from 10V to 20V. The 

energy of the ions bombarding the substrate is determined by the difference between 

plasma potential and self-bias voltage forming at the wafer. The latter was controlled 

to be –125V for all of our experiments, and basically controls the ion energy for the 

conditions used in this work. 
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 CF2 Flux 
(mL/s) 

Total Ion Flux 
(mL/s) 

Ion 
Composition 

C4F8 C4F8/ 
90%Ar

C4F8 C4F8/ 
90%Ar

C4F8 C4F8/ 
90%Ar 

>4000 <500 ~130 ~700 100% 
CxFy

+
>70% 
Ar+

 

 

 
Table 4.1: Summary of ionic or dominant neutral fluxes and surface chemistry 
information during processing conditions: C4F8 (ion-limited) or C4F8/90%Ar 
(neutral-limited) with a floating substrate or with a substrate biased –125V. 
 

Time of Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) was used to 

study the modifications of the NPS films induced by FC plasma processes.  To this 

end, static SIMS (SSIMS) and dynamic SIMS (DSIMS) investigations were 

performed to characterize the samples surface and the film bulk.  In particular, three 

SSIMS spectra per sample were collected for both detection polarities, using a 

bunched 11 keV Ga+ as primary beam and probing an area of 150 µm x 150 µm in 

size.  The mass resolution in these conditions was higher than 5500 at 28Si+ and 16O-.  

For evaluation of surface features, Principal Component Analysis (PCA)4.17 of SSIMS 

spectra was performed.  In addition, DSIMS depth profiles were acquired by using a 2 

keV Cs+ as sputtering beam and detecting negative SI.  The mass resolution was 

about 5000 at 16O-.  The sputtered/analyzed area ratio was set to 10 to minimize crater 

edge effects.  The sputtering crater depth was measured using a stylus profilometer.  

Both SSIMS and DSIMS measurements required to compensate for charge effects by 

means of an electron gun. 
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4.3 RESULTS AND DISCUSSIONS: 

4.3.1    ETCHING RESULTS IN DIFFERENT DISCHARGES 

Pure Ar Discharges: Figure 4.2 (a) shows etch rates of blanket NPS films                                                 

in pure Ar plasmas maintained at 10mTorr, 600W source power and –125V self bias 

voltage.  The sputtering rates of NPS increase with the porosity, which is expected 

because less material per unit thickness needs to be removed as the porosity increases.  

To account for this, a porosity-corrected etch rate (CER) is defined 

                                             ERCER )1( Π−= ,                                                (1) 

where ER is the etch rate and Π is the porosity of the NPS film (e.g.  for 

50% porosity).  The slight enhancement of the CER indicates differences in 

plasma/surface interaction mechanisms during physical sputtering of NPS in Ar 

plasmas relative to SiO

5.0=Π

2. 
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Figure 4.2: NPS materials processed in different discharges: (a) Ar sputtering (600 
W); (b) C4F8 (1000 W); (c) C4F8/90%Ar (1000 W).  Pressure and total gas flow rate 
were fixed at 10 mTorr, 50 sccm, respectively.  Self-bias voltage was set at –125 V. 

 

For pure argon plasmas, the films are removed by Ar+ physical sputtering 

processes. Ions gain energy from the acceleration in the sheath and the direction of 
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the acceleration is perpendicular to the substrate surface. Since the ion temperature in 

the gas phase is on the order of ~0.1 eV for the conditions investigated and the self-

bias voltage is set at –125 V, after the acceleration in the sheath the deviation of ion 

incidence angle from normal to the horizontal surface is negligible.  For NPS, surface 

elements of nanoscale pores are inclined locally, and both the ion incidence angle and 

ion energy flux per unit surface area varies at the nano-meter scale for NPS.  Due to 

the kinematics of momentum transfer to atoms in the surface layer, the etch yield in 

the physical sputtering processes depends on the ion incident angle and most 

materials exhibit a maximum at ~45°-60° 4.18.  Higher porosity NPS has more pores 

per unit surface area exposed to the plasma at the plasma/surface interface. Therefore, 

the average ion incidence angle increases with porosity, getting closer to the optimum 

angle.  This mechanism can explain the slight enhancement of the CER observed in 

Fig. 4.2(a) as a function of overall porosity. 

 

Pure C4F8 discharges: Blanket SiO2 and NPS films were etched in C4F8 discharges 

produced at 10 mTorr, 1000 W source power and –125 V self bias voltage.  The 

steady state etch rate initially decreases with porosity up to 30% and then increases 

because of lower mass density (Fig.4.2 (b)).  It is surprising that the NPS etch rate 

drops below the SiO2 (0% porosity) etch rate and that the CER decreases with 

porosity.  This result implies that porosity and pore morphology can dominate the 

etching mechanism of NPS in fluorocarbon plasmas. The lower mass density of NPS 

does not necessarily result in a higher etch rate relative to SiO2.  Standaert et al7 

studied xerogel etching with C4F8 discharges produced at 1400 W and also found the 

 101



CER of high porosity xerogel (58%, 69%) to be lower than the SiO2 etch rate while 

30% NPS showed a similar CER as SiO2.  We explain this difference by the different 

ion/neutral ratio of these discharges, which is mirrored in the deposition rate 

measured for floating samples. At a source power of 1000 W, the FC film deposition 

rate is 380 nm/min in the present case and higher than the 1400 W case (330 nm/min) 

used by Standaert et al4.7. This implies that the polymerization characterization of the 

feed gas has a strong influence on the etching behavior of the NPS.  The NPS etch 

rate drops off with respect to the SiO2 etch rate in highly polymerizing discharges 

which are characterized by a high neutral/ion ratio.  

In fluorocarbon plasma etching, it is well known that a steady state 

fluorocarbon film exists on the substrate surface, e.g. SiO2, Si3N4 or Si4.19. If this film 

is thick (larger than ~1 nm, a typical ion penetration depth for ions with an energy of 

the order of ~100 eV), it prevents a large proportion of ions to directly impact the 

substrate, required for both physical sputtering and ion-enhanced substrate etching.  

Previous work in our group revealed that the steady-state fluorocarbon film thickness 

is about 1.7 nm for a SiO2 surface during C4F8 plasma etching and the arrival of 

atomic fluorine through the fluorocarbon film may be of overriding importance for 

substrate etching4.20-4.22.  For these conditions, ions impinge on the FC layer and the 

ion-induced defluorination can provide the dominant etchant source for the substrate 

rather than fluorine directly from the gas phase.  The ion-induced defluorination is 

related to ion-induced molecular dissociation of the steady-state surface layer and ion 

fragmentation, which rely on the ion flux and ion energy.  The average ion energy 

flux per unit area for NPS is lower than for SiO2 because the pores of NPS increase 
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the effective surface area. Diffusion of FC material into pores/sub-surface pores of 

the NPS reduces the ion-induced defluorination, and the rate of FC conversion to the 

substrate is consequently reduced (see XPS section). Therefore, the CER is expected 

to decrease with porosity. 

 

C4F8/90%Ar discharges: It is important to note that in pure C4F8 discharges the 

fluorocarbon polymerization rate is extremely high and the FC coverage on the NPS 

surface eliminates the enhancement of etching rate caused by the optimum ion 

incident angle.  For low polymerization conditions, e.g. C4F8/90%Ar discharges, the 

surface FC coverage decreases and the likelihood of direct ion-surface interactions is 

enhanced.  Fluorocarbon species can be dissociated and ion bombardment can drive 

species into the substrate by a diffusion-like process. For C4F8/90%Ar discharges the 

larger surface area of NPS can also lead to lower effective fluorocarbon coverage 

since in this discharge the FC species arrival rate is low (as compared with C4F8 

discharges).  The FC dissociation and ion-induced reaction with the substrate 

becomes easier.  NPS is expected to have a higher CER in this discharge.  The etch 

rate results shown in Fig. 4.2 (c) are consistent with this expectation: The CER of 

NPS is higher than the SiO2 ER and the etching rates of NPS increase rapidly with 

porosity for high ion/neutral ratio C4F8/90%Ar discharges. For high porosity NPS 

(50%), the CER becomes lower than for low porosity materials.  One possible 

explanation is that the pores are likely interconnected when the porosity is near 50%, 

which would strongly influence the etching mechanism, e.g. by enabling rapid sub-

surface diffusion of FC species.  
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TIME TO REACH THE STEADY STATE: To evaluate the influence of overall 

porosity on the time required for the etching rate to reach a steady state value, NPS 

materials were etched in C4F8/90%Ar with a source power of 500 W.  The FC 

polymerization rate in this discharge is relatively high as compared with C4F8/90%Ar 

with a source power 1000 W.  The etching rate as a function of time is shown in Fig. 

4.3.  Figure 4.3 shows that it takes a longer time to establish steady-state etching 

conditions for NPS materials than for SiO2.  For 50% porosity NPS, it takes of the 

order of 1min to reach a steady state etch rate value and the etch rate at that time is 

lower than values measured initially. For SiO2 or low porosity material, the etch rate 

increases with time.  This difference may be explained by the fact that for 50% NPS, 

a large amount of pores are likely connected. This enables an interaction of the 

plasma with deeper lying pores. This process is slower, than the interaction of plasma 

with the surface only.  For 15% NPS we expect the pores to be essentially isolated, 

restricting the plasma-NPS surface interaction to the surface region. It appears from 

Fig. 4.3 that the time to reach steady-state etching conditions is similar to that seen 

for SiO2.  
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Figure 4.3: Time resolved etching of NPS.  The discharges are maintained at at 10 
mTorr and 500 W source power.  The self-bias voltage was set at –125 V. 
 

PROFILE ETCHING: The NPS films were patterned with 0.6 µm deep ultraviolet 

photoresist and 75 nm of organic antireflection coating (ARC) with Si3N4 as an etch 

stop layer (ESL). The pattern was transferred using a C4F8/90%Ar discharge 

maintained at 10 mTorr and 1000 W source power and the process time was 2 

minutes. The self-bias voltage was set at –125 V. During the first 30 s of the process 

C2F6/90%Ar (10 mTorr, 600 W source power, –125 V self-bias voltage) was used to 

open the ARC layer.  The NPS was 100% over etched. Figure 4.4(a) shows cross-

sectional scanning electron micrographs (SEM) of etched trenches. To minimize the 

modification to the NPS caused by the electron beam exposure, 2kV electron beam 

was used. Even though the etch process is nonoptimized, it offers satisfactory profile 

control. Because of the long overetch, the Si3N4 etch stop layer was attacked.  After 
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NPS etching, an O2 plasma maintained at 100 mTorr and 400 W source power was 

used to remove the residual photoresist mask (for 2 min process time).  As a result of 

the exposure to the O2 plasma, the NPS film compressed both vertically and 

horizontally. The vertical shrinkage may be caused by the removal of residual carbon 

group from the SiO2.  During etching of the NPS, a fluorocarbon film exists on the 

sidewall and this is expected to enhance the horizontal shrinkage of NPS film. After 

O2 plasma exposure, deep etching of the Si3N4 is also apparent, probably caused by 

the residual FC film formed during the fluorocarbon etching. 

Figure 4.4 shows very clearly that the NPS/Si3N4 etching selectivity is not 

ideal for NPS profile etching, indicating that Si3N4 may not be a good candidate for 

ESL in NPS etching.  It is known that the etching mechanism for SiC or SiCN etching 

in C4F8 based plasma is different from SiO2-like materials due to the chemical 

composition, but that the Si3N4 etching behavior is similar to that of SiO2-like 

materials4.21.  A comparison of the NPS/SiCN and NPS/Si3N4 etching rate ratios is 

shown in Figure 4.5 for both C4F8 (a) and C4F8/90%Ar (b) discharges.  The data 

strongly suggest that SiCN is a better candidate for an etch stop layer material and 

that low FC polymerization discharges are preferred for profile etching.  NPS profile 

etching with SiCN as the ESL and improved conditions for post plasma clean will be 

discussed in a separate publication. 
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Figure 4.5:  Etch rate ratios for different NPS to SiCN or Si3N4 using a C4F8 (a) or 
C4F8/90%Ar (b) discharge maintained at 10mTorr and 1000W source power. The 
self-bias voltage was set at –125 V.  
 

4.3.2    NEAR SURFACE CHARACTERIZATION 

ELLIPSOMETRY: Based on the etching behaviors of NPS in C4F8 and C4F8/90%Ar 

discharges, the plasma-induced modifications are expected to be different.  The 

optical changes of the NPS bulk material can be easily monitored by in situ 

ellipsometry as a change of the refractive index.  For C4F8 discharges (high FC 
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polymerization conditions) the near surface pores are expected to fill up with FC 

material, resulting in a change of the optical properties of the NPS material. The 

effective refractive indices of 30% porosity NPS material for different plasma etching 

conditions are shown in Fig.4.6.  For C4F8 discharges the refractive index change 

indicates a significant modification of the properties of the NPS material. The 

modification is greatly reduced in C4F8/90%Ar, which shows a refractive index that is 

similar to untreated NPS material. The change of the refractive indices is believed to 

be a result of the fluorocarbon incorporation. The refractive index of fluorocarbon 

material depends on its chemical properties, e.g. its F/C ratio.  Lower F/C ratio 

fluorocarbon material is characterized by a higher ellipsometric refractive index. 

Since the refractive index of fluorocarbon material for C4F8/90%Ar is higher than for 

C4F8, the increase of the NPS refractive index must be related to the amount of 

incorporated fluorocarbon material. The data shown in Fig. 4.6 indicate that for NPS 

etching in C4F8 discharges, a significant amount of FC material was incorporated into 

the NPS material, whereas only little FC material deposited into the NPS pores for 

C4F8/90%Ar.  

 

 

 

 

 

 

 

 109



 

 

1.0

1.2

1.4

Untre
ate

d

C 4
F 8

/90
%

Ar

 

 

E
ff

ec
tiv

e 
R

ef
ra

ct
iv

e 
In

de
x

C 4
F 8

 

 

 

 

 

 
 
 
 
 
 
 
Figure 4.6:  Effective refractive index of NPS (30%) material upon different plasma 
treatment. 
 

TRANSMISSION ELECTRON MICROSCOPY: Partially etched NPS (30%) 

samples were also characterized by transmission electron microscopy (TEM). The 

TEM cross-sectional images are shown in Fig.4.7.  The cross-sectional samples for 

TEM analysis were prepared using focused-ion-beam (FIB) techniques (30 kV Ga). 

The Ga ions during milling tend to fill in small cavities on the sample surface.  

Locally absorbed Ga gives rise to dark dots in the bright-field images, which reflect 

the size and distribution of pores in the NPS layer.  After C4F8 plasma etching, the 

NPS surface is covered with a fluorocarbon layer, consistent with the XPS data. The 

etched surface is shown in the cross-sectional image in Fig. 4.7(a) and appears quite 

smooth in this case. One can also notice that the pores close to the surface (up to a 

depth of ~20nm) are enlarged, possibly caused by fluorocarbon filling.  Figure 4.7(b) 
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shows a much rougher NPS surface after C4F8/90%Ar etching, with a roughness scale 

of about 30 nm.  The pore size, however, remains uniform in the NPS bulk in this 

case, indicative of little fluorocarbon deposition in this discharge.  This is also 

consistent with the ellipsometric results.  The TEM results show that the modification 

of the underlayer is also reduced in this case.  In the regime investigated, with the ion 

energy of the order of 100 eV, the ion penetration depth is about 1 nm4.20. Therefore, 

the under layer (SiCN) modification is a result of neutral species diffusion into the 

porous structure.  The reduction in the under layer modification for the C4F8/90%Ar 

discharge is consistent with the small FC radical fluxes that is a characteristic of the 

C4F8/90%Ar discharge.  The introduction of surface roughness for C4F8/90%Ar is 

consistent with the large ionic contribution to the overall etching reaction in this case, 

and the high etching rate. 
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Figure 4.7:  TEM cross-section images for partially etched NPS (~30%) samples with 
(a) C4F8 or (b) C4F8/90%Ar plasmas maintained at 10 mTorr and 1000 W source 
power.  The self-bias voltage was set at –125 V. 
 

STATIC SECONDARY ION MASS SPECTROSCOPY (SSIMS): SSIMS spectra 

were collected with SiO2 and NPS samples (30% and 50% porosity) to characterize 

the chemistry of the surface before and after the plasma etching process. These data 

showed that the two untreated NPS samples were very similar from a 

chemical/compositional point of view. The spectrum of the 30% NPS sample is 

displayed in Fig. 4.8 (a). The fingerprint provided by the NPS samples is primarily 

related to Si-O-C-H compounds (highlighted in Fig. 4.8 (a)). The intensity of the 

various peaks is similar for both materials. The features of the NPS samples are 
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largely independent of materials porosity and the untreated SiO2 has different 

characteristics.  
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Figure 4.8:  Negative SSIMS spectrum of 30% NPS samp
partially etched with C4F8 discharges; (c) partially etche
discharges. The discharges are maintained at 10 mTorr 
The self-bias voltage was set at –125 V. 
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 These conclusions are clearly summarized by the principle component 

analysis (PCA) results shown in Fig. 4.9.  In fact, in the scores/scores plot the data 

related to both untreated NPS samples overlap, while the spectra from the untreated 

SiO2 are completely different.  For Principal Component Analysis, the logarithm of 

peak intensity was considered.  Similar conclusions are obtained if both the negative 

and positive SSIMS spectra are considered.  

The features of the SiO2 and NPS surface appear to be very similar after 

processing in C4F8 discharges, regardless of the original stoichiometry and porosity of 

the materials.  Five spectra out of six related with the NPS samples submitted to this 

plasma treatment have in fact practically the same scores in the PCA plot.  The scores 

for the partially etched SiO2 data are essentially alike, being slightly lower for PC #2.  

However, the variance represented by PC #2 is about 8%, whilst the variance 

captured by PC #1 is about 87%. 
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Figure 4.9: Principal Component Analysis for untreated samples or partially etched 
samples with C4F8 or C4F8/90%Ar discharges. 
 

 

The analysis of the SSIMS data clearly shows the presence of a fluorocarbon 

layer on the surface of the samples treated in pure C4F8 discharge.  By comparing the 

spectra of the untreated and etched 30% NPS samples for instance (shown in Fig. 4.8 

(b)), it is seen that the signals related to both molecular Si-O-C-H compounds and 

elemental peaks disappear for the etched NPS material.  Fluorine dominates the 

spectrum, and overall the occurrence of a sequence of regularly spaced peaks is seen 

in Fig.4.8 (b).  These regularly spaced peaks evenly differ in mass by 12.000 or 

18.998 amu with respect to each other, meaning that they are related to CxFy 

compounds. As the signals related to NPS can hardly be detected after plasma etching, 

it can be concluded that the surface coverage by the fluorocarbon layer is almost 

complete for all samples.  Moreover, it can be noticed that the peaks related to CxFy 
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are detected at m/z larger than 500 amu. This implies that long chain fluorocarbon 

compounds are present on the surface (x and y can be as high as 14 and 17, 

respectively).  Fluorocarbon deposition is the main transformation that takes place 

during C4F8 plasma processing and the fluorocarbon species block the direct ion 

impact with the silica material. In the spectra, little evidence was observed for ion-

induced interaction with the silica matrix. 

Figure 4.9 shows that samples treated in C4F8/90%Ar and in pure C4F8 plasma 

exhibit different PCA scores. These differences may be related to the polymerization 

characteristics of these discharges. Since the fluorocarbon deposition is extremely 

significant for C4F8 discharges, fluorocarbon deposition dominates the material 

transformation and “homogenizes” the surface chemistry for different pristine 

materials. Surface polymerization is much less important in C4F8/90%Ar, and the 

plasma-surface interaction process is unable to completely suppress the surface 

chemistry differences of the starting materials. Both the SSIMS results from the 

samples partially etched in C4F8/90%Ar plasma and the PCA results highlight unique 

characteristics for the C4F8/90%Ar treated SiO2 and NPS samples.  

SSIMS spectra obtained with samples partially etched in C4F8/90%Ar reveal 

the onset of several phenomena related to the characteristics of this discharge. Figure 

4.8(c) displays the spectrum of a partially etched 30% NPS sample.  The fluorine 

peak still dominates the mass spectrum, but no peaks related to fluorocarbon 

compounds can be observed (the intensity is multiplied by a factor of 1000 in this 

case). The matrix signals have lower intensities in comparison with the pristine 

material but can still be clearly recognized.  One concludes that no deposition of a 
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thick fluorocarbon layer occurs in the low polymerization and high ion flux 

C4F8/90%Ar discharge and defluorination of deposited fluorocarbon compounds is 

almost complete.  The absence of the FC layer on the surface allows the plasma ions 

to interact with the matrix.  The high amount of available fluorine enhances the 

etching rate of the materials in this discharge. Novel species related to SiOF, SiO2F 

and Si2O4F are present in the spectrum.  The PCA shows clearly that the intensity 

variation of the peaks is unique for each sample.  This suggests that ion-induced FC 

reaction with NPS and the NPS etching rates are related to thechemical/compositional 

characteristics and initial porosity of the NPS materials.  Accordingly, SiO2 and NPS 

exhibit different etching behavior, consistent with the previous section and as 

revealed by the XPS data to be discussed next.  

 

X-RAY PHOTOELECTRON SPECTROSCOPY (XPS)-C4F8: In order to validate 

the suggested mechanism for NPS etching in C4F8 discharges, we examined the 

chemistry of NPS surfaces during steady state etching using angle resolved X-ray 

photoelectron spectroscopy (XPS). Photoemission intensities were acquired at 90°, 

30°, and 20° take-off angles. The integrated C1s, F1s, O1s and Si2p photoemission 

intensities (90°) after blanket film etching in C4F8 discharges are shown as a function 

of porosity in Fig. 4.10(a).  The increase of C1s as a function of porosity indicates 

that higher porosity NPS absorbs FC species more strongly. The O1s and Si2p 

intensities behaved similar after processing using C4F8 plasma, indicating that the 

substrate has been fluorinated and some oxygen was replaced by fluorine.  The high 

fluorocarbon coverage on the high porosity NPS was found to be inconsistent with 
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the attenuation of Si2p intensity.  This effect is possibly caused by interconnected 

pores, which allows fluorocarbon species to penetrate deeply and mix with the porous 

bulk material.  

F/C ratios were calculated from the deconvolution of C1s spectra into the 

fluocarbon components (for a detailed discussion see reference 4.21) and the results 

are plotted in Fig. 4.10 (b).  For a take-off angle of 90°, the F/C ratio of the steady-

state fluorocarbon film formed on SiO2 is higher than for FC films on NPS.  The NPS 

films contain a significant density of methyl (CH3) groups. The superposition of C1s 

intensity from CH3 with FC film related signal may be responsible for the lower F/C 

ratios seen for partially etched NPS films when probed at 90° take-off angle.  The 

enhancement of the F/C ratio for high porosity NPS indicates that ion-induced 

defluorination is low.  It indicates that for high porosity NPS some of the FC is 

shielded from ion bombardment.  Because of probing depth limitations of XPS, the 

methyl group contribution to the C1s intensities is expected to be very low for a 20° 

electron take-off angle. The signal is mainly related to the FC over-layer and possibly 

FC material penetrated into pores. At a take-off angle of 20°, a higher F/C ratio was 

observed for NPS as compared to SiO2.  The angular dependence of the F/C ratios for 

SiO2 is consistent with the behavior of a substrate without carbon content.  The 

behavior of the F/C ratios of NPS as a function of photoemission angle indicates that 

carbon from the substrate strongly affects the signal in this case. 
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Figure 4.10: Integrated photoemission intensity C1s, Si2p, O1s and F1s (a) (90° 
emission angle) from partially etched NPS film with C4F8 discharge. Angular 
dependent F/C or F/C are shown in (b) or (c) respectively. ∆
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The difference ∆F/C (shown in Fig. 4.10 (c)) between F/C ratio (from C1s) 

and F1s/C1s reflects the amount of fluorine that has been lost from FC films and 

reacted with to the substrate, e.g. to form SiOxFy for SiO2. [A detailed discussion of 

this aspect is provided in reference 4.23]. For NPS material, the high fluorocarbon 

coverage of NPS shields the substrate and FC groups penetrated into the pores from 

ion bombardment. The data show that ∆F/C decreases with porosity. This implies that 

the rate of ion-induced conversion of fluorocarbon to intermediate etch product 

(SiOxFy) is lower for higher porosity NPS. This is consistent with the CER results 

(Fig. 4.1). The angular dependence of ∆F/C for NPS is similar as for SiO2, implying a 

layer-like FC film structure on NPS during C4F8 plasma etching, with the near surface 

pores filled with FC material.  

XPS-C4F8/90%Ar Plasma: Figure 4.11(a) shows the integrated C1s, F1s, O1s and 

Si2p photoemission intensities emitted at 90° for NPS films partially etched using 

C4F8/90%Ar.  The FC coverage appears independent of porosity. This may indicate 

that the surface chemistry is limited by a low arrival rate of FC film precursors. The 

enhancement of the C1s intensity of NPS relative to SiO2 is due to the residual carbon 

groups as seen for untreated NPS films.  Although the C1s is nearly constant as a 

function of NPS porosity, a reduction in Si2p intensity was observed, which is not 

consistent with a simple layer structure.  Due to the high ion bombardment flux at a 

surface in this discharge, ion-induced defluorination of fluorocarbon films is 

significant. Much lower F/C ratio (Fig. 4.11 (b)) fluorocarbon films were formed on 

the substrate during C4F8/90%Ar plasma etching.  The angular dependence of the F/C 

ratio is totally different from that seen for NPS substrates after C4F8 plasma etching.  
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This suggests that the pores are not completely filled or that a rough surface exists for 

these etching conditions.  For grazing photoelectron emission angles (30° or 20°), the 

sample area probed appears greater than at 90°.  
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Figure 4.11: Integrated photoemission intensity C1s, Si2p, O1s and F1s (a) (900 
emission angle) from partially etched NPS film with C4F8 /90%Ar discharge. Angular 
dependent F/C or F/C are shown in (b) or (c) respectively. ∆
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This suggests the formation of a rough NPS surface. Ion-induced 

defluorination is more efficient in producing a lower F/C ratio in this case, as 

confirmed by the ∆F/C ratio results (Fig. 4.11(c)). For ions incident at large angles, 

the ion-induced reaction of fluorine with the NPS substrate is highly effective, as 

indicated by the high ∆F/C ratio observed in this case. Only for low porosity (~10%) 

NPS, the angular dependence of the ∆F/C ratio is qualitatively similar as for SiO2, 

suggesting a layer-like structure in this case.  As the porosity increases, the ∆F/C ratio 

of NPS material behaves very differently from that measured with SiO2, indicative of 

a more complex surface structure. The behavior of the ∆F/C ratio is qualitatively 

consistent with the high CER as a function of porosity. The drop of the ∆F/C ratio at 

50% porosity may be caused by increased pore interconnectivity, which would enable 

deep substrate penetration and reduce the importance of ion-induced mixing of FC 

material with the substrate.  

Modeling of XPS data: NPS materials have non-ideal surface topographies and the 

surface is rough at the nanoscale.  This non-ideal topography makes the interpretation 

and analysis of XPS data more difficult.  The effect of surface roughness on XPS 

signals has been considered in many different models, with most efforts considering a 

conformal thickness of the overlayer on a rough surface 4.24-4.27.  The presence of nano 

cavities in NPS materials makes it difficult for a conformal overlayer to form inside 

pores since the layer thickness is normally comparable to the pore size.  In addition, 

nano cavities in NPS materials may lead to novel XPS phenomena. For instance, 

since the wavelengths of photoelectrons (Si2p, C1s, O1s, and F1s) is much below the 

nanocavity size, scattering of photoelectrons at internal interfaces may be considered. 
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For simplicity, we assume in this work that there are no interactions between 

photoelectrons and nano pores in this work. Based on this assumption, the XPS 

intensity depends on the physical “depth”, i.e. mass depth, which only accounts for 

the volume for which matrix material is present and does not include the space 

occupied by pores. This physical depth is less than the geometric depth. All of NPS 

materials have the same depth profile of Si density as a function of the physical depth 

because of the same matrix material, which results in similar Si2p intensities. This is 

in agreement with the XPS characterization data of untreated NPS (see Fig. 4.1).   

According to the interaction with plasma, we differentiate pores into 1) 

surface pores, which are open to the surface and will be filled with FC material during 

plasma treatment and 2) bulk pores, which are not connected with the surface and not 

filled with FC material. We assume that all surface pores are spherical, isolated and 

have the same pore sizes even though NPS materials show both a pore size 

distribution and pores may be interconnected. 

If all pores are isolated, we have within a depth z  

                                                         rz 2< ,                                                   (1) 

all pores are surface pores and for a depth z 

                                                         rz 2≥                                                     (2) 

all bulk pores. Here r is the pore radius, and z is the geometric depth scale. 

The pore volume is 

                                                          3

3
4 rVP π=                                                (3) 

and the number of pores per unit volume is given by 
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P

P V
n Π

=                                                     (4) 

where Π is the porosity. If A is the surface area monitored by XPS, the number of 

surface pores detected by XPS is given by 

                                           
P

P V
ArnrAN Π

=∗∗= 22 .                                     (5) 

For our experimental conditions, A is of the order of mm2, so the surface pore number 

N is of the order of 1011 for 10%NPS material. These pores are connected with the 

surface as spherical segments with various heights h (0<h<2r). The spherical segment 

volume is given by 

                                                   )3(
3
1 2 hrhVss −= π .                                               (6) 

For simplicity, we assume a material for which the pores are arranged in a regular 

fashion (see Fig. 4.12 ). Thus, the segment height h has a uniform distribution over 

the range 0~2r at the surface. At the depth z, only segments with heights above z 

contribute to the open volume of surface pores. The expectation of the volume of 

surface pores VS (z) can be easily calculated  

∫∫ ∗−−−=
rr

z
S dhNdhzhrzhzV

2

0

2
2 /))(3()(

3
1)( π  

                         N
r

zrzr
2

)2()2(
12

3 +−
=
π                   (0<z<2r)               (7) 
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Figure 4.12: Surface pores Vs bulk pores: surface pores will be filled with FC during 
fluorocarbon plasma etching. 

 

 

 The fluorocarbon coverage resulting from fluorocarbon-based plasma etching 

exists mainly in the near surface region.  The topography of the fluorocarbon film is 

determined by the surface structure of the substrate. Based on the results presented 

before, for neutral dominated discharges, i.e. C4F8, the fluorocarbon film thickness is 

high and comparable to the pore size.  The surface pores of NPS are completely filled 

with the fluorocarbon material.  In addition, a FC overlayer exists on the surface (see 

Fig. 4.12). For the FC inside the pores, the volume is the same as VS (z). The local 

effective concentration is given 

                                 AzV
dz
dCC FCFC /)(' −=  

                                           Π
+−

= 3

2

4
)()2(

r
zrzrCFC                (0<z<2r)             (8) 

Here is the concentration of a standard FC bulk. Accordingly, the Si 

concentration as a function of mass depth can be calculated as  

FCC

                                      ]
4

)()2(1[ 3

2
' Π

+−
−=

r
zrzrCC SiSi         (0<z<2r)             (9)     
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Considering the FC overlayer on the surface, the origin should be the interface 

between the FC layer and vacuum instead of the surface of NPS, i.e. . 

Here d

0' dzz −→

0 denotes the thickness of the FC overlayer. Therefore, the FC concentration as 

a function of mass depth is  

 

  

                                                                                                      (0<z’<dFCC 0) 

                              =)'(' zCFC Π
−+−−

3
0

2
0

4
))'(())'(2(

r
dzrdzr

CFC   (d0<z’<2r+d0)      

(10)                                                                            
{

0   (z’>2r+d0) 

For the Si component we have 
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{
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The XPS intensity can be described by27

             ∫
∞ −

=
0

0

)'exp()'( dzzzC
I

I i
i

i λλ
                                                    (12)    ‘ 

where Ci(z) is the local component i concentration at mass depth z,  is the intensity 

for a bulk standard, and λ is the “effective” escape depth of photoelectrons. The 

0
iI
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effective escape depth λ is determined by the inelastic mean free path or attenuation 

length of the electrons for a given energy and material and denoted as λ0, and by the 

take off angle of the detector, according to           

                                                .                                                          (13)     θλλ sin0=

The Si2p intensity is given by  

                                                                (14)    ))/(( //0
2

00 λλλ rfeeCII dd
SiSipSi

−− Π−=

and the C1s intensity is determined by 

                                                          (15) ))/(1( //0
1

00 λλλ rfeeCII dd
FCFCsC

−− Π+−=

with )1()/(
2
3)1()/(

2
31)/( /23/22 −−+−= −− λλ λλλ rr ererrf                             (16) 

In the work, the total intensity is ~13000 and ~25000 for Si2p and C1s, 

respectively. These values were measured with a semi-infinite SiO

iCI 0

2 film and a 

passively deposited FC layer (>300nm), respectively. We also assume that λ = 3nm 

for both Si2p and C1s photoelectrons. 

 The model results (lines) are compared with the experimental data (dots) in 

Fig. 4.13 for C4F8. For C4F8 etching, the steady state fluorocarbon film thickness (d0) 

on SiO2 is chosen as d0=1.8 nm, which is consistent with previous work.20 The model 

qualitatively predicts both the observed C1s and Si2p intensities, especially for low 

porosity NPS material (10% or 15%), if a pore diameter in the range  4 to 8nm is 

assumed.  The pore diameter is consistent with the TEM measurements, where the 

near surface pores are found to be enlarged after C4F8 plasma exposure. The pore 

sizes of the modified layer are similar when both Si2p and C1s data are modeled.  
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Figure 4.13: Silicon 2p and C 1s model results as a function of pore size and 
experimental XPS data for etching of NPS using C4F8 discharges. 

 

 

As the porosity increases above 30%, the agreement of the model predictions 

and the observed C1s and Si2p intensities becomes worse (see Fig. 4.13). For higher 

porosities, interconnected pores become more likely, which changes the plasma-

surface interactions.  Once pores are interconnected, sub-surface pores can be filled 

with FC material. Pores are changed much beyond a distance of 2r from the surface, 

as observed the TEM image. The fact that the model predictions cannot fit the Si2p or 

C1s data simultaneously is likely due to effects related to interconnected pores which 

have been ignored in the model. Consistent with this trend is the fact that fitting Si2p 

and C1s data requires completely different pore sizes for NPS material with 50% 

porosity, for which effects due to interconnected pores would be most important. 

These results are consistent with previous observations that siloxane-based materials 



have closed cells and are microporous as long as the porosity is below 30% 4.29. For 

~30% porosity and greater, the material reaches the percolation threshold where films 

become mesoporous and pores become interconnected. The XPS modeling results of 

the 200 or 300 data is also consistent with this picture. While changes in pore size in 

the near-surface region is one possible mechanisms, and consistent with the TEM 

results, other possibilities for changes in the pore characteristics of the near-surface 

layer can be envisioned, e.g. a change in the overall porosity of this layer.  

In the case of a C4F8/90%Ar plasma, a rough surface exists on the NPS film. 

The TEM work shows that the rough features are very large relative to the pore size. 

For the sake of simplicity we still assume that the pores are completely filled with 

fluorocarbon material but the FC overlayer thickness is reduced to 0.7 nm since the 

polymerization rate is very low in this discharge.  With a similar approach as 

described for the C4F8 case, the XPS intensity I(θi ) can be calculated as a function of 

take-off angles (0~900). If the frequency at which each angle occurs [ )( if θ ] is known, 

the XPS intensity of this rough surface is given by  

                        and                                    (7) ∑
=

=
90

0
0

~)()(
θ

θθ AdfII 1)(
90

0
=∑

=θ

θf

)(θoI is the XPS intensity per unit area, with Ad~  the unit area, for a take-off angle θ  

for the XPS measurement. Figure 4.14 (a) shows the surface orientation (φ ) with 

respect to the horizontal surface used in the model, which is equal to θ−90 . The 

inclined area is given by φcos/~ dAAd = , where dA is the unit area on a horizontal 

surface. The C1s and Si2p spectra model results are shown in Figs. 4.14 (b) and (c), 

respectively.  For a rough surface, the intensity of Si2p at 30° electron emission is 
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greater than at 20° or 900.  which cannot be the case for a layer like structure.  Also, a 

high fluorocarbon coverage on a rough surface does not necessarily result in the 

strong Si2p attenuation seen for a smooth surface.    
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Figure 4.14: (a) Surface orientations (respected with horizontal surface) used in the 
model for C4F8/90% case; (b) Model results for C1s spectra; (c) Model results for 
Si2p spectra. Rough surface has been used for NPS materials, and for SiO2 a smooth 
surface has been assumed. 
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4.3.3 SUB SURFACE MODIFICATION: After fluorocarbon plasma etching, a 

modified layer exists on the surface.  This layer results from the combined effects of 

ion bombardment, and fluorocarbon species penetration of the bulk material.  The 

extent of this modified layer is expected to depend on the overall porosity of the NPS 

material.  A possible approach to determining the extent of the modified layer is by 

measuring its physical sputtering rate. The erosion rate of the near-surface region is 

expected to be enhanced by penetration of fluorocarbon species, and then decrease to 

the physical sputtering rate of the bulk material. A schematic picture is shown in Fig. 

4.15.  Using in situ real time ellipsometry, we measured an enhanced sputtering rate 

in a pure Ar discharge for the near-surface region. After the modified layer had been 

removed, the sputter rate became constant. From these data it is possible to determine 

the depth at which the sputtering rate became constant and equal to the sputtering rate 

of the bulk material.  Figure 4.16(a) shows the removed thickness as a function of 

time in a pure Ar discharge for samples pretreated in C4F8 or C4F8/90%Ar plasmas.  

The removal rate is greater initially and after a certain time the removal rate becomes 

constant.  The depth where the etch rate became constant was determined.  This depth 

is shown in Fig. 4.16(b) for both pretreatments, C4F8 or C4F8/90%Ar, as a function of 

porosity.   
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Figure 4.15: A schematic picture for Ar sputtering 
fluorocarbon discharges. 
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Figure 4.16:  (a) Removed thickness as a function o
(pretreated with C4F8 plasma) during argon plasma
Vs. NPS porosity.  
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Fluorocarbon species likely diffuse deeply in a porous structure, and can react 

with the NPS material. A thick modified layer is observed because of penetration of 

FC material into the porous bulk after FC plasma etching.  For a solid material like 

SiO2, FC species can hardly penetrate into the sub-surface region and the modified 

layer is thin.  The depth of the modification of the dielectric material also depends on 

the characteristics of the plasma. Because of a predominance of ion bombardment and 

lower fluorocarbon coverage for C4F8/90%Ar discharges, it is plausible that the 

modified layer thickness is greater in this case than for C4F8. For the lower porosity 

NPS, the extent of the FC related materials modification increases weakly with the 

porosity.  The strongly increased extent of the modified layer thickness seen in the 

case of 50% NPS for both pretreatments is consistent with the expectation that a 

significant fraction of pores are likely connected for this overall porosity, which 

favors enhanced FC permeation of the interconnected pore network.  

DEPTH PROFILING: Dynamic SIMS was used to examine the depth dependence 

of surface modification for SiO2 and NPS materials after 1 min plasma etching (PE) 

in C4F8 and 30 s PE using C4F8/90%Ar. The initial thicknesses of the 30% and 50% 

porosity NPS materials were 330nm and 500nm, respectively. The in-depth 

distribution of selected species representing the overall changes in NPS and SiO2 

stoichiometry due to the plasma treatment in C4F8 discharge is displayed in Fig. 

4.17(a).  For SiO2, only the near-surface region is modified by the plasma and the 

depth scale of interaction is below 10 nm.  Conversely, F is present throughout the 

whole 30% NPS layer and reaches a nearly uniform concentration.  The overall 

amount of F is lower in 50% NPS and a concentration gradient is apparent, but still a 
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significant amount of F is detected close to the interface.  It is thus apparent that the 

porous structure of NPS permits long-range F diffusion and interaction with the 

matrix.  The scale of interaction depends on the characteristics of the discharge and 

on NPS porosity, being prominent for 30% NPS. The fluorine intensity for 30% NPS 

and oxygen intensity for 50% NPS and SiO2 exceed 105 counts, and are likely 

saturated.  In spite of this, the amount of F is higher for 30% NPS in comparison to 

50% NPS.  The F distribution is almost constant as function of depth for 30% NPS 

(as confirmed by determining additionally the depth distribution of unsaturated 

signals like F2), while the F intensity decreases with depth for 50% NPS.  The 

reduction of O intensity (shown by other species related with the matrix as well) for 

the 30% NPS complements the F concentration in the way expected. 

The depth profiles obtained with NPS and SiO2 samples partially etched in 

C4F8/90%Ar discharge are shown in Fig. 4.17(b).  Overall, a lower amount of F is 

present in both NPS samples in comparison with the treatment in pure C4F8 plasma 

(Fig. 4.17(a)).  The 50% NPS material shows a higher amount of F than 30% NPS. 

For both NPS materials, F concentration gradients are observed. 

These results agree with the XPS data which also indicate a higher efficiency 

of ion-induced defluorination of the FC films in this discharge for the NPS material. 

For low polymerization conditions, e.g. C4F8/90%Ar, a significant ion flux is able to 

directly react with the matrix. The etch rate is much higher for C4F8/90%Ar than for 

C4F8 plasma, which implies that etching will limit the build-up of a modified surface 

layer.  The depth profiles clearly show that the modification of SiO2 is located near 

the surface (below 10 nm) while the plasma-modified layer for NPS materials range 
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much beyond this depth scale.  We also observe similar near-surface modification 

layers (I) for both 50% and 30% porosity materials. The thickness of layer I is about 

30 nm, which roughly compares with the TEM cross-section results.  Under this layer, 

an intermediate layer (II) appears for both NPS material.  The scale of layer II 

strongly depends on the overall porosity.  For 50% porosity NPS, the thickness of 

layer II is much greater than for 30% porosity material, and can be explained by 

increasing degree of pore interconnectivity.  The thickness of layer I compare well 

with the results of the Ar sputtering experiments, but differ from the depths of the 

overall modified layer seen by DSIMS (see Fig. 4.17).  The discrepancy may be due 

to the fact that we assume a constant sputtering rate for the depth calibration of the 

DSIMS measurements, whereas the time-resolved measurements showed that this is 

not the case. 
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Figure 4.17:  DSIMS depth profiling results for NPS samples partially etched with 
(a) C4F8; (b) C4F8/90%Ar discharges. 
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4.4  CONCLUSIONS 

 In this work important differences in the behavior of MSQ-based nanoporous 

silica were observed in neutral-rich and ion-rich fluorocarbon discharges used for 

plasma etching. We developed surface models that reproduce the experimental 

surface characterization data and strongly differ for neutral-rich and ion-rich 

discharge conditions.  These models are based on results of complementary 

characterization methods, including XPS, secondary ion mass spectrometry, and 

transmission electron microscopy. The depths of the plasma-modified layers strongly 

differ for neutral-rich and ion-rich discharges, and depend on the overall porosity of 

the NPS material.  Results of etching rate and surface characterization measurements, 

along with SIMS depth profiling of NPS after C4F8 or C4F8/Ar plasma etching reveal 

that high porosity (~50%) NPS exhibits a qualitatively different behavior compared 

with NPS materials of lower overall porosity. This suggests that increasing pore 

interconnectivity may play an important role in the etching mechanism and the 

plasma-induced near-surface modifications.  This would be consistent with results of 

a pore percolation study based on Positronium Annihilation Lifetime Spectroscopy, 

which indicates a percolation threshold in the porosity range 20%~25%4.30. This work 

also has shown that important NPS material changes are introduced by O2 post 

plasma removal of the resist mask. These modifications can be explained by the 

uncontrolled interaction of O2 plasma-based species with residual carbon groups in 

the NPS material. The selective removal of the resist mask from NPS structures 

without attacking carbonaceous groups in the NPS material is an important current 

challenge.  
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Kuan, Wen-li Wu, and P. Jiang 

ABSTRACT 

 Plasma-based ashing of photoresist masks after pattern transfer is a common 

processing step in the fabrication of integrated circuits. In this work we investigated 

damage mechanisms of nanoporous ultra low k (ULK) materials with different 

overall porosities due to the ashing process. Oxygen-, nitrogen- and hydrogen-based 

photoresist-stripping using direct and remote plasma processes were examined. 

Ellipsometry, X-ray photoelectron spectroscopy (XPS), secondary ion mass 

spectroscopy (SIMS) and transmission electron microscopy (TEM) were utilized to 

study the damage layer thickness, physical (pore morphology) and chemical 

modifications of the nanoporous silica thin films after exposure to the O2-, N2- or H2-

based ashing processes. As a result of the plasma-exposure, carbon groups in 

nanoporous silica can be removed from the ULK layers which is also accompanied by 

material densification. We find severe ashing damage of ULK materials after O2 -

based ashing using both direct and remote discharges. N2 and H2 discharges also 

damage ultra low k materials for direct plasma ashing processes which are 

accompanied by low energy ion bombardment of the substrates. The introduction rate 

and degree of the ULK materials modifications correlates with the overall porosity. 

We show that pore interconnectivity is one of the key parameters that determine 
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ashing damage. ULK damage is greatly reduced for remote N2 or H2 discharges, but 

the resist removal rates are impractically low if the substrate is at room temperature. 

We show that both acceptable photoresist stripping rates and ULK damage levels can 

be achieved for remote H2 plasma ashing processes if the substrate temperature is 250 

0C and higher.  
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5.1 INTRODUCTION 

Signal delays caused by interconnects have become more and more important 

relative to gate delays as the integration level of integrated circuits has increased to 

currently greater than a 100 million of transistors per integrated circuit.5.1 

Additionally, cross talk and power dissipation are problems for integrated circuits 

based on conventional Al/SiO2 technology. Low k dielectric/Cu interconnects are 

required to solve these issues and achieve high speed and high IC performance. Low 

k materials can be produced based on conventional silicon dioxide by either inserting 

atomic groups with small polarizability, e.g. fluorinated silicate glasses (FSG), or by 

lowering electronic density. Incorporating terminating Si-H or Si-R (where R is 

organic group such as CH3) in the Si-O-Si matrix results in lower electronic density 

compared with SiO2 and enables achievement of a lower k value. Organosilicate 

Glass (OSG) is an example of this approach and can be produced using chemical 

vapor deposition yielding a k value of about 2.8~2.9. 5.1-5.5 Ultra low dielectric 

constant (k<2.5) materials are required for silicon integrated circuits of the 45 nm 

node and beyond (see the International Technology Roadmap for Semiconductors 

(ITRS)5.6). The introduction of nanopores into “dense” low k material is necessary 

when k values below 2.5 are desired.5.6 Pores degrade the thermal and mechanical 

properties and enhance species permeation during processing.5.7-5.9 These issues make 

the integration of nanoporous dielectrics into back-end-of-line device structures 

challenging.  

Plasma etching and photoresist stripping are critical steps in the processing of 

ULK materials. The modifications of porous ULK materials due to these processes 
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can increase the effective k value through carbon depletion and densification, along 

with deep fluorine penetration and introduction of surface roughness. In our previous 

publications,5.8,5.9 we discussed plasma-induced surface and bulk modifications of 

porous ultra low k materials during plasma etching using fluorocarbon-based 

discharges. The focus of the present work is the study of modifications of ultra low k 

materials caused by different photoresist removal (stripping) plasma chemistries.  

It is well known that oxygen discharges conventionally used for the removal 

of photoresist masks causes carbon depletion even for dense materials like OSG 

because of the oxidation of carbon-containing groups and leads to a higher effective k 

value.5.10 In addition, the carbon depletion makes the hydrophobic dielectric 

hydrophilic, which enhances moisture uptake. Alternative photoresist stripping 

chemistries based on N2 or H2 are promising for developing successful integration 

procedures for ULK materials.5.11 In this work, we investigated ULK material 

modifications resulting from exposure to different photoresist ashing environments, 

specifically O2, N2, and H2 discharges with the substrate either directly exposed to the 

discharge or placed remotely. In the first geometry low energy ion bombardment 

plays an important role in the ashing process, whereas in the second case only attack 

of neutrals causes the gasification of the photoresist.  

 

5.2 EXPERIMENTAL SETUP AND PROCEDURES 

A. Materials 

The ultra low k materials used in this work are porous methyl silsesquioxane 

(MSQ) thin films coated on silicon substrate with a thickness around 330 nm. ULK 
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film properties, including composition, pore size, and porosity range were reported in 

our previous publication.5.8 To distinguish the relative importance of residual methyl 

carbon group and nanopores in promoting ULK damage, we compared ULK damage 

results obtained for nanoporous ULK materials and OSG. Additionally, pore 

morphology, i.e. porosity and pore interconnectivity, was characterized using X-ray 

reflectivity porosimetry.5.12,5.13 X-ray reflectivity can be employed to determine the 

film density profile. Porous low k films absorb vapors such as toluene, 

perfluorohexane, and the film densities change as a result. The change of density due 

to the presence of condensed vapors in the porous matrix is measured using X-ray 

reflectivity. The data can be directly converted to the amount of adsorbed vapor and 

sample porosity may be determined assuming that the density of the condensing fluid 

is known.5.12, 5.13 The results of these measurements performed on the set of low k and 

ultra-low k materials used in the present work are summarized in table 1.  Due to 

small size of the toluene molecule, it is assumed toluene that is able to access both 

isolated pores and interconnected pores.  The porosity measured using toluene is 

believed to reflect the overall porosity of the material.5.13 To evaluate the relative 

importance of interconnected pores, perfluorohexane is chosen as the feed vapor. Not 

all isolated pores are accessible to perfluorohexane molecules because of the large 

molecular size. Porosity data based on perfluorohexane X-ray reflectivity porosimetry 

provide a measure of pore interconnectivity. Significant pore interconnectivity of 

ULK materials can be caused by spin-on deposition followed by a baking process 

during sample preparation. The high pore interconnectivity values shown in Table 5.1 

partially explain the deep modification of these ULK materials that we observed in 
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our previous work, i. e. deep fluorine permeation during fluorocarbon plasma 

etching.5.8,5.9 The OSG material used here is deposited by chemical vapor deposition 

and is considered a non-porous material. Our measurements reveal a small amount of 

pores (7%) in OSG film with a very low proportion of interconnected pores (1%). 

The porosity result for the OSG material is in agreement with the low degree of 

fluorine permeation observed by dynamic SIMS measurements.5.9 However, for OSG 

exposed to fluorocarbon plasmas the plasma surface reactions are mainly limited to 

the near surface regions. These findings suggest that plasma surface interaction 

mechanisms can be completely changed by both overall porosity and pore 

interconnectivity.5.8,5.9

Porosity  k Value 
Toluene Perfluorohexane

OSG 2.8~2.9  7% 1% 
NPS I 2.2 32% 28% 
NPS II 1.9 45% 40% 
 
Table 5.1: Dielectric constants and porosity of the materials used in this work. 
Toluene X-ray reflectivity porosimetry indicates overall porosity while the value 
revealed with perfluorohexane X-ray reflectivity porosimetry is believed to provide a 
measure of the proportion of interconnected pores. 
 
 
B. Plasma Processing and Diagnostics 

The inductively coupled plasma reactor employed in this work has been 

described in detail in a previous publication.5.14 The discharges were produced by a 

planar coil placed on top of a quartz coupling window and powered by a RF power 

supply at a frequency 13.56 MHz. The discharge pressure was maintained at 100 

mTorr. This pressure emphasizes the attack of neutrals relative to that of ions and 

reduces ion energies by ion/neutral collisions in the sheath region for direct plasma 
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exposure conditions.5.15 For remote plasma exposure conditions the radical flux is 

sufficient to enable high photoresist removal rates (>100 nm/min at certain 

conditions). The remote exposure conditions were achieved by using a small gap 

structure,5.16 which prevents ion bombardment of the substrate located in the 

shadowed region. This gap structure approach enables the study of plasma surface 

interaction mechanisms in the neutral-dominated remote plasma region.5.16 A 

schematic of the gap structure is shown in Fig. 5.1. The Si roof, 15 cm x 15cm, is 

supported by two spacers (8 mm high), which are laid on the electrode. The sample is 

shielded by the roof and ion bombardment is significantly reduced. Reactive species 

diffuse through the gap and react with the sample. Ions are effectively deionized by 

collisions with surfaces.5.17 The remote location of the substrates necessitates multiple 

wall collisions of the diffusing species before the shielded substrates can be reached, 

reducing the overall importance of ions relative to neutrals in the remote plasma 

attack as long as the sample to be processed is placed far enough from the entry. 

Overall, we believe that the results obtained with this setup captures essential 

elements of the plasma-ULK surface interactions that would be seen for a commercial 

remote plasma reactor.   
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Figure 5.1: A schematic of the gap structure: Samples placed in the region shielded 
by the roof primarily interact with neutrals, the remote plasma processing regime. 
For samples placed in the plasma exposed region, low energy ion bombardment 
assists in the plasma-surface interaction.  
 
 

A variety of complementary materials and surface characterization techniques 

were used to characterize film thickness, composition and bonding, pore morphology, 

and surface morphology of both blanket ULK films and plasma etched/ashed 

structures. The techniques included ellipsometry, x-ray photoelectron spectroscopy 

(XPS), secondary ion mass spectroscopy, x-ray reflectivity, transition electron 

microscopy (TEM), scanning electron microscopy (SEM), and atomic force 

microscopy (AFM). Experimental details on these measurements can be found in 

previous publications.5.8,5.9  

A simple approach of establishing the carbon depletion depth of a carbon 

containing silica film is based on the following approach.5.18 A 1% dilute HF solution 

cannot be used to dissolve as received OSG and ULK materials which contain carbon 

groups and Si-CH3 bonds. Once the carbon has been removed to a significant extent 
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by the plasma exposure, the densified, carbon-deficient layer can be quickly etched 

using 1% diluted HF solution. This method, in conjunction with ellipsometry, has 

been shown to be a convenient method to study the modifications of ULK and low k 

materials induced by plasma ashing processes.5.18   

 

5.3 RESULTS AND DISCUSSION 

1. Direct Plasma Exposure 

Direct plasma exposure is attractive for stripping of the photoresist mask after 

a plasma etching process, since it can be performed in the same process chamber. To 

avoid possible damage due to ion bombardment, the discharges used for photoresist 

stripping are normally generated at low power and high pressure without applying an 

RF bias voltage. Use of O2 plasmas has been a standard approach for photoresist 

ashing.5.19 Modifications of carbon containing dielectric materials induced by oxygen 

stripping processes can lead to unacceptable damage, in particular carbon loss, 

densification and an increase of the dielectric constant.5.2 In this work, alternative 

ashing chemistries employing N2 or H2 were investigated and their performance was 

compared with that of O2 discharges. 

The photoresist removal rate has to be high enough so that complete mask 

removal is possible for different ashing processes. For our conditions, i. e. source 

power 500 W, pressure 100 mTorr, and total gas flow rate 50 sccm, the photoresist 

removal rates are 150 nm/min, 40 nm/min and 26 nm/min for direct O2, N2 and H2 

plasmas, respectively. O2 discharges are certainly the most efficient for photoresist 
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ashing. However, the modification on ultra low k materials during these processes is 

another concern. 

 

Damaged Layer Thickness: The damaged layer thickness is determined by the 

thickness difference between as received films, and the remaining film thickness for 

samples after plasma exposure and subsequent 1 % HF dissolution of the modified 

layer. The damaged layer thicknesses obtained with of OSG, 32 % porous NPS and 

45 % porous NPS films due to direct exposure to O2, N2, or H2 discharges are 

summarized in Fig. 5.2 (a). Discharge conditions were 500 W 13.56 MHz source 

power, a pressure of 100 mTorr and a total gas flow rate of 50 sccm. The figure 

shows that O2 discharges introduce the most damage to the lowk/ULK materials 

investigated. For N2 or H2 discharges reduced damage levels are obtained. The net 

damage depth is similar for both types of discharges. For instance, within 1minute of 

plasma exposure, ULK materials can be modified to a depth of several hundred 

nanometer, comparable to the complete thickness of layers used in actual structures. 

The damage is linearly proportional to the process time for the nanoporous materials 

for these processes, showing that subsurface reaction is not limited by diffusion 

phenomena for the time regime investigated. On the other hand, the damage depth of 

OSG materials is low and the modified layer is limited to the near-surface region. The 

OSG damage depth saturates at 70 nm for O2, and 30 nm for both N2 and H2 after a 

plasma exposure time of 40 s.  

Ion sampling measurements performed on a similar ICP system in our 

laboratory show that the plasma potential is around 20-30 eV for the discharge 
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conditions used here. If we ignore ion-neutral collisions which will reduce the 

corresponding ion impact energies, the ion penetration at these energies in silica 

materials is limited to a few nanometers.17 From the deep modification of OSG and 

nanoporous silica as a result of exposure to ashing discharges, we conclude that 

diffusion of neutral species is an important mechanism in the damage process. From 

the dependence of damage depth on overall porosity we conclude that the diffusion 

processes are enhanced by the presence of nanopores in the materials.  The fact that 

saturation of the damage depth is only observed for OSG suggests that plasma-driven 

reactions in the subsurface region are governed not only by overall porosity but also 

pore interconnectivity.  Assuming that the plasma only reacts with the matrix and all 

nanopores (assumed to be vacuum cavities) are isolated, the damage thickness is 

expected to be inversely proportional to the mass density. Based on this, we may 

expect that the damage saturates at 96 nm and 119 nm for 32 % and 45 % porous NPS 

materials, respectively. This estimate is not consistent with the experimental 

observations. A possible reason is that interconnected pores enable long-range 

migration of reactive species from the surface to the deep bulk region. During the 

transport in connected pores, recombination of radicals does not occur at a high rate, 

and reactions with carbon, i. e. Si-C bond breaking and carbon oxidation can take 

place deep inside the nanoporous material and chemically modify the material. 

Although the reactive species for O2 and H2 discharges are completely different, the 

porosity dependence of the damage thickness is similar for the two types of 

discharges (see Fig. 5.2 (b)) after 10 s plasma exposure. For these conditions the 

damage depths increase exponentially with porosity at the same power. This indicates 
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a universal behavior for diffusion of reactive species through interconnected pores. 

Oxygen radicals appear much more reactive than hydrogen-related species. The 

activation energy for the reaction is lower in the case of oxygen, resulting in a higher 

reaction rate.     
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Figure 5.2: (a) Damage thickness as a function of process time of O2, N2, or H2 
discharges; (b) Influence of porosity on damage layer thickness after 10 s of either O2
or H2 discharge treatments. Discharges were generated using a source power of 500 
W, pressure 100 mTorr, and total gas flow rate 50sccm. Damage thickness was 
determined with the 1 % HF dipping method and ellipsometry. 
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hotoresist Stripping Efficiency: To evaluate different stripping processes, the ratio 

etween the damage (discussed in next section) and resist removal is an important 

arameter to consider and provides a measure of the process efficiency. Although the 

bsolute damage of NPS materials by an oxygen plasma for a given exposure time is 

he worst, oxygen discharges are more efficient for stripping photoresist from the 



ULK materials studied here since the photoresist stripping rate in O2 is very high. The 

efficiency also depends on the porosity as shown in Fig. 5.3. The photoresist 

thicknesses of actual masking layers and the thickness of dielectric materials are both 

a few hundred nanometers. The data plotted in Fig.5.3, indicate that the whole bulk of 

the dielectric material is damaged by all ashing processes before the photoresist has 

been removed. We must keep in mind, however, that this analysis overestimates the 

damage to the low k and ULK materials in actual device structures. For actual device 

structures the dielectric materials would not be directly exposed to the discharge for 

most of the duration of the plasma ashing process. Nevertheless, low k and ULK ash 

damage due to direct exposure is a significant concern, and the investigation of 

alternative approaches is desirable.  
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Figure 5.3: Process efficiency defined as NPS damage thickness per nm 
photoresist removal for different direct discharges examined in this work. 
Discharges were generated with source power 500 W, pressure 100 mTorr,
and total gas flow rate 50 sccm. 
urface Characterization Employing XPS:  To clarify the mechanism of stripping 

rocess-induced modifications of OSG and NPS materials, surface analysis of direct 
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plasma-treated specimens was performed using XPS. The intensities of C 1s and Si 

2p spectra obtained with NPS material (32 % porosity) after O2, N2 or H2-based 

stripping processes are summarized in Fig.5.4 as a function of processing time. Figure 

5.4 shows that O2, N2 or H2 stripping processes introduce densification and carbon 

depletion. Figure 5.4 shows that O2 is the most damaging ashing process. Carbon is 

depleted near the surface within 2 s exposure to the oxygen discharge. Since the 

probing depth of XPS is about 10nm,5.20  the carbon depletion extends to at least 10 

nm from the surface, even though the time of the exposure to the direct O2 plasma is 

only two seconds. The removal of the carbon groups can cause the collapse of the 

SiO-matrix. This produces a denser material. Consistent with this expectation, 

densification accompanied carbon depletion and is evident in the XPS data of Fig. 

5.4. 

Figure 5.4 shows that use of H2 discharges minimizes the modifications of the 

NPS material relative to using O2 and N2 discharges. However, even for H2 

discharges, complete removal of carbon in the near-surface region is observed after 

long (40 s) plasma exposure time. For N2 discharge treatments we observed that the 

drop of the C1s intensity for long plasma exposure times is accompanied by nitrogen 

incorporation into the NPS material. Overall, we conclude that the XPS data obtained 

with ULK materials after different time exposures to O2, N2 or H2 discharges are 

consistent with the results of the damage thickness measurements based on selective 

HF etching of the damaged layer and subsequent ellipsometric thickness 

measurement.  
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Figure 5.4: Si2p and C1s intensities obtained using XPS with plasma-treated NPS 
films as a function of process time. Results for direct O2, N2 or H2 plasma treatments 
are shown. Carbon depletion and densification are observed for all ashing processes. 
Discharges were generated with source power 500 W, pressure 100 mTorr, and total 
gas flow rate 50 sccm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.5: TOF SIMS depth profiles of OSG(a) and 3 2% NPS (b) material after 30 
s direct plasma exposure employing O2. The intensities obtained with untreated 
materials are shown for comparison. Discharges were generated with source power 
500 W, pressure 100 mTorr, and total gas flow rate 50 sccm. 
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Characterization of Bulk Modifications Using Dynamic SIMS:  Information on 

plasma-induced bulk modifications of the dielectric materials was obtained using 

dynamic SIMS. Representative results are shown in Fig. 5.5 for OSG and NPS 

materials after 30 s O2 exposure, along with data obtained for untreated materials. 

Carbon depletion (reduced C signal) and densification (increased SiO2 signal) were 

verified in the SIMS studies. For OSG, the materials modifications are restricted to 

the near-surface region, and can be explained by the low porosity of this material. In 

this case, significant carbon loss was seen to a depth of ~70 nm from the surface, 

consistent with the damage thickness determined using the HF dipping method. For 

the highly porous dielectric (32 % porous NPS), carbon loss was observed throughout 

the bulk of the material. This shows that a 30 s exposure to a direct O2 discharge is 

sufficient to modify the entire bulk of the NPS material. At the same time, thickness 

shrinkage is evident in Fig. 5.5 for the 32 % NPS material. Thickness shrinkage is not 

seen for the OSG material. The carbon loss amounts to about 50 % in the bulk of the 

O2 plasma treated NPS material relative to that measured for a control. This implies 

that the HF etching method will etch carbon-containing SiO2 material, as long as 

either the C content is reduced sufficiently, and/or Si-C bonds in the matrix are 

broken. Essentially, the SIMS measurements shows that oxygen replaces easily C of 

the SiC groups in the matrix, but that residual carbon is present in the dielectric 

material after oxygen plasma attack. This is consistent with the XPS measurements, 

which showed residual carbon content of the NPS material after part of the damaged 

layer had been removed using HF.  
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The SIMS data on the dielectric materials modifications caused by exposures 

to direct N2 or H2 discharges were found to be similar to those obtained with O2 

plasmas, albeit at lower modification rates. For the sake of brevity, we will not show 

these data. 

 

5.3.2. Remote Plasma Photoresist Stripping and ULK Damage Effects: 

During photoresist removal by an ashing process, C-C bonds which are the 

primary bonds in the photoresist backbone, must be broken and volatile compounds 

formed by reaction with the reactants. The bond energies of C-C bonds and Si-C 

bonds are comparable (3.71 eV).5.21 Therefore, it is not surprising that the aggressive 

approach to photoresist removal realized by direct plasma exposure, where the attack 

of the photoresist by reactive neutrals is assisted by ion bombardment, can be highly 

damaging to carbon containing silica-based ULK materials. During direct plasma 

exposure, Si-C bonds may be broken by ion bombardment. This explains the 

unacceptable damage to the NPS material, regardless if O2, N2 or H2 discharges are 

employed for photoresist stripping. To reduce physical bombardment damage, the 

photoresist-coated ULK film needs to be shielded from direct plasma exposure. We 

previously described a small gap structure that prevents direct ion bombardment of 

surfaces during processing and that has been used to study aspects of gas-surface 

interactions that are characteristics of remote plasma processing.5.16 In the current 

work, a roof that is large relative to the sample size was used to shield the sample and 

enable interaction with reactive neutrals. 
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Damaged Layer Thickness: Figure 5.6 shows the damaged layer thickness of NPS 

materials with two different porosities as a result of exposure to O2, N2, and H2 

remote plasmas. The damage levels measured after O2 remote plasma exposure are 

comparable to those measured after direct plasma exposure, indicating that the 

reactive species present in the afterglow of O2 discharges are able to damage Si-C 

bonds even without assistance by ion bombardment. Since the energy flux incident on 

the surface for the remote plasma exposure is much lower as compared with direct 

plasma exposure, we conclude that the activation energy of the reaction between 

oxygen radicals and Si-C bonds is low and the energy carried by the reactive species 

is sufficient to activate a reaction with the carbon species. Although the damage 

levels seen for nanoporous silica materials for direct and remote O2 plasma exposure 

are similar, the photoresist removal rate decreases to 20 nm/min for remote plasma 

exposure. A possible explanation is a higher activation energy of the overall chemical 

reaction that results in photo resist removal – breaking C-C bonds and forming 

volatile CO and CO2 species by reaction with atomic O - relative to damaging Si-C 

bonds by O atom attack. We conclude that both direct and remote O2 plasma 

photoresist stripping introduces unacceptable damage levels in nanoporous ULK 

materials.  

Use of remote N2 discharges for photoresist ashing shows greatly reduced 

damage levels of nanoporous ULK materials, whereas the damage levels seen for 

remote H2 discharges can no longer be measured using our approach. At the same 

time, the photoresist removal rates for both remote N2 and H2 discharges are 

impractically small if the substrates are held at room temperature. Since remote N2 
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discharges still introduces damage of the NPS materials, the remainder of this article 

is focused on increasing the photoresist removal rates for remote H2 discharges while 

minimizing the amount of NPS damage. 
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Figure 5.6: Thickness of damaged layers produced in NPS materials as a result of 
remote plasma exposures using O2, N2 or H2 discharges. Discharges were generated 
with at a source power level of 1000 W, pressure of 100 mTorr, and total gas flow 
rate of 50 sccm. 
 

Temperature Dependence: One possible way to increase the photoresist stripping 

rate is to increase the substrate temperature. By raising the substrate temperature to 

260 0C for a remote H2 discharge, the ashing rate of photoresist could be increased to 

~100 nm/min. To evaluate the influence of photoresist polymer structure on ashing 

rate, we studied ashing of both 193 nm and 248 nm photoresists in remote H2 

discharges. For 248 nm photoresist, the polymer backbone contains aromatic rings, 

which is stable in the plasma environment due to C=C bonds in the ring.5.21 Because 

of high UV absorption of C=C, these polymers are not suitable at 193 nm 

photolithography, which is required for the integreation of future device.5.22, 5.23 
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Instead of the aromatic ring structure, 193 nm photoresist materials consists a 

polymethylmethacrylate backbone with lactone- and adamantine-based substituents.  

In Fig. 5.7 the temperature dependence of the ashing rates of both 248 nm and 193 

nm photoresist materials is shown for remote H2 discharges.  The photoresist ashing 

rates start to increase rapidly once the substrate temperature exceeds 150 0C. This 

corresponds approximately to the glass transition temperature (Tg) of these 

polymers.5.24 If the temperature is below Tg, polymers are rigid and the chain mobility 

is small. As the substrate temperature rises above Tg, the segmental mobility of the 

polymer increases. Thus, a higher reaction rate with the plasma is expected for 

photoresists once the temperature is above Tg. Figure 5.7 shows that the ashing rate of 

the aromatic ring containing 248 nm photoresist increases at a much slower rate with 

temperature than the ashing rate of the 193 nm photoresist material in the remote H2 

plasma. Figure 5.7 also shows that the damage layer thickness of the NPS material 

remains below 10 nm as the substrate temperature is increased up to 300 0C. 

Apparently, the residual carbon groups in the nanoporous silica material are stable at 

high substrate temperature, and the attack due to the remote H2 plasma is minimized.  
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Figure 5.7: The effect of substrate temperature on removed photoresist thickness and 
nanoporous ULK material damage layer thickness after 1 minute exposure to a 
remote H2 plasma. Discharges were generated using 1000 W source power, a 
pressure of 100 mTorr, and a total gas flow rate of 50 sccm. 
 
 
Surface Characterization Using XPS: When NPS materials were exposed to remote 

O2, N2 or H2 discharges, pronounced differences in damage layer thickness were seen 

(see Fig. 5.6). XPS was used to examine the plasma exposed NPS materials and 

clarify the reasons for these differences. Figure 5.8 shows C 1s and Si 2p spectra 

obtained with NPS materials after 60 s exposure to either O2 or H2 remote plasmas. 

The spectra of an untreated sample are shown for comparison. Figure 5.8 shows that 

for a remote O2 plasma the carbon was nearly completely removed and that 

significant densification of the NPS was introduced (as made evident by the increased 

Si 2p intensity). This confirms that a remote O2 plasma strongly modifies the 

properties of carbon containing ULK materials. When the NPS material was exposed 

to a remote H2 discharge, a small reduction of the carbon intensity was observed. The 
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Si 2p intensity remained essentially the same as the one obtained with an untreated 

NPS film. It is possible that the reduced carbon signal may be due primarily to loss of 

surface carbon, and thus no correlated densification of the SiO-matrix is seen in this 

case.  
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Figure 5.8: (a) Si2p and (b) C1s XPS spectra obtained with 32% porous NPS films 
after either 1 minute exposure to remote O2 or H2 plasmas. The substrate temperature 
was maintained at 2600C. For comparison, XPS data obtained with an untreated NPS 
film are also shown. Discharges were generated using 1000 W source power, a 
pressure of 100 mTorr, and a total gas flow rate of 50 sccm. 
 
 
 
Bulk Characterization Using Dynamic SIMS: To improve our understanding of the 

NPS damage mechanism and reveal deep penetration of reactive species into the 
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porous structure as a result of exposure to remote plasmas useful for photoresist 

ashing, we performed characterization of the NPS composition as a function of depth 

using dynamic SIMS. The results are shown in Fig. 5.9.  The following observations 

stand out: Firstly, we note shrinkage of the NPS material by about 70 nm thickness 

after remote O2 treatment at elevated temperature relative to a control. Secondly, 

severe carbon depletion throughout the bulk of the NPS material is apparent in Fig. 

5.9. Third, a strong increase of the Si related signal is consistent with a significant 

increase of the SiO matrix density. The severe carbon reduction seen throughout the 

bulk of the NPS material shows that reactions between long-lived oxygen radicals 

produced in the plasma and the NPS material takes place at elevated substrate 

temperature and that elimination of ion bombardment is not sufficient to prevent these 

reactions for the present process conditions. Since the carbon content is reduced 

throughout the bulk of the NPS material to a fairly constant, we conclude that the 

oxygen-carbon interaction is not limited by the porous matrix of the NPS material for 

the film thickness investigated in this work.  

The SIMS profiles obtained with NPS material after exposure to a remote H2 

plasma are essentially the same as those measured for untreated films. The absence of 

NPS materials modifications in this case is consistent with the damage thickness 

study and XPS characterization reported above.  

 

 

 

 

 161



 162

0 100 200 300 400

102

103

104

105

Depth (nm)

In
te

ns
ity

 (c
ou

nt
s)

 C, Untreated
 C, Remote
 SiO2, Untreated
 SiO2, Remote

 

 

0 100 200 300 400

102

103

104

105

 

 

In
te

ns
ity

 (c
ou

nt
s)

Depth (nm)

 C, untreated
 C, Remote
 SiO2, untreated
 SiO2, Remote

 

 

 

 

 

(a) 

 

 

  

 

 

 

(b) 

 

 

 
Figure 5.9: Dynamic SIMS depth profiles of 32 % NPS materials after 30 s exposure 
to remote(a) O2 or (b) H2 plasmas at a substrate temperature of 260 0C. For 
comparison, dynamic SIMS data obtained with an untreated NPS film are also shown. 
Discharges were generated using 1000 W source power, a pressure of 100 mTorr, 
and a total gas flow rate of 50 sccm. 
 
 
 
 
 
 
 
 



Transmission Electron Microscopy (TEM).  NPS films after exposure to remote O2 

and H2 discharges along with an untreated control were also characterized by TEM. 

All samples were thinned by hand-polishing to avoid the damage caused by 

conventional ion sputtering sample preparation techniques. The results are shown in 

Fig. 5.10. The TEM image of an untreated film is shown in Fig. 5.10 (a). The initial 

film thickness obtained by TEM is 290 nm indicated. A NPS film after exposure to a 

remote H2 plasma is shown in Fig. 5.10 (b).  Essentially, the thickness of the material 

is 284~290 nm, close to the value of the control. Figure 5.10 (c) shows that the 

thickness after a remote O2 treatment is reduced to 191nm, consistent with the 

thickness value obtained by SIMS.  Because of the small pore size (2~3 nm 

diameter),25  it is difficult to quantify the pore diameter from these images. Overall, it 

appears that the pores are more visible in images Fig. 5.10 (a) and (b), and 

comparable. This is further evidence that the pore morphology remains unchanged by 

the remote H2 plasma process. The image shown in Fig. 5.10 (c) may be interpreted 

as indicating a pore size decrease as the film density increases as a result of the 

remote O2 plasma treatment. The SiO matrix is densified as a result of carbon 

removal by oxidation, and the NPS material changes to become more similar to SiO2, 

with a higher mass density. One may expect that the pore volume is reduced as the 

matrix collapses, consistent with the smaller pores seen in Fig. 5.10 (c). 
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Figure 5.10: Cross-sectional images of NPS films obtained by TEM. (a) untreated; 
(b) after 1 minute exposure to a remote H2 plasma at a substrate temperature of 
2600C; (c) after 1 minute exposure to a remote O2 plasma at a substrate temperature 
of 2600C. Discharges were generated using 1000W source power, a pressure of 
100mTorr, and a total gas flow rate of 50sccm. 
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Atomic Force Microscopy (AFM): Nanoporous silica materials have a higher 

surface roughness as compared with SiO2.5.9 This may be explained by the presence 

of nanopores. The surface roughness qualitatively reflects the pore size (a few 

nanometers) if the surface is relatively smooth at a micrometer length scale.  The 

RMS roughness obtained by AFM is plotted in Fig. 5.11. Figure 5.11 shows that 

exposure of NPS at elevated substrate temperature to a remote H2 plasma does not 

modify the surface and the surface roughness remains about 1.2 nm. The surface 

roughness drops to 0.7 nm after exposure of NPS at the same substrate temperature to 

a remote O2 discharge. This is possibly due to the reduction of the pore size seen in 

the TEM cross-sectional images. However, the surface of TEM cross sectional 

images shows a rougher surface for the NPS material after exposure to a remote O2 

discharge than the surface roughness seen after exposure to a remote H2  discharge. It 

is possibly that this inconsistency may be explained by the deposition of a metal layer 

on the NPS surface during sample preparation for the TEM measurements.  
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Figure 5.11: RMS roughness results obtained by AFM measurements employing NPS 
films exposed to H2 and O2 remote plasma ashing processes. An untreated control is 
shown for comparison. Discharges were generated using 1000 W source power, a 
pressure of 100 mTorr, and a total gas flow rate of 50 sccm. 
 
 
Ashing Results Obtained Using Actual Etched Trench Structures: Actual trench 

structures were patterned using plasma etching employing a photoresist mask. The 

mask was subsequently removed using the remote plasma ashing approaches 

described above. The photoresist pattern was transferred using C4F8/90% Ar 

inductively coupled discharges for 1 minute. The discharges were generated using 

1000W source power, a pressure of 100 mTorr, and a total gas flow rate of 50 sccm. 

An additional RF power supply at 13.56 MHz was used to bias the substrates at –125 

V to enable directional etching of the dielectric materials. A scanning electron 

microscopy (SEM) cross-sectional image obtained with the etched trench structure is 

shown in Fig. 5.12 (a). The ULK film with a thickness of ~410 nm was completely 

etched using 20 % of overetching. The sidewalls of the etched trenches are sloped, 
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which is related to the deposition of fluorocarbon material on the sidewall. On top of 

the lines of ULK material, the 248 nm photoresist mask is located, with a thickness of 

250 nm. To remove the remaining photoresist mask, the etched trench structures were 

exposed to remote O2 or H2 plasmas at an elevated substrate temperature (260 0C). To 

guarantee complete removal of the photoresist mask, the etched trench structures 

were exposed for a length of time that was 30% greater than the nominally required 

ashing time (based on the thickness of the photoresist mask and measured photoresist 

ashing rates). The SEM images show that the resist films were successfully removed 

using both O2 and H2 remote plasmas. The thickness of the NPS material exposed to 

the remote H2 discharge remained essentially the same as measured after plasma 

etching with the photoresist mask still in place. On the other hand, the thickness of 

the NPS layer was reduced by about 50 nm if photoresist ashing was performed using 

an remote O2 discharge. The trenches became wider after the ashing process, which is 

possibly related to the removal of fluorocarbon material present at the trench 

sidewalls. A remote O2 discharge is more effective for the removal of FC residues 

which leads to wider trenches as compared with remote H2 plasma processing. 

Additionally, the ultra low k material will be densified and the lateral width of the 

structure reduced as a result of oxygen species attack of the NPS matrix.  

Overall, the results of removing photoresist from actual plasma etched 

structures are consistent with the characterization of blanket NPS films described in 

this work. The structure investigation shows that remote O2 discharges are not 

suitable to strip photoresist from porous low k structures, whereas use of remote H2 

discharges is promising if the substrate temperature is above 250 0C.  
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5.4 SUMMARY AND CONCLUSIONS 

Plasma induced modifications of nanoporous ultra-low k dielectric materials 

as a result of exposure to various plasma processes useful for removing photoresist 

masks from plasma etched structures were studied using complementary methods. 

The most significant ashing plasma-induced modifications seen for the carbon 

containing nanoporous silica materials examined in this work are carbon depletion, 

and densification of the SiO2 matrix. From this work it appears that carbon depletion 

is connected with a reorganization of the silica matrix and a reduction of the pore 

size, resulting in a densification of the NPS material. Direct plasma exposure of the 

NPS materials induces unacceptable damage, regardless if O2, N2 or H2 discharges 

were employed. Use of O2, N2 and H2 based remote discharges for photoresist 

removal was also investigated. For remote O2 discharges, NPS damage levels were 

still unsatisfactory. By employing remote H2 discharges, the damage layer thickness 

of NPS materials could be reduced to a value of about 1 nm for substrate 

temperatures ranging from room temperature to greater than 250 0C. Simultaneously, 

for substrate temperatures greater than 250 0C, the photoresist ashing rates could be 

increased to values above 100 nm/min.  
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Chapter 6: Studies Of Plasma Surface Interactions During Short Time Plasma 

Etching of 193nm and 248nm Photoresist Materials  

                         To be submitted to J. Vac. Sci. Technol. A., 2005 
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ABSTRACT 

As the device dimensions scale to 100 nm, the use of photoresist materials 

suitable for lithographic patterning at 193nm. The molecular structure of 193nm 

photoresist materials is significantly different from that of 248nm photoresist 

materials,6.1,6.2  which leads to a number of undesirable consequences, including 

pronounced surface and line edge roughness during plasma etching.3-5 In this article, we 

present an investigation of the mechanisms for the surface/line edge roughening of 

photoresist materials during plasma etching using C4F8/90%Ar discharges. We 

emphasized in our study short exposure times (the first few seconds) of the photoresist 

materials and structures to the plasma, a time regime that has not been well studied. 

Rapid modifications were observed for both 193nm and 248nm photoresists during short 

time exposure. During the first seconds of plasma exposure, photoresist material 

densification and hydrogen depletion are important processes. It is also found that rough 

surfaces develop within a few seconds exposure to the C4F8/90%Ar discharges. Plasma 

exposure leads to the formation of rough edges on the top of trench sidewalls in 

photoresist trench and line structures. During prolonged exposure to the plasma, the 

roughness is transferred to produce striations on the sidewalls. After an initial stage, the 

roughening rate remains constant for 193nm photoresist, whereas for 248nm photoresist 
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the roughening rate is negligible. This difference is possibly related to the preferential 

removal of carbonyl groups for the 193nm photoresist material, which has been revealed 

by x-ray photoelectron spectroscopy and seconday ion mass spectroscopy.   
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6.1 INTRODUCTION 

For the fabrication of sub-100 nm structures, photolithography employs exposure 

at 193nm wavelength rather than at 248 nm to produce photoresist mask patterns. This 

change in exposure wavelength necessitates changes in the polymer structure used for the 

photoresists. The aromatic ring structure on which 248 nm photoresists are based and that 

retains the image characteristics when exposed to energetic ion bombardment 

accompanying plasma etching of dielectrics is not suitable for 193nm photolithography 

because of the high absorption of C=C bonds at 193nm.6.1,6.2 A significant modification 

of the photoresist polymer structure is required to enable exposure at 193 nm 

wavelength.6.3,6.4 Polymethacrylates are highly transparent at 193 nm and are thus used in 

the design of 193nm photoresist. Alicyclic structures such as adamantane and norbornane 

are also incorporated in the structure to enhance the etch resistance.6.3 Typical molecular 

structures of the 193 nm and 248 nm photoresist polymers employed in the current work 

are shown in Fig. 6.1.6.5 193 nm photoresist consists of methyl adamantyl methacrylate 

(MAMA) and alpha methacryloyloxy gamma butyrolactone (α GBLMA), which contain 

that contains adamantane and lactone groups respectively as indicated. In 248 nm 

photoresist, polyhydroxy styrene (PHOST) is used. 
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approaches to obtain clear information on the initial stages of the plasma-polymer 

interaction. To improve our understanding of plasma-surface interactions, we employed 

for this work a shutter approach describe in a previous publication.6.19 Using the shutter 

approach, we were able to expose 193 nm and 248 nm photoresists to stable 

fluorocarbon-based plasmas for short times (fractions of second to several seconds) in a 

highly controlled fashion. 

In this work, we studied fluorocarbon plasma etching of 193 and 248nm 

photoresists with the shutter approach. Details of the shutter approach will be described 

in the section of experimental setup and procedures. Plasma induced modifications of 

these polymers will be discussed for both structures and blanket films in the section of 

results and discussions.    

 

6.2 EXPERIMENTAL SETUP AND PROCEDURES 

The inductively coupled high-density plasma-etching reactor used for this study 

has been described in a previous publication.6.20 A planar coil is placed on top of a quartz 

window and powered through an L-type matching network by a 13.56 MHz, 0-2000 W 

power supply to generate plasma which is confined to a narrow region 2-3 cm below the 

window by induced electromagnetic fields. The ion bombardment energy at the substrate 

electrode (300 mm diameter) is controlled by applying a RF bias voltage using another 

13.56 MHz power supply (0-1000 W). The wafers are located at the center of the 

electrode that is cooled by circulation of a cooling liquid to 15 0C. Total gas flow into the 

reactor was set at 50 sccm. An operating pressure of 10 mTorr was maintained by using 

an automatic throttle valve in the exhaust line. Before each experiment, the chamber was 
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cleaned using an O2 plasma, followed by a 3 minute chamber seasoning using the 

conditions for the next experiment. After that, the sample is loaded and the experiment of 

interest is conducted. A thin metal mesh is installed around the discharge region to ensure 

stable processing conditions and reproducibility. The temperature of the vessel wall was 

kept constant at 50 oC using heating straps.  

The materials used in this work are 193 nm and 248 nm photoresists. For 

patterned samples, the photoresist materials - 300 nm and 410 nm thickness for 193 nm 

and 248 nm lithography, respectively - were spin-coated on ~80 nm thick bottom 

antireflection coating (BARC) layer, underneath which there is organosilicate glass layer. 

Line and trench patterns were formed in the photoresist materials by lithographic 

exposure and development. The structures were directly exposed to C4F8/90%Ar plasmas 

without initially etching the BARC layer using a plasma etching process, as is done 

conventionally. The reason is that we were interested in initial stages of the modifications 

of the photoresist materials and structures as a result of exposure to C4F8/90%Ar 

discharges. After plasma treatments, scanning electron microscopy (SEM) was used to 

characterize the profile evolutions of patterned samples. We also studied plasma exposure 

of blanket films of 193 nm and 248 nm photoresists.  Single wavelength (632.8 nm) 

ellipsometry was employed to measure the time-dependent etching rates and the surface 

modification as a result of plasma etching. Surface morphology was analyzed with 

atomic force microscopy (AFM). X-ray photoelectron spectroscopy (XPS) analysis was 

performed at 900 take-off angle using a nonmonochromatized Mg K-alpha X-ray source 

(1253.6 eV) to obtain the photoemission spectra of partially etched samples after sample 

transfer in air. The pass energy of the hemispherical analyzer was fixed at 20 eV. 
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Secondary ion mass microscopy was employed to obtain additional information on 

chemical transformations.   

For plasma processing of nanoscale layers, the total length of the substrate-plasma 

interaction time decreases to a few seconds and less. For short plasma-substrate 

interaction times, transient plasma effects, including electrical matching, plasma 

stabilization, and changes in plasma composition due to changing plasma-wall 

interactions play a more important role than for longer plasma processes. Our ability to 

control plasma induced nanoscale surface modifications of a substrate is reduced relative 

to larger length scales. For instance, Figure 6.2 (a) shows the temporal behaviors of the 

OSG etch rate and of the fluorocarbon deposition rate for fluorocarbon plasma using 

typical conditions, where the substrate is in contact with the plasma during all phases of 

the plasma process, including initialization of the discharge, biasing of the substrate, 

desired plasma processing by plasma/substrate interaction and plasma extinction. 

Constant etching or deposition rates are achieved after about 30 s for our experimental 

conditions. This reflects that during the initial period (first 30 s in our experimental 

conditions), the plasma properties change as a function of time and substrate processing 

is poorly controlled. To increase the control of plasma processes, it is desirable to use a 

stabilized plasma for processing and prevent interference due to the initial transients. We 

use a moving shutter containing slits in close contact with the substrate, to control the 

interaction time of stabilized gas discharges with the substrate for nanoscale 

layer/nanostructure processing. During the initial time interval (~30s), when the plasma 

properties change significantly, the substrate is shielded by the opaque portion of the 

shutter to prevent interaction with the evolving plasma. Once the plasma is fully 

 176



developed, the shutter is translated across the sample at a chosen speed and the substrate 

is exposed to the plasma (see Fig.6.3).  The plasma-substrate interaction time t is 

determined by slit width w and shutter traveling speed v according to .wt
v

=  

0 30
-200

-100

0

100

200

300

60

FC Dep on Si

OSG Etching

 

 

E
R

 (n
m

/m
in

)

Time (s)

(a) 

0 1 2 3 4
-200

-100

0

100

200

300

E
R

 (n
m

/m
in

)

Time (s)

FC Dep on Si

OSG Etching

 
 

(b) 

 Figure 6.2: OSG Etching/FC Deposition results: (a) conventional exposure; (b) shutter 
approach. Discharges were generated with 1000 W source power, a pressure of 10 
mTorr, and total gas flow rate 50 sccm with a fixed bias voltage –125 V.  
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The results of OSG ER and FC deposition rate with a stable plasma are plotted in 

Fig. 6.2 (b). The OSG etching rate no longer changes after about 2 s, whereas the 

fluorocarbon deposition rate was essentially constant throughout the entire experiment. 

The time to achieve a constant etching rate of the OSG material is determined by the 

plasma surface interaction mechanism, rather than by time constant of reactor processes, 

e.g. plasma-reactor wall interactions. These results indicate that for conventional 

fluorocarbon plasma etching and film deposition processes, , the time to achieve stable 

plasma properties is much greater than the times required to reach steady state surface 

etching and film deposition rates. The present shutter approach provides therefore the 

opportunity to study fundamental plasma-surface interactions in a time-regime that is not 

accessible using the conventional plasma processing approach.  

The shutter employed in this work was made of silicon. The silicon  etching rate 

in the fluorocarbon plasma environment is small, and a possible influence of etching 

product by interaction of the discharges with the shutter can be considered to be minor. 

The slits were generated by masking and using a wet etching approach for silicon using a 

dilute mixture of HF and nitric acid. The shutter was amounted directly on the substrate 

and positively contacted the substrate at several points. The movement of the shutter was 

controlled by a motor through a gear mechanism and vacuum feed through. In this work, 

we use a 18 mm wide slit, with which the perturbation on sheath topography is minor.19 

In addition to the uniform exposure of a complete substrate achieved with slits in the 

shutter, we have produced gradients of exposure time across a sample using the shutter 

approach. In the simplest case a sample is initially covered by the shutter and 
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subsequently exposed to the plasma once the plasma properties have stabilized, as shown 

in Fig. 6.3 (b). The exposure time varies continuously across the sample.  
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Figure 6.3: Concept of moving shutter: (a) Shutter containing a 18 mm wide slit to 
control the interaction of a substrate with a plasma. (b) Solid shutter that is used to 
generate gradients of exposure time across a sample.   
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6.3 RESULTS AND DISCUSSIONS 

6.3.1Temporal Evolutions of 193 nm and 248 nm Photoresist Patterns  

a. Trench and Line Evolution 

Figure 6.4 shows SEM cross-sections of 193 nm (images (a) through (d)) and 248 

nm (images (e) through (h)) photoresist patterns after plasma etching for various times 

using C4F8/90%Ar discharges. All samples were uniformly exposed to a stable plasma for 

different times. A 18 mm wide slit in a silicon shutter was used to expose the samples. 

Changes in processing characteristics due to sheath perturbations and their dependence 

on slit size have been discussed in a previous publication, and are minor with this slit 

size.19 For scanning electron microscopy, the samples were tilted to maximize the 

information that could be obtained from the study of the surface, trench/line and sidewall 

portions of the samples. Both the surface and sidewall roughness of etched 193 nm 

photoresist samples is greater than that of 248 nm photoresist patterns after comparable 

plasma treatments. Even a brief plasma exposure of ~1.6s introduces significant 

roughness in the 193 nm photoresist pattern (Fig. 6.4 (b)). The roughness increased for all 

times investigated here (up to 60 s), and the roughening rate is clearly much higher for 

the 193 nm photoresist patterns. Images of features etched for 60 s, showed development 

of sloped sidewalls and striations on the sidewalls for both 193 nm and 248 nm 

photoresists. 
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Figure 6.4: Photoresist mask evolution during C4F8/90%Ar etching: (a) 0s, (b) 1.6s, 
(c)7s, and (d) 60s for 193 nm photoresist etching; (e) 0s, (f) 1.6s, (g)7s, and (h) 60s for 
248 nm photoresist. Discharges were generated using 1000 W source power, a pressure 
of 10mTorr, and 50sccm as total gas flow rate with a fixed bias voltage –125V. 

Figure 6.4: Photoresist mask evolution during C4F8/90%Ar etching: (a) 0s, (b) 1.6s, 
(c)7s, and (d) 60s for 193 nm photoresist etching; (e) 0s, (f) 1.6s, (g)7s, and (h) 60s for 
248 nm photoresist. Discharges were generated using 1000 W source power, a pressure 
of 10mTorr, and 50sccm as total gas flow rate with a fixed bias voltage –125V. 
  

The quantitative values of etch rate, trench and line widths obtained in these and 

additional experiments are summarized in Figs. 6.5 (a), (b) and (c), respectively. 

Dramatic changes of the etch rates (Fig. 6.5 (a)) and the trench and line widths (Fig. 6.5 

(b) for 193 nm photoresist and Fig. 6.5 (c) for 248 nm photoresist) can be observed 

during the first 20 seconds of plasma exposure. The temporal evolutions of trench and 

line widths are consistent with the time scale of the changes seen for the ER. For both 

193 nm and 248 nm photoresist patterns a decrease of the trench width is observed, which 

may be caused by fluorocarbon deposition on the trench sidewalls. Figure 6.5 (a) shows 

that the etch rates of both types of photoresists are high during the initial phase, and then 

The quantitative values of etch rate, trench and line widths obtained in these and 

additional experiments are summarized in Figs. 6.5 (a), (b) and (c), respectively. 

Dramatic changes of the etch rates (Fig. 6.5 (a)) and the trench and line widths (Fig. 6.5 

(b) for 193 nm photoresist and Fig. 6.5 (c) for 248 nm photoresist) can be observed 

during the first 20 seconds of plasma exposure. The temporal evolutions of trench and 

line widths are consistent with the time scale of the changes seen for the ER. For both 

193 nm and 248 nm photoresist patterns a decrease of the trench width is observed, which 

may be caused by fluorocarbon deposition on the trench sidewalls. Figure 6.5 (a) shows 

that the etch rates of both types of photoresists are high during the initial phase, and then 
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drop to a steady-state value. Possible explanations of this are (a) the properties of the 

photoresist polymers may be different near the surface as compared to the bulk of the 

photoresist, e.g. due to moisture uptake from ambient and different polymer 

characteristics for chains ending at the surface, and (b) a strong plasma-induced 

modification of the photoresist material which reduces its etching rate, e.g. 

graphitization.6.21-6.23 Another interpretation could be that the etching of the photoresist 

polymers is easier if the fluorocarbon coverage of the surface is not complete. Overall, 

these results demonstrate the dynamic nature of these changes, and the need for time-

resolved measurements of these effects.  
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Figure 6.5: (a)193 and 248 nm photoresist etch rates, (b) Trench/Line width evolution of 
193 nm photoresist feature and (c) Trench/Line width evolution of 248 nm photoresist 
feature during pattern transfer. Discharges were generated using 1000 W source power, 
a pressure of 10mTorr, and 50sccm as total gas flow rate with a fixed bias voltage –
125V. 
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b. Formation of Striations in Sidewalls of Photoresist Structures  

As seen above, striations were formed on the sidewalls of both photoresist 

structures. Formation of striations and their subsequent transfer into dielectric films has 

been studied by many investigators, e.g. for a recent study see reference 6.24. It is 

important to control the sidewall roughness during the fabrication.  

SEM images of the top surfaces and trench sidewalls of plasma exposed 193 nm 

and 248 nm photoresist features of are shown in Figs. 6.6 and 6.7, respectively. The 

samples were tilted for SEM analysis to show the surface morphology of both horizontal 

and vertical surfaces. A “standing wave” pattern is visible on the sidewalls of as received 

193 nm and 248 nm photoresist patterns (horizontal lines in Figs. 6.6 (a) and 6.7 (a)), 

which were generated by the photolithographic process. These standing wave patterns 

disappeared after short plasma-photoresist interactions times. Significant surface 

modifications of the photoresist lines are introduced during plasma etching that vary with 

plasma processing time and surface location. It appears that surface roughness and 

sidewall roughness are of similar magnitude. The species incident on the sidewalls are 

mainly neutrals while the top surface is exposed to energetic ion bombardment. Ion 

bombardment of the trench sidewalls can be caused by the arrival of ions deflected to the 

trench sidewalls by negative charging. 6.25-6.27 Different mechanisms are expected to 

control the modification of the surface and sidewall of the photoresist line, respectively. 

The initial stages of surface roughening will be discussed in more detail below.  

 

 

 184



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

193nm Resist 

0s

400nm29s 60s

7s 15s

(c) 

 

(d)

1.6s

(b)

(f)(e)

 

Figure 6.6: Striation evolution on the sidewall of 193 nm photoresist mask during pattern 
transfer with C4F8/90%Ardischarges: (a) as received, (b) 1.6s, (c) 7s, (d) 15s, (e) 29s and 
(f) 60s.Discharges were generated using 1000 W source power, a pressure of 10mTorr, 
and 50sccm as total gas flow rate with a fixed bias voltage –125V. 
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Figure 6.7: Striation evolution on the sidewall of 248 nm photoresist mask during pattern 
transfer with C4F8/90%Ardischarges: (a) as received, (b) 1.6s, (c) 7s, (d) 15s, (e) 29s and 
(f) 60s. Discharges were generated using 1000 W source power, a pressure of 10mTorr, 
and 50sccm as total gas flow rate with a fixed bias voltage –125V. 

 

 

 

 

 186



 

Figures 6.6 and 6.7 display important information on the kinetics of the formation 

of “striations” along the sidewalls of the photoresist lines as a result of plasma exposure. 

For a short plasma exposure time (~1.6 s), primarily surface roughness is visible and no 

features that extend from the top to the bottom of the photoresist sidewalls are visible in 

the images shown in Figs. 6.6 (b) and 6.7 (b). As the plasma exposure time is increased, 

increasingly longer and more clearly defined stripes are formed on the photoresist line 

sidewalls. Ultimately striations extend from the top to the bottom of the photoresist line 

sidewalls. The orientation of the striations is nearly vertical, indicating that ion 

bombardment plays a role in the striation formation mechanism. Although the polymer 

structure of 193 nm and 248 nm photoresists are quite different, the evolution of 

striations as a function of time and depth is similar for features formed from either 

material. This indicates that the formation of striations is a consequence of the plasma 

etching process and appears to be caused by initial surface roughening followed by ion 

induced transfer of the rough edges into the feature sidewalls. Since fluorocarbon 

deposition at the feature sidewalls accompanies the ion-induced etching for the C4F8/Ar 

etching process employed here, non-uniform fluorocarbon film deposition may contribute 

to the generation of striations at the photoresist sidewalls. The width of striations formed 

on features after 60 s etching with C4F8/90%Ar discharges are ~40 nm and ~60 nm for 

193 and 248 nm photoresists, respectively. This means that during the plasma etching 

process, more striations are formed per unit length along 193 nm photoresist lines than 

for 248 nm photoresist features. This finding is consistent with the increased surface 
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roughness seen for 193 nm photoresist material. The molecular structure plays an 

important role in determining the striation size.  

The striation lengths and the striation growth rates for both materials are 

summarized in Figs. 6.8 (a) and (b), respectively. The striation length is defined as the 

distance from the top of photoresist line to the end of the observable striation on the 

sidewall. The striation growth rate is obtained by dividing the striation length by the total 

process time. These data on striation evolution do not take into account the fact that the 

photoresist line height is simultaneously reduced by etching. Figure 6.8 shows that the 

initially striations grew more quickly in features formed from the 193 nm photoresist 

material, consistent with the fact that plasma exposure introduces severe roughness on 

193 nm photoresist compared with 248 nm photoresist as shown by SEM images in Figs. 

6.4, 6.6 and 6.7. However, for long exposure times the striation was transferred deeper 

for the 248 nm photoresist structure than 193 nm photoresist. This may be explained by 

the different feature dimensions formed in the two materials. Due to the smaller width of 

the trenches formed in the 193 nm photoresist, it is more difficult for plasma species to 

penetrate the trench depth, which reduces the interaction of the reactive species with the 

trench sidewall, resulting in low striation growth rate.  
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Figure 6.8: Quantitative results of striation evolution during 193 nm  
and 248 nm photoresists etching with C4F8/90%Ar plasma shown in Figs. 6.6 and 6.7.  
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The rapid generation of striations for short exposure times is possibly due to the 

more fragile molecular structure of the 193 nm photoresist material relative to the 248 nm 

photoresist material. The striation growth rates are extremely high initially, equal to 

almost three times the value of the photoresist etching rates shown in Fig. 6.5 (a). 

Reduced ion bombardment is expected on the sidewalls, which typically results in lower 

etching rates for fluorocarbon discharges. The high striation growth rates are inconsistent 

with simple pattern transfer of micromasks into blanket photoresist films. In addition, the 

random orientation of the striations seen for short plasma exposure times suggests that 

these features are not a result of directional etching. The sidewalls of the photoresist 

features are exposed to ion bombardment at grazing angles. Additional information on 

the mechanism of striation formation can be obtained from a comparison of SEM images 

obtained with photoresist lines after short plasma exposure with images of untreated 

photoresist lines. This is shown in Figs. 6.9 (a) and (b), and (c) and (d), for 193 nm and 

248 nm photoresist structures, respectively.  Figure 6.9 compares the widths of the 

trenches at the top of the photoresist lines. For the 193 nm photoresist material, the width 

of the trench between the two photoresist lines was reduced from 127 nm to 107 nm after 

1.6 s plasma etching (see Figs. 6.9(a) and (b)). The reduction may be due to a distortion 

of the photoresist material on the top due to ion bombardment, fluorocarbon deposition or 

both. The reduction of the trench width of 248 nm photoresist feature is 5nm after 1.6 s 

plasma etching (see Figs. 6.9(c) and (d)). Minor surface roughening of 248 nm 

photoresist is a plausible explanation. This difference in trench width reduction indicates 

that a photoresist material change near the top of the photoresist lines rather than 
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fluorocarbon deposition is the dominant factor in photoresist lineshape distortion 

observed for short plasma etching times. Fluorocarbon deposition also takes place on the 

trench sidewalls during the plasma etching process and may contribute to the increase of 

the linewidths shown in Figs. 6.9 (b) and (d). The irregularly shaped photoresist profile 

after initial distortion along with fluorocarbon coverage on the corners will prevent 

locally grazing angle ion bombardment of the photoresist sidewalls.  
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Figure 6.9: Comparisons of SEM cross-section images of 193 and 248 nm photoresists 
between short time etching (1.6s) and untreated samples: (a) as received 193 nm 
photoresist, (b) 193 nm photoresist feature after 1.6s etching, (c) as received 248 nm 
photoresist, (d) 248 nm photoresist feature after 1.6s etching. Discharges were generated 
using 1000 W source power, a pressure of 10mTorr, and 50sccm as total gas flow rate 
with a fixed bias voltage –125V.   
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6.3.2 Surface Modifications of Photoresist Films During Argon Sputtering 

The chemical modifications of photoresist surfaces for short plasma exposure 

times were characterized. Blanket films were processed using argon plasmas and 

subsequently studied using x-ray photoemission spectroscopy (XPS). Argon rather than 

fluorocarbon discharges were used for this initial study of ion induced damage to the 

photoresist materials, since fluorocarbon deposition and related surface modifications 

mask changes of the C-C or C-O related signals in the C 1s spectra. Carbon 1s spectra of 

both 193 and 248 nm photoresist materials after exposure to an argon plasma are shown 

in Figs. 6.10 (a) and (b), respectively. For 193 nm photoresist, the C=O peak intensity 

vanishes and the C-C/C-H peak intensity decreases slightly as a result of sputtering. We 

conclude that physical sputtering causes rapid removal of C=O bonds from the 193 nm 

photoresist material. Figure 6.10 (b) shows that the aromatic ring structure associated 

with the 248 nm photoresist is destroyed by argon plasma induced sputtering. The C-C/C-

H related intensity also drops slightly.  

The integrated C 1s intensity for both materials as a function of argon sputtering 

time shows that both materials lose mass density. One possible interpretation is formation 

of surface roughness. The integrated C1s peak intensity of the 193 nm photoresist 

decreases more than that of the 248 nm photoresist as a function of sputtering time.  
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Figure 6.10: XPS C1s spectra of 193 nm and 248 nm photoresists after short time argon 
sputtering. Discharges were generated using 600 W source power, a pressure of 
10mTorr, and 50sccm as total gas flow rate with a fixed bias voltage –125V.  
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6.3.3 Surface Roughness of Blanket Photoresist Films for C4F8/Ar Discharges  

To improve our understanding of the plasma-induced surface modifications, the 

changes of blanket photoresist surfaces were determined as a function of processing time 

for C4F8/Ar discharges. For these studies, different surface portions of a single sample 

were exposed to the discharge for different amounts of time using the shutter. This 

approach enables characterization of the evolution of surface roughness and surface 

chemistry of photoresist materials as a function of exposure time to the same discharge. 

We applied ellipsometry, atomic force microscopy (AFM) and time-of-flight SIMS to the 

characterization of the plasma-exposed photoresist films. We do not report XPS data 

obtained with C4F8/Ar plasma treated photoresist materials since fluorocarbon deposition 

and fluorination were the dominant effects seen. The study of similar modifications has 

been reported previously.6.5  

 

a. Ellipsometric Characterization 

A rotating compensator ellipsometer in the polarizer-compensator-sample-

analyzer (PCSA) configuration with a 632.8 nm He/Ne laser was used to determine thin 

film etching rates and the introduction of surface modifications after the plasma etching 

process. Both 248 nm and 193 nm photoresist films were exposed to C4F8/90%Ar plasma 

for times of up to 80 s. Figure 6.11 shows the removed photoresist thickness and the 

corresponding photoresist etching rate for both materials as a function of plasma 

exposure time. The 193 nm photoresist material exhibits a higher etching rate than the 

248 nm photoresist for the C4F8/90%Ar discharge used. For both materials, the initially 

very high etching rates decrease as a function of time and stabilize at much lower values 
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after about 30 s. A total thickness of about 20 nm is removed for both the 193 nm and 

248 nm photoresists at the point where the etching rate has dropped close to the steady-

state etch rate value. This indicates two different plasma surface interaction regimes for 

each photoresist material.  
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Figure 6.11: (a) Thickness removal and (b) etch rate of blanket 193 nm or 248 nm 
photoresist films during fluorocarbon plasma etching with combinatorial approach 
shown in Fig.6.3 (b). Discharges were generated using 1000 W source power, a pressure 
of 10mTorr, and 50sccm as total gas flow rate with a fixed bias voltage –125V. 
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The effective refractive index (632.8 nm) obtained using a single-layer model of 

the photoresist films is summarized in Fig. 6.12 as a function of plasma exposure time.  

The temporal behavior of the effective refractive index of 193 nm photoresist is very 

different from that of 248 nm photoresist. For both materials the refractive index initially 

increases as a result of plasma exposure. This may be interpreted as a densification of the 

photoresist material caused by the plasma exposure, and can be due to hydrogen loss 

from the photoresist materials, cross-linking, and graphitization.6.21-6.23 After about 30 s 

plasma exposure, the refractive index of the 193 nm photoresist material starts to 

decrease and ultimately drops below that of untreated 193 nm photoresist. The decrease 

of the refractive index can be explained by fluorination of the photoresist material, 

surface roughening or both. A similar decrease is not seen for the refractive index of the 

248 nm photoresist material. This indicates that formation of a less dense material due to 

severe roughening is the reason for the refractive index decrease seen for the 193 nm 

photoresist for long plasma exposure times. These observations are consistent with the 

less severe surface roughening reported for 248 nm photoresist above.  
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Figure 6.12: Effective refractive index evolution of 193 nm or 248 nm photoresists during 
C4F8/90%Ar plasma etching. Discharges were generated using 1000 W source power, a 
pressure of 10mTorr, and 50sccm as total gas flow rate with a fixed bias voltage –125V.   
 

b. Surface Roughness Evolution 

  It is well-known that severe surface roughness of 193 nm photoresist materials 

can be introduced by fluorocarbon based plasma etching because of the more fragile 

polymer structure of these materials.6.5,6.24  Similar substrates as the ones analyzed using 

ellipsometry were investigated using AFM. The time evolution of RMS roughness is 

reported in Fig. 6.13.  The roughness of the 248 nm photoresist increases initially, but 

then stabilizes quickly and the RMS value remains overall fairly low. On the other hand, 

for the 193 nm photoresist the RMS roughness continued to increase for the longest 

plasma exposure times investigated (up to 60 s). Figure 6.13 shows that in this case the 

RMS roughness increases after about 20 s linearly with exposure time. The AFM results 

obtained for both 193 nm and 248 nm photoresists are consistent with the ellipsometric 

data, which showed a stable refractive index for the 248 nm photoresist, whereas the 
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refractive index of the 193 nm photoresist decreased continuously after about 30 s. The 

initial roughening rate (first 10 s, see inset in Fig. 6.13) is higher than seen at later times, 

indicative of diverse mechanisms possibly related to different material properties. This is 

consistent with the rapid photoresist etching rate measured for short plasma exposure 

times. The increase of the refractive index for short plasma exposure times suggests that 

densification is the dominant material transformation of the photoresist during this 

period. This is followed by a period where surface roughening of the 193 nm photoresist 

material dominates.  
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Figure 6.13: Time evolution of RMS roughness of 193 nm or 248 nm photoresists during 
C4F8/90%Ar plasma etching. Discharges were generated using 1000 W source power, a 
pressure of 10mTorr, and 50sccm as total gas flow rate with a fixed bias voltage –125V.   
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 Figure 6.14 shows the relationship between the RMS roughness and etching 

depth. The RMS roughness increases at an approximately constant rate with etching 

depth for each material, albeit at different rates. Additionally, it appears that this surface 

roughening mechanism becomes operative after about 10 nm of material have been 

removed from either photoresist film. This may imply that the plasma-polymer 

interaction is different for the first 10 nm of the material as compared to the interaction 

with the bulk material.  
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Figure 6.14: RMS roughness evolution as a function of etch depth during the etching 
of193 and 248 nm photoresists with C4F8/90%Ar discharges. Discharges were generated 
using 1000 W source power, a pressure of 10mTorr, and 50sccm as total gas flow rate 
with a fixed bias voltage –125V.   
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c. ToF SIMS Data  

Chemical information is essential for the understanding of surface roughening of 

photoresist materials during plasma etching process. TOF SIMS was used to study 

changes in the chemical nature of the 193 nm and 248 nm photoresist materials as a 

function of exposure time to fluorocarbon plasmas. The results are summarized in Fig. 

6.15. For both photoresists, FC coverage (indicated as C2F5O and C6F13O) is significant 

immediately once the substrate is exposed to the plasma (Fig. 6.15(a)). A variation of the 

FC intensity on 193 nm photoresist was observed while the one on 248 nm photoresist 

was nearly constant. This implies that the plasma/materials interactions reach a steady-

state in terms of fluorocarbon species more quickly on 248 nm photoresist than for 193 

nm material. This difference should be reflected in different temporal behavior of other 

surface properties, e.g. it is consistent with the surface roughening behavior, where 248 

nm photoresist surface saturates at a minor RMS roughness and 193 nm photoresist 

surface continuously roughens. The percentage of oxygen content in 193 nm photoresist 

material is higher than for 248nm photoresist (see Fig. 6.1), and less fluorocarbon 

coverage may be expected for the 193 nm photoresist during fluorocarbon plasma 

etching. The fact that a higher fluorocarbon coverage is seen for the 193 nm photoresist 

material during the initial exposure may be explained by the rough surface of the 193 nm 

photoresist material enhancing fluorocarbon deposition. For long plasma etching times, a 

very rough surface is formed and oxygen from the sub-surface region photoresist region 

is released. This could lead to a reduction of the FC coverage. 28 This occurs after about 5 

s (see Fig. 6.15 (a)). The SIMS signals related to the polymer structure and indicated as 

MAMA and GBLMA for 193 nm photoresist and C4H9O for 248 nm photoresist in Fig. 

6.15, are reduced in intensity as a result of the plasma exposure. The intensities of these 

groups drop to background level within about 0.2 second exposure.  

 In addition to the polymer shown in Fig. 6.6, the photoresist system typically 

contains a certain amount (~3%) of photoacid generator (PAG) required for pattern 

formation. PFBS is used as PAG in 193 nm photoresist material and iodonium-triflate is 

identified as the PAG used in 248 nm photoresist formulation. We show the temporal 

evolution of the PAG for both photoresists during plasma etching in Fig. 6.15 (c). The 

PFBS PAG is completely damaged by 1 s of plasma exposure. PAG enrichment is 
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observed for the 248 nm photoresist after 1 s of plasma exposure. The intensity of SO3 

remains above the noise level for long exposure time in this case. This difference 

confirms that the full 248 nm photoresist system is more stable in the fluorocarbon 

plasma etching environment than a fully formulated 193 nm photoresist system.  

To clarify the contribution of the chemical modifications of the photoresist 

materials to surface and line edge roughening, further characterization is necessary. For 

instance, the absolute loss of particular groups can be evaluated using depth profiling. 

These data may be correlated with the surface roughness data. This kind of research is in 

progress and will ultimately provide a molecular level understanding of the factors that 

contribute to roughness formation in advanced photoresist materials and structures.  
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6.4  CONCLUSIONS 

 We have studied the initial phases of the interaction of fluorocarbon plasmas with 

193 nm and 248 nm photoresists materials and structures. We employed a shutter to 

control the plasma-substrate interaction time. During this time frame, rapid surface 

roughening, and material densification/graphitization were observed upon plasma 

exposure. For photoresist line and trenche structures surface roughness is introduced near 

the top of the photoresist lines initially. The rough edges on the top of the photoresist 

lines can be transferred into the sidewalls of the photoresist lines to form striations that 

extend from the top to the bottom of the lines. For 248 nm photoresist, surface 

roughening, material densification, and other modifications saturate for exposure times of 

20 s and longer. Conversely, for the 193 nm photoresist material the surface roughness 

continues to increase even for the longest plasma exposure times investigated (90 s). 

While a molecular level understanding of this difference in behavior of the two 

photoresist materials is lacking at this time, the present work shows that a systematic 

study of the interaction of plasmas with different polymer structures is possible, and will 

be required to understand the fundamental factors resulting in the loss of photoresist line 

shape during plasma processing.  
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Chapter 7:General Conclusions  

 

The work in thesis presents a mechanistic study of plasma processing of 

conventional SiO2 material, nanoporous silica materials and advanced polymers used 

as a mask for nano-structure formation. With C4F8/Ar discharges, major factor 

controlling SiO2 etching is identified. Porosity introduced in Si-O matrix completely 

changes the interactions with plasma for both polymerization conditions 

(fluorocarbon plasmas) and nonpolymerization discharges (O2, N2 or H2 discharges). 

The etching behaviors of polymers with fluorocarbon plasmas strongly depend on the 

molecular structures.  

In chapter 2, it is shown that the ion induced defluorination is one of key 

factors in SiO2 etching with fluorocarbon based plasmas. The F/C ratio of 

fluorocarbon film is maintained constant if low bias voltage is applies. If the bias 

voltage is above the etching threshold, etching of the substrate takes place, 

accompanied with fluorine loss of fluorocarbon film on the surface. It is suggested 

that both fluorine and carbon atoms are required to be mobile during etching. The 

idea is further confirmed by the study of argon sputtering of fluorocarbon films. In 

pure argon discharges, fluorine loss of deposited fluorocarbon films is observed if not 

RF bias power is applied, but no significant fluorocarbon film removal occurs. The 

ion energy in this case is of the order of 10 eV, which is sufficient to break C-F bonds 

(5.18eV). To remove deposited fluorocarbon films, the RF bias voltage is required to 

exceed -10V, in which the ion energy is in the range of 30 to 40eV, an energy 

sufficient to displace carbon atoms in graphite. 
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Based on this fact, the etch rate is expected to correlate with the total 

fluorocarbon species flux that adsorbs on the surface. A measure of this quantity is 

given by the value of the fluorocarbon deposition rate measured without an RF bias 

applied. The data of chapter 2 show that the etch rate increases with the deposition 

rate given the same defluorination of fluorocarbon films. It is found that the ion-

induced defluorination is strongly related to plasma properties. In fluorocarbon 

radical dominated discharges, the fluorocarbon flux is high enough to maintain the 

F/C ratio even with energetic ion bombardment. The fluorocarbon films become 

highly fluorine deficient for discharges containing a high proportion of argon is an RF 

bias is applied simultaneously for energetic ion bombardment of the surface. Both FC 

deposition rate and the defluorination of the deposited FC film need to be considered 

in a description of the overall etching reaction.  

Once fluorine or carbon atoms are free, they can interact with the substrate. 

Depending on the chemical composition of the substrate, the stoichiometry of the 

fluorocarbon film on the surface varies. For SiO2 etching, oxygen from the substrate 

assists carbon removal. The F/C ratio is higher at the interface between fluorocarbon 

film and SiO2 surface than the one between the fluorocarbon film and plasma. An 

opposite gradient of the F/C ratio is observed for Si etching.  

When porosity is introduced in the Si-O matrix, as pursued for ultra-low 

dielectric constant materials, the plasma-induced modification of the dielectric 

becomes much more pronounced. Overall, the penetration depth of species, either 

neutrals or ions, increases relative to SiO2, especially for interconnected pores. The 

materials modifications depend strongly on plasma properties. For highly 
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polymerization conditions, e.g. pure C4F8 discharges, significant fluorocarbon 

deposition occurs in the porous structure, even at depths of 30nm below the surface. 

The fluorocarbon deposition along with ion bombardment results in enlarged pores 

near the surface, which reduces the interfacial area between porous structure and 

plasma species. The porous structure is not stable in the energetic plasma 

environment, and the structure is reorganized to minimize the interfacial energy 

during the plasma process. This severe fluorocarbon deposition eliminates the 

difference between SiO2 and porous silica, and the etching behaviors become 

essentially the same. Fluorocarbon accumulation on NPS materials increases with 

their porosity, indicating that the fluorocarbon film precursors are abundant in pure 

C4F8 discharges.  

For C4F8/90%Ar discharges which are characterized by a low polymerization 

rate, the fluorocarbon surface coverage is nearly constant as a function of porosity. 

This leads to a reduced fluorocarbon film thickness for highly porous NPS materials. 

The etching rate strongly increases with porosity in this case. It is found that the 

direct ion induced reactions are possible in the subsurface region because of 

connected pores. As a result, a rough surface is produced during the etching of 

nanoporous silica in C4F8/90%Ar discharges. The degree of roughness that is 

introduced depends on overall porosity, and surface roughness is not produced for 

dense materials like SiO2 or OSG. The roughness scale (~30nm for 30% NPS) is 

much greater than the pore size (~2-3nm).   

Plasma-based ashing processes are required to remove photoresist masks from 

the NPS material using O2, N2 or H2 discharges. An important stability of nanoporous 
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materials exposed during the ashing process is observed. Residual carbon groups 

present in the NPS material are eliminated and the thickness of layers is reduced 

during direct exposure to O2, N2 or H2 discharges, where low energy ion 

bombardment of the NPS material takes place. The loss of carbon groups from the 

silica matrix is likely connected with a collapse of the material and pore size 

reduction. The damaged layer thickness increases with overall porosity, which may 

be explained by pore interconnectivity. Interconnected pores form free paths for 

reactants from the surface to deep into the bulk of the low k material. The damage of 

the NPS material can by reduced if N2 or H2 remote discharges are used to remove the 

photoresist mask at elevated temperature. Satisfactory photoresist ashing rates and 

essentially no damage of the NPS material can be achieved if a remote H2 discharge 

and a substrate temperature above 2500C are employed. 

In the last chapter, we use a shutter approach to study plasma interactions with 

advanced photoresist mask materials. These materials are exposed at 193nm and 

248nm lithographic wavelengths. The shutter approach enables to study the 

photoresist polymers with process plasmas for a very short exposure times and obtain 

novel insights on the plasma surface interactions that are essential to nanoscale 

manufacturing. Rapid material removal along with densification of the photoresist 

materials is observed for both blanket 193nm and 248nm photoresist films during the 

first few seconds of plasma exposure. For the more fragile 193 nm photoresist 

material this is followed by significant surface roughening. Surface roughening is 

likely related to the selective removal of certain groups from the polymer backbone, 

e.g. the removal of carbonyl groups from the 193 nm photoresist has been observed in 
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the present work. The degree of surface roughening depends strongly on molecular 

structure, and is minor for the 248nm photoresist material which is based on aromatic 

rings. Surface roughening introduces important problems during structure etching. 

The distortion of the surface regions of photoresist lines caused by plasma exposure 

leads to irregularly shaped photoresist line tops. We have shown how the rough edges 

associated with these can be transferred along the sidewall of photoresist lines to form 

striations extending along the whole of the sidewall.    

The shutter approach developed in this thesis enables the exploration of 

plasma surface interactions for short plasma exposure times. This is believed to an 

essential regime for nanoscale manufacturing. The study of nanoporous silica 

suggests that the reduction of pore interconnectivity is one promising solution to 

minimize the modification of this kind of nanomaterial during plasma etching or 

plasma ashing. The results of the photoresist work presented here suggests that the 

design of the molecular structure of advanced photoresists is the key to control image 

stability during plasma-based pattern transfer. These topics are currently under 

investigation by the “Plasma Team” at the University of Maryland, College Park with 

the overall goal of improving our understanding and control of plasmas to enable 

efficient and precise formation of nanostructures.    
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