

ABSTRACT

Title of Document: EVALUATING HOST INTRUSION
DETECTION SYSTEMS.

 Jesus Molina, Doctor of Philosophy 2007

Directed By: Michel Cukier, Assistant Professor, Department

of Mechanical Engineering

Host Intrusion Detection Systems (HIDSs) are critical tools needed to provide in-

depth security to computer systems. Quantitative metrics for HIDSs are necessary for

comparing HIDSs or determining the optimal operational point of a HIDS. While

HIDSs and Network Intrusion Detection Systems (NIDSs) greatly differ, similar

evaluations have been performed on both types of IDSs by assessing metrics

associated with the classification algorithm (e.g., true positives, false positives). This

dissertation motivates the necessity of additional characteristics to better describe the

performance and effectiveness of HIDSs.

The proposed additional characteristics are the ability to collect data where an attack

manifests (visibility), the ability of the HIDS to resist attacks in the event of an

intrusion (attack resiliency), the ability to timely detect attacks (efficiency), and the

ability of the HIDS to avoid interfering with the normal functioning of the system

under supervision (transparency). For each characteristic, we propose corresponding

quantitative evaluation metrics.

To measure the effect of visibility on the detection of attacks, we introduce the

probability of attack manifestation and metrics related to data quality (i.e., relevance

of the data regarding the attack to be detected). The metrics were applied empirically

to evaluate filesystem data, which is the data source for many HIDSs.

To evaluate attack resiliency we introduce the probability of subversion, which we

estimate by measuring the isolation between the HIDS and the system under

supervision. Additionally, we provide methods to evaluate time delays for efficiency,

and performance overhead for transparency. The proposed evaluation methods are

then applied to compare two HIDSs.

Finally, we show how to integrate the proposed measurements into a cost framework.

First, mapping functions are established to link operational costs of the HIDS with the

metrics proposed for efficiency and transparency. Then we show how the number of

attacks detected by the HIDS not only depends on detection accuracy, but also on the

evaluation results of visibility and attack resiliency.

EVALUATING HOST INTRUSION DETECTION SYSTEMS

By

Jesus Molina

Dissertation submitted to the Faculty of the Graduate School of the

University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

2007

Advisory Committee:
Professor Michel Cukier, Chair
Professor Jonathan Agre
Professor John S. Baras
Professor Ali Mosleh
Professor Gang Qu

© Copyright by

Jesus Molina

2007

ii

Dedication

To Angelines, Gabriel, world peace and you, especially you.

iii

Acknowledgements

No work can be done alone, and this is no exception. First and foremost, I want to

thank my advisor, Dr. Michel Cukier. His commitment to this work was only matched

by my own, with weekdays and weekends devoted to review, critique and

suggestions. I am also very grateful to my committee members, Dr. John Baras, Dr.

Gang Qu, Dr. Ali Mosleh and Dr. Jonathan Agre for their comments and suggestions.

Two mentors were especially vital in this long walk, Dr. Virgil Gligor and Dr. Bill

Arbaugh. They gave me the strength that I needed to reach the end.

This dissertation required an enormous amount of work, and the members of my

laboratory shared the burden. I was lucky to be surrounded by so many talented

people. I especially want to thank Robin Berthier, Christine Lu, Joe Gordon and

Xavier Chorin for providing support to collect and analyze data. Keith Jarrin provided

extensive comments on my presentation, and I can only hope I will be able to do the

same with his own dissertation soon.

The understanding of all my colleagues at Fujitsu laboratories of America kept me

from ending up in a mad house discussing my dissertation with a flower pot. Dr.

Jonathan Agre played a chief role, by not only supporting my efforts, but also taking

the extra step of actually being involved in the process. I also want to thank Dr.

Ryusuke Masuoka, for being patient and kind, and for believing in my success even

when I was not sure myself.

iv

Luis Simon performed the mighty task of cleaning my anarchic bibliography and

transforming my references into a thing of beauty. And regarding things of beauty, I

owe Rosemarie Salguero a love letter for her hours spent reviewing the manuscript.

Finally, friends and family always give support and care. Gabriel Molina, Angelines

Terriza, Gloria Terriza, Ariadna Alvarado and Fernanda Azocar gave me that and

much more, and there is no word to describe how grateful I am to have them by my

side.

v

Table of Contents

DEDICATIO	 .. II

ACK	OWLEDGEME	TS ... III

TABLE OF CO	TE	TS ... V

LIST OF TABLES .. VIII

LIST OF FIGURES .. IX

CHAPTER 1: I	TRODUCTIO	 .. 1

1.1 OVERVIEW OF THE DISSERTATION .. 3
1.2 CONTRIBUTIONS ... 5
1.2.1 Selecting Characteristics ... 6
1.2.2 Evaluating Characteristics ... 6
1.2.3 Evaluating Metrics through Practical Experiments 7
1.2.4 Creation of a HIDS Optimization Framework ... 8

1.3 PUBLICATIONS .. 9

CHAPTER 2: RELATED WORK .. 10

2.1 INTRUSION DETECTION SYSTEMS ... 10
2.2 HOST INTRUSION DETECTION SYSTEMS .. 12
2.3 EVALUATION OF INTRUSION DETECTION SYSTEMS .. 14

CHAPTER 3: EVALUATI	G HOST I	TRUSIO	 DETECTIO	 SYSTEMS 17

3.1 HOST INTRUSION DETECTION SYSTEMS ... 19
3.2 DEFINITION AND DESCRIPTION OF CHARACTERISTICS .. 22
3.2.1 Visibility ... 22
3.2.2 Detection Accuracy .. 22
3.2.3 Attack Resiliency .. 23
3.2.4 Efficiency .. 24
3.2.5 Transparency .. 25

3.3 RELEVANCE OF THE PROPOSED CHARACTERISTICS .. 25
3.4 CONCLUSIONS .. 28

CHAPTER 4: EVALUATIO	 OF VISIBILITY ... 29

4.1 EVALUATING AUDIT DATA .. 31
4.1.1 Measuring Attack Manifestation .. 31
4.1.2 Measuring Data Quality .. 32

4.2 EXPERIMENTAL EVALUATION OF VISIBILITY ON FILESYSTEM DATA.................. 36

vi

4.2.1 Filesystem Activity.. 36
4.2.2 Experimental Setup .. 37
4.2.3 Data Analysis ... 39
4.2.4 Statistics on Filesystem Activity ... 42
4.2.5 Probability of Manifestation per File... 46
4.2.6 Probability of Manifestation per File and per Attacker Action 49

4.3 CONCLUSIONS .. 59

CHAPTER 5: EVALUATIO	 OF ATTACK RESILIE	CY 59

5.1 DEFINITIONS ... 60
5.2 EVALUATING INDEPENDENCY .. 63
5.2.1 Studying the HIDS Data Path .. 64
5.2.2 Defining Privilege Levels and Creating the Independency Score 65
5.2.3 Introduction to Cost Measurements ... 66
5.2.4 Calculating HIDS Independency .. 67

5.3 IMPROVING HIDS INDEPENDENCY ... 69
5.3.1 Using Embedded Hardware ... 69
5.3.2 Using Redundant Elements .. 70
5.3.3 Virtualization .. 71
5.3.4 Trusted Computing ... 72

5.4 EVALUATING RESILIENCY .. 73
5.5 CASE SCENARIO: EVALUATING SAMHAIN INDEPENDENCY 75
5.6 CONCLUSIONS .. 80

CHAPTER 6: EVALUATIO	 OF EFFICIE	CY A	D TRA	SPARE	CY 81

6.1 EFFICIENCY .. 83
6.1.1 Metrics Linked to Efficiency ... 83
6.1.2 Translating Time Delays into Costs ... 86

6.2 TRANSPARENCY ... 88
6.2.1 Metrics Linked to Transparency .. 88
6.2.2 Relationship with Cost ... 91

6.3 CASE STUDY: OSIRIS AND SAMHAIN .. 92
6.3.1 Experimental Setup .. 92
6.3.2 Results .. 93

6.4 EVALUATING EFFICIENCY RELATED TO THE DATA COLLECTED......................... 98
6.5 CONCLUSIONS .. 99

CHAPTER 7: I	TEGRATI	G THE CHARACTERISTICS I	TO A HIDS

COST FRAMEWORK ... 101

7.1 SURVEY OF HIDS FRAMEWORKS ... 101
7.2 A COST FRAMEWORK FOR HIDSS .. 105
7.2.1 Integrating Attack Resiliency and Visibility ... 106
7.2.2 Integrating Efficiency and Transparency ... 107
7.2.3 Operational Cost for HIDSs ... 108

7.3 ESTIMATING THE COST OF A HIDS ... 109

vii

7.4 LINKING DETECTION ACCURACY AND VISIBILITY.. 114
7.4.1 Evaluation Methodology .. 115
7.4.2 Implementing a HIDS Stimulator ... 116
7.4.3 Sample Attack Evidences .. 121

7.5 CONCLUSIONS .. 121

CHAPTER 8: CO	CLUSIO	S A	D FUTURE WORK 123

FUTURE WORK ... 126

APPE	DICES ... 129

APPE	DIX A: FILESYSTEM VISIBILITY METRICS 129

A.1FILES RELATED TO PASSWORD MODIFICATION EVIDENCES............................. 129
A.2 FILES RELATED TO DOWNLOAD EVIDENCES ... 133
A.3 FILES RELATED TO RECONNAISSANCE EVIDENCES ... 137

REFERE	CES .. 140

viii

List of Tables

Table 4-1: Statistics on the Number of Files Targeted 42
TABLE 4-2: PERCENTILE VALUES OF THE FOUR DISTRIBUTIONS OF THE NUMBER OF

FILES .. 43
TABLE 4-3: CORRELATION COEFFICIENTS VALUES .. 46
TABLE 4-4: PROBABILITY OF MANIFESTATION FOR A SET OF SIGNIFICANT FILES 47
TABLE 4-5: DISTRIBUTION OF THE NUMBER OF SESSIONS PER ATTACK EVIDENCE 51
TABLE 4-6: DISTRIBUTION OF THE NUMBER OF FILES PER ATTACK EVIDENCE 52
TABLE 4-7: SAMPLE FILES FOR RECONNAISSANCE EVIDENCES 55
TABLE 4-8: SAMPLE FILES FOR PASSWORD MODIFICATION EVIDENCES 57
TABLE 4-9: SAMPLE FILES FOR MALWARE DOWNLOAD EVIDENCES 58

TABLE 5-1: VALUES OF θ FOR SPECIFIC ENVIRONMENTS .. 73
TABLE 5-2: INDEPENDENCY SCORES FOR SAMHAIN ... 79
TABLE 6-1: EFFICIENCY FOR OSIRIS WITH FILE SIZE OF 142 BYTES 94
TABLE 6-2: EFFICIENCY FOR OSIRIS WITH FILE SIZE OF 13012 BYTES 94
TABLE 6-3: EFFICIENCY FOR OSIRIS WITH FILE SIZE OF 39012 BYTES 94
TABLE 6-4: EFFICIENCY FOR SAMHAIN WITH FILE SIZE OF 142 BYTES 95
TABLE 6-5: EFFICIENCY FOR SAMHAIN WITH FILE SIZE OF 13012 BYTES 95
TABLE 6-6 : EFFICIENCY FOR SAMHAIN WITH FILE SIZE OF 39012 BYTES 95
TABLE 6-7: RESULT OF THE TRANSPARENCY EVALUATION WITH POSTMARK FOR

500/7MB FILES .. 96
TABLE 6-8: RESULT OF THE TRANSPARENCY EVALUATION WITH POSTMARK FOR A

50/62MB FILES .. 96
TABLE 7-1: COST RELATED TO HIDS EVALUATION ... 105
TABLE 7-2. OPERATIONAL COSTS .. 111

TABLE 7-3: DP AND IDSCost FOR DIFFERENT VALUES OF
RCost 113

TABLE 7-4: FIELDS INCLUDED IN THE DATABASE .. 118

ix

List of Figures

FIGURE 3-1. COMPUTER SYSTEM FINITE-STATE MACHINE MODEL 19
FIGURE 4-1. DETAIL OF SESSION ANALYSIS ... 40
FIGURE 4-2. DISTRIBUTION OF FILES READ .. 45
FIGURE 4-3. DISTRIBUTION OF FILES WRITTEN .. 45
FIGURE 4-4. FILE DISTRIBUTION OF IG, PPV AND NPV VALUES FOR RECONNAISSANCE

 ... 55
FIGURE 4-5. FILE DISTRIBUTION OF IG, PPV AND 7PV VALUES FOR PASSWORD

MODIFICATION EVIDENCES .. 56
FIGURE 4-6: FILE DISTRIBUTION OF IG, PPV AND 7PV VALUES FOR MALWARE

DOWNLOAD EVIDENCES ... 58
FIGURE 5-1. HIDS DATA PATH .. 65
FIGURE 5-2. EXAMPLE SCHEME FOR HARDWARE HIDSS ... 70
FIGURE 5-3. SCHEME OF A SECURE KERNEL AS A HIDS .. 72
FIGURE 5-4. DATA PATH FOR SAMHAIN ... 77
FIGURE 6-1. TIMINGS RELATED TO EFFICIENCY ... 85
FIGURE 6-2. SAMPLE EFFICIENCY FUNCTIONS .. 88
FIGURE 6-3. AVERAGE TIME TO MANIFEST FOR SAMPLE FILES (IN SECONDS) 99
FIGURE 7-1. DETECTION TREE ... 106
FIGURE 7-2. SAMPLE ROC .. 110
FIGURE 7-3. MAPPING FUNCTION FOR EFFICIENCY ... 110
FIGURE 7-4. MAPPING FUNCTION FOR TRANSPARENCY ... 111

FIGURE 7-5. IDSCost FOR DIFFERENT INDEPENDENCY SCORES. 113

FIGURE 7-6. COMMAND LINE STIMULATOR .. 118
FIGURE 7-7. SELECTION SCREEN FOR THE HIDS STIMULATOR 119
FIGURE 7-8: UPLOADING AN ATTACK EVIDENCE ... 120

1

Chapter 1: Introduction

Intrusion detection systems (IDSs) monitor data (e.g., filesystem files, network

packets, and memory activities) collected from a computer system to identify

potentially malicious activity and to raise alerts related to the detected events. IDSs

are widely deployed tools since security breaches cannot always be prevented.

Therefore, discovering an ongoing attack or intrusion (i.e., a successful attack) allows

the defender to react and minimize the possible damage of the attack or intrusion.

The detection of an attack is achieved by inspecting data. This data maybe acquired

from different resources. Debar [DDW99] and Axelsson [Axe00b], in their respective

taxonomies, divided IDSs into two groups depending on the source of the audit data.

If the data collected were security logs, the IDS was called a host intrusion detection

system (HIDS). If the IDS detection engine consumed network information, the IDS

was called a network intrusion detection system (NIDS). While this distinction is still

used in the literature, HIDSs have evolved from security log checkers into complex

systems, which not only analyze logs, but also other resources including system calls

[WFP99] and the files on the filesystem [KS94]. Moreover, while HIDSs were

usually implemented as simple processes on the supervised system, HIDSs now

include the use of embedded hardware [MA02] and virtualization [Lit05].

The quantitative evaluation of IDSs is a critical research topic that has important

practical applications. Such evaluation is necessary, for example, to compare different

IDSs and to determine the optimal operational point of the IDS when parameters can

be adjusted. Today the focus of IDS evaluation is restricted to the ability of the IDS

2

detection engine to distinguish between malicious and normal activity. The two

metrics to quantify the accuracy of this classification are the probability for true

positives, which relates to correctly labeling malicious activity with an alert, and the

probability for false positives, which relates to incorrectly labeling a set of non-

malicious activity as an alert. Experiments to estimate these metrics have been

performed by evaluating the accuracy of the IDS detection algorithm. Detection

accuracy is usually leveraged by environmental factors to create composite metrics.

These composite metrics better assess an IDS when deployed into a specific

environment. Examples of environmental factors are the probability of an attack

[Axe00a] and the cost related to IDS functioning [CBS06, JU01, LFM02].

Restricting the evaluation to the accuracy of IDS detection engine is often enough to

precisely assess the IDS when applied to NIDSs, which are the most widely deployed

IDSs. HIDSs acquire internal data from the system supervised to detect intrusions.

Once overshadowed by NIDSs as a secondary tool, HIDSs are subject to renewed

attention due to their effectiveness at detecting the emerging threat of insider attacks

and the increasing use of point-to-point cryptography. In general, we cannot apply the

same assumptions to HIDSs that were used for NIDSs. The different HIDS

techniques provide benefits that cannot be quantified or evaluated solely by looking at

the detection engine. HIDSs continue to evolve, and we need methods fair evaluation

methods.

In this thesis, we analyzed the impact of the distinct HIDS traits by proposing a set of

additional quantifiable characteristics. We argued that, for HIDSs, detection accuracy

not only depends on the accuracy of the IDS classification engine’s detection

3

algorithm, but also on the specific attributes of the data audited (visibility) and on the

difficulty of corrupting the HIDS in the event of an attack towards the system

supervised (attack resiliency). Moreover, composite metrics need to incorporate

specific HIDS characteristics associated with environmental factors. Hence, we also

quantify the impact of the overhead caused by the HIDS on the system supervised

(transparency) and the timely detection of an attack or intrusion (efficiency).

1.1 Overview of the Dissertation

Chapter 2 covers the related work to this thesis. The subjects covered are IDSs and

their evaluation. The section on IDSs contains an introduction on IDSs, a brief history

and a description of IDSs related to existing IDS taxonomies. We described the IDS

model used throughout the thesis and the key differences between HIDSs and NIDSs.

We then performed a survey of current HIDS technologies. The section on IDS

evaluation contains an introduction to security metrics and current evaluation

approaches for both NIDSs and HIDSs. We then present recent work on evaluating

IDSs.

Chapter 3 describes the concepts of the proposed HIDS evaluation methodology. We

introduce a set of characteristics for evaluation: accuracy, visibility, transparency,

efficiency and attack resiliency. Visibility evaluates the data collected; accuracy

examines the correctness of the detection algorithm; transparency evaluates the

impact of the HIDS to the system supervised; efficiency covers the impact of delayed

detection of an intrusion; and attack resiliency evaluates the strength of the HIDS to

4

subversion attack attempts. The characteristics are compared with other proposed

characteristics found in the literature. The chapter concludes with a study of the

relationship between the characteristics.

Chapter 4 contains the methodology and metrics used to evaluate HIDS visibility.

HIDS visibility links the data collected to attack detection. Attacks that do not

manifest in the data will not be detected by the HIDS. To measure the effect of the

data collected on the detection of attacks, we introduced the probability of attack

manifestation and metrics related to data quality (i.e., relevance of the data regarding

the attack to be detected). The metrics were applied to evaluate filesystem data, which

is the data source for many HIDSs. The experiment consists of setting up honeypots

and studying the file actions performed by attackers. The file actions are analyzed to

provide the corresponding measures: the probability that a file is utilized by an

attacker and the quality of the data related to a specific set of attack evidences.

Chapter 5 explains how to perform an evaluation of attack resiliency. We described a

HIDS by means of a data path and study each entity in the data path for possible

attacks. We focused on attacks towards the system supervised and calculated the cost

of each attack, called an independency score. The independency score is used to

estimate attack resiliency, which is the probability that an attack will succeed in

subverting the HIDS. We estimated these parameters for the HIDSs Samhain and

Osiris.

Chapter 6 introduces the methodology to evaluate efficiency and transparency. Both

characteristics are performance-based characteristics. More precisely, these

characteristics are the time to receive a notice by the HIDS and the unintended impact

5

of the HIDS on the host’s performance, respectively. In the case of efficiency, we

proposed the metric of the time elapsed between data collection and a HIDS alarm.

We linked this metric to cost to understand the real impact on the host. For

transparency, we measured the reduction of HIDS performance caused by the

utilization of shared resources by the HIDS. We linked this metric to the cost related

to decreased performance. We evaluated efficiency and transparency for two HIDSs,

Osiris and Samhain.

Chapter 7 provides a discussion on how to integrate the proposed characteristics into

a single framework for optimization. We discussed several HIDS optimization

frameworks based on accuracy and showed that most of them can be framed as a cost

framework. We showed how the proposed HIDS characteristics can be integrated into

the suggested cost framework. We provided a numerical study of how attack

resiliency impacts detection accuracy.

Chapter 8 contains the conclusions, a summary of contributions of this thesis and

future work to expand the research initiated in this thesis.

1.2 Contributions

To create a framework for evaluating HIDSs, several research issues were resolved.

First a set of characteristics were identified and defined. For each characteristic, we

introduced metrics and described a methodology to obtain measures. We developed

experiments to estimate these metrics. The experiments included an in depth study of

filesystem usage by attackers on four honeypots during 24 days, the creation of a tool

called HIDS stimulator to link visibility and accuracy, the evaluation of transparency

6

and efficiency for two HIDSs, and the creation of attack trees on the Samhain and

Osiris HIDSs by launching a set of attacks. To optimize these metrics, we modified

an existing IDS cost framework to include these characteristics.

1.2.1 Selecting Characteristics

Detection accuracy is the characteristic evaluated in most IDS evaluations. Previous

research lacks the development of an evaluation for additional characteristics of

HIDSs. This research showed that a set of five quantifiable characteristics improves

current HIDS evaluations. The characteristics are: accuracy, visibility, transparency,

efficiency and attack resiliency. We first defined these characteristics and

demonstrated their importance to evaluate HIDSs.

1.2.2 Evaluating Characteristics

One reason to select the proposed characteristics was that they are quantifiable. The

next step was to identify metrics related to the proposed characteristics. For visibility,

we studied the probability of attack manifestation and the quality of the data before

entering the detection engine. We showed that the data collected affects the overall

accuracy of the system, and that this impact can be measured.

To quantify attack resiliency we introduced the probability of subversion. As data on

attempts to modify a HIDS during the course of an attack is rarely available, we

estimated these attempts. We restricted the scope of our research to attacks directed

towards the HIDS performed as part of an attack towards the system supervised. We

introduced the independency score, based on the cost of subverting sections of the

HIDS that was then used to estimate the probability of subversion.

7

Transparency and efficiency had been informally quantified before, but this

quantification had not been standardized. For example, previous studies of efficiency

never accounted for the time an attack takes to manifest in the data collected by the

HIDS. In the case of transparency, most evaluations were composed of a set of

arbitrary performance tests, disregarding the type of resources shared between the

system supervised and the HIDS. We addressed these problems by providing a

methodology to collect the metrics and providing tools to integrate them into cost

based frameworks.

1.2.3 Evaluating Metrics through Practical Experiments

To validate the proposed metrics we performed a set of experiments. For visibility we

performed an in depth study using honeypot data. The data was collected over a

period of 24 days and contained all system calls created as part of a SSH compromise.

We developed customized scripts to create a filesystem centric perspective of each

compromise, providing statistics of different types of file usage. We studied these

results to quantify the probability of attack manifestation for each file on the

filesystem. Then we extracted a set of attack evidences (e.g., password modification)

and applied the proposed metrics to evaluate the quality of each file to detect the

attack evidence. Finally, we measured the time from the start of an attack to the attack

manifestation for each file utilized. The study validated the importance of visibility as

a characteristic, as only a few files were necessary to detect most attacks. In most

cases, without modifying the detector, HIDS results can be improved by selecting the

right data to be collected.

8

The experiment on the honeypots was complemented by the creation of an evaluation

tool called HIDS stimulator. Attack evidence samples as observed in our initial

experiment collecting attack data were coded and organized to create evidence of

attacks. This evidence was ordered depending on the data where they manifested.

We installed two HIDSs, Osiris and Samhain, and applied the methodology for

estimating independency and attack resiliency. The evaluation consisted of first

finding the data path and then studying the independency of the HIDSs. This second

step was performed by launching a sample of attacks towards the different entities of

the HIDS data path to assess the complexity and feasibility of a subversion attack. We

created a numerical analysis for a Receiving Operating Curve (ROC), showing that

the inclusion of the probability of subversion modifies the optimization results for

HIDSs.

We evaluated transparency and efficiency on Samhain and Osiris. For transparency

we first tried micro-benchmarks for the shared resources (in this case, the filesystem),

but the results were inconclusive. We found through experience that macro-

benchmarks, which heavily utilize the shared resources are better fitted to understand

the performance decrease. Efficiency was also measured and compared for each

HIDS.

1.2.4 Creation of a HIDS Optimization Framework

While many IDS optimization frameworks have been proposed, recent research has

shown that most of those frameworks can be cast into a cost framework. A cost

framework includes weights for each of the detection accuracy metrics. As a result,

9

the framework provides an estimated cost for the different operational points of the

IDS. The optimal IDS operational point appears when the minimum cost is achieved.

As part of this research we showed how to include the proposed characteristics in the

cost framework. Visibility and attack resiliency directly modified accuracy

characteristics, while efficiency and transparency are transformed into costs

depending on operational parameters. As many of the proposed characteristics are

interrelated (e.g., collecting more data may impact efficiency), the proposed

framework provides a way to perform multidimensional optimization for HIDSs.

1.3 Publications

This research led to the publication of two conference articles and the submission of

one journal article:

[1] Jesus Molina, Xavier Chorin and Michel Cukier. Filesystem Activity Following a
SSH Compromise: An Empirical Study of File Sequences In Proc. 10th International
Conference on Information Security and Cryptology (ICISC 2007), Seoul, Korea,
November 29-30, 2007 (to appear).

[2] Jesus Molina, Joe Gordon, Xavier Chorin and Michel Cukier. An Empirical Study
of Filesystem Activity Following a SSH Compromise. In Proc. 6th International
Conference on Information, Communications and Signal Processing (ICICS 2007),
Singapore, December 10-13, 2007 (to appear).

[3] Jesus Molina and Michel Cukier. Evaluating Attack Resiliency for Host Intrusion
Detection Systems. Submitted to Journal of Information Assurance and Security.

10

Chapter 2: Related Work

In this chapter we first review previous work on intrusion detection systems. Then,

we survey host intrusion detection systems. Finally, we discuss existing research on

intrusion detection system evaluation.

2.1 Intrusion Detection Systems

The goal of intrusion detection systems (IDSs) is to identify attacks directed towards

the system (or systems) supervised. The term “system(s) supervised” in the context of

this thesis is used to refer to the computer system(s) monitored by the IDS. The

system monitored can be a server, a desktop or any other kind of device (e.g.,

network equipments) [DW99].

Because computer systems can be the target of a wide range of attacks, preventive

defenses like firewalls or access control mechanisms are usually insufficient to deter

all possible threats. Historical incidents like the Internet Worm [Orm03] or more

recent events, such the apparition of malicious worms like Code Red [MSC02], have

shown that systems are far from being secure.

Research on IDSs began with two seminal works. The first was a technical report by

Anderson [And80] called “Computer security threat monitoring and surveillance.”

This work was later followed by Denning’s “An Intrusion Detection Model.” [Den87]

Both works provide the foundation for most of the current IDS research. Since then,

many research efforts have appeared to develop IDSs [Por92, Roe99, VK99, LZH02].

11

Several taxonomies exist to describe the possible approaches for intrusion detection.

Representative taxonomies appeared in [DW99] and [Axe00b].

An important distinction is between network intrusion detection systems (NIDSs) and

host intrusion detection systems (HIDSs). Historically, HIDSs worked with log files

to detect intrusions. NIDSs, on the other hand, inspected network data to detect

attacks. As HIDSs now also analyze data other than logs, we can extend the definition

for HIDSs to “IDSs that analyze data existing on the system supervised,” while

NIDSs are defined as “IDSs that analyze data outside the system supervised.”

Until recently, NIDSs were the preferred choice to supervise systems. Some strong

points for NIDSs that made them the favored choice are:

• NIDSs can supervise more than one host at the same time

• The deployment location of NIDSs (outside the host) minimizes problems

related to the integrity of the system supervised

• Network data have not yet reached the host, and thus attacks may be

prevented

However, NIDSs also have weak points that recently gained relevance:

• NIDSs are unusable if the network data are encrypted

• NIDSs are ineffective against insider attacks not using the network

• NIDSs are relatively simple to evade [PN98]

As a result, HIDSs currently are a necessary tool for many security environments.

Another common distinction between IDSs is the analysis technique of the detection

engine. The techniques can be divided into anomaly based, where the data are

checked against a regular usage baseline to find deviations, misuse based, where the

12

data are compared to a known database of signatures, and policy based, which uses a

set of policy rules to find incorrect states.

2.2 Host Intrusion detection Systems

Host intrusion detection systems analyze existing data on the system supervised to

identify attacks. As such, at least part of the HIDS needs to reside on the system

supervised. In this section we provide a survey of HIDSs that is by no means

comprehensive, but is representative to show the growing importance of HIDSs. We

divided the survey into functions of the classification technique of the HIDS (i.e.,

policy, misuse and anomaly).

Policy-based HIDS: Tripwire [KS04], AIDE [LV], Osiris [Osi] and Samhain [Sam]

are software-based HIDSs, which collect data from the filesystem according to a

policy. The policy describes a set of features that should be checked, including

integrity and other attributes of the filesystem. If the filesystem does not maintain the

integrity characteristics specified by the policy, an alarm is raised. I3fs [PKSZ04]

performs a similar integrity verification at the operating system level by using a

stackable filesystem. Komoku [Mol01, MA02] also verifies file system integrity, but

is implemented in the form of a PCI card, accessing the hard disk independently.

LIDS [HB] and BlueBox [CC03] implement a certain restrictive policy in the kernel.

This is achieved by implementing a set of sensors, which are then embedded in the

kernel as kernel hooks. These sensors monitor the system calls and react when the

policy is bypassed by examining the actions against a rule set. Finally, the Trusted

Computing Group (TCG) [Gro03a] proposed the use of a chip, the Trusted Platform

13

Module (TPM) [Gro03b] as the cryptographic repository of a series of chained

measurements on a system. These measurements are then compared to a policy

through a mechanism called attestation. If a deviation exists, the attestation service

will raise an alert.

Misuse-based HIDS: Virus and malware scanners, like ClamAV [Koj], are the most

common security countermeasures against malicious activity. Virus scanners are

HIDSs that verify the content of files against a database of signatures. The database

contains patterns, which uniquely identifies viruses and other malware. If a match is

found, an alert is raised. The scanning can be done interactively (e.g., on demand) or

transparently (e.g., on access). Note that Avfs [MDWZ04] use a stackable file system

to implement this functionality.

Anomaly-based HIDS: Historically, HIDSs were anomaly-based IDSs verifying log

files on the host. An example is eXpert-BSM[LP01], part of the EMERALD [PN97]

framework. Ph [SZ00] monitors the interaction of the processes with the operating

system. If a deviation from normal usage is perceived in the system call usage, Ph

concludes that something is wrong and that an intrusion has happened. Livewire

[GR03] and Hypervisor IDS [Lit05] implement mixed anomaly and policy-based

sensors but deploy them in a virtual machine. Virtual machines provide several

benefits, including a better internal visibility and an increasing protection from

attackers. In Livewire, the sensors are implemented using VMWare [VMw04], while

Hypervisor IDS embeds the sensor in the paravirtualized virtual machine monitor

Xen [BDF+03].

14

2.3 Evaluation of Intrusion Detection Systems

A possible approach to evaluate IDSs is to use international evaluation standards,

such as the Common Criteria for Information Technology Security Evaluation (CC)

[ISO98]. The CC provides a numerical score called the Evaluation Assurance Level

(EAL), ranging from one to seven, to measure the technological achievement of a

system against a certain security target, called a Protection Profile (PP). While the CC

is a useful and accepted evaluation standard, there are serious drawbacks for its use

for evaluating HIDSs. First, not all HIDSs come with an EAL from the manufacturer,

as EALs are resource intensive to acquire both with respect to time (often months)

and cost (often thousands of dollars). Second, as the EAL is tailored to a security

target, EALs may or may not include features necessary for evaluation. For example,

the PP for an IDS security scanner [Cor05] assumed a non-hostile environment and

that no attack would be attempted to subvert it. The security evaluation for the

Dragon IDS, [Ent04] assumed that the threat level of the environment was

unsophisticated and that the hardware would not be tampered. These two examples

show that comparing products by their EAL is only valid in the case that they share

the same PP target.

To avoid these problems, IDSs are usually evaluated by analyzing specific

characteristics, and creating corresponding security metrics. Good security metrics

need to be quantitative. Often the evaluation of HIDSs is qualitative or lacks the

necessary information to be rigorous[FOCT02]. Qualitative evaluations are easier to

create, and can be useful when performed on a small set of targets. However, for most

cases, metrics need to be used to quantify the characteristics analyzed. In particular,

15

the metrics analyzed so far have been almost always restricted to the rate of detection,

referring to the number of attacks detected from a pool of attacks, and the rate of false

alarms, which measure the number of alarms raised in the presence of normal

behavior. [LHFK00, JU01].

The first IDS evaluation effort was conducted by Puketza [PZC+96]. This work

proposes a methodology based on the creation of a software platform for evaluating

IDSs. The software platform was composed of scripts generating background traffic

and attacks. After this initial effort, others followed [DM02]. However, by far the

most recognized effort to evaluate IDSs was performed by Lincoln Labs [LHFK00].

Lincoln Labs’ intrusion detection evaluation was the first effort to standardize IDS

evaluation, by including several categories of standard network exploits and other

forms of malicious traffic. The approach to perform the evaluation was as follows. A

set of seven weeks of training data were given to IDS vendors. The data consisted of

a mixed set of labeled attacks and normal data. The vendor could then utilize this data

to configure their IDS. The actual evaluation was performed with data generated

separately. The results included the probability of detection for each IDS, but only if

the rate of false negatives was inferior to a threshold. Many critiques appeared

afterwards, raising doubts on the validity of the evaluation [McH00] or proposing

more standardized approaches for evaluation [AAL+03]. However, most of them

propose a similar approach to evaluate IDSs by evaluating the accuracy of the

detection engine. A large discussion exists for other characteristics to be also

evaluated [MHL+03, Axe00b]. We will discuss in detail the other characteristics in

Chapter 3.

16

As part of the evaluation of HIDSs, we also analyzed the impact of the collected data

on the HIDS evaluation. Killourhy [KMT04] explored data driven behavior to create

a defense-centric taxonomy based on system call usage. He created an attacker-

defender testbed with 25 attacks launched against a target machine vulnerable to all

exploits. The trace of system calls was used to divide the 25 exploits based on the

type of system call behavior. A similar study to describe system log activity was

conducted by Barse and Jonsson [BJ04]. They launched a set of attacks and described

their manifestations in different types of system log data. In their follow up paper,

they described how to use these manifestations to automatically separate attacks from

normal behavior in system logs. The results from these works are mainly qualitative.

In [LX01], several information-theoretic metrics (i.e., entropy, conditional entropy,

relative conditional entropy, information gain, and information cost) were proposed to

study audit data for intrusion detection. The proposed metrics were then applied to

three data sets: system calls, BSM logs and network tcpdump data. Entropy based

metrics were later generalized in [GDF+06a, GDF+06b] for the analysis of the

detection engine.

17

Chapter 3: Evaluating Host Intrusion Detection Systems

The quantitative evaluation of intrusion detection systems (IDSs) is a critical research

topic that has important practical applications. Such evaluation is necessary, for

example, to compare different IDSs and to determine the optimal operational point of

the IDS. Today, the focus of IDS evaluation is often restricted to the ability of the

IDS detection engine to distinguish between malicious and normal activity. The two

metrics used to quantify the accuracy of such classification by the IDS are the

probability for true positives, which relates to correctly labeling malicious activity

with an alert, and the probability for false positives, which relates to incorrectly

labeling a set of non-malicious activity as an alert. Accuracy metrics are often

leveraged by external environmental factors to create composite metrics. These

composite metrics better reflect the qualities of an IDS when deployed in a specific

environment. Examples of environmental factors are the probability of an attack

[Axe00a] and the cost related to IDS functioning [CBS06, JU01, LFM+02].

Assessing accuracy by focusing on the detection engine is often enough to evaluate

IDSs when applied to network intrusion detection systems (NIDSs), which are the

most widely deployed IDSs. NIDSs reside outside the host and usually collect

network data1 to detect intrusions. Since a NIDS resides outside the host, it does not

directly affect the operation of the host. Since NIDSs collect network data, they have

1 For the remainder of this thesis, if not explicitly stated, we suppose that the data collected by NIDSs

is network data.

18

the following detection properties: 1) the detection occurs in real time, before the

malicious activity appears on the host, and 2) every remote non-encrypted attack

appears in the collected data.

Host intrusion detection systems (HIDSs) are another type of IDS that acquire

internal data from the host to detect intrusions. Once overshadowed by NIDSs, HIDSs

are subject to renewed attention due to their effectiveness at detecting the emerging

threat of insider attacks and the increasing use of point-to-point cryptography.

In general, we cannot apply to HIDSs the same assumptions that were used for

NIDSs. We argue that the HIDS’s detection accuracy not only depends on the

accuracy of the IDS classification engine’s detection algorithm, but also on the

specific attributes of the data audited (visibility) and on the difficulty of corrupting the

HIDS in the event of an attack (attack resiliency). Moreover, composite metrics need

to incorporate specific HIDS characteristics associated with external environmental

factors. Hence, we also quantify the impact to the performance of the system

supervised caused by the HIDS (transparency) and the timely detection of an

intrusion (efficiency).

The structure of this chapter is as follows. We first describe the IDS model we will

apply thorough this thesis and then the differences between NIDSs and HIDSs. The

following section contains the definition of the proposed characteristics: visibility,

accuracy, attack resiliency, efficiency, and transparency. We then make the case on

the relevance of having selected these five characteristics to evaluate HIDSs.

19

3.1 Host Intrusion Detection Systems

A computer system can be represented by a finite-state machine where at any given

time the system is in a state s S∈ , S representing a finite set of states. A transition (α)

occurs from one state to another when an input is applied to the system. The next

state depends on the previous state and the input. A security policy is a statement that

partitions states into authorized (or secure) states, referred as Sa, and unauthorized (or

insecure) states, referred as Sua. A secure system starts in a secure state and never

transitions to an insecure state. Most formal models for computer security can be

considered as interpretations of this general representation [Lan81].

Figure 3-1. Computer System Finite-State Machine Model

An intrusion (or security breach) occurs when the system transitions to an insecure

state. We define an attack as the set of inputs, transitions and states that occur as part

of an intrusion. A security mechanism is defined as the procedures that enforce a

given security policy. We assume that the computer system features a security policy

for the three basic security properties: confidentiality, integrity and availability.

We define an IDS as a tool which goal is to accurately detect attacks by evaluating an

input vector of audit data D, D={d0, d1, d2,..}, where di represents the minimal data

unit. There exists often a certain confusion between attack and intrusion. An intrusion

20

is defined to be “a deliberately-malicious software-domain operational fault that

originates externally to the (technical) system boundaries” [PS03]. An attack is “an

intrusion attempt and an intrusion result that has been (at least partially) successful”

[PS03]. In this thesis, we suppose that every attack leads to an intrusion, and hence

detecting any part of an attack leads to the detection of an intrusion. Consequently,

we will refer to an intrusion or an attack indistinctively.

An attack is noticeable by the IDS if it detects any attack evidence related to this

attack. Attack evidences include inputs by the attacker (i.e., commands sent,

keystokes), transitions and states that occur as part of an intrusion. From the

perspective of an IDS, we can describe an attack as a set of attack evidences, A={e0,

e1,…}.

If the computer system includes an IDS, we introduce a new state, the alert state. A

system transitions to the alert state when the IDS detects an attack. We denote this

transition as an alert (AL). The system may transition from a secure state to an alert

state if the IDS incorrectly raises an alert. We denote as TP (true positive) the

probability of transition from an insecure state to an alert state, and FP (false positive)

as the probability of transition from a secure state to an alert state. Additionally, we

define 1-TP as the probability of false negatives (FN), and 1-FP as the probability of

true negatives (TN). We suppose that once reached an insecure state, the system only

transitions back to a secure state when the intrusion is detected and measures have

been taken to remove the intrusion.

An IDS is composed of an agent or collection engine, a classifier or detection engine,

and a notifier or reporting engine [Bis02]. The collection engine gathers the data and

21

may dissect the different information provided by the data collected. A single IDS

may have more than one collection engine. The detection engine evaluates the

information provided by the agent and outputs a decision on the current state of the

system. For the remainder of this thesis, we will assume a single detection engine for

an IDS and will treat two distinct detection engines as two IDSs even if they share an

agent. Finally, the decision output will be transported to the consuming party by the

notifier. The consuming party may be human (an administrator) or an automatic tool

that may perform a set of actions to minimize or prevent damages to the system (as in

the so-called intrusion prevention systems).

HIDSs are defined as a subset of IDSs that consume internal data from the supervised

system. Hence, even if the detection engine resides outside the supervised system, we

define the IDS as a HIDS as long as the collection is performed on the supervised

system. In some instances the detection engine may consume both internal and

external data to the supervised system. In that case, we suppose that we can divide the

IDS into two different IDSs (i.e., one NIDS and one HIDS) and create a composite

output.

We assume that the consuming party acts correctly: a false alarm will be detected as

such and the system will be reverted from the alert state to a secure state. In the case

of a true positive, the consuming party will take the necessary actions to revert the

state to a secure state.

22

3.2 Definition and Description of Characteristics

This section contains the definition and a description of the proposed characteristics:

visibility, accuracy, attack resiliency, efficiency, and transparency.

3.2.1 Visibility

Definition 3-1. Visibility reflects the ability of the HIDS to collect data where an

attack manifests.

HIDSs collect audit data from different sources, including the filesystem [KS94,

Wot05], system calls [WFP99] and memory [PFMA04]. An intrusion may or may not

appear in the audit data. If any evidence of the attack appears in the data collected, we

say that the attack manifests in the data. Evidently, if the attack does not manifest in

the data, the intrusion will not be detected by the HIDS, hence decreasing the

probability for true positives. Hence, it is necessary to study how likely a malicious

event is to appear in a set of data. In Chapter 4 we provide metrics to measure the

probability that an attack manifests in a set of data. We also provide metrics to

evaluate the quality of data collected. This is necessary to optimize the collection of

the data most relevant to detect attack evidences. The results modify directly the

probability of true positives of the HIDS.

3.2.2 Detection Accuracy

Definition 3-2. Detection accuracy reflects the ability of the detection engine of the

HIDS to raise alerts only in the event of an intrusion, which manifests in the audited

data.

23

A detection engine applies different classification techniques to correctly detect an

attack in the data collected. The goals of a detection engine are: 1) to detect an attack

whenever it manifests in the data fed to the detector, 2) not to raise false alarms

otherwise. Current evaluations of IDSs suppose that the results of evaluating the

detection engine provide the overall probability of true positives and false positives.

This is not true in general: the probability of detection may be modified by other

characteristics of the HIDS. The probability of detection (PD) and the probability of

false alarms (PFA), as described in the literature ([AAL+03, LHF+00]), will be used to

evaluate the accuracy of the detection engine.

3.2.3 Attack Resiliency

Definition 3-3. Attack resiliency reflects the resistance of the HIDS to subversion

attacks in the event of an intrusion.

A HIDS subversion consists in a successful attack against the HIDS that as a result

modifies its output. As a part of an intrusion, the attacker may decide to corrupt the

HIDS to prevent the occurrence of an alert. In the course of subversion, the attacker

may modify any element in the path, from data collection to alert reporting, to

compromise the HIDS result. As a result, if the attacker is successful, the attack will

be missed, decreasing the probability of true positives. Since a HIDS commonly

shares many exploitable elements with the supervised system, this is a fairly common

strategy. In Chapter 5 we evaluate the probability that a HIDS will be subverted as

24

part of an attack towards the system supervised. We also describe the strong

relationship between the independency of the HIDS from the system supervised and

the probability of subversion. Hence, to estimate the probability of subversion, we

describe the independency score, a metric quantifying the level of independency of

the system.

3.2.4 Efficiency

Definition 3-4. Efficiency describes the ability of the HIDS to timely detect

intrusions.

The ability to timely detect attacks is crucial for most environments. However, not all

HIDSs have this ability. In some cases, a delay exists between the initial intrusion and

its detection. Typically, IDSs are divided into real-time IDSs, where the attack is

detected before the intrusion materialized, and off-line IDSs, where the IDS detects

the ongoing or finalized intrusion. This distinction does not provide enough

information to precisely study the HIDS achievements. Indeed, some off-line HIDS

act faster than others. Moreover, the definition of a real-time for HIDSs is difficult to

specify. HIDSs may collect data continuously but only detect an ongoing intrusion

when unauthorized states manifest in the collected data. In Chapter 6 we discuss

methods to evaluate efficiency. In particular, we demonstrate that efficiency also

relates to the data collected, introducing the time to detect as a metric for efficiency.

We also associate efficiency as a factor which increases the cost of a HIDS and

provide possible mapping functions between efficiency and cost.

25

3.2.5 Transparency

Definition 3-5. Transparency describes the ability of the HIDS to avoid interfering

with the normal functioning of the system supervised.

The functioning of the HIDS may interfere with the system supervised, causing a

reduction of performance. Indeed, at least some of the collection engine must reside

on the system supervised. Hence, there will be a certain performance impact on the

system supervised caused by the HIDS. This undesirable effect could be of major

importance in both the process of selecting a HIDS and configuring it. This impact is

measured by comparing the performance of the system supervised with and without

the HIDS functioning. In Chapter 6 we propose methods to evaluate transparency. As

in the case of efficiency, we link transparency to an increased cost of the HIDS, and

suggest possible mapping functions between transparency and cost.

3.3 Relevance of the Proposed Characteristics

In this section, we present the criteria used to select the characteristics for evaluating

HIDS.

Since IDS evaluation is widely accepted as beneficial and necessary, various

characteristics have been recommended. However, the goal of these characteristics

often overlaps. Furthermore, we chose not to include characteristics which yielded

only qualitative results, and instead focused on quantitative characteristics. Hence,

characteristics which were qualitative, such as the ability to detect never-before-seen

attacks [PZC+96] and the ability to detect the type of attack [MHL+03], were not

26

selected. We also discarded characteristics heavily dependent on external elements,

such as components which handle the HIDS output (e.g., elements related to decision

making, collaboration) or which evaluate the usage of the HIDS itself (e.g., ease of

usage). While related to HIDSs, evaluating these external elements depends on either

psychological factors, or understanding how the engine that consumes the alert

operates.

These requirements provided us with five main types of characteristics: those related

to resist attacks, those related to the range of attacks detected, those related to

detection performance, those related to performance impact to the supervised system,

and those related to the detection engine accuracy.

The study of attack resiliency was first proposed in [Axe00a, MHL+03] as the

security and resistance to attacks directed at the IDS. The reason of suggesting this

characteristic is that the current motivation of attackers has shifted from notoriety to

economic gain. While before the attacker was willing to be discovered, now most

attackers want to remain undiscovered. Hence, subverting the HIDS is more attractive

as a strategic measure to avoid detection.

The amount of data collected versus the impact to the system due to data collection

has already been proposed as an optimization problem for HIDS featuring high

visibility [Lit05, GR03]. Many researchers suggest a qualitative description of the

data collected. For example, coverage, as proposed in [MHL+03], is included in our

definition of visibility: coverage is defined as the type of attacks detected and the data

analyzed. Since the type of attacks detected depends on the data audited, visibility

provides a quantitative estimation of coverage. Currently, visibility is implicitly

27

considered in the measurement of detection accuracy. However, separating visibility

from detection accuracy has several benefits. From an evaluation perspective, we can

divide the intrusion in smaller sets that manifest in the data and are more relevant to

each specific HIDS. This will improve recent HIDS evaluations that used an

indiscriminate set of attacks drawn from common attack libraries (e.g., Metasploit

[Met]). Attack libraries limit the evaluation process because some HIDSs only detect

the attack payload. By selecting a payload that always manifest in the data, an

evaluation will most likely produce incorrect results, suggesting that the detection

engine detects a wider range of attacks. By utilizing the concept of visibility, each

data set is associated with a probability that an attack will manifest in it. Thus,

estimating visibility prevents inconsistencies in the evaluation when only a small set

of the existing attacks manifest in the collected data. For example, in the DARPA

evaluation [LHF+00], the HIDSs featured a high level of true positives as the attacks

that did not manifest in the data were discarded. Finally, the amount of data collected

by certain HIDSs is configurable. Not all data may be collected to prevent an increase

of resource usage. Hence, it is advisable to separate the study of the data collected

and the detection capabilities.

Efficiency has been previously called timeliness [Axe00a], and associated to HIDS

performance [PKSZ04]. Efficiency is often described in a qualitative way [FOCT02,

Kah05]. In [LFM+02] the amount of damage caused by an ongoing intrusion was

calculated by relating it to the time between the attack and its detection. Currently the

study of efficiency is neglected, although the importance of understanding the

distinction between real-time and non-real time behavior on a HIDS is acknowledged

28

[LFM+02]. The time to detect an attack may be the key element to select one HIDS

from another, in particular, for systems which defend persistent data, where a late

detection will suppose that the protected data was stolen, and hence a significant cost.

The importance of transparency has been pointed out in [MHL+03] and described as

an economy of resource usage. Moreover, [PZC+96] studied practical measurements

for resource usage and resiliency to stress. These latter characteristics can be related

as a trade-off function between visibility and transparency, as demonstrated in

[SSMF03]. Transparency affects the total cost of the HIDSs, as a performance

overhead in the system supervised due to HIDS functioning will likely decrease the

productivity of the system. For example, a performance reduction in a busy webserver

may suppose significant revenue lose due to missed clients.

3.4 Conclusions

To effectively evaluate HIDS, a set of five characteristics were introduced: visibility,

accuracy, attack resiliency, efficiency, and transparency. Each characteristic was

defined and described. The rationale for selecting these characteristics was discussed:

identifying similar characteristics, discarding qualitative characteristics and also not

including characteristics which rely in the evaluation of entities other than the HIDS

itself.

29

Chapter 4: Evaluation of Visibility

One key difference between NIDSs and HIDSs appears in the type of data acquired

and inspected by the detector. While, in Chapter 3, we defined NIDSs as IDSs that

reside outside the supervised system, in practice, IDSs that inspect network data are

defined as NIDSs because it is the case for a large majority of them. As most

evaluations focus on NIDSs, the current evaluation methods focus on network data.

However, any IDS may only detect attacks, which appear in the data they acquire.

Hence, attacks, which do not appear in the data collected, will be missed. In fact, a

widely understood limitation of NIDSs is that they are unable to detect attacks that do

not utilize the network as part of the attack vector. This is commonly the case of

attacks performed by insiders.

HIDSs suffer similar problems due to attacks not appearing in the acquired data, but

the impact on detection is not well understood as the data acquired vary. A HIDS that

verifies filesystem data will detect an intrusion if the attacker performs some

detectable activity in the filesystem. The impact on detection is unknown, as the

number of attackers who perform activity on the filesystem has not been studied. This

situation is complicated by the fact that, due to performance limitations, not all data

of a kind may be acquired by the HIDS. For example, HIDSs inspecting system calls

will focus on a particular set, as inspecting all system calls will result in a

considerable reduction of performance. Regarding filesystem data, some HIDSs may

only inspect one of two files to avoid performance penalties in the case of real time

detection. For evaluation, the fact that the data collected affects the outcome of a

30

HIDS suggests that metrics need to be provided to quantify the impact of the data

collected.

In this chapter we first introduce an evaluation framework for visibility. We propose

two metrics: probability of attack manifestation and data quality. The first quantifies

the probability that an attack exists in the data collected, while the later quantifies the

information provided by a data set regarding a specific attack evidence. To support

the selection of these metrics, this chapter includes an empirical study of filesystem

activity after a security compromise. Quantitative data were collected for all files

targeted by attackers while reading, writing, deleting and modifying the file metadata.

For each file containing some activity, data collected on file usage are used to

estimate the probability of attack manifestation. Each file is also linked to the

probability of manifestation of three types of attacker actions: reconnaissance,

password modification, and malware download. These results are applied to calculate

the metric related to data quality for each file. Finally, using the metrics we determine

the most valuable files to audit.

This chapter is structured as follows. Section 4.1 provides the theory on evaluating

audit data including the concepts used in this chapter and the theory needed to

measure attack manifestation and data quality. Section 4.2 describes in detail an

experimental evaluation of visibility on filesystem data. First, we describe the

experimental setup and then the data analysis process. Then, statistics on the

filesystem activity are presented. Later, we summarize the findings on probability of

manifestation per file. Finally, we identify the most relevant files to audit for three

different attacker actions.

31

4.1 Evaluating Audit Data

We refer to an attack that appears in the data audited as an attack that manifests in the

data. We denote the data audited as D, which, for example, may represent a file or a

set of files. The notation for an attack manifestation is similar to the one proposed in

[LCT+02]: an attack that manifests in D is denoted as AD← . An attack that does not

manifest in D is represented as AD ← . The data collected may also contain

manifestations when an attack does not occur, which is denoted by AD← .

An attack manifests in D only if corresponding attack evidence (as defined in Chapter

3), Ae∈ , manifests in D. Evidence can manifest in D (denoted as eD←) or not

(denoted as eD ←). IDSs operate by detecting attack evidence in a set of data. As

part of the detection process, an IDS extracts a set of features from the data audited.

Attack evidence manifesting in the data will only be detected by the IDS if it appears

on the extracted features. For example, as part of an attack, an attacker may modify

the root password. Evidence of the attack is the action of modifying the password,

which manifests in several files, including the file containing the password file. A

HIDS will be able to detect the attack if it collects data (in this case, the file) and

extracts any feature containing manifestations of the evidence (e.g., integrity, file

size).

4.1.1 Measuring Attack Manifestation

Let us consider a specific attack Ai, iAD← denotes that Ai manifests in D and iA
MP is

the probability that attack Ai manifests in D: ()iA
M ADP i ←= Pr . Let us assume that

there are 7 attacks and each attack, Ai, has a probability of occurrence, Pr(Ai). The

32

overall probability, A
MP , that attacks manifest in D is given by:

() () ()i
7

i

i
A
M AADADP PrPrPr

1

∑
=

←=←= (4-1)

If we focus on attack evidence, we obtain similar equations. Let us consider a specific

evidence of an attack, ei. ieD← denotes that ei manifests in D and ie
MP is the

probability that attack evidence ei manifests in D: ()ie
M eDP i ←= Pr . Let us assume that

there are M pieces of attack evidence and each ei has a probability Pr(ei) of

occurrence. The overall probability, e
MP , that attack evidence manifests in D is then

given by:

() () ()i
M

i

i
e
M eeDeDP PrPrPr

1

∑
=

←=←= (4-2)

4.1.2 Measuring Data Quality

An obvious approach to enhance the IDS’ probability of detection is to increase the

amount of data collected. Indeed, a larger data set may improve the probability of

manifestation for each of the attack evidence types, hence improving the probability

that an attack manifests in the data. The relevance of the approach, “the more data to

audit, the better,” depends on the accuracy of the detector. A larger amount of normal

activity in the data collected will provoke an increase in the number alarms raised for

non-malicious activity, commonly referred as false alarms, particularly in imperfect

detectors. Performance is another aspect that needs to be considered, as collecting

more data will likely impact the time the IDS needs to process the information. It is

33

important to keep in mind that even good detectors benefit from a reduction of the

amount of data audited.

“Good” audit data is represented by attack evidence manifesting in it and non-attack

evidence not manifesting in it. In other words, we need to maximize e
MP while

minimizing e
MP , where e refers to the manifestation of activity which is non-attack

evidence. Let us introduce two random variables, E and M, representing attack

evidence and attack manifestation, respectively. E=1 indicates the presence of attack

evidence (e) and E=0 indicates the absence of attack evidence (e). M=1 indicates

manifestation in the data, D, and M=0 indicates non-manifestation in D. Four

combinations are possible:

• (E=1, M=1) represents attack evidence that manifests in D (with probability

e
MP),

• (E=1, M=0) represents attack evidence that does not manifest in D (with

probability 1- e
MP),

• (E=0, M=1) represents non-attack evidence that manifests in D (with

probability e
MP), and

• (E=0, M=0) represents non-attack evidence that does not manifest in D (with

probability 1- e
MP).

This optimization problem is similar to the problem of optimizing a detector for false

positives and false negatives. In this regard many metrics have been proposed,

including information gain [LX01] and Bayesian metrics [Axe00a].

34

Information gain is an entropy-based metric adopted from the field of information

theory. In intrusion detection, this metric has been previously applied to evaluate the

quality of data for misuse detection [LX01] and to evaluate the detection engine

[GFD+06a, GFD+06b]. The interpretation of the metric is: given that a receiver and

transmitter share information, the information gain represents the average amount of

information saved by sharing instead of sending information. The metric is

normalized using the overall entropy as a normalizing factor in the denominator.

Therefore, the metric will always range between [0, 1]. In our case, the metric

represents the information gained about attack evidence once a manifestation in the

data set occurred. The normalized information gain (IG) for data set D is:

()
()EH

MEI
IG

;
= (4-3)

where ()MEI ; describes the mutual entropy between an attack manifestation in data

set D and attack evidence, and ()EH consists of the entropy associated with the

attack evidence. More precisely,

() () ()MEHEHMEI −=; (4-4)

with

() () ()() ()() ()()eeeeEH Pr1logPr1PrlogPr −−−−= (4.5)

and

() () () ()() ()()

()() ()() ()()() ()()()











−

−−
−−−











−

−
−−










 −
−−










−=

A
M

e
Me

MA
M

e
Me

M

A
M

e
Me

MA
M

e
Me

M

P

Pe
Pe

P

Pe
Pe

P

Pe
Pe

P

Pe
PeMEH

1

1Pr1
log1Pr1

1

1Pr
log1Pr

Pr1
logPr1

Pr
logPr

 (4-6)

35

where A
MP is the overall probability that attacks manifest in data set D.

Using IG has faced criticism when applied to evaluating IDSs accuracy, as the link

between entropy and the accuracy of the detection engine is not intuitive [CBS06]. In

our case, however, the evaluation focuses on the data itself and the possible

information contained on it rather than on the accuracy of the detector; hence IG is a

relevant metric as it provides a measure of the useful information contained on a data

set of an attack evidence. Higher values of IG indicate that the detector will be less

susceptible to false alarms and missed detections. However, IG fails to accurately

quantify the quality of the data where attack evidence rarely manifests, but attack

manifestations do signify the occurrence of attack evidence with a high probability.

This type of data is also useful, as the information contained will rarely be susceptible

to false negatives, therefore providing a “safe” (while insufficient) source of

information. Bayesian based metrics [Axe00a] provide more complete information on

the data quality for such cases. The positive predictive value (PPV) represents the

probability that given that an attack manifests, a certain evidence of an attack

occurred.

[] ()
() () e

M
e
M

e
M

e
M

PePP

eP
MEPPV

+−
====

Pr

Pr
11Pr (4-7)

In order to understand the behavior in the event of no attack manifestation, a second

metric is required called the negative predictive value (7PV), which is defined as:

[] () ()()
() () e

M
e
M

e
M

e
M

PePP

eP
ME7PV

−+−

−−
====

1Pr

Pr11
00Pr (4-8)

36

4.2 Experimental Evaluation of Visibility on Filesystem Data

Monitoring filesystem data is a common method used to detect intrusions. Once a

computer is compromised, an attacker may alter files, add new files or delete existing

files. The changes that attackers make may target any part of the filesystem, including

metadata along with files (e.g., permissions, ownerships, inodes). In this section we

apply the proposed techniques to evaluate visibility for filesystem data. We describe

an empirical study of visibility that focused on attacker activity after a SSH

compromise. First statistical data on the number of files targeted and the associated

activity (i.e., read, write, delete, ownership, rights) is reported. Then, we calculate the

probability of manifestation of each file in the filesystem. Then, three types of

attacker activity (evidences) are considered: reconnaissance actions, password

modification, and malware download. For each type of activity, we identify the

quality of each file to detect the considered actions. With then identify the most

relevant files to audit using the metrics proposed.

4.2.1 Filesystem Activity

Filesystems contain a large amount of information. Acquiring and analyzing all of the

data is often infeasible as it translates into severe performance penalties and

unacceptably long processing times. Thus, in most cases, only a subset of the

filesystem activity is audited. Furthermore, processing files that fail to provide

meaningful information to detect intrusions may result in the production of an

increased number of alarms in the event of non-malicious file activity (false alarms).

Hence, an important goal is to identify the files and corresponding activity monitored

37

to successfully detect intrusions, while minimizing both collection time and

information overload on the IDS.

To describe the significance of each file for detection purposes we introduce the

probability of attack manifestation, which provides an estimate on how often a file is

opened in the event of an intrusion. However, the activity occurring in a file may not

be always related to an attack but could also be the result of non-malicious activity.

Therefore, just considering the probability of manifestation is not sufficient to fully

assess the relevance of the file for detecting intrusions. Thus, the relevance of using

various files as evidence of an attack (e.g., an attacker launching a reconnaissance or

downloading some malware) also need to be assessed. This assessment can be based

on the metrics proposed in the previous section: information gain (IG), positive

predictive value (PPV) and negative predictive value (NPV).

4.2.2 Experimental Setup

To collect data on attacker activity, we used a set of four high interaction Linux

honeypot computers. For details regarding the testbed architecture, refer to [PTJC05].

The experimental setup is described in more detail in [RBC07].

Software Configuration: The four honeypots ran on an identical Linux disk image: a

slimmed-down installation of Fedora Core 3, updated with the latest patches as of

October 10, 2006. Since the primary interaction with the system was via SSH, the

installation was conducted in a text-mode environment (the X Window system and

associated graphical programs were not installed). To monitor attacker activity, we

used the following tools: a modified OpenSSH server to collect password attempts;

38

syslog-ng to remotely log important system events including logins and password

changes; strace [Str] to record system calls made by incoming SSH connections; and

the Honeynet Project’s Sebek tool [Seb]. We modified the OpenSSH source tree by

adding a single line of code that used syslog to record attempted passwords. To

prevent attacks directed against strace, the program was concealed as a system script.

User Account and Password: Each honeypot had one privileged root account plus five

non-privileged user accounts. Using results from a study that found the most

commonly attempted usernames and passwords, we selected five usernames: admin,

mysql, oracle, sarah and louise. For each username, we rotated four passwords (i.e.,

‘username’, ‘username’123, password, and 123456). After a password modification,

the honeypot was redeployed and the next password was used. Two honeypots were

set up with strong root passwords. The other two honeypots had root accounts that

rotated the four passwords: root, root123, password and 123456.

Honeypot Lifecycle: For a quick turnaround, we used a pre-built disk image and

automated scripts to manage the deployment of the honeypot. We monitored the

syslog messages coming from each honeypot on 24 hour intervals to check for logins

and password changes. The honeypot was redeployed after a password modification

to prevent locking out other attackers. Typically, passwords were changed daily. To

maximize the attackers’ activity on the filesystem following a password change, we

waited at least one hour before putting the disk image back onto the honeypot,

running the deployment script, and continuing to monitor the live syslog data.

39

4.2.3 Data Analysis

During the 24 day period from November 14 to December 8, 2006, attackers from

229 unique IP addresses attempted to log into the honeypot 269,262 times (an average

of 2,805 attempts per computer per day). According to the syslog data, of 269,262

attack attempts, 824 logged in successfully and 157 changed an account password.

Results from an extensive analysis of the syslog data can be found in [RBC07].

The data analyzed in this paper consisted of system call data collected with a tool

called strace [Str]. Strace intercepts and records all system calls made by a running

process. We launched strace against the sshd daemon, switching on the built-in

functionality for strace to record the activity of all the children spawned. To

discriminate between compromises, we developed a script to isolate each different

compromise among the strace data. We defined a compromise as a successful login

followed by a bash session and all its children. Before processing the attack sessions

further, all administrative activity required to transfer logs to a central database and to

reimage the honeypots were removed. Using the strace data, we found 743 attacks

instead of the 824 found by the syslog data [RBC07].

One reason these results differ is due to the difference in defining a compromise using

syslog data (i.e., a successful login) versus strace data (i.e., a bash session). Syslog

data included SCP and SFTP connections and aborted logins that were not included in

the strace data. Moreover, some attackers were able to compromise the strace logging

capability. We verified the data collected by strace with data collected by Sebek

[Seb]. In particular, we identified strace data collection disruptions by attackers to

ensure that such events were rare. We found four sessions in which strace failed to

40

properly monitor. A careful examination revealed that this occurred after the attacker

issued a kill command to the ssh daemon, thus terminating the daemon and strace

recording. We do not believe that this activity was performed due to the presence of

strace, but because the attackers’ goal was to launch a rogue ssh server in place of the

existing one. Finally, the strace logging capability was enabled at the beginning of the

hour following reimaging. For instance if a honeypot is reimaged at 2:10, strace

logging starts at 3:00, meaning that successful connections in between are not logged.

For the remaining 743 attacks, we removed the empty sessions. An empty session

was defined as a bash session with no activity other than a login and logout. To

identify these session, we determined the number of files read by sessions with no

Figure 4-1. Detail of a Session Analysis

activity and the commands that were run during these sessions. Then we matched

sessions ending with the same command or with fewer file reads. We verified that all

41

sessions with a greater number of files read contained some type of activity. To

prevent errors caused by the data collection process, we verified that the sessions

ended with a specific reading activity that appeared in the login and logout. Using this

procedure, a total of 421 empty sessions were found. The large number of empty

sessions indicates that automatic tools are used to attempt dictionary attacks. After the

tools achieve a successful login, they report the correct login and password to the

attacker; no commands are executed.

The remaining analysis focused on the 322 non-empty sessions. The non-empty

session were processed to find the files written, read, deleted or whose ownership or

rights had changed.

The process consisted of creating a tree containing all processes launched by the

attacker in a session. We then separated all system calls created by each process.

Customized scripts singled out all filesystem related system calls for each process

contained in a session. After this, every system call was parsed and the results stored

in a database. The database contained the necessary information to recreate all

filesystem activity performed by the attacker in a session. Our records contained the

name of the file, type of activity, process linked to the file, and the time of usage from

the start of a session. We stored this information by process ID to simplify post-

processing. Figure 4-1 provides an example of the analysis of a session. Finally, all

files in the database were processed to collect statistics for each session and

individual statistics for each file.

42

4.2.4 Statistics on Filesystem Activity

In this section, we present statistics related to the number of files that were read,

written, deleted, or whose ownership or rights changed for the 322 non-empty

sessions in the strace data. Only unique file activities were analyzed (i.e., duplicated

file activities in the same session were discarded). For example, if a file was read

several times in the same session, the reading activity for the file was counted once.

However, if the same file was read and written to in the same session, the file was

counted twice: once as read and once as written.

Table 4-1 contains the per session minimum, maximum, average and standard

deviation of the number of files read, written, deleted or whose rights or ownership

changed. As expected, all attacks included many (minimum of 20) different files

reads. However, more surprisingly, some attacks consisted of no write or delete

activity, but included rights or owner changes. Also as expected, the average number

of files read was quite high (144.7) while the average number of files written was low

(32.1). More surprising was the low average number of deleted files (6.6). Also

interesting was the low average number of files whose rights changed (2.2) and the

large number of files whose owner changed (17.2). The average number of files

whose owner changed was significantly higher than the number of files deleted and

whose rights changed and equal to half the number of files written. The standard

deviations varied as a function of the file activity: the number of files whose rights

changed had a relatively small standard deviation (5.7), but the other file activities

had standard deviations between 41.4 and 96.6.

Table 4-1: Statistics on the 	umber of Files Targeted

43

 Read Write Delete Rights Owner

Minimum 20 0 0 0 0

Maximum 484 656 418 42 852

Average 144.7 32.1 6.6 2.2 17.5

St. Dev. 78.3 90.2 41.4 5.7 96.6

In Table 4-2, we provided a set of percentile values of the distributions of the number

of files for the five types of activities. As shown in Table 4-2, most attackers did not

delete files (at least 70%), change the file rights (at least 70%) or owner (at least

80%). From Table 4-1, a small number of attacks led to a high number of file

ownership changes. Based on Table 4-1, we expected many attacks to include file

writing. However, in at least 60% of attacks, no more than two files were written.

Such results help to specify the type of attack that was conducted against the

honeypot. Few files written related to password modifications, while many files

written along with rights modification reflected the action of installing malware. The

high number of different files read was linked to reconnaissance. For example,

commands like “w” and “ps” read a total of a 120 and 160 of files, respectively.

However, the high number of files read complicated identifying files specifically

linked to malicious activity.

Table 4-2: Percentile Values of the Four Distributions of the 	umber of Files

Percentile Number of Files

Read Write Delete Rights Owner

10% 49 1 0 0 0

20% 57 1 0 0 0

30% 84 1 0 0 0

40% 144 2 0 0 0

50% 150 2 0 0 0

60% 166 2 0 0 0

70% 183 13 0 0 0

44

80% 202 23 2 2 0

90% 231 73 5 12 2

100% 484 656 418 42 852

Many attacks excluded file deletion, changing the file rights and ownership; plotting

their distribution does not add insight. Figures 4-2 and 4-3, respectively, show the

distribution of files read and written.

The distribution of files read (Figure 4-2) had two modes at 75 and 150 files read.

The first mode appears to be caused by attacker activities involving a password

change and/or software download, installation and execution. The reconnaissance

actions were limited; the users currently logged on and the processes currently

running were never checked. The most frequent reconnaissance action was the

“uptime” command that tells how long the system ran; the command does not appear

in a majority of the sessions. The second mode occurred because of the

reconnaissance command “w” that tells who is logged-on and what was typed in the

session. The second mode is also caused by the “ps” command, which lists the

processes currently running.

In Figure 4-3, the peak at 10 files written reflects password modifications. Many

sessions had 1 or 2 files with a write action. This usually happened when the attacker

changed the password, but did not download and install a malicious program.

Sessions with 8-15 files containing a write action usually had a program downloaded

and installed, and possibly changed a password.

45

Figure 4-2. Distribution of Files Read

Figure 4-3. Distribution of Files Written

One important statistical result addresses the correlation between the different file

characteristics. We applied Guilford’s [Gui65] interpretation of the correlation

coefficient:

• correlation coefficients lower than 0.2: no correlation,

• correlation coefficients between 0.2 and 0.4: low correlation,

• correlation coefficients between 0.4 and 0.7: moderate correlation,

• correlation coefficients between 0.7 and 0.9: high correlation, and

• correlation coefficients higher than 0.9: very high correlation.

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400

Number of files read

N
u
m
b
e
r
o
f
s
e
s
s
io
n
s

0

50

100

150

200

250

0 50 100 150 200

Number of files written

N
u
m
b
e
r
o
f
s
e
s
s
io
n
s

46

Table 4-3 presents the correlation coefficients for the files read, written, deleted,

whose rights or ownership changed. Based on the number of different files, we

observed that there is: 1) a low correlation between files read and written, 2) a

moderate correlation between files written and those the owner changed, 3) a low

correlation between files whose rights and owner changed and 4) a low correlation

between files written and deleted and no correlation between files deleted and the

other file activities. These results indicate that the number of files read, written,

deleted, whose rights or ownership changed are weakly correlated.

Table 4-3: Correlation Coefficients Values

 Read Write Delete Rights Owner

Read 1

Write 0.24 1

Delete 0.14 0.28 1

Rights 0.32 0.34 0.19 1

Owner 0.07 0.49 0.00 0.38 1

4.2.5 Probability of Manifestation per File

We compiled the activity for each file that appeared at least once per session,

disregarding the type of action that produced the activity. The list included a total of

996 unique files read, 4016 unique files written, 1700 unique files containing attribute

modifications and 1500 unique deleted files. For each file, we estimated the

corresponding probability of manifestation, A
MP , by dividing the number of sessions

in which the file and corresponding activity appeared by the total number of sessions.

Table 4-4 contains an illustrative set of files that will be discussed in this section and

the associated probability of manifestation. A more complete list of files and

corresponding probability of manifestation can be found in Appendix A.

47

Table 4-4: Probability of Manifestation for a Set of Significant Files

File Type of
Activity

Number of
Sessions

Probability of
Manifestation

/usr/lib/libcrack.so.2 Read 165 0.51

/usr/libresolv.so.2 Read 143 0.44

/proc/cpuinfo Read 110 0.34

/lib/tls/libc.so.6 Read 322 1

/etc/npasswd Write 161 0.50

/etc/shadow Write 14 0.04

External malware Write 121 0.38

/etc/services Write 9 0.03

/bin/ps Write 2 0.01

Reading files was the most common activity performed in the filesystem. However,

the number of unique files read was small compared to other activities. This is partly

because an important part of reading files is invoking libraries during execution and

files that provide system information. Most attackers performed common actions that

lead to a restricted set of libraries. For example, 165 sessions contained

/usr/lib/libcrack.so.2 and 143 sessions contained /usr/libresolv.so.2, which are

indications of password and network related activity, respectively. More interestingly,

malicious activity was evident from the number of times certain files related to

hardware and software information were read. The read action /proc/cpuinfo appeared

in 110 sessions and /proc/(PID)'/status in 97 sessions. Several files, mainly libraries,

always manifested evidence. An example of such a file is /lib/tls/libc.so.6, which was

open in every session. This indicates the importance of not only focusing on evidence

of a manifestation during an attack but also on a non-manifestation when there is no

attack. The file most frequently written, /etc/npasswd appearing in 161 sessions,

showed that most attackers attempted password modifications. Also noteworthy was

48

the corruption of related password files: /etc/shadow was corrupted in 14 sessions

while creating accounts with blank passwords. Another common malicious act was to

install external programs: in a total of 121 sessions new files were created containing

malware. Surprisingly, while tools carried diverse names, after decompressing the

malware, many shared common files. For example, unix2.users appeared in 17

sessions and psybnc.pid appeared in another 17 sessions. The attackers’ use of the

latter file shows an interesting property: all processes written to psybnc.pid appeared

cloaked as harmless services (httpd, ssh, ntpd, init). However, the files used were not

cloaked as system files, thus showing that the filesystem data audit is a good vector to

detect concealed malware posing as system services. IDSs often monitor written

activity on system files, especially binaries to detect rootkits and Trojan horses.

However, our results showed few attackers corrupted those files. Only two sessions

replaced binary files. In 9 sessions, attackers modified key system files (e.g.,

/etc/hosts.allow and /etc/services). Rights or ownership changes appeared most often

as part of the malware installation. However, they also appeared on binary files as

part of installing rootkits (two sessions) and as part of erasing tracks (two sessions).

Finally, files that were deleted were those created by the attacker or in user logs (e.g.,

bash_login), showing the cleanup performed by attackers. An unexpected result was

that most attackers did attempt to cleanup after themselves. History files containing

activity information were deleted a total of 19 times, by using direct delete commands

or targeted cleanup utilities. Leftover installation residues from malware were deleted

in a total of 12 sessions.

49

4.2.6 Probability of Manifestation per File and per Attacker Action

In this section we refine our analysis by considering the activity in each file related to

a specific attacker action. Indeed, the probability of manifestation calculated in

Section 4.2.5 may be inaccurate as some files may contain activity in sessions that

did not provide useful information about a specific attack action. For example,

dynamic libraries, such as libc, which most systems open as part of their normal

operation, provide little information about the attacker’s actions. Therefore, we need

to measure the information provided by each file for detection purposes. We

separated common attacker actions into three different classes of attack evidence.

These three classes were identified following the analysis conducted in the

experiment (i.e., reconnaissance, password modification, and malware download).

For each class we associated a set of commands based on: 1) which commands are

usually considered the most relevant for conducting that attacker action and 2) which

files targeted by these commands are usually considered the most relevant for

conducting that attacker action.

• Reconnaissance (R): Actions are performed by the attacker to gain

information about the system’s resources, software and its users. We selected

the commands w, whoami, last, ps, uname and cat to correspond to

“reconnaissance”.

• Password (P) modification: Actions where the purpose is to modify a

password or create a new account. We selected the commands passwd,

userdel and useradd to correspond to “password”.

50

• Malware download (D): Actions are related to downloading external

programs and installing them. The common attacker downloads hacking tools

including bots and other malware. We selected the commands wget, scp, ftp

and curl to correspond to “download”.

The link between a command and file activity is not evident. The same command,

issued with different options, may target different files and file activities (e.g., read,

write). It is difficult to estimate which options are more commonly used by attackers.

For example, “x” and “aux” are the two most common parameters used with ps

(which is used a total of 138 times in 97 sessions): “ps aux” was executed 31 times in

24 sessions and “ps x” was executed 82 times in 69 sessions. “ps aux” provides

additional information compared to “ps x”, such as the username. To retrieve that

information, ps reads /etc/passwd. For this reason, /etc/passwd is not open when

executing “ps x” whereas it is open when executing “ps aux”.

We are implicitly making the assumption that evidence of an attack implies an

intrusion. In reality, attack evidence might not always reflect the existence of an

attack. A password modification might very well be performed by the genuine owner

of the system. However, since our analysis is only based on attack data, our objective

is to link attack evidence with the related files, not to assess the importance of the

chosen evidence of attack.

From the 322 non-empty sessions in the strace data, we did not find any attacker

action related to reconnaissance, password modification or malware download (i.e., in

95% of the sessions we observed at least one of these attacker actions) in only 17

51

sessions. Table 4-5 provides the number (and percentage) of sessions associated with

the different attacker actions and combinations of actions.

Table 4-5: Distribution of the 	umber of Sessions per Attack Evidence

Attack
Evidence

Number of
Sessions Percentage

P (only) 29 9.51

R (only) 71 23.28

D (only) 22 7.21

P and R (only) 131 42.95

P and D (only) 62 20.33

R and D (only) 102 33.44

P and R and D 56 18.36

where “P”=password modification, “R”=reconnaissance, and “D”=malware

download

We observed that on average, one type of attack evidence is observed in 13.3% of the

sessions, a combination of two types of attack evidence are observed in 32.2% of the

sessions and that all three types of attack evidence are seen in 18.4% of the sessions.

As expected, attackers conducted more than one type of action when launching an

attack. However, attackers seem to be interested in particular types of attacks instead

of any kind of attack as illustrated by the lower percentage of sessions associated with

all three attacker actions.

Table 4-6 contains the number (and percentage) of files and the associated file

activity for each type of attack evidence and combination of evidence. The

percentages provided in the table are based on the overall total of different files of

257. The files only involved in password modification are read, written, deleted and

their rights and ownership changed. The files associated with malware download are

read and write. However, the files involved in any other type of attack evidence were

52

only read. Since the table contains the number of files associated to single or multiple

attacker actions, we expected that the number of files common to several actions

would be lower than for individual actions. Indeed, only 7 files were common to the

three attacker actions. Between 8 and 13 files are common to two attacker actions.

And between 49 and 148 files were associated with only one attacker action. These

results show that: 1) there are only a few files that can be audited to detect several

attacker actions and 2) most of the file activities are read, making it difficult to

differentiate attacker action from non-malicious activity.

Table 4-6: Distribution of the 	umber of Files per Attack Evidence

Attack
Evidence

Number of
Files Percentage Read Written

DeleteRights Owner

P (only) 148 57.59 36 48 36 14 14

R (only) 49 19.07 49 0 0 0 0

D (only) 91 34.41 26 65 0 0 0

P and R (only) 10 3.89 10 0 0 0 0

P and D (only) 13 5.06 13 0 0 0 0

R and D (only) 8 3.11 8 0 0 0 0

P and R and D 7 2.72 7 0 0 0 0

Total Number of Different Files 128 113 36 14 14

We also assessed the relevance of each file associated with the three types of attack

evidence separately (e.g. password modification or no password modification). For

each of the three types of attack evidence, we empirically estimated the variables

involved in the calculation of 7IG, PPV and 7PV as follows:

• A
MP (probability that attacks manifest in data set D): number of sessions

where the specific file and activity were present divided by the total number

of non-empty sessions (322),

53

• Pr(e) (probability of attack evidence e): number of sessions that include

password modification (166)/reconnaissance (248)/malware download (130)

evidence divided by the total number of non-empty sessions (322),

• e
MP (probability that attack evidence e manifests in D): number of sessions in

which the specific file and activity were present for each attack evidence

divided by the total number of sessions the specific file and activity were

present, and

• e
MP (probability that non-attack evidence e manifests in D): number of

sessions in which the specific file and activity were present for each non-

attack evidence divided by the total number of sessions the specific file and

activity were not present.

Let us compare respectively the average and standard deviation of IG, PPV and 7PV,

for all three types of attack evidence:

• Reconnaissance: IG (0.07 and 0.15), PPV (0.87 and 0.26), 7PV (0.15 and

0.43),

• Password modification: IG (0.26 and 0.42), PPV (0.92 and 0.21), 7PV (0.57

and 0.30),

• Malware download: IG (0.10 and 0.25), PPV (0.86 and 0.28), 7PV (0.60 and

0.23).

Based on the values of IG, between the three attacker activities, files associated with

password modification can be linked to attacker activity with the highest confidence

on average. It is interesting to note that, on average, files associated with

54

reconnaissance or malware download were poorly linked to the attacker activity. To

get a more accurate picture, we need to focus on the values of PPV and 7PV. We

observed that the three attack activities led to similar average values of PPV. The

value of 7PV helped differentiate the three attacker activities. The value for

reconnaissance activity seems to suggest that, on average, files associated with

password modification and malware download activity can be linked to these

activities with high confidence (since the PPV and 7PV value are high).

The next step is to refine the analysis for each attacker activity. We first discuss a plot

indicating the overall results obtained for all files involved in each of the attacker

activities and then a sample of files to identify in detail which files are the most

relevant for identifying the attacker activity.

Figure 4-4 indicates the number of files associated with reconnaissance evidence with

the values of IG, PPV and 7PV in 10 bins of 0.1 between 0 and 1. We observe that

few files provide a good source of information. However, many files exit with a high

value of the PPV, reflecting files opened by the attacker to inspect specific aspects of

the system’s configuration (e.g., header files).

Reconnaissance

0

5

10

15

20

25

30

35

40

45

50

0.00 0.20 0.40 0.60 0.80 1.00

N
u
m
b
e
r
o
f
fi
le
s

IG

PPV

NPV

55

Figure 4-4. File Distribution of IG, PPV and 	PV Values for Reconnaissance

Evidence

Table 4-7 provides a sample of the files associated with the reconnaissance activity. A

more extensive set of results can be found in Appendix A. The most relevant files to

identify reconnaissance activity have a high IG value. No single file contains all

necessary information to identify reconnaissance activity. However, /proc/x/stat and

proc/x/cmdline can be associated with high confidence to reconnaissance activity, as

manifestations in these files seems to imply the existence of reconnaissance activity

(IG=0.655 and PPV=1). While /proc/loadavg manifests in more sessions than the

previous files, the information provided is less, as it also manifests in other type of

actions. Finally, libraries including /lib/tls/libc.so.6 do not provide any information

(IG=0) as they manifest during reconnaissance activity, but also in many other actions

not related to reconnaissance.

Table 4-7: Sample Files for Reconnaissance Evidence

File Name Activity IG PPV NPV

/proc/x/stat Read 0.6551 0.725

/proc/x/cmdline Read 0.6551 0.725

/lib/libproc-3.2.3.so Read 0.4400.9600.684

/proc/cpuinfo Read 0.2101 0.349

/proc/loadavg Read 0.1950.9170.487

/lib/libnss_files.so.2 Read 0 0.7700

/lib/tls/libc.so.6 Read 0 0.7700

56

Figure 4-5 indicates the number of files associated with password modification

evidence with the values of IG, PPV and 7PV in 10 bins of 0.1 between 0 and 1. We

observe that many files exist with a high PPV and low IG, 7PV values. These are

temporary files, which were created while modifying the password. Unlike for the

case of reconnaissance, there exists a set of good files for identifying a password

modification evidence, with IG=1 and PPV=1, that are mostly common shared

libraries.

Figure 4-5. File Distribution of IG, PPV and �PV Values for Password
Modification Evidence

Table 4-8 provides a sample of the files associated with the password modification

activity. A more extensive set of results can be found in Appendix A. As password

modification evidences are linked to few commands, each one of a set of libraries

provides all the necessary information to single out this activity (IG=1). The file most

likely to be written as a result of password modification is /etc/nshadow, and is

therefore linked to an important information gain (IG=0.9). However, when the

attacker creates accounts with blank passwords, /etc/shadow is written instead. The

relevance of /etc/shadow is reflected by 7PV=1. Reading /etc/shadow is necessary to

modify a password. However, it is also a target for reconnaissance activity, as it

Password Modification

0

10

20

30

40

50

60

70

80

90

0.00 0.20 0.40 0.60 0.80 1.00

N
u
m
b
e
r
o
f
fi
le
s

IG

PPV

NPV

57

contains information about the users, undermining its relevance for password

modification. The reading of /etc/passwd is an activity performed by many other

types of actions, and therefore not suitable to provide high quality information for

password modification.

Table 4-8: Sample Files for Password Modification Evidence

File Name Activity IG PPV NPV

/usr/lib/libgmodule-2.0.so.0 Read 1 1 1

/usr/lib/libgobject-2.0.so.0 Read 1 1 1

/lib/libpam.so.0 Read 1 1 1

/etc/shadow Read 0,951 0.9881

/etc/nshadow Write 0.970 0.9881

/etc/shadow- Write 0.021 1 0.495

/etc/passwd Read 0 0.5160

Figure 4-6 indicates the number of files associated with malware download

evidence with the values of IG, PPV and 7PV in 10 bins of 0.1 between 0 and 1. We

observed that the three big spikes are associated with files related to writing malware.

These files have low IG and 7PV values, since they manifest rarely, but a high PPV

value since they manifest for this activity only. A set of files, including configuration

for network files and shared libraries provide moderately relevant information to

identify malware downloads (IG=0.8).

Malware Download

0

10

20

30

40

50

60

70

80

90

0.00 0.20 0.40 0.60 0.80 1.00

N
u
m
b
e
r
o
f
fi
le
s

IG

PPV

NPV

58

Figure 4-6: File Distribution of IG, PPV and �PV Values for Malware Download
Evidence

Table 4-9 provides a sample of the files associated with the malware download

activity. A more extensive set of results can be found in Appendix A. Most attackers

utilize the wget utility to download malware. Hence, the corresponding configuration

file for this utility, /etc/wgetrc provides the most information on malware download

activity. We observed that common libraries (e.g., /usr/lib/libk5crypto.so.3 and

/usr/lib/libgssapi_krb5.so.2) are a good source of information. In many cases malware

was downloaded by a web address instead of using an IP address. That is shown by

the usage of /etc/resolv.conf. All independent malware downloaded provides some

information. However, as malware manifests in different forms, the information

provided by each of these files is not clearly reflected in the value of IG. On the other

hand, the relevance of the malware file (e.g., sendq.tgz and boti.zip) for intrusion

detection is evident by the value of PPV, which is always one. Finally, other

configuration files, like /etc/localtime, do not provide information on malware

download, as its usage also appears in other actions.

Table 4-9: Sample Files for Malware Download Evidence

File Name Activity IG PPV NPV

/etc/wgetrc Read 0.831 1.000 0.955

/usr/lib/libk5crypto.so.3 Read 0.822 0.922 1.000

/usr/lib/libgssapi_krb5.so.2 Read 0.822 0.922 1.000

/etc/resolv.conf Read 0.723 0.939 0.963

sendq.tgz Read 0.078 1.000 0.632

Boti.zip Read 0.030 1.000 0.610

/etc/localtime Read 0.004 0.415 0.697

59

4.3 Conclusions

In this chapter, we presented two metrics to evaluate the visibility of a HIDS:

probability of attack manifestation and data quality. The metrics were then applied to

the results of an empirical study of the activity performed by attackers on filesystem

data after SSH compromises. The objective was to identify the most relevant files to

audit for HIDSs based on filesystem data. As expected, the probability of

manifestation was insufficient to fully assess the value of data as an audit source for

HIDSs. The proposed metrics, information gain, positive predictive value and

negative predictive value provided the necessary information to understand the

significance of each file for certain malicious activities. We empirically showed that

the link between certain attack evidences (i.e., reconnaissance, password

modification, malware download) and files can be quantitatively estimated with the

help of the proposed information theory based metrics.

Chapter 5: Evaluation of Attack Resiliency

As already mentioned, HIDSs reside, at least partially, inside the system supervised.

Such architecture provides an exposure to attacks. In comparison, every component

of a NIDS is deployed outside the system supervised. This separation shows that an

attack towards the system supervised will not affect the NIDS. In other words, the

state of the system supervised, secure or insecure (as seen in Chapter 3) will not

impact the one of the NIDS. While an attacker may still launch attacks directed at the

NIDS, in practice, this rarely happens. In most cases, an attacker will choose a

simpler strategy to avoid detection, i.e., evading the IDS. Since an attack against a

60

NIDS will not be affected by the system supervised, the probability of occurrence of

such attack can be evaluated with common methods and security metrics (e.g., risk

evaluation [Bla01]). On the other hand, HIDSs require a more complex study of

attacks against the system supervised. An attacker is likely to escalate privileges on

the system supervised if the attack is successful. Since HIDSs usually share many

resources with the system supervised, the privilege escalation on the system

supervised may provide unrestricted access to HIDS elements. This fact leads to the

appearance of new attack vectors for disrupting the normal operation of the HIDS.

These attack types are simple and well documented, and hence popular [Half97].

This chapter presents HIDS resiliency as a metric of HIDS strength against attacks

towards the HIDS through the system supervised. HIDS resiliency is the probability

that the HIDS will not be subverted in the event of an attack against the system

supervised. To estimate HIDS resiliency, we introduce a metric reflecting the HIDS’s

independency. We then estimate these metrics for the Samhain [Wot05] HIDS.

5.1 Definitions

HIDSs may suffer integrity, confidentiality or availability attacks. If the attacker’s

objective is to perform an attack against the system supervised, availability and

confidentiality attacks will be of limited use. Indeed, most availability attacks against

the HIDS are considered to be attacks against the system supervised and are labeled

as alarms. Confidentiality attacks provide limited information on the system

supervised, which is inferred from configuration files and output data.

61

Integrity attacks are more important with respect to attacking the system supervised.

Indeed, a clever change of the HIDS allows the attacker to circumvent the HIDS. If

the modification leads the HIDS to miss an otherwise detectable attack, we declare

the HIDS to be subverted. While the attacker may compromise the integrity of any

HIDS element, we can reduce the target for the attacker to modifying the HIDS's

output in the event of an attack towards the system supervised. This definition implies

that the attacker’s objective is not to gain control of the HIDS, but to change the

HIDS output, which may be a simpler problem.

Definition 1: A HIDS, H , with output, O , resulting from a set of data, D , is

subverted by an attack towards the system supervised if for the same set of data, D ,

the attacker can change the output to OO =' / .

For the simplest type of HIDS, implemented as a function, h , with inputs

]}[[2][1],{= 7xxxX K that are classified as normal data or as an attack,

{0,1}: →Xh , the attacker subverts the system if the HIDS’s response is the inverse

given X , i. e., ``0'' instead of ``1''. Depending on the HIDS deployment

characteristics, HIDS subversion varies in complexity. The following definition

describes a metric of this complexity:

Definition 2: We define HIDS resiliency to subversion as the probability that the

HIDS will not be subverted in the event of an attack to the system supervised.

62

In the remainder of this thesis, we refer to HIDS resiliency as the HIDS resiliency to

subversion attacks. To evaluate HIDS resiliency, we do not make any assumptions

about the initial privilege or the privilege level gained on the system supervised.

However, we assume that the attacker has no special implicit privilege on the HIDS.

If the attacker decides to subvert the HIDS, we need to evaluate the probability of the

attacker succeeding. There are two possible routes to perform a subversion attack:

through the system supervised as part of the attack to the system supervised, and as a

separte attack directed especifically to the HIDS. In the case of HIDSs, usually the

easiest approach for an attacker is to subvert the HIDS using the system supervised as

the attack vector. We assume that out of band attacks are more costly than attacks

through the system supervised. If shared elements exist between the HIDS and the

system supervised, an attacker may corrupt or tamper with elements from the system

supervised to subvert the HIDS. Hence, a primary goal for the HIDS is to be

independent of the system supervised, so that an attack launched against the system

supervised will not impact the HIDS resiliency. To estimate resiliency, we first

evaluate HIDS independency as the level of isolation between the HIDS and the

system supervised. The more independent a HIDS is, the more resilient will it be to

attacks against the system supervised.

Definition 3: We define HIDS independency as the level of isolation between the

HIDS and the system supervised for a certain privilege level on the system

supervised.

63

The study of HIDS independency varies depending on the privilege level achieved by

the attacker on the system supervised as part of an attack. Each privilege level may

expose certain elements to the attacker and this exposure may exist exclusively for

this privilege level.

5.2 Evaluating Independency

If the HIDS is isolated from the system supervised, studying HIDS resiliency does not

depend on that host and the problem is similar to that of studying the security of other

computer systems. However, achieving complete isolation is not possible on HIDSs.

At a minimum, the data collection agent must reside inside the system supervised

and, in many cases, other HIDS components are shared with the system supervised.

The existence of common elements between the HIDS and the system supervised

provides a vector to attack the HIDS.

Definition 4: We define a HIDS as perfectly independent if no shared mechanism

exists between the IDS and the system supervised for all privilege levels on the

system supervised.

A property of a perfectly independent HIDS is that its resiliency does not depend on

the system supervised. The definition does not imply that a perfectly independent

HIDS is resilient to all attacks, as other attack vectors to subvert the HIDS may exist

without using the host supervised. For example, a PCI card may act as the monitor of

a platform and display a very high independency. But if the PCI card features a

64

network connection (independent from the host), it may be attacked through this

connection. However, this vector of attack may be studied separately from the system

supervised.

To measure the independency of the system, we introduce the independency score.

The independency score is defined as a cost based metric. It describes the effort of

subverting an element of the HIDS by the attacker as part of an intrusion to the

system.

5.2.1 Studying the HIDS Data Path

A study of HIDS independency starts with identifying the elements employed by the

HIDS, from data collection to alert reporting. To subvert the HIDS, the attacker may

attempt to launch a range of attacks against any element of the HIDS. The situation is

further complicated as most HIDSs require the use of common elements with the

system supervised to transfer or modify data (e.g., network card, hard disk controller,

kernel driver). Moreover, for complex systems, redundant elements, each one with

different properties, may be used for data collection and alert reporting. An attacker

may corrupt any element in the HIDS data path from data collection to alert reporting.

A simple HIDS model [Bis02] consists of three parts: the agent, which collects the

data; the director, which corresponds to the detection engine; and the notifier, which

reports the results from the director. We assume that all HIDSs feature a single

director, but can consist of many agents and notifiers. As seen in Figure 5-1, both the

agent and the notifier may be composed of further active intermediaries. These

intermediaries are called proxies. The communication paths between proxies are

65

called communication channels. In Figure 5-1, we represent each communication

channel as iS , and each proxy as iP .

Figure 5-1. HIDS Data Path

We describe each HIDS element in function of the type of resources employed by

each proxy and communication channel. For example, a hard disk controller uses

firmware and hardware, and a detection engine resides in memory while storing

configuration files on a filesystem. An attacker may exploit an element by tampering

with any of the shared resources. Normally, subversion attacks, which involve

restarting the HIDS, will be notified. Hence we will only evaluate shared resources

while the HIDS is running in a normal mode.

5.2.2 Defining Privilege Levels and Creating the Independency Score

Once the HIDS elements identified, the complexity needed to exploit them to subvert

the HIDS should be evaluated for the different privilege levels. We assumed that no

privilege level on the system supervised immediately led to a privilege level on the

HIDS.

While taxonomies of privilege levels differ, for this thesis, we used the taxonomy

proposed in [Web98]. This taxonomy refers to the privilege level on the system

supervised. For example, the superuser privilege level entails access to the software

66

executing on the system supervised, including firmware and possibly the BIOS. The

physical access privilege level grants access to the system’s hardware. Our goal is to

evaluate the effort, time and resources needed by the attacker to realize the threat, i.e.,

subvert the IDS in the event of an attack to the system supervised. We assume that the

more complex the modification of a specific HIDS element is, the closer the element

is to being isolated from the system supervised, and thus the higher the independency

score.

5.2.3 Introduction to Cost Measurements

Security is often measured from the defender’s perspective. The simplest method is to

estimate the dollar amount saved due to the avoidance of security breaches. The most

common measure to calculate the risk of a harmful event is the annual loss expected

(ALE), which is computed multiplying the expected rate of loss by the value of the

loss. More sophisticated metrics have been proposed to quantify security investment,

including the return of investment (ROI) [Bla01] and the internal rate of return (IRR)

[GL02]. We find similar methodologies for IDSs: in [LFM+02] a model is proposed

built on concepts of risk analysis, by dividing the specific costs into operational costs,

damage costs and response costs.

For our methodology, however, the cost inherently relates to the adversary’s

perspective, rather than the defender’s. Our objective is to evaluate the effort, time

and further resources needed by the attacker to realize the threat, i.e., subvert the IDS.

These metrics are common in cryptography, where the security of a cipher depends

on the time an adversary takes to decode a message, given a specific set of initial

67

conditions. Outside cryptography, the evaluation of security metrics has proven

elusive, as many uncertainties exist while assessing the adversaries’ cost. To avoid

these uncertainties, practical on-site vulnerability analysis is usually preferred, relying

on security professionals with the task of attacking the system [JO97]. This approach

is often referred in literature as using red-teams [RVK05].

Some theoretical methods exist to calculate this cost without hiring red-teams. The

sum of the cost incurred by the attacker to achieve his/her goals is referred by

Schechter [Sch04] to the cost-to-break. Schechter’s work estimates this cost by

measuring the complexity of obtaining the vulnerability in the market, in the same

fashion as we rely on the market to find the estimated price for equipment. In the case

of software, a bug auction model is proposed for software exploits, where only

software with unknown vulnerabilities will have a cost (i.e., software with known

vulnerabilities will have no cost for the attacker to be exploited). While Schechter 's

bug auction model is elegant, it is difficult to apply in practice. However, using the

same rationale, we may calculate the cost-to-break by estimating the amount of

money needed to hire an expert able to compromise the desired HIDS element. This

market model could provide the required costs to evaluate independency.

5.2.4 Calculating HIDS Independency

To calculate the independency for each HIDS element, the simplest metric is the

introduction of a relative cost. Its use is a common practice to evaluate IDSs [JU01,

LFM+02, CBS06]. The evaluator sets a specific and known cost baseline. If the HIDS

evaluation is performed after the HIDS deployment, the simplest technique is to set

68

the baseline to the cost for the attacker to achieve the privilege level for which

independency is evaluated on the system supervised. Once the baseline is set, the

relative effort for the attacker to subvert the HIDS needs to be evaluated for each

HIDS element. If the HIDS evaluation were performed using another baseline on

another system, the practitioner can easily modify the cost by simply specifying the

ratio between both baselines. If the element does not contain any shared resource with

the supervised system for that privilege level, we assign infinity (∞) as the

independency score. In HIDSs where attacks are detected in real or near real-time, the

cost to subvert the monitor after the intrusion might be high, as the attacker only has a

small window of opportunity to compromise HIDS elements before detection. The

cost of subverting the HIDS after the attack is bounded in time by the monitor’s

reaction time (efficiency). Efficiency will be studied in detail in Chapter 6. Hence a

low efficiency increases the cost of certain attacks, e.g., brute force attacks on the

HIDS administrator key. Another issue is self-monitoring: some HIDSs monitor their

own elements and consequently trigger an alarm if attacked. While performing the

cost based analysis, these factors should be taken into account and increase

accordingly the independency score.

After assigning a independency score to each HIDS element for a privilege level, we

define the lowest independency score assigned to an element for this privilege level

as the overall independency score for that privilege level, denoted as privCost . If the

element is redundant, i.e., another data path exists from data collection to alert

reporting, only the highest score is used as the overall independency score, as an

attacker needs to subvert at least one element on each data path to subvert the HIDS.

69

Attackers will exploit the shared element with the lowest independency score to

subvert the HIDS. Low privCost values hence imply low resiliency values.

5.3 Improving HIDS Independency

In this section we describe techniques to improve HIDS independency. The

techniques fall into the following categories: 1) decrease the amount of shared

resources, beginning with the resources which are easier to exploit; 2) provide

redundant paths to avoid single points of failure and to increase the attacker’s effort;

3) increase the complexity of exploiting shared resources by using improved access

control systems, encryption, or other techniques to mitigate the threat and to increase

the independency score of the shared element. Next we discuss some specific

techniques based on the previous categories.

5.3.1 Using Embedded Hardware

A technique to reduce the amount of shared resources at the supervisor privilege level

consists of transferring most of the unsecured communication channels and proxies to

hardware. This will actually increase the possible attack vectors at the physical level.

Nevertheless, the cost for an attacker with supervisor access to subvert the system

monitor will increase, and most attacks achieve supervisor privilege level. Recent

experiences using embedded systems as IDSs can be found in [Mol01] and

[PFMA04]. In both cases a single board computer in the form of a PCI card was used

as an active monitor of filesystem integrity and memory, respectively.

70

Figure 5-2. Example Scheme for Hardware HIDSs

While intuitively these systems may seem secure, a rigorous analysis of the path is

still necessary. In particular, [Mol01] needs an IDE controller to retrieve the data

from the hard disk, which is a shared element. As novel hardware continues to appear

with field-upgradeable capabilities, we need to account for attacks launched to

subvert hardware [HD04]. While extremely rare today, as the expertise of the average

attacker continues to rise, the feasibility of such attacks will also increase. This shows

that the problem of intrusion detection subversion not only depends on the security of

the proxies (i.e., agent, director, notifier), but also on the existence of shared

resources. As for [Mol01], a shared proxy also exists for [PFMA04]: the DMA

controller and a communication channel, the PCI bus, which may be accessed by both

the board and the system supervised.

5.3.2 Using Redundant Elements

In [BGFI+98], the authors propose the use of autonomous agents to overcome a

single point of failure. To prevent subversion attacks, they propose to deploy

distributed collectors (agents) to monitor data. If one of the nodes failed to report an

attack or was subverted, the rest of the detection system continues working. To study

71

such systems, all redundant paths created by each autonomous agent must be

considered, and the cost for the attacker may increase as a result.

5.3.3 Virtualization

The rise of virtualization technologies (e.g., Xen [BDF+03], VMware [VMw04])

provides new techniques to perform intrusion detection. Clients inside virtual

machines can be inspected by external agents [GPMB03]. The virtual machine

monitor can enforce the separation between shared resources from HIDS and

supervised system, even in the case the attacker achieves supervisor privileged on the

system supervised. These systems are complex, as the path used by applications to

communicate with each other is non-obvious and depends of the specific virtual

machine technique implemented. For example, [Lit05] employs Xen to perform

intrusion detection, while [GR03] utilizes VMware. These systems, however, display

great potential as IDSs.

Finally, current advances in CPU, I/O and DMA isolation [Win03] provide the

necessary features to create a Secure Kernel (SK). SK executes in a privileged, secure

mode, capable of monitoring the others but inaccessible to them (see Figure 5-4). In

this architecture, the virtual machine monitor spawns two or more operating systems.

Intel’s Safer Computing Alternative (previously known as Lagrande technology

[Gra03]) advocates this approach to improve the security of future systems, which

provides an even greater separation for shared resources.

72

Figure 5-3. Scheme of a Secure Kernel as a HIDS

5.3.4 Trusted Computing

If all proxies in the path between data collection and alert reporting were to be

checked for integrity and the data exchanged between them also checked for integrity,

the alert report will be trusted or known to be tampered with by the attacker. The

Trusted Computing Group (TCG) [Gro03b], formerly known as Trusted Computing

Platform Alliance (TCPA), uses this approach to provide a “measured boot”. Every

element measures the next element of the booting process by creating a digest of the

element. The digest is then stored into an embedded, possibly tamper resistant,

cryptographic chip, called the Trusted Platform Module [Gro3a]. As HIDSs have a

path between collection and reporting, each element may measure the next one before

passing the data. This architecture enables the remote verification (also known as

attestation) of all the actors along the HIDS path, so that the output correctness may

be verified by means of validating a signature as part of the data. In [SPvD05] a

similar method was proposed to perform fine-grained attestation on executing

processes to assess the integrity of the output given a certain input.

73

5.4 Evaluating Resiliency

The independency score evaluates the relationship between the HIDS and the system

supervised by identifying shared elements and their possible use as attack vectors

against the system supervised. In this section we describe how to estimate HIDS

resiliency based on environmental factors and the independency score.

The two main questions we need to answer are: 1) Does the attacker care to be

detected? and 2) Does the attacker have the necessary skills to perform an attack

against the system supervised?

The motivation for the attacker to launch an attack against the system supervised

could depend on the services provided by the system supervised and the type of

organization. For example, if the system is an informative web server, the attacker

probably will not care about being detected in the event of web site defacement.

HIDSs stand in most cases as the last layer of defense. Hence access controls,

firewalls and NIDSs possibly have already “cleaned” most of the less dangerous and

automated attacks. We introduce the attacker motivation as a variable θ , 10 ≤≤ θ ,

where 0=θ is the extreme of none of the attackers care about being detected (and

hence the resiliency will be always 1) and 1=θ all attackers care and will attempt if

possible to subvert the HIDS. To consider only the worst-case scenario, we set θ to

1. Table 5-1 provides some values for θ in specific environments. These values are

based on expert judgment. Therefore, the order of magnitude is more important than

the absolute value itself.

Table 5-1: Values of θ for Specific Environments

74

Value of θ Possible Scenario

0 No subversion attempts

0.1 Unprotected home machine

0.2 Unprotected university machine

0.3 Protected home machine

0.4 Protected university machine

0.5 Small business

0.6 Large business

0.7 Government institution

0.8 Military

1 All attackers attempt subversion

We already discussed how to estimate the independency score of various shared

elements compared to the baseline of finding a vulnerability on the system supervised

for different privilege levels. Thus, we assume that the attacker has enough skills to

reach that privilege level. We now link the independency score introduced when

evaluating HIDS independency, privCost , with the probability of subverting the

HIDS. If 1<<privCost , the probability that the attacker will succeed in the attempt is

quite high, as the attacker has shown enough skill to easily subvert the HIDS,

1≈priv

successP . However, for the case of 1>>privCost , the probability that the attacker

will succeed is quite low, 0≈priv

successP . In the extreme case that the HIDS is perfectly

independent and ∞=privCost , we have 0=priv

successP , as we do not consider out of band

attacks.

When discussing the possible probability values of subverting the HIDS, we did not

include the attacker’s motivation. This motivation is assumed to be independent of

the probability of subversion. When calculating the HIDS resiliency, priv

resP , we

combine both factors in the following equation:

75

priv

success

priv

res PP θ−1= (5.1)

The overall resiliency is computed for all possible privilege levels where the

resiliency is first weighted by the frequencies of attacks (the frequencies are

associated with the level of privilege reached through the attack):

priv

res

priv

Spriv

res PP α∑
∈

= (5.2)

where S is the set of possible privilege levels on the system supervised and sα are

the frequencies of attacks reaching that privilege level.

5.5 Case scenario: Evaluating Samhain Independency

HIDS independency is a deployment characteristic. Consequently, even for the same

HIDS, results may vary depending on how the HIDS is deployed. Our aim is not to

evaluate independency of the specific HIDS but rather to illustrate the proposed

method for a particular case: evaluating a host-based file integrity verifier. We

estimated the independency scores of Samhain [Wot05], an integrity verifier.

Samhain is executed as a daemon on the system supervised. It can be run on many

platforms (i.e., Windows with Cygwin, Unix, Linux). Samhain works by first

scanning the system to create a “baseline” database of the filesystem files. This

database is consulted when future scans are performed. If key differences exist

between the database and the current scan, such as file size modification, file

creation/modification time, new/removed files, etc, they are reported to the logging

mechanism. Samhain can be set up to scan at specific time intervals and email the

administrator the reports. Logs are generated on the host, on which the daemon is

76

running, through syslog. Samhain can log through stderr, email, file, pipe, syslog,

RDBMS, central log server, external script and IPC message queue. In our

implementation, Samhain logs to a local CD burner and reports by an email to the

administrator. Samhain was deployed on a server, with an installation of Gentoo

Linux. The version of Samhain used was 2.3.1. We deployed Samhain using the

default installation options.

To illustrate our method, we restricted the independency evaluation to the supervisor

privilege level (RCost). The selected baseline cost is the cost to achieve root access

for an outsider. In this case, the baseline models the effort of finding an unknown

vulnerability in the software that runs on the system supervised, which is up to date.

We estimated the independency score of the other attack vectors to subvert the HIDS

compared to the baseline. In other words, we estimated how much more (or less)

effort is needed for the attacker to subvert the HIDS for various attack vectors

compared to finding an unknown vulnerability in the software running on the system

supervised. Note that the exact values of these independency scores are less important

than their order of magnitude so that the most easily launched attack vector is

correctly identified.

In our implementation, Samhain reads the files specified by our policy, verifies the

integrity against a database and then logs the result on a CD, while sending a message

with the logs to an email address. By default, logs, messages and configuration files

are unencrypted. The HIDS elements and data path are represented in Figure 5-4.

77

Figure 5-4. Data Path for Samhain

HD is the hard disk containing the files subject to inspection. 0P represents the hard

disk Integrated Drive Electronics (IDE) controller, 1P the operating system kernel

(IDE driver, filesystem) and both elements are part of the agent. The Samhain process

acts as the detection engine. Samhain also uses a filesystem to store the configuration

files. Two different notifiers are used: consequently we studied both paths. 2P

represents a smtp process, the mail server. 3P represents the kernel network stack,

network card driver and 4P the network card. For the redundant path, 6P is the

syslogd login daemon, 7P stands as the CD IDE controller and 8P the filesystem on

the CD. For the communication channels, 0S are the IDE internal registers, 1S the

PCI Bus, 2S the kernel to user space communication, 3S the inter process

communication, 4S the user space to kernel communication and finally 5S represents

the internal network connection. The rest of the path is outside the host and hence out

of scope.

78

After we defined the data path of the HIDS, we evaluated the independency score of

each of the shared elements for the supervisor privilege. We compared the different

scores of subverting the HIDS for each element for the supervisor privilege level. The

results, shown in Table 5-2, are based on expert knowledge. We estimated that

modifying the internal operation of hardware proxies or attacking restricted

communication paths (e.g., the PCI bus) requires either insider help or an intimate

knowledge of the system, so we assigned 10=RCost (i.e., an effort 10 times higher

than that of finding an unknown vulnerability in the software running on the system

supervised). Many current controllers provide a mechanism to upgrade the internal

firmware, hence providing an easier attack vector (e.g., replacing the firmware with a

corrupted version). While the cost may fluctuate depending on the specific hardware,

we set 5=RCost for firmware-based hardware.

Software is simpler to subvert: specifically there are tools that can automatically

corrupt the detection engine itself, so we assigned 0.3=RCost . However, the

attacker may also corrupt other proxy software, like smtp. As this requires some

expert knowledge to correctly modify the communication, we estimated 0.7=RCost

for both the network OS stack and smtp.

The lowest independency score is associated with 2S . Many rootkits exist on the

Internet that are designed to modify the operating system. Therefore, user space

applications will provide deceptive outputs. As rootkits are far more common than

patches that target specific binaries, we estimated the independency score to be very

low. Hence, if no mitigation techniques are in place, we set 0.1=RCost . The

79

existence of two redundant paths for notification does not affect the overall

independency score, as the lowest independency score is associated with one of the

proxies of the agent.

Table 5-2: Independency Scores for Samhain

Elem. Description Resource used RC.

.Base root privilege find unknown exploit 1

0P HD IDE hardware/firmware 5

1P
fs driver OS 0.8

D Samhain memory/filesystem 0.3

2P
smtp memory/filesystem 0.7

3P
network driver OS 0.8

4P
network card hardware/firmware 5

6P
syslogd memory /filesystem 0.7

7P
CD IDE hardware/firmware 5

8P
CD filesystem ∞

0S
IDE registers internal bus 10

1S
PCI bus internal bus 10

2S kernel IPC OS system call 0.1

3S
shared libraries IPC 0.2

4S
network stack OS 0.7

5S
TCP/IP (int) network connection 5

The amount of shared resources provide the attacker with various possible attack

vectors to use to subvert the HIDS. While mitigation techniques may be used, the

wide range of shared elements will probably make them either impractical or

insufficient. For example, encrypting and signing configuration files and renaming

the executable process will increase the independency score for the detection engine.

However, the problem of sharing kernel elements will persist.

80

5.6 Conclusions

In this chapter we introduced HIDS subversion as a technique to circumvent HIDSs.

Two metrics were proposed to evaluate the HIDS strength against subversion. HIDS

independency is an attack-independent metric, which provides a measure of the

isolation between the HIDS and the supervised system. HIDS resiliency is a

quantitative, attack-dependent metric, which factors environmental attributes of the

deployment scenario, along with the HIDS independency to estimate the probability

that a HIDS will not be subverted as part of the attack to the system supervised. We

evaluated the independency score of the Samhain HIDS. We found that the

independency score reflects the simplicity of targeting the collection engine, in this

case, the kernel. These results will be identical for the Osiris HIDS, as both HIDSs

utilize the same mechanisms for collecting and reporting.

81

Chapter 6: Evaluation of Efficiency and Transparency

In this chapter we discuss efficiency and transparency. These characteristics share

specificities that motivate their study in the same chapter. Unlike attack resiliency and

visibility, transparency and efficiency have been commonly applied in IDS

evaluations. However, a detailed evaluation methodology has not been described for

these characteristics. One reason might be the simplicity of performing the

measurements: efficiency reflects the time for the HIDS to provide a result; and

transparency indicates the performance impact of the HIDS to the system supervised.

As an example, researchers will conduct a performance evaluation with and without

the HIDS to validate the usability of their proposed HIDS [PKSZ04]. However,

current evaluations for these characteristics do not follow a common methodology.

The strong relationship between efficiency and transparency also suggests studying

both characteristics in a single chapter. Indeed, in many cases, a decrease of

efficiency implies a decrease of transparency, and vice versa. Efficiency heavily

depends on the resources utilized by the HIDS, and many of these resources might be

shared between the HIDS and the system supervised. If the HIDS utilizes more

aggressively the shared resources, the HIDS will likely provide the detection results

quickly. Many HIDSs implement the detection engine and the reporting engine in

separate systems [GRO3a]. This improves the transparency of the system, but the data

collection still needs to be realized by utilizing the resources from the host. For

example, if the data collected resides in a hard disk, the slower the data is collected

the less impact on the HIDS in the case of hard disk contention.

82

Both efficiency and transparency may have different impacts on the system

supervised depending on the environment. For example, efficiency might not be an

issue for a desktop machine in an academic environment, where the system can be

reimaged without loss of assets. On the other hand, low efficiency in a high security

environment might provide comparable losses than a very late detection. As a result,

we need to provide tools to allow the optimization and comparison of these

characteristics for different deployment settings. We introduce a mapping between

both characteristics and cost metrics. This mapping will be useful to integrate these

characteristics into a common framework. HIDS frameworks and the integration of

HIDS characteristics will be discussed in detail in Chapter 7.

This chapter is structured as follows. Section 6.1 provides the theory on evaluating

efficiency. We introduce a set of time variables that can be studied independently.

This section also discusses possible mappings between time delays and the cost of the

HIDS. Section 6.2 introduces the theory to measure HIDS transparency. We provide a

mapping to translate transparency metrics into costs related to decreased performance

of the system supervised. In Section 6.3 we apply these metrics to evaluate

empirically the efficiency and transparency of two HIDSs. Finally, in Section 6.4 we

apply the data collected in the study performed in Section 4 to estimate empirically

the delay related to the time an attack takes to manifest in the files collected.

83

6.1 Efficiency

6.1.1 Metrics Linked to Efficiency

As already mentioned, in most cases, real time intrusion detection in HIDSs is not

possible. It usually suffices to discover the intrusion or attempted intrusion (i.e.,

attack) in a timely fashion (i.e., before the attacker can perform damage to the

system). Efficiency is defined by the time that elapses between the start of an

intrusion and the output of an associated alert. To measure efficiency, we measure the

delays on every channel and proxy used to report the alert, including the processing

time of the detection engine. We then add the delays related to the data collected and

the time interval between data collections. Using the scheme represented by Figure 5-

1 in Chapter 5, the expected value of the efficiency with n proxies is:

2 1

0 0

[] [] [] [] [] IN : 1
n n

eff interval analysis si pj

i

manifes io

j

tat nE t E t E t E t E t t n n
+ −

= =

= + + + + ∈ >∑ ∑ (6-1)

The variable int ervalt (interval between data collections) represents the time between

data collections if the HIDS does not perform continuous supervision. For example,

active IDSs [DDW99] will not typically request data continuously to avoid stalling

the system supervised, as retrieving data will likely affect the host performance,

creating a tradeoff between int ervalt and the performance of the system supervised as

described by transparency. The variable manifestationt (time to manifest) characterizes the

time between the start of an attack until the data manifests in the data collected by the

HIDS. The variable analysist (time to analyze) is the time required by the detection

engine to analyze the data collected and provide a result. Finally, the variable tpj (time

84

in proxy) describes the time spent at each proxy in the data path, while tsi (time in

channel) describes the time in each communication channel.

In practice, not every delay in the data path can be measured. Another approach is to

calculate the delay for data collection, analysis and reporting separately. However, in

many cases, the estimate will be calculated from data collection to alert reporting.

This is especially true for black box systems, where it is difficult to divide the timings

for the different elements of the system. Performing a less fine-grained evaluation of

efficiency results in losing some information about possible optimizations. For

example, a HIDS may be very slow because the chosen reporting engine is slow.

We will call the interval between data collection and alert reporting, the time to

process (processt):

2 1

0 0

[] [] [] [] [] [] IN : 1process repo

n n

collection analysis analysis si prt j

i j

E t E t E t E t E t E t t n n
+ −

= =

= + + = + + ∈ >∑ ∑
(6.2)

The variable tcollection, represents the delay between the data collection and providing

the data to the classifier. tcollection, contains all communications channels and proxies

on that section of the data path. Similarly, the variable treport represents the delays

between the output result of the classifier and the final reporting of the alert, and it

consists on all communications channels and proxies on that section of the data path.

Figure 6-1 shows all the timings described:

85

S0
Si+1

ClassifierP0 Pi+j+1

Si+j+3Si+2

Pi+1Pi
Si

Agent

Si+j+2

Notifier

Attack starts

Attack manifests

Data collected

tintervaltmanifest tcollection tanalysis treporting

tprocess

Figure 6-1. Timings Related to Efficiency

The evaluation of efficiency mainly consists of a set of timing measurements in the

HIDS itself. We now describe guidelines for the evaluation of the different variables:

• Measuring int ervalt : Many HIDSs schedule checks in a deterministic fashion.

As a result, in most cases, int ervalt will be a fixed value set by the administrator.

If the HIDS audits the system at deterministic time intervals, an adversary

could evade the HIDS by launching an attack just after an inspection. In

[Mol01], randomization between time intervals is proposed to avoid this type

of attack.

• Measuring manifestt : The time to manifest may be complex to measure, but it is

important to note that even if the measurements for the time to process is

small, the attacker might have already performed some damage in the system.

The reason is that the activity may only manifest in the data collected late in

the attack. Time to manifest needs to be measured empirically, by estimating

the time for an attack to manifest in the data collected since the attack is

launched. A sample study of the time to manifest for filesystem data is

86

presented in Section 6-4. Note that, in certain instances, the time to manifest

may be negative. This happens when the system detects the transition to an

insecure state before a security breach actually happens.

Measuring processt : We evaluate the delay between the data entering each

section of the data path and the output of the required data. In many cases, the

estimate will be calculated from data collection to alert reporting. This is

especially true for black box systems, where it is not possible to divide the

timings for the different HIDS elements. In some cases it will be of interest to

divide the time to process into three stages as described in Equation 6-2, or

even further as described in Equation 6-1. This separation of elements can

provide valuable information for optimizing efficiency. For example, it is

common to provide the HIDS reporting capabilities through external programs

like sendmail [KS94]. This program may be replaced to provide the same

functionality to the HIDS. The time to process varies depending on the

amount of data collected. For systems where the data collected is tunable, the

evaluator needs to estimate the efficiency for different amounts of data

collected, so the trend for the efficiency (e.g., linear with the amount of data,

exponential) can be understood.

6.1.2 Translating Time Delays into Costs

A detection delay implies a cost for the supervised system, in the form of further

damage and/or due to not applying preventive measures to avoid collateral damage

(e.g., canceling stolen credit card data). We introduce the intrusion to alert cost (Ceff)

87

that we link to efficiency. Ceff is defined as the cost caused by the delay between the

beginning of an intrusion and the report of the alert by the HIDS. To calculate this

cost, let us suppose an increasing function, Feff(t), mapping delays to costs. For

example, the damage created by an intrusion to a server with a database holding

credit card records will increase with time. This increase is independent of further

intrusions but related to the misuse of the attacker of the stolen data. In general, the

function Feff is related to the type of host and the type of attack. The use of mapping

functions to costs has been described in [LCT+02], where a mapping function is used

to represent the cost to the system due to an attack. In particular, most evaluations

provide an implicit translation of HIDS efficiency. A common approximation is to

formulate the efficiency function as a step function with three states [LFM+02]. This

approximation relies on the fact that for most environments we can divide efficiency

measurements into real-time (or early detection), non-real time (late detection) and

non-detection (or too late to provide any relief to the intrusion cost). In Figure 6-2 we

represent three examples of efficiency functions. Function (1) represents a three

costs-step, (2) assumes a cost decreasing exponentially with the detection time, and

(3) a cost exponentially increasing with the detection time. Note that all functions are

defined only in the time interval between 0 and tmax, which is the maximum time for

an intrusion to be undetected. Hence, the maximum damage for an undetected

intrusion is defined as Cmax=Feff(tmax).

88

Figure 6-2. Sample Efficiency functions

6.2 Transparency

6.2.1 Metrics Linked to Transparency

As already mentioned, some HIDS elements utilize resources of the system

supervised. Typical shared resources include system memory, data buses and storage

components. Therefore, the system supervised will likely experiment a performance

reduction because of the HIDS. HIDS transparency measures this performance

reduction.

The performance reduction (Ptr) is calculated as the ratio between the normal

performance of the system supervised and the performance while the HIDS is

running:

E[Performance with HIDS]

E[Performance without HIDS]
tr
P = (6-3)

Hence, Ptr=0 indicates no performance reduction (and hence perfect transparency),

and Ptr=1 indicates a 100% reduction of performance (system unusable for the user).

Measurements could be produced by separately evaluating the reduction of

performance created by each shared resource and then providing these results along

89

with the usage of each shared resource by the host. For a HIDS utilizing 7 shared

resources of the system supervised, we have:

1

0

7
n

tr n tr

n

P Usage P
−

=

= ×∑ (6-4)

Where Usagen refers to the utilization of the shared resource and
n

trP refers to the

performance reduction due to that resource. Hence, if the shared resources were

identified with exactitude, the best approach to measure transparency would consist

of executing a set of benchmarks on the set of shared resources. The appropriate

benchmarks would be micro benchmarks that perform a set of short, concise

operations on the specific resource, repeating this operation many times. Examples of

micro benchmarks are Bonnie++ [Bon] and IOzone [Ioz]. Micro benchmarks would

provide a good understanding of the different aspects of the shared resource, but

would not provide information on real usage of this resource by an application.

Hence, the evaluator needs to estimate Usagen for each shared resource. Furthermore,

to identify, select and create micro benchmarks for each shared resource is not a

feasible approach for most HIDSs evaluations. For example, in [Mol01] even if the

whole HIDS was implemented as an external PCI card, the host still displayed a

noticeable overhead due to contention on the PCI bus, which shows that micro

benchmarks might need to be very specific. In this case, providing a micro

benchmark for the PCI bus usage and estimating the usage for the PCI bus would

have been very difficult.

In most practical cases, the performance reduction can be measured by running a set

of high-level performance benchmarks (covering different resources) on the system

90

with the HIDS activated and then with the HIDS deactivated. Macro benchmarks can

be used for such task. Macro benchmarks perform application driven actions for long

durations. The actions of the macro benchmark heavily utilize a set of specific system

resources. Examples of macro benchmarks are Postmark [Pos] and httperf [Htt].

Macro benchmarks decide the resources to be evaluated, and the Usagen for each

resource. For that reason, macro benchmarks should be picked carefully and the

configuration of the benchmark provided along with the evaluation for transparency.

Indeed, as macro benchmarks utilize a broader set of shared resources, a modification

of the configuration of the macro benchmark may result in heavily utilizing a shared

resource instead of another. Hence, an evaluator could produce incorrect results by

configuring the macro benchmark with a bias for using more or less heavily a specific

resource. We will describe next the commonly used shared resources by each HIDS

element. The collection agent will always interfere with the resources containing the

data since the collection agent needs to reside on the HIDS. For example, capturing

filesystem data will interfere with filesystem related resources (e.g., IDE controlled,

PCI bus), and capturing system calls will produce a performance reduction while

utilizing shared resources related to the operating system. The detection engine will

likely affect the processor and system memory. The shared resources for alert

reporting vary greatly, but usually the impact for transparency is minor, as the amount

of data transferred is low.

91

6.2.2 Relationship with Cost

The impact of the performance reduction created by the HIDS on the system

supervised varies depending on environmental variables. The performance reduction

supposes a decrease of productivity, and hence translates into a cost for the system

supervised (Ctr). To perform the translation between transparency and cost, a

mapping function needs to be provided. The mapping function describes the cost

depending on the performance degradation, and will depend of the type of system

supervised.

Let us denote the mapping function as
tr
F (Ptr). The function is defined in the interval

[0,1], and for (Ptr=1) provides the cost of a complete shutdown of the system

supervised. Hence:

(1)maz tr trC C F= = (6-5)

For example, a function may suppose that the productivity reduction is proportional

to the reduction of performance, i.e., a 50% reduction of productivity translates into a

50% of the cost of a shutdown. For this simple case:

maxtr trC C P= (6-6)

Due to the high cost of transparency, many HIDSs are only executed for a small

period of time. If the HIDS does not run continuously, we will need to provide the

proportional cost of running the HIDS for only a short period of time. Hence:

()tr tr tr

ExecutionTime
C F P

TimePeriod
= (6-7)

Notice that we assumed that the mapping function is independent of time. This might

not be true as the cost due to transparency may be much less if the HIDS is executed

92

at night. Hence, the final cost might have to be corrected in some cases to account for

the time when the HIDS is executed.

6.3 Case Study: Osiris and Samhain

In this secton we study the transparency and efficiency of two HIDSs, Osiris [Osi]

and Samhain [Sam]. Samhain has already been described in Chapter 5. Osiris’

operation and architecture are similar to Samhain [Wot05]. Both feature a

client/server architecture, and both examine files to detect integrity variations.

However, the collection strategy and the data processing differ greatly. While both

are open source projects, we treated both HIDSs as black boxes, only interacting with

them through the provided API, usage commands and log files.

6.3.1 Experimental Setup

Both Osiris and Samhain were deployed in the same test environment, a Debian

Linux Pentium 4, 1.4 Ghz featuring 256 MB of RAM. Both client and server of the

integrity verifiers were deployed in the system supervised. The version of the

evaluation copy of Samhain was 4.2.3. The version of the evaluation copy of Osiris

was 2.3.5. Both versions were the latest stable releases available at the time of the

experiment. We configured the HIDSs to examine exactly the same files for each test,

and to verify the exact same integrity settings for each file.

While evaluating efficiency, we tuned both configuration files to evaluate the same

exact number of files. These files were created using automated scripts, and each file

contained random content with fixed sizes for every file.

93

To evaluate transparency, we utilized the filesystem macro benchmark Postmark

[Pos], version 1.5.1. Postmark provides the performance of a set of filesystem

transactions, emulating the behavior of a mail server under heavy load. Specifically,

the workload is meant to model a combination of web-commerce transactions. To

achieve this, PostMark creates a set of files of random sizes. The files are then

subjected to a number of transactions. These transactions consist of a file creation or

deletion paired with a file read or append. Each pair of transactions is chosen

randomly. Postmarks is a macro benchmark which mimics real usage of the system

and heavily utilizes the shared resources related to the data collected by the HIDSs

under evaluation (i.e., filesystem).

6.3.2 Results

First we evaluated efficiency for both Osiris and Samhain. Only the programs X

server and KDE were running during the evaluation. For both systems the server was

started first (called Osiris and Yule, respectively). A baseline for integrity comparison

was then created. Before executing the client, a set of 5 files was modified randomly

to create alerts. Then the client was launched, indicating the start time for efficiency

measurement. We used the logs with the execution times of the process to measure

efficiency. We compared the logs created by both applications with the logs related to

process execution time on the system supervised to make sure that they were

consistent. For Osiris, the logs provided a separation between collection and

processing time. For Samhain, the logs did not provide such information but provided

results from data collection to alert reporting. For both systems, we studied three

94

different file sizes: 142 bytes, 13012 bytes and 39012 bytes. For each file size we

incremented the number of files to verify, form 1000 to 6000 in 1000 file increments.

Table 6-1: Efficiency for Osiris with File Size of 142 Bytes

Number of files Average (s) Std. Dev. (s) Interval (s)

1000 4.67 0.58 4.09 5.24
2000 5.33 0.58 4.76 5.91
3000 5.67 0.58 5.09 6.24
4000 6.00 0.00 6.00 6.00
5000 7.00 0.00 7.00 7.00
6000 8.67 1.53 7.14 10.19

Table 6-2: Efficiency for Osiris with File Size of 13012 Bytes

Number of files Average (s) Std. Dev. (s) Interval (s)

1000 4.67 0.58 4.09 5.24
2000 6.33 0.58 5.76 6.91
3000 8.00 0.00 8.00 8.00
4000 10.00 1.00 9.00 11.00
5000 29.67 1.53 28.14 31.19
6000 58.67 2.08 56.59 60.75

Table 6-3: Efficiency for Osiris with File Size of 39012 Bytes

Number of files Average(s) Std. Dev. (s) Interval (s)

1000 19.33 1.15 18.18 20.49
2000 33.33 2.08 31.25 35.41
3000 39.00 2.00 37.00 41.00
4000 46.00 2.65 43.35 48.65
5000 76.00 1.73 74.27 77.73
6000 93.00 7.55 85.45 100.55

Tables 6-1,6-2 and 6-3 provide the results of efficiency evaluation for Osiris. The

results in Osiris for efficiency heavily depend on the file size, or in other words, on

the amount of data collected. For the case of 142 bytes files, Osiris almost does not

account for collection time but only for processing time. This can be verified as the

results, while increasing, are non linear with the number of files. We have a similar

result for file sizes of 13012 bytes, with some non-linearity for the first set of

95

measurements. For file sizes of 39012 bytes, the results are almost linear with the

number of files collected. This may be explained as the bigger files render the

processing time negligible and the collection time becomes then the only factor

driving efficiency.

Table 6-4: Efficiency for Samhain with File Size of 142 Bytes

Number of files Average (s) Std. Dev. (s) Interval (s)

1000 222.33 8.14 214.19 230.48
2000 397.67 3.79 393.88 401.45
3000 507.00 23.64 483.36 530.64
4000 621.00 74.72 546.28 695.72
5000 811.00 51.45 759.55 862.45
6000 1029.33 1.53 1027.81 1030.86

Table 6-5: Efficiency for Samhain with File Size of 13012 Bytes

Number of files Average (s) Std. Dev. (s) Interval (s)

1000 234.00 1.00 233.00 235.00
2000 404.00 1.00 403.00 405.00
3000 539.67 3.21 536.45 542.88
4000 677.33 56.62 620.72 733.95
5000 819.00 28.51 790.49 847.51
6000 1030.33 36.96 993.37 1067.30

Table 6-6: Efficiency for Samhain with File Size of 39012 Bytes

Number of files Average (s) Std. Dev. (s) Interval (s)

1000 233.33 1.15 232.18 234.49
2000 393.33 23.67 369.66 417.00
3000 544.33 4.04 540.29 548.37
4000 740.67 29.77 710.90 770.44
5000 858.00 14.11 843.89 872.11
6000 1037.00 12.49 1024.51 1049.49

Tables 6-4, 6-5 and 6-6 provide the results of evaluating efficiency for Samhain. The

results for Samhain were surprising compared to the ones for Osiris. First, almost all

the measurements reflect a 10-fold increase of time delays with compared to Osiris.

We believe that the time difference is because of a common overhead created by

96

Samhain. A possible reason for this overhead is that Samhain contains more features

than Osiris and the databases take longer to load and compare. This hypothesis is

supported by the data: unlike Osiris, the size of files does not affect the results, and

they remain constant across file sizes. However, the efficiency of Samhain is almost

linear with the number of files, independently of the size. This reflects that the

collection time is negligible compared with the time to compare.

Next, we calculated the transparency of the system. We performed two tests: one with

Postmark utilizing a large number (500) of medium size files (7 MB) and other

utilizing large files (62 MB) but a reduced number (50). The reason for these two

tests was to evaluate the effect of accessing the hard disk in different ways. A larger

number of files will create more activity, but possibly fewer accesses to the hard disk

due to caching.

Table 6-7: Transparency Evaluation with Postmark for 500/7MB Files

Type of Access Average(MB/sec) Std. Dev. (s) Interval (s) Ptr (%)

Read no HIDS 10.03 0.19 9.84 10.22 1

Write no HIIDS 13.08 0.24 12.84 13.31 1

Read Osiris 4.20 0.45 3.75 4.66 0.419111

Write Osiris 5.48 0.59 4.89 6.07 0.419003

Read Samhain 5.83 0.35 5.48 6.18 0.581305

Write Samhain 6.81 0.43 6.38 7.23 0.52052

Table 6-8: Transparency Evaluation with Postmark for a 50/62MB Files

Type of Access Average(MB/sec) Std. Dev. (s) Interval (s) Peff (%)

Read no HIDS 12.89 0.24 12.66 13.13 1

Write no HIIDS 15.64 0.29 15.35 15.93 1

Read Osiris 4.98 0.33 4.65 5.30 0.386028

Write Osiris 5.90 0.56 5.34 6.47 0.377499

Read Samhain 10.25 0.45 9.80 10.70 0.795067

Write Samhain 12.26 0.70 11.55 12.96 0.783775

97

Perhaps a surprising result from the evaluation is that writing provides better

performance numbers than reading. These results are due to the caching strategy of

current filesystems, where writes are aggressively cached until flushed. Macro

benchmarks do not force filesystem flush, as the performance is evaluated from an

application perspective. In fact, Postmark will provide similar write/read numbers for

most modern filesystems. Osiris transparency is low for both reading and writing

(0.42) of smaller files. The numbers are consistent with our experience, as Osiris

aggressively collects files. For larger files, Osiris’ results degrade, as the hard disk

contention increases (0.39 for read, 0.38 for writes). Samhain, on the other hand,

deals much better for both small and large files. For small files, the larger number of

transactions affects its transparency (0.58 for read, 0.52 for writes). We can see that

writes in this case are impacted more evidently. This is consistent with previous

results of efficiency, where it looks like most of the time the HIDS is not collecting

but processing the information. For the case of larger files, the results show much

better results for transparency. As the amount of activity decreases, the HIDS is given

more time to process the database.

An important problem is to decide which should be the results provided by the

evaluator. As we have seen, a benchmark, with a different configuration, may

produce different results for transparency. The solution is to configure the benchmark

so that it closely mimics the specific setting of the system while using the shared

resources utilized by the HIDS. In this case, we evaluated the transparency of the

HIDS for different settings, to provide a broader understanding of transparency

results for various settings of the system supervised.

98

6.4 Evaluating Efficiency Related to the Data Collected

A commonly asked question is to measure how quickly an attack can be detected

when monitoring a specific file. Previously we discussed the necessity of an empirical

evaluation of the time to manifest (tmanifest). In this section, we provide numerical

results of the time to manifest for files on a filesystem. We measured the timing for

the attacker to perform some activity on each file utilized as part of attacks. The

experimental setup is the same as described in Chapter 4, Section 2. We created a set

of scripts which calculated the time difference between the start of each attack to the

first access to the every file which presented activity as part of the attack. In Figure 6-

3, we show a reduced set of files displayed using a state machine. Each connector in

the state machine refers to a transition from one file to another, and the average time

from the beginning of an attack to perform actions on that file. We observed that most

attackers modified the password file after checking the system first, which takes on

average one minute. Malware is often installed later in the session, consuming an

average of 76 seconds if the malware installation occurs after the BEGIN state,

increasing the time to an average of 139 seconds for malware written immediately

after modifying the password. Installing malware took the longest time, and if it is the

last action of the attacker, finalizing this activity will occur on average after 300

seconds have elapsed. An interesting result is how fast an attacker can modify the

password file after the beginning of the session, taking only 20 seconds. As a

conclusion, this study shows the importance of the time to detect on evaluations. For

example, a filesystem HIDSs based on detecting malware will detect the attack later

in the session, and most likely configuration files, including the password file will

99

have been modified by the attacker. On the other hand, if the data collected included

the password file, the attack will more likely be in an early stage, and the damage to

the system less significant.

Figure 6-3. Average Time to Manifest for Sample Files (in
seconds)

6.5 Conclusions

In this chapter, we introduced two characteristics. Efficiency evaluates the delay from

the start of an attack until the HIDS reports the attack. Transparency evaluates the

HIDS impact on the performance of the system supervised. For both characteristics,

we proposed metrics and techniques to estimate these metrics. Furthermore, we

showed how to transform the metrics into costs. These transformations are necessary

to account for deployment factors and to integrate the characteristics into HIDS

frameworks. Finally, we performed two experiments. In the first one, we evaluated

transparency and efficiency for two HIDSs, and compared the results. In the second

one, we evaluated empirically the time to attack manifest for filesystem data.

100

101

Chapter 7: Integrating the Characteristics into a HIDS Cost

Framework

Comparing the characteristics one-to-one for various HIDSs may be of limited value.

A HIDS can be superior when considering one characteristic, but inferior for another

one. In addition, some characteristics may be related, so one characteristic increasing

may result in another one decreasing. Hence, it is important to create frameworks,

which provide the capability to compare several characteristics at the same time. In

this chapter we will first describe some proposed frameworks for HIDSs. Then we

will integrate the characteristics proposed in previous chapters into a cost framework.

We will then show two examples on how to evaluate a set of characteristics utilizing

the proposed framework. In the first example, we will integrate attack resiliency and

detection accuracy to show the impact of different independency scores for HIDS

optimization. In the second example, we will present a tool to create a composite

evaluation of visibility and accuracy, called a HIDS stimulator.

7.1 Survey of HIDS Frameworks

The goal of a successful HIDS framework is to make possible the comparison

between HIDSs, or between operational points of the same HIDS. A HIDS may have

different operational points if it provides configurable settings. For example, the

classifier may label a set of data as an attack if, after performing some statistical

calculations on the data, a threshold in the classifier algorithm is reached. If the

102

threshold is configurable, the results of accuracy evaluations for the system will differ

for each possible setting of the threshold.

If the evaluator is provided with a set of metrics for two HIDSs, and all results are

higher for one of the two HIDSs, then the evaluator does not have a decision problem.

However, a problem exists if for one metric a HIDS presents better results in the

comparison, but for another metric the HIDS has worse results. A solution to this

problem is to create a composite result, adding external factors that may help in the

decision making process.

All techniques for optimization and comparison so far integrate only the metrics for

detection accuracy. As discussed in Chapter 3, the two main accuracy metrics are the

number of true positives in a certain universe of attacks, referred to as the probability

of detection (DP) and the number of false positives in a certain universe of valid

actions collected by the HIDS, referred to as the probability of false alarms (FAP). As

two metrics are provided, a framework is necessary to integrate both into a single,

composite metric.

A first attempt to create composite metrics was proposed by Axelsson [Axe00b]. In

this work, the attack ratio (pa) is presented as an important factor while evaluating

IDSs for different environments. The positive predictive value (PPV) and negative

predictive values (7PV) (as shown in Chapter 4) are proposed as possible composite

metrics to integrate pa, FAP and DP .

In [JU01], a set of external factors were proposed to both provide a comparison

framework and to find the optimal operational point of an IDS. These external factors

103

were the cost of errors: the cost of not detecting an attack (CF7) and the cost of

erroneously labeling normal data as an intrusion (CFP). Additionally, as proposed by

Axelsson [Axe00b], the attack ratio (pa) was also included in the framework. By

using these external factors, the overall cost of implementing a HIDS was proposed

as:

(1) (1)
IDS a F7 D a FP FA

Cost p C P p C P= − + − (7-1)

The equation can be described as follows. A cost is associated with the event of

missing an intrusion. The probability of missing an intrusion is the probability that an

attack occurs
a
p , multiplied by the probability that the attack is not detected (1

D
P−).

There is an additional cost associated with an alert raised in a secure state. The

probability of such an event is the probability that an attack did not happen (1)
a
p− ,

multiplied by the probability that a false alarm was raised (
FA
P).

Once the overall cost is calculated, given a set of pairs composed by the probability of

detection (DP) and probability of false alarms (FAP), the evaluator calculates the total

operational costs for each pair, and decides depending on the minimum cost value:

,

(,) ()min
D FA

D FA IDS
P P D

P P Cost
∈

= (7-2)

where D is the set of (DP , FAP) pairs for evaluation. The subset D is called the

receiver operating characteristics (ROC) [GSS99] of the HIDS if the pairs come from

different operational points of the same HIDS. ROCs are commonly represented by

curves. The curves are created by plotting each pair in a graph. The X-axis of the

graph represents DP , and the Y-axis corresponds to FAP . If the HIDS only presents one

operational point, the representation will be a single dot in the graph. Given a ROC, if

104

our goal is to optimize the operation of the HIDS, then we resolve the following

equation:

,

(,) ()min
D FA

D FA IDS
P P ROC

P P Cost
∈

= (7-3)

The specific calculation of the values for the different costs associated with the IDS

(CF7, CFP) was studied in [LFM+02]. CF7 was defined as the maximum cost incurred

by the intrusion plus the cost of raising an alert. CFP was set to the cost of raising an

alert and the cost of clearing the false alarm.

In [GFD+06a], a different approach is taken, by calculating the relationship between

the input and the output of an IDS using information theory. A new metric is

introduced, the intrusion detection capability, described as the relation between the

mutual information between the input and the output and the entropy of the input. The

approach used to create this relationship is similar to the one utilized in Chapter 4 to

quantify data quality. The main reason to introduce this metric is to avoid the problem

of guessing the different operational costs associated with each detection result by the

classifier.

However, in [CBS06], the author demonstrates that previous frameworks can be

represented in terms of a cost framework, given that additional costs are included for

each possible outcome. These costs define the following outcomes: reacting to an

intrusion, missing an intrusion, raising a false alarm and not raising an alarm in a

secure state, respectively. In Table 7-1, we summarize the meaning of the different

costs. The followon equation represent the extended framework including the four

possible situations:

105

((1)) (1)((1))IDS a F7 D TP D a FP FA T7 FACost p C P C P p C P C P= − + + − + − (7-4)

Table 7-1: Cost Related to HIDS Evaluation

Cost Description Associated Probability

T7C Normal HIDS operation (1)(1)a FAp P− −

F7C Cost of not reacting to an intrusion (1)a Dp P−

FPC Cost of a false alarm (1)a FAp P−

TPC Cost of reacting to an intrusion
a Dp P

A limitation of all approaches based on cost, as pointed out in [GFD+06b], is that the

evaluator sets the costs arbitrarily. Hence, there is no standard manner to calculate the

costs except using expert knowledge. In the next section we address the problem by

linking operational costs with transparency and efficiency.

7.2 A Cost Framework for HIDSs

In this section we introduce a modified framework to estimate the operational cost of

the HIDS. The starting point is the cost framework as described in [JU01, CBS06],

represented in Equation 7-4. Our objective is to introduce the characteristics

described in the previous chapters, and utilize the metrics proposed to complement

detection accuracy in this framework.

Our motivation to modify the estimation of the operational cost follows two

observations. First, for HIDSs the probability of true positives (TP) is not only

dependent on detection accuracy, as represented by the DP , but also on visibility and

attack resiliency. Second, the costs due efficiency and the cost due to transparency

can be utilized to estimate the operational costs in the framework.

106

7.2.1 Integrating Attack Resiliency and Visibility

An attack not detected by the HIDS (false negative) may fall in one of these three

possibilities: 1) not manifested in the inspected data (the attack was not visible by the

HIDS), 2) manifested but not detected by the HIDS (the attack evaded the HIDS) and

3) manifested and detected, but the HIDS was corrupted to prevent the alert (HIDS

subversion). In Chapter 5 we defined the probability of attack manifestation to

quantify the probability that an attack manifests in the data, and, in Chapter 6, attack

resiliency as the probability that an attack will not be subverted in the course of an

attack towards the supervised system.

We provide a graphical representation of the associated detection tree in Figure 7-1.

In the proposed detection tree, PD is complemented with the other two proposed

metrics (PM and Pres) to provide a more accurate quantification of TP and F7.

Figure 7-1. Detection Tree

Note that PM, PD and Pres are not independent. The probability of detection is

conditional to the manifestation of an attack. The probability of attack resiliency is

conditional to the event that the attack manifested in the data collected and that the

attack was detected. Hence:

107

1

M D res

M D res

TP P P P

F7 P P P

=

= −
 (7.5)

7.2.2 Integrating Efficiency and Transparency

The operational cost described in [JU01, CBS06] was chosen by guessing reasonable

cost values. However, some of these costs are directly related to the system efficiency

and transparency. In this section we study the relationship between operational costs,

efficiency and transparency.

The performance overhead created by the HIDS in the system supervised modifies the

operational cost when both the system supervised and the HIDS operate normally. In

other words, when no attacks exist, and no alert is reported, the only cost that applies

to the operational cost is the transparency cost. As we have seen previously, in

Section 7-1, the cost of the HIDS while in normal operation was referred as CT7. If

we suppose that no other operational cost applies, we can set the normal operation

cost of the HIDS as the transparency cost. Hence:

T7 trC C= (7-6)

In Chapter 6 we pointed out that the cost for true positives (CTP) depends on the

system efficiency, due to the damage that an ongoing intrusion may have caused.

Hence, we set CTP to the cost caused by the delay on detecting an intrusion:

()TP eff eff effC C F t= = (7-7)

Moreover, we set cost for missed intrusions to the maximum cost of the function that

maps efficiency to costs (effF). As the function is always increasing (i.e., taking

108

longer to detect an intrusion will only result in additional costs), we set the cost of

missed intrusions to the limit of the efficiency function effF :

max lim ()F7 eff eff
t

C C F t
→∞

= = (7-8)

7.2.3 Operational Cost for HIDSs

We can now replace the previously defined costs in Table 7-2 by the costs related to

both efficiency and transparency. Hence:

max(()) (1)((1))IDS a eff eff a FP trCost p C F7 C TP p C FP C TP= + + − + − (7-9)

By utilizing the new characteristics, the final operational cost provides more details

than before for both comparison and optimization.

A remaining cost, which still needs to be estimated and is not related to

characteristics of the HIDS is the cost of a false positive. If we substitute Equation 7-

9 with the results of integrating attack resiliency and visibility, we have the following

result:

max ((()) (1)())

(1)((1))

IDS a M D res eff M D res eff

a FP FA tr FA

Cost p P P P C P P P C

p C P C P

= + − +

− + −
 (7-10)

This result integrates the proposed characteristics into a single cost framework. While

providing improvements compared to previous cost frameworks, this framework still

requires a considerable amount of expert knowledge input. Next we will describe two

case studies on how to utilize these results in practice.

109

7.3 Estimating the Cost of a HIDS

We have estimated the different characteristics for two HIDSs, Samhain and Osiris.

However, calculating the total cost of these two HIDSs applying equation 7-10 will

be of limited value. First, for both systems the independency score is very low,

providing similar final costs. Second, to avoid the problems related to the low

transparency, both Samhain and Osiris are usually deployed with long interval (tinteval)

between executions. This basically dilutes the results for efficiency, as the interval

between executions is comparatively much more important than the other terms

related to efficiency. Also, transparency is affected, as the total executing time is

short, increasing the transparency of the system. A more interesting use for the cost

framework is to show the effect of improving a characteristic in the HIDS. Next, we

show how the operational point of Osiris and Samhain will be affected by modifying

their independency.

A key problem in HIDS evaluation is, given the ROC of a HIDS, to find the optimal

operational point given a certain environment, IDS
ROC),P(P

IDS CostCost
FAD

min=*

∈
. This

section illustrates how different values of privCost , as described in Chapter 5 will

modify the value of IDSCost , where IDSCost is calculated by using equation 7-10. For

demonstration purposes, we will use ROC curves and attack probability values from

the DARPA 1998 data set [LHF+00]. In Figure7-2, we can see the ROC curve we

will use for our analysis. We will suppose that the probability of manifestation is

equal to one, and does not affect the evaluation.

110

Figure 7-2. Sample ROC

Given that the mapping functions for efficiency (Feff) and transparency (Ftr) are as

shown in Figure 7-3 and Figure 7-4 respectively, we use the results of the Samhain

HIDS to calculate the related costs.

Figure 7-3. Mapping Function for Efficiency

We suppose that for our deployment scenario the mapping function for efficiency

corresponds to an exponential, while the mapping function for transparency is linear

with the performance decrease caused by the HIDS. The cost for an intrusion

0

20

40

60

80

100

120

0 4 8 12 16 20 24

Time (hours)

C
o
s
t

111

increases rapidly once the attacker has enough time to install malware and/or steal

data from the system, hence our choice for the sample mapping function. A linear

function represents well the behavior of a web server for cost due transparency, as

reduced transparency will impact the number of connections lost, and hence lost

revenue.

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Transparency

C
o
s
t

Figure 7-4. Mapping Function for Transparency

We now evaluate the results corresponding to Samhain using these results. The

max

effC corresponds to Ftr(1), while effC corresponds to the efficiency of the system. In

this case, we suppose that the HIDS is executed every six hours, and then add the

values of efficiency as shown in Section 6. As we do not execute continuously the

HIDS, the transparency is weighted for the time executed. The efficiency and

transparency operational costs and the cost wrongly reacting to an intrusion are as

described in Table 7-2:

Table 7-2. Operational Costs

112

Ctr
53 10−×

effC 2

max

effC 100

FPC 5

We set the value of the probability of intrusion, ap , 5= 6.25 10ap
−× as published in

the DARPA evaluation. We also suppose that all attackers care about being detected

and will attempt to subvert the IDS, with 1=θ as described in Chapter 5. In the study

of attack resiliency, for a given privilege level, we described how the probability of a

subversion attack succeeding, priv

successP , was linked to the relative cost compared to the

baseline of finding an unknown vulnerability in the software running on the system

supervised (independency score). We denoted this cost, for a given privilege level, as,

privCost . In Chapter 5 we also provided guidelines to estimate the probability of a

successful subversion (priv

successP) by using the independency score. We introduce the

following simple mapping function as an estimate of priv

successP that has the properties

described in Chapter 5, Section 4:

priv

priv

success
Cost

P
+1

1
= (7-11)

For the initial evaluation, let us set resP =1. Applying Equation 7-11 to the HIDS,

substituting, and resolving for each point in the ROC curve from Figure 7-2, we find

that the optimal operation point of this HIDS is 0.00022=0.6534,= FAD PP , with an

expected cost of 0.00335=IDSCost .

113

Our goal is to optimize the operational point given different values of RCost . For this

study we suppose the frequency of attacks in privilege levels other than root is

negligible. The optimal operational point changes as presented in Figure 7-5.

Figure 7-5. IDSCost for Different Independency Scores

The Operational Costs are:
5= 3 10trC
−× , = 5FPC , = 2effC ,

max =100effC

Table 7-3 provides the optimal probability of detection and the associated cost for the

different values of RCost .

Table 7-3: DP and IDSCost for Different Values of
RCost

RCost DP IDSCost

0.01 0 0.0061

0.5 0.5234 0.0056

1 0.5649 0.0051

2 0.6213 0.0045

10 0.6397 0.0036

114

The HIDS is unusable for 0.01=RCost : the low independency provides no cost

benefit compared with not having a HIDS, for any operation point of the provided

ROC curve. This fact demonstrates the importance of the study of independency,

indicating that a HIDS with a good detection engine will only benefit the organization

if it is not easily subverted. For the other HIDSs a different optimal operational point

should be used to compensate for the reduction in the probability of detection and the

increased comparative weight of the probability of false alarms. This solution is of

course dependent on the operational costs as provided by transparency and efficiency,

but the importance of resiliency should be stressed as we have chosen a very low ap .

Increasing the value of ap will provide even more extreme results, as the increased

number of attacks will provoke a spike in the number of subversion attempts. In this

case we assumed the worst-case scenario, with 1=θ . However, we believe it makes

sense for HIDSs to evaluate the operational point on the pessimistic side.

7.4 Linking Detection Accuracy and Visibility

As already mentioned, the rate of true positive depends on the probability of attack

manifestation in the data collected and on the probability of detection of the classifier.

So far, in practical evaluations, this distinction has not been implemented. In this

section, we discuss an evaluation methodology, which links visibility and detection

accuracy.

Our approach relies on a new tool called a HIDS stimulator. To create the HIDS

stimulator, sample attack evidences were coded and organized depending on the data

where they manifested. This set of data can be linked to its probability of

115

manifestation (i.e., probability that an attack manifests in that set of data). Then each

attack manifesting in the data collected by the HIDS is launched to provide the

probability of detection for the HIDS for these attacks.

7.4.1 Evaluation Methodology

As mentioned, the metrics used to estimate detection accuracy are the probability of

detection and the probability of false alarms. In practice, the probability of detection

is estimated as the percentage of detected malicious activity, while the probability of

false alarms is estimated by the percentage of wrongfully raised alarms. As shown

previously, the probability of detection is not equal to the probability of true

positives, as visibility also needs to be considered. A detection engine may have a

very high probability of detection, but the total number of attacks detected can be

small if the attacks rarely manifest in the data collected.

The proposed methodology consists on the following steps:

• Create a set of attack evidences

• Pair each evidence with the data where it manifests

• Provide the probability of manifestation for the different data sets where the

evidence manifests

• Evaluate the HIDS detection accuracy only with evidences that manifest in the

data acquired by the HIDS (visible evidences)

Finally, we evaluate all the visible evidences to calculate the probability of true

positives:

116

1

i i

n
e e

M D

i

TP P P
=

=∑ (7-12)

7.4.2 Implementing a HIDS Stimulator

Many tools exist to evaluate NIDSs [AAL+03, Met]. These tools launch remote

exploits over unencrypted network traffic or scan for remote vulnerabilities.

However, there are no such equivalent tools for HIDSs. This is why we decided the

developed a tool called, HIDS stimulator. The HIDS stimulator applies the evaluation

methodology described in the previous section to provide a more accurate estimation

of the probability of true positives.

The HIDS stimulator runs on the machine that has the HIDS installed. It should be

run by a user who has root privileges, thus emulating the capabilities a third party

who gained root access would have. The HIDS stimulator will not generate any

external network traffic, separating its tests from those typical of NIDS testers.

Therefore, system administrators can gauge the effectiveness of their HIDS, as well

as enhance their understanding of what is detected by their HIDS.

One must use a combination of the log produced by the HIDS stimulator and the log

produced by the HIDS under test to determine which tests are detected. Due to the

nature of some HIDSs the user may have to wait some time before any detections are

reported. Therefore, one must have a good understanding of the reporting

functionality of the HIDS they are testing in order to evaluate it.

The first implementation of the HIDS stimulator was a command line tool created in

Java for portability. The stimulator launched a set of attack evidences, in the form of

modular plugins. The modular nature of the HIDS stimulator was based on the

117

directory structure presented by its plugins directory. Any subdirectories within the

directory constitute a set of tests sharing similar data manifestation (e.g., filesystem,

system calls). Inside a given test type directory the attack evidence exists, as well as

two subdirectories: testdata and testlog. For a given name of a test, testname, three

files corresponding to that test may exist. The first was info-testname.txt, which

consisted on a text file containing information of the test. The second was run-

testname, which was an executable that runs the desired evidence. The third and final

file that could be associated with an evidence was clean-testname, which performed

the task of undoing any changes created by the run-testname executable. Attack

evidence types could be added simply by creating subdirectories within the tests

directory, and tests per type could be added simply by creating the required files. The

tool will automatically pick up these additions. A graphical view of the directory

structure can be seen in Figure 7-6.

118

Figure 7-6. Command Line Stimulator

While adding more test evidences, we realized that the command line version was

insufficient for several reasons. Attack evidences may manifest in more than one type

of data, so we needed to support this feature without copying each evidence over

different directories. The command line approach also failed to provide searching

capabilities to select different type of evidences. The information files, while useful,

were not standardized. This created problems when the evidences were created by

different people. Finally, there was no way to filter the attack evidences by basic

properties, e.g. operating system where the evidence can be launched. To solve these

problems, we decided to move the implementation to a database. The database

contained all the relevant information of each attack evidences. Meanwhile, the

evidences themselves resided in a single plug-in directory. The database was created

in Java and contains a total of eight fields, which maybe expanded in the future. Table

7-4 summarizes the fields implemented in the database.

Table 7-4: Fields Included in the Database

	ame of Field Description

Name of evidence String representing the given name to the evidence

Executable type String providing the type of executable (shell script, ruby)

Cleanup name Name of the API to call for cleanup

Origin String describing the origin of the attack evidence

About Information of the functionality provided by the attack evidence

OS type Set of operating systems where the evidence can be launched

Evidence key Unique identifier for the evidence

Data sets The sets of data where the attack manifests

We set as requirements for the database to be lightweight and easily integrated with a

Java program for portability. However, the implementation needed to be compatible

with SQL commands. The solution used in this second implementation of the HIDS

119

stimulator was Java DB, also known as Apache Derby. Apache Derby is a java based

SQL compliant database that is now part of Java version 6. But because some user

may utilize older versions of JAVA, the required files to implement the database are

included as part of the program.

To access the database a graphical interface was created, where the user could search

and select the evidences. The evidences could be selected in different ways, for

example, filtering by specific information or by name. A screenshot of the selection

process for attack evidences can be seen in Figure 7-7.

Figure 7-7. Selection Screen for the HIDS Stimulator

The interface also provides the possibility to upload new attack evidences. The

graphical interface detects the type of executable and labels accordingly, providing

120

more flexibility in the language and platform the tests could be created. The process

of uploading an attack evidence was greatly simplified from the previous version.

Through the graphical interface, the user can select the file to be added as an attack

evidence. To reduce the file clutter, the functionality to revert to the previous state

was implemented through an argument passed to the evidence executable. Once a file

is selected, a window pops up and the creator is given the possibility to fill specific

fields, e.g. the platform where the evidence can be launched. These options were

provided as a simple multichoice environment, to be used later to filter. We can see a

screenshot of the process of uploading an attack evidence in Figure 7-8.

Figure 7-8: Uploading an Attack Evidence

The outcome of the launched evidence appears in the graphical interface. The results

still need to be paired with the HIDS log.

121

7.4.3 Sample Attack Evidences

Currently, 16 attack evidences have been implemented, most of them taken from

common activities performed by attackers, or by extracting payloads from attack

libraries. Next we describe some coded attack evidences:

• Time change test: a filesystem evidence that modifies the timestamp of a

random executable. It first backs up the original timestamp before running the

test. The test itself changes the timestamp, and the cleaner restores the original

timestamp.

• Add user test: a file system test that checks to see whether /etc/ can be read

from, can be written to, and can make a copy of /etc/passwd. If those

conditions pass, then the test runs a shell script that adds a user to /etc/passwd

named ‘Sploit’, with the password ‘ABC’. The cleaner file restores the

modified /etc/passwd with its original values, thus preserving the original

state.

Other tests on filesystem data checked random file creation on sensitive directories,

file corruption, log tampering and changing permissions of random files. For system

memory data set we launched rogue processes, and then kill them. In the future we

expect to expand the library of evidences to successfully evaluate HIDSs under the

proposed methodology

7.5 Conclusions

In this chapter, we surveyed previous efforts to create IDS frameworks. A link exists

between the operational costs of the HIDS, related to efficiency and transparency, and

122

the operational cost defined by previous cost frameworks. We used this relationship

to integrate efficiency and transparency into the cost framework. We then showed

how to integrate the metrics defined for attack resiliency and visibility as part of the

total calculation for probability of true positives. Finally, we provided two practical

examples on how to integrate characteristics. First, we showed how the relationship

between accuracy and attack resiliency can affect the calculation of the optimal

operational point of a HIDS. Then we propose a tool, which integrates the study of

visibility and accuracy by creating a database of attack evidences. The attack

evidences are labeled depending on the data set where they manifest, allowing the use

of only evidences that can be detected by the HIDS evaluated.

123

Chapter 8: Conclusions and Future Work

In this dissertation, we researched methods to improve the evaluation of host

intrusion detection system (HIDSs). We showed that HIDSs were now important

security tools, but their evaluation was still performed using the evaluation methods

proposed for network intrusion detection systems (NIDS). Hence, an evaluation of a

HIDS based the outcome solely on the evaluation of detection accuracy. However, we

showed that evaluating only detection accuracy is insufficient for HIDSs, as they

portray specific characteristics that also need to be considered. To solve this problem

we explored distinct HIDS traits, proposing a set of quantifiable characteristics. The

proposed characteristics were the ability to collect the data where an attack manifests

(visibility); the ability of the detection engine of the HIDS to raise alerts only in the

event of an intrusion, when the intrusion manifest in the data collected (detection

accuracy); the ability of the HIDS to resist subversion attacks in the event of an

intrusion (attack resiliency); the ability to timely detect attacks (efficiency); and the

ability of the HIDS to avoid interfering with the normal functioning of the system

supervised (transparency).

For evaluating efficiency and transparency, some practical quantification had been

performed, but no methodology existed to perform the evaluation. For the evaluation

of visibility and attack resiliency, little research had been conducted, and to the best

of our knowledge, no efforts for quantification existed previous to this one.

We identified metrics related to each of the proposed characteristics. To quantify

visibility, we studied the concepts of probability of attack manifestations, and the

124

quality of the data before entering the detection engine. We empirically applied the

proposed metrics for visibility on filesystem data. The data required for the evaluation

was collected over a period of 24 days and contained all system calls created as part

of a SSH compromise. We studied these results to quantify the probability of attack

manifestation for each file on the filesystem. Then we extracted a set of attack

evidences (e.g., password modification) and applied the proposed metrics to evaluate

the quality of each file to detect the attack evidence. We successfully identified the

most relevant files to audit for HIDSs based on filesystem data. Our study

demonstrated that both the probability of manifestation and quantification of data

quality are necessary to provide a full assessment of visibility.

The probability of subversion was introduced as a metric to quantify attack resiliency.

Quantifying attack resiliency was difficult, as data on attempts to modify a HIDS

during the course of an attack is rarely available. To overcome this limitation, we

suggested estimating how often these subversion attempts will be successful. We

restricted the scope of our research to attacks directed towards the HIDS performed as

part of an attack towards the system supervised. We introduced the independency

score, based on the cost of subverting sections of the HIDS. The independency score

was then used to estimate the probability of subversion. We showed the feasibility of

this approach by evaluating the independency score for the Samhain HIDS. Our

results showed that the independency score was very low, making it very simple for

the attacker to subvert the HIDS. Thus, the empirical results confirmed the necessity

of considering attack resiliency while evaluating HIDSs.

125

We found that the quantification of transparency lacked standardization. Previous

evaluations of transparency [PZC+96] were composed by a set of performance tests,

disregarding the type of resources shared between the system supervised and the

HIDS. We proposed the percentage of performance reduction as the metric to

quantify transparency. Then, we studied the use of performance micro benchmarks

[Bon, Ioz] and macro benchmarks [Htt, Pos] to evaluate the transparency of the

HIDS. We found that micro benchmarks provide results that are more accurate, but

are more difficult to apply practically. This is because more than one micro

benchmark might be necessary for a successful evaluation, and therefore the evaluator

needs a deeper understanding of the HIDS functionality to pick the right set of micro

benchmarks. Macro benchmarks, on the other hand, provide a simpler method to

evaluate transparency, but have to be configured properly to provide a good

evaluation. Then, we evaluated the transparency of Samhain [Sam] and Osiris [Osi],

two HIDSs based on filesystem data. The evaluation was performed using the

Postmark [Pos] macro benchmarks with different configurations. The evaluation

showed better transparency results of Samhain over Osiris, but also that modifications

in configuring the macro benchmark affected the evaluation.

We studied approaches to evaluate efficiency. We quantified efficiency using timing

measurements. We introduced a set of timings that are useful to measure the overall

efficiency. In particular, we showed empirically that the efficiency of the system may

be modified by the type of data collected. This is because a delay may exist between

the start of an attack and the manifestation of the attack in the data collected. The

experiments were based on studying the time for an attack to create activity on a set

126

of files on a filesystem. After this, we evaluated efficiency for both Osiris and

Samhain. The results showed that Samhain takes ten times more time to provide the

results than Osiris, while perform the same type of detection. This shows the

importance of evaluating efficiency to understand the benefits of a HIDS.

A major problem while comparing several metrics is to decide between two HIDS

when one is superior while evaluating a characteristics, but inferior while evaluating

another. As multiple metrics were proposed, we provided a framework to create a

composite metrics. The proposed framework is based on a cost framework. We

showed that a link exists between the operational costs of the HIDS, related to

efficiency and transparency, and the operational cost defined by previous cost

frameworks. We used this relationship to integrate efficiency and transparency into

the cost framework. We then showed how to integrate the metrics defined for attack

resiliency and visibility as part of the total calculation for probability of true positives.

We provided two examples of integrating characteristics for evaluation. In the first

example, we demonstrated how the optimal operational point of a HIDS is modified

by the independency score. In the second, we presented a tool to integrate the

evaluation of visibility and detection accuracy.

Future Work

This work presented new evaluation methods for HIDSs, demonstrating the

importance and feasibility of including additional characteristics for evaluation.

However, this study is only a starting point to better characterize the functioning of a

HIDS through evaluation.

127

The study of visibility is promising for a better understanding of the role of data in

intrusion detection. We empirically quantified a set of data, the filesystem, but the

research community will benefit from the quantification of visibility for other data

sets, like system calls or memory. In particular, systems based on data collected from

the host, and then having the data sent to a server for remote verification [Gro03a] are

gaining acceptance to improve the security of internal networks. Completing the

study of visibility will provide information to optimize the type of data collected

while creating these systems.

As part of the study of attack resiliency, we presented a set of approaches that may

improve the independency score of a system. However, the exact impact of these

approaches (e.g., virtualization [Lit05, GPMB03] in improving the independency

score of the HIDS featuring these improvements is unknown. In this respect, a

practical evaluation is necessary to evaluate attack resiliency for HIDSs implementing

these improvements.

While evaluating transparency, the performance tests showed that configuration

decisions have an effect on the results. Moreover, as several types of macro

benchmarks and micro benchmarks exist, selecting the right tool for evaluation needs

to be the subject of further study. It will be beneficial to perform an analysis of

existing macro benchmarks and micro benchmarks, considering specifically what

type of system resources are evaluated, and how modifying the configuration will

affect the evaluation of the performance overhead.

We proposed the use of mapping functions to link efficiency and transparency to the

operation cost of the HIDSs. These mapping functions may vary depending on

128

environments (e.g., type of system supervised). Similar environments will have

similar mapping functions, and hence further research could be performed exploring

methods to create more realistic curves based on empirical data. As an example, an

empirical study on how a time delay on detecting an intrusion will reflect into

financial losses for different types of environment will provide more realistic

mapping functions to link efficiency with cost. Similarly, an empirical study on how

performance overhead affects different systems (e.g., lost productivity in a desktop,

lost connectivity in a webserver) will help defining the mapping curves for

transparency.

The evaluation of each characteristic independently is a time consuming process.

However, most of the proposed evaluations for each characteristic can be automated.

We showed initial work in that direction with the implementation of the HIDS

stimulator. Future work may lead to the implementation of the proper tools to

automate the measurement of the proposed characteristics, and to automate the

calculations required to integrate the measurements into a cost framework. As an

example, the tool could provide the user with a choice between different

environments and different types of HIDSs. The evaluation suite will perform the

required calculations depending on the information provided by the user (e.g.,

selecting the right macro benchmark, choosing a suitable mapping function).

129

Appendices

Appendix A: Filesystem Visibility Metrics

A.1Files Related To Password Modification Evidence

FILE NAME PM Activity IG PPV NPV

/usr/lib/libgmodule-2.0.so.0 0.515528 read 1.000 1.000 1.000

/usr/lib/libgobject-2.0.so.0 0.515528 read 1.000 1.000 1.000

/usr/lib/libglib-2.0.so.0 0.515528 read 1.000 1.000 1.000

/lib/libpam.so.0 0.515528 read 1.000 1.000 1.000

/usr/lib/libuser.so.1 0.515528 read 1.000 1.000 1.000

/lib/libpam_misc.so.0 0.515528 read 1.000 1.000 1.000

/lib/security/../../lib/security/pam_succeed_if.so 0.512422 read 0.973 1.000 0.994

/lib/security/../../lib/security/pam_permit.so 0.512422 read 0.973 1.000 0.994

/etc/pam.d/other 0.512422 read 0.973 1.000 0.994

/etc/pam.d/passwd 0.512422 read 0.973 1.000 0.994

/lib/security/../../lib/security/pam_unix.so 0.512422 read 0.973 1.000 0.994

/usr/lib/libcrack.so.2 0.512422 read 0.973 1.000 0.994

/lib/security/../../lib/security/pam_env.so 0.512422 read 0.973 1.000 0.994

/etc/pam.d/system-auth 0.512422 read 0.973 1.000 0.994

/lib/security/pam_stack.so 0.512422 read 0.973 1.000 0.994

/lib/security/../../lib/security/pam_limits.so 0.512422 read 0.973 1.000 0.994

/lib/security/../../lib/security/pam_deny.so 0.512422 read 0.973 1.000 0.994

/lib/security/../../lib/security/pam_cracklib.so 0.512422 read 0.973 1.000 0.994

/usr/lib/libpopt.so.0 0.518634 read 0.973 0.994 1.000

130

/etc/shadow 0.521739 read 0.951 0.988 1.000

/etc/nshadow 0.5 write 0.900 1.000 0.969

/usr/lib/cracklib_dict.pwd 0.5 read 0.900 1.000 0.969

/usr/lib/cracklib_dict.pwi 0.5 read 0.900 1.000 0.969

/usr/lib/cracklib_dict.hwm 0.5 read 0.900 1.000 0.969

/lib/libnsl.so.1 0.568323 read 0.710 0.902 0.993

/lib/libcrypt.so.1 0.596273 read 0.659 0.865 1.000

/etc/security/opasswd 0.413043 read 0.608 1.000 0.825

/etc/localtime 0.897516 read 0.095 0.571 0.970

/etc/shadow- 0.021739 write 0.021 1.000 0.495

/etc/passwd- 0.021739 write 0.021 1.000 0.495

/etc/login.defs 0.021739 read 0.021 1.000 0.495

/etc/skel/.bash_profile 0.018634 write 0.018 1.000 0.494

/etc/gshadow 0.018634 write 0.018 1.000 0.494

/etc/default/useradd 0.018634 write 0.018 1.000 0.494

/etc/skel/.zshrc 0.018634 write 0.018 1.000 0.494

/etc/skel/.bash_logout 0.018634 write 0.018 1.000 0.494

/etc/skel/.bashrc 0.018634 write 0.018 1.000 0.494

/etc/shadow+ 0.018634 write 0.018 1.000 0.494

/etc/passwd+ 0.018634 write 0.018 1.000 0.494

/bash/.bashrc 0.009317 write 0.009 1.000 0.489

/bash/.zshrc 0.009317 write 0.009 1.000 0.489

/bash/.bash_logout 0.009317 write 0.009 1.000 0.489

/bash/.bash_profile 0.009317 write 0.009 1.000 0.489

/home/zidan/.zshrc 0.006211 write 0.006 1.000 0.488

/home/zidan/.bashrc 0.006211 write 0.006 1.000 0.488

131

/home/zidan/.bash_logout 0.006211 write 0.006 1.000 0.488

/home/zidan/.bash_profile 0.006211 write 0.006 1.000 0.488

/home/admin/.zshrc 0.003106 write 0.003 1.000 0.486

/etc/group.6755 0.003106 write 0.003 1.000 0.486

/etc/passwd 0.003106 write 0.003 1.000 0.486

/etc/group.4831 0.003106 write 0.003 1.000 0.486

/etc/shadow.6455 0.003106 write 0.003 1.000 0.486

/etc/gshadow.6455 0.003106 write 0.003 1.000 0.486

/etc/passwd.5988 0.003106 write 0.003 1.000 0.486

/etc/passwd.5989 0.003106 write 0.003 1.000 0.486

/home/admin/.bash_profile 0.003106 write 0.003 1.000 0.486

/proc/self/attr/fscreate 0.003106 write 0.003 1.000 0.486

/etc/shadow.5988 0.003106 write 0.003 1.000 0.486

/etc/shadow.5989 0.003106 write 0.003 1.000 0.486

/etc/gshadow.5988 0.003106 write 0.003 1.000 0.486

/etc/gshadow.5989 0.003106 write 0.003 1.000 0.486

/etc/shadow.10687 0.003106 write 0.003 1.000 0.486

/etc/passwd.4831 0.003106 write 0.003 1.000 0.486

/etc/shadow.10608 0.003106 write 0.003 1.000 0.486

/etc/passwd.6755 0.003106 write 0.003 1.000 0.486

/etc/group.6455 0.003106 write 0.003 1.000 0.486

/home/admin/.bash_logout 0.003106 write 0.003 1.000 0.486

/etc/shadow 0.003106 write 0.003 1.000 0.486

/etc/shadow.4831 0.003106 write 0.003 1.000 0.486

/etc/group.10687 0.003106 write 0.003 1.000 0.486

/etc/passwd.10687 0.003106 write 0.003 1.000 0.486

132

/etc/shadow.6755 0.003106 write 0.003 1.000 0.486

/etc/gshadow.10687 0.003106 write 0.003 1.000 0.486

/etc/gshadow.6755 0.003106 write 0.003 1.000 0.486

/etc/group.10608 0.003106 write 0.003 1.000 0.486

/etc/group.5988 0.003106 write 0.003 1.000 0.486

/etc/group.5989 0.003106 write 0.003 1.000 0.486

/etc/passwd.10608 0.003106 write 0.003 1.000 0.486

/etc/gshadow.4831 0.003106 write 0.003 1.000 0.486

/etc/gshadow.10608 0.003106 write 0.003 1.000 0.486

/home/admin/.bashrc 0.003106 write 0.003 1.000 0.486

/etc/passwd.6455 0.003106 write 0.003 1.000 0.486

/tmp/own.so 0.003106 read 0.003 1.000 0.486

/usr/lib/libuser/libuser_files.so 0.003106 read 0.003 1.000 0.486

/etc/libuser.conf 0.003106 read 0.003 1.000 0.486

/usr/lib/libuser/libuser_shadow.so 0.003106 read 0.003 1.000 0.486

/lib/security/$ISA/pam_limits.so 0.003106 read 0.003 1.000 0.486

/proc/sys/kernel/ngroups_max 0.034161 write 0.002 0.636 0.489

/var/run/utmp 0.664596 read 0.000 0.126 0.257

/etc/group 0.990683 read 0.000 0.043 0.009

/usr/share/locale/locale.alias 0.549689 read 0.000 0.034 0.301

/etc/passwd 1 write 0.000 0.516 0.000

/lib/libselinux.so.1 1 read 0.000 0.516 0.000

/proc/filesystems 1 read 0.000 0.516 0.000

/lib/libnss_files.so.2 1 read 0.000 0.516 0.000

/proc/mounts 1 read 0.000 0.516 0.000

/lib/libdl.so.2 1 read 0.000 0.516 0.000

133

/etc/nsswitch.conf 1 read 0.000 0.516 0.000

/etc/selinux/config 1 read 0.000 0.516 0.000

/lib/tls/libc.so.6 1 read 0.000 0.516 0.000

A.2 Files Related To Download Evidence

FILE PM Activity IG PPV NPV

/etc/wgetrc 0.375776 read 0.831 1.000 0.955

/usr/lib/libk5crypto.so.3 0.437888 read 0.822 0.922 1.000

/usr/lib/libgssapi_krb5.so.2 0.437888 read 0.822 0.922 1.000

/usr/lib/libkrb5.so.3 0.437888 read 0.822 0.922 1.000

/lib/libcom_err.so.2 0.440994 read 0.811 0.915 1.000

/lib/libresolv.so.2 0.444099 read 0.799 0.909 1.000

/lib/libssl.so.4 0.391304 read 0.764 0.968 0.959

/lib/libnss_dns.so.2 0.397516 read 0.764 0.961 0.964

/lib/libcrypto.so.4 0.428571 read 0.724 0.913 0.978

/etc/resolv.conf 0.406832 read 0.723 0.939 0.963

/usr/lib/libz.so.1 0.431677 read 0.713 0.906 0.978

/etc/hosts 0.413043 read 0.699 0.925 0.963

/lib/tls/librt.so.1 0.531056 read 0.367 0.708 0.940

/lib/tls/libpthread.so.0 0.537267 read 0.357 0.699 0.940

/usr/share/locale/locale.alias 0.549689 read 0.352 0.689 0.945

sendq.tgz 0.055901 write 0.079 1.000 0.632

/usr/lib/libkrb4.so.2 0.040373 read 0.038 0.923 0.618

/usr/lib/libdes425.so.3 0.040373 read 0.038 0.923 0.618

boti.zip 0.021739 write 0.030 1.000 0.610

neo.tgz 0.021739 write 0.030 1.000 0.610

134

udp.pl 0.015528 write 0.021 1.000 0.606

/home/admin/.netrc 0.012422 read 0.017 1.000 0.604

doki.tgz 0.012422 write 0.017 1.000 0.604

psyBETA.tgz 0.012422 write 0.017 1.000 0.604

bot.tgz 0.012422 write 0.017 1.000 0.604

psybnc.tgz 0.012422 write 0.017 1.000 0.604

/usr/lib/libidn.so.11 0.009317 read 0.013 1.000 0.602

/usr/lib/libcurl.so.3 0.009317 read 0.013 1.000 0.602

sshII.tgz 0.009317 write 0.013 1.000 0.602

playerz.tar 0.009317 write 0.013 1.000 0.602

Adi.tgz 0.009317 write 0.013 1.000 0.602

robot.tar 0.006211 write 0.008 1.000 0.600

psy.tgz 0.006211 write 0.008 1.000 0.600

Unreal3.2.5.tar.gz 0.006211 write 0.008 1.000 0.600

a3 0.006211 write 0.008 1.000 0.600

p.tgz 0.006211 write 0.008 1.000 0.600

teambot2.tar.gz 0.006211 write 0.008 1.000 0.600

sniff.tar.gz 0.006211 write 0.008 1.000 0.600

all.tar 0.006211 write 0.008 1.000 0.600

b3 0.006211 write 0.008 1.000 0.600

/lib/libutil.so.1 0.10559 read 0.006 0.529 0.611

/home/mysql/.netrc 0.003106 read 0.004 1.000 0.598

/var/log/trans/dorothy_120213.log.tgz 0.003106 read 0.004 1.000 0.598

/var/log/trans/wtmp_120213 0.003106 read 0.004 1.000 0.598

/var/log/trans/sshd_120212.log.tgz 0.003106 read 0.004 1.000 0.598

john.tar 0.003106 write 0.004 1.000 0.598

135

88.tgz 0.003106 write 0.004 1.000 0.598

psyBETA.tgz 0.003106 write 0.004 1.000 0.598

rai.tar.gz 0.003106 write 0.004 1.000 0.598

scan.tgz 0.003106 write 0.004 1.000 0.598

2k.tar.gz 0.003106 write 0.004 1.000 0.598

pico.tgz 0.003106 write 0.004 1.000 0.598

botteam3.tar.gz 0.003106 write 0.004 1.000 0.598

john.tar.gz 0.003106 write 0.004 1.000 0.598

psybnc-linux.tar 0.003106 write 0.004 1.000 0.598

boti.tar 0.003106 write 0.004 1.000 0.598

local.tar.gz 0.003106 write 0.004 1.000 0.598

botteam2.tar.gz 0.003106 write 0.004 1.000 0.598

mirkforce.tar.tar 0.003106 write 0.004 1.000 0.598

teambot.tar.gz 0.003106 write 0.004 1.000 0.598

/home/admin/vteam.zip 0.003106 write 0.004 1.000 0.598

cristi.tgz 0.003106 write 0.004 1.000 0.598

hm-udp.pl 0.003106 write 0.004 1.000 0.598

index.html 0.003106 write 0.004 1.000 0.598

reales.tgz 0.003106 write 0.004 1.000 0.598

holy 0.003106 write 0.004 1.000 0.598

je.tgz 0.003106 write 0.004 1.000 0.598

deep.tar.tgz 0.003106 write 0.004 1.000 0.598

bash.tgz 0.003106 write 0.004 1.000 0.598

bogdaneRk.tar.gz 0.003106 write 0.004 1.000 0.598

acycmech.tar.gz 0.003106 write 0.004 1.000 0.598

dare-mech2.tar 0.003106 write 0.004 1.000 0.598

136

shv.tgz 0.003106 write 0.004 1.000 0.598

26.tgz 0.003106 write 0.004 1.000 0.598

putty.exe 0.003106 write 0.004 1.000 0.598

psybnc-linux.tar.gz 0.003106 write 0.004 1.000 0.598

psyBNC-2.3.2-7.tar.gz 0.003106 write 0.004 1.000 0.598

web.tgz 0.003106 write 0.004 1.000 0.598

/home/admin/access.tar 0.003106 write 0.004 1.000 0.598

andra.txt 0.003106 write 0.004 1.000 0.598

teambot1.tar.gz 0.003106 write 0.004 1.000 0.598

alecs.tgz 0.003106 write 0.004 1.000 0.598

axe.tgz 0.003106 write 0.004 1.000 0.598

sir.tgz 0.003106 write 0.004 1.000 0.598

hienaXmech.tgz 0.003106 write 0.004 1.000 0.598

udp.txt 0.003106 write 0.004 1.000 0.598

flood-udp.tar 0.003106 write 0.004 1.000 0.598

2.6.jpg 0.003106 write 0.004 1.000 0.598

flood.tar.gz 0.003106 write 0.004 1.000 0.598

/etc/localtime 0.897516 read 0.004 0.415 0.697

/lib/tls/libc.so.6 1 read 0.000 0.404 0.000

/lib/libselinux.so.1 1 read 0.000 0.030 0.000

/lib/libnss_files.so.2 1 read 0.000 0.400 0.000

/lib/libnsl.so.1 0.568323 read 0.000 0.033 0.108

/lib/libcrypt.so.1 0.596273 read 0.000 0.094 0.138

/etc/host.conf 0.086957 read 0.000 0.321 0.588

/etc/passwd 1 read 0.000 0.086 0.000

/etc/services 0.096273 read 0.000 0.387 0.595

137

/dev/tty 0.031056 read 0.000 0.400 0.596

/proc/mounts 1 read 0.000 0.030 0.000

/lib/libdl.so.2 1 read 0.000 0.396 0.000

/etc/nsswitch.conf 1 read 0.000 0.400 0.000

/var/run/utmp 0.664596 read 0.000 0.086 0.353

/etc/selinux/config 1 read 0.000 0.030 0.000

psybnc.conf 0.015528 write 0.000 0.200 0.593

A.3 Files Related To Reconnaissance Evidence

FILE PM Activity IG PPV NPV

/proc/x/stat 0.683230 read 0.655 1.000 0.725

/proc/x/cmdline 0.683230 read 0.655 1.000 0.699

/proc/uptime 0.711180 read 0.454 0.961 0.699

/proc/stat 0.711180 read 0.454 0.961 0.684

/lib/libproc-3.2.3.so 0.704969 read 0.440 0.960 0.349

/proc/cpuinfo 0.341615 read 0.210 1.000 0.487

/proc/loadavg 0.636646 read 0.195 0.917 0.329

/proc/x/status 0.301242 read 0.179 1.000 0.315

/proc/tty/drivers 0.270186 read 0.157 1.000 0.315

/proc/sys/kernel/pid_max 0.270186 read 0.157 1.000 0.315

/proc/self/stat 0.270186 read 0.157 1.000 0.444

/var/run/utmp 0.664596 read 0.117 0.879 0.238

/etc/issue 0.034161 read 0.017 1.000 0.237

/proc/x/environ 0.031056 read 0.015 1.000 0.237

/proc/x/statm 0.031056 read 0.015 1.000 0.237

/lib/libproc.so.2.0.6 0.031056 read 0.015 1.000 0.236

138

/usr/include/proc.h 0.027950 read 0.014 1.000 0.236

/usr/include/hosts.h 0.027950 read 0.014 1.000 0.236

.bash_history 0.027950 read 0.014 1.000 0.234

/var/log/wtmp 0.018634 read 0.009 1.000 0.231

raw.set 0.006211 read 0.003 1.000 0.231

mech.session 0.006211 read 0.003 1.000 0.231

/usr/lib/+c0d.init 0.006211 read 0.003 1.000 0.231

/usr/lib/named/named.sn 0.006211 read 0.003 1.000 0.231

/tmp/info_tmp 0.006211 read 0.003 1.000 0.231

ssh.log 0.006211 read 0.003 1.000 0.231

/tmp/own.so 0.003106 read 0.002 1.000 0.231

/dev/shm/shv5/bin/.sh/shdcf2 0.003106 read 0.002 1.000 0.231

m.lev 0.003106 read 0.002 1.000 0.231

vhosts 0.003106 read 0.002 1.000 0.231

/tmp/.stats 0.003106 read 0.002 1.000 0.231

/tmp/.init2 0.003106 read 0.002 1.000 0.231

/usr/local/games/.kde/bin/.sh/shdcf2 0.003106 read 0.002 1.000 0.231

82.146.pscan.22 0.003106 read 0.002 1.000 0.231

ARSEX3 0.003106 read 0.002 1.000 0.231

58.10.pscan.22 0.003106 read 0.002 1.000 0.231

/usr/include/prchead.h 0.003106 read 0.002 1.000 0.231

Neo.seen 0.003106 read 0.002 1.000 0.231

/etc/inittab 0.003106 read 0.002 1.000 0.231

m.ses 0.003106 read 0.002 1.000 0.231

m.set 0.003106 read 0.002 1.000 0.231

/tmp/.procs 0.003106 read 0.002 1.000 0.231

139

vuln.txt 0.003106 read 0.002 1.000 0.231

128.8.pscan.22 0.003106 read 0.002 1.000 0.231

ports 0.003106 read 0.002 1.000 0.231

logo 0.003106 read 0.002 1.000 0.003

/etc/group 0.990683 read 0.000 0.120 0.126

/etc/shadow 0.521739 read 0.000 0.049 0.000

/proc/meminfo 1.000000 read 0.000 0.567 0.121

/usr/share/locale/locale.alias 0.549689 read 0.000 0.129 0.168

unix1.users 0.077640 read 0.000 0.040 0.157

/etc/hosts 0.413043 read 0.000 0.314 0.000

/lib/libnss_files.so.2 1.000000 read 0.000 0.720 0.000

/etc/nsswitch.conf 1.000000 read 0.000 0.720 0.000

/etc/passwd 1.000000 read 0.000 0.722 0.000

/etc/mtab 1.000000 read 0.000 0.747 0.114

/etc/localtime 0.897516 read 0.000 0.740 0.226

mech.set 0.009317 read 0.000 0.333 0.228

/etc/rc.d/rc.sysinit 0.006211 read 0.000 0.500 0

/lib/tls/libc.so.6 1.000000 read 0.000 0.770 0.725

140

References

[AAL+03] Nicholas Athanasiades, Randal Abler, John G. Levine, Henry L. Owen,
and George F. Riley. Intrusion detection testing and benchmarking methodologies. In
Proc. of the Information Assurance Workshop (IEEE IAW’03), pages 63–72, March
2003.

[And80] James P. Anderson. Computer security threat monitoring and surveillance.
1980.

[Axe00a] Stefan Axelsson. The base-rate fallacy and the difficulty of intrusion
detection. ACM-Transactions on Information and System Security -TISSEC,
3(3):186–205, 2000.

[Axe00b] Stefan Axelsson. Intrusion-detection systems: A Taxonomy and Survey.
Technical Report 99–15, Department of Computer Engineering, Chalmers University
of Technology, SE–412 96, Göteborg, Sweden, March 2000.

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of
virtualization. In Proc. of the 7ineteenth ACM Symposium on Operating Systems
Principles (SOSP ’03), pages 164–177, Bolton Landing, NY, USA, October 2003.

[Bes03] Jean-Luc Besson. Next generation intrusion detection and prevention for
complex environments. Master’s thesis, Department of Information Technology
University of Zurich, Switzerland, 2003.

[BGFI+98] Jai Balasubramaniyan, Jose Omar Garcia-Fernandez, David Isaco,
Eugene Spafford, and Diego Zamboni. An architecture for intrusion detection using
autonomous agents. In Proc. of the Fourteenth Annual Computer Security Application
Conference (ACSAC ’98), pages 13–24, 1998.

[Bis02] Matt Bishop. Computer Security: Art and Science. Addison Wesley, New
York, 2002.

[BJ04] Emilie Lundin Barse and Erland Jonsson. Extracting attack manifestations to
determine log data requirements for intrusion detection. In Proc. of the Annual
Computer Security Applications Conference (ACSAC’04), pages 158–167, 2004.

[Bla01] George Robert Blakley. An imprecise but necessary calculation. Secure
Business Quarterly: Special Issue on Return ofSecurity Investment, 2(1):20–25, 2001.

[Bon] bonnie++. http://www.die.net/doc/linux/man/man8/bonnie++.8.html.

141

[Bru99] David Brumley. Invisible intruders: rootkits in practice. login; Magazine,
Intrusion Detection Special Issue, 9:http://www.usenix.org/publications/login/1999–
9/features/rootkits.html, 1999.

[CBS06] Alvaro A. Cardenas, John S. Baras, and Karl Seamon. A framework for the
evaluation of intrusion detection systems. In Proc. of the IEEE Symposium on
Security and Privacy (IEEE security’06), pages 63–77, Washington, DC, USA, 2006.
IEEE Computer Society.

[CC03] Suresh N. Chari and Pau-Chen Cheng. BlueBoX: A policy-driven, host-
based intrusion detection system. ACM Transactions on Information and System
Security, 6(2):173–200, 2003.

[Cor05] Science Application International Corporation. Intrusion detection system
scanner protection profile. Technical report, 2005.

[DDW99] Herver Debar, Marc Dacier, and Andreas Wespi. Towards a taxonomy of
intrusion-detection systems. Computer 7etworks, 31(8):805–822, 1999.

[Den87] Dorothy Denning. An intrusion detection model. IEEE Transactions on
Software Engineering, 13:222, 1987.

[DM02] Herver Debar and Benjamin Morin. Evaluation of the diagnostic capabilities
of commercial intrusion detection systems. In Proc. of the Recent Advances in
Intrusion Detection (RAID ’02), volume 2516, pages 177–191, 2002.

[EGK00] Steven T. Eckmann, Vigna Giovanni, and Richard A. Kemmerer. STATL:
An attack language for state-based intrusion detection. In Proc. of the Workshop on
Intrusion Detection Systems (ACM ’00), pages 43–57, 2000.

[Ent04] Enterasys. Enterasys dragon intrusion defense system. Technical report,
2004.

[FOCT02] Glenn Fink, Karen F. O’Donoghue, Brett L. Chappell, and T. G. Turner.
A metrics-based approach to intrusion detection system evaluation for distributed
real-time systems. In Proc. of the International Parallel and Distributed Processing
Symposium (IPDPS ’02), pages 204–228, 2002.

[GDF+06a] Guofei Gu, Prahlad Fogla, David Dagon, Wenke Lee, and Boris Skoric.
Measuring intrusion detection capability: an information-theoretic approach. In Proc.
of the ACM Symposium on Information, Computer and Communications Security

(ASIACCS ’06), pages 90–101, New York, NY, USA, 2006. ACM Press.

142

[GDF+06b] Guofei Gu, Prahlad Fogla, David Dagon, Wenke Lee, and Boris Skoric.
Towards an information-theoretic framework for analyzing intrusion detection
systems. In Proc. of the European Symposium on Research in Computer Security
(ESORICS ’06), pages 527–546, 2006.

[GL02] Lawrence A. Gordon and Martin P. Loeb. The economics of information
security investment. ACM Transactions on Information and System Security,
5(4):438–457, 2002.

[GPMB03] Tal Garfinkel, Ben Pfaff, Jim Chow Mendel, and Rosenblum Dan Boneh.
Terra: A virtual machine-based platform for trusted computing. In Proc. of the 19th
Symposium on Operating System Principles (SOSP ’03), pages 145–159, 2003.

[GR03] Tal Garfinkel and Mendel Rosenblum. A virtual machine introspection based
architecture for intrusion detection. In Proc. of the 7etwork and Distributed System
Security Symposium (7DSS ’03), pages 124–136, February 2003.

[Gra03] David Grawrock. LaGrande architecture. Technical Report SCMS-18, Intel,
September 2003.

[Gro03a] Trusted Computing Group. Trusted computing platform alliance (TCPA)
main specification, version 1.1b. Technical report, 2003.

[Gro03b] Trusted Computing Group. Trusted computing platform alliance
(TCPA) main specification, version 1.1b. Technical report, 2003.

[GSS99] Anup K. Ghosh, Aaron Schwartzbard, and Michael Schatz. Learning
program behavior profiles for intrusion detection. In Proc. of the Workshop on
Intrusion Detection and 7etwork Monitoring, pages 51–62, Berkeley, CA, USA,
1999. USENIX Association.

[Gui65] Joy Paul Guilford. Fundamental Statistics in Psychology and Education, 4th
ed. McGraw-Hill, New York, 1965.

[Hal97] Halflife. Bypassing integrity checking systems. Phrack Magazine, 7, Issue
51(51):http://www.trust–us.ch/phrack/show.php@p=51&a=9, September 1997.

[HB] Xie Huagang and Philippe Biondi. LIDS: linux intrusion detection system.
http://www.lids.org.

[HD04] James Hendricks and Leendert Van Doorn. Secure bootstrap is not enough:
Shoring up the trusted computing base. In Proc. of the 11th SIGOPS European
Workshop (ACMSIGOPS 04’), pages 230–247, September 2004.

[Htt] httperf. http://www.hpl.hp.com/research/linux/httperf/.

143

[Ioz] Iozone filesystem benchmark. http://www.iozone.org.

[ISO98] ISO/IEC Standard 15408. Common Criteria for Information Technology
Security Evaluation, version 2.0 edition, November 1998.

[JO97] Erland Jonsson and Tomas Olovsson. A quantitative model on the security
intrusion process based on attacker behavior. 23:136–144, April 1997.

[JU01] John E. Gaffney Jr. and Jacob W. Ulvila. Evaluation of intrusion detectors: A
decision theory approach. In Proc. of the Symposium on Security and Privacy (IEEE
security’01), pages 50–71, 2001.

[Kah05] Erkan Kahraman. Evaluating it security performance with quantifiable
metrics. Master’s thesis, Institutionen for Data- och Systemvetenskap, DSV SU/KTH,
June 2005.

[KMT04] Kevin S. Killourhy, Roy A. Maxion, and Kymie M. C. Tan. A defense-
centric taxonomy based on attack manifestations. In Proc. of the International
Conference on Dependable Systems and 7etworks (DS7 ’04), pages 102–123, 2004.

[Koj] Tomasz Kojm. ClamAV. http://www.clamav.net.

[KS94] Gene H. Kim and Eugene H. Spafford. The design and implementation of
tripwire: A file system integrity checker. In Proc. of the Conference on Computer and
Communications Security (ACM ’94), pages 18–29, 1994.

[Lan81] Carl E. Landwehr. Formal models for computer security. ACM Comput.
Surv., 13(3):247–278, 1981.

[LCT+02] Wenke Lee, Joao B. D. Cabrera, Ashley Thomas, Niranjan Balwalli,
Sunmeet Saluja, and Yi Zhang. Performance adaptation in real-time intrusion
detection systems. In Proc. of Recent Advances in Intrusion Detection (RAID ’02),
pages 252–273, 2002.

[LFM+02] Wenke Lee, Wei Fan, Matthew Miller, Salvatore J. Stolfo, and Erez
Zadok. Toward cost-sensitive modeling for intrusion detection and response. Journal
of Computer Security, 10(1/2):5–22, 2002.
[LHFK00] Richard Lippmann, Joshua W. Haines, David J. Fried, Jonathan Korba,
and Kumar Das. The 1999 DARPA off-line intrusion detection evaluation. Computer
7etworks, 1(34):579–595, 2000.

[Lit05] Lionel Litty. Hypervisor-based intrusion detection. Master’s thesis,
University of Toronto, 2005.

144

[LP01] Ulf Lindqvist and Phillip A. Porras. eXpert-BSM: A host-based intrusion
detection solution for sun solaris. In Proc. of the Annual Computer Security
Applications Conference (ACSAC’01), pages 240–251, 2001.

[LV] Rami Lehti and P. Virolainen. AIDE: Advanced intrusion detection
environment. http://www.cs.tut.fi/ rammer/aide.html.

[LX01] Wenke Lee and Dong Xiang. Information-theoretic measures for anomaly
detection. volume 134, pages 130–143. IEEE Computer Society Washington, DC,
USA, 2001.

[LZHH02] Peter Lichodzijewski, A. Nur Zincir-Heywood, and Malcolm I.
Heywood. Host-based intrusion detection using self-organizing maps. In Proc. of the
International Joint Conference on 7eural 7etworks (IEEE ’02), pages 233–240.
IEEE, May 2002.

[MA02] Jesus Molina and William A. Arbaugh. Using independent auditors as
intrusion detection systems. In Proc. of the 4th International Conference on
Information and Communications Security (ICICS’02), pages 291–302, Singapore,
December 2002.

[McH00] John McHugh. Testing intrusion detection systems: A critique of the 1998
and 1999 darpa intrusion detection system evaluations as performed by lincoln
laboratory. ACM Transactions on Information and System Security, 3, Issue
4(4):262–294, November 2000.

[MDWZ04] Yevgeniy Miretskiy, Abhijith Das, Charles P. Wright, and Erez Zadok.
AVFS: An on-access anti-virus file system, 2004.

[Met] Metasploit Web site. http://www.metasploit.com/.

[MHL+03] Peter Mell, Vincent Hu, Richard Lippmann, Josh Haines, and Marc
Zissman. An overview of issues in testing intrusion detection systems. Technical
Report NIST IR 7007, National Institute of Standards and Technology, August 2003.

[Mol01] Jesus Molina. Using independent auditors for intrusion detection systems.
Master’s thesis, University of Maryland at College Park, 2001.

[MSC02] David Moore, Colleen Shannon, and Klein Claffy. Code-red: a case study
on the spread and victims of an internet worm. pages 273–284. ACM Press New
York, NY, USA, 2002.

[Orm03] Hilarie K. Orman. The morris worm: A fifteen-year perspective. IEEE
Security & Privacy, 1(5):35–43, 2003.

145

[Osi] Osiris. http://osiris.shmoo.com/.

[PFMA04] Nick L. Petroni, Timothy Fraser, Jesus Molina, and William A. Arbaugh.
Copilot - a coprocessor-based kernel runtime integrity monitor. In Proc. of the
USE7IX Security Symposium (USE7IX ’04), pages 179–194, 2004.

[PKSZ04] Swapnil Patil, Anand Kashyap, Gopalan Sivathanu, and Erez Zadok. I3fs:
An in-kernel integrity checker and intrusion detection file system. In Proc. of the 18th
USE7IX Conference on System Administration (LISA ’04), pages 67–78, Berkeley,
CA, USA, 2004. USENIX Association.

[PN97] Philip A. Porras and Peter G. Neumann. Emerald: Event monitoring enabling
responses to anomalous live disturbances. In Proc. of the 20th 7ational Information
Systems Security Conference, pages 353–365, Baltimore, Maryland, USA,
OctOctober 1997. NIST, National Institute of Standards and Technology/National
Computer Security Center.

[PN98] Thomas H. Ptacek and Timothy N. Newsham. Insertion, evasion, and denial
of service. Secure 7etworks,Inc., 1, January 1998.

[Por92] Philip A. Porras. STAT - a state transition analysis tool for intrusion
detection. Master’s thesis, Computer Science Department, University of California,
Santa Barbara, June 1992.

[Pos] Postmark. http://www.netapp.com.

[Ps03] David Powell and Robert Stroudand. Conceptual Model and Architecture for
MAFTIA. University of Newcastle upon Tyne, Computing Science; Universidade de
Lisboa and Zurich Research Laboratory, 2003.

[PTJC05] Susmit Panjwani, Stephanie Tan, Keith M. Jarrin, and Michel Cukier. An
experimental evaluation to determine if port scans are precursors to an attack. In
Proc. of the International Conference on Dependable Systems and 7etworks (DS7

’05), pages 602–611, 2005.

[PZC+96] Nicholas J. Puketza, Kui Zhang, Mandy Chung, Biswanath Mukherjee,
and Ronald A. Olsson. A methodology for testing intrusion detection systems. IEEE
Transactions on Software Engineering, 22(10):719–729, 1996.

[RBC07] Daniel Ramsbrock, Robin Berthier, and Michel Cukier. Profiling attacker
behavior following ssh compromises. In Proc. of the International Conference on
Dependable Systems and 7etworks (DS7 ’07), pages 119–124, 2007. IEEE Computer
Society.

146

[Roe99] Martin Roesch. Snort: Lightweight intrusion detection for networks. In
Proc. of the Conference on System Administration (USE7IX ’99), pages 229–238.
USENIX Association, 1999.

[RVK05] Helayne T. Ray, Raghunath Vemuri, and Hariprasad R. Kantubhukta.
Towards an automated attack model for red teams. IEEE security and Privacy,
3(4):18–625, July-August 2005.

[Sam] Samhain. http://www.la-samhna.de/samhain/.

[Sch04] Stuart Schechter. Computer Security Strength & Risk: A Quantitative
Approach. PhD thesis, Harvard University, Cambridge, Massachussets, 2004.

[Seb] Sebek. http://www.honeynet.org/tools/sebek/Related work.

[SPvD05] Elaine Shi, Adrian Perrig, and Leendert van Doorn. Bind: A fine-grained
attestation service for secure distributed systems. In Proc. of the Symposium on
Security and Privacy (IEEE security’05), pages 154–168, 2005.

[SSMF03] Lambert Schaelicke, Thomas Slabach, Branden Moore, and Curt
Freeland. Characterizing the performance of network intrusion detection sensors. In
Proc. of Recent Advances in Intrusion Detection (RAID ’03), pages 155–172, 2003.

[SZ00] Eugene H. Spafford and Diego Zamboni. Intrusion detection using
autonomous agents. Comput. 7etworks, 34(4):547–570, 2000.

[Str] Strace. http://sourceforge.net/projects/strace.

[VK99] Giovanni Vigna and Richard A. Kemmerer. Netstat: A network-based
intrusion detection system. Journal of Computer Security, 7(1):37–71, 1999.

[VMw04] Inc VMware. Vmware gsx server 3.1. 2004.

[Web98] Daniel J. Weber. A taxonomy of computer intrusions. Master’s thesis,
Massachusetts Institute of Technology, June 1998.

[WFP99] Christina Warrender, Stephanie Forrest, and Barak Pearlmutter. Detecting
intrusions using system calls: Alternative data models. Proc. of the Symposium on
Security and Privacy (IEEE security’99), 145:123–132, 1999.

[Win03] WinHeck. AMD platform for trustworthy computing. Technical report,
Microsoft Corporation, September 2003.

[Wot05] Brian Wotring, Host Integrity Monitoring Using Osiris and Samhain.
McGraw-Hill, New York , 2005.

147

