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Billiard orbits in smooth (C*) strictly convex domains in R? are a special class of
smooth area preserving twist diffeomorphisms of the cylinder. These maps are determined
by the domain €2 on which the billiard orbit resides, and properties of the billiard map can
thus lead to conclusions on various mathematical objects which involve the same domain.
For instance, properties of the periodic orbits of the billiard map such as (1) the degeneracy
of a periodic orbit or (2) the measure of the set of all periodic orbits can lead to conclusions
on the asymptotic expansion of the Laplace spectrum of the domain.

In this work we show that by an arbitrarily small perturbation in the C'*° norm of the
domain can create a domain containing a periodic orbit which is highly degenerate. This
result can be viewed as extending Newhouse phenomena which was previously obtained
within the class of smooth area preserving diffeomorphisms to the more restricted class of

billiard maps. The methods used to carry these perturbations over to the class of billiard



maps is by perturbations of the domain ). Thus in this work we also explore how high order
perturbations of the boundary of the domain, specifically the curvature s of the boundary,
effect the higher order jets of the corresponding billiard map.

The billiard map near the boundary is almost integrable for smooth strictly convex
domains. We use this fact to perform a small preliminary perturbation which yields a
domains with a periodic orbit containing a (quadratic) Homoclinic Tangency. The main
technique in obtaining Newhouse phenomena is by unfolding generically these Homoclinic
Tangencies. We thus show how one is able to unfold these Homoclinic Tangencies by
perturbations of the curvature. At the same time, we show how one is able to perform

these perturbations without destroying other billiard orbits in consideration.
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Chapter 1: Introduction

1.1 General Overview

There are many ways to begin the discussion of billiard orbits. One way is to begin
by considering a bounded domain Q C R? with boundary 02, and examine the eigenvalue

problem for the laplacian, i.e. solutions ¢ to
Ap = \p, @ =0 on 0N

for some eigenvalue A, and consider the set of all the eigenvalues {\; < Ay < A3 < ... <
An < ...} which admit solutions. This is called the Laplace spectrum of €2, and is denoted
by Sp(€2). Obviously, the boundary €2 completely determines the spectrum Sp(€2). This
has some interesting consequences however. For example, consider the counting function
of the Laplace spectrum, defined by N(A) = [{\; < A}|. Weyl was able to prove in [39]
that the first term in the asymptotic expansion of N depends only on the area of {2. For

the second term in the expansion, there is the following conjecture (named after Weyl):

Conjecture 1 (Weyl’s Conjecture). Let €2 have a C*° smooth boundary. Then,

A L(09)
47 8

. A1/2 —f—O(Al/Q),

where L(0f2) is the length of 0.



What we mean by "C* smooth boundary" is that the curvature of the boundary,
Kk R/A(OQ2) — R, is a C* function. What is interesting in this result is that purely
geometric properties of 2 are found inside the expansion of the counting function. One
might imagine that if you continue to expand the counting function, you continue to obtain
more quantities determined by 2 at each step (thus restricting which potential 2 may
produce any given Laplace spectrum). Indeed, prompted by Weyl’s result, this inverse
spectral problem was famously phrased by M. Kac in [24] as "Can one hear the shape of a

drum:"

Question 1 ("Can one hear the shape of a drum?"). Given a spectrum S = {\; < Ay <

A3 < ...}, is there a unique Q which produces S?

The answer depends on which class of domains one examines. For example, if one
examines non-convex domains with non-smooth boundaries, there are indeed well-known
counterexamples (see [7]). On the other hand, there is a positive answer in the space of
2 symmetric analytic domains [36]. However, if one restricts their view to domains which
have only smooth boundaries, the question remains open.

Interestingly, there is also a natural connection between the Laplace spectrum and
another quantity derived from 2 called the length spectrum. To define the length spectrum,
first we need to define what is called a closed geodesic in . A geodesic in () is defined as
an orbit which travels in straight lines within {2 and reflects at the boundary 0f2 with the
rule "the angle of incidence is equal to the angle of reflection."” Such a geodesic is called

closed if it comes back to itself in a finite number of steps (i.e. is periodic). Then, the



Length spectrum, denoted by L(2), is defined as

L(€2) = N{length of all closed geodesics of 2} UN{A(9Q)}.

For instance, one way this is related to the Laplace spectrum is as follows:

sing supp (t — Z exp(i)\l/Qt)> C £L(Q2) U {0}.

AESP(w)
Thus, one can imagine that much information on questions related to the Laplace spectrum
can be obtained through also studying the length spectrum (see [18], [32]). Indeed, Weyl’s

conjecture was proven by Ivrii in [19], provided Ivrii’s conjecture holds, which states:

Conjecture 2 (Ivrii’s Conjecture). For any Q with boundary in C*°(RR), the set of periodic

billiard orbits in 2 has measure zero .

Ivrii’s conjecture has been proven when one restricts their view to specific families of
billiards (for example in [9]), and can be considered when one restricts their view to specific
sets of periodic orbits (e.g. if one restricts their view to only k-periodic orbits for fixed
values of k). Another question which is one step down from Ivrii’s conjecture is whether or
not there are open sets of periodic orbits in some family of domains. For example, recently
it was proven in [6] that for projective billiards (which are a generalization of billiards -
see [34], [35]) there are no open subsets of 3-periodic orbits in higher dimension®. This has
also been proven for the case of convex domains in the plane with smooth boundary up to
periods of period 4 (see [1], [2]).

In this view, it makes sense to study the prevalence of periodic orbits in smooth

billiard systems. An obvious corollary of Ivrii’s conjecture would be that there are no

'He also proves that in the plane, the only counterexample is the so called right spherical billiard.



open sets of periodic orbits. Considering that seemingly wild possibility, we observe that
if one were to somehow find an open set of ¢g-periodic points in a billiard system, then the
differential at any point in this set must be the identity, i.e. df9(zq) = Id for each z( in
this open set, where f is the billiard map.

We make the definition (following the definition given in [40]%), that a g—periodic
orbit is called absolutely periodic if the differential of f?¢ is the identity and all second
order and higher partial derivatives of f? are 0 at any point in the orbit. Stated with this

definition, in [40] there is also the following conjecture?:

Conjecture 3 (Safarov-Vassiliev). There are no absolutely periodic orbits for euclidean

billiards.

This has been proven in the case of convex domains with analytic boundary ( [40]),
and in a few other cases ( [10]). Considering all the discussion so far, if one were to find
such an orbit, it would be quite surprising.

In this thesis, we detail a proof on the existence of billiard systems exhibiting an
absolutely periodic orbit of order n, which we define to be an orbit such that df?(xg) =
Id + F(z), where F(x¢) = 0 up to order n. Hence, with these definitions, an absolutely
periodic orbit is an absolutely periodic orbit of infinite order.

Before delving further into the result, we first describe in more detail the domains

2Note that in [40], the definition of absolutely periodic is given in terms of geodesic flows. We prove the

equivalence of our definition and theirs in Appendix C.

3Note that in the discussion around their conjecture they note that it should be possible to obtain such
orbits as we do in this thesis, though they do not make any mention on how often they appear (e.g. their

density among smooth convex domains).



we consider. Denote by D" the space of unit length strictly convex domains in R? with
C™! smooth boundary endowed with the C™*! topology, for » € N or r = co. We label a
parameterization of a boundary 92 by 7(s), the curvature at (s) by x(s) = 6'(s) (where
6(s) is the angle the tangent vector of 02 at v(s) makes with the horizontal axis), and
the radius of curvature p(s) = m, with arc-length parameterization s. We identify
each domain ) with the curvature of its boundary. Thus the domains in D" correspond to

curvatures satisfying (see [20])

e L(00) =1
o k(s) € C"(R/Z)
(1.1)

e r(s) >0
1 1
) / p(t) cos(2mt)dt = / p(t) sin(27t)dt = 0
0 0
Also, by abuse of notation (whenever it causes no difficulties) we say the billiard map
f associated to €2 is in D" when €2 is in D". Additionally, when there is an orbit under the
map f, we sometimes say () ’has’ that orbit or f ’has’ that orbit. With these definitions

given, we may now state our main result:

Theorem 1. For any n € N, and any Q € D™, there exists a domain Q € D™ arbitrarily

close to € in the C*™ topology such that Q has an absolutely periodic orbit of order n.

To prove this we seek to use the methods from [15] to obtain a similar result for billiard
maps. In their setting, something stronger is proven that involves what are called Newhouse
domains. The notion of Newhouse domains comes from another field of dynamical systems
- that of homoclinic orbits and their bifurcations. Newhouse proved in [27], [28], [29],

5



that there exist open sets (Newhouse domains) in which maps that exhibit homoclinic
tangencies are dense. Moreover, it was shown that these domains exist around any map
that exhibits a homoclinic tangency. Later, this result was extended by Duarte to the class
of area-preserving maps in [12].

In these regions, one can create many interesting phenomenon by perturbing the
map so that these homoclinic orbits move in such a way we call "unfolding." For instance,
in [16] (see also [17]) they were able to find invariant hyperbolic sets of arbitrarily large
Hausdorff dimension by studying these generic unfoldings. Related to our thesis, by
studying unfoldings it was shown in ( [15], Theorem 3) that in the Newhouse domains in the
space of area preserving C°°(R?) maps, maps with infinitely many homoclinic tangencies
of all orders are dense in the C"-topology for any r» > 0, including » = oo. In this thesis
we prove this result in the case of billiard maps, though here we are only interested in
obtaining a map close to our original map with at least one periodic orbit which to high
order is the identity.

While we follow many of the same arguments found in [15], it should be mentioned
there are natural difficulties in extending the problem to billiard maps. There are many
ways which we tackle these various problems, which we will go into in detail, but one

particularly interesting result used to analyze the billiard map is the following;:

Theorem 2. Consider the map 7" which is the billiard map composed with itself n+ 3 times.
Given an orbit O = ((s0,%0); -+, (Sn, ¥n),...) (n0t necessarily periodic) with s; # s; for
i # 7 and close to the boundary, one may vary each partial derivative of T at (sg, ©o) up

to order n independently by perturbing the derivatives of the curvature at s, ..., s, up to



order n — 1, while leaving the orbit O fixed.

For a more precise statement of this theorem, see Chapter 3, Perturbation 3. The
proof of this theorem is quite technical, and is detailed in Chapter 4. It also highlights one
of the difficulties in working with billiard maps; namely, that to perturb within the class of
billiard maps one must perturb the curvature function of the associated domain and then
analyze how this change effects the jets of the billiard map.

Now, we go into more detail on the various difficulties in restricting the results of [15]

to the class of billiard maps.

Generic Conservative Systems

In general, proving generic properties of dynamical systems often depends on the
class of systems you examine. The wider the class of systems, the more flexibility one
has in proving a property holds. For instance, there is a closing lemma for a range of
dynamical systems such as C! diffeomorphisms and C! Hamiltonian flows ( [33]), yet an
analogous result for geodesic flows under Riemannian metrics is still open?. Similarly in [8]
the existence of positive topological entropy and nontrivial hyperbolic sets was proven for
Riemannian metrics in high dimension, even though for many years prior the same result
was known for hamiltonian flows ( [29]).

The main difficulty in these restricted settings is that there are no local perturbations
in the phase space. For example, let (M, g) be a compact Riemannian manifold. Then

geodesic flow is a flow on a unit cotangent bundle, denoted by U*M. Consider then

4For Hamiltonians on closed surfaces there is a C closing lemma (see [4]), however, the proof does not

apply to geodesic flows and does not use local perturbation techniques.



7w : U*M — M where 7 is a natural projection. If we perturb the metric g on a small open
neighborhood V' of some point z in M, then in U*M we perturb on 7!V, which contains

many fibers (see Figure 1.1).

Figure 1.1: A picture showing how local perturbations of g in M lead to non-local

perturbations in U* M.

So, naturally there are significant difficulties in doing the same analysis as in [15]
while restricted to only billiard maps. The main issues that exist and which we overcome

in this thesis are

* Given a finite set of orbits, ensuring the deformations used change the differential of
the billiard map at one given orbit in this set without changing the other orbits in
this set. This difficulty arises from there being no local perturbations in the phase

space, analogous to the difficulty found in other dynamical systems mentioned above.

* Constructing deformations which do not lead outside of the class of billiard maps and

unfold high order HT generically.

* Constructing deformations which do not lead outside of the class of billiard maps and

accurately vary high order derivatives of the billiard map in controlled ways.



More will be said on how we overcome these challenges, but briefly we mention the
general strategies. For the first difficulty, we make sure new orbits satisfy what we call
an injectivity condition. Essentially, this condition says that there are, in each orbit, a
sufficient number of points which do not hit the same spot on the boundary as the other
orbits considered hit.

For the last two points: to ensure we stay in the class of billiard maps as we deform,
we study how changes of the curvature function effect the associated billiard map. Then, in
order to accurately change higher derivatives of the billiard map, we carefully go through
(in much technical detail) how changing the higher derivatives of the curvature effects the
higher derivatives of the billiard map.

Now we will go over some standard definitions used for the concepts considered
throughout the thesis. Those who are familiar with these can find the outline of the

proof given in Section 2.1.

1.2 Billiard Maps and Homoclinic Orbits

Here we describe briefly billiard orbits in R? (see also [22], [23]). Geometrically
speaking, billiard orbits are curves obtained by considering geodesics on the inside of a
domain with the rule "angle of incidence equal to angle of reflection" to describe how the
curve behaves when it hits the boundary.

As before, we consider domains €2 in D", with boundary parameterized by . For these
domains we have the associated billiard map f acts as f : A — A, where A =T x[0,7] is a

cylinder. The map f is defined by f(so, v0) = (s1, 1), where @ is the angle the trajectory



Figure 1.2: A billiard orbit.

of the billiard orbit makes with the tangent of 9 at 7(s).
It is easy to see from elementary geometry that if we define L(so, s1) = [|7(s1)—7(s0)]l,

we have

OL(sp,s
—(9800 1) = — COS(QO()),
OL(sp,s
—(9301 1) = COS(QOl).

In this view, we note that billiard maps are a class of maps that act on the cylinder

d=0

s=0

Figure 1.3: We view the billiard map as a special class of maps acting on the cylinder A.

We also note that these maps are actually twist diffeomorphisms, since in the case of

10



strictly convex billiards we have

951
Do

> 0.
This implies that to have df?(x¢) = Id would indeed be, in a sense, rather unusual, since
it would effectively be undoing the effects of the twist condition.

Finally we also mention that billiard maps are area preserving maps, with area form
sin (¢) dp A ds. In our case, this is relevant as this implies that the determinant of the
differential of a periodic orbit is always equal to 1 (where the product is 1 since the map is
area preserving).

In this thesis, we consider periodic orbits in billiard maps, often of period ¢. Specifically
we begin by considering hyperbolic periodic orbits, so that df?(z) has one eigenvalue A
greater than 1, and the other A\=! less than 1.

Further, we consider a special type of hyperbolic orbit that has what is called a
homoclinic tangency (HT). This means it has a point py that is in both the unstable
manifold W*(z() and the stable manifold W#(z() of our orbit, and that these manifolds
intersect tangentially at p,, = f™(po). If the tangency is of order n, we say the tangency is
a homoclinic tangency of order n.

Homoclinic tangencies have been studied extensively, and it has been found that
bifurcations of maps exhibiting homoclinic tangencies can produce a variety of surprising
behaviours. In [15], the proof of theorem 3 consists essentially of a series of bifurcations of
maps with homoclinic (or heteroclinic) tangencies.

A major technical step of our proof is to construct a deformation that unfolds (splits)

a given HT of order n generically, while remaining in the class of billiard maps. This means

11



Po

W (zo)
o W""(fCU) /—\

Pm = ™ (po) \/

Figure 1.4: A hyperbolic periodic point zy with a homoclinic tangency at p,,.

that, essentially, we can move each derivative of the curve f™(W*(xzq)) in a neighborhood
of p,, independently as we vary our map by a deformation dependent on a parameter
e = (€0, En)-

Specifically, we let p(t) € f™(W} .(xg)) with ¢t € (6,0) and p(0) = py,, and let O(t) be
the shortest distance between p(t) and W} (zo). We then embed our map into a smooth
family of maps (f:)icj<1 dependent on € and with fy = f. Then, for each ¢, we similarly
define ®.(t) to be the shortest distance between p.(t) € f™(Wj,. (o)) and W, (o).

Then, defining for 7 > 0

we say our HT of order n unfolds generically if (see Figure 1.5)

det (8(P0(5),P1((9i),...,Fn(e))> £0.

12



Wi, (o) pm = p(0)

Figure 1.5: Unfolding the tangency.

We now briefly describe in more detail some of the already mentioned challenges in
the proof and how we overcome them. This leads to some natural definitions which we use

throughout the thesis.

1.3 Billiard map’s relation to curvatures and the injectivity condition

As mentioned before, the main difficulty in the problem of studying perturbations
of billiard maps arises from the differences between general twist diffeomorphisms and
billiard maps. Recall that billiard maps are a distinct subset of are preserving twist
differomorphisms. In particular, we want to consider only billiard maps in D", i.e. maps
whose domains have their curvature function satisfy the Conditions 1.1. So, order to
ensure our maps remain in D™ as we perform perturbations (and do not accidentally find
themselves outside of the subset of maps we want to remain in), all of our perturbations
are done by perturbing the curvature function of the domain. Thus, we examine how
perturbations of the curvature of our domain effects the billiard map. This is a non-trivial

technical aspect of our thesis.

13



To tackle this, we detail a general perturbation wherein we perturb the n derivatives
of the curvature at n+ 3 sequential points in a periodic orbit ((sg, o), ---, (Snt3, ©ni3)), and
calculate how this effects the n'" partial derivatives of s,,3 and ¢, .3, and show that one
may vary each of these independently while not effecting lower partial derivatives of these
functions - provided the period of these orbits is large enough and they are close enough
to the boundary. This result was already mentioned in Theorem 2.

Additionally, behind all of the perturbations we do is an important condition we must
ensure which we call the injectivity condition, which we begin to describe now. Ensuring
this condition is the second main difficulty of extending the results of [15] to the case of
billiard orbits (the first difficulty being precisely determining how changes in the curvature
effects changes in the billiard map). First we give a motivation behind this condition, and
then we give a precise definition of this condition.

Throughout our proof we will desire to perturb multiple heteroclinic tangencies (of
varying degree) between various orbits independently. Now in the case of arbitrary C*>
area-preserving maps, we can perturb locally so that we only effect one orbit at a time.
In the case of billiard maps however, we can only perturb the curvature, which acts as
perturbing in a strip in the cylinder that the billiard map acts on. Thus, if we wish to
perturb one orbit without effecting a set of other orbits, we must have that the strips where
we perturb do not have any points of the other orbits entering them.

More precisely: Consider a group of orbits, {O;}1<j<n, where each orbit is defined

0; = f*(z;)  k €,

14



where z; € for each 1 < j < N. Then, if p = (5,$) is a point in one of these orbit, we
define the orbit to be injective at p if for some 6 > 0 and all z in {(s,) € O; : 1 < j < N},
|s — 5| <6 implies = p. This is equivalent to the condition that some open neighborhood
of the the vertical line going through the point x does not contain any other point in any
orbit in our collection. If there are at least three such points in an orbit, we say the orbit
satisfies the injectivity condition with respect to {O;}1<j<n (see Figure 1.6).
/—_\.

/ \
\ .?J3 Yo /

S R Sy

T2

Ya 1

N

Figure 1.6: Two orbits (o, ..., z5) and (yo, ..., y5) on our cylinder. The injectivity condition

is satisfied at w3, x4, and x5 since there are open neighborhoods around the vertical line

through these points that does not contain any point in the orbit of (yo, ..., ys).

Thus, we must ensure that at each step of our proof whenever there is a new orbit
considered, the injectivity condition remains satisfied with the new orbit and all of the

previous orbits.

15



Appendix 2: Main Theorem

2.1 Overview of Proof of Theorem 1

Here we provide a road map of our proof. For the rest of the thesis, we take ) to be
a domain in D*. We also let f be the billiard map associated to €2. For the proof at the
end of this section and for the outline of the proof, we consider a fixed n € N. With these

definitions, the general steps we take in proving Theorem 1 are as follows:
Outline of proof:

1. (Constructing an orbit with Homoclinic Tangency) We first perturb to obtain a
boundary with a hyperbolic periodic orbit that has an associated quadratic homoclinic
tangency. The ideas here use KAM theory and the fact (due to Lazutkin) that the
billiard map is nearly integrable near the boundary. This is relegated to Appendix

A.

2. (Using a Tower Construction to obtain a Rotation to order n) Then, following the
steps of [15], we construct a tower of heteroclinic tangencies. We unfold this tower
to obtain a HT of order 2n + 4. Then, we unfold this HT of order 2n + 4 generically
to obtain an elliptic periodic orbit which, to order n, is a rotation. This is done in
section 2.4.

16



(a) (Unfolding an HT of order n generically) Throughout step 2 we obtain HT of
order k (where 2 < k < 2n + 4) which we want to unfold generically. We show

how we do this in section 2.2.

(b) (Verify the Injectivity condition) Whenever a new orbit is considered in step 2 we
perturb our domain so that the injectivity condition remains satisfied between
this orbit and all the other orbits already under consideration. We show this

perturbation in section 2.3.

3. (Rotate the differential to order n) We then construct a perturbation at n + 3 points
of this elliptic periodic orbit that changes the differential up to order n as a slight
rotation, so that we obtain a rotation matrix with a guaranteed rational rotation

angle. This is done in section 2.5. This then completes the proof.

We now go through the specific lemmas used to prove Theorem 1, following the
outline given above. As stated, in Appendix A, we describe the steps to obtain a domain
whose associated billiard map has a hyperbolic periodic orbit with a quadratic homoclinic

tangency. The lemma used from this section is as follows:

Lemma 1.1. Consider the set of €' domains whose associated billiard map has at least

one hyperbolic periodic orbit such that:

* the orbit is of some period ¢ > 1, and has rotation number 1/¢ (such a periodic orbit

forms a g-gon inscribed inside €2),

* the invariant manifolds of a point in the orbit have a quadratic homoclinic tangency,

17



* the periodic orbit remains close to the boundary and is such that the local stable
and local unstable manifolds at each point in the orbit have non-zero angles with the

vertical axis.

These domains are dense among C'* domains.

The main idea in proving this lemma is that near the boundary, the dynamics of the
billiard map become almost integrable.
In Section 2.2 we show how to perturb high order HT generically. This is step 2a in

the outline. The lemma proven in this section is

Lemma 1.2. Let n € N. If p is a point of homoclinic tangency for the billiard map f and
the injectivity condition is satisfied for the homoclinic orbit and its associated periodic
orbit, then there exists a deformation of the boundary such that this n'* order HT unfolds

generically at p.

In Section 2.3 we show step 2b of our outline. The important lemma proven in this

section is the following:

Lemma 1.3. Let n € N. Given a hyperbolic periodic orbit {(s;,¢;) : 0 < j < ¢—1} with a
homoclinic orbit containing a point of homoclinic tangency of order n at p,,, there exists
an arbitrarily small perturbation of the boundary on small neighborhoods of the points
Y(85,),7(Sjs); V(S5 ), where j; < ja < js, which keeps the hyperbolic periodic orbit fixed
and is such that under the perturbed map, the hyperbolic periodic orbit has an associated
homoclinic orbit which satisfies the injectivity condition with respect to itself and the

periodic orbit, and also has a HT of order n. Moreover, the point of HT of order n under

18



the perturbed map is close to the point which is an n** order HT under the unperturbed

map by choosing the size of the perturbation to be small.

The main idea here is that by slightly varying the angles of the unstable and stable
manifolds of our periodic point, we may slightly move the points of the in the homoclinic
cycle, and it is shown that by considering many points in this cycle it is impossible that it
fails to achieve the injectivity condition as we smoothly vary the angles of these manifolds.

In Section 2.4, we go through step 2 of our outline. The main result we prove is

Lemma 1.4. Let n € N. Given a C* billiard map f with a point of quadratic HT, there
exists a C'*° billiard map f which is arbitrarily close to f in the C* topology such that f
contains an elliptic periodic orbit such that at this orbit the differential of f is a rotation

up to of order n.

To prove this we perform a series of unfoldings of various HT (following the steps
of [15]) in order to construct a homoclinic tangency of order 2n + 4, and then unfold this
HT to obtain an elliptic periodic orbit which is a rotation up to order n.

In Section 2.5 we prove

Lemma 1.5. For any 0 < § < 1 and n € N, there is a perturbation of size § in the C'®
topology at m + 3 points of any given orbit (s, ¢o), ..., (S¢—1, pg—1) With ¢ > n + 3 which
leaves this part of the orbit fixed and which changes the differential of the billiard map so

that

df(s0,¢0) = Rsdf(s0, o) + An(S0, ¢0),

where Ry is a rotation matrix which rotates by angle 0 and where the error term A, (s, ¢)
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satisfies

"N (s, )

—— =0
85’“—1&0’

(s,0)=(s0,%0)

for0 <<k <n.

Applying this lemma to the degree n elliptic periodic orbit obtained before, we ensure
a rational rotation by performing an arbitrarily small perturbation if the rotation angle is
irrational.

We now put all these lemma together in the proof of Theorem 1:

Proof of Theorem 1

Proof. We begin with a boundary Q2 € D> and a fixed n € N. By Lemma (1.1), we find
a domain €2y which is C*° close to {2 and contains a hyperbolic g-periodic point O; with a
quadratic homoclinic tangency, satisfying the conditions described in Lemma (1.1). Then
by Lemma (1.4) we find a C*° domain €y which is C* close to €; so that the domain Q5
contains an elliptic orbit such that the differential of the billiard map at that a point in
that orbit is a rotation to order n. Then we use Lemma (1.5) to obtain a domain €23 in C'*°
which is C* close to €25 and which has an orbit so that the differential of the billiard map
at that point is a rotation by a rational angle, to order n. Then, considering the billiard
map composed with itself equal to the denominator of that rational angle, the proof is

completed. O

In the following sections we will give proofs of the various lemmas and statements

mentioned above. Throughout these proofs we will be using various perturbations of the
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curvature at specific points on the boundary of the domain to effect the differential of the

billiard map. The proofs of how these perturbations effect the curvature are in Chapter 3.

2.2 Unfolding an n'* order HT generically

The main lemma we wish to prove in this section is Lemma (1.2).

To begin, we let O be a point in the periodic orbit, and p be a point of homoclinic
tangency, and 7 the normal vector of W*(O) at p. We also let p(t) for [t| < § and some
small § be unit speed parameterization of a section of W*(O) with p(0) = p (see Figure
2.1).

We then start with the following:

Lemma 1.2.1. One may construct perturbations for each 0 < k < n such that p(t) — p(t)

such that
O(t?)
eth + Z;Li_kl;—&-l 9;(e)¥
for some C'* functions g; which satisfy ¢;(0) = 0, where R is a rotation matrix which maps

the vector (0,1) to 7. Equivalently, these perturbations change ®. as

n+1
d.(t) = O(t) +et* + Z gi(e)t.
j=k+1
We label the perturbations described as perty(e). These perturbations can then be

used to obtain the main lemma of this section (Lemma (1.2)) by the following inductive

process.
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(50, 0)

(sl’él)

p = p(0) = (s3,¥3)

Figure 2.1: Figure showing all the objects described. We vary in small strips around
the points (s1, ¢1), (s2, ¢2) (corresponding to small neighborhoods of their position on the
boundary of the domain) in order to change ®(¢) so that the derivatives of ® at t = 0 vary

independently.

Lemma 1.2.2. If we have a set of perturbations pert(¢) as described above, then there exist

perturbations for each k which have the effect on ® as

D (t) = ®(t) + et + O(™).

Proof of lemma 1.2.2. Perform perty(g¢) which yields the following ®. (¢):

n+1

0., (1) = B(t) + 20+ Y go(o)t”

k=1

for some C'* functions gox, which have go;(0) = 0 for each k. Then we perform pert;(e;)

to obtain
n+1 n+1
@(50751)@) = Cb(t) + &0+ Z go7k(€0)tk + et + Z ng(él)tk,
k=1 k=1
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again for some C* functions g x, which have §;;(0) = 0 for each k. We thus set ey =

—go1(g0) and label each go k(o) + G1.6(—90,1(€0)) = g1.x(c0) to obtain

n+1

0. (t) = B(t) + 20+ Y graleo)t”.

k=2
We then repeat this process n — 2 more times, each time eliminating the lowest order term

in ®.,(t) to obtain a total perturbation by the parameter £, which yields

D, (t) = B(t) + &9 + O(t").

Then, we perturb by a new parameter 1, repeating the same process but at one degree
higher. In the end, we obtain a perturbation by the parameter ¢ = (e, ...,£,) which gives

us

D (t) = D(t) + g9 + &1t + ... +et" + O™ ).

This then allows us to prove Lemma (1.2):

Proof. Observe that Lemma (1.2.2) allows us to vary each derivative of ® independently

up to order n. O
So, what remains is to prove Lemma (1.2.1).
Proof. First, we set

p=(83,p3) = f3<807<P0) = f2(517 ©1) = f(s2,2)

p(t) = (s3(t), 93(t)) = f7(s0(t), po(t)) = f*(51(8), 1(1)) = f(sa(t), a(t)),
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and we perturb x in a small neighborhood around s; and s3. To begin we will do a general
perturbation of adding Ak, to k, and later specify exactly what Ak, is. We also note that
we may use Perturbation 5 in Chapter 3 in order to, without loss of generality, assume the
injectivity condition is satisfied at s; and ss.
Then, sending kK — k. = k + Ak., and defining our perturbation to send fg; —
b1+ ABi(e,t), lh = Iy + Aly(e,t), B2 — o+ APa(e, t),lo — o+ Aly(e, t), we have
df2((s0(t), p0(t))) = df*((so(t), po(t))) + AdfZ((s0(t), po(t)))
+ O(Aly(e,t) + ABi(g,t) + Als(e,t) + ABa(e, 1)) + O(AKE(E))
where, following the same calculations done in Chapter 3 for Perturbation 4,
AdfZ((so(t), po(t))) =
ar(B)Ane(s1() + @) An.(2(8)) b (OAK(s1(8) + o) Akc(sa(®)) | (2D

c1(t)ARe(s1(t)) + ca(t) Ak(s2(t))  di(t)Ake(s1(t)) + do(t) Ak (s2(1))

with
aq (t) bl (t) O 0
= df*((s1(t), ¥ (1))) df ((so(t), #o(t)))
C1 (t) d1 (t) 2 0
-CLQ (t) bg(t)- O O
= df ((s2(t), 2(1))) df*((s0(t), po(t)))
CQ(t) d2 (t) 2 0

First off, we consider the case of k > 1 (we treat the case k = 0 later). For this case, we

consider perturbations with the following properties:
Ako(si) = ... = A¥D(s;) =0
ArFD(s)) = &, (2.2)
ArFY(s5) = 4
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for i = 1,2. Then it is easy to show using 01l(s,s") = —cos(p), 02l(s,s’) = cos(¢') that

this implies for i = 1,2 and j+1 =k — 1

I IA(e,t)|  OFTAB(e, t)
05007 g t:()_ 5007 g t=0

= 0. (2.3)
From here we have all we need to expand f3((so(t),po(t))) in t, up to order k. We do
this just for s3.(so(t), ¢o(t)), as the other component is similar. We obtain through Taylor
expansion

s [ 0ss(t)
S Et = S3¢ O -+ — _—
) = 500 1 3 ,z{asjoa%]

=1 ~ j=0

oo ()

+O(t*1) + (derivatives of s3. of order less than l)}

and from Equation (2.1), we have (including the j = 0 case, which one can check using

Relations (2.5))

! . N
95300 7 li=o . .

0 Jj—1 o =y
0 0

+ (lower derivatives of Ak.)

. (2:4)
+ (derivatives up to order [ — 1 of Al)

+ (derivatives up to order [ — 1 of Aly)

+ (derivatives up to order | — 1 of AS)

+ (derivatives up to order [ — 1 of Af,),

So we get that with Equations (2.2) and (2.3) most of these terms are 0, and in fact we are
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left with only the final term:

Jj=0

o (32)” (22 i)}

Simplifying (one may check the equivalences), we get
tk ds1\ , dss\ " ,
ASgyg(t) = E |:€1a1(0) (0_8(1)> (81(0))k + €QCL2(O) (a—sz> (S2<O))k:| .
Similarly we get
A i tk 0 881 ! ’ 0 k 0 882 ! ’ 0 k
P3.(t) = 7l e1c1(0) D50 (51(0))" + €2¢2(0) D50 (s2(0))"]-

Note that we chose to use aq, as, c1, co. However, we could use the other variables by, by, dy, do

and perform the same analysis to get equivalent expressions. These can all be related by

- no(2) " (2)
6(0) = 40)(5) i (5n.)

Thus, we can choose e1, ey such that we perturb (s3(t),¢3(t)) in the direction of 7 if we

the fact that for i = 1,2

(2.5)

have the following:
N a1<o>(z—z;)_ll<sa<o>>k a2<o>(§—23)_11<s;<0>>'f
a(52) GO wo(52) woyr

From here, we suppose that s7(0) # 0 and s5(0) # 0. We prove that that is indeed the case

0. (2.6)

in Lemma (1.2.3). Now, given these inequalities, Equation (2.6) is equivalent to

a1(0) a9(0)
det #0,

C1 (0) (&) (0)
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or from our relations, equivalently

det w(0) &0 £ 0.

c1(0) do(0)

Now, from Equation (2.4) we have

) bO)| |mam g
- )

Os1 O Oso O

1(0) dy(0) DDt g 0o

so taking the determinant we obtain

a1(0) b2(0)
det( c1(0)  d(0) )

B % 0s3 0s9 O3 B 08y 083 %8@3
0sg Op1 Opg Dy Dipg Dpa Dsg Dpy

_ 0s1 0sy (833 Jpsz  0s3 0g03>

- 8_806900 6(,01 84,02 B 84,02 84,01

_ %@((% sy N Js3 39@2) dps  Os3 (3903 Jsy | Ops Oy
880 &pg 882 8Q01 &pg &pl 8@2 8902 652 8901 8902 8@1

. 881 852 852

gt ()

£0.

Thus we may find &1, 5 so that our perturbation moves W*(O;) in a small neighborhood
of the point of tangency with W#(Oy) by et + O(t**!) in the direction 7. In order to
obtain that the changes to order k + 1 and above are C*° smooth in €, we simply choose

perturbations which are C*° and which satisfy Equations (2.2), and observe that at e =0

there is no change ®. This finishes the proof of the lemma for cases k > 1.

Now we deal with the case of kK = 0. For this case, we are able to achieve the desired

result by perturbing around three points of the periodic orbit O = (O, f(O), ..., f71(O))
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which satisfy the injectivity condition with respect to O and the homoclinic orbit containing
p. The perturbation we perform is from Chapter 3, Perturbation 2, which allows us to
change the angles of the invariant manifolds of O. This allows us to in a sense "raise"
or "lower" the height of the moment of tangency (which in turn of course destroys it and

either yields no point of tangency, or two points of transverse homoclinic intersection) (see

Figure 2.2).

Wi.(0)

loc

Pe(0)

p=p(0) = (s3,03)

Figure 2.2: We vary in small strips around points in the orbit of O in order to change ®(t)

so that the position of ®(0) changes in the direction of 7.

The exact details are worked out in Chapter 3, Perturbation 2, which allows us to

obtain exactly

D.(t) = ®(t) + e + O(e?).

Now, we deal with the following technical issue that came up during the proof:
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Lemma 1.2.3. With the given definitions, we have

51(0) # 0, 55(0) # 0.

Proof. This follows from our manifolds near O having a non-zero angle with the vertical
line. Recall that the point (s3(0), ¢3(0)) is a point of homoclinic tangency between W*(O)
and W*(0O). This implies that (s2(0),¢2(0)) is a point of homoclinic tangency between
W (f~40)) and W*(f~1(0)), and (s1(0), 1(0)) is a point of homoclinic tangency between
W (f72(0)) and W*(f7*(0)).

Thus, if (s7(0), ©}(0)) is a tangent vector of W*(f~2(0)) at the point of intersection
with W*(f~2(0)) (and similarly (s5(0), ¢5(0)) for W*(f~(O))), which means it is also a
tangent vector of W#(f~2(0)). Thus, if s{(0) = 0, this tangent vector would be vertical,
which would contradict our assumption that the manifolds (in particular the stable manifold)

have non-zero angles with the vertical line near the periodic point. O

2.3 Satistying the Injectivity Condition for a HT of order n

In this section, we prove Lemma (1.3).

Proof. We begin by considering a periodic orbit containing the point O = (sg, o), with
an n'" order homoclinic tangency at p. Using Perturbation 2 from Chapter 3, we perturb
around a small strip U of width ¢ around O in order to embed our map f into a smooth
deformation ( f;)|,|«1 which leaves the periodic orbit fixed and satisfies fo = f as well as that
the difference in the direction normal to W (O) at p between Wi, (O) (the local unstable
manifold corresponding to f,) and W (O) in a small neighborhood of p is 7 + O(7?) (See
Figure 7).
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We now fix some 7. Then, we use the same type of perturbation, but while considering
the inverse of the billiard map f, in order to move the stable manifold. This lets us embed
[~ into a smooth deformation (f:.)j«1, with fro = f;, with the local stable manifold

WS

loc,(T,€)

corresponding to f;. such that the difference from W, (O) in the direction of
the normal to W _(O) at p is € + O(e?). Thus, choosing ¢ as a function of 7, we may find a
specific map fT which still has a moment of tangency, but now in a different location than
the tangency for f. We may arrange for the position to be a distance 7+ O(7?) away from
p in the direction perpendicular to W} _(O) at p.

We label this new moment of tangency p,, and the manifolds of f by W*(O) and
W2(0), and locally by Wz, (O) and Wi, (O) (See Figure 2.3)

W’u

T,loc

(0)

quéc(o)

N/

7+ 0(1?)

Figure 2.3: Moving the moment of tangency.

Note that the HT at p, is of the same order as the HT at p under the original map f,
up to small error. These errors however can be eliminated exactly by performing the types
of perturbations done in the previous section.

We now show precisely how the homoclinic orbit under the map fT varies from the
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homoclinic orbit under f as we vary 7. To begin, given any o, there is a number m € so
that f~7"(p) ¢ U and =90V (p) € U. Similarly, there exists an M € so that f¥(p) ¢ U
and fAM+1(p) € U. Note that as o — 0, then m, M — oo.

We examine how the new homoclinic points f%(p,) change from f%(p), for each

-m< k<M.

Lemma 1.3.1. For each —m < k < M, we have

7=0 (2.7)

where ) is the eigenvalue of df?(O) greater than 1, #(f%(p)) is the unit normal vector of

Wi (O) at fe*(p), and 7(f%(p)) is the unit tangent vector of WS _(O) at f%(p).

Proof. We observe that this is true for k£ = 0 by our construction of the map f,. Then, by
the lambda lemma (or by considering the map in Birkhoff normal form), we have that the

other moments of tangency move the following distances

17 () = f*)l| = 55 + O()

in the direction of 7( f4*(p)). O

Now, for each o > 0, label the embedding which satisfies Equation (2.7) for —m <
k < M by (fs+)r<1. Then, suppose that for each such embedding, the injectivity condition
fails. We examine these embeddings. For the injectivity condition to fail, this means that
for each —m < k < M (except for at most two numbers), either there is an additional
point quvT which is on the same vertical line going through fgf‘; (p) (case 1), or there is an
infinite sequence of points (qﬁi) jen which accumulates onto the vertical line going through
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f2%(p) (case 2), where these points g5 and ¢&7 belong to either the hyperbolic periodic
orbit or to the homoclinic orbit.

Now since our hyperbolic periodic orbit is near the boundary, and the points fgfi(p)
are all in the invariant manifolds of O, the points q(’;T and q{j:ﬁ cannot be a part of the

periodic orbit. Hence they must be a part of the homoclinic orbit, and since they also lie

outside of the region U, there must be some —m < nj < M such that qQT = f&*(p), and
qﬁfT = f32%7(p) Observe this immediately implies the second case is impossibility, since

there are only a finite number of points of the homoclinic orbit which are not in the region

U.

0,3
dar0

/ ’7§ dhino

1 Y 0,2
a0 04 Y9ap0

Figure 2.4: Dynamics near O, assuming the injectivity condition fails. In the figure, the
injectivity condition fails in the way we labeled the second case around the point p, and in

the first case around the points f9(p), f%(p), and f3(p).

Thus, we proceed to analyze the first case. We observe
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Lemma 1.3.2. If the injectivity condition fails for all 7, the rate at which f%(p,) moves
in the horizontal direction must match the rate at which f? (p) moves in the horizontal

direction.

Proof. If the injectivity condition fails for all 7, then as we vary 7 each pair of points
(f2%(p), fa(p)) remain on the same vertical line. This implies exactly the statement of

»Jo,T

the lemma, since otherwise they would split. O

Now, f%(p) accumulates to O as k — oo, which implies f%*(p) accumulates to O

as well. Further, since ny < k, we must have n;, — —oo and f9"(p) approaches O along

WL .(O). Then, we observe

Lemma 1.3.3. As ny — —oo, the points " (p) approaches O along W} (O). Additionally,
the normal vector of W _(O) at f™(p) approaches the vector perpendicular to the the
eigenvector of df?(O) corresponding to the eigenvalue greater than 1. Similarly the normal
vector of W _(O) at f9%(p) approaches the vector perpendicular to the eigenvector of df?(O)
corresponding to the eigenvalue less than 1.

More precisely, if we examine the dynamics in a ball Bs of radius ¢ centered at O,
then for o < ¢ there exist k so that f%(p) and f™(p) are within the B; and outside of
U, and, within Bs, the normal vector of W .(O) at f™(p) is the vector perpendicular to
the the eigenvector of df?(O) corresponding to the eigenvalue greater than 1 with error of
size O(9) (and similarly the normal vector of W _(O) at f%(p) is the vector perpendicular
to the eigenvector of df?(O) corresponding to the eigenvalue less than 1 with error of size

0(9))-

Proof. These statements follow from considering the problem in Birkhoff normal form and
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Equation (2.7). O

Now, we may arrive at a contradiction. Lemma (1.3.3) implies that as kK — oo, the
direction each f%*(p,) moves as 7 varies approach the same direction, with O(J) error.
Similarly for the points f%(p). This combined with Lemma (1.3.2) implies the rate at
which f%(p,) and f9*(p,) move as 7 varies must be the same up to error of size O(J).
However, Lemma (1.3.1) gives that future iterations move at different rates than past

iterations based on A. So, we examine two pairs for some k. We have, combining Lemma

(1.3.1) and Lemma (1.3.2)

o (700l o)| = x*eos(on) + 000

7=0

= A" cos(6,) + O(0),

7=0

(-t

where 7( f%(p)) is horizontal component of 7i( f%(p)) and 7( f%(p)) is horizontal component
of 7i(fe%*(p)), and 6, is the angle the vector perpendicular to the eigenvector corresponding
to the eigenvalue less than 1 makes with the horizontal axis, and 6, is the angle the vector
perpendicular to the eigenvector corresponding to the eigenvalue greater than 1 makes with
the horizontal axis.

However, this cannot be true for all k, since as k — oo, we have n, — —oo, and we
may choose § small for large k. Thus, we have a contradiction, and therefore must have
there exist arbitrarily small 7 so that the periodic orbit and the homoclinic orbit under the

map f, satisfy the injectivity condition with respect to each other.
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2.4  Construction of the tower

The main result of this section is to prove Lemma (1.4). To prove this lemma, we
follow arguments from [15], adapted to our setting of billiard orbits. By Lemma (1.2),
we may first off embed our map f into a one-dimensional family of billiard maps f;
parameterized by 7 and with fy = f, such that the quadratic HT of f unfolds generically
as T varies. we also label the periodic point associated with the quadratic HT by O. From

here, the main ideas in proving the lemma are as follows:

1. Find arbitrarily close to 0 values of 7 so that f, has for periodic point O an associated
quadratic HT which unfolds generically as 7 varies, as well as a homoclinic orbit

corresponding to a transverse intersection of the invariant manifolds of O.

2. For any small 7 as above, find another map f which is C* close to fr, such that f
has an additional (distinct) quadratic HT tangency, also associated to the periodic

point O.

3. Inductively repeat a process which takes a map f;, which has a k-order HT and a
quadratic HT (both associated to the same periodic point O) and produces a map
frs1 which has a HT of order k+1 and is arbitrarily C™ close to fx, then find another
map fkﬂ which is arbitrarily C'*° close to fr,; and which has both a HT of order

k + 1 and a quadratic HT, both associated to O.

4. After using the previous item r times to obtain a map f, which has an 7" order HT
where © = 2n + 5, we find arbitrarily close to f. in the C™ topology a map f in C™
which has an elliptic periodic orbit of order n.
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We note two things. The first is that throughout these steps, we occasionally arrive at
maps which have HT of order some high order, say n, which we then want to embed into
families of maps for which the n-order HT unfolds generically. This is able to be done by
Lemma (1.2).

The second thing we note is that we need at each step the injectivity condition to be
satisfied. This is able to be done by using the perturbation described in Lemma (1.3).

We now prove each point in our outline, which proves the theorem.

Proof. The first item in our outline follows from Lemma 2 of [15], which we state here,

applied now to our case of billiard maps:

Lemma 1.4.1. (Lemma 2 from [15]) If f; is a one-parameter family of C'* billiard maps
and fy has a saddle point O with an orbit of quadratic homoclinic tangency which unfolds
generically as 7 varies, then arbitrarily close to 7 = 0 there exists a value of 7 for which the
billiard map f, has an orbit of quadratic homoclinic tangency (which unfolds generically
as 7 varies) and a secondary homoclinic orbit corresponding to a transverse intersection of

the invariant manifolds of O.

The proof of this lemma in [15] only requires that we first embed our map into a
one-parameter family of two-dimensional C'*° differomorphisms such that as 7 varies the
quadratic homoclinic tangency unfolds generically. It was known before that analogs of
this lemma were true in various settings ( [31], [30], [14]), but what [15] contributed was
the fact that even if the family of maps is conservative, there are still values of 7 arbitrarily
close to 0 such that a secondary homoclinic orbit is produced. Thus, since our billiard

maps are conservative, we may apply this lemma.
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wloc(O) ; | \l_\\ \ / /}IUO
Wlac(o) \\ \ //N
19 Pm PmM

Figure 2.5: An example case of how to obtain a secondary transverse intersection. In this
case, it already exists for 7 = 0. The box oy is mapped after M iterations of the map f? to
on. This crosses the stable manifold near pg, so there is some secondary py in the unstable
manifold which after M iterations of f?is in the stable manifold at py,;. Examining then m
more iterations, the point p,,s corresponds to a secondary point of transverse intersection.

In other cases, we perturb to find such a situation.

From the existence of a transverse homoclinic orbit, we obtain a horseshoe A containing
O and many points close to W#(0O). Each of the points in this horseshoe are saddle periodic
points (with different periods).

For completeness we detail the construction of this horseshoe (see Figure 2.6). Suppose
we have the points qg, q1, ...qys which are points of transverse intersection of W*(O) and
We(0) with g0 = fN(p), 1 = D), ...,qu = N (p). We consider a rectangle R,,
with height h,, and width w, centered at O, where h,, < 1 and w,, is large enough so that
R,, contains qq in its interior. Then f"(R,,) is a rectangle with height h,\" and width w,A™"

centered at 0. We choose our parameters so that p = (0, 1) is near the top of f™(R,), i.e.
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we want h,A\"/2 > 1. Then we note that f¥™*"(R,) contains qo, ..., gas. Our horseshoe
is then produced by R, with the map f¥*M*" and contains points O; arbitrarily close to

each ¢;, as well as O.

]

f[\]+.V+n ( R,,)

fr(Rn)
A

]
| Jao=rvw

OO,

Figure 2.6: The construction of a horseshoe.

We now use two more lemmas in order to accomplish the second item in our outline.

From the map which has a transverse homoclinic orbit containing points ¢, and ¢,
we may find close to ¢y and ¢; saddle points Oy and O; respectively so that there is a
quadratic heteroclinic tangency between W*(0O1) and W*#(0y), and a transverse heteroclinic
intersection between W*(O,) and W*(O;) such that the corresponding heteroclinic cycle
are what [15], [13] define as "of the third class" (which we also define momentarily). This
follows from Lemma 3 of [15], which we mention here, again applied to the case of billiard

maps.

Lemma 1.4.2. (Lemma 3 from [15]) Under the conditions of lemma 2, arbitrarily close to
7 = 0, there exist values of 7 for which the billiard map f, has a non-trivial transitive

hyperbolic set A which includes the point O and two saddle periodic points O; and O such
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that W*(Os) and W*(0O;) have a quadratic heteroclinic tangency which unfolds generically
as 7 varies. In A there exists also an orbit of transverse intersection of W*(0O;) and W?*(Os)

such that the corresponding heteroclinic cycle belongs to the third class.

The meaning of "of the third class" is a geometric one, relating to whether or not the
quadratic tangency hits the stable manifold from above or below. More concretely, when
we define our map from W*(Os) to W*(O;) to send (z3,y2) near (0,y,) to (z1,y;) near

(z1,0) such that

T — :16{r =axy+blys —yy ) + ..., Y1 = cxoy + d(ys — y5)2 + ...

while our map from W*(O;) to W*(Oy) maps (0,y; ) to (x4,0), then being of the

third class means

cy; 3 > 0. (2.8)

Since the points O; and O, are close to points in W*(O) (namely the points ¢; and ¢s),
and can be arranged to be arbitrarily close by choosing large enough n in the construction of
our horseshoe, we note that we may arrange for the corresponding position on the boundary
of the cylinder for these two points to be different - that is, these two points are not on the
same vertical line. We also can arrange for these to not be on the same vertical line as O.
This is because we set our W _(O) to have a non-zero angle w, so that, close to O, each
point in W (O) lies in a different vertical line.

Then, to complete the second item in our outline, we use Perturbation 4 in Chapter 3

to vary the eigenvalues of the differential at O. Doing this, we may make a new quadratic
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heteroclinic tangency between W*(0;) and W#(O,) while retaining all the other homoclinic
and heteroclinic tangencies. This follows from Lemma 4 of [15]. Before citing this we must

define a moduli of local 2—conjugacy that is particular to cycles of the third class:

where ); is the multiplier greater than 1 for the manifolds at O;. Then, Lemma 4 of [15]

states:

Lemma 1.4.3. (Lemma 4 of [15]) Let f. be any smooth family of C*° billiard maps such
that all maps in the family have a heteroclinic cycle of the third class, i.e. there are two
periodic points Oy and O,, an orbit of transverse intersection of W*(O;) and W?*(0O), and
an orbit of quadratic heteroclinic tangency between W*(O,) and W#*(0O;) which does not

unfold as e varies, plus Condition (2.8) holds. If « changes monotonically with ¢, i.e.

da(/f.)
Oe

70,

then there is a dense set of values of ¢ for which the map f. has a quadratic heteroclinic

tangency (which unfolds generically as € varies) between W*(O;) and W#*(O,).

Since this orbit must contain points close to W;.(O1), we may arrange for this to also
satisfy the injectivity condition with respect to all the other orbits, since W _.(O;) must be
parallel to W _(O).

Now, since our points O; and O, are close to W*(O), we may by a small perturbation
arrange for the newly constructed quadratic heteroclinic tangency between W*(0O;) and

W#(0,) to go between W*(O) and W*(0), so that we have a new quadratic homoclinic
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tangency. We can accomplish this using an argument similar to that done in the previous
section, by varying the angles of the manifolds of O.

This completes the second item in our outline. Before going to the third item, we
repeat this process 2n + 4 times in order to obtain a map with 2n + 4 coexisting, distinct
points of quadratic HT belonging to different homoclinic orbits (the reason for doing it
this number of times will be made clear in a moment). For each time, we ensure that the
injectivity condition continues to hold for each homoclinic orbit, which we can do since
each newly constructed quadratic homoclinic orbit contains points which are in W _(Oy),
and since this is not a vertical line, we may take the new points of homoclinic tangency to
all not lie on the same vertical line.

Now, to prove the third item, we seek to use Lemma 5 of [15]. We state this lemma

here (again slightly reworded for our case).

Lemma 1.4.4. (Lemma 5 of [15]) Let f. (where € = (79, ..., k—1,7)) be a smooth (k + 1)-
parameter family of C'* billiard maps which have a saddle periodic point O such that
at 7 = 0 the manifolds W*(O) and W#(O) have a tangency of order k, and at v = 0
these manifolds have a quadratic tangency. Suppose that the tangency of order £ unfolds
generically as 7 varies, and the quadratic tangency unfolds generically as v varies. Then

there exists a sequence €; — 0 such that the map f. has an orbit of tangency of order

(k + 1) between W*(O) and W*(0) at ¢ = ¢;, while keeping the saddle point O fixed.

So by Lemma (1.4.4) we take two such quadratic HT and make a cubic HT by using
our perturbations from Lemma (1.2), applying Lemma (1.3) on our newly created cubic

to ensure the injectivity condition between this orbit and the remaining quadratic HT. We
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Figure 2.7: An example of the process of creating a cubic HT out of a tower of two quadratic
HT. Essentially, we have a situation where there is an intersection between W"(O;) and
W#(0O3), which intersects at four points as in the diagram on the bottom left. Then, we
unfold generically to pull this back so that points 1 and 2 hit at the same point, creating
a quadratic HT between W*"(O;) and W?*(O3). From here, we unfold the two original

quadratic HT again to merge points 1 and 2 into point 3, thus creating a cubic HT.

then take this map, which contains now a cubic HT and one of our previously constructed
quadratic HT, and apply Lemma (1.4.4) to create a quartic HT - and so on so that we
obtain a map containing a HT of arbitrarily high order.

This complete our third item.

Now, since at each step we may arrange for the perturbations to be arbitrarily small
in the C* topology, for any § > 0 we may arrange for our map final map f which contains
HT of order r to be within ¢ of our original map f in the C'"*° topology.

We now do item 4 in our outline for this section to obtain an elliptic orbit which is a

rotation up to order n. From [15] we have
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Lemma 1.4.5. (Lemma 8 of [15]). Let f. be a family of C'* billiard maps for which a
homoclinic tangency of order 2n + 4 unfolds generically. Then arbitrarily close to the
moment of tangency there are values of parameters that correspond to the existence of an

elliptic periodic orbit of the degeneracy order n.

Thus, unfolding the tangency of order 2n+4 generically, we obtain an elliptic periodic
orbit of order n.
Now, when one considers the first return map in a neighborhood of this periodic point

one obtains the following Birkhoff normal form:

Z=e%2+o(|z").

So, our map in the C™ topology is close to a rotation by .

]

Now observe that if this is a rational rotation, then we are in fact done with the proof
of Theorem 1. However, this may be an irrational number. Thus, in the next section,
we describe a perturbation of the boundary so that this becomes a rational number, thus
completing the proof when we consider the billiard map composed with itself a number of

times equal to the denominator of this rational number.

2.5 Rotating the differential to order n

Here we prove that one may rotate the differential to the n* order by perturbing the

curvature up to order n at n + 3 points. The size of these perturbations are of order ¢
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in all partial derivatives from degree 0 to n, where ¢ is the angle by which we rotate the

differential. Our main result in this section is Lemma (1.5).

Proof. We begin as in the statement of the lemma. Then we expand our map in the form

u n+1
fq(30+uv 900—"7}) :dfq(s()aspo) +ZAIS(U’U)’
v k=2

where

k
Ak(u,v) = Z(ng Iyl for 2 <k <n

7]
J=0

where 6f ; are constants, and we also have that Aj*"(u,v) satisfies

8j n+1
Guigei \ N0 (1)

Now, by Perturbation 3 for n = 0, we may perturb to first order by size O(9) so that, to

=0for0<i<j<n.
(u,v)=(0,0)

first order, the leading term is rotated by a matrix Rs, which is a rotation matrix! by the

angle . In other words, we may find a map f; which is close (dependent on §) to f so that

U n+1
fi(s0 + u, 0 +v) = Rsdf*(s0, ¢o) +ZA’f(U7U)>

v k=2

where
k
Ak (u,v) = Z &7 sut 7,
j=0
with
oI
(u,v)=(0,0)

LAt this step, one might wonder how we know we can necessarily achieve this specific differential while

ensuring we do not leave the class of billiard maps. This will be answered directly after this proof.

44



and for j < kand 0 < j <k,

for some constants C ;. ,. From here we again use Perturbation 3, now with n = 1 in order
to eliminate the change that was introduced in the second order partial derivatives after
the previous perturbation. Specifically, what we mean is we perturb so that we obtain a

map fs such that

u
f3(s0 + u, o +v) = Rsdf(s0, ¢o) + Af(u,v) + A3 (u,v) + ...

+ A (u,v),

with
k
Ak (u,v) = Z 5§’juk_]v],
=0
105 5 = 651 < Cjn,
for kK > 3, and

=0for0<i<j<n.
(u,v)=(0,0)

aj n+1
Guige \ N2 ()

We are able to do this because |5ij — 5(2)’j| < Cja,0 for 0 < j <2, which means the size of
our perturbation can be of order §. We then do the same process inductively. At each step

we have a map f; of the form

u koo n .
f§($o+U, SOO+U> :Rédfq(SOaSOO) +ZA6(U’U)+ Z Ai(“ﬂ”)?

v §=0 j=k+1
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where
A] (u,v) 5 (53 uJ it

167, = 633 < Cijind

fork+1<j<nand0<i<j, and with

oI
W(A(“)>

and we perturb using Perturbation 3 with n = k — 1 in order to obtain a map with the

=0for0<1 <75 <n,
(u,v)=(0,0)

same properties, but with &k increased by 1. In the end we arrive at a map f,,1 which is

close to f in all derivatives up to degree n, dependent on 9, so that

u n
fas1(s0+ u, o +v) = Rsdf*(s0, ¢o) + Z AG(u, v) + AR (u, v),

with

=0for0<i<j<n.
(u,v)=(0,0)

aj n+1
Dw—iou ArT(u,v)
This completes the proof. ]

Now, we answer an objection that one might have had in the previous proof. It might
not be clear at first glance how we know we can achieve the specific form of the differential
we desire (i.e. the previous matrix but rotated by some angle). More precisely, consider

the set of 2 by 2 matrices:

{A € R¥? . there exist a billiard map f such that df (zy) = A},
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and for higher orders

{A € RD*2 . there exists a billiard map f such that

0" Proj 0" Proj
A = Tgl(p(f)(so’ ©o), Aio = ngﬁ(soa ©0),
for 0 <1i < n},

where Proj;(f) is the projection of f onto its i*" coordinate. Then the question is "how
do we know our target values are in these sets?" For instance, how do we know that
given a billiard map f with differential df (x¢) we may find another billiard map f; so that
df1(zo) = Rsdf (x)?

The answer is that for the first order terms, we can change three terms to perfectly
match what one would get from a rotation, and the fourth term necessarily is fixed due to
the area preservation condition.

For the higher order terms, we know that all the target values we perturb to are a priori

belonging to those of a billiard map, and are thus obtainable through our perturbations.
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Appendix 3: Perturbations and their Effects on the Jet of the Billiard Map

Throughout this section, we let O = ((so, ¢o), ---, (Sq—1, Pq—1)) be a g-periodic obit. We
also let xy = (S0, o) and W} .(x¢) be its local invariant unstable manifold, and similarly
W .(x9) be its lcoal invariant stable manifold (all under the mapping f). We use the

following notation:

T, = (Sk, k),
e = U(sk, siv1) = |[7(sk41) — (sl
B = sin(ep),
Kk = K(Sg).
The format of this section is to provide a description of a perturbation, along with
the result it has on the partial derivatives of f9(zy), followed by a proof which shows how

the perturbation leads to that change in the derivatives. The first type of perturbation we

do is the following:

Perturbation 1. We change  in a small neighborhood around s; for some fixed £, and we
choose this perturbation in such a way as to leave the tangent vector at 7(s;) unchanged.

We change k in this neighborhood so that in particular at the point s, the curvature s
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changes as:

K — KL + €.
Given this perturbation, the change in the differential df?(z) is given by

df*(xo) —df (o) =

df?(o) + edf*"(xy) B df*(wo),

where

0 0
B =
2 0
>52
Q)2
S1

S0
Figure 3.1: The types of perturbations we consider. We change the curvature at s;, while
leaving the angle tangent of the boundary of the domain at s; fixed, thus leaving the orbit

fixed while changing the differential of the billiard map.

Proof. For positive integers ¢, j we first note that

9sitj  Ositj
. s, 0,
4 _ J j
Opit; Opitj
9s; ¢;
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and for ¢ > k > j that we also have the relation df*(z;) = df**(zy)df*(x;). Then, it

follows that we have
df (o) = df "™ (@) df (i) df (-1 ) df* (o).
Note that df?~*+2)(z,5) and df*'(zy) do not depend on e, while the others do:

df (xy,) = dfe(x)

df (z—1) = df-(zp-1).
We now recall the following equations ( [3] Theorem 4.2 in Part V):

OSk41 o Kilk — B

Dsy, B Brr1
0Sk11 b
Oor  Brs
Oprir _ Fkkkrle — FrBrp1 — Krea Br
dsy, Brs1
OPr11 _ K1k — Brra
Doy Br+1 '

Using this, it is straightforward to show how the perturbations act on each of our differentials

to first order. We have:

0
df (z1,) — df-(zy) = df () + € Bri1

el —Brt1 0

Br+1
el
= df(a:k) +ée
8<pk+1
0ok,
00
= df (zy) + df (zx)e ,
1 0
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and

0 0
df (xp—1) = dfe(xp—1) = df (xp—1) + €
Kp—1lk—1—Br—1 lg—1
Bk Bk
0 0
= df(l’k_l) +¢€
dsk Jsk
| Osk—1 Opr—1
00
= df (vg-1) +¢ df (xg-1).
10
So, in total, we have that ¢ affects our differential by
00

0 (20)f (00r) = df(e)df (zaos) + 2 (df(rvk) df(wk—l))

20

]

The next perturbation is used in the proofs of Lemmas (1.2) and (1.3), and it enables

us to smoothly lift and lower a point of homoclinic tangency.

Perturbation 2. Given a periodic point O with a point of homoclinic tangency at p and
unit speed parameterization p(t) (for |¢t| small) of a section of W*(O) with p(0) = p, there
is a smooth deformation obtained by using Perturbation 4 which allows us to change the
angle of the local unstable manifold W} (O) by Ce + O(g?) for some constant C, which
deforms p(t) to p.(t) such that for all |¢| sufficiently small the distance ®.(t) between the

point p.(t) and the local stable manifold W} (O) is given by

. (t) = ®(t) + ¢ + O(?),

where ®(t) is the unperturbed distance of p(t) to the local stable manifold W} (O).
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WZ%C(O) E,lOC( )

Ce

(0)

loc

Figure 3.2: By changing the angle of the unstable manifold, we may move the unstable
manifold around a point of HT in the direction of the normal of the stable manifold at the

moment of tangency.

Proof. We let U be a small strip of width ¢ around the point O, and we perturb in U. This
corresponds to perturbing s on the region (sg—0/2, so+0/2). We perturb by Perturbation
4 which allows us to change the angle of the unstable manifold W}, by angle w. We call the
resulting billiard map f,, and the resulting unstable manifold Wy, (O). We then define
the points a,a] as the points within Wi, (0)NoU = {a;,a}}, with a; < aj. Then we

have

af —af = :I:% (tan(wg + w) — tan(w0)> + O(w?)

= j:%w + O(w?).
Consider the point f~™(p) where m is such that f~™(p) ¢ U and f~(™*Y(p) € U. Consider
a small ball V' around f~™(p), chosen small enough that V N U = ().
Now Wi;.(O) intersects V', which implies that for w small enough, Wy, ,(O) intersects

V' as well. We label this as [, and parameterize it by [(¢) for ¢ small such that [(¢) is a unit
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speed parameterization. We observe that for each point in this small section we have

d(i(t), W"(0)) = — + O(w?),

where d(I(t), W.(0O)) is the shortest distance of I(t) to W}.(O). Now under the dynamics
of f9 (i.e. the unperturbed map), by the lambda lemma (see [23|) we have that f"(l) —

W .(O) as n — oo. In particular we have

. agw
2\

d(f™(1(t)), Wige(O)) +O0(WA™™).

Now the dynamics outside of the region U where we perturb remain unchanged as we vary
w, and so since the dynamics which send V to 7™ (V) are outside of the region U, we have

ow

AW (0), Wi(0)) = S5 4+ Ow?A ™).
Thus if we let
2e )\
(JJ =
o
we have
d(Wjs.(0), Wk(0)) = e + O(£?),

which is the desired result. O

For our next perturbation, we label the £ derivative of the curvature at each point

s; by ngk).

Perturbation 3 (Theorem 2). Consider a perturbation which satisfies
A/igj):(]for()gjgn—l,

A/iz(n) =&;
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for 1 <17 < n+ 2 and that the orbit O remains fixed. Then one may vary each element of

0"sp ",
{%:ogkgn}u{ (pfg}
0sy " 0pyg sy

independently, provided each (s;, ;) is sufficiently close to the boundary for 0 <7 < n+ 3.

More precisely, letting ¢ = (€1, -+ ,€py2),

o 0"Spt3 0"Sp43 0"Sspt3 O0"pnt3 (8)
dsy 7 9sprape? T Opp 7 Osp L
0

de ’

provided
95 4 (3.1)
Do

for0<i<j<n+3.

Proof. As the proof is quite lengthy and technical, we relegate it to Chapter 4. O]

We also note the special case of this perturbation for n = 0:

Perturbation 4. Given a perturbation which changes the curvature in small neighborhoods
around 3 points (s1, so, $3) by Ax; = &;, and which leaves the orbit O fixed, we have

Osy Osqg O
a<a_537 3_304(1)7 51%) (6)
0
9% # 0,

provided

(93j
i

£0

for 0 <17 < j < 4. Thus, with this perturbation one may vary the angles and eigenvalues

of the differential df*((so, ¢o)) independently to first order.
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Proof. As the first part of the statement follows from the work in Chapter 4, we prove the
second part of the statement. It is a simple exercise in linear algebra, but we detail it here

for completeness.

a b
We consider a matrix A = with product of eigenvalues 1 and eigenvalues and
c d
eigenvectors given by:
a+d 1 5
A=— +§\/(a+d) — 4det(A),
d 1
A= ‘“2L — V@t — 1det(A),
7 b 1 cos(wy)
AT 2 — 32
A — ¥+ (A —a) sin(wy)
7 b 1 cos(ws)
ATHT 2 = 2
Al —a VB (A @) sin(ws)

Thus if we perturb our matrix A by

a b a—+e; b+€2
%
c d c+x d+eg
where * is chosen so that the overall perturbation maintains that the product of the

eigenvalues is still 1, we can see how this effects A\, w;, and ws, to first order. Doing this

yields the following:

b (A—a) bA?

A — o 2
w1 61&()\2_1) €9 l%r +€3li(/\2_1)+0(5)
N +1b A l—a bA? ,
Awe=—cippay) ~ 2o SEpe—q T OE)
2 2 )
A/\:&tl)\Q_l +53)\2_1 + O(e%),

where (2 = 0% + (a — \)?, and (2 = b* + (a — A™")?. From here then it is easy to show that
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we may vary wi,ws, A each independently for appropriately chosen . Applying this result
to our differential, we are done.

]

We now note the next type of perturbation we use. Essentially, this type of perturbation
states that if we have a perturbation which varies the curvature at k points, we may instead
consider a different perturbation at any 3 previous points that achieves the same change of

the differential.

Perturbation 5. Given a perturbation of the curvature at points sy_g, ..., sSy_1 which varies

the differential of f by

df (1) = df™ (1) + Adf™ (21)
while keeping the orbit O fixed, there exists another perturbation of the curvature at any
increasing subsequence of length 3, s,,, Sy,, Sn, such that this perturbation also keeps O
fixed and changes the differential of f by

di<l'1) — di<iU1) —+ Agdi<£L'1),

so that

Avdf (1) = Dodf ™ (1),
given the following holds:

0s;

dp; 70

for1<i<j<N+1.
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Proof. This follows from showing that one can vary the curvature at any 4 points, s, <
Sky < Sks < S, S0 that the the resulting Adf"(z;) = 0. This is because of the following

argument. Supposing that we can, then we have

k—1

Adi 931 Zd i Z ﬂfN k-i—z)Bdi hris 1(-l"l)AHN k+i

=0

And then if we consider each term with the three points s,,, Sp,, Sn,, We can find a
perturbation ®; which changes the curvature around these points by Axs,, Aks,, ARg, SO

that
df*"(wn ) BN @) Ak g
AN (wg,) BT (w0) Ak,
HdfN R (24,) B (21) Ak,
+df N5 () Bdf T (@) Ak,
=0.

Then, plugging this into the previous equation, we have by Perturbation (4)

Adi (1) Z{ dfN - SH(xg, ) Bdf*r™ 1(951)A Ky

=0

+di_82 (:1352) B deQ_l(xl)Ai"{SQ

LAY () B deS‘l(xl)Ai%SS}

So if we define a perturbation by changing the curvature at points s; by — ZZ kel Ajks;

for j = 1,2, 3, then we this perturbation gives the same Adf (x1) as our original perturbation.
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So, to prove the claim that we may vary at 4 points without changing df”™ (z;), we
note that if we vary the curvature at sk, Sk,, Sks, Sky DY Akg,, Akg,, Akg,, ARy, we have
AdfN (21) = dfN 7R () B dff 7 (1) Ak,
dfN R () B df*> ! (1) Aky,
df VR (g, ) B dfF T (21) Ak,
df VR (zy,) B df* T (21) Ak,
Then, this is 0 if and only if
dffa=R1(z) B Aky,
+dffiR2 () B df* M (a4, Ak,
+dffiRs (g,) B df*M (a4, Ak,
+B dff R (1, ) Ak,
=0.

Expanding this out, we get this is the same as
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8Sk4
0
Opk, A
K'kl
69%4
_6‘Pk1 0
8sk2 Sky 8sk2 Sky
Os, Opp Opr, Opy
+ 1 2 1 2 A/{kz
askz Phy 85k2 Py
| 95Ky OPky ¢k Oy |
Bskg Sky 85k3 Sky
Osk, Opy, Opr, Opk.
4 1 3 1 3 AH’%
O0sks Pk, Osksy Pky
| Osky Oprg 0ok Oy |
0 0
-+ AFL]M
Osg, Osk,
_6Sk1 8@]61
=0.

Then, considering each term independently, we get the following four relations must

hold:

o = G e+ 2

T e G e, =0,

o G e G S, =0,
e G+ G

Without loss of generality, we can set Aky, = 1 since we may normalize. Then, the
first three relations determine Arg,, Ark,, and Aky,. To see this, we note the second and

third equation determine Ay, and Arky, if

8sk2 8sk4 85k3 8sk4
Opr, Opk Opy, Ovy
det | 7741 995 V| ),
Osk, Osiy (9Sk3 Osky
Osk, Ok, Oy Opisg
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This is true since

aSk4 aSk4 0
8 78 # Y
Pko Pks
8Sk2 askg a
Ok Oy, Sk
det ! V= ——=det(df (x1))) # 0.
Osp,, Osgq &sz
85k1 Bskl
Thus, we have
—1
8Sk2 68k4 8Sk3 ask4
ARk? | 9pry Opr, Opr, Opry 0
8sk2 8sk4 8sk3 8sk4 8sk4
A/ﬁ% 0sy 0wk, 08y Opky O,

From here, one uses the first and second equations to fix Axy,. These equations yield

8sk4 A Bskg Bgok4 8Sk3 8(pk4
K Ak
Opr, ks | 9pry Opk, Opr, Opry k2
08k, OSk 08k, Osk
0 2 4 3 4 Ak
| 0Pk, OPky Opry Opky | | ks
a4 - —1
08k, Opr, 85k3 Ok, Osk, Osg, 8sk3 Osk, 0
_ aﬂpkl 850162 890/61 890k3 890k1 8@162 8‘pk1 890193
Bskg 8sk4 8Sk3 Bsk4 ast 8sk4 Bsk3 Bsk4 o 8sk4
| Ook; Opky Opry Oprg | | Osky Opry Ospy 0wk, Ok,

Simplifying we obtain

&sk &sk 88k ) 8sk 83k (&sk 8g0k 85k 8g0k )
Ak \ 3 4 4 ) det(df (z _ 2 3 4 4 4 4
: <agpk2 8(10’@ agpks ( f( 1)) agok‘l Pk1 890162 agpk:’, agpk:’, agka

8% 88k3 aSkS det
0P, Pk, 0Pk,

(df (3))
All that remains after this then is to verify that the fourth equation holds true with

these values. One may verify that it does.
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Appendix 4: Perturbing the n-th partial derivatives of the differential independently

The main outcome of this section is to prove the statement for Perturbation 3 (which
is a more detailed description of Theorem (2)). Recall for this perturbation we consider a

changes in the curvature such that
A/ﬁz(»j):OforOgjgn—l
A/{l(-n) =¢;.
for 1 < i < n + 2. To begin, we show how this effects the n'* differentials of s,,3, Pnis3.

We have

Lemma 2.1. With the perturbation given as above, the changes to the n'* differentials of

Sn43, Pnt3 alre

n+2

0" Sp43 043 (831’ >n_k < 0s; )k
A0 =2 i
dstyFopk ZZ dp; \ Osg d¢0)

=1

n+2

0" ony3 OPnis (3&' ) ok ( 0s; )k
A—2 =9 ”
ng_kagolg ZZ: Op; \ 0sg o c

=1

Proof. To see this we prove the statement for the derivatives of s, 3 as the proof for the
derivatives of ¢, 3 is similar. We prove the result first for degree 1 partial derivatives.

Recall that df™"*3(zy) depends on x; by
df"3(x20) = kjdf" 7 (x;) Bdf? (x0) + terms not involving ;.
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Expanding the term multiplying x;, we have

85n+3 8& 65n+3 6&
; : dp; O dp; O
df"™t3 () Bdf (w) =2 | 77 7 v (4.1)
Opnt3 0sj Opni3 0s;
Op; 0Oso Oy Opo

Thus, adding to each x; some change ¢;, we have to first order

n+2
A8$n+3 _9 08p43 85j+1€'
880 =1 8g0j+1 850 7
n+2
AaSn+3 —9 OSny3 @Sj+1€,
dpo =1 Opjr1 gy

The higher order partials are similar: we observe

_o (df”+3(xo)) _ gh (8_> (%>idf”+3_j(x VBAfi (o)
D5t 0} 7\ 0s0 Do ’

+ R(s0, ¢o)
where the remainder term R only contains terms potentially containing lig-i) where 7 is at

most k — 1. Thus, if we perturb x; by adding to its n" derivative €j, we obtain to first

order
oF < 2 08nis (05 \T 055\’
) - E e ) (22
Dsh 0l (o) ; dp; \ Dso dpo)
which is precisely the statement of the lemma. O

So, we have proven the n'" partial derivatives depend linear on € = (1, ..., €,42).

observe that there are exactly 2(n + 1) such partial derivatives. As it turns out,
however, there are really only n + 2 degrees of freedom. What we mean by this is that
given n + 2 of these terms, one may determine the other n. This is ultimately due to the

area preservation relation

da@ﬂm)zﬁgg

More precisely, we prove
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Lemma 2.2. For all billiard maps, the partial derivatives

an()pn+3 angpn+3 8n<pn+3
osy T OsyT ol T 0siopn

can be determined from

8nSn—i—S anSn—&—B 8n3n+3 an¢n+3
Osg " 9sy'0pp  Opp ' Ogp

U {all derivatives of s,.3 and ¢, .3 of order less than n}

Proof. We first observe the statement follows for n = 0 from the area preservation, which

explicitly gives us:

08043 0Pt 08043 0pnys  sin(ypo)

dsyp  Opy dpo  Oso  sin(pnis)’

We now show the statement of the lemma for n = 1. To do this we take partial derivatives

of this equation to obtain

0?Sp13 0Pnis  OSpis 0Qnys
st Dy Dsg 0590y
_ Psp+3 Onss _ Osnas Ppnys _ i sin (o)
0500y Osg dpy  0s? 0so \ sin(pny3) )’

623n+3 Opnis  OSnis a2‘;0n+3

D500y Do dsg Ok

_ *spy3 0pnis ~ Osnys Ponis _ 0 ( sin(pg) )
w5 0s0 gy Dsedpy  Dpo \sin(pnys) )

Thus, if we define vectors

- 82371—1—3 a25n-i—3 623714-3 6290714-3 629071-&-3 829071-&-3
T = Y Y
st ' 0sg0py’ Opi = Osk T 0sg0py’  Opd

= (g (o) o (o))

we have
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where A, is given by

Opny3 _ Opn+3 0 _ Osny3 O0sn+3 0
A, — o Jso o Jso
9 =
0 a@n+3 _ 8(Pn+3 0 _ 8sn+3 85n+3
Ao dso d¢o Oso

We thus note that this implies we may write {825082*3, gz‘gg;g} in terms of the other
0

components of & and the terms in ¢ since the submatrix

_ Ospys Osn+3
¢o Oso
_ 8Sn-}—?’
0 9o

2
has determinant (%) # 0. Similar results hold for higher order partials. To see

this, we continue to take partial derivatives with respect to sy and g of the previous two
equations. If we examine only the terms where n'* order partial derivatives of ¢, 5 appear,

we obtain

where

<y
I
N

o Pn+3 anSOnJrZS )

dsp 77 D801
_ asn+3 asn+3 .
o 950 0 0
o 85n+3 85n+3
0 o Jso 0
A, = 0 0 _ Osny3 0 ,
9o
0 0 0 e _Osnis
L 8900 .

and b,, contains only terms in

8n3n+3 8nsn+3 an$n+3 anson-‘,-?)
Osy " 0sy '0py " Opy T 04
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and derivatives of s, 3 and ,, 3 of order less than n. Thus, since det A,, = <— 888#%;3) #0,

the proof is complete. n

Thus, we seek to vary only all the partial derivatives order n of s,.3, and the term

0" pn13

Do since the rest are determined by these. We thus examine the following n + 2 by

n + 2 matrix:

n—(k—1) k—1
Mk,z_asn+3<@) (@> for 1<k<n+1,1<I<n+2,
Op; \ s 0o

Opny3 ( ds;
1 \ 0o
and show it has non-zero determinant. This implies we may vary each of the differentials

Mo, = > for1<i<n+2

of order n of s,,3 and % independently.
0

To obtain this result, we perform row and column operations on the matrix (M; ;)1<i j<n+2
to be lower triangular, and we find the diagonal entries to be non-zero. These statements

are summarized in the following lemma:

Lemma 2.3. Given the matrix M as defined above, we may perform a series of row and
column operations to reduce the matrix into a lower triangular matrix with diagonal entries

given by

[ 1 aSk 1 08k41

B det(dfk(xo))}...

0s1 0sp—1 08541

k
o)
n—(k—1) aSk+1 n—k aSk+2 n—(k+1) %
880 880 850 850
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for1<k<mn+1, and

Osp3) [O8nt2  OSnio
Mon s — det(df (z.
+2nt2 = det(df (z +2))( o > [ dpr Opnia -

(%) o) - (32)

These are all non-zero provided

8sj
i

£0

for 0 <i < j < n+ 3. We note that when these entries along the diagonal are non-zero,

then we have that the determinant of M is non-zero.

Proof. We proceed to show this using row reduction to get the submatrix of the first n +1
rows and columns to row reduced form. We perform the following row operations for

2<k<n+1:

0
Rk%Rk—Rl(aj)
0

This then gives us f0r2§k<n+1 2<l<n+2
() () ()
w1\ 9s0 Do ds0
OSnis [ 08y ds1\ !
() (5
O0spy3 [ 08y n=k=Dr /9, 051\ "1
(e G G
O\ [ 08
() (&) ]

Dsnts (381 )"_(H) {%% _ 951 9% ] Sa(k, 1)

O \ Osg Do 03 630 o
0Snis3 ( Osy 0s;

= — by :
o ( 880) [ o det(df(xo))} (k1)
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where we define

k—2

(981 k
2(k. ) :Z(&Po)

—2 D, k—2—i 95, i s, i
= 0sp 050 dpo)
Now we use the second row to eliminate the entries in the second column below the

second row. So we make the following operations for 3 < k <n + 1:

R, — Ry — RQZQ(]C, 2).

We then obtain for 3<k<n+1,3,<[,<ny

. 8sn+3 aSl 851 832
MkJ = 8901 (850) |:— det(df(.l’0>):| (k l) (aso)

_ O5n4s (831) {@ det(df(xo))} So(k, 2)

0pi i1
 Ospis [(Os) 0s
= B (830) [8901 det(df(arg))]

mso3) () mwe)
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Here we examine this last term more carefully. we have
882 b2 851 b2
Y — — | =— )y 2
k() (o) w2
ki % k—2—i % k—2—i 95, ‘ % k—2
N i—0 8@0 880 850 8 880
AN CEA N AN AN
8900 850 630 8(,00 (980
3 051 k2 9s1\' [ 9s1 05y ZX
850 &po 850 sy
081 882 - 882 R 88[ '
e Dso Do sy
_%g%”“@ s \" (92"
N 850 =0 680 6900 850 880
Osi\ (952} _ (052} (95|
Do ) \ s dpo ) \ Osg
k—3— 11 )k‘—S—il—iQ (ﬁ) k—3—11—19 (@)ZQ (@)ZQ
0 880 8@0 880 84,00

_ (g—so> (gg) det (df*(0)) T (k. 1),

where we define

??‘

M

A

(IID

Thus we obtain for 3 < k <n+1, 3,</I,

{ﬁ et )| | 52 2L et ).

O0Spi3 (O
My, = ontd (ﬁ)

880 8901 830 8902

We will do one more reduction explicitly before describing the inductive process. So for
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4 <k <n+ 1 we perform the following row operations:

883 k=3
Rk — Rk (97 ,
0

R, — R — R323<k, 3)

We obtain then for 4 <k <n+1,4<[<n+2

n—(k—1)
My = {8sn+3 (g—j;) {ﬁ det(df(l"O))} X

oy o1

0sy 0s; 2 883 -
[8_503_<P2det(df (xo)>]23<k’l)<8_€m) }

{ B (2) 2 st

0 D1

ds; 0s;

[a_%a_w det(de(xo))] sk, 3)}

083 [ O3 n=k=Dr g, 0sy 0s; )
= — — ————det(d
agpl (830) |:8Q01 det(df(x())) 830 8902 € ( f (l’o)) X

() - (22) o]
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And here we examine the last term again. We obtain

(32) s (3) s

B k:f k—?)z—il ﬁ k—3—i1—i2 % k—3—11 y
N 890() 880

i1=0 i3=0
() () G2) () ()
Js0 d¢0) \0po) \9s0 D50
B [(%) k—3—i1—is (%>k3i1 .
o 050
() () )G G )
dso dpo dpo dso D50
_%%gkiil{<%)k—4—il(%>k—4—igx
030 Osy i1=0 i3=0 059 ds0
(3) (52) () (3)
0o 0o 05 0ds¢
[( 0sy )k?’ili? (%) k—3—i1—is B (%) k—3—i1—i (@)k3i1i2:| }
o 05y Do D50
051059 05

3
= Dsn Osa Don )
a50 880 8903 det(df (.’13'0)) 4(k7 l)

where here we define ¥4(k, 1) by

k—4 k—4—i1 k—4—1i1—i2 k—4—i1—i2—1
) 1—1%2—13
Bk - )

0
i1 <882 )iz
o

11+12+13

Soweget ford <k<n+1,4<I<n+2

8Sn+3 881 n=(k-1) 03; 881 881 2
= =t =L det(d L2 det(d
Moy = S () denfap )] | 255 det(aa))

[%%@ det(df3(x0))] Sa(k, D).

(4.2)
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We proceed inductively. In the end we obtain for 1 <k <n+1, k<I<n+2

~=Dr 9s

881 8sk_2 aSl k_1
{850... B g det(dr* () |

So now we eliminate upwards for each row to obtain the top left n+1 by n+ 1 matrix
to have zeroes off of the diagonal. After this we will do column operations to eliminate
the last column, and then we will show that all the values along the diagonal are non-zero,
which implies the determinant is not zero.

We do this for the first few terms and then describe the inductive proof. We do the

following row operations:

Then we get

. (981 852

And we get for 3 <1 <n-+2

Ospys [ Os 059
My = S (8) [8% det(df<xo>>}

68n+3 681 651 832
() {% e a0 | 52
OSnis 08y 0ds; 0sa  0s; 0sa
) (8_80> det(df (o)) [830 01 agol 880}
_85n+3 (851 0s; 851}

Don 8_30) {det(df (xo))ﬁg@ D50

71



Now we perform the following row operations:

R1 — R1 [2—2 det(df(xo))} {2—21 s
882:|

dso

0
R1—>R1+R36_23|:
0

883 881 9
RQ — R2 [8_9028_30 det(df (I0>>:| ,
883

Ry — Ry — Rgg
0

So we obtain

Mo = 52228 (2037122 ey | | 52 acntariany)] [ 32

6901 8@1 (9(,01 880
85n+3 882 nt 852 883 881 2
\/é = — —_— — —
22 8@2 <850) {&01 det(df($0)):| {8@2 880 det(df (370)) ’

And we get for 4 <1 <n+2

_ Osnyz (Os1 "2 9s, O
v O \ Osg

n—2
Moy = =25 (F) L o) || G2 2 5 et

Now we eliminate one more. We do the following row operations:

834 882 883
Ry — Ry {5_4,01 det(df(xo))} [8_308_30] )
054 | 089 053
Ry — Ry — R48_50 {8_305_50} )
881 884 2 883
R2 — Rg |:(9$0 8902 det(df (.To)):| |:880:| ,
884 883
R2 — RQ + R4830 |:6801’
681 682 884 3
Rg — R3 |:a—soa—soa—¢3 det(df (Io)):| s
Rg — Rg — R4%
880
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This yields

 Dsuys (91" Ds2 sy
Ml,l = 8801 (a—so> |ia(p1 det(df(l'o))] {&01 det(df(l'o))] X

o] [(52) 5]

. 83n+3 882 n-l 882 883 381 2
MZQ = (a—so> |:8_901 det(df(l’o))] |:8902 830 det(df (I0)> X

Os3

28w 2]

Osnys [(Os3\" [ Oss 0s1 Os3 2 }
Ma o = - — det(d ———det(d
53 i3 (830> {8901 et f(xO))] [630 D2 e (o))

And for 5 <[ <n+ 2 we have

. 88n+3 (‘351 3 381 88[
M=~ iy (330) {

o o den(d (o) || Gt G P o et e,

880 880 (9g03 880 850 880 8@4
68n+3 681 3 63;
= — — det(d
ey = 2t (S8 dentapon)
(xo))] {831 05y Osg 0s;

Yol Yo2Yes Vol 4
880 880 880 (9@4 det(df (IO>):| ’

n—3
A@:—%H%@Q [%ﬁMWmﬂx

881 882 883 851

[0 050 )] [ 22 5220 2 )|
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Proceeding inductively can get the final result. We obtain for 1 <k <n+1

Mo = L[ 250 don(ap o).

681 88k 2 aSk k_1

PR T P det(df* " (xg))| p X
0s1  Osj— 155k+1
830 Jsg  Opy

det(df’f(xo))}

0s—1 a5n+1

5
{
[6‘ s Opn det(dfk(%))]}x

n—(k—1) 88 n—k ask+2 n—(k+1) %
680 850 880 880 ’
ds ds
My, 1)ntk-t ”*3{ "2 det(d 1
kn+2 — ( ) aSOnJrQ 8@1 ( f( ))
% 05k—2 33n+2
“10so T s Jpr—1

det(df’“l(xo))} X

[% Ost Osn 2

k+1
S D D det(df (xo))]

Os1 Osn Osns
10so s 0Pt

det(df”“(xo))} :

The second equation here will be used in the next result. O

Now we proceed to perform column operations to eliminate column n + 2, and then
we see that this gives in index M, 49 42 the desired result claimed in the previous lemma.

First we note that if we define X} and Y} by

My, = LOM( My, My pt2) X,
My o = LCM( Mg, Mg nt2) Y,

where LCM is the least common multiple when we consider the terms symbolically (not
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numerically). Then we have

X, — Osny3 [ask Osy, } |:85k+1 83n+1:|
k 6gpk_ 6(101 ...8@1671 asok 8gpk y
Js 0s 0s Js 0s
Y., = (—1 n—k+1 n+3 |: n+2 n+2:| |: n+2 n+2:| %
=1 O0nia | Op1 01| [Opry1 Opnia

det(df (z1))... det(df"**1(xy))
We perform the following row operations:
Chio — Chin Xy
Cpi2 = Chypo — O1Y
Chio — ChioXo

Cryz2 = Cryo — G052 X

Cry2 = CppaXnp

Crq2 = Chpo — Cr1 Y1 X X

This yields in M,,19 ,+2 the following:

O0nis (05,15 \" T2 00, s [ 0s; \"Y;
w2 (2] £2%2(2)'8)

6@n+2 8300 =1 8902 8500 i

We now claim the following.

Lemma 2.4. The above equation is equal to

(9Sn+3)n {38%2 OSni2 }
det(df (x,, X
Ml +2))( Do Op1  Opnia

(%) (i) (52
dp1 Oy 0p1 Opn1) \Op1) |

5

which is non-zero.



Proof. Now

aSn+3

Xl---Xn+1 = |: asn+3:| X

1 maSOnH

(e 5e) Goans) - (52

We begin by dividing both sides of the supposed equality by X;...X,,.1. We obain on

one side

asn+2
Tl Op1 T Opnga

08n+3  OSnt3
Op1 " Opnt1

85n+2 :|

det (df (,42)) (852223)

Dividing by {85:;1’2 ...%} and multiplying by {—agg?’ ...—g;';: :

} , we obtain on one side

det(df (2n42)) (a(;;*g) :

0

and on the other

Osp+3  OSpts
Opnis <38n+2 ) T 9 T O¢nn
aﬁon+2 8800 |:85n+2 88n+2

(4.3)

n+1

_Za%wrs dsi \"Y;
dp; \ o Xi|:

1

asn+3 85n+3
Op1 T Opnt1

85'r7,+2 85n+2 :|

Z'Zl e
Op1 " Opnt

Now each term in this sum gives

11 O0nas 08\
—1)" 1+1 + ( 1 ) >
( ) i 0o

0sn43 | Osnt2  OSny2 | | OSnt2  Osni2

Opni2 | Op1 "7 O0pi—1 Opitr1 " Opnil
0sni3 | Os; Os; 9sit1 OSni1
Opi | Op1 """ Opi1 Op; " O

det(df (z;))... det(df™ " (x;)) x

X

85n+3 aSn+3
o1 " Dpmir

dor

|:65n+2

)
8Sn+2
OPn+1
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which simplifies to

—1 agpn 3 asi "
_1)nitHl +
- i (8900) .

Osnis {38n+3 as"”} det(df (z;))... det(df " (x;))

Opnt2 | Op1 " Opnta

O8ni3 Osny2 | Os; _0Os; 9sit1  Osnq1
Op;  Opi | Op1"" " Opi—1 Opi *"" O
Now, we prove the equality by induction. Suppose it is true for n — 1. Then, by relabelling

83n+3
o

points x1, ..., Tpio to X9, ..., 13 and multiplying both sides by , we obtain the equality

Dses\"
det(df(xn+2))< ;@z?’)

Osnt3  Osny3 }

1
O3 (83n+2>n 08p43 O8pio { 92 " Opni1

- Opnia \ 0o dpo  Op1 Osniz  Ospiz
Op1 T Opny1

B i(_l)n—iawnﬁ-i’) <3Si+1>n_1 0541 0Sn3 "
i1 890i+1 3900 3901 6900

Opnt2 | Op2 " Opnii

Osn+3 |:83n+3 Osn+3 :| det(df($z+1)) det(dfﬂ_Z ($i+1))

0Sp4+3 0Snt2 | 0siy1 0siy1 0siy2  OSpt1
Opit1 Opit1 | Op1 77 Op; Opiv1 " Opiyt

We now show that the right hand side of this equation is equal to (4.3). To do this we take

each 86%3 in every term and split it up as

8Sn+3 B 8Sn+3 881 i 8Sn+3 8901
3@0 881 6g00 8g01 8@0

Now we take a single g;g in each term of (4.3) for 7+ > 1 and split it up as

% _ 0s; 08y ds; 0pq
o 0s10py Oy 8900'

Now we subtract (4.3) from (4.4). Notice that the terms with 8;’—(;:3%:% and the terms with
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g—;il%% cancel out, and we are left with the difference being

Osnt3  Osnys
Opa " Opni1

a¢h’ 831 8%%_ 631 a%h

Opnyis (63n+2 ) "

{35n+2 08py3  05p43 05,42 | 051
Opnia \ Opo

0p1 " Opn+1
n a . (9 . n—1
- {erge(G)
— 0pir1 \ Opo

OSni3 {Bsnw 3Sn+3] det(df (wi41))... det(dfn_i(ﬂfiﬂ))

Opnt2 | Op2 "7 Opnia

{65114,2 8Sn+2 :|

X

O8n+3 Osnto | 08it1  0Sita | | O8it2  Osni1
Fpit1 pir1 | o1 " Bpi | | Bpiv1 T Bpita

{35#1 O0spy3  08i1 8Sma} 0sy }

8@1 851 N 851 8901 8@0

a§0n+3 < 051 )”
(=) 2 )
{( ) dp1 \ Opo

Dopsa lasm 38n+3} det(df (21))... det(df" (z1)) }

Opnt2 Op2 " Opny1

Osni2 | Osa  Osni1
Op1 | Op1""" Op1

We now show that this difference is equal to 0. First, we divide by %a and by ag:;;g "‘g;ni '

We also note that

08i1 0Snq3  Osip1 8sn+3} - _% det(df*(z1)).

dor Os1 Os1 Op pit1
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So we have

B (G} s )
aS0n+2 8900 Ospt2  Ospi2
Oouin  foain
- _i00ny3 (83i+1>n_1
+ —1)n X
ZZI{< ) dpir1 \ Opo
Gt det(df (wig1))... det(df™ " (x541)) det(df (1)) }

Osnt2 | 0sit1 Osit1 0Siy2  OSpni1
Op1 " Oy

Opit1 """ Opit1

" Dpnys [ Os1 "
e (Gm)
Genss. dot(df (a1))... det(df "(”“))}

0sni2 |: Osy  OSp41 :|

Opit1

Op1 | Op1 """ Op1
Now we can divide each term by g%f;. If one examines the determinants, they will see

that we can also divide by det(df"(x1)). Doing so yields

69077,4’3 <83n+2)n1 det(df<xn+l))

5g0n+2 8900 Osny2 OSn+2
Op1 T Opnt1

n—1 n—1
n—i OPn+3 [ 0sit1
+; {<—1) it ( Do ) .
det(df (2i41))... det(df" " (x41)) }

Osny2 |:65i+1 85i+1:| [85i+2 3Sn+1}

Opit1 | Op1 7" Opi Opit1 " Opit1

n—1
6S0n+3 <83n+1) 1
+
a@n-‘rl 8900 6Sn+2 8Sn+1 asn+1
Opny1 | Op1 777 Opn
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Now, since we are assuming the equality holds for n — 1, we note this says

88n+2 ) n—1
Do

der(af(een)

asn+2 asn+2
8801 voe _aSDn

_ 0Pn42 (85n+1 > et
01\ O

do1 " Bpn
. _i0Pny2 ( Os; )n_l
_ _1 n Z— v X
;( ) dpi \ o

Isni2 {3Sn+2 8;;:2} det(df (x;))... det(df™*(x;))

Tpnit o1

|:85n+1 65n+1 :|

08nt2 Osnt1 | Os; Js; 0si+1  Osp
Op;  Opi | Op1 """ Opi—1 Opi " Oy

Ospt2  OSn42
D1 Dpn

_ O0¢nto (85n+1 ) o

_890n+1 o [asnﬂ asnﬂ]

o1 " O

n—1 n—1
+ (_1>n7i 890714-2 <83%+1) %
i—0 dpit1 \ Opo
g;:ﬁ {837;2 ...8;;:2] det(df (zi41))... det(df " (z;41))

Osny2 0snt1 | 9siy1 Osip1 0sit2 Osn,
Opit1 Opit1 | Op1 *77 Op; Opit1 " Opit1
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Substituting this into the previous equation yields

n—1
aﬁon+2 8Sn«l»l
agpn+3 Opnt1 O¢o

8S0n+2 8Sn+2 |:85n+1 8sn+1:|

Opnt1 | Op1 """ Opn
n—1 n—1
590n+3{ 0P y2 <3Si+1)
+ — —-H)yr—="= X
; { 3S0n+2 ( ) 3S0z‘+1 6900

det(df (xit1))... det(df" " (zi1))
L

0Spn42 0Snt1 | 0sit1 0Siq1 0Sit2 Osp,
Opir1 Opip1 | Op1 77 Op; Opir1 " Opiy1

Ao @ ()
det(df (2::1))... det (df "~ (2:11)) }}

Osn42 | 0sit1 Osit1 0Siy2  OSpt1
8%‘-&-1

Op1 7 Op; Opit1 " Opit1

Opnt1 | Op1 77 Opn

DPnt3 (aSnJrl ) o 1
a@n+1 8900 0Sn+42 |:6Sn+1 0Sn41 :|
Then for each term, writing

agpn—i—?» 85071-&-3 a3n-i—2 + 8‘10n+3 a‘;Ovl-i-2

890¢+1 B 83n+2 890¢+1 a<ﬁn+2 5<Pz‘+1

we observe that all the terms with gi"ﬁ cancel out, and we are left with

B 0Pn+3 (asn—i-l)n_l 1
85n+2 8900 |:83n+1 85n+1:|

Op1 T Opn

n—1 n—1
—i 83i+1)
o 1) %
det(df(xlﬂ)) det(dfn_i_l(ﬂjlqu)) 8<pn+3
Osni1 |:3S¢+1 38¢+1:| |:85i+2 Osp :| OSp+2

0pit1

dp1 "7 Oy Opir1 " Opit1
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857’:,4»1 85n+1

Then, dividing by gf—":j’ and multiplying by { Do Den

o <asn+1)n_1
o

n—1 n—1
= {(_1)71_1( asﬂ) y

i=0 Yo

0sp 0sp 0sp Osn n—i—
|: 8;;1... 8(,;;1:| |:8891Jt; 8<p:1:| det(df(xzﬂ))det(df 1($i+1))

|:38i+1 63i+1:| |:35i+2 0Sn :|

Op1 "7 Op; Opit1 " 0pit1

We now prove that this is 0 for all n by induction. Note that the base case of n = 2 is

] , we have

easily verifiable. For the rest, suppose it holds for n — 2. If one proceeds in the same
fashion as before (breaking up the partials), they arrive at the conclusion that this is in

fact equivalent to the step before being 0. O

In fact, since all the calculations performed were simple algebra and did not use
the explicit values of the partial derivatives in terms of the curvature of the boundary or
anything to do with the fact that it is a billiard map, we can actually simply relabel the
points 1, ..., Tpio tO Ty, ..., Tp, ., Where ki, ..., ky o is any arbitrary increasing sequence of
numbers, and obtain that by varying the curvature at any n + 2 points, we may vary the
n'" differentials of s, and ¢, with n + 2 degrees of freedom (which is the best one can do
with billiard maps).

Thus, this combined with the fact that if you vary the curvature at points that are
not consecutive points in the orbit then there are no £? terms, we have that we can vary the
billiard map exactly up to the n'" differential generically by varying in small neighborhoods

of n + 2 points on the boundary.
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Appendix A: Finding domains with a saddle point containing a homoclinic

tangency

Our main result in this section is to prove Lemma (1.1).

Proof. We begin with a smooth C*° domain . By ( [37] Theorem 6.4.1) there exists
arbitrarily close to €2y a domain 2; such that the eigenvalues of the differential of the
billiard map composed with itself ¢ times at each ¢ periodic point are not any root of unity,
for every g. Then, due to a result of Aubry Mather theory which states that for a minimal
orbit O with rotation number 1/¢ there exists minimal orbits O, which accumulate to
O under forward and backward iterations (respectively), this implies that every minimal
periodic orbit of €2y is hyperbolic.

Next, we combine two results. It is shown in [25] (Page 146 lemma 14.6) that for a
sufficiently smooth boundary, one may find a coordinate system so that the billiard map

takes the form

f&n) = E+n+ A0 n+ BE ™).

This implies there exist rotational invariant KAM curves which accumulate onto the boundary.
For large ¢, then, we may find minimal orbits of rotation number 1/¢ trapped between these

invariant curves. For instance, we may have the distance between these two KAM curves
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to be of order 1/¢'.

Now, by a result in [21] we have that for these orbits, for two consecutive points
pr = (z1,91), p2 = (22,42) = f(p1), there exist points O = (&1,m) and Oz = (§2,72) such
that 1 < &, & < xo and the orbit of Oy is a heteroclinic orbit from p; to ps, and the orbit
of O, is a heteroclinic orbit from ps to p;. Thus, we have a heteroclinic cycle between the

points p; and p, (see Figure A.1)

15 (p1)

Figure A.1: The dynamics around p; and py, showing the heteroclinic points at O; and Os.

We now let [¢f(p1) be a section of the unstable manifold of p; which contains in its
interior O;. Then we define its iterations as (¥(p;) = T"(I4(p1)). First we state the following

lemma:

Lemma 1.1.1. We either have that [*(p;) already crosses the stable manifold of p, transversally,
or we may perturb the system so that this is achieved (i.e. so that Oy is a point of transversal

intersection).
Proof. Using Perturbation 2, we may perturb to obtain two transversal intersections. [

Similarly, we may take the intersection of W*(py) and W#(p;) at O, to be transverse.
We also define [§(p1) to be a small section of the stable manifold of p; which contains in
its interior Oy, and its iterations as T*(I5(p1)) = I (p1).
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We let W (p2)(W.(p2)) be asection of the unstable (stable) manifold of p, containing
in its interior po. Then by the lambda lemma (see [23|), lim; oo [¥(p1) = W}.(p2), and
lim; o0 12,(p1) = Wit (p2)-

Now, by [26] there exist Birkhoff normal form coordinates around our fixed points.

In these coordinates our billiard map may be conjugated by a function N so that T =

N o f?%0 N~! has the form

T(&n) = (A(En)E A(En) 'n),

where

A(&n) = A+ ar(én)”,

and A is the eigenvalue of df?(p;) with magnitude greater than 1. This equation is valid

when the product 7 is small. We also may normalize so that this is valid for £, 7 ~ 1.
We now define a small neighborhood U® = U#(4) for some 0 < 6 < 1 defined in these

coordinates by {—0 < £ < 0,—1/2 <n < 1/2}. Then by our considerations above we have

for some —M and some subset I° ,,(p1) C I* ,,(p1), that I*,,(p1) C U®, and

I, (p)NUS C ({—5 <&<0,n=-1/2}U{-0<&<0,n= 1/2}),

and [* v (p1) is as close as we would like in the C'*° topology to a vertical line in these
coordinates.
Then, we also define U* = U"(9) in these coordinates by {—1/2 < ¢ < 1/2,0 <n <

6}. We similarly have some large N and some subset (% (py) C 1% (py) that I%(py) C U*,

(o) N U™ ({5=—1/2,ognsa}u{f= 1/2,ogns5}),
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and 1% (py) is as close as we would like to a horizontal line in these coordinates.

Thus, there must be a transverse intersection between [° ,,(p1) and (% (p1). We
now make a few more definitions: We let Of be another point of transverse heteroclinic
intersection of W*"(p;) and W#(psy) which is the next point of intersection after Oy, and
similarly for O . We then define a section of W*(p;) with O in its interior, and label it as
6% (p1). We define its iterations as [} (py) = T*(I§" (p1)). We do the same thing near Os,
and define these as I{"(p;) = T(I5" (p1)). Observe that one may extend along W*(p;) from
[“(p1) to I (p1). We label this as L¥(p;). We now define the region between L¥(p;) and
the strip of W*(py) from O to OF as A¥%(p;). We do the same for the other heteroclinic

point O, and define these regions as A(p;) (see Figure A.2)

Au(pl) La(PQ)
L&(pn\c/_/
LY (p1) | AuGp)
Ls_]\,{(pl)
~ TL?V(Pz)
L§(p1)
As(pl)
- Y W(p2)
RAREEATI:
W2 (p2)
L (p2) A2y (p1) Lo (p2)

Figure A.2: The dynamics near py in Birkhoff normal form.

First observe that the boundaries of these regions are the union of two connected
components which are sections of either the stable or unstable manifold of either p; or ps.
More precisely we define OAY(p1) = L¥(p1) U Li(p2), and OA{(p1) = Li(p1) U L¥(p2). We
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also note that

lim length(L;(p1)) =0 (A1)

i—00
Now the point of transverse intersection we found implies that for some numbers M
and N, we have A% (p1) N A% ,,(p1) is not empty.
We mention one more fact: Since our map is CV=2 close to integrable near the
boundary (see Lemma (1.1.3) in Appendix B), we have by the Stable Manifold Theorem
(see [23]) that W*(p;) and W*(py) are CV =2 close to the manifolds W*(p;) = W*(py) under

an integrable map, which is given explicitly by

y=(C+q " 'U)"?
for some smooth U(z). Thus we have L¥(p;) is a graph over the strip of W?*(py) from
T(O) to TY(O).

We now have the elements required to prove the following:

Lemma 1.1.2. Outside a neighborhood of p;, there is a section L“(p;) of W*"(p;) which

intersections W#(py) at its endpoints and satisfies

dist(L*(py), W*(p1)) = O(¢""K+1/2)

where dist(L"(p1), W*(p1)) is the shortest distance from a point in L"(p;) to a point in

W#(py), and K is the degree of our Lazutkin coordinates.

Proof. We fix N. Suppose that for all m > —M we still have A% (p1) NA2 (p1) is not empty.
Then, we have that as m — oo, the section of JA? (p1) which intersects A% (p1) becomes
arbitrarily small due to (A.1). Hence, Li(p;) approaches arbitrarily close to L¥(p;). This
would prove the lemma.
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In the other case, there is a smallest m so that A% (p1) N A2 _,,(p1) is empty and
A% (p1) NVAS,__p(p1) is not empty, which implies A% (p1) N AJ,_y(p1) is not empty.

If A% (p1) NAZ,_,(p1) is a single point, then we are done. If not, there are at least
two points of intersection between L% (p1) and L, _,,(p1). We examine these in Birkhoff
normal form coordinates near ps. Let gy = (—a, b) be the point in L§(p;) which minimizes
the ¢ coordinate. Then we have ¢y = (—=AVa, \"Vb) and gy = (=AVFa, A=V71h), and
these lie in two regions separated by L? _,,(p1). The distance between the £ coordinate of

these two points is then

Proj; (gn — qn1) = A (A = 1)a
Now, we recall our billiard map is
fiz,y) = (@ +qy + O(¢’y" ),y + Oay™ ™))
so that we have A = 14 O(¢"%+Y/2). Thus the distance between our two points is
Proj,(gn — qn41) = O(a)\Nq(_KHW)

which implies the distance from gy to L2, _,,(p1) is of the same order. This implies that

the distance from qo to L5, n_,,(p1) is O(q=K+1)/2) O

Now, if we perturb by Perturbation 2, moving the unstable manifold of p; while
keeping the stable manifold of p; fixed, with the order of the perturbation as ¢"V*1/2 we

may achieve that the homoclinic intersection is tangential instead of transverse.
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Appendix B: Billiard maps close to integrable near the boundary

The main result of this appendix is to show

Lemma 1.1.3. For each N there exists an integrable map g such that close to the boundary

the billiard map f is CV close g.

Proof. We begin with a smooth C'*° boundary () and associated billiard map f, written in

Lazutkin coordinates as

i T z+ qy + qA(z, y)y™

Y Y+ ¢B(z,y)yN T

We consider the Hamiltonian system with a Hamiltonian given by

2

H(x,y) = CJ% —q "U(),
so that
& =qy
g =q "U'(x).
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Then we have the time-1 map which we label by g(z,y) = (#,9) is given by

<

1 1
= e 4ay+50 " U (@) + oq U (@) (ay) +

N+1 (qy)k_2 (k—1) 2N
=r+qutqg Y U (@) (z,9)

k=2

=2+ qy + qA(z, )y + ¢ CO(2,y)

o . g N+
y=y+q U(:v)+

-N Z U(k ) q_2N+1D(x, y)

k=1

U'(z)y +

=y +qB(x, )y 4+ ¢V D(x, y)

where C(x,y) and D(x,y) are smooth remainders, and we label

[T (U(s) - U(m)) ds

(0972 & K ) ()2
s — @) o Ul +ay) — Ula)
B(z,y) = (qy)N“; X U (z) = (qy)N+2

and choose U(x) so that

1
B(z,~) =U(x+1) - Ulz) = Bz, -).
q
Now the difference between this map and the billiard map is
o =& = q(A(z,y) — A(z,y))y" — ¢ *NC(a,y),

y' — 9= q(B(z,y) — B(z,y)y" ' — ¢ D(z,y).

This implies that if we take y ~ %, then we have for each 0 < kK < N

igk%<ﬂ%w—g@40’<0qN%“

Hence the billiard map is CV~2 close to the map g.
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Appendix C: Absolutely T-Periodic in terms of the Billiard Map

The main result of this section is to prove

Theorem 3. Given a C* billiard map f with associated domain €2, its corresponding
geodesic flow map F' : T'Q) — T'Q2, and a g-periodic point x¢ = (sg, o), if the differential
dfi(xo) is the identity up to order n, then the map F is absolutely T'—periodic up to order

n at (y(so), %) with period T'= Lg where Ly is the length of the orbit of z.

Proof. We consider
g—1
L(SO, e Sq—l) = Z li(Si, Si—i-l)

=0

where [;(s;, $;+1) is the distance between the points 7(s;) and y(s;11). Recall

(%i(si, 8i+1)

S = cos(el)
ali(sia Si—i—l) _
8s—i+1 = COS(%H)

where ] is the angle between 7(s;41) —7(s;) and 7/(s;), and ;. is the angle between
(si41)—y(s;) and v/(s;11). In the case case where we have a billiard orbit (angle of incidence
equal to angle of reflection) these are the same.

Here we consider every s; = (so,¢0) as a function of sy and ¢y, where (s;, ;) =
f(s0,0). Then we prove the following lemma:
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Lemma 3.1. Given a C* billiard map,a g-periodic point zq = (so, o), and the length of

this orbit

L(ﬁo) = 10(807 81(30; @0)) + ...+ lq—1<3q—1(307 Sﬁo)a Sq(Soa SOO));

if the differential is the identity up to order n, i.e.

dfq(.iEo) =1Id + F(l‘o)

such that
k
F
O F(50.:90) _ o 0< i<k 0<k<n,
87808k_3g00
then
k[
O°L(s0,%0) _ g poi0<i<k0<k<n
09500k~

Proof. We first prove it for the first derivatives. We obtain

oL qzi Al;i(si(s0, ¢0), si+1(S0, ¥0))
(950

- (980

1=0

q—1
Os; 0841
= E —cos(p;) =— + cos(pit1)
=0 880 880

0s
= conlen) g2 = conl).

so when evaluated at (sg, o) this becomes

oL 0sq
6_50 = COS(QO()) (8_30 — )

Similarly, we have

a_L _ q—1 ali(Si(So, SOO)J Si+1(807 300))
&PO i—0 (9@0
q—1
i 0841
= — cos(y; + cos(;
g (90 )8 0 (90 +1) D0
0sq
- COS(SO(])a_%a
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so when evaluated at (sg, o) this becomes

oL 0s,
(9_50 = cos(gpo)awo.

Thus for both of these, with the condition that the differential is the identity up to order

n, these are 0.

For higher orders, we note that for 1 < j <k and 1 <k <n,

oL okt oL
FIsodipy  Oisedg) ™t \ Dy

Jj—1 k—j

_ i1 <COS( >> ! <aSq>
T L gshimiagy I\ Y ) G0 \ 9o )

In this case,

az‘+l asq 0
9500 \ Do N
for all these i, [ as a consequence of our differential being the identity up to order n, and so

k
_{3‘ L _, (C.1)
8’“ 38083900

for1<j<k1<k<n.

The other one to check is
OFL B o1 [ OL
85’5 N aslg—l 650

_S o cos(p,) 0 (0s\] _ 01 cos(¢o)
— 2 as]gflii Soq 886 880 85’5*1 ©o )

and since




for i > 1 and

ﬁ(cos(%)) _o ( - sm@q)g—fz) ~0 (C2)

k—1— k—2—i
s, s,

because of our differential being the identity up to order n, we have that

oL

iy
dsk

for 1 <k <n as well. ]

Now we claim that Lemma (3.1) implies theorem 3. Recall that being absolutely

T—periodic up to order n with periodic T" at (xq, Yo, 70, {o) means the map

|FT(557?/;777§) - (x7yan7§>|2

is 0 up to order n at (x,y,n,&) = (%o, Yo, N0, o), Where we interpret points and direction
vectors to be equivalent to points and direction vectors obtained if you extend the geodesic
into all of R? by ignoring the boundary of € and then reflect across {tv/(s) : t € R} where
v(s) is a point in 9 that lies in our orbit.

Consider f9(xy + ), where x = (s,¢). By assumption of our differential being the

identity up to order n, expanding this we obtain

fU o+ x) = 20 + 2 + O(z™).

From Lemma (3.1), we also have

L(zo + x) = Lo + O(2™). (C.3)
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Then since the distance in order to hit the boundary again after q iterates for xy and xg+x

is O(z"*™1), we have

Leot) (s 1 v(f (50 + 8,00 + ©)|1) — V(50 + 8)

F (”( o )’||7(f(80+8,soo+<p)|1)—7(80+8)|I)

A Y(f(s0+ 5,00 +¢)|1) —v(s0 + 5)

- (7‘ ot )’||7(f(80+87900+90)|1)—7(80+8)|l)
v(f(s0+ 8,00+ ©)h) — (50 +5) \|"

*0('@(80”)’Hv(f(sws,soow)h)—v(so+s>||) >

which implies

Lo( (s o s Y(f(so+ 5,00 +¢)|1) —v(s0+ s)
F (7< ot )’||7(f(80+87</)o+¢)|1)—7(80+8)I|)

(e gy AU (50 + 8 00+ 9)1) = (50 + 5)
N (V( o+9) 17 (f(s0+ 5,00 + ¢)|1) —v(so—f—s)“)

*O(K”(SO“)’ e iiiiiiiin) >

which proves the theorem. O
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