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Directed By: Michel Cukier, Assistant Professor, Department 

of Mechanical Engineering 

 

Host Intrusion Detection Systems (HIDSs) are critical tools needed to provide in-

depth security to computer systems. Quantitative metrics for HIDSs are necessary for 

comparing HIDSs or determining the optimal operational point of a HIDS. While 

HIDSs and Network Intrusion Detection Systems (NIDSs) greatly differ, similar 

evaluations have been performed on both types of IDSs by assessing metrics 

associated with the classification algorithm (e.g., true positives, false positives). This 

dissertation motivates the necessity of additional characteristics to better describe the 

performance and effectiveness of HIDSs.  

The proposed additional characteristics are the ability to collect data where an attack 

manifests (visibility), the ability of the HIDS to resist attacks in the event of an 

intrusion (attack resiliency), the ability to timely detect attacks (efficiency), and the 

ability of the HIDS to avoid interfering with the normal functioning of the system 



 

 

under supervision (transparency). For each characteristic, we propose corresponding 

quantitative evaluation metrics. 

To measure the effect of visibility on the detection of attacks, we introduce the 

probability of attack manifestation and metrics related to data quality (i.e., relevance 

of the data regarding the attack to be detected). The metrics were applied empirically 

to evaluate filesystem data, which is the data source for many HIDSs. 

To evaluate attack resiliency we introduce the probability of subversion, which we 

estimate by measuring the isolation between the HIDS and the system under 

supervision. Additionally, we provide methods to evaluate time delays for efficiency, 

and performance overhead for transparency. The proposed evaluation methods are 

then applied to compare two HIDSs.   

Finally, we show how to integrate the proposed measurements into a cost framework. 

First, mapping functions are established to link operational costs of the HIDS with the 

metrics proposed for efficiency and transparency. Then we show how the number of 

attacks detected by the HIDS not only depends on detection accuracy, but also on the 

evaluation results of visibility and attack resiliency. 
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Chapter 1: Introduction 

Intrusion detection systems (IDSs) monitor data (e.g., filesystem files, network 

packets, and memory activities) collected from a computer system to identify 

potentially malicious activity and to raise alerts related to the detected events. IDSs 

are widely deployed tools since security breaches cannot always be prevented. 

Therefore, discovering an ongoing attack or intrusion (i.e., a successful attack) allows 

the defender to react and minimize the possible damage of the attack or intrusion. 

The detection of an attack is achieved by inspecting data. This data maybe acquired 

from different resources. Debar [DDW99] and Axelsson [Axe00b], in their respective 

taxonomies, divided IDSs into two groups depending on the source of the audit data. 

If the data collected were security logs, the IDS was called a host intrusion detection 

system (HIDS). If the IDS detection engine consumed network information, the IDS 

was called a network intrusion detection system (NIDS). While this distinction is still 

used in the literature, HIDSs have evolved from security log checkers into complex 

systems, which not only analyze logs, but also other resources including system calls 

[WFP99] and the files on the filesystem [KS94]. Moreover, while HIDSs were 

usually implemented as simple processes on the supervised system, HIDSs now 

include the use of embedded hardware [MA02] and virtualization [Lit05].  

The quantitative evaluation of IDSs is a critical research topic that has important 

practical applications. Such evaluation is necessary, for example, to compare different 

IDSs and to determine the optimal operational point of the IDS when parameters can 

be adjusted. Today the focus of IDS evaluation is restricted to the ability of the IDS 
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detection engine to distinguish between malicious and normal activity. The two 

metrics to quantify the accuracy of this classification are the probability for true 

positives, which relates to correctly labeling malicious activity with an alert, and the 

probability for false positives, which relates to incorrectly labeling a set of non-

malicious activity as an alert. Experiments to estimate these metrics have been 

performed by evaluating the accuracy of the IDS detection algorithm. Detection 

accuracy is usually leveraged by environmental factors to create composite metrics. 

These composite metrics better assess an IDS when deployed into a specific 

environment. Examples of environmental factors are the probability of an attack 

[Axe00a] and the cost related to IDS functioning [CBS06, JU01, LFM02]. 

Restricting the evaluation to the accuracy of IDS detection engine is often enough to 

precisely assess the IDS when applied to NIDSs, which are the most widely deployed 

IDSs. HIDSs acquire internal data from the system supervised to detect intrusions. 

Once overshadowed by NIDSs as a secondary tool, HIDSs are subject to renewed 

attention due to their effectiveness at detecting the emerging threat of insider attacks 

and the increasing use of point-to-point cryptography. In general, we cannot apply the 

same assumptions to HIDSs that were used for NIDSs. The different HIDS 

techniques provide benefits that cannot be quantified or evaluated solely by looking at 

the detection engine. HIDSs continue to evolve, and we need methods fair evaluation 

methods.  

In this thesis, we analyzed the impact of the distinct HIDS traits by proposing a set of 

additional quantifiable characteristics. We argued that, for HIDSs, detection accuracy 

not only depends on the accuracy of the IDS classification engine’s detection 
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algorithm, but also on the specific attributes of the data audited (visibility) and on the 

difficulty of corrupting the HIDS in the event of an attack towards the system 

supervised (attack resiliency). Moreover, composite metrics need to incorporate 

specific HIDS characteristics associated with environmental factors. Hence, we also 

quantify the impact of the overhead caused by the HIDS on the system supervised 

(transparency) and the timely detection of an attack or intrusion (efficiency). 

1.1 Overview of the Dissertation 

Chapter 2 covers the related work to this thesis. The subjects covered are IDSs and 

their evaluation. The section on IDSs contains an introduction on IDSs, a brief history 

and a description of IDSs related to existing IDS taxonomies. We described the IDS 

model used throughout the thesis and the key differences between HIDSs and NIDSs. 

We then performed a survey of current HIDS technologies. The section on IDS 

evaluation contains an introduction to security metrics and current evaluation 

approaches for both NIDSs and HIDSs. We then present recent work on evaluating 

IDSs. 

 

Chapter 3 describes the concepts of the proposed HIDS evaluation methodology. We 

introduce a set of characteristics for evaluation: accuracy, visibility, transparency, 

efficiency and attack resiliency. Visibility evaluates the data collected; accuracy 

examines the correctness of the detection algorithm; transparency evaluates the 

impact of the HIDS to the system supervised; efficiency covers the impact of delayed 

detection of an intrusion; and attack resiliency evaluates the strength of the HIDS to 
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subversion attack attempts. The characteristics are compared with other proposed 

characteristics found in the literature. The chapter concludes with a study of the 

relationship between the characteristics. 

Chapter 4 contains the methodology and metrics used to evaluate HIDS visibility. 

HIDS visibility links the data collected to attack detection. Attacks that do not 

manifest in the data will not be detected by the HIDS. To measure the effect of the 

data collected on the detection of attacks, we introduced the probability of attack 

manifestation and metrics related to data quality (i.e., relevance of the data regarding 

the attack to be detected). The metrics were applied to evaluate filesystem data, which 

is the data source for many HIDSs. The experiment consists of setting up honeypots 

and studying the file actions performed by attackers. The file actions are analyzed to 

provide the corresponding measures: the probability that a file is utilized by an 

attacker and the quality of the data related to a specific set of attack evidences.  

Chapter 5 explains how to perform an evaluation of attack resiliency. We described a 

HIDS by means of a data path and study each entity in the data path for possible 

attacks. We focused on attacks towards the system supervised and calculated the cost 

of each attack, called an independency score. The independency score is used to 

estimate attack resiliency, which is the probability that an attack will succeed in 

subverting the HIDS. We estimated these parameters for the HIDSs Samhain and 

Osiris.  

Chapter 6 introduces the methodology to evaluate efficiency and transparency. Both 

characteristics are performance-based characteristics. More precisely, these 

characteristics are the time to receive a notice by the HIDS and the unintended impact 
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of the HIDS on the host’s performance, respectively. In the case of efficiency, we 

proposed the metric of the time elapsed between data collection and a HIDS alarm. 

We linked this metric to cost to understand the real impact on the host. For 

transparency, we measured the reduction of HIDS performance caused by the 

utilization of shared resources by the HIDS. We linked this metric to the cost related 

to decreased performance. We evaluated efficiency and transparency for two HIDSs, 

Osiris and Samhain.  

Chapter 7 provides a discussion on how to integrate the proposed characteristics into 

a single framework for optimization. We discussed several HIDS optimization 

frameworks based on accuracy and showed that most of them can be framed as a cost 

framework. We showed how the proposed HIDS characteristics can be integrated into 

the suggested cost framework. We provided a numerical study of how attack 

resiliency impacts detection accuracy.  

Chapter 8 contains the conclusions, a summary of contributions of this thesis and 

future work to expand the research initiated in this thesis. 

1.2 Contributions 

To create a framework for evaluating HIDSs, several research issues were resolved. 

First a set of characteristics were identified and defined. For each characteristic, we 

introduced metrics and described a methodology to obtain measures. We developed 

experiments to estimate these metrics. The experiments included an in depth study of 

filesystem usage by attackers on four honeypots during 24 days, the creation of a tool 

called HIDS stimulator to link visibility and accuracy, the evaluation of transparency 
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and efficiency for two HIDSs, and the creation of attack trees on the Samhain and 

Osiris HIDSs by launching a set of attacks. To optimize these metrics, we modified 

an existing IDS cost framework to include these characteristics. 

1.2.1 Selecting Characteristics 

Detection accuracy is the characteristic evaluated in most IDS evaluations. Previous 

research lacks the development of an evaluation for additional characteristics of 

HIDSs. This research showed that a set of five quantifiable characteristics improves 

current HIDS evaluations. The characteristics are: accuracy, visibility, transparency, 

efficiency and attack resiliency. We first defined these characteristics and 

demonstrated their importance to evaluate HIDSs.  

1.2.2 Evaluating Characteristics 

One reason to select the proposed characteristics was that they are quantifiable. The 

next step was to identify metrics related to the proposed characteristics. For visibility, 

we studied the probability of attack manifestation and the quality of the data before 

entering the detection engine. We showed that the data collected affects the overall 

accuracy of the system, and that this impact can be measured.  

To quantify attack resiliency we introduced the probability of subversion. As data on 

attempts to modify a HIDS during the course of an attack is rarely available, we 

estimated these attempts. We restricted the scope of our research to attacks directed 

towards the HIDS performed as part of an attack towards the system supervised. We 

introduced the independency score, based on the cost of subverting sections of the 

HIDS that was then used to estimate the probability of subversion. 
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Transparency and efficiency had been informally quantified before, but this 

quantification had not been standardized. For example, previous studies of efficiency 

never accounted for the time an attack takes to manifest in the data collected by the 

HIDS. In the case of transparency, most evaluations were composed of a set of 

arbitrary performance tests, disregarding the type of resources shared between the 

system supervised and the HIDS. We addressed these problems by providing a 

methodology to collect the metrics and providing tools to integrate them into cost 

based frameworks. 

1.2.3 Evaluating Metrics through Practical Experiments 

To validate the proposed metrics we performed a set of experiments. For visibility we 

performed an in depth study using honeypot data. The data was collected over a 

period of 24 days and contained all system calls created as part of a SSH compromise. 

We developed customized scripts to create a filesystem centric perspective of each 

compromise, providing statistics of different types of file usage. We studied these 

results to quantify the probability of attack manifestation for each file on the 

filesystem. Then we extracted a set of attack evidences (e.g., password modification) 

and applied the proposed metrics to evaluate the quality of each file to detect the 

attack evidence. Finally, we measured the time from the start of an attack to the attack 

manifestation for each file utilized. The study validated the importance of visibility as 

a characteristic, as only a few files were necessary to detect most attacks. In most 

cases, without modifying the detector, HIDS results can be improved by selecting the 

right data to be collected.  
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The experiment on the honeypots was complemented by the creation of an evaluation 

tool called HIDS stimulator. Attack evidence samples as observed in our initial 

experiment collecting attack data were coded and organized to create evidence of 

attacks. This evidence was ordered depending on the data where they manifested.  

We installed two HIDSs, Osiris and Samhain, and applied the methodology for 

estimating independency and attack resiliency. The evaluation consisted of first 

finding the data path and then studying the independency of the HIDSs. This second 

step was performed by launching a sample of attacks towards the different entities of 

the HIDS data path to assess the complexity and feasibility of a subversion attack. We 

created a numerical analysis for a Receiving Operating Curve (ROC), showing that 

the inclusion of the probability of subversion modifies the optimization results for 

HIDSs. 

We evaluated transparency and efficiency on Samhain and Osiris. For transparency 

we first tried micro-benchmarks for the shared resources (in this case, the filesystem), 

but the results were inconclusive. We found through experience that macro-

benchmarks, which heavily utilize the shared resources are better fitted to understand 

the performance decrease. Efficiency was also measured and compared for each 

HIDS. 

1.2.4 Creation of a HIDS Optimization Framework 

While many IDS optimization frameworks have been proposed, recent research has 

shown that most of those frameworks can be cast into a cost framework. A cost 

framework includes weights for each of the detection accuracy metrics. As a result, 
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the framework provides an estimated cost for the different operational points of the 

IDS. The optimal IDS operational point appears when the minimum cost is achieved. 

As part of this research we showed how to include the proposed characteristics in the 

cost framework. Visibility and attack resiliency directly modified accuracy 

characteristics, while efficiency and transparency are transformed into costs 

depending on operational parameters. As many of the proposed characteristics are 

interrelated (e.g., collecting more data may impact efficiency), the proposed 

framework provides a way to perform multidimensional optimization for HIDSs. 

1.3 Publications 

This research led to the publication of two conference articles and the submission of 

one journal article: 

[1] Jesus Molina, Xavier Chorin and Michel Cukier. Filesystem Activity Following a 
SSH Compromise: An Empirical Study of File Sequences In Proc. 10th International 
Conference on Information Security and Cryptology (ICISC 2007), Seoul, Korea, 
November 29-30, 2007 (to appear).  
  
[2] Jesus Molina, Joe Gordon, Xavier Chorin and Michel Cukier. An Empirical Study 
of Filesystem Activity Following a SSH Compromise. In Proc. 6th International 
Conference on Information, Communications and Signal Processing (ICICS 2007), 
Singapore, December 10-13, 2007 (to appear). 
 
[3] Jesus Molina and Michel Cukier. Evaluating Attack Resiliency for Host Intrusion 
Detection Systems. Submitted to Journal of Information Assurance and Security. 
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Chapter 2: Related Work 

In this chapter we first review previous work on intrusion detection systems. Then, 

we survey host intrusion detection systems. Finally, we discuss existing research on 

intrusion detection system evaluation. 

2.1 Intrusion Detection Systems 

The goal of intrusion detection systems (IDSs) is to identify attacks directed towards 

the system (or systems) supervised. The term “system(s) supervised” in the context of 

this thesis is used to refer to the computer system(s) monitored by the IDS. The 

system monitored can be a server, a desktop or any other kind of device (e.g., 

network equipments) [DW99]. 

Because computer systems can be the target of a wide range of attacks, preventive 

defenses like firewalls or access control mechanisms are usually insufficient to deter 

all possible threats. Historical incidents like the Internet Worm [Orm03] or more 

recent events, such the apparition of malicious worms like Code Red [MSC02], have 

shown that systems are far from being secure.  

Research on IDSs began with two seminal works. The first was a technical report by 

Anderson [And80] called “Computer security threat monitoring and surveillance.” 

This work was later followed by Denning’s “An Intrusion Detection Model.” [Den87] 

Both works provide the foundation for most of the current IDS research. Since then, 

many research efforts have appeared to develop IDSs [Por92, Roe99, VK99, LZH02]. 
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Several taxonomies exist to describe the possible approaches for intrusion detection. 

Representative taxonomies appeared in [DW99] and [Axe00b].  

An important distinction is between network intrusion detection systems (NIDSs) and 

host intrusion detection systems (HIDSs). Historically, HIDSs worked with log files 

to detect intrusions. NIDSs, on the other hand, inspected network data to detect 

attacks. As HIDSs now also analyze data other than logs, we can extend the definition 

for HIDSs to “IDSs that analyze data existing on the system supervised,” while 

NIDSs are defined as “IDSs that analyze data outside the system supervised.”  

Until recently, NIDSs were the preferred choice to supervise systems. Some strong 

points for NIDSs that made them the favored choice are: 

• NIDSs can supervise more than one host at the same time 

• The deployment location of NIDSs (outside the host) minimizes problems 

related to the integrity of the system supervised  

• Network data have not yet reached the host, and thus attacks may be 

prevented  

However, NIDSs also have weak points that recently gained relevance: 

• NIDSs are unusable if the network data are encrypted 

• NIDSs are ineffective against insider attacks not using the network 

• NIDSs are relatively simple to evade [PN98] 

As a result, HIDSs currently are a necessary tool for many security environments. 

Another common distinction between IDSs is the analysis technique of the detection 

engine. The techniques can be divided into anomaly based, where the data are 

checked against a regular usage baseline to find deviations, misuse based, where the 
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data are compared to a known database of signatures, and policy based, which uses a 

set of policy rules to find incorrect states.  

2.2 Host Intrusion detection Systems 

Host intrusion detection systems analyze existing data on the system supervised to 

identify attacks. As such, at least part of the HIDS needs to reside on the system 

supervised. In this section we provide a survey of HIDSs that is by no means 

comprehensive, but is representative to show the growing importance of HIDSs. We 

divided the survey into functions of the classification technique of the HIDS (i.e., 

policy, misuse and anomaly). 

Policy-based HIDS: Tripwire [KS04], AIDE [LV], Osiris [Osi] and Samhain [Sam] 

are software-based HIDSs, which collect data from the filesystem according to a 

policy. The policy describes a set of features that should be checked, including 

integrity and other attributes of the filesystem. If the filesystem does not maintain the 

integrity characteristics specified by the policy, an alarm is raised. I3fs [PKSZ04] 

performs a similar integrity verification at the operating system level by using a 

stackable filesystem. Komoku [Mol01, MA02] also verifies file system integrity, but 

is implemented in the form of a PCI card, accessing the hard disk independently. 

LIDS [HB] and BlueBox [CC03] implement a certain restrictive policy in the kernel. 

This is achieved by implementing a set of sensors, which are then embedded in the 

kernel as kernel hooks. These sensors monitor the system calls and react when the 

policy is bypassed by examining the actions against a rule set. Finally, the Trusted 

Computing Group (TCG) [Gro03a] proposed the use of a chip, the Trusted Platform 
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Module (TPM) [Gro03b] as the cryptographic repository of a series of chained 

measurements on a system. These measurements are then compared to a policy 

through a mechanism called attestation. If a deviation exists, the attestation service 

will raise an alert.  

Misuse-based HIDS: Virus and malware scanners, like ClamAV [Koj], are the most 

common security countermeasures against malicious activity. Virus scanners are 

HIDSs that verify the content of files against a database of signatures. The database 

contains patterns, which uniquely identifies viruses and other malware. If a match is 

found, an alert is raised. The scanning can be done interactively (e.g., on demand) or 

transparently (e.g., on access). Note that Avfs [MDWZ04] use a stackable file system 

to implement this functionality.  

Anomaly-based HIDS: Historically, HIDSs were anomaly-based IDSs verifying log 

files on the host. An example is eXpert-BSM[LP01], part of the EMERALD [PN97] 

framework.  Ph [SZ00] monitors the interaction of the processes with the operating 

system. If a deviation from normal usage is perceived in the system call usage, Ph 

concludes that something is wrong and that an intrusion has happened. Livewire 

[GR03] and Hypervisor IDS [Lit05] implement mixed anomaly and policy-based 

sensors but deploy them in a virtual machine. Virtual machines provide several 

benefits, including a better internal visibility and an increasing protection from 

attackers. In Livewire, the sensors are implemented using VMWare [VMw04], while 

Hypervisor IDS embeds the sensor in the paravirtualized virtual machine monitor 

Xen [BDF+03]. 
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2.3 Evaluation of Intrusion Detection Systems 

A possible approach to evaluate IDSs is to use international evaluation standards, 

such as the Common Criteria for Information Technology Security Evaluation (CC) 

[ISO98]. The CC provides a numerical score called the Evaluation Assurance Level 

(EAL), ranging from one to seven, to measure the technological achievement of a 

system against a certain security target, called a Protection Profile (PP). While the CC 

is a useful and accepted evaluation standard, there are serious drawbacks for its use 

for evaluating HIDSs. First, not all HIDSs come with an EAL from the manufacturer, 

as EALs are resource intensive to acquire both with respect to time (often months) 

and cost (often thousands of dollars). Second, as the EAL is tailored to a security 

target, EALs may or may not include features necessary for evaluation. For example, 

the PP for an IDS security scanner [Cor05] assumed a non-hostile environment and 

that no attack would be attempted to subvert it. The security evaluation for the 

Dragon IDS, [Ent04] assumed that the threat level of the environment was 

unsophisticated and that the hardware would not be tampered. These two examples 

show that comparing products by their EAL is only valid in the case that they share 

the same PP target. 

To avoid these problems, IDSs are usually evaluated by analyzing specific 

characteristics, and creating corresponding security metrics. Good security metrics 

need to be quantitative. Often the evaluation of HIDSs is qualitative or lacks the 

necessary information to be rigorous[FOCT02]. Qualitative evaluations are easier to 

create, and can be useful when performed on a small set of targets. However, for most 

cases, metrics need to be used to quantify the characteristics analyzed. In particular, 
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the metrics analyzed so far have been almost always restricted to the rate of detection, 

referring to the number of attacks detected from a pool of attacks, and the rate of false 

alarms, which measure the number of alarms raised in the presence of normal 

behavior. [LHFK00, JU01].  

The first IDS evaluation effort was conducted by Puketza [PZC+96]. This work 

proposes a methodology based on the creation of a software platform for evaluating 

IDSs. The software platform was composed of scripts generating background traffic 

and attacks. After this initial effort, others followed [DM02]. However, by far the 

most recognized effort to evaluate IDSs was performed by Lincoln Labs [LHFK00]. 

Lincoln Labs’ intrusion detection evaluation was the first effort to standardize IDS 

evaluation, by including several categories of standard network exploits and other 

forms of malicious traffic. The approach to perform the evaluation was as follows. A 

set of seven weeks of training data were given to IDS vendors. The data consisted of 

a mixed set of labeled attacks and normal data. The vendor could then utilize this data 

to configure their IDS. The actual evaluation was performed with data generated 

separately. The results included the probability of detection for each IDS, but only if 

the rate of false negatives was inferior to a threshold. Many critiques appeared 

afterwards, raising doubts on the validity of the evaluation [McH00] or proposing 

more standardized approaches for evaluation [ AAL+03]. However, most of them 

propose a similar approach to evaluate IDSs by evaluating the accuracy of the 

detection engine. A large discussion exists for other characteristics to be also 

evaluated [MHL+03, Axe00b]. We will discuss in detail the other characteristics in 

Chapter 3. 
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As part of the evaluation of HIDSs, we also analyzed the impact of the collected data 

on the HIDS evaluation. Killourhy [KMT04] explored data driven behavior to create 

a defense-centric taxonomy based on system call usage. He created an attacker-

defender testbed with 25 attacks launched against a target machine vulnerable to all 

exploits. The trace of system calls was used to divide the 25 exploits based on the 

type of system call behavior. A similar study to describe system log activity was 

conducted by Barse and Jonsson [BJ04]. They launched a set of attacks and described 

their manifestations in different types of system log data. In their follow up paper, 

they described how to use these manifestations to automatically separate attacks from 

normal behavior in system logs. The results from these works are mainly qualitative. 

In [LX01], several information-theoretic metrics (i.e., entropy, conditional entropy, 

relative conditional entropy, information gain, and information cost) were proposed to 

study audit data for intrusion detection. The proposed metrics were then applied to 

three data sets: system calls, BSM logs and network tcpdump data. Entropy based 

metrics were later generalized in [GDF+06a, GDF+06b] for the analysis of the 

detection engine. 
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Chapter 3: Evaluating Host Intrusion Detection Systems 

The quantitative evaluation of intrusion detection systems (IDSs) is a critical research 

topic that has important practical applications. Such evaluation is necessary, for 

example, to compare different IDSs and to determine the optimal operational point of 

the IDS. Today, the focus of IDS evaluation is often restricted to the ability of the 

IDS detection engine to distinguish between malicious and normal activity. The two 

metrics used to quantify the accuracy of such classification by the IDS are the 

probability for true positives, which relates to correctly labeling malicious activity 

with an alert, and the probability for false positives, which relates to incorrectly 

labeling a set of non-malicious activity as an alert. Accuracy metrics are often 

leveraged by external environmental factors to create composite metrics. These 

composite metrics better reflect the qualities of an IDS when deployed in a specific 

environment. Examples of environmental factors are the probability of an attack 

[Axe00a] and the cost related to IDS functioning [CBS06, JU01, LFM+02].  

Assessing accuracy by focusing on the detection engine is often enough to evaluate 

IDSs when applied to network intrusion detection systems (NIDSs), which are the 

most widely deployed IDSs. NIDSs reside outside the host and usually collect 

network data1 to detect intrusions. Since a NIDS resides outside the host, it does not 

directly affect the operation of the host. Since NIDSs collect network data, they have 

                                                 

1 For the remainder of this thesis, if not explicitly stated, we suppose that the data collected by NIDSs 

is network data. 
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the following detection properties: 1) the detection occurs in real time, before the 

malicious activity appears on the host, and 2) every remote non-encrypted attack 

appears in the collected data.  

Host intrusion detection systems (HIDSs) are another type of IDS that acquire 

internal data from the host to detect intrusions. Once overshadowed by NIDSs, HIDSs 

are subject to renewed attention due to their effectiveness at detecting the emerging 

threat of insider attacks and the increasing use of point-to-point cryptography.  

In general, we cannot apply to HIDSs the same assumptions that were used for 

NIDSs. We argue that the HIDS’s detection accuracy not only depends on the 

accuracy of the IDS classification engine’s detection algorithm, but also on the 

specific attributes of the data audited (visibility) and on the difficulty of corrupting the 

HIDS in the event of an attack (attack resiliency). Moreover, composite metrics need 

to incorporate specific HIDS characteristics associated with external environmental 

factors. Hence, we also quantify the impact to the performance of the system 

supervised caused by the HIDS (transparency) and the timely detection of an 

intrusion (efficiency).  

The structure of this chapter is as follows. We first describe the IDS model we will 

apply thorough this thesis and then the differences between NIDSs and HIDSs. The 

following section contains the definition of the proposed characteristics: visibility, 

accuracy, attack resiliency, efficiency, and transparency. We then make the case on 

the relevance of having selected these five characteristics to evaluate HIDSs.  
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3.1 Host Intrusion Detection Systems 

A computer system can be represented by a finite-state machine where at any given 

time the system is in a state s S∈ , S representing a finite set of states. A transition (α ) 

occurs from one state to another when an input is applied to the system. The next 

state depends on the previous state and the input. A security policy is a statement that 

partitions states into authorized (or secure) states, referred as Sa, and unauthorized (or 

insecure) states, referred as Sua. A secure system starts in a secure state and never 

transitions to an insecure state. Most formal models for computer security can be 

considered as interpretations of this general representation [Lan81].  

 

Figure 3-1. Computer System Finite-State Machine Model 

An intrusion (or security breach) occurs when the system transitions to an insecure 

state. We define an attack as the set of inputs, transitions and states that occur as part 

of an intrusion. A security mechanism is defined as the procedures that enforce a 

given security policy. We assume that the computer system features a security policy 

for the three basic security properties: confidentiality, integrity and availability.  

We define an IDS as a tool which goal is to accurately detect attacks by evaluating an 

input vector of audit data D, D={d0, d1, d2,..}, where di represents the minimal data 

unit. There exists often a certain confusion between attack and intrusion. An intrusion 
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is defined to be “a deliberately-malicious software-domain operational fault that 

originates externally to the (technical) system boundaries” [PS03]. An attack is “an 

intrusion attempt and an intrusion result that has been (at least partially) successful” 

[PS03]. In this thesis, we suppose that every attack leads to an intrusion, and hence 

detecting any part of an attack leads to the detection of an intrusion. Consequently, 

we will refer to an intrusion or an attack indistinctively.  

An attack is noticeable by the IDS if it detects any attack evidence related to this 

attack. Attack evidences include inputs by the attacker (i.e., commands sent, 

keystokes), transitions and states that occur as part of an intrusion. From the 

perspective of an IDS, we can describe an attack as a set of attack evidences, A={e0, 

e1,…}.  

If the computer system includes an IDS, we introduce a new state, the alert state. A 

system transitions to the alert state when the IDS detects an attack. We denote this 

transition as an alert (AL). The system may transition from a secure state to an alert 

state if the IDS incorrectly raises an alert. We denote as TP (true positive) the 

probability of transition from an insecure state to an alert state, and FP (false positive) 

as the probability of transition from a secure state to an alert state. Additionally, we 

define 1-TP as the probability of false negatives (FN), and 1-FP as the probability of 

true negatives (TN). We suppose that once reached an insecure state, the system only 

transitions back to a secure state when the intrusion is detected and measures have 

been taken to remove the intrusion.  

An IDS is composed of an agent or collection engine, a classifier or detection engine, 

and a notifier or reporting engine [Bis02]. The collection engine gathers the data and 
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may dissect the different information  provided by the data collected. A single IDS 

may have more than one collection engine. The detection engine evaluates the 

information provided by the agent and outputs a decision on the current state of the 

system. For the remainder of this thesis, we will assume a single detection engine for 

an IDS and will treat two distinct detection engines as two IDSs even if they share an 

agent. Finally, the decision output will be transported to the consuming party by the 

notifier. The consuming party may be human (an administrator) or an automatic tool 

that may perform a set of actions to minimize or prevent damages to the system (as in 

the so-called intrusion prevention systems).  

HIDSs are defined as a subset of IDSs that consume internal data from the supervised 

system. Hence, even if the detection engine resides outside the supervised system, we 

define the IDS as a HIDS as long as the collection is performed on the supervised 

system. In some instances the detection engine may consume both internal and 

external data to the supervised system. In that case, we suppose that we can divide the 

IDS into two different IDSs (i.e., one NIDS and one HIDS) and create a composite 

output. 

We assume that the consuming party acts correctly: a false alarm will be detected as 

such and the system will be reverted from the alert state to a secure state. In the case 

of a true positive, the consuming party will take the necessary actions to revert the 

state to a secure state.  
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3.2 Definition and Description of Characteristics 

This section contains the definition and a description of the proposed characteristics: 

visibility, accuracy, attack resiliency, efficiency, and transparency. 

3.2.1 Visibility 

Definition 3-1. Visibility reflects the ability of the HIDS to collect data where an 

attack manifests. 

 

HIDSs collect audit data from different sources, including the filesystem [KS94, 

Wot05], system calls [WFP99] and memory [PFMA04]. An intrusion may or may not 

appear in the audit data. If any evidence of the attack appears in the data collected, we 

say that the attack manifests in the data. Evidently, if the attack does not manifest in 

the data, the intrusion will not be detected by the HIDS, hence decreasing the 

probability for true positives. Hence, it is necessary to study how likely a malicious 

event is to appear in a set of data. In Chapter 4 we provide metrics to measure the 

probability that an attack manifests in a set of data. We also provide metrics to 

evaluate the quality of data collected. This is necessary to optimize the collection of 

the data most relevant to detect attack evidences. The results modify directly the 

probability of true positives of the HIDS. 

3.2.2 Detection Accuracy 

Definition 3-2. Detection accuracy reflects the ability of the detection engine of the 

HIDS to raise alerts only in the event of an intrusion, which manifests in the audited 

data. 
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A detection engine applies different classification techniques to correctly detect an 

attack in the data collected. The goals of a detection engine are: 1) to detect an attack 

whenever it manifests in the data fed to the detector, 2) not to raise false alarms 

otherwise. Current evaluations of IDSs suppose that the results of evaluating the 

detection engine provide the overall probability of true positives and false positives. 

This is not true in general: the probability of detection may be modified by other 

characteristics of the HIDS. The probability of detection (PD) and the probability of 

false alarms (PFA), as described in the literature ([AAL+03, LHF+00]), will be used to 

evaluate the accuracy of the detection engine.  

3.2.3 Attack Resiliency 

Definition 3-3. Attack resiliency reflects the resistance of the HIDS to subversion 

attacks in the event of an intrusion. 

 

A HIDS subversion consists in a successful attack against the HIDS that as a result 

modifies its output. As a part of an intrusion, the attacker may decide to corrupt the 

HIDS to prevent the occurrence of an alert. In the course of subversion, the attacker 

may modify any element in the path, from data collection to alert reporting, to 

compromise the HIDS result. As a result, if the attacker is successful, the attack will 

be missed, decreasing the probability of true positives. Since a HIDS commonly 

shares many exploitable elements with the supervised system, this is a fairly common 

strategy. In Chapter 5 we evaluate the probability that a HIDS will be subverted as 
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part of an attack towards the system supervised. We also describe the strong 

relationship between the independency of the HIDS from the system supervised and 

the probability of subversion. Hence, to estimate the probability of subversion, we 

describe the independency score, a metric quantifying the level of independency of 

the system. 

3.2.4 Efficiency 

Definition 3-4. Efficiency describes the ability of the HIDS to timely detect 

intrusions. 

 

The ability to timely detect attacks is crucial for most environments. However, not all 

HIDSs have this ability. In some cases, a delay exists between the initial intrusion and 

its detection. Typically, IDSs are divided into real-time IDSs, where the attack is 

detected before the intrusion materialized, and off-line IDSs, where the IDS detects 

the ongoing or finalized intrusion. This distinction does not provide enough 

information to precisely study the HIDS achievements. Indeed, some off-line HIDS 

act faster than others. Moreover, the definition of a real-time for HIDSs is difficult to 

specify. HIDSs may collect data continuously but only detect an ongoing intrusion 

when unauthorized states manifest in the collected data. In Chapter 6 we discuss 

methods to evaluate efficiency. In particular, we demonstrate that efficiency also 

relates to the data collected, introducing the time to detect as a metric for efficiency. 

We also associate efficiency as a factor which increases the cost of a HIDS and 

provide possible mapping functions between efficiency and cost. 
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3.2.5 Transparency 

Definition 3-5. Transparency describes the ability of the HIDS to avoid interfering 

with the normal functioning of the system supervised. 

 

The functioning of the HIDS may interfere with the system supervised, causing a 

reduction of performance. Indeed, at least some of the collection engine must reside 

on the system supervised. Hence, there will be a certain performance impact on the 

system supervised caused by the HIDS. This undesirable effect could be of major 

importance in both the process of selecting a HIDS and configuring it. This impact is 

measured by comparing the performance of the system supervised with and without 

the HIDS functioning. In Chapter 6 we propose methods to evaluate transparency. As 

in the case of efficiency, we link transparency to an increased cost of the HIDS, and 

suggest possible mapping functions between transparency and cost. 

3.3 Relevance of the Proposed Characteristics 

In this section, we present the criteria used to select the characteristics for evaluating 

HIDS. 

Since IDS evaluation is widely accepted as beneficial and necessary, various 

characteristics have been recommended. However, the goal of these characteristics 

often overlaps. Furthermore, we chose not to include characteristics which yielded 

only qualitative results, and instead focused on quantitative characteristics. Hence, 

characteristics which were qualitative, such as the ability to detect never-before-seen 

attacks [PZC+96] and the ability to detect the type of attack [MHL+03], were not 
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selected. We also discarded characteristics heavily dependent on external elements, 

such as components which handle the HIDS output (e.g., elements related to decision 

making, collaboration) or which evaluate the usage of the HIDS itself (e.g., ease of 

usage). While related to HIDSs, evaluating these external elements depends on either 

psychological factors, or understanding how the engine that consumes the alert 

operates. 

These requirements provided us with five main types of characteristics: those related 

to resist attacks, those related to the range of attacks detected, those related to 

detection performance, those related to performance impact to the supervised system, 

and those related to the detection engine accuracy. 

The study of attack resiliency was first proposed in [Axe00a, MHL+03] as the 

security and resistance to attacks directed at the IDS. The reason of suggesting this 

characteristic is that the current motivation of attackers has shifted from notoriety to 

economic gain. While before the attacker was willing to be discovered, now most 

attackers want to remain undiscovered. Hence, subverting the HIDS is more attractive 

as a strategic measure to avoid detection.  

The amount of data collected versus the impact to the system due to data collection 

has already been proposed as an optimization problem for HIDS featuring high 

visibility [Lit05, GR03]. Many researchers suggest a qualitative  description of the 

data collected. For example, coverage, as proposed in [MHL+03], is  included in our 

definition of visibility: coverage is defined as the type of attacks detected and the data 

analyzed. Since the type of attacks detected depends on the data audited, visibility 

provides a quantitative estimation of coverage. Currently, visibility is implicitly 
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considered in the measurement of detection accuracy. However, separating visibility 

from detection accuracy has several benefits. From an evaluation perspective, we can 

divide the intrusion in smaller sets that manifest in the data and are more relevant to 

each specific HIDS. This will improve recent HIDS evaluations that used an 

indiscriminate set of attacks drawn from common attack libraries (e.g., Metasploit 

[Met]).  Attack libraries limit the evaluation process because some HIDSs only detect 

the attack payload. By selecting a payload that always manifest in the data, an 

evaluation will most likely produce incorrect results, suggesting that the detection 

engine detects a wider range of attacks. By utilizing the concept of visibility, each 

data set is associated with a probability that an attack will manifest in it. Thus, 

estimating visibility prevents inconsistencies in the evaluation when only a small set 

of the existing attacks manifest in the collected data. For example, in the DARPA 

evaluation [LHF+00], the HIDSs featured a high level of true positives as the attacks 

that did not manifest in the data were discarded. Finally, the amount of data collected 

by certain HIDSs is configurable. Not all data may be collected to prevent an increase 

of resource usage. Hence, it is advisable to separate the study of the data collected 

and the detection capabilities. 

Efficiency has been previously called timeliness [Axe00a], and associated to HIDS 

performance [PKSZ04]. Efficiency is often described in a qualitative way [FOCT02, 

Kah05]. In [LFM+02] the amount of damage caused by an ongoing intrusion was 

calculated by relating it to the time between the attack and its detection. Currently the 

study of efficiency is neglected, although the importance of understanding the 

distinction between real-time and non-real time behavior on a HIDS is acknowledged 
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[LFM+02]. The time to detect an attack may be the key element to select one HIDS 

from another, in particular, for systems which defend persistent data, where a late 

detection will suppose that the protected data was stolen, and hence a significant cost.  

The importance of transparency has been pointed out in [MHL+03] and described as 

an economy of resource usage. Moreover, [PZC+96] studied practical measurements 

for resource usage and resiliency to stress. These latter characteristics can be related 

as a trade-off function between visibility and transparency, as demonstrated in 

[SSMF03]. Transparency affects the total cost of the HIDSs, as a performance 

overhead in the system supervised due to HIDS functioning will likely decrease the 

productivity of the system. For example, a performance reduction in a busy webserver 

may suppose significant revenue lose due to missed clients. 

3.4 Conclusions 

To effectively evaluate HIDS, a set of five characteristics were introduced: visibility, 

accuracy, attack resiliency, efficiency, and transparency. Each characteristic was 

defined and described. The rationale for selecting these characteristics was discussed: 

identifying similar characteristics, discarding qualitative characteristics and also not 

including characteristics which rely in the evaluation of entities other than the HIDS 

itself. 
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Chapter 4: Evaluation of Visibility 

One key difference between NIDSs and HIDSs appears in the type of data acquired 

and inspected by the detector. While, in Chapter 3, we defined NIDSs as IDSs that 

reside outside the supervised system, in practice, IDSs that inspect network data are 

defined as NIDSs because it is the case for a large majority of them. As most 

evaluations focus on NIDSs, the current evaluation methods focus on network data. 

However, any IDS may only detect attacks, which appear in the data they acquire. 

Hence, attacks, which do not appear in the data collected, will be missed. In fact, a 

widely understood limitation of NIDSs is that they are unable to detect attacks that do 

not utilize the network as part of the attack vector. This is commonly the case of 

attacks performed by insiders.  

HIDSs suffer similar problems due to attacks not appearing in the acquired data, but 

the impact on detection is not well understood as the data acquired vary. A HIDS that 

verifies filesystem data will detect an intrusion if the attacker performs some 

detectable activity in the filesystem. The impact on detection is unknown, as the 

number of attackers who perform activity on the filesystem has not been studied. This 

situation is complicated by the fact that, due to performance limitations, not all data 

of a kind may be acquired by the HIDS. For example, HIDSs inspecting system calls 

will focus on a particular set, as inspecting all system calls will result in a 

considerable reduction of performance. Regarding filesystem data, some HIDSs may 

only inspect one of two files to avoid performance penalties in the case of real time 

detection. For evaluation, the fact that the data collected affects the outcome of a 
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HIDS suggests that metrics need to be provided to quantify the impact of the data 

collected.  

In this chapter we first introduce an evaluation framework for visibility. We propose 

two metrics: probability of attack manifestation and data quality. The first quantifies 

the probability that an attack exists in the data collected, while the later quantifies the 

information provided by a data set regarding a specific attack evidence. To support 

the selection of these metrics, this chapter includes an empirical study of filesystem 

activity after a security compromise. Quantitative data were collected for all files 

targeted by attackers while reading, writing, deleting and modifying the file metadata. 

For each file containing some activity, data collected on file usage are used to 

estimate the probability of attack manifestation. Each file is also linked to the 

probability of manifestation of three types of attacker actions: reconnaissance, 

password modification, and malware download. These results are applied to calculate 

the metric related to data quality for each file. Finally, using the metrics we determine 

the most valuable files to audit. 

This chapter is structured as follows. Section 4.1 provides the theory on evaluating 

audit data including the concepts used in this chapter and the theory needed to 

measure attack manifestation and data quality. Section 4.2 describes in detail an 

experimental evaluation of visibility on filesystem data. First, we describe the 

experimental setup and then the data analysis process. Then, statistics on the 

filesystem activity are presented. Later, we summarize the findings on probability of 

manifestation per file. Finally, we identify the most relevant files to audit for three 

different attacker actions. 
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4.1 Evaluating Audit Data 

We refer to an attack that appears in the data audited as an attack that manifests in the 

data. We denote the data audited as D, which, for example, may represent a file or a 

set of files. The notation for an attack manifestation is similar to the one proposed in 

[LCT+02]: an attack that manifests in D is denoted as AD← . An attack that does not 

manifest in D is represented as AD ← . The data collected may also contain 

manifestations when an attack does not occur, which is denoted by AD← .  

An attack manifests in D only if corresponding attack evidence (as defined in Chapter 

3), Ae∈ , manifests in D. Evidence can manifest in D (denoted as eD← ) or not 

(denoted as eD ← ). IDSs operate by detecting attack evidence in a set of data. As 

part of the detection process, an IDS extracts a set of features from the data audited. 

Attack evidence manifesting in the data will only be detected by the IDS if it appears 

on the extracted features. For example, as part of an attack, an attacker may modify 

the root password. Evidence of the attack is the action of modifying the password, 

which manifests in several files, including the file containing the password file. A 

HIDS will be able to detect the attack if it collects data (in this case, the file) and 

extracts any feature containing manifestations of the evidence (e.g., integrity, file 

size). 

4.1.1 Measuring Attack Manifestation 

Let us consider a specific attack Ai, iAD←  denotes that Ai manifests in D and iA
MP  is 

the probability that attack Ai manifests in D: ( )iA
M ADP i ←= Pr . Let us assume that 

there are 7 attacks and each attack, Ai, has a probability of occurrence, Pr(Ai). The 
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overall probability, A
MP , that attacks manifest in D is given by: 

( ) ( ) ( )i
7

i

i
A
M AADADP PrPrPr

1

∑
=

←=←=  (4-1) 

If we focus on attack evidence, we obtain similar equations. Let us consider a specific 

evidence of an attack, ei. ieD←  denotes that ei manifests in D and ie
MP  is the 

probability that attack evidence ei manifests in D: ( )ie
M eDP i ←= Pr . Let us assume that 

there are M pieces of attack evidence and each ei has a probability Pr(ei) of 

occurrence. The overall probability, e
MP , that attack evidence manifests in D is then 

given by:  

( ) ( ) ( )i
M

i

i
e
M eeDeDP PrPrPr

1

∑
=

←=←=  (4-2)              

4.1.2 Measuring Data Quality 

An obvious approach to enhance the IDS’ probability of detection is to increase the 

amount of data collected. Indeed, a larger data set may improve the probability of 

manifestation for each of the attack evidence types, hence improving the probability 

that an attack manifests in the data. The relevance of the approach, “the more data to 

audit, the better,” depends on the accuracy of the detector. A larger amount of normal 

activity in the data collected will provoke an increase in the number alarms raised for 

non-malicious activity, commonly referred as false alarms, particularly in imperfect 

detectors. Performance is another aspect that needs to be considered, as collecting 

more data will likely impact the time the IDS needs to process the information. It is 
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important to keep in mind that even good detectors benefit from a reduction of the 

amount of data audited. 

“Good” audit data is represented by attack evidence manifesting in it and non-attack 

evidence not manifesting in it. In other words, we need to maximize e
MP  while 

minimizing e
MP , where e  refers to the manifestation of activity which is non-attack 

evidence. Let us introduce two random variables, E and M, representing attack 

evidence and attack manifestation, respectively. E=1 indicates the presence of attack 

evidence (e) and E=0 indicates the absence of attack evidence ( e ). M=1 indicates 

manifestation in the data, D, and M=0 indicates non-manifestation in D. Four 

combinations are possible: 

• (E=1, M=1) represents attack evidence that manifests in D (with probability 

e
MP ), 

• (E=1, M=0) represents attack evidence that does not manifest in D (with 

probability 1- e
MP ), 

• (E=0, M=1) represents non-attack evidence that manifests in D (with 

probability e
MP ), and 

• (E=0, M=0) represents non-attack evidence that does not manifest in D (with 

probability 1- e
MP ). 

This optimization problem is similar to the problem of optimizing a detector for false 

positives and false negatives. In this regard many metrics have been proposed, 

including information gain [LX01] and Bayesian metrics [Axe00a].  
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Information gain is an entropy-based metric adopted from the field of information 

theory. In intrusion detection, this metric has been previously applied to evaluate the 

quality of data for misuse detection [LX01] and to evaluate the detection engine 

[GFD+06a, GFD+06b]. The interpretation of the metric is: given that a receiver and 

transmitter share information, the information gain represents the average amount of 

information saved by sharing instead of sending information. The metric is 

normalized using the overall entropy as a normalizing factor in the denominator. 

Therefore, the metric will always range between [0, 1]. In our case, the metric 

represents the information gained about attack evidence once a manifestation in the 

data set occurred. The normalized information gain (IG) for data set D is: 

( )
( )EH

MEI
IG

;
=   (4-3) 

where ( )MEI ;  describes the mutual entropy between an attack manifestation in data 

set D and attack evidence, and ( )EH  consists of the entropy associated with the 

attack evidence. More precisely, 

( ) ( ) ( )MEHEHMEI −=;   (4-4) 

with 
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where A
MP  is the overall probability that attacks manifest in data set D. 

Using IG has faced criticism when applied to evaluating IDSs accuracy, as the link 

between entropy and the accuracy of the detection engine is not intuitive [CBS06]. In 

our case, however, the evaluation focuses on the data itself and the possible 

information contained on it rather than on the accuracy of the detector; hence IG is a 

relevant metric as it provides a measure of the useful information contained on a data 

set of an attack evidence. Higher values of IG indicate that the detector will be less 

susceptible to false alarms and missed detections. However, IG fails to accurately 

quantify the quality of the data where attack evidence rarely manifests, but attack 

manifestations do signify the occurrence of attack evidence with a high probability. 

This type of data is also useful, as the information contained will rarely be susceptible 

to false negatives, therefore providing a “safe” (while insufficient) source of 

information. Bayesian based metrics [Axe00a] provide more complete information on 

the data quality for such cases. The positive predictive value (PPV) represents the 

probability that given that an attack manifests, a certain evidence of an attack 

occurred.  
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In order to understand the behavior in the event of no attack manifestation, a second 

metric is required called the negative predictive value (7PV), which is defined as: 
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4.2 Experimental Evaluation of Visibility on Filesystem Data 

Monitoring filesystem data is a common method used to detect intrusions. Once a 

computer is compromised, an attacker may alter files, add new files or delete existing 

files. The changes that attackers make may target any part of the filesystem, including 

metadata along with files (e.g., permissions, ownerships, inodes). In this section we 

apply the proposed techniques to evaluate visibility for filesystem data. We describe 

an empirical study of visibility that focused on attacker activity after a SSH 

compromise. First statistical data on the number of files targeted and the associated 

activity (i.e., read, write, delete, ownership, rights) is reported. Then, we calculate the 

probability of manifestation of each file in the filesystem. Then, three types of 

attacker activity (evidences) are considered: reconnaissance actions, password 

modification, and malware download. For each type of activity, we identify the 

quality of each file to detect the considered actions. With then identify the most 

relevant files to audit using the metrics proposed. 

4.2.1 Filesystem Activity 

Filesystems contain a large amount of information. Acquiring and analyzing all of the 

data is often infeasible as it translates into severe performance penalties and 

unacceptably long processing times. Thus, in most cases, only a subset of the 

filesystem activity is audited. Furthermore, processing files that fail to provide 

meaningful information to detect intrusions may result in the production of an 

increased number of alarms in the event of non-malicious file activity (false alarms). 

Hence, an important goal is to identify the files and corresponding activity monitored 
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to successfully detect intrusions, while minimizing both collection time and 

information overload on the IDS.  

To describe the significance of each file for detection purposes we introduce the 

probability of attack manifestation, which provides an estimate on how often a file is 

opened in the event of an intrusion. However, the activity occurring in a file may not 

be always related to an attack but could also be the result of non-malicious activity. 

Therefore, just considering the probability of manifestation is not sufficient to fully 

assess the relevance of the file for detecting intrusions. Thus, the relevance of using 

various files as evidence of an attack (e.g., an attacker launching a reconnaissance or 

downloading some malware) also need to be assessed. This assessment can be based 

on the metrics proposed in the previous section: information gain (IG), positive 

predictive value (PPV) and negative predictive value (NPV). 

4.2.2 Experimental Setup 

To collect data on attacker activity, we used a set of four high interaction Linux 

honeypot computers. For details regarding the testbed architecture, refer to [PTJC05]. 

The experimental setup is described in more detail in [RBC07]. 

Software Configuration: The four honeypots ran on an identical Linux disk image: a 

slimmed-down installation of Fedora Core 3, updated with the latest patches as of 

October 10, 2006. Since the primary interaction with the system was via SSH, the 

installation was conducted in a text-mode environment (the X Window system and 

associated graphical programs were not installed). To monitor attacker activity, we 

used the following tools: a modified OpenSSH server to collect password attempts; 



38 

 

syslog-ng to remotely log important system events including logins and password 

changes; strace [Str] to record system calls made by incoming SSH connections; and 

the Honeynet Project’s Sebek tool [Seb]. We modified the OpenSSH source tree by 

adding a single line of code that used syslog to record attempted passwords. To 

prevent attacks directed against strace, the program was concealed as a system script. 

User Account and Password: Each honeypot had one privileged root account plus five 

non-privileged user accounts. Using results from a study that found the most 

commonly attempted usernames and passwords, we selected five usernames: admin, 

mysql, oracle, sarah and louise. For each username, we rotated four passwords (i.e., 

‘username’, ‘username’123, password, and 123456). After a password modification, 

the honeypot was redeployed and the next password was used. Two honeypots were 

set up with strong root passwords. The other two honeypots had root accounts that 

rotated the four passwords: root, root123, password and 123456. 

Honeypot Lifecycle: For a quick turnaround, we used a pre-built disk image and 

automated scripts to manage the deployment of the honeypot. We monitored the 

syslog messages coming from each honeypot on 24 hour intervals to check for logins 

and password changes. The honeypot was redeployed after a password modification 

to prevent locking out other attackers. Typically, passwords were changed daily. To 

maximize the attackers’ activity on the filesystem following a password change, we 

waited at least one hour before putting the disk image back onto the honeypot, 

running the deployment script, and continuing to monitor the live syslog data. 
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4.2.3 Data Analysis 

During the 24 day period from November 14 to December 8, 2006, attackers from 

229 unique IP addresses attempted to log into the honeypot 269,262 times (an average 

of 2,805 attempts per computer per day). According to the syslog data, of 269,262 

attack attempts, 824 logged in successfully and 157 changed an account password. 

Results from an extensive analysis of the syslog data can be found in [RBC07]. 

The data analyzed in this paper consisted of system call data collected with a tool 

called strace [Str]. Strace intercepts and records all system calls made by a running 

process. We launched strace against the sshd daemon, switching on the built-in 

functionality for strace to record the activity of all the children spawned. To 

discriminate between compromises, we developed a script to isolate each different 

compromise among the strace data. We defined a compromise as a successful login 

followed by a bash session and all its children. Before processing the attack sessions 

further, all administrative activity required to transfer logs to a central database and to 

reimage the honeypots were removed. Using the strace data, we found 743 attacks 

instead of the 824 found by the syslog data [RBC07]. 

One reason these results differ is due to the difference in defining a compromise using 

syslog data (i.e., a successful login) versus strace data (i.e., a bash session). Syslog 

data included SCP and SFTP connections and aborted logins that were not included in 

the strace data. Moreover, some attackers were able to compromise the strace logging 

capability. We verified the data collected by strace with data collected by Sebek 

[Seb]. In particular, we identified strace data collection disruptions by attackers to 

ensure that such events were rare. We found four sessions in which strace failed to 
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properly monitor. A careful examination revealed that this occurred after the attacker 

issued a kill command to the ssh daemon, thus terminating the daemon and strace 

recording. We do not believe that this activity was performed due to the presence of 

strace, but because the attackers’ goal was to launch a rogue ssh server in place of the 

existing one. Finally, the strace logging capability was enabled at the beginning of the 

hour following reimaging. For instance if a honeypot is reimaged at 2:10, strace 

logging starts at 3:00, meaning that successful connections in between are not logged. 

For the remaining 743 attacks, we removed the empty sessions. An empty session 

was defined as a bash session with no activity other than a login and logout. To 

identify these session, we determined the number of files read by sessions with no  

 

Figure 4-1. Detail of a Session Analysis 

activity and the commands that were run during these sessions. Then we matched 

sessions ending with the same command or with fewer file reads. We verified that all 
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sessions with a greater number of files read contained some type of activity. To 

prevent errors caused by the data collection process, we verified that the sessions 

ended with a specific reading activity that appeared in the login and logout. Using this 

procedure, a total of 421 empty sessions were found. The large number of empty 

sessions indicates that automatic tools are used to attempt dictionary attacks. After the 

tools achieve a successful login, they report the correct login and password to the 

attacker; no commands are executed.  

The remaining analysis focused on the 322 non-empty sessions. The non-empty 

session were processed to find the files written, read, deleted or whose ownership or 

rights had changed.  

The process consisted of creating a tree containing all processes launched by the 

attacker in a session. We then separated all system calls created by each process. 

Customized scripts singled out all filesystem related system calls for each process 

contained in a session. After this, every system call was parsed and the results stored 

in a database. The database contained the necessary information to recreate all 

filesystem activity performed by the attacker in a session. Our records contained the 

name of the file, type of activity, process linked to the file, and the time of usage from 

the start of a session. We stored this information by process ID to simplify post-

processing. Figure 4-1 provides an example of the analysis of a session. Finally, all 

files in the database were processed to collect statistics for each session and 

individual statistics for each file.  
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4.2.4 Statistics on Filesystem Activity 

In this section, we present statistics related to the number of files that were read, 

written, deleted, or whose ownership or rights changed for the 322 non-empty 

sessions in the strace data. Only unique file activities were analyzed (i.e., duplicated 

file activities in the same session were discarded). For example, if a file was read 

several times in the same session, the reading activity for the file was counted once. 

However, if the same file was read and written to in the same session, the file was 

counted twice: once as read and once as written. 

Table 4-1 contains the per session minimum, maximum, average and standard 

deviation of the number of files read, written, deleted or whose rights or ownership 

changed. As expected, all attacks included many (minimum of 20) different files 

reads. However, more surprisingly, some attacks consisted of no write or delete 

activity, but included rights or owner changes. Also as expected, the average number 

of files read was quite high (144.7) while the average number of files written was low 

(32.1). More surprising was the low average number of deleted files (6.6). Also 

interesting was the low average number of files whose rights changed (2.2) and the 

large number of files whose owner changed (17.2). The average number of files 

whose owner changed was significantly higher than the number of files deleted and 

whose rights changed and equal to half the number of files written. The standard 

deviations varied as a function of the file activity: the number of files whose rights 

changed had a relatively small standard deviation (5.7), but the other file activities 

had standard deviations between 41.4 and 96.6.  

Table 4-1: Statistics on the 	umber of Files Targeted 
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 Read Write Delete Rights Owner 

Minimum 20 0 0 0 0 

Maximum 484 656 418 42 852 

Average 144.7 32.1 6.6 2.2 17.5 

St. Dev. 78.3 90.2 41.4 5.7 96.6 

 

In Table 4-2, we provided a set of percentile values of the distributions of the number 

of files for the five types of activities. As shown in Table 4-2, most attackers did not 

delete files (at least 70%), change the file rights (at least 70%) or owner (at least 

80%). From Table 4-1, a small number of attacks led to a high number of file 

ownership changes. Based on Table 4-1, we expected many attacks to include file 

writing. However, in at least 60% of attacks, no more than two files were written. 

Such results help to specify the type of attack that was conducted against the 

honeypot. Few files written related to password modifications, while many files 

written along with rights modification reflected the action of installing malware. The 

high number of different files read was linked to reconnaissance. For example, 

commands like “w” and “ps” read a total of a 120 and 160 of files, respectively. 

However, the high number of files read complicated identifying files specifically 

linked to malicious activity. 

Table 4-2: Percentile Values of the Four Distributions of the 	umber of Files 

Percentile Number of Files 

Read Write Delete Rights Owner 

10% 49 1 0 0 0 

20% 57 1 0 0 0 

30% 84 1 0 0 0 

40% 144 2 0 0 0 

50% 150 2 0 0 0 

60% 166 2 0 0 0 

70% 183 13 0 0 0 
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80% 202 23 2 2 0 

90% 231 73 5 12 2 

100% 484 656 418 42 852 

 

Many attacks excluded file deletion, changing the file rights and ownership; plotting 

their distribution does not add insight. Figures 4-2 and 4-3, respectively, show the 

distribution of files read and written. 

The distribution of files read (Figure 4-2) had two modes at 75 and 150 files read. 

The first mode appears to be caused by attacker activities involving a password 

change and/or software download, installation and execution. The reconnaissance 

actions were limited; the users currently logged on and the processes currently 

running were never checked. The most frequent reconnaissance action was the 

“uptime” command that tells how long the system ran; the command does not appear 

in a majority of the sessions. The second mode occurred because of the 

reconnaissance command “w” that tells who is logged-on and what was typed in the 

session. The second mode is also caused by the “ps” command, which lists the 

processes currently running. 

In Figure 4-3, the peak at 10 files written reflects password modifications. Many 

sessions had 1 or 2 files with a write action. This usually happened when the attacker 

changed the password, but did not download and install a malicious program. 

Sessions with 8-15 files containing a write action usually had a program downloaded 

and installed, and possibly changed a password. 
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Figure 4-2. Distribution of Files Read 

  

 

  

 

 

Figure 4-3. Distribution of Files Written 

One important statistical result addresses the correlation between the different file 

characteristics. We applied Guilford’s [Gui65] interpretation of the correlation 

coefficient: 

• correlation coefficients lower than 0.2: no correlation, 

• correlation coefficients between 0.2 and 0.4: low correlation, 

• correlation coefficients between 0.4 and 0.7: moderate correlation, 

• correlation coefficients between 0.7 and 0.9: high correlation, and 

• correlation coefficients higher than 0.9: very high correlation. 

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400

Number of files read

N
u
m
b
e
r 
o
f 
s
e
s
s
io
n
s
  

0

50

100

150

200

250

0 50 100 150 200

Number of files written

N
u
m
b
e
r 
o
f 
s
e
s
s
io
n
s



46 

 

Table 4-3 presents the correlation coefficients for the files read, written, deleted, 

whose rights or ownership changed. Based on the number of different files, we 

observed that there is: 1) a low correlation between files read and written, 2) a 

moderate correlation between files written and those the owner changed, 3) a low 

correlation between files whose rights and owner changed and 4) a low correlation 

between files written and deleted and no correlation between files deleted and the 

other file activities. These results indicate that the number of files read, written, 

deleted, whose rights or ownership changed are weakly correlated. 

Table 4-3: Correlation Coefficients Values  

 Read Write Delete Rights Owner 

Read 1     

Write 0.24 1    

Delete 0.14 0.28 1   

Rights 0.32 0.34 0.19 1  

Owner 0.07 0.49 0.00 0.38 1 

4.2.5 Probability of Manifestation per File 

We compiled the activity for each file that appeared at least once per session, 

disregarding the type of action that produced the activity. The list included a total of 

996 unique files read, 4016 unique files written, 1700 unique files containing attribute 

modifications and 1500 unique deleted files. For each file, we estimated the 

corresponding probability of manifestation, A
MP , by dividing the number of sessions 

in which the file and corresponding activity appeared by the total number of sessions. 

Table 4-4 contains an illustrative set of files that will be discussed in this section and 

the associated probability of manifestation. A more complete list of files and 

corresponding probability of manifestation can be found in Appendix A. 
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Table 4-4: Probability of Manifestation for a Set of Significant Files 

File  Type of 
Activity 

Number of 
Sessions 

Probability of 
Manifestation 

/usr/lib/libcrack.so.2 Read 165 0.51 

/usr/libresolv.so.2 Read 143 0.44 

/proc/cpuinfo Read 110 0.34 

/lib/tls/libc.so.6 Read 322 1 

/etc/npasswd Write 161 0.50 

/etc/shadow Write 14 0.04 

External malware Write 121 0.38 

/etc/services Write 9 0.03 

/bin/ps Write 2 0.01 

 

Reading files was the most common activity performed in the filesystem. However, 

the number of unique files read was small compared to other activities. This is partly 

because an important part of reading files is invoking libraries during execution and 

files that provide system information. Most attackers performed common actions that 

lead to a restricted set of libraries. For example, 165 sessions contained 

/usr/lib/libcrack.so.2 and 143 sessions contained /usr/libresolv.so.2, which are 

indications of password and network related activity, respectively. More interestingly, 

malicious activity was evident from the number of times certain files related to 

hardware and software information were read. The read action /proc/cpuinfo appeared 

in 110 sessions and /proc/(PID)'/status in 97 sessions. Several files, mainly libraries, 

always manifested evidence. An example of such a file is /lib/tls/libc.so.6, which was 

open in every session. This indicates the importance of not only focusing on evidence 

of a manifestation during an attack but also on a non-manifestation when there is no 

attack. The file most frequently written, /etc/npasswd appearing in 161 sessions, 

showed that most attackers attempted password modifications. Also noteworthy was 
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the corruption of related password files: /etc/shadow was corrupted in 14 sessions 

while creating accounts with blank passwords. Another common malicious act was to 

install external programs: in a total of 121 sessions new files were created containing 

malware. Surprisingly, while tools carried diverse names, after decompressing the 

malware, many shared common files. For example, unix2.users appeared in 17 

sessions and psybnc.pid appeared in another 17 sessions. The attackers’ use of the 

latter file shows an interesting property: all processes written to psybnc.pid appeared 

cloaked as harmless services (httpd, ssh, ntpd, init). However, the files used were not 

cloaked as system files, thus showing that the filesystem data audit is a good vector to 

detect concealed malware posing as system services. IDSs often monitor written 

activity on system files, especially binaries to detect rootkits and Trojan horses. 

However, our results showed few attackers corrupted those files. Only two sessions 

replaced binary files. In 9 sessions, attackers modified key system files (e.g., 

/etc/hosts.allow and /etc/services). Rights or ownership changes appeared most often 

as part of the malware installation. However, they also appeared on binary files as 

part of installing rootkits (two sessions) and as part of erasing tracks (two sessions). 

Finally, files that were deleted were those created by the attacker or in user logs (e.g., 

bash_login), showing the cleanup performed by attackers. An unexpected result was 

that most attackers did attempt to cleanup after themselves. History files containing 

activity information were deleted a total of 19 times, by using direct delete commands 

or targeted cleanup utilities. Leftover installation residues from malware were deleted 

in a total of 12 sessions. 



49 

 

4.2.6 Probability of Manifestation per File and per Attacker Action 

In this section we refine our analysis by considering the activity in each file related to 

a specific attacker action. Indeed, the probability of manifestation calculated in 

Section 4.2.5  may be inaccurate as some files may contain activity in sessions that 

did not provide useful information about a specific attack action. For example, 

dynamic libraries, such as libc, which most systems open as part of their normal 

operation, provide little information about the attacker’s actions. Therefore, we need 

to measure the information provided by each file for detection purposes. We 

separated common attacker actions into three different classes of attack evidence. 

These three classes were identified following the analysis conducted in the 

experiment (i.e., reconnaissance, password modification, and malware download). 

For each class we associated a set of commands based on: 1) which commands are 

usually considered the most relevant for conducting that attacker action and 2) which 

files targeted by these commands are usually considered the most relevant for 

conducting that attacker action. 

• Reconnaissance (R): Actions are performed by the attacker to gain 

information about the system’s resources, software and its users. We selected 

the commands w, whoami, last, ps, uname and cat to correspond to 

“reconnaissance”.  

• Password (P) modification: Actions where the purpose is to modify a 

password or create a new account. We selected the commands passwd, 

userdel and useradd to correspond to “password”. 



50 

 

• Malware download (D): Actions are related to downloading external 

programs and installing them. The common attacker downloads hacking tools 

including bots and other malware. We selected the commands wget, scp, ftp 

and curl to correspond to “download”. 

The link between a command and file activity is not evident. The same command, 

issued with different options, may target different files and file activities (e.g., read, 

write). It is difficult to estimate which options are more commonly used by attackers. 

For example, “x” and “aux” are the two most common parameters used with ps 

(which is used a total of 138 times in 97 sessions): “ps aux” was executed 31 times in 

24 sessions and “ps x” was executed 82 times in 69 sessions. “ps aux” provides 

additional information compared to “ps x”, such as the username. To retrieve that 

information, ps reads /etc/passwd. For this reason, /etc/passwd is not open when 

executing “ps x” whereas it is open when executing “ps aux”. 

We are implicitly making the assumption that evidence of an attack implies an 

intrusion. In reality, attack evidence might not always reflect the existence of an 

attack. A password modification might very well be performed by the genuine owner 

of the system. However, since our analysis is only based on attack data, our objective 

is to link attack evidence with the related files, not to assess the importance of the 

chosen evidence of attack. 

From the 322 non-empty sessions in the strace data, we did not find any attacker 

action related to reconnaissance, password modification or malware download (i.e., in 

95% of the sessions we observed at least one of these attacker actions) in only 17 
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sessions. Table 4-5 provides the number (and percentage) of sessions associated with 

the different attacker actions and combinations of actions.  

Table 4-5: Distribution of the 	umber of Sessions per Attack Evidence 

Attack 
Evidence 

Number of 
Sessions Percentage 

P (only) 29 9.51 

R (only) 71 23.28 

D (only) 22 7.21 

P and R (only) 131 42.95 

P and D (only) 62 20.33 

R and D (only) 102 33.44 

P and R and D 56 18.36 

where “P”=password modification, “R”=reconnaissance, and “D”=malware 

download 

We observed that on average, one type of attack evidence is observed in 13.3% of the 

sessions, a combination of two types of attack evidence are observed in 32.2% of the 

sessions and that all three types of attack evidence are seen in 18.4% of the sessions. 

As expected, attackers conducted more than one type of action when launching an 

attack. However, attackers seem to be interested in particular types of attacks instead 

of any kind of attack as illustrated by the lower percentage of sessions associated with 

all three attacker actions. 

Table 4-6 contains the number (and percentage) of files and the associated file 

activity for each type of attack evidence and combination of evidence. The 

percentages provided in the table are based on the overall total of different files of 

257. The files only involved in password modification are read, written, deleted and 

their rights and ownership changed. The files associated with malware download are 

read and write. However, the files involved in any other type of attack evidence were 
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only read. Since the table contains the number of files associated to single or multiple 

attacker actions, we expected that the number of files common to several actions 

would be lower than for individual actions. Indeed, only 7 files were common to the 

three attacker actions. Between 8 and 13 files are common to two attacker actions. 

And between 49 and 148 files were associated with only one attacker action. These 

results show that: 1) there are only a few files that can be audited to detect several 

attacker actions and 2) most of the file activities are read, making it difficult to 

differentiate attacker action from non-malicious activity. 

Table 4-6: Distribution of the 	umber of Files per Attack Evidence 

Attack 
Evidence 

Number of 
Files Percentage Read Written 

DeleteRights Owner

P (only) 148 57.59 36 48 36 14 14 

R (only) 49 19.07 49 0 0 0 0 

D (only) 91 34.41 26 65 0 0 0 

P and R (only) 10 3.89 10 0 0 0 0 

P and D (only) 13 5.06 13 0 0 0 0 

R and D (only) 8 3.11 8 0 0 0 0 

P and R and D 7 2.72 7 0 0 0 0 

Total Number of Different Files 128 113 36 14 14 

 

We also assessed the relevance of each file associated with the three types of attack 

evidence separately (e.g. password modification or no password modification). For 

each of the three types of attack evidence, we empirically estimated the variables 

involved in the calculation of 7IG, PPV and 7PV as follows: 

• A
MP  (probability that attacks manifest in data set D): number of sessions 

where the specific file and activity were present divided by the total number 

of non-empty sessions (322), 
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• Pr(e) (probability of attack evidence e): number of sessions that include 

password modification (166)/reconnaissance (248)/malware download (130) 

evidence divided by the total number of non-empty sessions (322), 

• e
MP  (probability that attack evidence e manifests in D): number of sessions in 

which the specific file and activity were present for each attack evidence 

divided by the total number of sessions the specific file and activity were 

present, and 

• e
MP  (probability that non-attack evidence e  manifests in D): number of 

sessions in which the specific file and activity were present for each non-

attack evidence divided by the total number of sessions the specific file and 

activity were not present. 

Let us compare respectively the average and standard deviation of IG, PPV and 7PV, 

for all three types of attack evidence: 

• Reconnaissance: IG (0.07 and 0.15), PPV (0.87 and 0.26), 7PV (0.15 and 

0.43), 

• Password modification: IG (0.26 and 0.42), PPV (0.92 and 0.21), 7PV (0.57 

and 0.30), 

• Malware download: IG (0.10 and 0.25), PPV (0.86 and 0.28), 7PV (0.60 and 

0.23). 

Based on the values of IG, between the three attacker activities, files associated with 

password modification can be linked to attacker activity with the highest confidence 

on average. It is interesting to note that, on average, files associated with 
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reconnaissance or malware download were poorly linked to the attacker activity. To 

get a more accurate picture, we need to focus on the values of PPV and 7PV. We 

observed that the three attack activities led to similar average values of PPV. The 

value of 7PV helped differentiate the three attacker activities. The value for 

reconnaissance activity seems to suggest that, on average, files associated with 

password modification and malware download activity can be linked to these 

activities with high confidence (since the PPV and 7PV value are high). 

The next step is to refine the analysis for each attacker activity. We first discuss a plot 

indicating the overall results obtained for all files involved in each of the attacker 

activities and then a sample of files to identify in detail which files are the most 

relevant for identifying the attacker activity. 

Figure 4-4 indicates the number of files associated with reconnaissance evidence with 

the values of IG, PPV and 7PV in 10 bins of 0.1 between 0 and 1. We observe that 

few files provide a good source of information. However, many files exit with a high 

value of the PPV, reflecting files opened by the attacker to inspect specific aspects of 

the system’s configuration (e.g., header files).  
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Figure 4-4. File Distribution of IG, PPV and 	PV Values for Reconnaissance 

Evidence 

Table 4-7 provides a sample of the files associated with the reconnaissance activity. A 

more extensive set of results can be found in Appendix A. The most relevant files to 

identify reconnaissance activity have a high IG value. No single file contains all 

necessary information to identify reconnaissance activity. However, /proc/x/stat and 

proc/x/cmdline can be associated with high confidence to reconnaissance activity, as 

manifestations in these files seems to imply the existence of reconnaissance activity 

(IG=0.655 and PPV=1). While /proc/loadavg manifests in more sessions than the 

previous files, the information provided is less, as it also manifests in other type of 

actions. Finally, libraries including /lib/tls/libc.so.6 do not provide any information 

(IG=0) as they manifest during reconnaissance activity, but also in many other actions 

not related to reconnaissance. 

 

 

Table 4-7: Sample Files for Reconnaissance Evidence 

File Name Activity IG PPV NPV 

/proc/x/stat Read 0.6551 0.725

/proc/x/cmdline Read 0.6551 0.725

/lib/libproc-3.2.3.so Read 0.4400.9600.684

/proc/cpuinfo Read 0.2101 0.349

/proc/loadavg Read 0.1950.9170.487

/lib/libnss_files.so.2 Read 0 0.7700 

/lib/tls/libc.so.6 Read 0 0.7700 
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Figure 4-5 indicates the number of files associated with password modification 

evidence with the values of IG, PPV and 7PV in 10 bins of 0.1 between 0 and 1. We 

observe that many files exist with a high PPV and low IG, 7PV values. These are 

temporary files, which were created while modifying the password. Unlike for the 

case of reconnaissance, there exists a set of good files for identifying a password 

modification evidence, with IG=1 and PPV=1, that are mostly common shared 

libraries. 

 
 
 
 
 
 
 
 
 
 

Figure 4-5. File Distribution of IG, PPV and �PV Values for Password 
Modification Evidence 

Table 4-8 provides a sample of the files associated with the password modification 

activity. A more extensive set of results can be found in Appendix A. As password 

modification evidences are linked to few commands, each one of a set of libraries 

provides all the necessary information to single out this activity (IG=1). The file most 

likely to be written as a result of password modification is /etc/nshadow, and is 

therefore linked to an important information gain (IG=0.9). However, when the 

attacker creates accounts with blank passwords, /etc/shadow is written instead. The 

relevance of /etc/shadow is reflected by 7PV=1. Reading /etc/shadow is necessary to 

modify a password. However, it is also a target for reconnaissance activity, as it 
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contains information about the users, undermining its relevance for password 

modification. The reading of /etc/passwd is an activity performed by many other 

types of actions, and therefore not suitable to provide high quality information for 

password modification. 

Table 4-8: Sample Files for Password Modification Evidence 

File Name Activity IG PPV NPV 

/usr/lib/libgmodule-2.0.so.0 Read 1 1 1 

/usr/lib/libgobject-2.0.so.0 Read 1 1 1 

/lib/libpam.so.0 Read 1 1 1 

/etc/shadow Read 0,951 0.9881 

/etc/nshadow Write 0.970 0.9881 

/etc/shadow- Write 0.021 1 0.495 

/etc/passwd Read 0 0.5160 

 

Figure 4-6 indicates the number of files associated with malware download 

evidence with the values of IG, PPV and 7PV in 10 bins of 0.1 between 0 and 1. We 

observed that the three big spikes are associated with files related to writing malware. 

These files have low IG and 7PV values, since they manifest rarely, but a high PPV 

value since they manifest for this activity only. A set of files, including configuration 

for network files and shared libraries provide moderately relevant information to 

identify malware downloads (IG=0.8). 
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Figure 4-6: File Distribution of IG, PPV and �PV Values for Malware Download 
Evidence 

Table 4-9 provides a sample of the files associated with the malware download 

activity. A more extensive set of results can be found in Appendix A. Most attackers 

utilize the wget utility to download malware. Hence, the corresponding configuration 

file for this utility, /etc/wgetrc provides the most information on malware download 

activity. We observed that common libraries (e.g., /usr/lib/libk5crypto.so.3 and 

/usr/lib/libgssapi_krb5.so.2) are a good source of information. In many cases malware 

was downloaded by a web address instead of using an IP address. That is shown by 

the usage of /etc/resolv.conf. All independent malware downloaded provides some 

information. However, as malware manifests in different forms, the information 

provided by each of these files is not clearly reflected in the value of IG. On the other 

hand, the relevance of the malware file (e.g., sendq.tgz and boti.zip) for intrusion 

detection is evident by the value of PPV, which is always one. Finally, other 

configuration files, like /etc/localtime, do not provide information on malware 

download, as its usage also appears in other actions. 

Table 4-9: Sample Files for Malware Download Evidence 

File Name Activity IG PPV NPV 

/etc/wgetrc Read 0.831 1.000 0.955

/usr/lib/libk5crypto.so.3 Read 0.822 0.922 1.000

/usr/lib/libgssapi_krb5.so.2 Read 0.822 0.922 1.000

/etc/resolv.conf Read 0.723 0.939 0.963

sendq.tgz Read 0.078 1.000 0.632

Boti.zip Read 0.030 1.000 0.610

/etc/localtime Read 0.004 0.415 0.697
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4.3 Conclusions 

In this chapter, we presented two metrics to evaluate the visibility of a HIDS: 

probability of attack manifestation and data quality. The metrics were then applied to 

the results of an empirical study of the activity performed by attackers on filesystem 

data after SSH compromises. The objective was to identify the most relevant files to 

audit for HIDSs based on filesystem data. As expected, the probability of 

manifestation was insufficient to fully assess the value of data as an audit source for 

HIDSs. The proposed metrics, information gain, positive predictive value and 

negative predictive value provided the necessary information to understand the 

significance of each file for certain malicious activities. We empirically showed that 

the link between certain attack evidences (i.e., reconnaissance, password 

modification, malware download) and files can be quantitatively estimated with the 

help of the proposed information theory based metrics. 

Chapter 5: Evaluation of Attack Resiliency 

As already mentioned, HIDSs reside, at least partially, inside the system supervised. 

Such architecture provides an exposure to attacks. In comparison, every component 

of a NIDS is deployed outside the system supervised. This separation shows that an 

attack towards the system supervised will not affect the NIDS. In other words, the 

state of the system supervised, secure or insecure (as seen in Chapter 3) will not 

impact the one of the NIDS. While an attacker may still launch attacks directed at the 

NIDS, in practice, this rarely happens. In most cases, an attacker will choose a 

simpler strategy to avoid detection, i.e., evading the IDS. Since an attack against a 
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NIDS will not be affected by the system supervised, the probability of occurrence of 

such attack can be evaluated with common methods and security metrics (e.g., risk 

evaluation [Bla01]). On the other hand, HIDSs require a more complex study of 

attacks against the system supervised. An attacker is likely to escalate privileges on 

the system supervised if the attack is successful. Since HIDSs usually share many 

resources with the system supervised, the privilege escalation on the system 

supervised may provide unrestricted access to HIDS elements. This fact leads to the 

appearance of new attack vectors for disrupting the normal operation of the HIDS. 

These attack types are simple and well documented, and hence popular [Half97]. 

This chapter presents HIDS resiliency as a metric of HIDS strength against attacks 

towards the HIDS through the system supervised. HIDS resiliency is the probability 

that the HIDS will not be subverted in the event of an attack against the system 

supervised. To estimate HIDS resiliency, we introduce a metric reflecting the HIDS’s 

independency. We then estimate these metrics for the Samhain [Wot05] HIDS.  

5.1 Definitions 

HIDSs may suffer integrity, confidentiality or availability attacks. If the attacker’s 

objective is to perform an attack against the system supervised, availability and 

confidentiality attacks will be of limited use. Indeed, most availability attacks against 

the HIDS are considered to be attacks against the system supervised and are labeled 

as alarms. Confidentiality attacks provide limited information on the system 

supervised, which is inferred from configuration files and output data. 
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Integrity attacks are more important with respect to attacking the system supervised. 

Indeed, a clever change of the HIDS allows the attacker to circumvent the HIDS. If 

the modification leads the HIDS to miss an otherwise detectable attack, we declare 

the HIDS to be subverted. While the attacker may compromise the integrity of any 

HIDS element, we can reduce the target for the attacker to modifying the HIDS's 

output in the event of an attack towards the system supervised. This definition implies 

that the attacker’s objective is not to gain control of the HIDS, but to change the 

HIDS output, which may be a simpler problem. 

 

Definition 1: A HIDS, H , with output, O , resulting from a set of data, D , is 

subverted by an attack towards the system supervised if for the same set of data, D , 

the attacker can change the output to OO =' /  . 

 

For the simplest type of HIDS, implemented as a function, h , with inputs 

]}[[2][1],{= 7xxxX K  that are classified as normal data or as an attack, 

{0,1}: →Xh , the attacker subverts the system if the HIDS’s response is the inverse 

given X , i. e., ``0'' instead of ``1''. Depending on the HIDS deployment 

characteristics, HIDS subversion varies in complexity. The following definition 

describes a metric of this complexity: 

 

Definition 2: We define HIDS resiliency to subversion as the probability that the 

HIDS will not be subverted in the event of an attack to the system supervised. 
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In the remainder of this thesis, we refer to HIDS resiliency as the HIDS resiliency to 

subversion attacks. To evaluate HIDS resiliency, we do not make any assumptions 

about the initial privilege or the privilege level gained on the system supervised. 

However, we assume that the attacker has no special implicit privilege on the HIDS. 

If the attacker decides to subvert the HIDS, we need to evaluate the probability of the 

attacker succeeding. There are two possible routes to perform a subversion attack: 

through the system supervised as part of the attack to the system supervised, and as a 

separte attack directed especifically to the HIDS. In the case of HIDSs, usually the 

easiest approach for an attacker is to subvert the HIDS using the system supervised as 

the attack vector. We assume that out of band attacks are more costly than attacks 

through the system supervised. If shared elements exist between the HIDS and the 

system supervised, an attacker may corrupt or tamper with elements from the system 

supervised to subvert the HIDS. Hence, a primary goal for the HIDS is to be 

independent of the system supervised, so that an attack launched against the system 

supervised will not impact the HIDS resiliency. To estimate resiliency, we first 

evaluate HIDS independency as the level of isolation between the HIDS and the 

system supervised. The more independent a HIDS is, the more resilient will it be to 

attacks against the system supervised. 

 

Definition 3: We define HIDS independency as the level of isolation between the 

HIDS and the system supervised for a certain privilege level on the system 

supervised. 
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The study of HIDS independency varies depending on the privilege level achieved by 

the attacker on the system supervised as part of an attack. Each privilege level may 

expose certain elements to the attacker and this exposure may exist exclusively for 

this privilege level. 

5.2 Evaluating Independency 

If the HIDS is isolated from the system supervised, studying HIDS resiliency does not 

depend on that host and the problem is similar to that of studying the security of other 

computer systems. However, achieving complete isolation is not possible on HIDSs. 

At a minimum, the data collection agent must reside inside the system supervised 

and, in many cases, other HIDS components are shared with the system supervised. 

The existence of common elements between the HIDS and the system supervised  

provides a vector to attack the HIDS. 

 

Definition 4: We define a HIDS as perfectly independent if no shared mechanism 

exists between the IDS and the system supervised for all privilege levels on the 

system supervised. 

 

A property of a perfectly independent HIDS is that its resiliency does not depend on 

the system supervised. The definition does not imply that a perfectly independent 

HIDS is resilient to all attacks, as other attack vectors to subvert the HIDS may exist 

without using the host supervised. For example, a PCI card may act as the monitor of 

a platform and display a very high independency. But if the PCI card features a 
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network connection (independent from the host), it may be attacked through this 

connection. However, this vector of attack may be studied separately from the system 

supervised.  

To measure the independency of the system, we introduce the independency score. 

The independency score is defined as a cost based metric. It describes the effort of 

subverting an element of the HIDS by the attacker as part of an intrusion to the 

system. 

5.2.1 Studying the HIDS Data Path 

A study of HIDS independency starts with identifying the elements employed by the 

HIDS, from data collection to alert reporting. To subvert the HIDS, the attacker may 

attempt to launch a range of attacks against any element of the HIDS. The situation is 

further complicated as most HIDSs require the use of common elements with the 

system supervised to transfer or modify data (e.g., network card, hard disk controller, 

kernel driver). Moreover, for complex systems, redundant elements, each one with 

different properties, may be used for data collection and alert reporting. An attacker 

may corrupt any element in the HIDS data path from data collection to alert reporting. 

A simple HIDS model [Bis02] consists of three parts: the agent, which collects the 

data; the director, which corresponds to the detection engine; and the notifier, which 

reports the results from the director. We assume that all HIDSs feature a single 

director, but can consist of many agents and notifiers. As seen in Figure 5-1, both the 

agent and the notifier may be composed of further active intermediaries. These 

intermediaries are called proxies. The communication paths between proxies are 
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called communication channels. In Figure 5-1, we represent each communication 

channel as iS , and each proxy as iP .  

 

Figure 5-1. HIDS Data Path 

We describe each HIDS element in function of the type of resources employed by 

each proxy and communication channel. For example, a hard disk controller uses 

firmware and hardware, and a detection engine resides in memory while storing 

configuration files on a filesystem. An attacker may exploit an element by tampering 

with any of the shared resources. Normally, subversion attacks, which involve 

restarting the HIDS, will be notified. Hence we will only evaluate shared resources 

while the HIDS is running in a normal mode.  

5.2.2 Defining Privilege Levels and Creating the Independency Score 

Once the HIDS elements identified, the complexity needed to exploit them to subvert 

the HIDS should be evaluated for the different privilege levels. We assumed that no 

privilege level on the system supervised immediately led to a privilege level on the 

HIDS. 

While taxonomies of privilege levels differ, for this thesis, we used the taxonomy 

proposed in [Web98]. This taxonomy refers to the privilege level on the system 

supervised. For example, the superuser privilege level entails access to the software 
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executing on the system supervised, including firmware and possibly the BIOS. The 

physical access privilege level grants access to the system’s hardware. Our goal is to 

evaluate the effort, time and resources needed by the attacker to realize the threat, i.e., 

subvert the IDS in the event of an attack to the system supervised. We assume that the 

more complex the modification of a specific HIDS element is, the closer the element 

is to being isolated from the system supervised, and thus the higher the independency 

score. 

5.2.3 Introduction to Cost Measurements 

Security is often measured from the defender’s perspective. The simplest method is to 

estimate the dollar amount saved due to the avoidance of security breaches. The most 

common measure to calculate the risk of a harmful event is the annual loss expected 

(ALE), which is computed multiplying the expected rate of loss by the value of the 

loss. More sophisticated metrics have been proposed to quantify security investment, 

including the return of investment (ROI) [Bla01] and the internal rate of return (IRR) 

[GL02]. We find similar methodologies for IDSs: in [LFM+02] a model is proposed 

built on concepts of risk analysis, by dividing the specific costs into operational costs, 

damage costs and response costs. 

For our methodology, however, the cost inherently relates to the adversary’s 

perspective, rather than the defender’s. Our objective is to evaluate the effort, time 

and further resources needed by the attacker to realize the threat, i.e., subvert the IDS. 

These metrics are common in cryptography, where the security of a cipher depends 

on the time an adversary takes to decode a message, given a specific set of initial 
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conditions. Outside cryptography, the evaluation of security metrics has proven 

elusive, as many uncertainties exist while assessing the adversaries’ cost. To avoid 

these uncertainties, practical on-site vulnerability analysis is usually preferred, relying 

on security professionals with the task of attacking the system [JO97]. This approach 

is often referred in literature as using red-teams [RVK05]. 

Some theoretical methods exist to calculate this cost without hiring red-teams. The 

sum of the cost incurred by the attacker to achieve his/her goals is referred by 

Schechter [Sch04] to the cost-to-break. Schechter’s work estimates this cost by 

measuring the complexity of obtaining the vulnerability in the market, in the same 

fashion as we rely on the market to find the estimated price for equipment. In the case 

of software, a bug auction model is proposed for software exploits, where only 

software with unknown vulnerabilities will have a cost (i.e., software with known 

vulnerabilities will have no cost for the attacker to be exploited). While Schechter 's 

bug auction model is elegant, it is difficult to apply in practice. However, using the 

same rationale, we may calculate the cost-to-break by estimating the amount of 

money needed to hire an expert able to compromise the desired HIDS element. This 

market model could provide the required costs to evaluate independency.  

5.2.4 Calculating HIDS Independency 

To calculate the independency for each HIDS element, the simplest metric is the 

introduction of a relative cost. Its use is a common practice to evaluate IDSs [JU01, 

LFM+02, CBS06]. The evaluator sets a specific and known cost baseline. If the HIDS 

evaluation is performed after the HIDS deployment, the simplest technique is to set 
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the baseline to the cost for the attacker to achieve the privilege level for which 

independency is evaluated on the system supervised. Once the baseline is set, the 

relative effort for the attacker to subvert the HIDS needs to be evaluated for each 

HIDS element. If the HIDS evaluation were performed using another baseline on 

another system, the practitioner can easily modify the cost by simply specifying the 

ratio between both baselines. If the element does not contain any shared resource with 

the supervised system for that privilege level, we assign infinity (∞ ) as the 

independency score. In HIDSs where attacks are detected in real or near real-time, the 

cost to subvert the monitor after the intrusion might be high, as the attacker only has a 

small window of opportunity to compromise HIDS elements before detection. The 

cost of subverting the HIDS after the attack is bounded in time by the monitor’s 

reaction time (efficiency). Efficiency will be studied in detail in Chapter 6. Hence a 

low efficiency increases the cost of certain attacks, e.g., brute force attacks on the 

HIDS administrator key. Another issue is self-monitoring: some HIDSs monitor their 

own elements and consequently trigger an alarm if attacked. While performing the 

cost based analysis, these factors should be taken into account and increase 

accordingly the independency score.  

After assigning a independency score to each HIDS element for a privilege level, we 

define the lowest independency score assigned to an element for this privilege level 

as the overall independency score for that privilege level, denoted as privCost . If the 

element is redundant, i.e., another data path exists from data collection to alert 

reporting, only the highest score is used as the overall independency score, as an 

attacker needs to subvert at least one element on each data path to subvert the HIDS. 
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Attackers will exploit the shared element with the lowest independency score to 

subvert the HIDS. Low privCost  values hence imply low resiliency values. 

5.3 Improving HIDS Independency 

In this section we describe techniques to improve HIDS independency. The 

techniques fall into the following categories: 1) decrease the amount of shared 

resources, beginning with the resources which are easier to exploit; 2) provide 

redundant paths to avoid single points of failure and to increase the attacker’s effort; 

3) increase the complexity of exploiting shared resources by using improved access 

control systems, encryption, or other techniques to mitigate the threat and to increase 

the independency score of the shared element. Next we discuss some specific 

techniques based on the previous categories.  

5.3.1 Using Embedded Hardware 

A technique to reduce the amount of shared resources at the supervisor privilege level 

consists of transferring most of the unsecured communication channels and proxies to 

hardware. This will actually increase the possible attack vectors at the physical level. 

Nevertheless, the cost for an attacker with supervisor access to subvert the system 

monitor will increase, and most attacks achieve supervisor privilege level. Recent 

experiences using embedded systems as IDSs can be found in [Mol01] and 

[PFMA04]. In both cases a single board computer in the form of a PCI card was used 

as an active monitor of filesystem integrity and memory, respectively. 
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Figure 5-2. Example Scheme for Hardware HIDSs 

While intuitively these systems may seem secure, a rigorous analysis of the path is 

still necessary. In particular, [Mol01] needs an IDE controller to retrieve the data 

from the hard disk, which is a shared element. As novel hardware continues to appear 

with field-upgradeable capabilities, we need to account for attacks launched to 

subvert hardware [HD04]. While extremely rare today, as the expertise of the average 

attacker continues to rise, the feasibility of such attacks will also increase. This shows 

that the problem of intrusion detection subversion not only depends on the security of 

the proxies (i.e., agent, director, notifier), but also on the existence of shared 

resources. As for [Mol01], a shared proxy also exists for [PFMA04]: the DMA 

controller and a communication channel, the PCI bus, which may be accessed by both 

the board and the system supervised. 

5.3.2 Using Redundant Elements 

In [BGFI+98], the authors propose the use of autonomous agents to overcome a 

single point of failure. To prevent subversion attacks, they propose to deploy 

distributed collectors (agents) to monitor data. If one of the nodes failed to report an 

attack or was subverted, the rest of the detection system continues working. To study 
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such systems, all redundant paths created by each autonomous agent must be 

considered, and the cost for the attacker may increase as a result. 

5.3.3 Virtualization 

The rise of virtualization technologies (e.g., Xen [BDF+03], VMware [VMw04]) 

provides new techniques to perform intrusion detection. Clients inside virtual 

machines can be inspected by external agents [GPMB03]. The virtual machine 

monitor can enforce the separation between shared resources from HIDS and 

supervised system, even in the case the attacker achieves supervisor privileged on the 

system supervised. These systems are complex, as the path used by applications to 

communicate with each other is non-obvious and depends of the specific virtual 

machine technique implemented. For example, [Lit05] employs Xen to perform 

intrusion detection, while [GR03] utilizes VMware. These systems, however, display 

great potential as IDSs. 

Finally, current advances in CPU, I/O and DMA isolation [Win03] provide the 

necessary features to create a Secure Kernel (SK). SK executes in a privileged, secure 

mode, capable of monitoring the others but inaccessible to them (see Figure 5-4). In 

this architecture, the virtual machine monitor spawns two or more operating systems. 

Intel’s Safer Computing Alternative (previously known as Lagrande technology 

[Gra03]) advocates this approach to improve the security of future systems, which 

provides an even greater separation for shared resources. 
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Figure 5-3. Scheme of a Secure Kernel as a HIDS 

5.3.4 Trusted Computing 

If all proxies in the path between data collection and alert reporting were to be 

checked for integrity and the data exchanged between them also checked for integrity, 

the alert report will be trusted or known to be tampered with by the attacker. The 

Trusted Computing Group (TCG) [Gro03b], formerly known as Trusted Computing 

Platform Alliance (TCPA), uses this approach to provide a “measured boot”. Every 

element measures the next element of the booting process by creating a digest of the 

element. The digest is then stored into an embedded, possibly tamper resistant, 

cryptographic chip, called the Trusted Platform Module [Gro3a]. As HIDSs have a 

path between collection and reporting, each element may measure the next one before 

passing the data. This architecture enables the remote verification (also known as 

attestation) of all the actors along the HIDS path, so that the output correctness may 

be verified by means of validating a signature as part of the data. In [SPvD05] a 

similar method was proposed to perform fine-grained attestation on executing 

processes to assess the integrity of the output given a certain input. 
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5.4 Evaluating Resiliency 

The independency score evaluates the relationship between the HIDS and the system 

supervised by identifying shared elements and their possible use as attack vectors 

against the system supervised. In this section we describe how to estimate HIDS 

resiliency based on environmental factors and the independency score. 

The two main questions we need to answer are: 1) Does the attacker care to be 

detected? and 2) Does the attacker have the necessary skills to perform an attack 

against the system supervised?  

The motivation for the attacker to launch an attack against the system supervised 

could depend on the services provided by the system supervised and the type of 

organization. For example, if the system is an informative web server, the attacker 

probably will not care about being detected in the event of web site defacement. 

HIDSs stand in most cases as the last layer of defense. Hence access controls, 

firewalls and NIDSs possibly have already “cleaned” most of the less dangerous and 

automated attacks. We introduce the attacker motivation as a variable θ , 10 ≤≤ θ , 

where 0=θ  is the extreme of none of the attackers care about being detected (and 

hence the resiliency will be always 1) and 1=θ  all attackers care and will attempt if 

possible to subvert the HIDS. To consider only the worst-case scenario, we set θ  to 

1. Table 5-1 provides some values for θ  in specific environments. These values are 

based on expert judgment. Therefore, the order of magnitude is more important than 

the absolute value itself. 

 

Table 5-1: Values of θ  for Specific Environments   
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Value of θ    Possible Scenario  

0   No subversion attempts  

0.1   Unprotected home machine 

0.2   Unprotected university machine 

0.3   Protected home machine  

0.4   Protected university machine  

0.5   Small business 

0.6   Large business 

0.7   Government institution 

0.8   Military 

1   All attackers attempt subversion 

 
We already discussed how to estimate the independency score of various shared 

elements compared to the baseline of finding a vulnerability on the system supervised 

for different privilege levels. Thus, we assume that the attacker has enough skills to 

reach that privilege level. We now link the independency score introduced when 

evaluating HIDS independency, privCost , with the probability of subverting the 

HIDS. If 1<<privCost , the probability that the attacker will succeed in the attempt is 

quite high, as the attacker has shown enough skill to easily subvert the HIDS, 

1≈priv

successP . However, for the case of 1>>privCost , the probability that the attacker 

will succeed is quite low, 0≈priv

successP . In the extreme case that the HIDS is perfectly 

independent and ∞=privCost , we have 0=priv

successP , as we do not consider out of band 

attacks. 

When discussing the possible probability values of subverting the HIDS, we did not 

include the attacker’s motivation. This motivation is assumed to be independent of 

the probability of subversion. When calculating the HIDS resiliency, priv

resP , we 

combine both factors in the following equation: 
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priv

success

priv

res PP θ−1=  (5.1) 

The overall resiliency is computed for all possible privilege levels where the 

resiliency is first weighted by the frequencies of attacks (the frequencies are 

associated with the level of privilege reached through the attack): 

priv

res

priv

Spriv

res PP α∑
∈

=  (5.2) 

where S  is the set of possible privilege levels on the system supervised and sα  are 

the frequencies of attacks reaching that privilege level. 

5.5 Case scenario: Evaluating Samhain Independency 

HIDS independency is a deployment characteristic. Consequently, even for the same 

HIDS, results may vary depending on how the HIDS is deployed. Our aim is not to 

evaluate independency of the specific HIDS but rather to illustrate the proposed 

method for a particular case: evaluating a host-based file integrity verifier. We 

estimated the independency scores of Samhain [Wot05], an integrity verifier. 

Samhain is executed as a daemon on the system supervised. It can be run on many 

platforms (i.e., Windows with Cygwin, Unix, Linux). Samhain works by first 

scanning the system to create a “baseline” database of the filesystem files. This 

database is consulted when future scans are performed. If key differences exist 

between the database and the current scan, such as file size modification, file 

creation/modification time, new/removed files, etc, they are reported to the logging 

mechanism. Samhain can be set up to scan at specific time intervals and email the 

administrator the reports. Logs are generated on the host, on which the daemon is 
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running, through syslog. Samhain can log through stderr, email, file, pipe, syslog, 

RDBMS, central log server, external script and IPC message queue. In our 

implementation, Samhain logs to a local CD burner and reports by an email to the 

administrator. Samhain was deployed on a server, with an installation of Gentoo 

Linux. The version of Samhain used was 2.3.1. We deployed Samhain using the 

default installation options. 

To illustrate our method, we restricted the independency evaluation to the supervisor 

privilege level ( RCost ). The selected baseline cost is the cost to achieve root access 

for an outsider. In this case, the baseline models the effort of finding an unknown 

vulnerability in the software that runs on the system supervised, which is up to date. 

We estimated the independency score of the other attack vectors to subvert the HIDS 

compared to the baseline. In other words, we estimated how much more (or less) 

effort is needed for the attacker to subvert the HIDS for various attack vectors 

compared to finding an unknown vulnerability in the software running on the system 

supervised. Note that the exact values of these independency scores are less important 

than their order of magnitude so that the most easily launched attack vector is 

correctly identified. 

In our implementation, Samhain reads the files specified by our policy, verifies the 

integrity against a database and then logs the result on a CD, while sending a message 

with the logs to an email address. By default, logs, messages and configuration files 

are unencrypted. The HIDS elements and data path are represented in Figure 5-4. 
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Figure 5-4. Data Path for Samhain 

HD is the hard disk containing the files subject to inspection. 0P  represents the hard 

disk Integrated Drive Electronics (IDE) controller, 1P  the operating system kernel 

(IDE driver, filesystem) and both elements are part of the agent. The Samhain process 

acts as the detection engine. Samhain also uses a filesystem to store the configuration 

files. Two different notifiers are used: consequently we studied both paths. 2P  

represents a smtp process, the mail server. 3P  represents the kernel network stack, 

network card driver and 4P  the network card. For the redundant path, 6P  is the 

syslogd login daemon, 7P  stands as the CD IDE controller and 8P  the filesystem on 

the CD. For the communication channels, 0S  are the IDE internal registers, 1S  the 

PCI Bus, 2S  the kernel to user space communication, 3S  the inter process 

communication, 4S  the user space to kernel communication and finally 5S  represents 

the internal network connection. The rest of the path is outside the host and hence out 

of scope. 
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After we defined the data path of the HIDS, we evaluated the independency score of 

each of the shared elements for the supervisor privilege. We compared the different 

scores of subverting the HIDS for each element for the supervisor privilege level. The 

results, shown in Table 5-2, are based on expert knowledge. We estimated that 

modifying the internal operation of hardware proxies or attacking restricted 

communication paths (e.g., the PCI bus) requires either insider help or an intimate 

knowledge of the system, so we assigned 10=RCost  (i.e., an effort 10 times higher 

than that of finding an unknown vulnerability in the software running on the system 

supervised). Many current controllers provide a mechanism to upgrade the internal 

firmware, hence providing an easier attack vector (e.g., replacing the firmware with a 

corrupted version). While the cost may fluctuate depending on the specific hardware, 

we set 5=RCost  for firmware-based hardware. 

Software is simpler to subvert: specifically there are tools that can automatically 

corrupt the detection engine itself, so we assigned 0.3=RCost . However, the 

attacker may also corrupt other proxy software, like smtp. As this requires some 

expert knowledge to correctly modify the communication, we estimated 0.7=RCost  

for both the network OS stack and smtp. 

The lowest independency score is associated with 2S . Many rootkits exist on the 

Internet that are designed to modify the operating system. Therefore, user space 

applications will provide deceptive outputs. As rootkits are far more common than 

patches that target specific binaries, we estimated the independency score to be very 

low. Hence, if no mitigation techniques are in place, we set 0.1=RCost . The 
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existence of two redundant paths for notification does not affect the overall 

independency score, as the lowest independency score is associated with one of the 

proxies of the agent. 

Table 5-2: Independency Scores for Samhain 

Elem.  Description  Resource used  RC.  

.Base   root privilege  find unknown exploit  1  

0P   HD IDE  hardware/firmware  5  

1P   
fs driver  OS  0.8  

D   Samhain  memory/filesystem  0.3  

2P   
smtp  memory/filesystem  0.7  

3P   
network driver  OS  0.8  

4P   
network card  hardware/firmware  5  

6P   
syslogd  memory /filesystem  0.7  

7P   
CD IDE  hardware/firmware  5 

8P   
CD  filesystem  ∞  

0S   
IDE registers  internal bus  10  

1S   
PCI bus  internal bus  10  

2S   kernel IPC  OS system call  0.1  

3S   
shared libraries  IPC  0.2 

4S   
network stack  OS  0.7  

5S   
TCP/IP (int)  network connection  5  

 
The amount of shared resources provide the attacker with various possible attack 

vectors to use to subvert the HIDS. While mitigation techniques may be used, the 

wide range of shared elements will probably make them either impractical or 

insufficient. For example, encrypting and signing configuration files and renaming 

the executable process will increase the independency score for the detection engine. 

However, the problem of sharing kernel elements will persist.  
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5.6 Conclusions 

In this chapter we introduced HIDS subversion as a technique to circumvent HIDSs. 

Two metrics were proposed to evaluate the HIDS strength against subversion. HIDS 

independency is an attack-independent metric, which provides a measure of the 

isolation between the HIDS and the supervised system. HIDS resiliency is a 

quantitative, attack-dependent metric, which factors environmental attributes of the 

deployment scenario, along with the HIDS independency to estimate the probability 

that a HIDS will not be subverted as part of the attack to the system supervised. We 

evaluated the independency score of the Samhain HIDS. We found that the 

independency score reflects the simplicity of targeting the collection engine, in this 

case, the kernel. These results will be identical for the Osiris HIDS, as both HIDSs 

utilize the same mechanisms for collecting and reporting. 
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Chapter 6: Evaluation of Efficiency and Transparency 

In this chapter we discuss efficiency and transparency. These characteristics share 

specificities that motivate their study in the same chapter. Unlike attack resiliency and 

visibility, transparency and efficiency have been commonly applied in IDS 

evaluations. However, a detailed evaluation methodology has not been described for 

these characteristics. One reason might be the simplicity of performing the 

measurements: efficiency reflects the time for the HIDS to provide a result; and 

transparency indicates the performance impact of the HIDS to the system supervised. 

As an example, researchers will conduct a performance evaluation with and without 

the HIDS to validate the usability of their proposed HIDS [PKSZ04]. However, 

current evaluations for these characteristics do not follow a common methodology. 

The strong relationship between efficiency and transparency also suggests studying 

both characteristics in a single chapter. Indeed, in many cases, a decrease of 

efficiency implies a decrease of transparency, and vice versa. Efficiency heavily 

depends on the resources utilized by the HIDS, and many of these resources might be 

shared between the HIDS and the system supervised. If the HIDS utilizes more 

aggressively the shared resources, the HIDS will likely provide the detection results 

quickly. Many HIDSs implement the detection engine and the reporting engine in 

separate systems [GRO3a]. This improves the transparency of the system, but the data 

collection still needs to be realized by utilizing the resources from the host. For 

example, if the data collected resides in a hard disk, the slower the data is collected 

the less impact on the HIDS in the case of hard disk contention. 
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Both efficiency and transparency may have different impacts on the system 

supervised depending on the environment. For example, efficiency might not be an 

issue for a desktop machine in an academic environment, where the system can be 

reimaged without loss of assets. On the other hand, low efficiency in a high security 

environment might provide comparable losses than a very late detection. As a result, 

we need to provide tools to allow the optimization and comparison of these 

characteristics for different deployment settings. We introduce a mapping between 

both characteristics and cost metrics. This mapping will be useful to integrate these 

characteristics into a common framework. HIDS frameworks and the integration of 

HIDS characteristics will be discussed in detail in Chapter 7.  

This chapter is structured as follows. Section 6.1 provides the theory on evaluating 

efficiency. We introduce a set of time variables that can be studied independently. 

This section also discusses possible mappings between time delays and the cost of the 

HIDS. Section 6.2 introduces the theory to measure HIDS transparency. We provide a 

mapping to translate transparency metrics into costs related to decreased performance 

of the system supervised. In Section 6.3 we apply these metrics to evaluate 

empirically the efficiency and transparency of two HIDSs. Finally, in Section 6.4 we 

apply the data collected in the study performed in Section 4 to estimate empirically 

the delay related to the time an attack takes to manifest in the files collected.  
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6.1 Efficiency 

6.1.1 Metrics Linked to Efficiency 

As already mentioned, in most cases, real time intrusion detection in HIDSs is not 

possible. It usually suffices to discover the intrusion or attempted intrusion (i.e., 

attack) in a timely fashion (i.e., before the attacker can perform damage to the 

system). Efficiency is defined by the time that elapses between the start of an 

intrusion and the output of an associated alert. To measure efficiency, we measure the 

delays on every channel and proxy used to report the alert, including the processing 

time of the detection engine. We then add the delays related to the data collected and 

the time interval between data collections. Using the scheme represented by Figure 5-

1  in Chapter 5, the expected value of the efficiency with n proxies is: 

2 1

0 0

[ ] [ ] [ ] [ ] [ ]     IN : 1
n n

eff interval analysis si pj

i

manifes io

j

tat nE t E t E t E t E t t n n
+ −

= =

= + + + + ∈ >∑ ∑  (6-1)  

The variable int ervalt (interval between data collections) represents the time between 

data collections if the HIDS does not perform continuous supervision. For example, 

active IDSs [DDW99] will not typically request data continuously to avoid stalling 

the system supervised, as retrieving data will likely affect the host performance, 

creating a tradeoff between int ervalt  and the performance of the system supervised as 

described by transparency. The variable manifestationt  (time to manifest) characterizes the 

time between the start of an attack until the data manifests in the data collected by the 

HIDS. The variable analysist  (time to analyze) is the time required by the detection 

engine to analyze the data collected and provide a result. Finally, the variable tpj (time 



84 

 

in proxy) describes the time spent at each proxy in the data path, while tsi (time in 

channel) describes the time in each communication channel.  

In practice, not every delay in the data path can be measured. Another approach is to 

calculate the delay for data collection, analysis and reporting separately. However, in 

many cases, the estimate will be calculated from data collection to alert reporting. 

This is especially true for black box systems, where it is difficult to divide the timings 

for the different elements of the system. Performing a less fine-grained evaluation of 

efficiency results in losing some information about possible optimizations. For 

example, a HIDS may be very slow because the chosen reporting engine is slow. 

We will call the interval between data collection and alert reporting, the time to 

process ( processt ): 

2 1

0 0

[ ] [ ] [ ] [ ] [ ] [ ]    IN : 1process repo

n n

collection analysis analysis si prt j

i j

E t E t E t E t E t E t t n n
+ −

= =

= + + = + + ∈ >∑ ∑
(6.2)  

The variable tcollection, represents the delay between the data collection and providing 

the data to the classifier. tcollection, contains all communications channels and proxies 

on that section of the data path. Similarly, the variable treport represents the delays 

between the output result of the classifier and the final reporting of the alert, and it 

consists on all communications channels and proxies on that section of the data path. 

Figure 6-1 shows all the timings described: 
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Figure 6-1. Timings Related to Efficiency  

The evaluation of efficiency mainly consists of a set of timing measurements in the 

HIDS itself. We now describe guidelines for the evaluation of the different variables: 

• Measuring int ervalt : Many HIDSs schedule checks in a deterministic fashion. 

As a result, in most cases, int ervalt  will be a fixed value set by the administrator. 

If the HIDS audits the system at deterministic time intervals, an adversary 

could evade the HIDS by launching an attack just after an inspection. In 

[Mol01], randomization between time intervals is proposed to avoid this type 

of attack. 

• Measuring manifestt : The time to manifest may be complex to measure, but it is 

important to note that even if the measurements for the time to process is 

small, the attacker might have already performed some damage in the system. 

The reason is that the activity may only manifest in the data collected late in 

the attack. Time to manifest needs to be measured empirically, by estimating 

the time for an attack to manifest in the data collected since the attack is 

launched. A sample study of the time to manifest for filesystem data is 
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presented in Section 6-4. Note that, in certain instances, the time to manifest 

may be negative. This happens when the system detects the transition to an 

insecure state before a security breach actually happens. 

Measuring processt : We evaluate the delay between the data entering each 

section of the data path and the output of the required data. In many cases, the 

estimate will be calculated from data collection to alert reporting. This is 

especially true for black box systems, where it is not possible to divide the 

timings for the different HIDS elements. In some cases it will be of interest to 

divide the time to process into three stages as described in Equation 6-2, or 

even further as described in Equation 6-1. This separation of elements can 

provide valuable information for optimizing efficiency. For example, it is 

common to provide the HIDS reporting capabilities through external programs 

like sendmail [KS94]. This program may be replaced to provide the same 

functionality to the HIDS. The time to process varies depending on the 

amount of data collected. For systems where the data collected is tunable, the 

evaluator needs to estimate the efficiency for different amounts of data 

collected, so the trend for the efficiency (e.g., linear with the amount of data, 

exponential) can be understood.  

6.1.2 Translating Time Delays into Costs 

A detection delay implies a cost for the supervised system, in the form of further 

damage and/or due to not applying preventive measures to avoid collateral damage 

(e.g., canceling stolen credit card data). We introduce the intrusion to alert cost (Ceff) 



87 

 

that we link to efficiency. Ceff is defined as the cost caused by the delay between the 

beginning of an intrusion and the report of the alert by the HIDS. To calculate this 

cost, let us suppose an increasing function, Feff(t), mapping delays to costs. For 

example, the damage created by an intrusion to a server with a database holding 

credit card records will increase with time. This increase is independent of further 

intrusions but related to the misuse of the attacker of the stolen data. In general, the 

function Feff is related to the type of host and the type of attack. The use of mapping 

functions to costs has been described in [LCT+02], where a mapping function is used 

to represent the cost to the system due to an attack. In particular, most evaluations 

provide an implicit translation of HIDS efficiency. A common approximation is to 

formulate the efficiency function as a step function with three states [LFM+02]. This 

approximation relies on the fact that for most environments we can divide efficiency 

measurements into real-time (or early detection), non-real time (late detection) and 

non-detection (or too late to provide any relief to the intrusion cost). In Figure 6-2 we 

represent three examples of efficiency functions. Function (1) represents a three 

costs-step, (2) assumes a cost decreasing exponentially with the detection time, and 

(3) a cost exponentially increasing with the detection time. Note that all functions are 

defined only in the time interval between 0 and tmax, which is the maximum time for 

an intrusion to be undetected. Hence, the maximum damage for an undetected 

intrusion is defined as Cmax=Feff(tmax).  
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Figure 6-2. Sample Efficiency functions 

6.2 Transparency 

6.2.1 Metrics Linked to Transparency 

As already mentioned, some HIDS elements utilize resources of the system 

supervised. Typical shared resources include system memory, data buses and storage 

components. Therefore, the system supervised will likely experiment a performance 

reduction because of the HIDS. HIDS transparency measures this performance 

reduction. 

The performance reduction (Ptr) is calculated as the ratio between the normal 

performance of the system supervised and the performance while the HIDS is 

running:  

E[Performance with HIDS]

E[Performance without HIDS]
tr
P =    (6-3) 

Hence, Ptr=0 indicates no performance reduction (and hence perfect transparency), 

and Ptr=1 indicates a 100% reduction of performance (system unusable for the user).  

Measurements could be produced by separately evaluating the reduction of 

performance created by each shared resource and then providing these results along 
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with the usage of each shared resource by the host. For a HIDS utilizing 7 shared 

resources of the system supervised, we have:  

1

0

7
n

tr n tr

n

P Usage P
−

=

= ×∑     (6-4) 

Where Usagen refers to the utilization of the shared resource and 
n

trP  refers to the 

performance reduction due to that resource. Hence, if the shared resources were 

identified with exactitude, the best approach to measure transparency would consist 

of executing a set of benchmarks on the set of shared resources. The appropriate 

benchmarks would be micro benchmarks that perform a set of short, concise 

operations on the specific resource, repeating this operation many times. Examples of 

micro benchmarks are Bonnie++ [Bon] and IOzone [Ioz]. Micro benchmarks would 

provide a good understanding of the different aspects of the shared resource, but 

would not provide information on real usage of this resource by an application. 

Hence, the evaluator needs to estimate Usagen for each shared resource. Furthermore, 

to identify, select and create micro benchmarks for each shared resource is not a 

feasible approach for most HIDSs evaluations. For example, in [Mol01] even if the 

whole HIDS was implemented as an external PCI card, the host still displayed a 

noticeable overhead due to contention on the PCI bus, which shows that micro 

benchmarks might need to be very specific. In this case, providing a micro 

benchmark for the PCI bus usage and estimating the usage for the PCI bus would 

have been very difficult. 

In most practical cases, the performance reduction can be measured by running a set 

of high-level performance benchmarks (covering different resources) on the system 
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with the HIDS activated and then with the HIDS deactivated. Macro benchmarks can 

be used for such task. Macro benchmarks perform application driven actions for long 

durations. The actions of the macro benchmark heavily utilize a set of specific system 

resources. Examples of macro benchmarks are Postmark [Pos] and httperf [Htt]. 

Macro benchmarks decide the resources to be evaluated, and the Usagen for each 

resource. For that reason, macro benchmarks should be picked carefully and the 

configuration of the benchmark provided along with the evaluation for transparency. 

Indeed, as macro benchmarks utilize a broader set of shared resources, a modification 

of the configuration of the macro benchmark may result in heavily utilizing a shared 

resource instead of another. Hence, an evaluator could produce incorrect results by 

configuring the macro benchmark with a bias for using more or less heavily a specific 

resource. We will describe next the commonly used shared resources by each HIDS 

element. The collection agent will always interfere with the resources containing the 

data since the collection agent needs to reside on the HIDS. For example, capturing 

filesystem data will interfere with filesystem related resources (e.g., IDE controlled, 

PCI bus), and capturing system calls will produce a performance reduction while 

utilizing shared resources related to the operating system. The detection engine will 

likely affect the processor and system memory. The shared resources for alert 

reporting vary greatly, but usually the impact for transparency is minor, as the amount 

of data transferred is low. 
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6.2.2 Relationship with Cost 

The impact of the performance reduction created by the HIDS on the system 

supervised varies depending on environmental variables. The performance reduction 

supposes a decrease of productivity, and hence translates into a cost for the system 

supervised (Ctr). To perform the translation between transparency and cost, a 

mapping function needs to be provided. The mapping function describes the cost 

depending on the performance degradation, and will depend of the type of system 

supervised. 

Let us denote the mapping function as 
tr
F (Ptr). The function is defined in the interval 

[0,1], and for (Ptr=1) provides the cost of a complete shutdown of the system 

supervised. Hence: 

(1)maz tr trC C F= =  (6-5) 

For example, a function may suppose that the productivity reduction is proportional 

to the reduction of performance, i.e., a 50% reduction of productivity translates into a 

50% of the cost of a shutdown. For this simple case: 

maxtr trC C P=  (6-6) 

Due to the high cost of transparency, many HIDSs are only executed for a small 

period of time. If the HIDS does not run continuously, we will need to provide the 

proportional cost of running the HIDS for only a short period of time. Hence: 

( )tr tr tr

ExecutionTime
C F P

TimePeriod
=  (6-7) 

Notice that we assumed that the mapping function is independent of time. This might 

not be true as the cost due to transparency may be much less if the HIDS is executed 
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at night. Hence, the final cost might have to be corrected in some cases to account for 

the time when the HIDS is executed. 

6.3 Case Study: Osiris and Samhain 

In this secton we study the transparency and efficiency of two HIDSs, Osiris [Osi] 

and Samhain [Sam]. Samhain has already been described in Chapter 5. Osiris’ 

operation and architecture are similar to Samhain [Wot05]. Both feature a 

client/server architecture, and both examine files to detect integrity variations. 

However, the collection strategy and the data processing differ greatly. While both 

are open source projects, we treated both HIDSs as black boxes, only interacting with 

them through the provided API, usage commands and log files. 

6.3.1 Experimental Setup 

Both Osiris and Samhain were deployed in the same test environment, a Debian 

Linux Pentium 4, 1.4 Ghz featuring 256 MB of RAM. Both client and server of the 

integrity verifiers were deployed in the system supervised. The version of the 

evaluation copy of Samhain was 4.2.3. The version of the evaluation copy of Osiris 

was 2.3.5. Both versions were the latest stable releases available at the time of the 

experiment. We configured the HIDSs to examine exactly the same files for each test, 

and to verify the exact same integrity settings for each file.  

While evaluating efficiency, we tuned both configuration files to evaluate the same 

exact number of files. These files were created using automated scripts, and each file 

contained random content with fixed sizes for every file.  
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To evaluate transparency, we utilized the filesystem macro benchmark Postmark 

[Pos], version 1.5.1. Postmark provides the performance of a set of filesystem 

transactions, emulating the behavior of a mail server under heavy load. Specifically, 

the workload is meant to model a combination of web-commerce transactions. To 

achieve this, PostMark creates a set of files of random sizes. The files are then 

subjected to a number of transactions. These transactions consist of a file creation or 

deletion paired with a file read or append. Each pair of transactions is chosen 

randomly. Postmarks is a macro benchmark which mimics real usage of the system 

and heavily utilizes the shared resources related to the data collected by the HIDSs 

under evaluation (i.e., filesystem).  

6.3.2 Results 

First we evaluated efficiency for both Osiris and Samhain. Only the programs X 

server and KDE were running during the evaluation. For both systems the server was 

started first (called Osiris and Yule, respectively). A baseline for integrity comparison 

was then created. Before executing the client, a set of 5 files was modified randomly 

to create alerts. Then the client was launched, indicating the start time for efficiency 

measurement. We used the logs with the execution times of the process to measure 

efficiency. We compared the logs created by both applications with the logs related to 

process execution time on the system supervised to make sure that they were 

consistent. For Osiris, the logs provided a separation between collection and 

processing time. For Samhain, the logs did not provide such information but provided 

results from data collection to alert reporting. For both systems, we studied three 
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different file sizes: 142 bytes, 13012 bytes and 39012 bytes. For each file size we 

incremented the number of files to verify, form 1000 to 6000 in 1000 file increments.  

Table 6-1: Efficiency for Osiris with File Size of 142 Bytes 

Number of files Average (s) Std. Dev. (s) Interval (s) 

1000 4.67 0.58 4.09 5.24 
2000 5.33 0.58 4.76 5.91 
3000 5.67 0.58 5.09 6.24 
4000 6.00 0.00 6.00 6.00 
5000 7.00 0.00 7.00 7.00 
6000 8.67 1.53 7.14 10.19 

 

Table 6-2: Efficiency for Osiris with File Size of 13012 Bytes 

Number of files Average (s) Std. Dev. (s) Interval (s) 

1000 4.67 0.58 4.09 5.24 
2000 6.33 0.58 5.76 6.91 
3000 8.00 0.00 8.00 8.00 
4000 10.00 1.00 9.00 11.00 
5000 29.67 1.53 28.14 31.19 
6000 58.67 2.08 56.59 60.75 

 

Table 6-3: Efficiency for Osiris with File Size of 39012 Bytes  

Number of files Average(s)  Std. Dev. (s) Interval (s) 

1000 19.33 1.15 18.18 20.49 
2000 33.33 2.08 31.25 35.41 
3000 39.00 2.00 37.00 41.00 
4000 46.00 2.65 43.35 48.65 
5000 76.00 1.73 74.27 77.73 
6000 93.00 7.55 85.45 100.55 

 
Tables 6-1,6-2 and 6-3 provide the results of efficiency evaluation for Osiris. The 

results in Osiris for efficiency heavily depend on the file size, or in other words, on 

the amount of data collected. For the case of 142 bytes files, Osiris almost does not 

account for collection time but only for processing time. This can be verified as the 

results, while increasing, are non linear with the number of files. We have a similar 

result for file sizes of 13012 bytes, with some non-linearity for the first set of 
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measurements. For file sizes of 39012 bytes, the results are almost linear with the 

number of files collected. This may be explained as the bigger files render the 

processing time negligible and the collection time becomes then the only factor 

driving efficiency.  

Table 6-4: Efficiency for Samhain with File Size of 142 Bytes 

Number of files Average (s)  Std. Dev. (s) Interval (s) 

1000 222.33 8.14 214.19 230.48 
2000 397.67 3.79 393.88 401.45 
3000 507.00 23.64 483.36 530.64 
4000 621.00 74.72 546.28 695.72 
5000 811.00 51.45 759.55 862.45 
6000 1029.33 1.53 1027.81 1030.86 

 

Table 6-5: Efficiency for Samhain with File Size of 13012 Bytes  

Number of files Average (s) Std. Dev. (s) Interval (s) 

1000 234.00 1.00 233.00 235.00 
2000 404.00 1.00 403.00 405.00 
3000 539.67 3.21 536.45 542.88 
4000 677.33 56.62 620.72 733.95 
5000 819.00 28.51 790.49 847.51 
6000 1030.33 36.96 993.37 1067.30 

 

Table 6-6: Efficiency for Samhain with File Size of 39012 Bytes 

Number of files Average (s) Std. Dev. (s) Interval (s) 

1000 233.33 1.15 232.18 234.49 
2000 393.33 23.67 369.66 417.00 
3000 544.33 4.04 540.29 548.37 
4000 740.67 29.77 710.90 770.44 
5000 858.00 14.11 843.89 872.11 
6000 1037.00 12.49 1024.51 1049.49 

 
Tables 6-4, 6-5 and 6-6 provide the results of evaluating efficiency for Samhain. The 

results for Samhain were surprising compared to the ones for Osiris. First, almost all 

the measurements reflect a 10-fold increase of time delays with compared to Osiris. 

We believe that the time difference is because of a common overhead created by 
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Samhain. A possible reason for this overhead is that Samhain contains more features 

than Osiris and the databases take longer to load and compare. This hypothesis is 

supported by the data: unlike Osiris, the size of files does not affect the results, and 

they remain constant across file sizes. However, the efficiency of Samhain is almost 

linear with the number of files, independently of the size. This reflects that the 

collection time is negligible compared with the time to compare.   

Next, we calculated the transparency of the system. We performed two tests: one with 

Postmark utilizing a large number (500) of medium size files (7 MB) and other 

utilizing large files (62 MB) but a reduced number (50). The reason for these two 

tests was to evaluate the effect of accessing the hard disk in different ways. A larger 

number of files will create more activity, but possibly fewer accesses to the hard disk 

due to caching.  

Table 6-7: Transparency Evaluation with Postmark for 500/7MB Files 

Type of Access Average(MB/sec) Std. Dev. (s) Interval (s) Ptr (%) 

Read no HIDS 10.03 0.19 9.84 10.22 1 

Write no HIIDS 13.08 0.24 12.84 13.31 1 

Read Osiris 4.20 0.45 3.75 4.66 0.419111 

Write Osiris 5.48 0.59 4.89 6.07 0.419003 

Read Samhain 5.83 0.35 5.48 6.18 0.581305 

Write Samhain 6.81 0.43 6.38 7.23 0.52052 

 

Table 6-8: Transparency Evaluation with Postmark for a 50/62MB Files  

Type of Access Average(MB/sec) Std. Dev. (s) Interval (s) Peff (%) 

Read no HIDS 12.89 0.24 12.66 13.13 1 

Write no HIIDS 15.64 0.29 15.35 15.93 1 

Read Osiris 4.98 0.33 4.65 5.30 0.386028 

Write Osiris 5.90 0.56 5.34 6.47 0.377499 

Read Samhain 10.25 0.45 9.80 10.70 0.795067 

Write Samhain 12.26 0.70 11.55 12.96 0.783775 
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Perhaps a surprising result from the evaluation is that writing provides better 

performance numbers than reading. These results are due to the caching strategy of 

current filesystems, where writes are aggressively cached until flushed. Macro 

benchmarks do not force filesystem flush, as the performance is evaluated from an 

application perspective. In fact, Postmark will provide similar write/read numbers for 

most modern filesystems. Osiris transparency is low for both reading and writing 

(0.42) of smaller files. The numbers are consistent with our experience, as Osiris 

aggressively collects files. For larger files, Osiris’ results degrade, as the hard disk 

contention increases (0.39 for read, 0.38 for writes). Samhain, on the other hand, 

deals much better for both small and large files. For small files, the larger number of 

transactions affects its transparency (0.58 for read, 0.52 for writes). We can see that 

writes in this case are impacted more evidently. This is consistent with previous 

results of efficiency, where it looks like most of the time the HIDS is not collecting 

but processing the information. For the case of larger files, the results show much 

better results for transparency. As the amount of activity decreases, the HIDS is given 

more time to process the database. 

An important problem is to decide which should be the results provided by the 

evaluator. As we have seen, a benchmark, with a different configuration, may 

produce different results for transparency. The solution is to configure the benchmark 

so that it closely mimics the specific setting of the system while using the shared 

resources utilized by the HIDS. In this case, we evaluated the transparency of the 

HIDS for different settings, to provide a broader understanding of transparency 

results for various settings of the system supervised.  
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6.4 Evaluating Efficiency Related to the Data Collected 

A commonly asked question is to measure how quickly an attack can be detected 

when monitoring a specific file. Previously we discussed the necessity of an empirical 

evaluation of the time to manifest (tmanifest). In this section, we provide numerical 

results of the time to manifest for files on a filesystem. We measured the timing for 

the attacker to perform some activity on each file utilized as part of attacks. The 

experimental setup is the same as described in Chapter 4, Section 2. We created a set 

of scripts which calculated the time difference between the start of each attack to the 

first access to the every file which presented activity as part of the attack. In Figure 6-

3, we show a reduced set of files displayed using a state machine. Each connector in 

the state machine refers to a transition from one file to another, and the average time 

from the beginning of an attack to perform actions on that file. We observed that most 

attackers modified the password file after checking the system first, which takes on 

average one minute. Malware is often installed later in the session, consuming an 

average of 76 seconds if the malware installation occurs after the BEGIN state, 

increasing the time to an average of 139 seconds for malware written immediately 

after modifying the password. Installing malware took the longest time, and if it is the 

last action of the attacker, finalizing this activity will occur on average after 300 

seconds have elapsed. An interesting result is how fast an attacker can modify the 

password file after the beginning of the session, taking only 20 seconds. As a 

conclusion, this study shows the importance of the time to detect on evaluations. For 

example, a filesystem HIDSs based on detecting malware will detect the attack later 

in the session, and most likely configuration files, including the password file will 
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have been modified by the attacker. On the other hand, if the data collected included 

the password file, the attack will more likely be in an early stage, and the damage to 

the system less significant. 

 

Figure 6-3. Average Time to Manifest for Sample Files (in 
seconds) 

6.5 Conclusions 

In this chapter, we introduced two characteristics. Efficiency evaluates the delay from 

the start of an attack until the HIDS reports the attack. Transparency evaluates the 

HIDS impact on the performance of the system supervised. For both characteristics, 

we proposed metrics and techniques to estimate these metrics. Furthermore, we 

showed how to transform the metrics into costs. These transformations are necessary 

to account for deployment factors and to integrate the characteristics into HIDS 

frameworks. Finally, we performed two experiments. In the first one, we evaluated 

transparency and efficiency for two HIDSs, and compared the results. In the second 

one, we evaluated empirically the time to attack manifest for filesystem data.  
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Chapter 7: Integrating the Characteristics into a HIDS Cost 

Framework 

Comparing the characteristics one-to-one for various HIDSs may be of limited value. 

A HIDS can be superior when considering one characteristic, but inferior for another 

one. In addition, some characteristics may be related, so one characteristic increasing 

may result in another one decreasing. Hence, it is important to create frameworks, 

which provide the capability to compare several characteristics at the same time. In 

this chapter we will first describe some proposed frameworks for HIDSs. Then we 

will integrate the characteristics proposed in previous chapters into a cost framework. 

We will then show two examples on how to evaluate a set of characteristics utilizing 

the proposed framework. In the first example, we will integrate attack resiliency and 

detection accuracy to show the impact of different independency scores for HIDS 

optimization. In the second example, we will present a tool to create a composite 

evaluation of visibility and accuracy, called a HIDS stimulator.  

7.1 Survey of HIDS Frameworks  

The goal of a successful HIDS framework is to make possible the comparison 

between HIDSs, or between operational points of the same HIDS. A HIDS may have 

different operational points if it provides configurable settings. For example, the 

classifier may label a set of data as an attack if, after performing some statistical 

calculations on the data, a threshold in the classifier algorithm is reached. If the 
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threshold is configurable, the results of accuracy evaluations for the system will differ 

for each possible setting of the threshold.  

If the evaluator is provided with a set of metrics for two HIDSs, and all results are 

higher for one of the two HIDSs, then the evaluator does not have a decision problem. 

However, a problem exists if for one metric a HIDS presents better results in the 

comparison, but for another metric the HIDS has worse results. A solution to this 

problem is to create a composite result, adding external factors that may help in the 

decision making process. 

All techniques for optimization and comparison so far integrate only the metrics for 

detection accuracy. As discussed in Chapter 3, the two main accuracy metrics are the 

number of true positives in a certain universe of attacks, referred to as the probability 

of detection ( DP ) and the number of false positives in a certain universe of valid 

actions collected by the HIDS, referred to as the probability of false alarms ( FAP ). As 

two metrics are provided, a framework is necessary to integrate both into a single, 

composite metric. 

A first attempt to create composite metrics was proposed by Axelsson [Axe00b]. In 

this work, the attack ratio (pa) is presented as an important factor while evaluating 

IDSs for different environments. The positive predictive value (PPV) and negative 

predictive values (7PV) (as shown in Chapter 4) are proposed as possible composite 

metrics to integrate pa, FAP and DP . 

In [JU01], a set of external factors were proposed to both provide a comparison 

framework and to find the optimal operational point of an IDS. These external factors 
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were the cost of errors: the cost of not detecting an attack (CF7) and the cost of 

erroneously labeling normal data as an intrusion (CFP). Additionally, as proposed by 

Axelsson [Axe00b], the attack ratio (pa) was also included in the framework. By 

using these external factors, the overall cost of implementing a HIDS was proposed 

as: 

(1 ) (1 )
IDS a F7 D a FP FA

Cost p C P p C P= − + −                         (7-1) 

The equation can be described as follows. A cost is associated with the event of 

missing an intrusion. The probability of missing an intrusion is the probability that an 

attack occurs 
a
p , multiplied by the probability that the attack is not detected (1

D
P− ). 

There is an additional cost associated with an alert raised in a secure state. The 

probability of such an event is the probability that an attack did not happen (1 )
a
p− , 

multiplied by the probability that a false alarm was raised (
FA
P ). 

Once the overall cost is calculated, given a set of pairs composed by the probability of 

detection ( DP ) and probability of false alarms ( FAP ), the evaluator calculates the total 

operational costs for each pair, and decides depending on the minimum cost value: 

,

( , ) ( )min
D FA

D FA IDS
P P D

P P Cost
∈

=                                       (7-2) 

where D is the set of ( DP , FAP ) pairs for evaluation. The subset D is called the 

receiver operating characteristics (ROC) [GSS99] of the HIDS if the pairs come from 

different operational points of the same HIDS. ROCs are commonly represented by 

curves. The curves are created by plotting each pair in a graph. The X-axis of the 

graph represents DP , and the Y-axis corresponds to FAP . If the HIDS only presents one 

operational point, the representation will be a single dot in the graph. Given a ROC, if 
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our goal is to optimize the operation of the HIDS, then we resolve the following 

equation: 

,

( , ) ( )min
D FA

D FA IDS
P P ROC

P P Cost
∈

=                               (7-3) 

The specific calculation of the values for the different costs associated with the IDS 

(CF7, CFP) was studied in [LFM+02]. CF7 was defined as the maximum cost incurred 

by the intrusion plus the cost of raising an alert. CFP was set to the cost of raising an 

alert and the cost of clearing the false alarm.  

In [GFD+06a], a different approach is taken, by calculating the relationship between 

the input and the output of an IDS using information theory. A new metric is 

introduced, the intrusion detection capability, described as the relation between the 

mutual information between the input and the output and the entropy of the input. The 

approach used to create this relationship is similar to the one utilized in Chapter 4 to 

quantify data quality. The main reason to introduce this metric is to avoid the problem 

of guessing the different operational costs associated with each detection result by the 

classifier.  

However, in [CBS06], the author demonstrates that previous frameworks can be 

represented in terms of a cost framework, given that additional costs are included for 

each possible outcome. These costs define the following outcomes: reacting to an 

intrusion, missing an intrusion, raising a false alarm and not raising an alarm in a 

secure state, respectively. In Table 7-1, we summarize the meaning of the different 

costs. The followon equation represent the extended framework including the four 

possible situations: 
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( (1 ) ) (1 )( (1 ))IDS a F7 D TP D a FP FA T7 FACost p C P C P p C P C P= − + + − + −       (7-4) 

Table 7-1: Cost Related to HIDS Evaluation   

Cost  Description  Associated Probability 

T7C   Normal HIDS operation  (1 )(1 )a FAp P− −  

F7C  Cost of not reacting to an intrusion (1 )a Dp P−  

FPC  Cost of a false alarm  (1 )a FAp P−  

TPC  Cost of reacting to an intrusion 
a Dp P  

 
A limitation of all approaches based on cost, as pointed out in [GFD+06b], is that the 

evaluator sets the costs arbitrarily. Hence, there is no standard manner to calculate the 

costs except using expert knowledge. In the next section we address the problem by 

linking operational costs with transparency and efficiency.  

7.2 A Cost Framework for HIDSs 

In this section we introduce a modified framework to estimate the operational cost of 

the HIDS. The starting point is the cost framework as described in [JU01, CBS06], 

represented in Equation 7-4. Our objective is to introduce the characteristics 

described in the previous chapters, and utilize the metrics proposed to complement 

detection accuracy in this framework. 

Our motivation to modify the estimation of the operational cost follows two 

observations. First, for HIDSs the probability of true positives (TP) is not only 

dependent on detection accuracy, as represented by the DP , but also on visibility and 

attack resiliency. Second, the costs due efficiency and the cost due to transparency 

can be utilized to estimate the operational costs in the framework. 
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7.2.1 Integrating Attack Resiliency and Visibility 

An attack not detected by the HIDS (false negative) may fall in one of these three 

possibilities: 1) not manifested in the inspected data (the attack was not visible by the 

HIDS), 2) manifested but not detected by the HIDS (the attack evaded the HIDS) and 

3) manifested and detected, but the HIDS was corrupted to prevent the alert (HIDS 

subversion). In Chapter 5 we defined the probability of attack manifestation to 

quantify the probability that an attack manifests in the data, and, in Chapter 6, attack 

resiliency as the probability that an attack will not be subverted in the course of an 

attack towards the supervised system.  

We provide a graphical representation of the associated detection tree in Figure 7-1. 

In the proposed detection tree, PD is complemented with the other two proposed 

metrics (PM and Pres) to provide a more accurate quantification of TP and F7.  

 

 

 

Figure 7-1. Detection Tree 

Note that PM, PD and Pres are not independent. The probability of detection is 

conditional to the manifestation of an attack. The probability of attack resiliency is 

conditional to the event that the attack manifested in the data collected and that the 

attack was detected. Hence: 
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1

M D res

M D res

TP P P P

F7 P P P

=

= −
                                    (7.5) 

7.2.2 Integrating Efficiency and Transparency 

The operational cost described in [JU01, CBS06] was chosen by guessing reasonable 

cost values. However, some of these costs are directly related to the system efficiency 

and transparency. In this section we study the relationship between operational costs, 

efficiency and transparency. 

The performance overhead created by the HIDS in the system supervised modifies the 

operational cost when both the system supervised and the HIDS operate normally. In 

other words, when no attacks exist, and no alert is reported, the only cost that applies 

to the operational cost is the transparency cost. As we have seen previously, in 

Section 7-1, the cost of the HIDS while in normal operation was referred as CT7. If 

we suppose that no other operational cost applies, we can set the normal operation 

cost of the HIDS as the transparency cost. Hence: 

T7 trC C=  (7-6) 

In Chapter 6 we pointed out that the cost for true positives (CTP) depends on the 

system efficiency, due to the damage that an ongoing intrusion may have caused. 

Hence, we set CTP to the cost caused by the delay on detecting an intrusion: 

( )TP eff eff effC C F t= =  (7-7) 

Moreover, we set cost for missed intrusions to the maximum cost of the function that 

maps efficiency to costs ( effF ). As the function is always increasing (i.e., taking 
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longer to detect an intrusion will only result in additional costs), we set the cost of 

missed intrusions to the limit of the efficiency function effF : 

max lim ( )F7 eff eff
t

C C F t
→∞

= =  (7-8) 

7.2.3 Operational Cost for HIDSs 

We can now replace the previously defined costs in Table 7-2 by the costs related to 

both efficiency and transparency. Hence: 

max( ( ) ) (1 )( (1 ))IDS a eff eff a FP trCost p C F7 C TP p C FP C TP= + + − + −            (7-9) 

By utilizing the new characteristics, the final operational cost provides more details 

than before for both comparison and optimization. 

A remaining cost, which still needs to be estimated and is not related to 

characteristics of the HIDS is the cost of a false positive. If we substitute Equation 7-

9 with the results of integrating attack resiliency and visibility, we have the following 

result: 

max (( ( )) (1 )( ))

(1 )( (1 ))

IDS a M D res eff M D res eff

a FP FA tr FA

Cost p P P P C P P P C

p C P C P

= + − +

− + −
      (7-10) 

 

This result integrates the proposed characteristics into a single cost framework. While 

providing improvements compared to previous cost frameworks, this framework still 

requires a considerable amount of expert knowledge input. Next we will describe two 

case studies on how to utilize these results in practice. 
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7.3 Estimating the Cost of a HIDS  

We have estimated the different characteristics for two HIDSs, Samhain and Osiris. 

However, calculating the total cost of these two HIDSs applying equation 7-10 will 

be of limited value. First, for both systems the independency score is very low, 

providing similar final costs. Second, to avoid the problems related to the low 

transparency, both Samhain and Osiris are usually deployed with long interval (tinteval) 

between executions. This basically dilutes the results for efficiency, as the interval 

between executions is comparatively much more important than the other terms 

related to efficiency. Also, transparency is affected, as the total executing time is 

short, increasing the transparency of the system. A more interesting use for the cost 

framework is to show the effect of improving a characteristic in the HIDS. Next, we 

show how the operational point of Osiris and Samhain will be affected by modifying 

their independency.  

A key problem in HIDS evaluation is, given the ROC of a HIDS, to find the optimal 

operational point given a certain environment, IDS
ROC),P(P

IDS CostCost
FAD

min=*

∈
. This 

section illustrates how different values of privCost , as described in Chapter 5 will 

modify the value of IDSCost , where IDSCost  is calculated by using equation 7-10. For 

demonstration purposes, we will use ROC curves and attack probability values from 

the DARPA 1998 data set [LHF+00]. In Figure7-2, we can see the ROC curve we 

will use for our analysis. We will suppose that the probability of manifestation is 

equal to one, and does not affect the evaluation.  
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Figure 7-2.  Sample ROC   

Given that the mapping functions for efficiency (Feff) and transparency (Ftr) are as 

shown in Figure 7-3 and Figure 7-4 respectively, we use the results of the Samhain 

HIDS to calculate the related costs. 

 

 

 

 

 

 

 

 

Figure 7-3. Mapping Function for Efficiency   

We suppose that for our deployment scenario the mapping function for efficiency 

corresponds to an exponential, while the mapping function for transparency is linear 

with the performance decrease caused by the HIDS. The cost for an intrusion 
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increases rapidly once the attacker has enough time to install malware and/or steal 

data from the system, hence our choice for the sample mapping function. A linear 

function represents well the behavior of a web server for cost due transparency, as 

reduced transparency will impact the number of connections lost, and hence lost 

revenue. 
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Figure 7-4. Mapping Function for Transparency   

We now evaluate the results corresponding to Samhain using these results. The 

max

effC corresponds to Ftr(1), while effC corresponds to the efficiency of the system. In 

this case, we suppose that the HIDS is executed every six hours, and then add the 

values of efficiency as shown in Section 6. As we do not execute continuously the 

HIDS, the transparency is weighted for the time executed. The efficiency and 

transparency operational costs and the cost wrongly reacting to an intrusion are as 

described in Table 7-2: 

Table 7-2. Operational Costs 
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Ctr 
53 10−×  

effC  2 

max

effC  100 

FPC  5 

 

We set the value of the probability of intrusion, ap , 5= 6.25 10ap
−×  as published in 

the DARPA evaluation. We also suppose that all attackers care about being detected 

and will attempt to subvert the IDS, with 1=θ  as described in Chapter 5. In the study 

of attack resiliency, for a given privilege level, we described how the probability of a 

subversion attack succeeding, priv

successP , was linked to the relative cost compared to the 

baseline of finding an unknown vulnerability in the software running on the system 

supervised (independency score). We denoted this cost, for a given privilege level, as, 

privCost . In Chapter 5 we also provided guidelines to estimate the probability of a 

successful subversion ( priv

successP ) by using the independency score. We introduce the 

following simple mapping function as an estimate of priv

successP  that has the properties 

described in Chapter 5, Section 4: 

 
priv

priv

success
Cost

P
+1

1
=                    (7-11)   

For the initial evaluation, let us set resP =1. Applying Equation 7-11 to the HIDS, 

substituting, and resolving for each point in the ROC curve from Figure 7-2, we find 

that the optimal operation point of this HIDS is 0.00022=0.6534,= FAD PP , with an 

expected cost of 0.00335=IDSCost .  
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Our goal is to optimize the operational point given different values of RCost . For this 

study we suppose the frequency of attacks in privilege levels other than root is 

negligible. The optimal operational point changes as presented in Figure 7-5. 

 

Figure 7-5. IDSCost  for Different Independency Scores 

The Operational Costs are: 
5= 3 10trC
−× , = 5FPC , = 2effC , 

max =100effC  

Table 7-3 provides the optimal probability of detection and the associated cost for the 

different values of RCost .  

Table 7-3: DP  and IDSCost  for Different Values of 
RCost  

RCost  DP  IDSCost
 

0.01 0 0.0061 

0.5 0.5234 0.0056 

1 0.5649 0.0051 

2 0.6213 0.0045 

10 0.6397 0.0036 
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The HIDS is unusable for 0.01=RCost : the low independency provides no cost 

benefit compared with not having a HIDS, for any operation point of the provided 

ROC curve. This fact demonstrates the importance of the study of independency, 

indicating that a HIDS with a good detection engine will only benefit the organization 

if it is not easily subverted. For the other HIDSs a different optimal operational point 

should be used to compensate for the reduction in the probability of detection and the 

increased comparative weight of the probability of false alarms. This solution is of 

course dependent on the operational costs as provided by transparency and efficiency, 

but the importance of resiliency should be stressed as we have chosen a very low ap . 

Increasing the value of ap  will provide even more extreme results, as the increased 

number of attacks will provoke a spike in the number of subversion attempts. In this 

case we assumed the worst-case scenario, with 1=θ . However, we believe it makes 

sense for HIDSs to evaluate the operational point on the pessimistic side. 

7.4 Linking Detection Accuracy and Visibility 

As already mentioned, the rate of true positive depends on the probability of attack 

manifestation in the data collected and on the probability of detection of the classifier. 

So far, in practical evaluations, this distinction has not been implemented. In this 

section, we discuss an evaluation methodology, which links visibility and detection 

accuracy.  

Our approach relies on a new tool called a HIDS stimulator. To create the HIDS 

stimulator, sample attack evidences were coded and organized depending on the data 

where they manifested. This set of data can be linked to its probability of 
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manifestation (i.e., probability that an attack manifests in that set of data). Then each 

attack manifesting in the data collected by the HIDS is launched to provide the 

probability of detection for the HIDS for these attacks.  

7.4.1 Evaluation Methodology 

As mentioned, the metrics used to estimate detection accuracy are the probability of 

detection and the probability of false alarms. In practice, the probability of detection 

is estimated as the percentage of detected malicious activity, while the probability of 

false alarms is estimated by the percentage of wrongfully raised alarms. As shown 

previously, the probability of detection is not equal to the probability of true 

positives, as visibility also needs to be considered. A detection engine may have a 

very high probability of detection, but the total number of attacks detected can be 

small if the attacks rarely manifest in the data collected.  

The proposed methodology consists on the following steps: 

• Create a set of attack evidences 

• Pair each evidence with the data where it manifests 

• Provide the probability of manifestation for the different data sets where the 

evidence manifests 

• Evaluate the HIDS detection accuracy only with evidences that manifest in the 

data acquired by the HIDS (visible evidences) 

Finally, we evaluate all the visible evidences to calculate the probability of true 

positives: 
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7.4.2 Implementing a HIDS Stimulator 

Many tools exist to evaluate NIDSs [AAL+03, Met]. These tools launch remote 

exploits over unencrypted network traffic or scan for remote vulnerabilities. 

However, there are no such equivalent tools for HIDSs. This is why we decided the 

developed a tool called, HIDS stimulator. The HIDS stimulator applies the evaluation 

methodology described in the previous section to provide a more accurate estimation 

of the probability of true positives. 

The HIDS stimulator runs on the machine that has the HIDS installed. It should be 

run by a user who has root privileges, thus emulating the capabilities a third party 

who gained root access would have. The HIDS stimulator will not generate any 

external network traffic, separating its tests from those typical of NIDS testers. 

Therefore, system administrators can gauge the effectiveness of their HIDS, as well 

as enhance their understanding of what is detected by their HIDS.  

One must use a combination of the log produced by the HIDS stimulator and the log 

produced by the HIDS under test to determine which tests are detected. Due to the 

nature of some HIDSs the user may have to wait some time before any detections are 

reported. Therefore, one must have a good understanding of the reporting 

functionality of the HIDS they are testing in order to evaluate it.  

The first implementation of the HIDS stimulator was a command line tool created in 

Java for portability. The stimulator launched a set of attack evidences, in the form of 

modular plugins. The modular nature of the HIDS stimulator was based on the 
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directory structure presented by its plugins directory. Any subdirectories within the 

directory constitute a set of tests sharing similar data manifestation (e.g., filesystem, 

system calls). Inside a given test type directory the attack evidence exists, as well as 

two subdirectories: testdata and testlog. For a given name of a test, testname, three 

files corresponding to that test may exist. The first was info-testname.txt, which 

consisted on a text file containing information of the test. The second was run-

testname, which was an executable that runs the desired evidence. The third and final 

file that could be associated with an evidence was clean-testname, which performed 

the task of undoing any changes created by the run-testname executable. Attack 

evidence types could be added simply by creating subdirectories within the tests 

directory, and tests per type could be added simply by creating the required files. The 

tool will automatically pick up these additions. A graphical view of the directory 

structure can be seen in Figure 7-6. 
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Figure 7-6. Command Line Stimulator 

While adding more test evidences, we realized that the command line version was 

insufficient for several reasons. Attack evidences may manifest in more than one type 

of data, so we needed to support this feature without copying each evidence over 

different directories. The command line approach also failed to provide searching 

capabilities to select different type of evidences. The information files, while useful, 

were not standardized. This created problems when the evidences were created by 

different people. Finally, there was no way to filter the attack evidences by basic 

properties, e.g. operating system where the evidence can be launched. To solve these 

problems, we decided to move the implementation to a database. The database 

contained all the relevant information of each attack evidences. Meanwhile, the 

evidences themselves resided in a single plug-in directory. The database was created 

in Java and contains a total of eight fields, which maybe expanded in the future. Table 

7-4 summarizes the fields implemented in the database. 

Table 7-4: Fields Included in the Database 

	ame of Field Description 

Name of evidence String representing the given name to the evidence 

Executable type String providing the type of executable (shell script, ruby) 

Cleanup name Name of the API to call for cleanup 

Origin String describing the origin of the attack evidence 

About Information of the functionality provided by the attack evidence 

OS type Set of operating systems where the evidence can be launched 

Evidence key Unique identifier for the evidence 

Data sets The sets of data where the attack manifests 

 
We set as requirements for the database to be lightweight and easily integrated with a 

Java program for portability. However, the implementation needed to be compatible 

with SQL commands. The solution used in this second implementation of the HIDS 
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stimulator was Java DB, also known as Apache Derby. Apache Derby is a java based 

SQL compliant database that is now part of Java version 6. But because some user 

may utilize older versions of JAVA, the required files to implement the database are 

included as part of the program. 

To access the database a graphical interface was created, where the user could search 

and select the evidences. The evidences could be selected in different ways, for 

example, filtering by specific information or by name. A screenshot of the selection 

process for attack evidences can be seen in Figure 7-7. 

 

Figure 7-7. Selection Screen for the HIDS Stimulator 

The interface also provides the possibility to upload new attack evidences. The 

graphical interface detects the type of executable and labels accordingly, providing 
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more flexibility in the language and platform the tests could be created. The process 

of uploading an attack evidence was greatly simplified from the previous version. 

Through the graphical interface, the user can select the file to be added as an attack 

evidence. To reduce the file clutter, the functionality to revert to the  previous state 

was implemented through an argument passed to the evidence executable. Once a file 

is selected, a window pops up and the creator is given the possibility to fill specific 

fields, e.g. the platform where the evidence can be launched. These options were 

provided as a simple multichoice environment, to be used later to filter. We can see a 

screenshot of the process of uploading an attack evidence in Figure 7-8. 

 

Figure 7-8: Uploading an Attack Evidence 

The outcome of the launched evidence appears in the graphical interface. The results 

still need to be paired with the HIDS log. 
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7.4.3 Sample Attack Evidences 

Currently, 16 attack evidences have been implemented, most of them taken from 

common activities performed by attackers, or by extracting payloads from attack 

libraries. Next we describe some coded attack evidences: 

• Time change test: a filesystem evidence that modifies the timestamp of a 

random executable. It first backs up the original timestamp before running the 

test. The test itself changes the timestamp, and the cleaner restores the original 

timestamp. 

• Add user test: a file system test that checks to see whether /etc/ can be read 

from, can be written to, and can make a copy of /etc/passwd. If those 

conditions pass, then the test runs a shell script that adds a user to /etc/passwd 

named ‘Sploit’, with the password ‘ABC’. The cleaner file restores the 

modified /etc/passwd with its original values, thus preserving the original 

state. 

Other tests on filesystem data checked random file creation on sensitive directories, 

file corruption, log tampering and changing permissions of random files. For system 

memory data set we launched rogue processes, and then kill them. In the future we 

expect to expand the library of evidences to successfully evaluate HIDSs under the 

proposed methodology 

7.5 Conclusions 

In this chapter, we surveyed previous efforts to create IDS frameworks. A link exists 

between the operational costs of the HIDS, related to efficiency and transparency, and 
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the operational cost defined by previous cost frameworks. We used this relationship 

to integrate efficiency and transparency into the cost framework. We then showed 

how to integrate the metrics defined for attack resiliency and visibility as part of the 

total calculation for probability of true positives. Finally, we provided two practical 

examples on how to integrate characteristics. First, we showed how the relationship 

between accuracy and attack resiliency can affect the calculation of the optimal 

operational point of a HIDS. Then we propose a tool, which integrates the study of 

visibility and accuracy by creating a database of attack evidences. The attack 

evidences are labeled depending on the data set where they manifest, allowing the use 

of only evidences that can be detected by the HIDS evaluated. 
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Chapter 8: Conclusions and Future Work 

In this dissertation, we researched methods to improve the evaluation of host 

intrusion detection system (HIDSs). We showed that HIDSs were now important 

security tools, but their evaluation was still performed using the evaluation methods 

proposed for network intrusion detection systems (NIDS). Hence, an evaluation of a 

HIDS based the outcome solely on the evaluation of detection accuracy. However, we 

showed that evaluating only detection accuracy is insufficient for HIDSs, as they 

portray specific characteristics that also need to be considered. To solve this problem 

we explored distinct HIDS traits, proposing a set of quantifiable characteristics. The 

proposed characteristics were the ability to collect the data where an attack manifests 

(visibility); the ability of the detection engine of the HIDS to raise alerts only in the 

event of an intrusion, when the intrusion manifest in the data collected (detection 

accuracy); the ability of the HIDS to resist subversion attacks in the event of an 

intrusion (attack resiliency); the ability to timely detect attacks (efficiency); and the 

ability of the HIDS to avoid interfering with the normal functioning of the system 

supervised (transparency). 

For evaluating efficiency and transparency, some practical quantification had been 

performed, but no methodology existed to perform the evaluation. For the evaluation 

of visibility and attack resiliency, little research had been conducted, and to the best 

of our knowledge, no efforts for quantification existed previous to this one.  

We identified metrics related to each of the proposed characteristics. To quantify 

visibility, we studied the concepts of probability of attack manifestations, and the 
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quality of the data before entering the detection engine. We empirically applied the 

proposed metrics for visibility on filesystem data. The data required for the evaluation 

was collected over a period of 24 days and contained all system calls created as part 

of a SSH compromise. We studied these results to quantify the probability of attack 

manifestation for each file on the filesystem. Then we extracted a set of attack 

evidences (e.g., password modification) and applied the proposed metrics to evaluate 

the quality of each file to detect the attack evidence. We successfully identified the 

most relevant files to audit for HIDSs based on filesystem data. Our study 

demonstrated that both the probability of manifestation and quantification of data 

quality are necessary to provide a full assessment of visibility. 

The probability of subversion was introduced as a metric to quantify attack resiliency. 

Quantifying attack resiliency was difficult, as data on attempts to modify a HIDS 

during the course of an attack is rarely available. To overcome this limitation, we 

suggested estimating how often these subversion attempts will be successful. We 

restricted the scope of our research to attacks directed towards the HIDS performed as 

part of an attack towards the system supervised. We introduced the independency 

score, based on the cost of subverting sections of the HIDS. The independency score 

was then used to estimate the probability of subversion. We showed the feasibility of 

this approach by evaluating the independency score for the Samhain HIDS. Our 

results showed that the independency score was very low, making it very simple for 

the attacker to subvert the HIDS. Thus, the empirical results confirmed the necessity 

of considering attack resiliency while evaluating HIDSs. 
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We found that the quantification of transparency lacked standardization. Previous 

evaluations of transparency [PZC+96] were composed by a set of performance tests, 

disregarding the type of resources shared between the system supervised and the 

HIDS. We proposed the percentage of performance reduction as the metric to 

quantify transparency. Then, we studied the use of performance micro benchmarks 

[Bon, Ioz] and macro benchmarks [Htt, Pos] to evaluate the transparency of the 

HIDS. We found that micro benchmarks provide results that are more accurate, but 

are more difficult to apply practically. This is because more than one micro 

benchmark might be necessary for a successful evaluation, and therefore the evaluator 

needs a deeper understanding of the HIDS functionality to pick the right set of micro 

benchmarks. Macro benchmarks, on the other hand, provide a simpler method to 

evaluate transparency, but have to be configured properly to provide a good 

evaluation. Then, we evaluated the transparency of Samhain [Sam] and Osiris [Osi], 

two HIDSs based on filesystem data. The evaluation was performed using the 

Postmark [Pos] macro benchmarks with different configurations. The evaluation 

showed better transparency results of Samhain over Osiris, but also that modifications 

in configuring the macro benchmark affected the evaluation. 

We studied approaches to evaluate efficiency. We quantified efficiency using timing 

measurements. We introduced a set of timings that are useful to measure the overall 

efficiency. In particular, we showed empirically that the efficiency of the system may 

be modified by the type of data collected. This is because a delay may exist between 

the start of an attack and the manifestation of the attack in the data collected. The 

experiments were based on studying the time for an attack to create activity on a set 
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of files on a filesystem. After this, we evaluated efficiency for both Osiris and 

Samhain. The results showed that Samhain takes ten times more time to provide the 

results than Osiris, while perform the same type of detection. This shows the 

importance of evaluating efficiency to understand the benefits of a HIDS. 

A major problem while comparing several metrics is to decide between two HIDS 

when one is superior while evaluating a characteristics, but inferior while evaluating 

another. As multiple metrics were proposed, we provided a framework to create a 

composite metrics. The proposed framework is based on a cost framework. We 

showed that a link exists between the operational costs of the HIDS, related to 

efficiency and transparency, and the operational cost defined by previous cost 

frameworks. We used this relationship to integrate efficiency and transparency into 

the cost framework. We then showed how to integrate the metrics defined for attack 

resiliency and visibility as part of the total calculation for probability of true positives. 

We provided two examples of integrating characteristics for evaluation. In the first 

example, we demonstrated how the optimal operational point of a HIDS is modified 

by the independency score. In the second, we presented a tool to integrate the 

evaluation of visibility and detection accuracy. 

Future Work 

This work presented new evaluation methods for HIDSs, demonstrating the 

importance and feasibility of including additional characteristics for evaluation. 

However, this study is only a starting point to better characterize the functioning of a 

HIDS through evaluation.  
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The study of visibility is promising for a better understanding of the role of data in 

intrusion detection. We empirically quantified a set of data, the filesystem, but the 

research community will benefit from the quantification of visibility for other data 

sets, like system calls or memory. In particular, systems based on data collected from 

the host, and then having the data sent to a server for remote verification [Gro03a] are 

gaining acceptance to improve the security of internal networks. Completing the 

study of visibility will provide information to optimize the type of data collected 

while creating these systems.  

As part of the study of attack resiliency, we presented a set of approaches that may 

improve the independency score of a system. However, the exact impact of these 

approaches (e.g., virtualization [Lit05, GPMB03] in improving the independency 

score of the HIDS featuring these improvements is unknown. In this respect, a 

practical evaluation is necessary to evaluate attack resiliency for HIDSs implementing 

these improvements. 

While evaluating transparency, the performance tests showed that configuration 

decisions have an effect on the results. Moreover, as several types of macro 

benchmarks and micro benchmarks exist, selecting the right tool for evaluation needs 

to be the subject of further study. It will be beneficial to perform an analysis of 

existing macro benchmarks and micro benchmarks, considering specifically what 

type of system resources are evaluated, and how modifying the configuration will 

affect the evaluation of the performance overhead. 

We proposed the use of mapping functions to link efficiency and transparency to the 

operation cost of the HIDSs. These mapping functions may vary depending on 
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environments (e.g., type of system supervised). Similar environments will have 

similar mapping functions, and hence further research could be performed exploring 

methods to create more realistic curves based on empirical data. As an example, an 

empirical study on how a time delay on detecting an intrusion will reflect into 

financial losses for different types of environment will provide more realistic 

mapping functions to link efficiency with cost. Similarly, an empirical study on how 

performance overhead affects different systems (e.g., lost productivity in a desktop, 

lost connectivity in a webserver) will help defining the mapping curves for 

transparency. 

The evaluation of each characteristic independently is a time consuming process. 

However, most of the proposed evaluations for each characteristic can be automated. 

We showed initial work in that direction with the implementation of the HIDS 

stimulator. Future work may lead to the implementation of the proper tools to 

automate the measurement of the proposed characteristics, and to automate the 

calculations required to integrate the measurements into a cost framework. As an 

example, the tool could provide the user with a choice between different 

environments and different types of HIDSs. The evaluation suite will perform the 

required calculations depending on the information provided by the user (e.g., 

selecting the right macro benchmark, choosing a suitable mapping function).  
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Appendices 

Appendix A: Filesystem Visibility Metrics 

A.1Files Related To Password Modification Evidence 

FILE NAME PM Activity IG PPV NPV 

/usr/lib/libgmodule-2.0.so.0 0.515528 read 1.000 1.000 1.000 

/usr/lib/libgobject-2.0.so.0 0.515528 read 1.000 1.000 1.000 

/usr/lib/libglib-2.0.so.0 0.515528 read 1.000 1.000 1.000 

/lib/libpam.so.0 0.515528 read 1.000 1.000 1.000 

/usr/lib/libuser.so.1 0.515528 read 1.000 1.000 1.000 

/lib/libpam_misc.so.0 0.515528 read 1.000 1.000 1.000 

/lib/security/../../lib/security/pam_succeed_if.so 0.512422 read 0.973 1.000 0.994 

/lib/security/../../lib/security/pam_permit.so 0.512422 read 0.973 1.000 0.994 

/etc/pam.d/other 0.512422 read 0.973 1.000 0.994 

/etc/pam.d/passwd 0.512422 read 0.973 1.000 0.994 

/lib/security/../../lib/security/pam_unix.so 0.512422 read 0.973 1.000 0.994 

/usr/lib/libcrack.so.2 0.512422 read 0.973 1.000 0.994 

/lib/security/../../lib/security/pam_env.so 0.512422 read 0.973 1.000 0.994 

/etc/pam.d/system-auth 0.512422 read 0.973 1.000 0.994 

/lib/security/pam_stack.so 0.512422 read 0.973 1.000 0.994 

/lib/security/../../lib/security/pam_limits.so 0.512422 read 0.973 1.000 0.994 

/lib/security/../../lib/security/pam_deny.so 0.512422 read 0.973 1.000 0.994 

/lib/security/../../lib/security/pam_cracklib.so 0.512422 read 0.973 1.000 0.994 

/usr/lib/libpopt.so.0 0.518634 read 0.973 0.994 1.000 
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/etc/shadow 0.521739 read 0.951 0.988 1.000 

/etc/nshadow 0.5 write 0.900 1.000 0.969 

/usr/lib/cracklib_dict.pwd 0.5 read 0.900 1.000 0.969 

/usr/lib/cracklib_dict.pwi 0.5 read 0.900 1.000 0.969 

/usr/lib/cracklib_dict.hwm 0.5 read 0.900 1.000 0.969 

/lib/libnsl.so.1 0.568323 read 0.710 0.902 0.993 

/lib/libcrypt.so.1 0.596273 read 0.659 0.865 1.000 

/etc/security/opasswd 0.413043 read 0.608 1.000 0.825 

/etc/localtime 0.897516 read 0.095 0.571 0.970 

/etc/shadow- 0.021739 write 0.021 1.000 0.495 

/etc/passwd- 0.021739 write 0.021 1.000 0.495 

/etc/login.defs 0.021739 read 0.021 1.000 0.495 

/etc/skel/.bash_profile 0.018634 write 0.018 1.000 0.494 

/etc/gshadow 0.018634 write 0.018 1.000 0.494 

/etc/default/useradd 0.018634 write 0.018 1.000 0.494 

/etc/skel/.zshrc 0.018634 write 0.018 1.000 0.494 

/etc/skel/.bash_logout 0.018634 write 0.018 1.000 0.494 

/etc/skel/.bashrc 0.018634 write 0.018 1.000 0.494 

/etc/shadow+ 0.018634 write 0.018 1.000 0.494 

/etc/passwd+ 0.018634 write 0.018 1.000 0.494 

/bash/.bashrc 0.009317 write 0.009 1.000 0.489 

/bash/.zshrc 0.009317 write 0.009 1.000 0.489 

/bash/.bash_logout 0.009317 write 0.009 1.000 0.489 

/bash/.bash_profile 0.009317 write 0.009 1.000 0.489 

/home/zidan/.zshrc 0.006211 write 0.006 1.000 0.488 

/home/zidan/.bashrc 0.006211 write 0.006 1.000 0.488 
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/home/zidan/.bash_logout 0.006211 write 0.006 1.000 0.488 

/home/zidan/.bash_profile 0.006211 write 0.006 1.000 0.488 

/home/admin/.zshrc 0.003106 write 0.003 1.000 0.486 

/etc/group.6755 0.003106 write 0.003 1.000 0.486 

/etc/passwd 0.003106 write 0.003 1.000 0.486 

/etc/group.4831 0.003106 write 0.003 1.000 0.486 

/etc/shadow.6455 0.003106 write 0.003 1.000 0.486 

/etc/gshadow.6455 0.003106 write 0.003 1.000 0.486 

/etc/passwd.5988 0.003106 write 0.003 1.000 0.486 

/etc/passwd.5989 0.003106 write 0.003 1.000 0.486 

/home/admin/.bash_profile 0.003106 write 0.003 1.000 0.486 

/proc/self/attr/fscreate 0.003106 write 0.003 1.000 0.486 

/etc/shadow.5988 0.003106 write 0.003 1.000 0.486 

/etc/shadow.5989 0.003106 write 0.003 1.000 0.486 

/etc/gshadow.5988 0.003106 write 0.003 1.000 0.486 

/etc/gshadow.5989 0.003106 write 0.003 1.000 0.486 

/etc/shadow.10687 0.003106 write 0.003 1.000 0.486 

/etc/passwd.4831 0.003106 write 0.003 1.000 0.486 

/etc/shadow.10608 0.003106 write 0.003 1.000 0.486 

/etc/passwd.6755 0.003106 write 0.003 1.000 0.486 

/etc/group.6455 0.003106 write 0.003 1.000 0.486 

/home/admin/.bash_logout 0.003106 write 0.003 1.000 0.486 

/etc/shadow 0.003106 write 0.003 1.000 0.486 

/etc/shadow.4831 0.003106 write 0.003 1.000 0.486 

/etc/group.10687 0.003106 write 0.003 1.000 0.486 

/etc/passwd.10687 0.003106 write 0.003 1.000 0.486 
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/etc/shadow.6755 0.003106 write 0.003 1.000 0.486 

/etc/gshadow.10687 0.003106 write 0.003 1.000 0.486 

/etc/gshadow.6755 0.003106 write 0.003 1.000 0.486 

/etc/group.10608 0.003106 write 0.003 1.000 0.486 

/etc/group.5988 0.003106 write 0.003 1.000 0.486 

/etc/group.5989 0.003106 write 0.003 1.000 0.486 

/etc/passwd.10608 0.003106 write 0.003 1.000 0.486 

/etc/gshadow.4831 0.003106 write 0.003 1.000 0.486 

/etc/gshadow.10608 0.003106 write 0.003 1.000 0.486 

/home/admin/.bashrc 0.003106 write 0.003 1.000 0.486 

/etc/passwd.6455 0.003106 write 0.003 1.000 0.486 

/tmp/own.so 0.003106 read 0.003 1.000 0.486 

/usr/lib/libuser/libuser_files.so 0.003106 read 0.003 1.000 0.486 

/etc/libuser.conf 0.003106 read 0.003 1.000 0.486 

/usr/lib/libuser/libuser_shadow.so 0.003106 read 0.003 1.000 0.486 

/lib/security/$ISA/pam_limits.so 0.003106 read 0.003 1.000 0.486 

/proc/sys/kernel/ngroups_max 0.034161 write 0.002 0.636 0.489 

/var/run/utmp 0.664596 read 0.000 0.126 0.257 

/etc/group 0.990683 read 0.000 0.043 0.009 

/usr/share/locale/locale.alias 0.549689 read 0.000 0.034 0.301 

/etc/passwd 1 write 0.000 0.516 0.000 

/lib/libselinux.so.1 1 read 0.000 0.516 0.000 

/proc/filesystems 1 read 0.000 0.516 0.000 

/lib/libnss_files.so.2 1 read 0.000 0.516 0.000 

/proc/mounts 1 read 0.000 0.516 0.000 

/lib/libdl.so.2 1 read 0.000 0.516 0.000 
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/etc/nsswitch.conf 1 read 0.000 0.516 0.000 

/etc/selinux/config 1 read 0.000 0.516 0.000 

/lib/tls/libc.so.6 1 read 0.000 0.516 0.000 

A.2 Files Related To Download Evidence 

FILE PM Activity IG PPV NPV 

/etc/wgetrc 0.375776 read 0.831 1.000 0.955 

/usr/lib/libk5crypto.so.3 0.437888 read 0.822 0.922 1.000 

/usr/lib/libgssapi_krb5.so.2 0.437888 read 0.822 0.922 1.000 

/usr/lib/libkrb5.so.3 0.437888 read 0.822 0.922 1.000 

/lib/libcom_err.so.2 0.440994 read 0.811 0.915 1.000 

/lib/libresolv.so.2 0.444099 read 0.799 0.909 1.000 

/lib/libssl.so.4 0.391304 read 0.764 0.968 0.959 

/lib/libnss_dns.so.2 0.397516 read 0.764 0.961 0.964 

/lib/libcrypto.so.4 0.428571 read 0.724 0.913 0.978 

/etc/resolv.conf 0.406832 read 0.723 0.939 0.963 

/usr/lib/libz.so.1 0.431677 read 0.713 0.906 0.978 

/etc/hosts 0.413043 read 0.699 0.925 0.963 

/lib/tls/librt.so.1 0.531056 read 0.367 0.708 0.940 

/lib/tls/libpthread.so.0 0.537267 read 0.357 0.699 0.940 

/usr/share/locale/locale.alias 0.549689 read 0.352 0.689 0.945 

sendq.tgz 0.055901 write 0.079 1.000 0.632 

/usr/lib/libkrb4.so.2 0.040373 read 0.038 0.923 0.618 

/usr/lib/libdes425.so.3 0.040373 read 0.038 0.923 0.618 

boti.zip 0.021739 write 0.030 1.000 0.610 

neo.tgz 0.021739 write 0.030 1.000 0.610 
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udp.pl 0.015528 write 0.021 1.000 0.606 

/home/admin/.netrc 0.012422 read 0.017 1.000 0.604 

doki.tgz 0.012422 write 0.017 1.000 0.604 

psyBETA.tgz 0.012422 write 0.017 1.000 0.604 

bot.tgz 0.012422 write 0.017 1.000 0.604 

psybnc.tgz 0.012422 write 0.017 1.000 0.604 

/usr/lib/libidn.so.11 0.009317 read 0.013 1.000 0.602 

/usr/lib/libcurl.so.3 0.009317 read 0.013 1.000 0.602 

sshII.tgz 0.009317 write 0.013 1.000 0.602 

playerz.tar 0.009317 write 0.013 1.000 0.602 

Adi.tgz 0.009317 write 0.013 1.000 0.602 

robot.tar 0.006211 write 0.008 1.000 0.600 

psy.tgz 0.006211 write 0.008 1.000 0.600 

Unreal3.2.5.tar.gz 0.006211 write 0.008 1.000 0.600 

a3 0.006211 write 0.008 1.000 0.600 

p.tgz 0.006211 write 0.008 1.000 0.600 

teambot2.tar.gz 0.006211 write 0.008 1.000 0.600 

sniff.tar.gz 0.006211 write 0.008 1.000 0.600 

all.tar 0.006211 write 0.008 1.000 0.600 

b3 0.006211 write 0.008 1.000 0.600 

/lib/libutil.so.1 0.10559 read 0.006 0.529 0.611 

/home/mysql/.netrc 0.003106 read 0.004 1.000 0.598 

/var/log/trans/dorothy_120213.log.tgz 0.003106 read 0.004 1.000 0.598 

/var/log/trans/wtmp_120213 0.003106 read 0.004 1.000 0.598 

/var/log/trans/sshd_120212.log.tgz 0.003106 read 0.004 1.000 0.598 

john.tar 0.003106 write 0.004 1.000 0.598 
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88.tgz 0.003106 write 0.004 1.000 0.598 

psyBETA.tgz 0.003106 write 0.004 1.000 0.598 

rai.tar.gz 0.003106 write 0.004 1.000 0.598 

scan.tgz 0.003106 write 0.004 1.000 0.598 

2k.tar.gz 0.003106 write 0.004 1.000 0.598 

pico.tgz 0.003106 write 0.004 1.000 0.598 

botteam3.tar.gz 0.003106 write 0.004 1.000 0.598 

john.tar.gz 0.003106 write 0.004 1.000 0.598 

psybnc-linux.tar 0.003106 write 0.004 1.000 0.598 

boti.tar 0.003106 write 0.004 1.000 0.598 

local.tar.gz 0.003106 write 0.004 1.000 0.598 

botteam2.tar.gz 0.003106 write 0.004 1.000 0.598 

mirkforce.tar.tar 0.003106 write 0.004 1.000 0.598 

teambot.tar.gz 0.003106 write 0.004 1.000 0.598 

/home/admin/vteam.zip 0.003106 write 0.004 1.000 0.598 

cristi.tgz 0.003106 write 0.004 1.000 0.598 

hm-udp.pl 0.003106 write 0.004 1.000 0.598 

index.html 0.003106 write 0.004 1.000 0.598 

reales.tgz 0.003106 write 0.004 1.000 0.598 

holy 0.003106 write 0.004 1.000 0.598 

je.tgz 0.003106 write 0.004 1.000 0.598 

deep.tar.tgz 0.003106 write 0.004 1.000 0.598 

bash.tgz 0.003106 write 0.004 1.000 0.598 

bogdaneRk.tar.gz 0.003106 write 0.004 1.000 0.598 

acycmech.tar.gz 0.003106 write 0.004 1.000 0.598 

dare-mech2.tar 0.003106 write 0.004 1.000 0.598 
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shv.tgz 0.003106 write 0.004 1.000 0.598 

26.tgz 0.003106 write 0.004 1.000 0.598 

putty.exe 0.003106 write 0.004 1.000 0.598 

psybnc-linux.tar.gz 0.003106 write 0.004 1.000 0.598 

psyBNC-2.3.2-7.tar.gz 0.003106 write 0.004 1.000 0.598 

web.tgz 0.003106 write 0.004 1.000 0.598 

/home/admin/access.tar 0.003106 write 0.004 1.000 0.598 

andra.txt 0.003106 write 0.004 1.000 0.598 

teambot1.tar.gz 0.003106 write 0.004 1.000 0.598 

alecs.tgz 0.003106 write 0.004 1.000 0.598 

axe.tgz 0.003106 write 0.004 1.000 0.598 

sir.tgz 0.003106 write 0.004 1.000 0.598 

hienaXmech.tgz 0.003106 write 0.004 1.000 0.598 

udp.txt 0.003106 write 0.004 1.000 0.598 

flood-udp.tar 0.003106 write 0.004 1.000 0.598 

2.6.jpg 0.003106 write 0.004 1.000 0.598 

flood.tar.gz 0.003106 write 0.004 1.000 0.598 

/etc/localtime 0.897516 read 0.004 0.415 0.697 

/lib/tls/libc.so.6 1 read 0.000 0.404 0.000 

/lib/libselinux.so.1 1 read 0.000 0.030 0.000 

/lib/libnss_files.so.2 1 read 0.000 0.400 0.000 

/lib/libnsl.so.1 0.568323 read 0.000 0.033 0.108 

/lib/libcrypt.so.1 0.596273 read 0.000 0.094 0.138 

/etc/host.conf 0.086957 read 0.000 0.321 0.588 

/etc/passwd 1 read 0.000 0.086 0.000 

/etc/services 0.096273 read 0.000 0.387 0.595 
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/dev/tty 0.031056 read 0.000 0.400 0.596 

/proc/mounts 1 read 0.000 0.030 0.000 

/lib/libdl.so.2 1 read 0.000 0.396 0.000 

/etc/nsswitch.conf 1 read 0.000 0.400 0.000 

/var/run/utmp 0.664596 read 0.000 0.086 0.353 

/etc/selinux/config 1 read 0.000 0.030 0.000 

psybnc.conf 0.015528 write 0.000 0.200 0.593 

A.3 Files Related To Reconnaissance Evidence 

FILE PM Activity IG PPV NPV 

/proc/x/stat 0.683230 read 0.655 1.000 0.725 

/proc/x/cmdline 0.683230 read 0.655 1.000 0.699 

/proc/uptime 0.711180 read 0.454 0.961 0.699 

/proc/stat 0.711180 read 0.454 0.961 0.684 

/lib/libproc-3.2.3.so 0.704969 read 0.440 0.960 0.349 

/proc/cpuinfo 0.341615 read 0.210 1.000 0.487 

/proc/loadavg 0.636646 read 0.195 0.917 0.329 

/proc/x/status 0.301242 read 0.179 1.000 0.315 

/proc/tty/drivers 0.270186 read 0.157 1.000 0.315 

/proc/sys/kernel/pid_max 0.270186 read 0.157 1.000 0.315 

/proc/self/stat 0.270186 read 0.157 1.000 0.444 

/var/run/utmp 0.664596 read 0.117 0.879 0.238 

/etc/issue 0.034161 read 0.017 1.000 0.237 

/proc/x/environ 0.031056 read 0.015 1.000 0.237 

/proc/x/statm 0.031056 read 0.015 1.000 0.237 

/lib/libproc.so.2.0.6 0.031056 read 0.015 1.000 0.236 
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/usr/include/proc.h 0.027950 read 0.014 1.000 0.236 

/usr/include/hosts.h 0.027950 read 0.014 1.000 0.236 

.bash_history 0.027950 read 0.014 1.000 0.234 

/var/log/wtmp 0.018634 read 0.009 1.000 0.231 

raw.set 0.006211 read 0.003 1.000 0.231 

mech.session 0.006211 read 0.003 1.000 0.231 

/usr/lib/+c0d.init 0.006211 read 0.003 1.000 0.231 

/usr/lib/named/named.sn 0.006211 read 0.003 1.000 0.231 

/tmp/info_tmp 0.006211 read 0.003 1.000 0.231 

ssh.log 0.006211 read 0.003 1.000 0.231 

/tmp/own.so 0.003106 read 0.002 1.000 0.231 

/dev/shm/shv5/bin/.sh/shdcf2 0.003106 read 0.002 1.000 0.231 

m.lev 0.003106 read 0.002 1.000 0.231 

vhosts 0.003106 read 0.002 1.000 0.231 

/tmp/.stats 0.003106 read 0.002 1.000 0.231 

/tmp/.init2 0.003106 read 0.002 1.000 0.231 

/usr/local/games/.kde/bin/.sh/shdcf2 0.003106 read 0.002 1.000 0.231 

82.146.pscan.22 0.003106 read 0.002 1.000 0.231 

ARSEX3 0.003106 read 0.002 1.000 0.231 

58.10.pscan.22 0.003106 read 0.002 1.000 0.231 

/usr/include/prchead.h 0.003106 read 0.002 1.000 0.231 

Neo.seen 0.003106 read 0.002 1.000 0.231 

/etc/inittab 0.003106 read 0.002 1.000 0.231 

m.ses 0.003106 read 0.002 1.000 0.231 

m.set 0.003106 read 0.002 1.000 0.231 

/tmp/.procs 0.003106 read 0.002 1.000 0.231 
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vuln.txt 0.003106 read 0.002 1.000 0.231 

128.8.pscan.22 0.003106 read 0.002 1.000 0.231 

ports 0.003106 read 0.002 1.000 0.231 

logo 0.003106 read 0.002 1.000 0.003 

/etc/group 0.990683 read 0.000 0.120 0.126 

/etc/shadow 0.521739 read 0.000 0.049 0.000 

/proc/meminfo 1.000000 read 0.000 0.567 0.121 

/usr/share/locale/locale.alias 0.549689 read 0.000 0.129 0.168 

unix1.users 0.077640 read 0.000 0.040 0.157 

/etc/hosts 0.413043 read 0.000 0.314 0.000 

/lib/libnss_files.so.2 1.000000 read 0.000 0.720 0.000 

/etc/nsswitch.conf 1.000000 read 0.000 0.720 0.000 

/etc/passwd 1.000000 read 0.000 0.722 0.000 

/etc/mtab 1.000000 read 0.000 0.747 0.114 

/etc/localtime 0.897516 read 0.000 0.740 0.226 

mech.set 0.009317 read 0.000 0.333 0.228 

/etc/rc.d/rc.sysinit 0.006211 read 0.000 0.500 0 

/lib/tls/libc.so.6 1.000000 read 0.000 0.770 0.725 
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