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The boron isotopic composition measured in marine carbonates is considered 

to be a tracer of seawater pH. However, an accurate application of this proxy has been 

hampered by our lack of intimate understanding of chemical kinetics and 

thermodynamic isotope exchange between the two dominant boron-bearing species in 

seawater: boric acid B(OH)3
o and borate ions B(OH)4

-, as well as their subsequent 

partitioning into a carbonate lattice.  In this dissertation I have taken on a task of a 

systematic empirical re-evaluation of the fundamental parameters and assumptions on 

which the boron isotope paleo-pH proxy is based. As a result of this research 

strikingly different values of the boron isotope exchange constant in solution 

(Klochko et al., 2006) and boron speciation and partitioning in carbonates (Klochko 

et al., 2009) were determined, suggesting that the most parameters and assumptions 

that were believed to be previously constrained and have been widely applied to the 

δ11B-pH reconstructions were incorrect. 

  



 Recognizing that both biological and inorganic processes may potentially 

affect boron speciation and isotopic composition in carbonates, to isolate purely 

inorganic effects on the boron isotope co-precipitation with carbonates, we have 

designed a series of pH-controlled δ11B calibration experiments of inorganic calcite 

and inorganic aragonite.  Results to date reveal that precipitates from our experiments 

at pH = 8.7 fall exactly along the borate ion δ11B curve predicted by our empirically 

determined boron isotope fractionation factor (Byrne et al., 2005; Klochko et al., 

2006). 

 Extending these experiments to wider range of pH conditions will provide the 

necessary inorganic baseline for paleo-studies of inorganic carbonate and future 

investigations of the purely biological effects on the boron isotope distributions in 

carbonates. 
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CHAPTER 1 - INTRODUCTION AND HISTORICAL BACKGROUND 

1.1 Atmospheric CO2 and climate 

Over the past several decades there has been growing concern over the 

increase of anthropogenic greenhouse gases – like CO2 – in Earth’s atmosphere, and 

their potential influence on our current and future climate.  The yearly increase in 

atmospheric pCO2 concentration will inevitably change seawater carbonate chemistry 

as more and more of this soluble gas is taken up by the surface ocean.  If atmospheric 

pCO2 continues to rise at the present rate, it is expected that surface ocean 

CO2 concentrations will increase 3-fold relative to preindustrial values by the end of 

this century (IPCC, 2001).  Such an increase would cause surface ocean pH to drop 

by 0.35 units, which would overwhelm the ocean’s neutralizing capacity (Feely et al., 

2004) and have devastating effects on marine ecosystems, especially coral reefs and 

other calcifying organisms.  

The keys to understanding Earth’s current and future climate may be hidden in 

ancient records of global change.  Unfortunately, detailed empirical records of 

climate and environment have been kept only for the past few decades and then only 

for certain parts of the globe.  Our most convincing record of globally averaged pCO2 

changes in the past comes from ice cores, which only reach back as far as ~420,000 

years (Petit et al., 1999) (Fig.1.1).  This semi-empirical record shows large cyclic 

fluctuations in pCO2 abundances over the Pleistocene glacial cycles.  While the 

driving forces behind these the rapid greenhouse gas variations remain poorly 
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Figure 1.1 – The history of atmospheric pCO2 over the past 420,000 years as 
recorded by the gas content in the Vostok ice core from Antarctica (Petit et al., 1999). 
The ratio of deuterium to hydrogen in ice (expressed as the term δD) provides a 
record of air temperature over Antarctica, with more negative δD values 
corresponding to colder conditions. The history of global ice volume based on benthic 
foraminiferal oxygen isotope data (δ18O) from deep sea sediment cores (Imbrie et al., 
1989; McIntyre et al., 1989) is plotted as relative sea level, with more positive values 
corresponding to sea level minima and peaks in continental ice volume; with a full 
glacial/interglacial amplitude for sea level change of about 120 m (Fairbanks, 1989). 
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understood (Broeker and Denton, 1990; Sigman and Boyle, 2000) there is a 

remarkable agreement between the ice core record and other proxies that record 

changes in temperature and ice volume (i.e. δD and δ18O) (Fig.1.1), suggesting that 

CO2 plays an important role in the Earth’s oscillating climate. 

For climatically sensitive monitors of even deeper time, paleoceanographers 

and climatologists are developing additional geochemical proxies, including the 

analysis of boron isotopes in marine carbonates (McIntyre et al., 1989; Vengosh et 

al., 1991; Hemming and Hanson, 1992; Imbrie et al., 1993; Petit et al., 1999; Pearson 

and Palmer, 2000; Quinn and Sampson, 2002).  If boron isotope compositions of 

marine carbonates faithfully record seawater values, these may be used in 

geochemical models to reconstruct ancient pH and pCO2 (Vengosh et al., 1991; 

Spivack et al., 1993; Gillardet and Allègre, 1995; Sanyal et al., 1995; Sanyal et al., 

1997; Palmer et al., 1998; Pearson and Palmer, 1999; 2000; Palmer and Pearson, 

2003; Hönisch and Hemming, 2005; Pelejero et al., 2005; Foster, 2008; Hönisch et 

al., 2008) assuming the sediments are well preserved and the proxy is fully calibrated.  

1.2 Atmospheric CO2 and surface ocean pH 

To understand the relationship between atmospheric CO2 abundances and 

surface ocean pH, it is critical to have a detailed understanding of ocean carbonate 

chemistry.  The reactions which regulate the amount of carbon dioxide in the Earth's 

atmosphere are complex.  One of the fundamental processes that control the 

relationship is the dissolution of the atmospheric CO2 in the surface waters (Fig. 1.2).  
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Carbon dioxide is constantly exchanged between the atmosphere and the ocean via 

equilibration of CO2 (g) and CO2 (aq): 

CO2 (g)  CO2 (aq)   
2

2 )]([
pCO

aqCOK H =    (1.1) 

This reaction is characterized by the solubility constant of CO2 in seawater (KH), 

which is controlled by Henry’s law (Zeebe and Wolf-Gladrow, 2001). 

Further, once dissolved, carbon dioxide in the ocean is speciated into aqueous 

carbon dioxide: CO2(aq), carbonic acid: H2CO3, bicarbonate: HCO3
-, and carbonate 

ion: CO3
2- (Zeebe and Wolf-Gladrow, 2001).  The distribution and relative 

abundances of these species is related to pH of the solution and is controlled by a 

series of equilibrium reactions with appropriate constants (Fig. 1.2): 

CO2(aq) + H2O  H2CO3  
]OH)][aq(CO[

]COH[
K

22

32
0 =   (1.2) 

H2CO3  HCO3
- + H+  

]COH[
]H][HCO[

K
32

3
1

+−

=    (1.3) 

HCO3
- + H+  CO3

2- + 2H+  
]HCO[

]H][CO[
K

3

2
3

2 −

+−

=    (1.4) 

Constants KH, K0, K1 and K2 are factors of temperature, pressure and salinity of the 

solution.  Stoichiometric equilibrium constants K1 and K2 are referred to as first and 

second carbonic acid dissociation constants.  The concentration of the true carbonic 

acid H2CO3 in seawater is negligible compared to CO2(aq) (< 0.3 %) (Zeebe and 

Wolf-Gladrow, 2001).   
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Figure 1.2 -  Schematic illustration of the carbonate system equilibria in the ocean. 
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Therefore, the more commonly used approach (Morse and Mackenzie, 1990) is to 

combine reactions (1.2) and (1.3) and redefine K1 (Plummer and Busenberg, 1982): 

CO2(aq) + H2O  HCO3
- + H+ 

]OH)][aq(CO[
]H][HCO[

K
22

3
1

+−

=   (1.5) 

By rearranging equations (1.1), (1.5) and (1.4) for KH, K1 and K2, respectively, it is 

possible to express surface pCO2 as a function of pH, which is summarized as: 

∑
−

++ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= 2

1

2
211

H2 CO
]H[

KK
]H[

K
KpCO     (1.6)  

where pCO2 is partial pressure of CO2 in the surface waters; pH = - log [H+]; and 

ΣCO2 = CO2(aq) +  HCO3
- + CO3

2- is defined as total dissolved inorganic carbon. 

Thus, knowledge of the surface paleo-pH allows for a paleo-reconstruction of 

the surface ocean pCO2, and subsequently of atmospheric pCO2, assuming, that 

surface ocean CO2 is in equilibrium with atmosphere and ΣCO2 is constant or known. 
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1.3 pH and δ11B of marine carbonates 

Boron isotope compositions measured in marine carbonates is a potential 

paleo-pH tool due to pH-sensitive behavior of the boron isotope system in seawater. 

If reliable, this proxy could provide an invaluable insight into the evolution of ocean 

pH throughout the Earth’s history. 

1.3.1 The boron isotope-pH proxy 

Boron is a conservative element in seawater, with total concentration of about 

4.4 *10-4 mol/kg H2O (Byrne and Kester, 1974) and a residence time of ~20 million 

years.  At this concentration, dissolved boron is characterized by two dominant 

species including trigonally coordinated B(OH)3
o (boric acid) and tetrahedrally 

coordinated B(OH)4
- (borate) (Byrne and Kester, 1974).  Distribution of these species 

in aqueous solution is strongly pH dependent, and described by the following 

reaction: 

B(OH)3
o + H2O  B(OH)4

- + H+      (1.7) 

Although there have been a number of studies attempting to estimate the 

dissociation constant for reaction (1.7), the most accurate value at 25oC and salinity 

of 35 psu is considered to be pKB
* = 8.597 (Dickson, 1990).  Thus, at pH > 8.597 

borate ions dominate, while at pH < 8.597 boric acid becomes dominant (Fig. 1.3a).  

In addition, boron has two stable isotopes, 11B and 10B, with average relative 

abundances of approximately 80% and 20%, respectively.  The equilibration of the 

boron species in solution is accompanied by the isotope exchange reaction: 

10B(OH)3
o + 11B(OH)4

-  11B(OH)3
o + 10B(OH)4

-    (1.8) 
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Figure 1.3 - (a) Distribution of two dominant aqueous boron species in seawater vs. 
pH, calculated using pKB

* = 8.597 (Dickson, 1990); (b) Boron isotopic composition 
(δ11B) of the aqueous boron species in seawater vs. pH, calculated using 11-10KB = 
1.0194 (Kakihana et al., 1977). Grey bar represents a range of published boron 
isotopic composition values measures in various modern marine carbonates. Red 
square outlines the area of interest depicted in Figs. 4-5. 
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 Boron isotope exchange between boric acid and borate in aqueous solutions 

results in 11B enrichment in boric acid relative to borate ions (Fig. 1.3b).  The 

magnitude of this enrichment is controlled by the differences in molecular 

coordination and vibrational frequencies between boron species (Urey, 1947).  Until 

recently, there was no empirical equilibrium constant available for reaction (1.8), and 

the most commonly used value has been 11-10KB = 1.0194, at 25oC (Kakihana et al., 

1977).  

 The relationship between solution pH and boron isotopic composition of 

aqueous borate ions can be summarized in the following equation (modified from 

Gillardet and Allègre, 1995): 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−×δ−δ
δ−δ

−=
−

−
− )1K(1000BKB

BB
log*pKpH

B
1011

borate
11

B
1011

sw
11

borate
11

sw
11

B   (1.9) 

where pKB
* is the boric acid dissociation constant, 11-10KB is the boron isotope 

fractionation constant between boric acid and borate, δ11Bborate is the boron isotopic 

composition of aqueous borate, and the boron isotopic composition of seawater (~ 

39.5‰).  Boron isotope ratios are referred to in terms of δ11B values, where: 

10001
)B/B(
)B/B(

B
dardtans

1011
sample

1011

sample
11 ×

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=δ  ‰    (1.10) 

The standard used in most studies is a boric acid (SRM 951) from NIST with 11B/10B 

= 4.04367 (Catanzaro et al., 1970).  

 Furthermore, it has been assumed that δ11B of marine carbonates reflects δ11B 

of seawater borate (Hemming and Hanson, 1992) (δ11Bborate = δ11Bcarb). Thus equation 

(1.9) was applied as: 



 10

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−×δ−δ
δ−δ

−=
−

−
− )1K(1000BKB

BB
log*pKpH

B
1011

carb
11

B
1011

sw
11

carb
11

sw
11

B   (1.11) 

where δ11Bcarb is the measured boron isotopic composition of a carbonate. 

 

1.3.2 Early applications 

Boron isotopes in marine carbonates were first suggested by Vengosh et al. 

(1991) to be a potential paleo-pH indicator.  That study focused on boron 

sequestration and isotope fractionation in various modern biogenic aragonitic and 

calcitic skeletons, including corals, foraminifera, ostracodes, pteropodes, gastropods 

and pelecypodes.  The boron isotopic composition of the carbonates analyzed in that 

study ranged from 14.2 to 32.2‰ (Table 1.1).  

These wide variations were initially explained by possible co-precipitation of 

different proportions of trigonal and tetrahedral species, which are isotopically 

distinct (i.e. 10B is preferentially partitioned into the tetrahedral borates, Fig. 1.3).  

Alternatively it was suggested that the range of δ11B values could also reflect 

differences in the pH of the microenvironment in which the organisms take up boron 

into their skeletons.   

Later studies, however, reported a narrower range of boron isotope 

compositions in similar modern biogenic materials (ranging from 19 to 25‰ in 

(Hemming and Hanson, 1992) and 23.3 to 27.3 in (Gillardet and Allègre, 1995)).  

Hemming and Hanson (1992) suggested that the narrower range of values was  



 11

 
 
 
 
 
 
 
Table 1.1 - Published data on boron concentration and isotopic composition 
measured in various modern marine carbonates (adapted from Pagani et al., 2005). 
 

Samples Carbonate Boron 
concentration, ppm 

δ11B range, 
‰ 

Planktonic Foraminifera    
Vengosh et al., 1991 calcite 15 ± 5 14.2-19.8 
Sanyal et al., 1995 calcite - 22.0-23.3 
Sanyal et al., 1997 calcite - 18.4 
Benthic Foraminifera    
Vengosh et al., 1991 calcite - 13.3-32.0 
Sanyal et al., 1995 calcite - 20.5-21.4 
Modern Corals    
Vengosh et al., 1991 aragonite 64 ± 11 26.7-31.9 
Hemming and Hanson, 1992 aragonite 58 ± 6 23.0-24.7 
Gaillardet and Allègre, 1995 aragonite 53 ± 4 23.5-27.0 
Hemming et al., 1998 aragonite 51 ± 2 23.9-26.2 
Other carbonates    
Hemming and Hanson, 1992 calcite 45 ± 11 20.8-23.2 
Hemming and Hanson, 1992 aragonite 31 ± 19 19.1-24.8 
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consistent with the isotopic composition of the seawater borate (at assumed modern 

seawater pH ~ 8.2) as predicted by the isotope fractionation factor of 11-10KB = 1.0194 

(Kakihana et al., 1977).  Three main conclusions were drawn from this work: 1) 

δ11Bcarb = δ11Bborate, which suggests that tetrahedral borate must be preferentially 

incorporated into the carbonate lattice; 2) there must be no vital effect during 

incorporation; and 3) boron isotopic composition measured in marine carbonates may 

be used as a paleo-pH proxy. 

 Among the large number of ancient pH and pCO2 reconstructions that 

followed (Sanyal et al., 1995; Sanyal et al., 1997; Palmer et al., 1998; Pearson and 

Palmer, 1999; 2000; Palmer and Pearson, 2003; Hönisch and Hemming, 2005; 

Pelejero et al., 2005; Foster, 2008; Hönisch et al., 2008) perhaps the most interesting 

is the reconstruction of surface ocean pH and surface pCO2 of the Western Equatorial 

Pacific ocean over the last 23,000 years (Palmer and Pearson, 2003) (Fig. 1.4).  This 

study is notable for two reasons.  First, it allowed for a test of pCO2 during the Last 

Glacial Maximum, and second, the earlier part of the record could be directly 

compared to the results obtained from the Vostok ice core spanning ~420,000 years 

back from the present day.   

Figure 1.4 shows δ11B values measured in planktonic foraminifera 

Globigerina sacculifer as well as profiles of surface water pH reconstructed from 

δ11B, and of surface pCO2 reconstructed from surface pH.  While the pCO2 values 

reconstructed from pH/δ11B reflect the overall trend obtained from the Vostok ice 

core, there are notable offsets between the two proxy measurements.  The most 

prominent of these  
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Figure 1.4 – (A) Boron isotope composition (δ11B) measured in planktonic 
foraminifera Globigerina succulifer, collected from the box core ERDC – 92, which 
was raised from Western equatorial Pacific (2o13.5’S, 156o59.9’E; 1598 m). (B) 
Surface ocean pH in the Western equatorial Pacific reconstructed from δ11B values. 
(C)Surface ocean pCO2 of the Western equatorial Pacific for the last 23,000 years, 
calculated from the reconstructed surface ocean pH values, and compared with the 
atmospheric pCO2, reconstructed from the Vostok core ice records (adopted from 
Palmer and Pearson, 2003). 
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occurs between ~13,800 and 15,600 years ago (Fig. 1.4).  The authors suggested that 

this anomaly has resulted from increased La Niña activity in the Western Pacific 

during this interval.  If this view is correct, it would require the wind-driven delivery 

of high nutrient and high CO2 waters from the Eastern Pacific to the Western 

equatorial Pacific Ocean.  These surface waters may then have become a powerful 

source of CO2 to the atmosphere, which further may have contributed to the 

termination of the Pleistocene ice age (Palmer and Pearson, 2003).  

The work of Palmer and Pearson (2003) is also notably the last pCO2 

reconstruction obtained using the boron isotope pH proxy. This is possibly due to our 

lack of understanding of variations in carbonate system parameters through time, in 

particular, ΣCO2 (total dissolved carbon) and alkalinity.  Values used in earlier 

studies assumed ΣCO2 to be equivalent to modern seawater (Palmer et al., 1998; 

Pearson and Palmer, 1999; 2000).  This approach has received serious criticism 

(Caldeira and Berner, 1999; Sundquist, 1999), however, as it is more likely that ΣCO2 

has varied widely in the past.  Alternatively, alkalinity could be used instead of ΣCO2 

for pCO2 estimates. However, there is no clear consensus on the history of alkalinity 

in the oceans either. To address this issue, Palmer and Pearson (2003) used 

alkalinity/salinity relationships (Millero et al., 1998) deduced from sea level estimates 

(Blanchon and Shaw, 1995) to estimate alkalinity values for the past 25,000 years. 
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1.4 Empirical calibration studies 

While armed only with recognition of the aqueous borate species pH-

dependant distribution, an untested theoretical isotope exchange constant 11-10KB and 

an assumption of preferential tetrahedral borate partitioning into the calcium 

carbonate, the paleo-reconstructions continued. However, the disagreement between 

δ11B values provided by the studies of modern biogenic carbonates, which grew in 

modern seawater of assumed average pH ~ 8.2, remained unresolved. Empirical and 

more reliable evidence for the pH- δ11Bcarb relationship was required. Providing such 

evidence was an ultimate goal of the several empirical calibration studies carried out 

over a range of controlled pH conditions. 

The five empirical calibration studies included biogenic calcite of two 

foraminifera species including G. sacculifer (Sanyal et al., 2001) and Orbulina 

universa (Sanyal et al., 1996)), biogenic aragonite from two coral species Acropora 

nobilis and Porites cylindrica (Hönisch et al., 2004), and inorganic calcite (Sanyal et 

al., 2000). Results of these studies are presented in Fig. 1.5. These calibration studies 

reveal that the pH of the solution does have a strong control over the boron isotopic 

composition of biogenic and inorganic carbonates.  All carbonates precipitated at 

higher pH had higher δ11B values relative to those that formed at lower pH.  

Furthermore, boron isotope compositions of these controlled precipitates fell either 

near or below the expected value for seawater borate (given an assumption from a 

theoretical – but unmeasured – isotope exchange constant: Kakihana et al., 1977), 

suggesting little to no incorporation of boric acid into the carbonate lattice.   
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Figure 1.5 – Boron isotopic composition (δ11B) of aqueous borate ion in seawater vs. 
pH, calculated using 11-10KB = 1.0194 (Kakihana et al., 1977); and the results of the 
inorganic calcite precipitation experiments (Sanyal et al., 2000), cultured Orbulina 
universa and Globigerina sacculifer foraminifera species (Sanyal et al., 1996; Sanyal 
et al., 2001) and cultured scleractinian corals Acropora nobilis and Porites cylindrica 
(Hönisch et al., 2004). The pHNBS values from (Sanyal et al., 1996, 2000, 2001) were 
recalculated to fit the seawater pH scale (pHtotal= pHNBS - 0.14) (cf. Hönisch et al., 
2004). 
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What these researchers found but did not expect, however, were values that 

fell below isotopic composition of aqueous borate represented by a curve and 

predicted by a theoretical isotope exchange constant (Kakihana et al., 1977) used in 

paleo-pH reconstructions. No known processes could explain such downward offset 

(Zeebe et al., 2003). To satisfy the mass balance of the boron isotope systematics in 

solution, the isotopic composition of a carbonate precipitated in a given solution 

should be equal or larger than the isotopic composition of borate ions in that solution. 

Carbonate δ11B values lighter than aqueous borate, which is the lowest (hence, the 

lightest) end member in the boron isotope systematics in solution, are contradictory to 

the mass balance. Hence, the “borate curve” itself is a source of the discrepancy and 

the 11-10KB value is most likely underestimated (Zeebe et al., 2003; Pagani et al., 

2005; Zeebe, 2005).  

Furthermore, boron isotope differences between the two calcitic foraminifera 

species O.universa and G.saccilifer grown under identical ambient pH conditions 

suggests that metabolic or “species” effects might be present. Similarly, δ11B 

differences between aragonite and calcite samples show that the former is 

systematically enriched in 11B, suggesting the likelihood of a mineralogical effect. 

 These inconsistencies suggest that the parameters in the pH/pCO2 proxy are 

poorly constrained.  The importance of this proxy to understanding past and future 

changes in Earth’s oceanic environment and climate thus warrants a closer 

investigation of the fundamental parameters and assumptions of the proxy, which is 

the over-arching goal of this dissertation. 
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1.5 Fundamental parameters of the δ11B-pH system 

 As described above, the δ11B/pH pH proxy depends on an accurate estimate of 

the pH-dependent distribution of two dominant borate species in aqueous solution 

(characterized by pKB
*), the magnitude of isotope exchange between boric acid and 

borate in a given solution (characterized by 11-10KB), and boron species partitioning 

into biogenic and inorganic carbonate minerals. 

1.5.1 Boric acid dissociation constant 

The boric acid dissociation constant for the reaction 

B(OH)3
o + H2O  B(OH)4

- + H+      (1.7) 

is given by the equation: 
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where pKB
* is an apparent boric acid dissociation constant, which is a function of 

ionic strength, temperature and pressure of a solution. 

The boric acid dissociation has been studied extensively under a range of 

temperatures and ionic strength solutions, including freshwater and ion-specific 

media (Dyrssen and Hansson, 1973; Byrne and Kester, 1974; Hershey et al., 1986), 

and synthetic seawater (Lyman, 1956; Hansson, 1973; Byrne and Kester, 1974; 

Dickson, 1990; Roy et al., 1993). Pressure effects on the dissociation constant have 

been evaluated (Culberson and Pytkowicz, 1968). In general, pKB
* increases with 

lower ionic strength of the solution (i.e. “pure” water), and decreases with higher 

ionic strength of the solution (i.e. seawater). In addition, pKB
* increases with 

decreasing temperature and pressure.  
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 The discrepancies between various published values for pKB
* can be attributed 

to differences in the applied pH scale.  Earlier publications (Lyman, 1956; Byrne and 

Kester, 1974; Hershey et al., 1986) applied the “NBS” pH scale, which relies on the 

use of standard buffer solutions with a low ionic strength (~0.1) relative to seawater 

(~0.65). Such differences in solution compositions make NBS standards and seawater 

samples incompatible for electrode calibration, as they would affect the electric 

potential differences between the liquid in the electrode and the sample solution. 

Moreover, specific properties of a pH electrode utilized in the experiments vary with 

different electrodes. Such data obtained using the NBS “electrode-specific” scale is 

almost impossible to compare, unless the data has been obtained using the same 

electrode and/or “NBS” buffer correction factor is applied.  

Boric acid dissociation constant values reported in other publications 

(Hansson, 1973; Dickson, 1990; Roy et al., 1993) have applied “total hydrogen” pH 

scale, which relied on the use of the “in-house” standard buffer solutions based on 

synthetic seawater. If the solution contains fluoride ions, then the “seawater” pH scale 

is applied. Currently, the commonly accepted pH scales are “total hydrogen” and 

“seawater” scales (Zeebe and Wolf-Gladrow, 2001). pKB* values reported in the 

three studies using “total hydrogen” scale (Hansson, 1973; Dickson, 1990; Roy et al., 

1993) were in very good agreement, and the data set reported by Dickson (1990) is 

considered the most thorough and accurate.  

 The differences in pH values reported using “total hydrogen” or “seawater” 

scales are negligible.  However, the differences in pH values reported using the latter 

two and “NBS” pH scale could be up 0.14 pH units.  In addition, ionic media itself as 
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well as measurement techniques employed might have even larger contribution to the 

discrepancies between various reported pKB
* datasets.  

 Potential effects of pKB
* on the δ11B-pH relationship are significant (Fig. 1.6). 

These effects manifest themselves in the shape and the position of the δ11B-pH curve. 

Therefore, careful consideration of the constant is necessary prior to its application.  

pKB
* values applied to the δ11B-pH reconstructions have varied over the history of the 

proxy. Sanyal et al. (1995) have applied pKB
* = 8.77 at 2oC and 296 atm obtained by 

Lyman (1956). Other early δ11B-pH reconstructions (Vengosh et al., 1991; Hemming 

and Hanson, 1992; Gillardet and Allègre, 1995) have used pKB
* = 8.83 at 25oC and 1 

atm. Later, the most accurate accepted value pKB
* = 8.597 at 25oC and 1 atm 

(Dickson, 1990) have been uniformly applied to the δ11B-pH relationship (Palmer and 

Pearson, 2003; Hönisch and Hemming, 2005; Pelejero et al., 2005; Klochko et al., 

2006; Foster, 2008). 
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Figure 1.6 – The sensitivity analysis of the potential influence of boric acid 
dissociation constant (pKB*) and boron isotope fractionation constant (11-10KB) on the 
δ11Bborate-pH relationship in solution. 
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1.5.2 Boron isotope fractionation constant 

The boron isotope fractionation constant 11-10KB, which characterizes boron 

isotope exchange between dominant boron species: 

10B(OH)3 + 11B(OH)4
-  11B(OH)3 + 10B(OH)4

-    (1.8) 

is the second most important parameter of the δ11B-pH relationship in aqueous 

solution, and is given by the following equation: 
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which is another notation for the boron isotope fractionation constant also commonly 

used in the literature. 

 The theoretical result 11-10KB = 1.0194 at 25oC (Kakihana et al., 1977) has 

been widely used in the paleo-pH reconstructions (Sanyal et al., 1995; Sanyal et al., 

1997; Palmer et al., 1998; Pearson and Palmer, 1999; 2000; Palmer and Pearson, 

2003; Hönisch and Hemming, 2005; Pelejero et al., 2005; Hönisch et al., 2008).  

However, the comparison of the carbonate calibration data from the culture 

experiments (Sanyal et al., 1996; Sanyal et al., 2000; Sanyal et al., 2001; Hönisch et 

al., 2004) and the fractionation curve for aqueous borate characterized by 11-10KB = 

1.0194 (Kakihana et al., 1977), suggests that the 11-10KB has been underestimated. 

More recent ab-initio calculations have supported this view and have reported a larger 

value for 11-10KB in solution ~ 1.0260 (Oi, 2000a; 2000b; Oi and Yanase, 2001) and ~ 
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1.0267 (Liu and Tossell, 2005).  Empirically constraining this constant is one of the 

central goals of this dissertation as reported in detail in Chapters 2 and 3. 

1.5.3 Boron partitioning in carbonates 

The last key parameter of the proxy is an assumption of preferential borate ion 

incorporation into the calcium carbonate structure.  This assumption has been inferred 

through various approaches.  In the early study by Palmer et al. (1987) boron 

incorporation onto clay surfaces was examined over a range of solution pH.  Both the 

boron concentration and boron isotopic composition of the clays increased with an 

increase in pH.  Furthermore, the isotopic composition of the clays fell close to that 

predicted by Kakihana et al. (1977) for seawater borate, suggesting that the charged 

tetrahedral boron species were preferentially attracted to clay surfaces, and by 

analogy to carbonate surfaces as well. 

The only previous investigation of boron coordination in modern marine 

carbonates was done by NMR spectroscopy (Sen et al., 1994). This study, however, 

reported conflicting results indicating that boron in aragonite occurs as tetrahedrally-

coordinated B(OH)4
-, while in calcite 90% of boron was in trigonal B(OH)3

o form.  

The δ11B measurements of these samples revealed a range of values between +20 and 

+25‰, which is roughly consistent with the isotopic composition of seawater borate.  

Thus, it was concluded that the mode of tetrahedral borate ion incorporation into the 

calcite structure was very different from that of aragonite, which should be 

accompanied by a subsequent change in coordination to trigonal boric acid. 
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In Chapter 4, the results of a similar NMR study (Klochko et al., 2009) on 

boron coordination in biogenic aragonite and calcite, as well as their implications for 

the δ11B-pH proxy are discussed. 

 

1.6 Proxy material 

Marine carbonates, especially scleractinian corals and planktonic foraminifera 

are very useful environmental archives.  For example, marine carbonates have been 

used as proxy material in paleo-reconstructions of temperature, ice volume, 

productivity, and respiration (Gallup et al., 1994; Quinn et al., 1996; Quinn et al., 

1998; Fallon et al., 1999; Cobb et al., 2001; Gallup et al., 2002; Quinn and Sampson, 

2002; Cobb et al., 2003; Kilbourne et al., 2004a; Kilbourne et al., 2004b). 

While the modern seawater total boron concentration is around 4.8 ppm, the 

boron concentrations in marine carbonates analyzed to date are relatively high and 

range from 40 to 100 ppm, suggesting that marine calcification could be a substantial 

sink for boron.  Relatively high boron abundances in carbonates combined with its 

long residence time of about 20 million years makes the boron system especially 

attractive for ocean geochemical studies. However, understanding of boron 

partitioning from the seawater reservoir into marine carbonates is complicated by 

metabolic “vital” effects, which remain poorly understood. 
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1.6.1 Metabolic considerations 

 Modern oceanic surface waters (water depth of a few hundred meters or less) 

are supersaturated with respect to calcite and aragonite, yet direct precipitation of 

inorganic calcium carbonate in the modern surface oceans is a rare phenomenon 

(Morse and Mackenzie, 1990).  It has been suggested that various elements or ions, 

such as: magnesium, phosphates and dissolved organic compounds, make surface 

waters unfavorable for carbonate precipitation by inhibiting the formation of CaCO3 

nuclei (Berner, 1975; 1978; Mucci, 1986; Morse and Mackenzie, 1990).  

The bulk of marine calcium carbonate is produced by calcifying organisms, 

which manage to initiate calcification via the manipulation of seawater chemistry in 

order to build their skeletons.  The strategies employed by these organisms are 

extremely complex and hence are poorly understood. The simplified chemical 

reaction of calcification is represented by: 

Ca2+ + CO2 + H2O  CaCO3 + 2H+       (1.15) 

To overcome the inhibitions, marine calcifiers have two options: to remove 

the inhibiting ions and/or increase the CaCO3 saturation state of the fluid. One thing 

is certain that the first step in both organisms is occurring via this seawater isolation, 

where corals and foraminifera are able to control chemistry of the calcifying fluid, 

concentrate necessary ions and actively remove ions that inhibit CaCO3 growth.  

Most planktonic foraminifera produce low-Mg calcite. Some models suggest 

that seawater modification in foraminifera is controlled through initial seawater 

vacuolization (Erez, 2003). Then, in order to enhance calcification, foraminifera 

possibly remove Mg2+ and H+ ions from the calcifying fluid. Removal of Mg2+ 
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appears to be very energetically inefficient (Zeebe and Sanyal, 2002). Therefore the 

question of how foraminifera result in low-Mg calcite remains unanswered. On the 

other hand, it was shown that H+ removal could be a very advantageous process in 

foraminifera (Zeebe and Sanyal, 2002). Photosynthesis of symbiotic algae in 

foraminifera assists in removing H+ from the calcifying fluid. Removal of the protons 

from the solution ultimately increases the pH of the calcifying fluid, thus shifting 

reaction (1.15) to the right towards increased calcification.  Calcification itself works 

towards reducing pH in isolated solution chambers; therefore the cycle of fluid 

modification has to be constant to maintain chemistry favorable for CaCO3 formation.  

The study had shown pH increases of about 1.7 units, which correspond to ~13 fold 

increase in CO3
2- concentration (Zeebe and Sanyal, 2002).  

Jorgensen et al. (1985) succeeded in recording pH changes within the 

planktonic foraminifera G. sacculifer using micro-electrodes, and they discovered 

that increases in pH of the calcifying fluid of up to 0.6 pH units are possible. 

However, the pH increase enhanced by photosynthesis in the calcification space 

would be counteracted by respiration in dark conditions. 

Scleractinian corals excrete aragonite. Corals have several chambers for the 

water to pass through. It is believed that in corals, the enzyme Ca2+ - ATPase plays an 

important role in the calcification mechanism. In corals, this enzyme has a dual 

function:  to transport Ca2+ ions to the site of calcification, at the same time removes 

protons away from it, thus shifting the reaction (1.15) towards calcification.  

Evidence of such processes is found in a detailed study of the coral 

calcification mechanism by Al-Horani and colleagues (Al-Horani et al., 2003). In this 
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study, diurnal pH variations (light/dark conditions) of the various layers of coral 

Galaxea fascicularis, including calcifying fluid, was monitored with micro-

electrodes.  

This study proposed that Ca2+ - ATPase, present in the calicoblastic layer of a 

coral, pumps Ca2+ against its concentration gradient in exchange for protons, thereby 

increasing the saturation states of Ca2+ and CO3
2-, resulting in CaCO3 precipitation 

(see Fig. 1.7). Light triggers enzyme function, while ATP need for the reaction is 

supplied mainly from photosynthetic respiration of zooxathellae. This study found, 

that the pH of the calcifying fluid was close to 9.3 in light, while in the dark, it fell to 

8.13 (Table 1.2). Similarly, the aragonite saturation state (Ω) in calcifying fluid has 

increased from ca. 3.2 in dark to ca. 25 in light conditions compared to seawater value 

of ca. 4. 

If correct, active modification of the calcifying fluid and substantial diurnal 

pH fluctuations should have a profound effect on boron isotope distribution within the 

calcifying space, insofar as it is directly linked to the pH of the solution (see Chapter 

4).  
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Table 1.2 – Summarized table for measured calcium and pH levels in the three 
compartments of a modern coral Galaxea fascicularis and the calculated aragonite 
saturation state of the calcifying fluid under calicoblastic layer in light and dark 
conditions (from Al-Horani et al., 2003). 
 
 pH Ca2+, mM saturation state 
 light dark light dark light dark 
    
Seawater 8.2 ca. 10.0 ca. 4 
       
Polyp surface 8.49 ± 0.25 7.60 ± 0.22 9.82 ± 0.06 10.04 ± 0.06   
       
Coethelon 8.19 ± 0.20 7.61 ± 0.19 9.76 ± 0.05 9.94 ± 0.13   
       
Calcifying fluid 9.28 ± 0.03 8.13 ± 0.08 10.58 ± 0.29 10.21 ± 0.25 ca. 25 ca. 3.2 
 

 

 

 
 
 
Figure 1.7 – A conceptual model to explain the mechanism of light-enhanced 
calcification in coral Galaxea fascicularis illustrated on a simplified cross-section of 
a coral (adopted from Al-Horani et al., 2003). ATP - Adenosine Triphosphate; ADP - 
Adenosine diphosphate; Pi - inorganic Phosphate; Z – zooxathellae; Mt – 
mitochondria; hυ – photon. 
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1.7 Conclusions 

Boron isotope systematics in solution and marine biogenic carbonates holds a 

great promise for paleo-pH reconstructions.  However, the accurate application of the 

proxy to the paleo-pH reconstructions depends on our intimate understanding of the 

chemical kinetics and thermodynamic isotope exchange reactions between the two 

dominant boron-bearing species in seawater, boron partitioning in carbonate minerals, 

as well as metabolic effects in biological carbonates used as proxy material. 

 

To summarize, the application of the proxy is possible if: 

1) The boric acid dissociation (pKB
*) is known; 

2) The boron isotope fractionation constant (11-10KB) for isotope exchange 

between aqueous boron species - borate ion [B(OH)4
-] and boric acid 

[B(OH)3
o] – is known; 

3) Boron partitioning and coordination in calcium carbonates is characterized 

and constrained at any pH; 

4) Vital effects on δ11B of biogenic carbonates are absent or known. 

 

Unfortunately, the proxy has been insufficiently characterized with respect to 

all the aspects listed above. In this dissertation, I have taken on the task of 

constraining two of the four main aspects of the pH proxy, namely two fundamental 

parameters that characterize the δ11B-pH relationship: 
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1) Empirical determination of the boron isotope fractionation constant (11-10KB) 

in aqueous solution under a range of temperatures, ionic strengths, media and 

total boron concentrations (Chapters 2 and 3); 

2) Re-evaluation of the boron speciation in various modern marine carbonates by 

11B MAS NMR spectroscopy (Chapter 4). 

 

In collaboration with other colleagues (Sang-Tae Kim, George Cody, Gavin 

Foster and others), we have initiated a project on synthetic carbonate precipitation in 

controlled pH conditions to evaluate the effects of pH on boron speciation in 

carbonates and to re-evaluate the effects of pH on the concentration and boron 

isotopic composition of carbonates. The preliminary results of this study are 

presented in Chapter 5. 
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CHAPTER 2 - EXPERIMENTAL MEASUREMENT OF BORON ISOTOPE 

FRACTIONATION IN SEAWATER 

 
ABSTRACT: The boron isotopic composition of marine carbonates is considered to 

be a tracer of seawater pH. Use of this proxy benefits from an intimate understanding 

of chemical kinetics and thermodynamic isotope exchange reactions between the two 

dominant boron-bearing species in seawater: boric acid B(OH)3 and borate ion 

B(OH)4
-.  However, because of our inability to quantitatively separate these species in 

solution, the degree of boron isotope exchange has only been known through 

theoretical estimates.  In this study, we present results of a spectrophotometric 

procedure wherein the boron isotope equilibrium constant (11-10KB) is determined 

empirically as the difference in the dissociation constants of 11B(OH)3 and 10B(OH)3 

in pure water, 0.6 mol kg-1 H2O KCl and artificial seawater.  Within experimental 

uncertainty, our results show no dependence of 11-10KB on temperature, but 11-10KB at 

25oC in the pure water was statistically different than results obtained in solutions at 

high ionic strength.  11-10KB of the seawater (S = 35, BT = 0.01 mol kg-1 H2O) at 25oC 

is 1.0272 ± 0.0006. This result is significantly larger than the theoretical value used in 

numerous previous paleo-pH studies (11-10KB = 1.0194). 
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2.1 Introduction 

In aqueous solution, the equilibrium distribution of B(OH)3 and B(OH)4
- is 

known to be strongly pH dependent, such that at values higher than 8.6 borate ion 

dominates while at lower pH boric acid is the dominant species (Hershey et al., 

1986):   

B(OH)3 + H2O  B(OH)4
- + H+     (2.1) 

In modern seawater (pH = 8.2) borate ion comprises ~28.5%  of boron species 

(assuming the dissociation constant of boric acid pKB
* = 8.597 (at 25oC); (Dickson, 

1990)), representing ca. 6% of seawater alkalinity, a measure of the capacity of the 

ocean to neutralize anthropogenic CO2 and thus resist changes in pH.  Increases in 

pCO2 over the next 50 years are predicted to overwhelm the ocean’s neutralizing 

capacity (Feely et al., 2004), resulting in declining pH and potentially devastating 

effects on marine ecosystems, especially corals and other calcifying organisms in 

shallow oceanic environments.  Boron isotope measurements of coral and 

foraminiferal carbonate over the past century, and through the recent geological past 

(Vengosh et al., 1991; Hemming and Hanson, 1992; Spivack et al., 1993; Gillardet 

and Allègre, 1995; Sanyal et al., 1995; Sanyal et al., 1997; Palmer et al., 1998; 

Pearson and Palmer, 1999; 2000; Palmer and Pearson, 2003; Hönisch and Hemming, 

2005; Pelejero et al., 2005), hold the promise of charting temporal pH changes, but 

this requires quantitative estimates of isotope exchange reactions between aqueous 

species, as well as evaluation of possible of microenvironmental effects at the sites of 

calcification within organisms (Jorgensen et al., 1985; Al-Horani et al., 2003).     
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Differences in molecular coordination and vibrational frequencies between 

boron species in solution control the magnitude of isotope fractionation (α = 1/11-

10KB) (Urey, 1947).  The isotope exchange of 10B and 11B between the two species is 

described by the reaction:  

10B(OH)3 + 11B(OH)4
-  11B(OH)3 + 10B(OH)4

-     (2.2) 

with an isotopic equilibrium constant defined by: 
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In 1977, Kakihana et al. (Kakihana and Kotaka, 1977; Kakihana et al., 1977) 

provided the first theoretical estimate of the magnitude of isotope exchange between 

borate and boric acid (11-10KB = 1.0194 at 25oC), based on reduced partition function 

ratio calculations from spectroscopic data on molecular vibrations (Table 2.1). In 

spite of the fact that in a later publication with new collaborators (Oi et al., 1991) it 

was suggested that the boron isotope equilibrium constant could be much larger than 

that predicted in 1977, it is the earlier value (Kakihana et al., 1977) that has been 

consistently used in paleo-pH reconstructions. Supporting the lower value, a recent 

analysis based on experimental vibrational frequencies from various sources using 

force field modeling reported 11-10KB = 1.0176 ± 0.0002 (Sanchez-Valle et al., 2005). 

In contrast, more rigorous theoretical treatments of the spectroscopic data (Oi, 2000a; 

Oi and Yanase, 2001; Liu and Tossell, 2005) using ab initio molecular orbital theory 

have indicated significantly higher 11-10KB values (ranging from 1.0260 to 1.0267 at 

25oC) for these species.  
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Table 2.1 – Published estimates of 11-10KB in seawater. 
 

 

 
 

 

Estimates based on spectroscopic data on molecular vibrations  
Treatment (ToC) 

11-10KB  

Empirical spectra and Force Field modeling (26.8oC) (Kakihana and Kotaka, 1977; Kakihana et al., 1977) 1.0194 
Empirical spectra and Force Field modeling (26.8oC) (Sanchez-Valle et al., 2005) 1.0176(2) 
Ab-initio molecular orbital theory (25oC) (Oi, 2000a; Oi and Yanase, 2001) 1.0260 

Ab-initio molecular orbital theory (25oC) (Liu and Tossell, 2005) 1.0267 
Evaluation of all of the above treatments (Zeebe, 2005) ≥ 1.0300 

 

Estimates from adsorption and precipitation experiments Method (ToC) 11-10KB 
Boron adsorption on marine clay (25oC) (Palmer et al., 1987) 1.0330(20) 

Boron mineral precipitation (25oC) (Oi et al., 1991) 1.0395(190) 
Best fit value for boron adsorption on resin (10 and 30oC) (Sonoda et al., 2000) 1.0290 
Best fit value (Pagani et al., 2005) for inorganic calcite precipitation (Sanyal et al., 2000) 1.0260 
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An important drawback of both ab-initio calculations and calculations that 

rely on experimental frequencies is that their outcome is extremely sensitive to both 

the choice of vibrational frequencies and the detailed theoretical methods applied to 

calculate molecular forces. The most detailed overview and comparison of various 

quantum methods of computation was presented in (Zeebe, 2005), which 

demonstrated that 11-10KB  could range between ~1.020 and ~1.050 depending on the 

data used and the theoretical methods applied. The best way to avoid errors is to 

follow one of the main rules of thumb in computational science, which requires the 

use of strictly comparable methods for obtaining and treatment of the data (e.g. 

experimental vibrational frequencies).  

Several studies have been conducted to estimate boron isotope fractionation 

that accompany adsorption of dissolved boron species on various substances such as 

marine clay (Palmer et al., 1987), N-methyl-D-glucamine resin phase (Sonoda et al., 

2000), and boron minerals (Oi et al., 1991) (Table 2.1). Others (Pagani et al., 2005) 

estimated boron isotope fractionation by fitting through the inorganic calcite 

precipitation data (Sanyal et al., 2000). However, to the best of our knowledge, 

although 11-10KB has been determined in 0.6 mol kg-1 H2O KCl (Byrne et al., 2006), 

no direct experimental 11-10KB value for seawater has yet been reported. 

The method applied here and in (Byrne et al., 2006) is purely experimental 

and based upon fundamental observations of chemical equilibrium. Experiments in 

this study were designed to directly determine the boron isotope equilibrium constant 

over a range of solution conditions. These were specifically considered in order to 

evaluate the effect of different temperatures, medium composition and total boron on 
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the isotopic equilibrium constant. Thousands of at-sea measurements of seawater pH 

(Clayton and Byrne, 1993; Clayton et al., 1995; Byrne et al., 1999) demonstrate that 

the precision of spectrophotometric pH measurements obtained via absorbance ratios 

is on the order of ± 0.0004 units or better.  In this work we have used precise 

spectrophotometric pH measurement procedures to accurately determine 11-10KB from 

differences in the dissociation constants of 11B(OH)3 and 10B(OH)3 (Byrne et al., 

2006). 

 

2.2 Methods 

2.2.1  Theory 

Measurements of 11-10KB can be obtained through pH observations in 

borate/boric acid buffers composed exclusively of 11B on one hand and exclusively 

10B on the other.  The pH of solutions containing B(OH)3
0 and B(OH)4

- can be written 

as: 

 ⎟⎟
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where pH = -log [H+], pKB
* = -log KB

*, KB
* is an equilibrium constant appropriate to 

equation (2.1) and square brackets denote total concentrations of B(OH)3
0 and 

B(OH)4
- in all forms (e.g., free B(OH)4

- plus ion pairs).  The difference between pH 

measured in solutions of 11B (11pH) and the pH of solutions containing solely 10B 

(10pH) can be written as: 
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where    

( )B
1011*

B
10*

B
11 KlogKpKp −=−       (2.6) 

 In the case that the 11B and 10B buffers are prepared using identical 

procedures, and buffering by H+ exchange couples other than B(OH)3
0 and B(OH)4

- 

are negligible, the [11B(OH)3
0]/[11B(OH)4

-] and [10B(OH)3
0]/[10B(OH)4

-] ratios in 

(Equation 2.5) are identical.  In this case, the final term in equation 2.5 is log(1) = 0 

and the equation can be written as: 

( )B
10111011 KlogpHpHpH −=−=Δ       (2.7) 

Equation (2.7) shows that 11-10KB is measured as a small difference in pH 

between two solutions, one composed using 11B, and the other composed using 10B. 

As such, highly precise pH measurements are required.  Very precise measurements 

of pH can be obtained via spectrophotometric analysis of indicator absorbance ratios 

R in the following form (Byrne, 1987; Zhang and Byrne, 1996; Byrne et al., 2006): 
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where pKI quantifies the equilibrium characteristics of H+ exchange between 

protonated and unprotonated forms of thymol blue, and e1, e2 and e3 are constants that 

are dependent on the molar absorbance vs. wavelength characteristics of fully 

protonated (intense yellow color) and fully unprotonated (intense blue color) forms of 

thymol blue. The physical/chemical characteristics of the various terms in equation 

(2.8) are presented in (Zhang and Byrne, 1996). 

 For solutions at constant temperature, ionic strength and composition, pKI is 

constant and equations (2.7) and (2.8) can be combined in the following form: 
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Equation (2.9) shows that 11-10KB can be measured solely through observations of 

thymol blue absorbance ratios: 

  
A
A

R
435

596=         (2.10) 

where 596A and 435A are absorbances at 596 and 435 nanometers measured in buffered 

solutions that contain the thymol blue indicator.   

 A rigorous treatment of 11-10KB determinations in solutions buffered not only 

by B(OH)3
0/B(OH)4

- but also by hydrolysis (H2O ↔ H+ + OH-) and H+ exchange by 

the spectrophotometric indicator (I2- + H+ ↔ HI-) is given by (Byrne et al., 2006).  

Including the influence of hydrolysis and several micromolar concentrations of 

indicator, it can be shown (Byrne et al., 2006) that  
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where   
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     (2.12) 

Within equation (2.12), BT is the total boron concentration; [Na+] is the 

solution concentration of Na+ that is added as both NaOH and the sodium form of 

thymol blue; IT is a total indicator concentration, and the concentration of 

unprotonated indicator ([I2-]) is calculated using the thymol blue equilibrium 

characteristics determined by (Zhang and Byrne, 1996).    
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The final term in equation (2.11) is insignificant if [Na+] >> ([H+] - Kw[H+]-1 - 

[I2-] - IT) and (BT-[Na+]) >> (-[H+] + Kw[H+]-1 + [I2-] + IT).  Under our experimental 

conditions, wherein [Na+] ranges between 0.004 and 0.02 mol kg-1 H2O, and (BT – 

[Na+]) ranges between 0.006 and 0.03 mol kg-1 H2O, pH ≈ 8.6, IT ≈ 3 x 10-6 mol kg-1 

H2O and ∆pH ≤  0.03, the term log (11x/10x) is smaller than 0.0001 and can be 

neglected in calculations of 11-10KB. 

 

2.2.2  Sample preparation and materials 

2.2.2.1 Sample solutions 

Boron is one of the major constituents of natural seawater and has a 

concentration of 4.4 * 10-4 mol kg-1 H2O at a ~34.8 salinity (Byrne and Kester, 1974). 

The spectrophotometric measurements in (Byrne et al., 2006) were obtained at a total 

boron concentration of 0.05 mol kg-1 H2O, which is significantly higher than the 

concentration of boron in natural seawater. To investigate the potential significance of 

polyborate formation on the 11-10KB determinations, experiments were conducted at a 

range of total boron concentrations, including: 0.01, 0.025 and 0.05 mol kg-1 H2O.  

Insofar as the activity quotient for the reaction (2) is very close to unity, the 

value for the isotope exchange in this reaction (11-10KB) should be applicable over a 

wide range of solution compositions and ionic strengths (Byrne et al., 2006). To 

evaluate this contention, experiments were conducted in three different synthetic 

solutions: “pure water”, 0.6 mol kg-1 H2O KCl and synthetic seawater. To assess the 
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effects of temperature on 11-10KB, experiments in “pure water”, 0.6 mol kg-1 H2O KCl 

and seawater were performed at 25 and 40oC. 

Equimolal 10B(OH)3 and 11B(OH)3 in “pure water” were prepared by weight 

in 15 MΩ Milli-Q water.  Approximately 25 grams (± 0.0005 1 s.d.) of each solution 

were then weighed into 10 cm spectrophotometric cells.  Equal amounts of 1.0 M 

NaOH approximately 0.5 gram (± 0.0001 1 s.d.), were then added (by weight) to each 

cell.  These procedures resulted in two solutions that were equimolal in Na+, and 

whose concentrations of 10B and 11B were identical.  For all “pure water” solutions, 

BT ≈ 0.05 mol kg-1 H2O, [Na+] ≈ 0.02 mol kg-1 H2O, and pH ≈ 8.6.  In each 

experiment usually four to six sample cells (n = 4-6) were prepared for both 

isotopically labeled solutions. Upon preparation each sample cell was promptly 

transferred from the scale into a custom designed thermostated cell holder, where the 

cells were left to thermally equilibrate for at least 45 minutes. 

A second set of solutions was prepared in 0.6 mol kg-1 H2O KCl medium, 

resulting in an ionic strength close of that of natural seawater. A single batch of 0.6 

mol kg-1 H2O KCl was prepared by weight in 15 MΩ Milli-Q water. Similar to the 

procedure using “pure water”, equimolal 10B(OH)3 and 11B(OH)3 solutions were 

prepared by gravimetric addition of boric acid and 1.0 M NaOH to the 0.6 mol kg-1 

H2O KCl solution. For the 0.6 mol kg-1 H2O KCl solutions, BT ≈ 0.01, 0.025 and 0.05 

mol kg-1 H2O. 

Synthetic seawater was prepared using a standard recipe (Dickson and Goyet, 

1994) and had an ionic strength of 0.70 mol kg-1 H2O and salinity of ~35. The only 

boron in this solution, as well as the solutions prepared using “pure water” and 0.6 
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mol kg-1 H2O KCl, came from the isotopically labeled boric acid. A single batch of 

synthetic seawater was prepared by adding seawater constituent salts (NaCl, KCl, 

Na2SO4, CaCl2, MgCl2) by weight to 15 MΩ Milli-Q water. The preparation of 

equimolal 10B(OH)3 and 11B(OH)3 solutions in seawater was identical to the 

procedures used for “pure water” and 0.6 mol kg-1 H2O KCl. For the synthetic 

seawater, BT ≈ 0.01 and 0.05 mol kg-1 H2O. 

2.2.2.2 Materials   

Experimental reagents including boric acid as 10B(OH)3 and 11B(OH)3 (99+ 

atom % pure 10B and 11B respectively, 99.95% by weight boric acid), 1.0 M NaOH, 

and the pH indicator thymol blue, were obtained from Sigma-Aldrich. The boric acid 

and KCl were stored in a desiccator containing P2O5 for three days prior to use. Salts 

used in this work (NaCl, KCl, Na2SO4, CaCl2, MgCl2) were analytical grade reagents 

also obtained from Sigma-Aldrich. We calculate that a 1% isotopic impurity of the 

10B and 11B labeled boric acids would result in a pH uncertainty of around 0.0001 

units. Given 0.05% neutral impurity of the labeled boric acids we calculate an 

additional uncertainty of 0.00036 pH units.  Either of these uncertainties are less than 

our analytical precision. 

 

2.2.3  Instrumental procedures 

Absorbance measurements for determination of pH in 10B(OH)3
0/10B(OH)4

- 

and 11B(OH)3
0/11B(OH)4

- buffers prepared as described above were obtained using an 

HP 8453 and CARY 400 Bio UV-Vis spectrophotometers. Both instruments are 
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equipped with water-jacketed sample cell holders, which were thermostated at 25 or 

40oC within ± 0.1oC and maintained with a Neslab refrigerating circulator. First, the 

sample was transferred to the instrument cell holder for a blank absorbance 

measurement. Then, indicator was added to the sample for simultaneous 

measurements of absorbances (λA) at wavelength λ = 730, 596 and 435 nm. When 

calculating the absorbance ratio R (Eq. 2.10) the absorbance measurement at 730 nm 

(730A) was subtracted from 596A and 435A as means of compensating for possible 

baseline shifts: 

AA
AAR

730435

730596

−
−

=        (2.13) 

 

2.2.4 Data analysis 

For each of the experimental conditions described above (various BT, 

temperature and medium composition) four to six samples were prepared for each 

isotope.  For example, in seawater experiments (BT = 0.01 mol kg-1 H2O, at 25oC), 

each sample was analyzed at least five times, producing a maximal instrumental error 

of ± 0.0004 (1 s.d.). For n = 5 (number of samples of each isotope) there were five 

values of ∆pH calculated using Eq.(2.9) by pairing the mixtures. The grand mean 

∆pH of these five values was 0.0117 ± 0.0003 (1 s.d.). Instrumental contributions to 

uncertainties were only ± 0.0001 (1 s.d.). Therefore, the larger uncertainty associated 

with the grand mean ∆pH was chosen as an upper bound uncertainty estimate. The 

standard error of the mean with 95% confidence interval (2σm) was determined as: 
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n
.d.1s22 m

⋅
=σ         (2.14) 

where n = number of samples for each isotope or number of pairs. 

11-10KB was calculated using Eq.(2.9) and the uncertainty (2σm) associated 

with the grand mean ∆pH was propagated as: 

( ) mB
1011

m 2K302.22 σ⋅⋅=′σ −       (2.15) 

 The results from multiple experiments conducted under identical experimental 

conditions were combined in a weighted mean with the individual uncertainties 

incorporated into a weighted error as (Bevington and Robinson, 2003): 
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where x  are 11-10KB values obtained in each of the multiple experiments under 

identical experimental conditions and ′
mσ2 - are uncertainties associated with each 11-

10KB. 



 

 

44

 

Table 2.2 – 11-10KB determined for three different media at 25 and 40oC. 
 

Media ToC [H3BO3], 
(mol kg-1 H2O) 

Ionic 
strength 
(mol kg-1 

H2O) 
Instrument ∆pH = 

11pH – 10pH 2σm 11-10KB 2σm´ n 
Weighted 
mean of N 

experiments 

2σm of 
weighted 

mean 
N 

25 0.05 ~0.02 HP 8453 0.0132 0.0010 1.0308 0.0023 6    Pure 
water 40 0.05 ~0.02 HP 8453 0.0124 0.0020 1.0289 0.0048 6    

25 0.01 ~0.60 CARY 400* 0.0109 0.0006 1.0254 0.0014 4    

25 0.025 ~0.61 CARY 400* 0.0107 0.0003 1.0249 0.0008 5 
25 0.025 ~0.61 CARY 400* 0.0109 0.0005 1.0253 0.0011 5 

1.0251 0.0007 2 

25 0.05 ~0.62 CARY 400* 0.0104 0.0004 1.0242 0.0009 5 
25 0.05 ~0.62 CARY 400* 0.0104 0.0003 1.0241 0.0008 4 
25 0.05 ~0.62 CARY 400* 0.0115 0.0004 1.0268 0.0011 5 
25 0.05 ~0.62 HP 8453 0.0116 0.0007 1.0271 0.0017 6 

1.0250 0.0005 4 

KC
l  

(0
.6

 m
ol

 k
g-1

 H
2O

) 

40 0.05 ~0.62 HP 8453 0.0112 0.0015 1.0262 0.0035 6    

25 0.01 ~0.72 CARY 400* 0.0117 0.0002 1.0272 0.0006 5    

25 0.05 ~0.74 CARY 400* 0.0110 0.0005 1.0257 0.0012 4 
25 0.05 ~0.74 CARY 400* 0.0117 0.0001 1.0273 0.0003 4 
25 0.05 ~0.74 HP 8453 0.0116 0.0008 1.0270 0.0019 6 

1.0272 0.0003 3 

Se
aw

at
er

 

40 0.05 ~0.74 HP 8453 0.0115 0.0011 1.0269 0.0027 6    
*CARY 400 Bio UV-Vis double-beam spectrophotometer 
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2.3 Results 

11-10KB results obtained over a wide range of medium composition, total boron 

concentrations (BT = 0.01, 0.025, 0.05 mol kg-1 H2O) and 25-40oC temperature range 

were quite coherent (Table 2.2 and Figure2.1).  Spectroscopic measurements in “pure 

water” media (BT = 0.05 mol kg-1 H2O) yielded 11-10KB values of 1.0308 ± 0.0023 and 

1.0289 ± 0.0048 at 25 and 40oC, respectively.  11-10KB values in 0.6 mol kg-1 H2O KCl 

with identical BT at these two temperatures were 1.0250 ± 0.0005 and 1.0262 ± 

0.0035.  Finally, 11-10KB values in synthetic seawater (BT = 0.05 mol kg-1 H2O) were 

1.0272 ± 0.0003 and 1.0269 ± 0.0027 at 25 and 40oC, respectively. Higher errors 

were observed for measurements at 40oC than for the measurements at 25oC, 

especially for the “pure” water solutions.  Within the experimental uncertainties, our 

11-10KB results show no temperature dependence within the range 25-40oC. However, 

considering only the 25oC analyses, there is a statistical difference between 11-10KB 

values obtained in “pure water” solution and at higher ionic strength.  It should also 

be noted that the measurement uncertainties obtained using CARY 400 double-beam 

instrument were much smaller than those obtained using HP 8453. 

11-10KB results obtained in 0.6 mol kg-1 H2O KCl and artificial seawater are 

very similar (Table 2.2 and Figure 2.1). Since approximately 44% of the total borate 

in seawater is ion paired with Na+, Ca2+ and Mg2+ (Byrne and Kester, 1974), it can be 

concluded that the relatively weak ion paring of borate with major seawater cations 

has a negligible influence on 11-10KB. Furthermore, the excellent agreement in 11-10KB 

results obtained using total boron concentration between 0.01 and 0.05 mol kg-1 H2O  
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Figure 2.1 – Boron isotope equilibrium constant (11-10KB) determined in “pure 
water”, 0.6 mol kg-1 H2O KCl and seawater (S = 35) over a range of total boron 
concentrations (BT ≈ 0.01, 0.025 and 0.05 mol kg-1 H2O) and two temperatures (25, 
and 40oC). The error bars represent 95% confidence interval (± 2σm´ – standard error 
of a mean) of the analyses within each experiment. The results of multiple 
experiments (N > 1) conducted under the same experimental conditions are presented 
as weighted mean of these results with the associated weighted uncertainty of the 
mean (± 2σm).  
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indicates that polyborate formation has a negligible influence on the equilibrium 

results obtained in this work. In a recent publication (Byrne et al., 2006) it was 

pointed out that experiments conducted over a range of boron concentrations would 

allow extrapolation of 11-10KB results to values appropriate at the natural boron levels 

of seawater (416 micromoles/kg seawater). This appears to be unnecessary because 

there is no statistically discernable trend in 11-10KB results over a substantial range of 

boron concentrations. The likely mechanism behind this constancy in 11-10KB is seen 

in the observation (Oi, 2000b) that boron fractionations into the four coordinate sites 

of B(OH)4
- and B3O3(OH)4

- are very similar (Byrne et al., 2006).  

2.4 Discussion 

Of greatest interest to oceanic pH reconstructions, the 11-10KB  result for 

artificial seawater [11-10KB = 1.0272 ± 0.0006 (2σm´) at 25oC (BT = 0.01 mol kg-1 

H2O)] is significantly larger than the 1977 estimate of 1.0194 (Kakihana and Kotaka, 

1977; Kakihana et al., 1977) and the spectral and the force field modeling estimate of 

1.0176 (Sanchez-Valle et al., 2005). On the other hand, our empirical result is in 

agreement with the recent ab initio calculations (Oi, 2000a; Oi and Yanase, 2001; Liu 

and Tossell, 2005), which indicate 11-10KB values between 1.0260 to 1.0267. 

The relationship between pH and boron isotopic composition of borate in 

seawater (δ11Bborate), given pKB = 8.597 at 25oC (Dickson, 1990), 11-10KB as either 

1.0272 ± 0.0006 (this study) or 1.0194 (Kakihana and Kotaka, 1977; Kakihana et al., 

1977) and boron isotopic composition of seawater (δ11Bsw = 39.5‰)  can be 

summarized as: 
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The experimental 11-10KB value obtained in this work results in a calculated 

relationship between δ11Bborate and pH, that lies below than the curve based on the 

previous theoretical estimate (Figure 2.2). It is important to recognize that both curves 

intend to display the boron isotopic composition of borate species (B(OH)4
-) in 

seawater, not the carbonate minerals that serve as a proxy for seawater isotopic 

compositions. 

Calibrations of the δ11B of carbonate materials vs. pH have been conducted 

using controlled experiments with inorganic calcite precipitates and both coral and 

foraminifera species grown under constant pH conditions in modified seawater 

solutions (Sanyal et al., 1996; Sanyal et al., 2000; Sanyal et al., 2001; Hönisch et al., 

2004). While the coral analyses appear to conform to the Kakihana et al. reference 

curve – calculated using the most widely accepted pKB value of 8.597 (Dickson, 

1990) – it is noteworthy that both foraminiferal and inorganic carbonates had δ11B 

values that fell significantly below the theoretical constraint for B(OH)4
-. It has been 

argued (Hönisch and Hemming, 2004) that because these calibration measurements 

broadly mirror the “shape” of the Kakihana et al. curve, a constant offset at different 

pH may be used to correct for each of the studied species. In contrast, the borate-pH 

curve produced from 11-10KB obtained in this study (1.0272 ± 0.0006) fits best with 

the data from the controlled O.universa measurements (Sanyal et al., 1996), but the 

slope of this curve is steeper over the studied pH range, and hence does not as  
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Figure 2.2 – δ11B of B(OH)4
- in seawater based on theoretical 11-10KB =1.0194 

(Kakihana and Kotaka, 1977; Kakihana et al., 1977) and empirical 11-10KB =1.0272 ± 
0.0006 (2σm

´, n=5) obtained in this study at 25oC (BT ≈ 0.01 mol kg-1 H2O); and the 
results of the inorganic calcite precipitation experiments (Sanyal et al., 2000), 
cultured O.universa and G.sacculifer foraminifera species (Sanyal et al., 1996; Sanyal 
et al., 2001) and cultured scleractinian corals Acropora nobilis and Porites cylindrica 
(Hönisch et al., 2004). The pHNBS values from (Sanyal et al., 1996; Sanyal et al., 
2000; Sanyal et al., 2001) were recalculated to fit the seawater pH scale (pHSWS= 
pHNBS – 0.14). 
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faithfully mirror the control data. Slight differences in pKB values are shown to have 

a profound effect on the slope of these curves (Liu and Tossell, 2005) with higher 

values reversing the orientation of the two calculated slopes, such that our empirical 

11-10KB constraint would better mirror the control data. It is evident that the controls 

on the boron isotopic composition of marine carbonates are more complex than 

suggested by simple isotope exchange equilibrium reactions. In this regard both vital 

effects and the chemistry of seawater at the site of carbonate formation warrant 

further investigation. 

Boron isotope redistribution during biosynthesis of carbonate is possible given 

the requirement that marine calcifiers modify seawater in order to concentrate 

carbonate ion and maintain saturation at the site of calcification (Erez, 2003; Weiner 

and Dove, 2003).  Saturation is achieved by seawater vacuolization and modification 

within the cytoplasm, which elevates both pH and alkalinity. In foraminifera 

photosynthesis plays a critical role in elevating the pH through the uptake of vacuole 

CO2 (Erez, 2003), while in corals endergonic enzymatic reactions that exchange 

protons for Ca2+ result in higher pH at the site of calcification (Allemand et al., 1998; 

Cohen and McConnaughey, 2003). Micro-sensor studies indicate that the pH of the 

calcifying fluid in the foraminifera G.sacculifer rises to as high as 8.6 in daylight 

(Jorgensen et al., 1985) relative to ambient seawater (pH = 8.2). Similarly, pH in the 

symbiotic coral Galaxea rises from 8.2 to 8.5 at the polyp surface and further to 9.3 in 

the calcifying fluid (Al-Horani et al., 2003). It is not known whether boron is 

delivered to the calcifying site in the form of neutral B(OH)3
0 or charged B(OH)4

-. If 

the neutral species are more likely to pass through to the calcifying site, then 11B 
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enriched borate would form from the heavier boric acid via re-equilibration due to 

higher pH of the site. Thus, elevated pH in these biogenically modified solutions 

would drive both chemical and isotopic equilibrium resulting in 11B enrichment of 

borate ion by as much as 4-5‰.  

Mineralogic differences between marine calcifiers may also play an important 

role in boron isotope distributions. While it has been concluded that the main boron-

bearing species incorporated into the carbonate lattice of aragonite is the borate ion, 

with no observed fractionation (Sen et al., 1994; Hemming et al., 1995), in calcite up 

to 90% of the incorporated species may be boric acid (Sen et al., 1994), which could 

result in heavier boron isotopic composition of calcite relative to aragonite provided 

no other processes are involved (e.g. biological).  

Both biological and mineralogical effects would appear to result in 

enrichments of the heavy isotope in carbonates, which is consistent with the larger 

value of the boron isotope equilibrium constant empirically determined in this study 

(Figure 2.2). Thus we presently find no logical basis for offset corrections to lower 

measured δ11B values in marine carbonates, based on the use of the 1977 equilibrium 

constant. 

For the time being, while relative time series changes in pH are valid (Hönisch 

and Hemming, 2005; Pelejero et al., 2005), obtaining absolute values for paleo-pH 

using the  carbonate proxy remains a challenge. Existing calibrations (Sanyal et al., 

1996; Sanyal et al., 2000; Sanyal et al., 2001; Hönisch et al., 2004) are useful but 

limited to only two species of foraminifera (G.sacculifer and O.universa) and two 

species of relatively fast-growing branching corals (Acropora nobilis and Porites 
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cylindrica). Notably, massive corals (e.g. Porites lutea) with much slower growth rate 

are more widely used in paleo-reconstructions and should be the focus of new culture 

experiments. In our view, progress towards the use of carbonates as absolute pH 

proxies will require additional controlled culture and micro-sensor studies of pertinent 

species and better understanding of boron speciation at the site of calcification with 

respect to boron transport and incorporation into the crystal lattice. Empirical and 

culture experiments are the key to a better understanding of past changes in oceanic 

pH, but they will also be critical in charting the course of anthropogenic effects on 

oceanic pH and marine ecosystems through the next century. 



 

 53

CHAPTER 3 - THE EFFECTS OF BORATE POLYMERIZATION, 

TEMPERATURE AND ION PAIRING ON BORON ISOTOPE 

FRACTIONATION IN SOLUTION 

3.1 Introduction 

The boron isotope compositions of various biogenic and inorganic oceanic 

carbonates have been used to decipher paleo-pH in a variety of environmental settings 

including: abyssal oceans using benthic foraminifera (Hönisch et al., 2008), surface 

oceans during Pleistocene glacial/interglacial cycles using planktonic foraminifera 

(Palmer and Pearson, 2003), and shallow marine carbonate platforms in the aftermath 

of Neoproterozoic glaciation using inorganic carbonate precipitates (Kasemann et al., 

2005). The accurate application of the boron isotope system for paleo-pH 

reconstructions, however, requires an understanding of the range of environmental 

conditions represented by each sedimentary deposit, as the boron isotope equilibrium 

(11-10KB) and boric acid dissociation (pKB
*) constants largely depend on the 

temperature, total boron concentration, salinity and even the specific ocean chemistry 

of differing environments. 

An evaluation of the temperature effect on 11-10KB is important, as fluctuations 

in surface temperature across Earth history have been significant. For example, 

during the Last Glacial Maximum in the Pleistocene (ca. 18,000 years ago) surface 

ocean temperatures are believed to have been ~ 5oC lower than today; in contrast, 

during glacial minimum temperatures may have been  ~ 3oC higher than today 

(Sigman and Boyle, 2000). While significant, Pleistocene temperature fluctuations 
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fade in comparison with those of the Neoproterozoic, when temperatures fluctuations 

of 50oC or more may have been recorded between icehouse (i.e. Snowball Earth) and 

hothouse periods (Hoffman et al., 1998). Finally, in the deep sea, where benthic 

foraminifera used for paleo-pH reconstructions dwell and calcify, average 

temperatures could dip to 1oC (Hönisch et al., 2008). 

Ion pairing of borate ion with major ions in seawater, including Mg2+, Ca2+ 

and Na+ may also affect boron isotope distributions in marine carbonates. The major 

ion composition of the oceans is noted to have varied over the geologic past 

(Sandberg, 1983; Hardie, 1996; Stanley and Hardie, 1998; Berner, 2004). In 

particular, the ratio of Mg/Ca is thought to have varied from ~ 1 to ~5 over the past 

560 million years based on the dominant mineralogy of the shallow marine 

carbonates (Wilkinson and Algeo, 1989). Throughout the Phanerozoic, it appears that 

the oceans have recorded secular oscillations in carbonate mineralogy marked by 

shifts in Mg/Ca ratios. High Mg/Ca ~ 5 is associated with “aragonitic” seas (from 

~340 to ~170 Ma and in the Modern); and low Mg/Ca ~ 1 is associated with 

“calcitic” seas (~550-340 Ma and ~170-40 Ma) (Stanley and Hardie, 1998). These 

shifts are believed to be controlled by the changes in spreading rates along mid-ocean 

ridges (Stanley and Hardie, 1998). 

Changes in Mg2+ content of seawater may also be controlled by the extent of 

marine dolomitization (formation of Ca,Mg(CO3)2 from a CaCO3 precursor by 

replacing Ca2+ with Mg2+) (Wilkinson and Algeo, 1989). Insofar as dolomitization is 

believed to require significant environmental modifications of seawater (including 

high Mg/Ca > 8, high temperature, low salinity (i.e. dielectric constant), and the 
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absence of sulfate (Prothero and Schwab, 2003), boron isotope studies may provide 

clues to the origin and distribution of this mineral trough time. To this end, it will be 

important to investigate how changes in Mg2+ concentrations, temperature and 

salinity in modified seawater may affect 11-10KB and subsequently the boron isotope 

distributions in solution. 

Similarly, temporal variations in total boron concentration (BT) in the oceans 

may have had an effect on boron isotope fractionation through polymerization of 

borate into dimer, trimer and tetramer forms. In the present-day ocean BT is estimated 

to be 0.4 mmol/kg H2O (Byrne and Kester, 1974), and this did not likely change 

much during maximum Pleistocene glaciation. Even at the extreme during 

Neoproterozoic “Snowball Earth” events when sea level may have dropped by 1 km 

or more (Hoffman et al., 1998), BT is estimated to have reached ~0.56 mmol/kg H2O, 

assuming present-day boron sources and sinks in the ocean. Unless boron fluxes into 

past oceans were vastly different from today, it is unlikely that natural variations in 

total boron concentration have been significant. Nevertheless, an investigation of the 

potential effects of the boron concentrations on 11-10KB is necessary with regards to 

various boron isotope laboratory studies conducted in experimental solutions with 

boron concentrations significantly exceeding natural concentrations (Sanyal et al., 

1996; Sanyal et al., 2000; Sanyal et al., 2001; Hönisch et al., 2004; Byrne et al., 2006; 

Klochko et al., 2006). 

In the current study, we systematically evaluate the effects of various degrees 

of borate polymerization, temperature and ion pairing on the boron isotope 
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fractionation constant (11-10KB) between boric acid [B(OH)3
o] and borate ions 

[B(OH)4
-] in aqueous solution, which is expressed by the reaction: 

10B(OH)3
o + 11B(OH)4

-  11B(OH)3
o + 10B(OH)4

-   (3.1) 

These experimental constraints should provide insight into the boron isotopic 

compositions of ancient biogenic and inorganic carbonates that may have 

accumulated under radically different environmental conditions than those in the 

modern oceans.  

 

3.1.1 Total boron concentration 

In our previous experiments 11-10KB determinations were carried out in 

solutions with total boron concentrations (BT = 0.01, 0.025 and 0.05 mol/kg H2O), 

which significantly exceeded those of natural seawater (BT = 4.4 x 10-4 mol/kg H2O). 

In dilute solutions like modern seawater and our experimental solution with BT = 0.01 

mol/kg H2O, dissolved boron is represented by only mononuclear species including: 

boric acid [B(OH)3
o] and borate ions [B(OH)4

-] (Fig. 3.1a). However, boron 

polynuclear complexes begin to form at concentrations BT > 0.025 mol/kg H2O 

(Ingri, 1963; Cotton and Wilkinson, 1972). Since the degree of boron polymerization 

may potentially affect the 11-10KB in our most concentrated experiments, we 

concluded that it is important to investigate this issue further. According to Baes and 

Mesmer (1976), at high concentrations > 0.025 mol/kg H2O the boron in solution is 

represented by the mononuclear species B(OH)3
o and B(OH)4

-, as well as  

polynuclear species B2O(OH)5
-, B3O3(OH)4

- and B4O5(OH)4
2-. 
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Figure 3.1 – Distribution of boron species in 1 mol/kg H2O KCl medium at 
25oC and total boron concentrations (BT): (a) BT = 0.01 mol/kg H2O; (b) BT = 
0.05 mol/kg H2O; and (c) BT = 0.5 mol/kg H2O. Graphs are reconstructed 
using equilibrium quotients and constants determined for the “NBS” acidity 
scale and reported in Baes and Mesmer (1976). 
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The relative abundances of these species depend on total boron concentration, 

temperature and pH of a given solution (Ingri, 1963). Most studies (Ingri, 1963; Baes 

and Mesmer, 1976; Hirao et al., 1979) agree that the trimer [B3O3(OH)4
-] is the most 

dominant of the polynuclear complexes across the pH range between ~4 and 9.5. For 

example, the polyborate equilibrium data determined from a 1 mol/kg H2O KCl 

solution at 25oC (Baes and Mesmer, 1976) suggests that polyborates account for 

~12% of total borate at BT = 0.05 mol/kg H2O, which is the highest concentration in 

our experiments (Chapter 2; Klochko et al., 2006). The approximate concentrations of 

each boron species is calculated as a function of pH by using the equilibrium 

quotients and constants reported in Baes and Mesmer (1976). At pH ~ 8.6, the trimer 

[B3O3(OH)4
-], dimer [B2O(OH)5

-] and tetramer [B4O5(OH)4
2-] represent 

approximately 10%, 1% and 1% of total boron, respectively (Fig. 3.1b). Since all 

experimental solutions in our studies had pH ~ 8.3-8.6, it is the trimer that might have 

the greatest potential effect on the final 11-10KB determined in our experiments. The 

relevant reaction involving boron isotope exchange between boric acid [B(OH)3
o] and 

a polyborate trimer [B3O3(OH)4
-] is: 

10B(OH)3
o + 11,11,11B3O3(OH)4

-  11B(OH)3
o + 11,11,10B3O3(OH)4

-  (3.2) 

Oi (2000b) have applied ab-initio molecular orbital calculations to determine 

11-10KB values for the isotope exchange between boric acid and various polyborate 

species. That study concluded that 11-10KB = 1.030 for the reaction (3.2), and 11-10KB = 

1.026 for reaction (3.1), which indicates that the magnitude of isotope exchange 

between boric acid and mononuclear borate; as well as that between boric acid and 
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polyborate trimer are similar, with the small increase in 11-10KB associated with 

trimerization. 

In Klochko et al. (2006) we demonstrated that the 11-10KB value remained 

unchanged over a range of experimental solutions (Fig. 2.1 in Chapter 2) with total 

boron concentrations from 0.01 mol/kg H2O (where the presence of the polyborates is 

negligible) to 0.05 mol/kg H2O (where the presence of the trimer becomes potentially 

significant for the isotope exchange). These results suggest that either the formation 

of the trimer in solution has negligible effect on the resulting 11-10KB or the 

concentration of the trimer is too low to have any effect on11-10KB. Increasing the total 

boron concentration (e.g. by a factor of 10) in experimental solutions could provide 

an empirical estimate of the boron isotope exchange constant for the reaction (3.2) 

and its potential effects on the 11-10KB. At BT = 0.5 mol/kg H2O, the trimer represents 

~ 50% of the total boron, essentially replacing B(OH)4
- at pH ~ 8.3 (Fig. 3.1c). 

Therefore, this concentration should be ideal for our investigation of the potential 

polyborate effects on 11-10KB. 

 

3.1.2 Temperature effects 

The 11-10KB as a function of temperature has been estimated using ab-initio 

molecular orbital theory calculations (Liu and Tossell, 2005; Tossell, unpublished). 

The results of these studies vary significantly with various methods of quantum 

mechanical calculations applied to different models of dissolved boron in solution 

(Table 3.1).  
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Table 3.1 – 11-10KB in seawater as a function of temperature, calculated using various 
models for the solute and quantum mechanical methods of calculation. 
 
 

11-10KB Method, 
model 

ToC 
Hartree-Fock, 

free monomers1 
Density function, 
free monomers2 

Density function, 
22 H2O clusters3 

0 1.029 1.043 1.026 
10 - 1.042 1.017 
20 - 1.041 1.025 
25 1.027 - - 
30 - 1.040 1.025 
40 1.026 1.038 1.023 
50 - 1.037 1.023 
60 1.024 - - 

1 data from Liu and Tossell (2005) 
2,3 unpublished data from Tossell 
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Liu and Tossell (2005) applied the “Hartree-Fock” method of calculation to a 

boron model represented by only free boron monomers. Their data shows a small 

linear decrease in 11-10KB values (from 1.029 to 1.024) with increasing temperatures 

over a wide range of temperature conditions spanning from 0 to 60oC (Table 3.1). 

Application of a “density function” method of calculations to such “free-boron-

monomers” model yields unreasonably high 11-10KB values (1.037-1.043), however, 

the results reveal a similar temperature dependent trend (Tossell, unpublished).  It 

should be noted that free monomer models only take into account bond energies 

within the monomer clusters; they ignore the bonds between the monomer cluster and 

the surrounding H2O molecules. Including H2O molecules in the cluster would result 

in more realistic model of dissolved boron speciation. Tossell (unpublished) used a 

model of boron monomers surrounded by 22 H2O molecules for the calculations and 

obtained reasonable 11-10KB values, although the temperature-dependent trend 

observed in the previous two datasets is lost (Table 3.1). 

The purpose of the current study is to empirically constrain temperature 

effects on 11-10KB values and to determine whether there are systematic trends in the 

data that could be extrapolated to higher or lower temperatures. To this end, we have 

investigated 11-10KB behavior at 40, 25, 15 and 9oC. Lower temperature experiments 

are not yet possible with the current experimental design.  

 

3.1.3 Ion pairing effects 

Borate ion [B(OH)4
-], being one of the two species of total boron in seawater, 

has been known to form complexes with a variety of common ions in seawater (Byrne 
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and Kester, 1974). The cations most likely to show significant ion-pairing with borate 

in seawater are Na+, Mg2+ and Ca2+, which are the major constituents in seawater. It is 

estimated that 44% of the borate ions in seawater are represented by NaB(OH)4
o, 

MgB(OH)4
+ and CaB(OH)4

+ complexes (Byrne and Kester, 1974). Table 3.2 

demonstrates the breakdown of the boron species in seawater at 25oC, salinity of 35 

and pH = 8.2. According to this study, free borate B(OH)4
- represents only 13.3 % of 

the total boron in modern seawater. Importantly, the magnesium-bearing complex 

MgB(OH)4
+ appears to be the next important borate compound, representing 5.1 % of 

total boron.  

As it as been discussed above, Mg2+ is one of the main inhibitors of the 

CaCO3 precipitation. Thus, in order to initiate precipitation of the synthetic CaCO3, a 

number of previous boron isotope/pH calibration studies (Sanyal et al., 1996; Sanyal 

et al., 2000; Sanyal et al., 2001) have excluded Mg2+ cations from their experimental 

synthetic seawater solutions. In the absence of Mg2+, borate ion will most likely pair 

with the other two cations Na+ and Ca2+, which may affect the magnitude of the boron 

isotope exchange between B(OH)3
o and B(OH)4

- - paired ions in solution. 

Due to our present lack of understanding of the effects of ion pairing on boron 

isotope distribution, it is difficult to predict the potential effects of Mg2+ exclusion on 

the results from the calibration studies. Thus this study is designed to quantify these 

effects using various media including solutions free of Mg and those prepared with 

MgCl2, NaCl and KCl.  
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Table 3.2 – Inorganic boron speciation in seawater at 25oC, salinity of 35 and pH = 
8.2. The speciation is inferred from the association constants for NaB(OH)4

o, 
MgB(OH)4

+ and CaB(OH)4
+ complexes, determined using the “NBS” pH scale 

(Byrne and Kester, 1974). 
 
 

Boron species Percentage of the total boron 
B(OH)3

o 76.4 ± 1.0 % 
B(OH)4

- 13.3 ± 0.6 % 
MgB(OH)4

+ 5.1 ± 0.4 % 
NaB(OH)4

o 3.6 ± 0.4 % 
CaB(OH)4

+ 1.6 ± 0.2 % 
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3.2 Methods 

Solution preparations, instrumental procedures and data analysis for the 

spectrophotometric experiments conducted in this study are identical to those outlined 

in Chapter 2 and in (Byrne et al., 2006; Klochko et al., 2006). 

Experimental solutions for the polyborate effects study were prepared in 

synthetic seawater media with total boron concentrations BT = 0.01 and 0.5 mol/kg 

H2O. These solutions were analyzed at 25oC. It should be noted that all solutions for 

the experiments with BT = 0.01-0.05 mol/kg H2O were brought up to a pH ~ 8.6 

(close to the boric acid dissociation constant in natural seawater solutions pKB
* = 

8.597) by using 1 M NaOH addition (Chapter 2; Klochko et al., 2006). However, in 

the case of solutions with BT = 0.5 mol/kg H2O required addition of a more 

concentrated 10 M NaOH, which triggered the undesired instant precipitation of 

Mg(OH)2 and Ca(OH)2 complexes: 

Mg2+ +2OH-  Mg(OH)2↓      (3.3) 

Ca2+ +2OH-  Ca(OH)2↓      (3.4) 

Reducing the volume of 10 M NaOH addition, and hence, lowering the pH to ~ 8.3, 

eliminated the unwanted Mg(OH)2 and Ca(OH)2 precipitates. 

Experimental solutions for the temperature effect study were prepared in 

synthetic seawater media with total boron concentrations BT = 0.01 mol/kg H2O. 

These solutions were analyzed at three different temperature conditions: 9, 15 and 

25oC. 

Finally, experimental solutions for the ion pairing effects study were prepared 

in four different media: synthetic seawater, Mg-free seawater, 0.7 mol/kg H2O NaCl 
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and 0.23 mol/kg H2O MgCl2 with total boron concentration BT = 0.01 mol/kg H2O. 

These solutions were analyzed at 25oC. 

 

3.3 Results and Discussion 

The results of all three spectrophotometric studies: polyborate, temperature 

and ion pairing effects on 11-10KB, are summarized in Table 3.3 and shown graphically 

in Figs. 3.2-3.4. 

 

3.3.1 Polyborate effects on 11-10KB 

11-10KB results obtained in the synthetic seawater solutions at 25oC with total 

boron concentrations BT = 0.01 mol/kg H2O (the lowest concentration) and BT = 0.5 

mol/kg H2O (the highest concentration) are shown in Fig. 3.2. For comparative 

purposes, the 11-10KB data obtained in the earlier study (Klochko et al., 2006) (i.e. 0.6 

mol/kg H2O KCl solutions with BT = 0.01, 0.025 and 0.05 mol/kg H2O; and synthetic 

seawater with BT = 0.05 mol/kg H2O) are also included. 

As previously discussed, the 11-10KB value remains statistically the same in 

both 0.6 mol/kg H2O KCl and synthetic seawater media over a range of total boron 

concentrations (0.01-0.05 mol/kg H2O), regardless of the fact that 10% of the total 

boron in experimental solutions with BT = 0.05 mol/kg H2O is represented by the 

polyborate trimer B3O3(OH)4
-. A 10 fold increase in total boron (BT = 0.5 mol/kg 

H2O) in experimental solutions, however, does appear to have resulted in a statistical 
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Table 3.3 – 11-10KB determined for various total boron concentrations, media and 
temperatures conditions. 
 
 
 

Media ToC 
[H3BO3], 
(mol kg-1 

H2O) 
∆pH = 

11pH – 10pH 2σm 11-10KB 2σm´ n 
Weighted 
mean of N 

experiments 

2σm of 
weighted 

mean 
N

25 0.5 0.0123 0.0008 1.0286 0.0019 3 
25 0.5 0.0133 0.0013 1.0310 0.0030 2 
25 0.5 0.0129 0.0007 1.0302 0.0016 2 

1.0298 0.0011 3 

25 0.01 0.0117 0.0002 1.0272* 0.0006 5 
25 0.01 0.0114 0.0006 1.0266 0.0014 6 
25 0.01 0.0113 0.0005 1.0263 0.0011 3 

1.0270 0.0005 3 

15 0.01 0.0130 0.0015 1.0304 0.0036 6 
15 0.01 0.0131 0.0003 1.0307 0.0007 3 

1.0306 0.0007 3 

9 0.01 0.0121 0.0008 1.0283 0.0018 2 

Se
aw

at
er

 

9 0.01 0.0128 0.0012 1.0299 0.0028 2 
1.0288 0.0015 3 

25 0.01 0.0094 0.0003 1.0218 0.0007 3 
25 0.01 0.0114 0.0008 1.0265 0.0018 3 
25 0.01 0.0142 0.0004 1.0332 0.0009 3 
25 0.01 0.0111 0.0001 1.0260 0.0002 3 
25 0.01 0.0126 0.0005 1.0294 0.0012 3 
25 0.01 0.0094 0.0004 1.0218 0.0010 3 M

g-
fr

ee
 s

ea
w

at
er

 

25 0.01 0.0113 0.0001 1.0263 0.0003 3 

1.0261 0.0002 7 

25 0.01 0.0126 0.0003 1.0295 0.0007 3 
25 0.01 0.0132 0.0004 1.0308 0.0008 3 
25 0.01 0.0107 0.0007 1.0249 0.0016 3 
25 0.01 0.0122 0.0005 1.0286 0.0012 3 

N
aC

l 
(0

.7
 m

ol
/k

g 
H

2O
) 

25 0.01 0.0133 0.0005 1.0312 0.0011 3 

1.0296 0.0004 5 

25 0.01 0.0104 0.0002 1.0242 0.0005 3 
25 0.01 0.0114 0.0003 1.0265 0.0007 3 
25 0.01 0.0128 0.0006 1.0299 0.0014 3 M

gC
l 2 

(0
.2

3 
m

ol
/k

g 
H

2O
) 

25 0.01 0.0127 0.0002 1.0297 0.0005 3 

1.0270 0.0003 4 

*data from Klochko et al. (2006) 
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increase of the 11-10KB to a value of 1.0298± 0.0011 (2σm), relative to the 

experimental solutions with lowest total boron (BT = 0.01 mol/kg H2O): 11-10KB = 

1.0270±0.0005 (2σm) (Fig. 3.2).  

This increase could be attributed to a formation of a trimer, which would 

represent ~ 50% of the total boron in solution at pH ~ 8.3. Such an effect was 

expected since the boron isotope fractionation associated with isotope exchange 

between boric acid and the trimer in solution was estimated by ab-initio calculations 

to be larger (1.030) than that of the isotope exchange between boric acid and the 

borate ion monomer (1.026) (Oi, 2000b). It is also possible that the greater 11-10KB 

values in the high BT experimental solutions may also be attributed to the formation 

of a tetramer B4O5(OH)4
2-, which would represent ~ 15% of the total boron in these 

solutions at pH ~ 8.3 (Fig. 3.1c). Unfortunately, it is not currently possible to estimate 

relative contributions of the trimer and tetramer to the resulting 11-10KB values 

determined in these solutions, since the boron isotope fractionation associated with 

isotope exchange between boric acid and the tetramer in solution has never been 

estimated. 
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Figure 3.2 – Boron isotope equilibrium constant (11-10KB) determined at 25oC 
in 0.6 mol/kg H2O KCl(*) and synthetic seawater over a range of total boron 
concentrations BT = 0.01(*), 0.025(*) and 0.05(*) mol/kg H2O and BT = 0.01, 
0.05(*) and 0.5 mol/kg H2O, respectively. (*) denotes experimental data 
obtained in an earlier study (Klochko et al., 2006). 
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3.3.2 Temperature effects on 11-10KB 

11-10KB values determined in “pure” water and 0.6 mol/kg H2O KCl media at 

25 and 40oC; and in synthetic seawater at 9, 15, 25 and 40oC are graphically 

illustrated in Fig. 3.3. Data obtained in all three types of media at 25 and 40oC did not 

demonstrate a statistical temperature effect on the boron isotope fractionation at this 

temperature range, partially due to a large error associated with the experiments 

conducted at 40oC. It may be possible to reduce the error by improving temperature 

control of the instrumental cell. 

Experiments conducted in synthetic seawater at temperatures ≤ 25oC are of 

great importance for the paleo-pH reconstructions using boron isotope pH proxy, 

especially for those studies that use benthic foraminifera, dwelling in the deep ocean 

and calcifying at temperatures as low as ~ 1oC, as a proxy material (Hönisch et al., 

2008). 11-10KB values in synthetic seawater: 11-10KB = 1.0288±0.0015(2σm), 

1.0306±0.0005(2σm) and 1.0270±0.0005(2σm) were determined at three temperature 

settings of 9, 15 and 25oC, respectively.  

Two observations can be made from this dataset: 1) there are small differences 

between 11-10KB across this temperature range; and, 2) there is no overall discernable 

trend in temperature effects on the 11-10KB at this temperature range. These 

observations generally agree with the magnitude of the temperature effects on the 11-

10KB and same lack of a trend in the data set calculated by Tossell (unpublished), 

using ab-initio density functions method and a 22 H2O molecule cluster model (Table 

3.1).  
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Figure 3.3 – Boron isotope equilibrium constant (11-10KB) determined in 
“pure” water(*) and 0.6 mol/kg H2O KCl(*) at 25 and 40oC; and synthetic 
seawater over a range of temperatures: 9, 15, 25 and 40(*)oC. (*) denotes 
experimental data obtained in an earlier study (Klochko et al., 2006). BT = 
0.01 mol/kg H2O. 
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This suggests that this particular ab-initio method/model of calculations is perhaps 

more applicable for quantum mechanical estimates of the equilibrium fractionation 

constants associated with boron isotope exchange in solutions. 

 

3.3.3  Ion pairing effects on 11-10KB 

Results obtained in various media: seawater, Mg-free seawater, 0.7 mol/kg 

H2O NaCl, 0.23 mol/kg H2O MgCl2 and 0.6 mol/kg H2O KCl, with total boron 

concentration BT = 0.01 mol/kg H2O at 25oC are illustrated in Fig. 3.4. 

The results obtained in Mg-free seawater are of special importance, as this 

media is widely used for calcite precipitation in various studies, including some 

significant boron isotope/pH calibration studies (Sanyal et al., 1996; Sanyal et al., 

2000; Sanyal et al., 2001). To estimate effects of the ion pairing between borate ion 

and Mg2+ it is best to compare the 11-10KB values obtained in MgCl2 media, Mg-free 

seawater and synthetic seawater, which are: 1.0270±0.0003(2σm); 

1.0261±0.0002(2σm) and 1.0270±0.0005(2σm), respectively. There is no statistical 

difference in 11-10KB between MgCl2 media and synthetic seawater; however there is a 

small difference between synthetic seawater and Mg-free seawater (Δ11-10KB = 

0.0009), which translates to 0.9‰ difference in boron isotope fractionation between 

boric acid and borate ions in aqueous solution.  

There is also a notable offset (Δ11-10KB = 0.0026 or 2.6‰) between 11-10KB 

values obtained in NaCl media and synthetic seawater: 1.0296±0.0004(2σm) and 

1.0270±0.0005(2σm), respectively.  
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Figure 3.4 – Boron isotope equilibrium constant (11-10KB) determined at 25oC 
in different media: synthetic seawater, Mg-free seawater, 0.6 mol/kg H2O 
KCl(*), 0.7 mol/kg H2O NaCl and 0.23 mol/kg H2O MgCl2. 

(*) denotes 
experimental data obtained in an earlier study (Klochko et al., 2006). 
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This would suggest that the boron isotope fractionation associated with the isotope 

exchange between boric acid and NaCl-borate ion pairs is larger than that between 

boric acid and all borate ion pairs combined in seawater. 

It is difficult to predict whether these effects would be propagated to the 

isotopic composition of a carbonate precipitated in Mg-free seawater or NaCl media, 

however these observations may help in data interpretation obtained in future 

calibration studies. Nevertheless, to avoid potential effects resulting from 

absence/presence of certain borate ion pairs in experimental calibration solutions, it is 

more advisable to use synthetic seawater media, which would closely mimic natural 

seawater conditions. 

 

3.4 Conclusions 

This study has demonstrated no significant effects of the polyborates on the 

boron isotope fractionation (11-10KB) between boric acid and borate ion in aqueous 

solutions at total boron concentrations ranging from 0.01 to 0.05 mol/kg H2O, which 

makes these concentrations safe to use in boron isotope calibration studies. However, 

polyborate effects may manifest themselves at higher concentrations (0.5 mol/kg 

H2O), at which point the effects could be contributed to the formation of the 

polyborate trimer and tetramer.  

Although, the 11-10KB values obtained in synthetic seawater at temperatures 9, 

15, 25 and 40oC are valuable for paleo-pH reconstructions using the boron isotope/pH 

proxy, lack of a trend in the data obtained below 25oC makes its interpolation to the 

intermediate temperatures difficult. 
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Analysis of the data obtained in various solution media suggests that there are 

potentially important effects on 11-10KB associated with the borate ion pairing with 

various seawater constituents: in particular with Mg2+ and Na+. One should be 

particularly careful in a choice of a media for the boron isotope calibration studies, as 

the effects of ion pairing may become significant enough to compromise the accuracy 

of the calibration. 

Within the range of possible environmental variations recorded in the current 

study, boron isotope distributions are not expected to change much in the ancient 

record even under extreme conditions.  This is problematic; however, as very 

different boron isotopic compositions have been found in some ancient deposits, in 

particular the Neoproterozoic cap carbonates, which have strongly negative δ11B 

values (Spivack and You, 1997; Kasemann et al., 2005; Kasemann et al., 2009).  

Given the lack of environmental effects in our controlled experiments, these unusual 

values might instead reflect wholesale diagenetic resetting of the signal or that our 

understanding of the boron isotopic composition of the ancient oceans is poor 

(Lemarchand et al., 2002; Pagani et al., 2005).  Thus until we have a better handle on 

long-term temporal variations in the δ11B of ocean proxies we may only be able to 

interpret stratigraphic patterns in sedimentary successions in terms of relative (but 

uncalibrated) changes in pH. 
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CHAPTER 4 - RE-EVALUATING BORON SPECIATION IN BIOGENIC 

CALCITE AND ARAGONITE USING 11B MAS NMR 

 
ABSTRACT: Understanding the partitioning of aqueous boron species into marine 

carbonates is critical for constraining the boron isotope system for use as a marine pH 

proxy.  Previous studies have assumed that boron was incorporated into carbonate 

through the preferential uptake of tetrahedral borate B(OH)4
-. In this study we revisit 

this assumption through a detailed solid state 11B magic angle spinning (MAS) 

nuclear magnetic resonance (NMR) spectroscopic study of boron speciation in 

biogenic and hydrothermal carbonates.  Our new results contrast with those of the 

only previous NMR study of carbonates insofar as we observe both trigonal and 

tetrahedral coordinated boron in almost equal abundances in our biogenic calcite and 

aragonite samples.  In addition, we observe no strict dependency of boron 

coordination on carbonate crystal structure. These NMR observations coupled with 

our earlier re-evaluation of the magnitude of boron isotope fractionation between 

aqueous species suggest that controls on boron isotope composition in marine 

carbonates, and hence the pH proxy, are more complex that previously suggested. 
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4.1 Introduction 

 Insofar as aqueous boron species are isotopically distinct, their incorporation 

into marine carbonates is important to our understanding of the boron isotope system 

as a proxy for ancient ocean pH.  Boron speciation in aqueous solution is well 

established (Dickson, 1990) with the equilibrium distribution of boric acid [B(OH)3] 

and borate ion [B(OH)4
-] being strongly pH dependent: 

B(OH)3 + H2O  B(OH)4
- + H+      (4.1) 

The stoichiometric equilibrium constant for reaction (4.1) is a function of salinity, 

temperature and pressure. At a salinity 35, 25oC  and 1 atm total pressure, pK*B = 

8.597 on the total proton concentration scale (Dickson, 1990). 

The isotopic equilibrium between these two species in aqueous solution is 

characterized by the exchange reaction: 

10B(OH)3 + 11B(OH)4
-  11B(OH)3 + 10B(OH)4

-    (4.2) 

Paleo-pH studies of marine carbonates (Vengosh et al., 1991; Hemming and 

Hanson, 1992; Spivack et al., 1993; Gillardet and Allègre, 1995; Sanyal et al., 1995; 

Sanyal et al., 1997; Palmer et al., 1998; Pearson and Palmer, 1999; 2000; Lemarchand 

et al., 2002; Palmer and Pearson, 2003; Hönisch and Hemming, 2005; Pelejero et al., 

2005, etc.) have most commonly used an isotope equilibrium constant (11-10KB = 

1.0194 at 25oC) for reaction (4.2) that was estimated, over 30 years ago, using 

reduced partition function calculations from spectroscopic data on molecular 

vibrations (Kakihana et al., 1977). This constant has been the subject of recent debate, 

largely based on contrasting interpretations of results from pH-controlled calibration 

studies of cultured coral, foraminifera and inorganic calcite (Sanyal et al., 1996; 
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Sanyal et al., 2000; Sanyal et al., 2001; Hönisch et al., 2004). Whereas control studies 

demonstrated a distinct relationship between the δ11B of precipitated carbonates and 

the pH of aqueous solutions, carbonate values were systematically depleted in 11B 

relative to the expected value for aqueous B(OH)4
-, believed to be primarily boron 

species incorporated into the mineral lattice (Fig. 4.1).  It has been argued (Hönisch 

and Hemming, 2004; Hönisch et al., 2008) that because these calibration 

measurements broadly mirror the “shape” of the Kakihana’s curve, a constant offset 

at different pH may be used to empirically correct δ11B values for each of the studied 

species. While this may be a possible solution, it does not address the underlying 

mechanism(s) responsible for the 11B depletion. Since all imaginable processes (e.g., 

boric acid incorporation, metabolic seawater modification at the site of calcification, 

etc.) would result in 11B enrichment in carbonate relative to aqueous borate, the only 

logical explanation is that the magnitude of 11-10KB was underestimated (Zeebe et al., 

2003).   

Subsequent studies, including new ab-initio calculations and semi-empirical 

modeling, as well as precipitation and adsorption experiments have focused on re-

evaluating the magnitude of the boron isotope equilibrium constant (Palmer et al., 

1987; Oi et al., 1991; Sanyal et al., 2000; Sonoda et al., 2000; Oi, 2000a; 2000b; Oi 

and Yanase, 2001; Liu and Tossell, 2005; Pagani et al., 2005; Sanchez-Valle et al., 

2005; Zeebe, 2005).  However, until recently there have been no experimental 

measurements of 11-10KB in aqueous solutions.  In our earlier publications (Byrne et 

al., 2006; Klochko et al., 2006), we used a spectrophotometric technique on  
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Figure 4.1 – δ11B of B(OH)4
- in seawater based on theoretical 11-10KB  = 1.0194 

(Kakihana et al., 1977) and empirical 11-10KB  = 1.0272 ± 0.0006 (2 σ) (Klochko et al., 
2006); and the results of the inorganic calcite precipitation experiments (Sanyal et al., 
2000), cultured Orbulina universa and Globigerina sacculifer foraminifera species 
(Sanyal et al., 1996; Sanyal et al., 2001) and cultured scleractinian corals Acropora 
nobilis and Porites cylindrica (Hönisch et al., 2004). The pHNBS values from (Sanyal 
et al., 1996, 2000, 2001) were recalculated to fit the seawater pH scale (pHSWS= 
pHNBS - 0.14) (cf., Hönisch et al., 2004). The gray lines represent the polynomial best 
fits through the δ11B data-points from precipitation experiments. 
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isotopically labeled boric acid solutions to determine the magnitude of 11-10KB, which 

was shown to be ca. 1.0272 (± 0.0006, 2σ) regardless of ionic strength or boron 

concentration.  Using the new empirical constant, the boron isotope composition of 

cultured carbonates in the pH controlled experiments was shown to be enriched in 11B 

relative to the expected δ11B composition of borate (see Fig. 4.1). 

 To explain the observed 11B enrichments, we suggested two potential 

mechanisms (Klochko et al., 2006). First, δ11B of biological carbonates could be 

affected indirectly via pH adjustment at the site of calcification. Second, boron 

partitioning in carbonates during mineralization might result in the non-equilibrium 

enrichment of 11B in the experimental carbonates.  Here we suggest that 11B enriched 

boric acid may be incorporated into the carbonate lattice along with borate; hence the 

overall boron isotopic composition of the carbonate would be higher than expected 

from exclusive borate incorporation (see Discussion).  

Earlier publications, however, suggested that the charged tetrahedral borate 

B(OH)4
- species would be preferentially attracted to mineral surfaces, substituting for 

the charged carbonate ion (Palmer et al., 1987; Spivack and Edmond, 1987; 

Hemming and Hanson, 1992).  To evaluate this hypothesis, Sen et al. (1994) 

employed nuclear magnetic resonance (NMR) spectroscopy to quantitatively measure 

the relative abundance of boron species in synthetic carbonates precipitated from 

similar starting solutions, as well as some biogenic carbonates.  These authors 

concluded from their NMR data that aragonite contained only tetrahedral-coordinated 

borate ion, whereas in calcite, whether natural, synthetic, or the product of a high 

temperature (~400oC) phase transformation, over 90% of boron was in trigonal 
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coordination.  The inferred species dependence of boron uptake into the crystal 

structure of carbonates is remarkable insofar as the larger tetrahedral anion appeared 

to substitute into the smaller lattice sites in aragonite, whereas the smaller trigonal ion 

substituted into larger lattice sites in calcite.  Even more interesting was the 

observation that the δ11B of these minerals were similar (Hemming and Hanson, 

1992).  

To explain this phenomenon it was later suggested that there may be a 

structural barrier in calcite that causes a quantitative change from tetrahedral to 

trigonal coordination during incorporation without significant isotopic fractionation 

(Hemming et al., 1995; Hemming et al., 1998).  If correct, this supports the view that 

only borate ion, B(OH)4
-, is taken up by carbonate minerals from aqueous solutions.  

However, the variability of δ11B in calcite samples from later experiments (Sanyal et 

al., 1996; Sanyal et al., 2000; Sanyal et al., 2001; Hönisch et al., 2004) and the 

observation that aragonite is consistently enriched in 11B relative to calcite over a 

range of pH are difficult to reconcile with the NMR results (Sen et al., 1994). 

In this study we re-investigate borate speciation in biogenic and hydrothermal 

carbonates using solid state 11B magic angle spinning (MAS) NMR spectroscopy.  

Our new results contrast strongly with those of Sen et al. (1994) as we observe both 

trigonal and tetrahedral coordinated boron in almost equal abundances in the biogenic 

calcite and aragonite samples.  Moreover, we observe no strict dependency of boron 

coordination on the carbonate crystal structure. 
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4.2 Methods 

4.2.1 Samples 

 Two scleractinian coral samples, Diploria strigosa and Porites sp., originally 

collected for a detailed study of carbon and nitrogen isotopes (Jabo, 2001), were 

obtained for the NMR experiments.  The Diploria  strigosa sample was collected 

from Three Hills Shoal (depth of 3-4.5 m) in Bermuda, and the Porites sp. sample 

was collected from Pickles Reef (depth 4.5-6 m) in Florida.  Organic components (i.e. 

coral animal, algal symbionts, and endolithic algae) within these corals were removed 

by physical separation with a Waterpik® followed by an overnight treatment with 1M 

NaOH.  Samples were then ultra-sonicated in Milli-Q water (Jabo, 2001).  Between 

100-200 mg of each prepared coral was isolated with a drill and fragments crushed to 

a fine powder in an agate mortar with pestle for our 11B NMR analysis. X-ray 

diffraction (XRD) analyses indicated that aragonite was the only mineral present in 

both samples. 

 A foraminifera sample of Assilina ammonoides was obtained from the Reef 

Indicators Lab at the College of Marine Sciences, University of South Florida, St. 

Petersburg. This sample was collected from Tutum Bay off the coast of Papua New 

Guinea. The sample was stored and shipped in ethanol, which was removed by 

repeated sonication with Milli-Q water.  After drying, the sample was crushed to a 

fine powder in an agate mortar with pestle for 11B NMR analysis. XRD analysis 

identified only calcite in this sample.  

 For comparative purposes, we analyzed a well characterized carbonate sample 

(#3651-0908) (Ludwig et al., 2006) from the Lost City Hydrothermal Field carbonate 
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chimneys (Kelley et al., 2001; Kelley et al., 2005). The Lost City carbonate chimneys 

are remarkable structures that form rapidly during mixing of Ca2+ bearing alkaline 

fluids with ocean water. Based on the chemistry of fluids emitted from active 

structures in the vicinity, the source water for the sample #3651-0908 had pH > 10 at 

temperatures near 60oC (Ludwig et al., 2006). The sample was collected at a depth of 

844 m and currently contains a mixture of calcite and high magnesium calcite, but no 

aragonite.   

 

4.2.2 X-ray diffraction 

X-ray diffraction analyses of the samples were performed with a Rigaku 

RAXIS/RAPID diffractometer with an Ultrax-18, 18kW rotating anode X-ray 

generator and a hemi-cylindrical image-plate detector at the Carnegie Institution for 

Science.  Twenty minute exposures were taken using monochromatic, Mo Kα 

radiation. Samples were oscillated over a 40° range to average grain orientations. 

Crystal structure of the biogenic samples was established via their characteristic 

diffraction patterns.  In either case, the calcite and aragonite samples are determined 

to be 99% mineralogically pure. 

 

4.2.3 11B MAS NMR spectroscopy  

11B MAS NMR analyses were performed at the W. M. Keck solid-state NMR 

facility at the Geophysical Laboratory, Carnegie Institution for Science. The 

instrument used in this study is a three channel Varian-Chemagnetics Infinity solid-
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state NMR spectrometer. The static field strength of the magnet is ~ 7.05 T, a lower 

field than the system used by Sen et al. (9.4 T). As discussed below, peak positions, 

width and shape depend on the field dependence of the quadrupolar interaction.  The 

Larmor frequency of 11B in this static magnetic field is 96.27 MHz.  For the current 

experiments, 100-200 mg of powdered samples were placed in 5mm diameter 

zirconia rotar cells. The sample was spun at a magic angle of 54.7o at a frequency 

(ωr/2π) of 12 kHz. All experiments employed an excitation RF pulse that corresponds 

to a 10° tip angle with RF power (ω1/2π) of 56 kHz; high power RF decoupling 

(ω1/2π =65 kHz) was applied during signal acquisition to mitigate the effects of 1H-

11B dipolar coupling.  The recycle delay between acquisitions was 0.5 seconds and a 

total of 300,000 acquisitions were sufficient to resolve the characteristic borate 

spectral features.  All spectra are referenced to the resonant frequency of boron 

trifluoride diethyl etherate defined as equal to 0 ppm. 

 

4.3 Results  

Solid-state 11B NMR spectroscopy is particularly well suited to provide 

fundamental information about the speciation of boron in carbonates. Acknowledging 

that the primary audience for this study are paleo-oceanographers, a brief discussion 

about 11B NMR is warranted. The 11B nucleus is a spin 3/2 particle that has both a 

magnetic dipole and electric quadrupole moment.  The presence of an electric 

quadrupole moment means that the nucleus will interact strongly with the local 

electric field surrounding the nucleus. This interaction has a significant effect on the 

observed spectrum. The strength of local electric field gradient (EFG) is described by 
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a second rank tensor with principal axis elements Vii (i = x, y, and z) (Cohen and 

Reif, 1957).  The symmetry of the EFG manifests predictable and large effects in the 

spectral line shape of 11B species in the solid state and is quantified by the asymmetry 

parameter, η [η = (Vxx – Vyy)/Vzz)]. In the case of perfect radial symmetry of the EFG 

around the quadrupolar nucleus (Vxx = Vyy) η = 0, and in the case maximum deviation 

away from cylindrical symmetry, η = 1. In the case where the EFG is perfectly 

spherically symmetric around the nucleus, Vxx=Vyy=Vzz=0 and the quadrupolar 

interaction is nonexistent (i.e., the spins respond to radiofrequency pulses through 

their magnetic dipole interaction only). Static NMR experiments show that the shape 

of the resultant powder patterns is strongly affected by the value of η. In the case of 

borate salts and boric acid, the BO3 species have a nearly perfect trigonal planar 

distribution of oxygen atoms surrounding the 11B nucleus, consequently η is observed 

to be nearly equal to zero (note that if BO3 groups are covalently bonded to other 

cations through bridging oxygens, then a significant distortion of the EFG away from 

trigonal symmetry will occur). The BO4 species have a tetrahedral oxygen 

arrangement that approaches nearly perfect cubic symmetry; thus, a minimal 

quadrupolar interaction for these borate species is expected and observed.   

In the present experiments, powder samples were spun rapidly at the magic 

angle, 54.7°, during signal acquisition.  Magic angle sample spinning (MAS) is 

performed in order to average out chemical shielding anisotropy, some of the 

quadrupolar broadening, as well as to reduce broadening associated with proton 

dipolar coupling (thus enhancing the effectiveness of RF decoupling). In the case of 
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Table 4.1 – 11B MAS NMR parameters, where δiso – isotropic chemical shift, expressed in parts per million; Cq – nuclear quadrupolar 
coupling constant, expressed in MHz; LB – line broadening, expressed in Hz; η − EFG asymmetry parameter. 
 

 

 

 

 

 

 

 

 

 

BO3 BO4 Sample Mineralogy δiso
 Cq LB η δiso Cq LB η

Coral Diploria strigosa 100% aragonite 16.8 2.5 469.9 0 2.54 0 - - 
Coral Porites sp. 100% aragonite 18.3 2.5 361.5 0 2.0 0 - - 
Foram Assilina  
ammonoides 100% calcite 19.3 2.6 455.9 0 1.67 0 - - 

Lost City carbonate 
#3651-0908 

calcite/ 
Mg-calcite - - - - 2.85 0 - - 

Boric acid standard -- 19.5 2.5 114.7 0 - - - - 
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the quadrupolar interaction, rapid MAS at 54.7°C cannot completely average out the 

fourth rank tensorial terms of the quadrupolar Hamiltonian (Ganapathy et al., 1982), 

although it does afford significant line narrowing compared to static NMR improving 

the signal to noise.  This means that even with fast MAS one can readily distinguish 

between boron sites with dramatically different EFG symmetries (e.g., BO3 and BO4). 

In Figure 4.2, the 11B MAS NMR spectrum (with 1H decoupling) is presented 

for a pure B(OH)3 standard, revealing the characteristic two-peak MAS quadrupolar 

powder pattern for a single boron site with a radially symmetric EFG. This single site 

is adequately fit with η set equal to 0, a quadrupolar coupling parameter, Cq, set to 

2.5 MHz, an isotropic shift, δiso set to 19 ppm, and a modest amount of line 

broadening, 140 Hz (Massiot et al., 2002). In Figures 4.3 (a-c), 11B MAS NMR 

spectra are presented for three natural biological specimens of carbonate, including 

calcite (foraminifera Assilina ammonoides, Fig. 4.3a) and aragonite (corals Diploria 

strigosa, Fig. 4.3b, and Porites sp., Fig. 4.3c).  In each case, satisfactory fits of the 

spectra are achieved with two boron species, BO3 fit with η fixed at 0 and adjustment 

of the line broadening and a BO4 species fit with a single Lorentzian line, assuming 

that Cq = 0. Slightly better fits (i.e. achieving lower residuals) are achievable if a 

mixed Lorentzian/Gaussian broadening function is used.  For the current purposes, 

however, the original fits are sufficient to show that each of these biological 

carbonates contain mixed borate species with a slight predominance of BO4 over 

BO3.  The various NMR parameters as well as species abundances are presented in 

Table 4.1. 
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Figure 4.2 – 11B MAS NMR spectrum of boric acid standard, B(OH)3. A single 
boron site is observed that exhibits a classic MAS quadrupolar power pattern 
resulting from the inability of spinning at 54.7° to average out fourth rank tensorial 
terms of the quadrupolar Hamiltonian.  A simulation (fit) of this spectrum is 
presented by the bold line spectrum where the following parameters were used, η = 
0.0, CQ = 2.470 Mhz, and δiso = 19 ppm. These parameters are consistent with a 
highly symmetrical trigonal BO3 site. Boric acid B(OH)3 (ACS reagent, ≥ 99.5% 
pure) obtained from Sigma-Aldrich was used as a standard in this study. 
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Figure 4.3 - 11B MAS NMR of three 
biogenic carbonates revealing that 
borate is present in both trigonal and 
tetrahedral coordination: (a) calcite 
from the foraminifera (Assilina 
ammonoides) with BO3 (~46%) and 
BO4 (~54%); (b) aragonite from the 
coral (Diploria strigosa) with BO3 
(~36%) and BO4 (~64%); and (c) 
aragonite from the coral (Porites sp.) 
with BO3 (~36%) and BO4 (~64%). 
The total fit is shown as a dotted line; 
the individual sites are shown in bold 
black.  The difference between the 
spectrum and the fit is in black. The 
acquired spectrum is in black and 
offset vertically from the total fit. 
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To test whether the solution pH has any effect on the borate speciation in the 

carbonate structure, we analyzed the Lost City carbonate sample which precipitated 

from solutions of pH > 10 (Ludwig et al., 2006). The 11B MAS NMR spectrum for 

this sample is presented in Figure 4.4 where only BO4 was detected.  For the present 

discussion, the presence of essentially pure BO4 in this hydrothermal calcite is 

important insofar as it suggests that there exists no structural barrier to the 

incorporation of the larger tetrahedral borate species in calcite, as was previously 

suggested (Sen et al., 1994; Hemming et al., 1995; Hemming et al., 1998).  We 

acknowledge that a rapid precipitation rate, as expected for this hydrothermal 

chimney sample, may favor the incorporation of the dominant species in solution, 

even if it is less stable in the crystalline structure. 

In the present experiments, high power RF 1H decoupling was applied during 

the signal acquisition phase based on the assumption that boron is incorporated into a 

growing carbonate as B(OH)3 or B(OH)4
- (i.e., analogous to recent observations that 

HCO3
- groups can be incorporated into growing carbonate as detected in a recent 

solid state NMR study) (Feng et al., 2006).  In the case of spin 1/2 nuclei, 1H 

decoupling provides greater spectral resolution by reducing the magnitude of this 

homogeneous source of line broadening.  In the case of proton coupling to 

quadrupolar nuclei (e.g., 11B), however, there is an additional issue; in addition to 

broadening there is also distortion of the rotational powder pattern due an 

orientational dependence on 1H-11B coupling interaction that is moderated by the fast 

MAS.  This combination of line broadening and spectral distortion is clearly 
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Figure 4.4 – 11B MAS NMR of a deep sea serpentinite carbonate from the Lost City 
hydrothermal complex and precipitated at high pH.  The entire spectrum is adequately 
fit with single Lorentzian line with similar isotropic shift to that of other BO4 groups 
in calcite and aragonite. 
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manifested in Figure 4.5 where B(OH)3 MAS NMR without 1H decoupling is 

compared with the same experiment with 1H decoupling. 

Similarly, the same orientational distortion of the “BO3” MAS powder pattern 

is clearly observed when comparing the borate spectra of the carbonates (e.g., Porites 

sp.) with and without 1H decoupling, revealing the presence of neighboring H+ atoms 

(Fig. 4.6).  There is, however, a spectral distortion of a different sort that provides 

additional information.  Without decoupling, the “BO3” intensity appears enhanced 

relative to the “BO4” intensity when normalized to the spectrum obtained with 

decoupling.  The most likely explanation for this distortion is that the “BO4” groups 

are associated with more hydrogen atoms than the BO3 groups, and hence experience 

a more intense dipolar perturbation leading to greater line broadening.  These results 

suggest that additional experiments might be performed to gain better insights on the 

true stoichiometry of the protonated borate structures in these carbonates.  It should 

also be noted that even with 1H RF decoupling, the BO3 resonance features in the 

biogenic carbonates are broader than that of the B(OH)3 standard (Table 4.1).  This 

residual broadening may be due to inhomogeneous effects (e.g., slight positional 

disorder in the anionic site) or may reflect the presence of paramagnetic species in the 

natural carbonates (e.g., Mn2+). 

The new measurements reveal the presence of both BO3 and BO4 groups in 

both aragonite and calcite.  In contrast, Sen et al. (1994) concluded, from their spectra 

analysis, that BO3 groups are predominantly incorporated into calcite. Inspection of 

their data confirms the presence of a small amount of BO4 groups in their calcite  
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Figure 4.5 – A comparison of 11B MAS NMR spectra of boric acid, B(OH)3: (a) 
acquired without high power RF 1H decoupling; (b) acquired with high power RF 1H 
decoupling (ω1/2π = 75 kHz).  Note that, without decoupling, one observes both line 
broadening and spectral distortion. 
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Figure 4.6 – An overlay of 11B MAS NMR spectra of the coral Porites sp., in bold 
black: acquisition with high power RF 1H decoupling.  In black: acquisition without 
RF decoupling. The apparent increase in BO3 intensity in the absence of high power 
RF 1H decoupling suggests greater H coordination in the case of the BO4 groups. 
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sample.  It is noteworthy, however, that the calcite 11B NMR spectrum acquired by 

Sen et al. (1994) differs significantly from the spectral signature of BO3 groups that 

we observe in this study.  Notably, Sen et al. (1994) report a η of up to 0.67 and a Cq 

on the order of 3.0 MHz.  These values are vastly different from what is expected and 

observed for the trigonal B(OH)3 and indicate that the symmetry of the EFG 

surrounding 11B in their calcite sample is not radially symmetric.  Sen et al. (1994) 

acquired their data at a static magnetic field of 9.4 T, whereas the present experiments 

were acquired at ~7.05 T.  In order to compare the calcite spectrum of Sen et al. 

(1994) with the one we obtained of the foraminiferal calcite (Fig. 4.3a), we simulated 

the Sen et al. (1994) spectrum as it would appear at ~7.05 T.  This comparison is 

presented in Figure 4.7 revealing that the boron site detected by Sen et al. (1994) is 

completely different from the present observations for the foraminiferal calcite. 

Clearly, we are observing different borate structures.  A clue to what Sen et al. 

(1994) likely detected may be found in an extensive theoretical analysis of boric acid 

adsorption on humic acids (Tossell, 2006).  One of the species for which Tossell 

(2006) calculated NMR and NQR properties was the corner-sharing borate carbonate 

complex, B(OH)2CO3
-. His calculations yield a theoretical value for η of 0.54 and a 

Cq of 3.15 MHz. Not surprisingly, covalent bonding of the B(OH)3 group to the 

CO3
2- anion significantly distorts the trigonal arrangement of oxygen atoms and the 

EFG far from cylindrical symmetry.  In Figure 4.8, we present a simulation of the 11B 

MAS spectrum for B(OH)2CO3
- along with the boron site observed in calcite by Sen 

et al. (1994).   
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Figure 4.7 – A comparison of the 11B MAS NMR spectrum of foraminifera calcite  
(this study, where both BO3 and BO4 are observed, solid line) with a simulation (for 
an external magnetic field of 7 Tesla) of the boron site previously observed and 
reported in synthetic calcite (at an external magnetic field of 9.4 Tesla) (Sen et al., 
1994, dotted line).  The enormous differences in peak shape results from large 
differences in the symmetry of the electric field gradient (η) as well as in the 
magnitude of the quadrupolar coupling parameter (CQ). 
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Figure 4.8 – A comparison of simulations of: (a) the boron site previously observed 
and reported in synthetic calcite (at an external magnetic field of 9.4 Tesla) (adopted 
from Sen et al., 1994); (b) the MAS quadrupolar powder pattern predicted for corner 
linked mixed borate-carbonate species B(OH)2CO3

- (adopted from Tossell, 2006). 
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The spectra of these two sites are very similar supporting the previous suggestion by 

Tossell (2006) that Sen et al. (1994) had actually detected B(OH)2CO3
- impurities 

incorporated in calcite.  Intriguingly, Sen et al.’s (1994) study likely identified boron 

incorporation as B(OH)2CO3
- in their synthetic calcite, a species not observed in 

carbonate samples analyzed in this study. 

4.4 Discussion 

The principle goal of using boron isotopes in carbonates is to accurately 

predict the pH of ambient solutions.  The equation relating solution pH, boron 

isotopic composition of boron species incorporated in the carbonate mineral (δ11BBSp) 

and of seawater (δ11Bsw = 39.5‰) is expressed as: 

⎟
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which depends on three key variables: 1) the boron isotope exchange constant 

between borate ion and boric acid in solution - 11-10KB, 2) the boron species 

partitioning into carbonate, which ultimately determines δ11BBSp, and 3) the boric acid 

stoichiometric dissociation constant – pK*
B.   In our earlier publication (Klochko et 

al., 2006) we address the first variable; in this study we address the second, in 

particular the deviations in δ11B of biogenic and inorganic precipitates from empirical 

calibration studies (Sanyal et al., 1996; Sanyal et al., 2000; Sanyal et al., 2001; 

Hönisch et al., 2004).  

Three key observations of the culture data require explanation.  First, with the 

exception of a single data point, all carbonates precipitated under controlled pH 

conditions were enriched in 11B relative to seawater borate, as characterized by the 
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larger fractionation constant (Klochko et al., 2006) (Fig. 4.1).  Second, the 11B 

enrichments are more pronounced at lower pH; and third, δ11B values between 

calcifying species are variable.  Since metabolic and inorganic processes may 

differentially affect boron isotope distributions in carbonates, we address biogenic 

and inorganic precipitates separately. 

4.4.1 Biologically-driven effects 

Boron isotope redistribution during biosynthesis of carbonate is likely, given 

that biomineralizing organisms may actively modify seawater composition (carbonate 

ion concentration and saturation state) at the site of calcification (Erez, 2003; Weiner 

and Dove, 2003).  Saturation is usually maintained by seawater isolation and active 

modification, and is usually accompanied by elevation of both pH and alkalinity in 

the calcifying fluid (Weiner and Dove, 2003). Current models suggest that Ca2+, CO2, 

and other seawater constituents enter the site of calcification through vacuolization in 

foraminifera (Erez, 2003), whereas in corals, endergonic enzymatic reactions that 

exchange protons for Ca2+ result in higher pH at the site of calcification (Allemand et 

al., 1998; Cohen and McConnaughey, 2003). Micro-sensor studies indicate that the 

pH of the calcifying fluid in the foraminifera G.sacculifer rises to as high as 8.6 in 

daylight (Jorgensen et al., 1985). Similarly, pH in the symbiotic coral Galaxea rises 

from 8.2 to 8.5 at the polyp surface and further to 9.3 in the calcifying fluid (Al-

Horani et al., 2003). Unfortunately, it is not known whether there is a preference for 

neutral B(OH)3
0 or charged B(OH)4

- during boron uptake into the calcifying site or if 

there is simply a bulk uptake of seawater boron species. In either case, if the pH of 

the calcifying fluid is higher than that of seawater, re-equilibration between 
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B(OH)3
0/B(OH)4

- must occur upon their introduction in these higher pH conditions. 

Hence, reaction (1) shifts to the right to satisfy chemical equilibrium. As a result, 

some borate in the calcifying fluid could be formed from the dissociation of boric 

acid and thus bear its 11B enriched isotopic signature.  This effect would be more 

pronounced at lower ambient seawater pH because the pH adjustment to reach 

supersaturation would be larger, hence requiring the conversion of more boric acid to 

borate ion (Fig. 4.1).  

This proposed mechanism, however, cannot explain significant differences in 

δ11B data between various cultured organisms (the so-called “species effect”) (Sanyal 

et al., 1996; Sanyal et al., 2001; Hönisch et al., 2004). In this analysis, we accept the 

literature data at face value, although the accuracy of the NTIMS (negative ion 

thermal ionization mass spectrometry) approach has been recently questioned (Foster, 

2008) given the differences in ionization characteristics between foraminiferal 

carbonate (containing trace organic material) and the normalizing standard solution 

(boric acid + boron free seawater). Although relative differences in δ11B may be 

reconstructed using NTIMS with some degree of confidence, the 4‰ range reported 

from different laboratories for the same species of planktonic foraminifera highlights 

the difficulty of generating accurate δ11B data using this approach (see Foster, 2008). 

In addition to inter-species δ11B variations and enrichments, 11B enrichments 

are observed in inorganic calcite relative to aqueous borate, where biological effects 

would not be present (Fig. 4.1). This observation suggests that inorganic processes, 

likely associated with the complexation of boron species during carbonate 

precipitation, may also result in boron isotope redistribution.  
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4.4.2 Inorganic effects  

Inorganic effects may manifest themselves during the complex mechanism of 

boron incorporation from solution to its position in the carbonate structure (Fig. 4.9). 

For example at the dissociation/isotope exchange stage (Stage I), pH-driven 

distribution of the B(OH)4
-
 and B(OH)3 species as well as the isotope exchange 

between these species occurs in solution. This stage, which defines the isotopic 

composition of both species in solution at a set pH, is fairly well characterized.  The 

subsequent steps in the boron incorporation pathway into the carbonate are less well 

defined.  It has been proposed that B(OH)4
- species preferentially adsorb on to the 

carbonate surface; subsequent coordination change from BO4 to BO3 could then occur 

during incorporation into the growing carbonate, hence preserving the solution pH 

derived 11B isotopic abundance (Sen et al., 1994; Hemming et al., 1998).  

Boron incorporated into carbonate minerals precipitated inorganically under 

pH-controlled conditions (Sanyal et al., 2000) appears to carry an isotopic signature 

close to the aqueous borate, supporting the idea that borate is preferentially 

incorporated into the carbonate. Nevertheless, at lower pH there appears to be a 

progressive enrichment in 11B relative to aqueous borate.  For example, the positive 

offset between δ11B of inorganic calcite (Sanyal et al., 2000) and aqueous borate 

(Klochko et al., 2006) is ~ 4, 2 and 1‰ at pH = 7.6, 8.2 and 8.5, respectively (Fig. 

4.1).  As boric acid (B(OH)3) becomes the predominant boron species in seawater at 

pH < 8.587 (Dickson, 1990), and its relative concentration increases with decreasing 

pH, it is reasonable to assume that its contribution to the incorporation of boron into 
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the carbonate should also increase leading to larger deviations of the δ11B in 

carbonates from the borate curve.  

Based on this 11B MAS NMR study of three modern biogenic carbonates, we 

observe a substantial presence of BO3 (36-46%) in both aragonite and calcite 

minerals.  If all the boric acid were to come directly from the seawater, then the 

isotopic composition of studied carbonates should be close to that of seawater (~ 39.5 

‰), which is inconsistent with the δ11B data available for the natural and synthesized 

carbonates.  This suggests that changes in coordination of the boron species indeed 

occur during carbonate precipitation (Sen et al., 1994; Hemming et al., 1998). 

It is interesting to consider whether such a coordination change might occur 

through an intermediate phase, such as hypothesized by Tossell (2006).  In that study, 

it was proposed that boron incorporation does not occur by simple adsorption of the 

borate species to the carbonate surface.  Instead, chemical reactions between HCO3
- 

and either B(OH)3 or B(OH)4
- take place on carbonate surfaces during the early 

growth phase (Stage II) (Tossell, 2006). During this “chemosorption” stage, 

B(OH)2CO3
- isomers of either trigonal (oxygen corner-sharing) or tetrahedral (oxygen 

four-ring) coordination form on the surface (Fig. 4.9). 

 As the free energy of formation of these two isomers are very similar, the 

likelihood of either reaction occurring will essentially be equal.  During Stage III, the 

B(OH)2CO3
- isomers, once in the carbonate structure, may break down to the simpler 

forms and coordination of BO3 or BO4, which could explain why we detect only 

simple BO3 and BO4 groups in natural carbonates by NMR.  
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Figure 4.9 – Proposed stage-model of boron incorporation into a carbonate. 
Schematic representations of molecular structures are adopted from Tossell (2006).  
Complete reactions for the processes graphically presented in the model are the 
following: 

(1) B(OH)3 + H2O  B(OH)4
- + H+ 

(2) 10B(OH)3 + 11B(OH)4
-  11B(OH)3 + 10B(OH)4

- 
(3) B(OH)3 + HCO3

-  B(OH)2CO3
- + H2O 

(4) B(OH)4
- + HCO3

-  B(OH)2CO3
- +  H2O + OH- 

(5) B(OH)2CO3
- + H2O  B(OH)3 + HCO3

- 
(6) B(OH)2CO3

- + H2O + OH-  B(OH)4
- + HCO3

- 
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Although, B(OH)2CO3
- isomer formation was investigated (McElligott and 

Byrne, 1998; Tossell, 2006), the existence of these isomers has never been 

demonstrated.  Nevertheless, it is interesting to note that the 11B MAS NMR spectra 

of the synthetic calcite analyzed by Sen et al. (1994) is consistent with the simulated 

spectra of the oxygen-corner-sharing B(OH)2CO3
- species (Tossell, 2006) (Fig. 4.8).  

The rate at which Sen et al.’s synthetic calcite was precipitated may have been fast 

enough that the B(OH)2CO3
- anion was incorporated directly whereas, in the case of 

biogenic calcite, this species is hydrolyzed prior to precipitation (Stage III).  While 

speculative, the study of Tossell (2006) suggests that any of the reactions during 

Stages II and III of boron incorporation in carbonate minerals could result in boron 

isotope redistribution and are most likely to determine the ultimate bulk boron 

isotopic composition observed in carbonates. 

 

4.5 Conclusions 

Based on our 11B MAS NMR study of three modern biogenic carbonates: two 

coral aragonites and one foraminiferal calcite, we find no evidence for a strong 

dependency of boron coordination on crystal structure.  Rather, we observe close 

similarity between these carbonate samples in terms of the relative proportion of 

boron species, with BO3 and BO4 groups representing roughly 36-46% and 54-64%, 

respectively. Boric acid incorporation may contribute to the 11B enrichment observed 

in inorganic and biogenic precipitated carbonates, even more so at lower pH, but it is 

unlikely that all the BO3 coordinated species detected in calcite and aragonite of our 

NMR study could come directly from seawater. The observed BO3/BO4 inventory in 
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these minerals is likely the product of some reconstructive surface processes 

occurring during mineralization, which might involve boron isotope fractionation.  

Together, these NMR results and our earlier experimental measurements of 11-

10KB in aqueous solutions (Byrne et al., 2006; Klochko et al., 2006) indicate that the 

controls on the boron isotope composition in biological marine carbonates are more 

complex that previously suggested.  We believe that additional testing of the proxy is 

warranted prior to its further application in paleoceanographic research.  In this 

regard we are presently conducting pH controlled inorganic precipitation experiments 

(e.g., Kim et al., 2006) to quantitatively evaluate boron speciation and isotope 

distribution in carbonates, which should provide more rigorous constraints on the 

system. 

 

 

 

 



 

 105

CHAPTER 5 - THE INORGANIC EFFECTS OF PH CONTROLLED 

PRECIPITATION OF ARAGONITE ON BORON ISOTOPIC 

COMPOSITION AND SPECIATION IN CARBONATES 

 

5.1 Introduction 

The application of boron isotopes in carbonate to estimate pH and pCO2 of 

ancient oceans relies on the three main proxy conditions, including 

1) The pH dependent speciation of dissolved boron, which is governed by the 

boric acid dissociation constant (pKB*), 

2) Isotope exchange between aqueous boric acid B(OH)3
o and borate ions 

B(OH)4
- with distinctly lighter isotopic compositions relative to boric acid, 

controlled by the boron isotope fractionation constant (11-10KB), and  

3) The preferential incorporation of borate ion into both inorganic and biogenic 

carbonates without further fractionation. 

In this regard, both the boric acid dissociation constant (pKB*) and boron 

isotope fractionation constant (11-10KB) have been experimentally constrained 

(Dickson, 1990; Klochko et al., 2006, respectively).  However, the partitioning of 

boron species in carbonates and the magnitude of isotope fractionation associated 

with the incorporation of boron as either boric acid or borate remains largely 

unresolved. 

To create working curves for pH estimates from δ11B measurements of 

inorganic carbonate, several boron precipitation studies have been conducted across a 
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range of set pH conditions (Sanyal et al., 1996; Sanyal et al., 2000; Sanyal et al., 

2001; Hönisch et al., 2004).  Notably, the boron isotopic compositions of both 

synthetic and natural carbonates obtained in those studies roughly follow a pH-

dependent trend, but the absolute values are variably enriched in 11B relative to those 

expected for borate ion at various pH levels.  This observation suggests that either 

boric acid is also partially incorporated into the carbonate lattice, or that biologically-

driven effects associated with pH adjustment at the site of calcification are taking 

place during the carbonate growth, or both. 

  Our recent NMR study of boron speciation has revealed that boron is 

represented by both boric acid and borate in almost equal amounts in natural 

carbonates (Klochko et al., 2009).   Elevated abundances of boric acid in carbonates 

may be explained by the conversion of borate to boric acid during precipitation on 

carbonate surfaces.  On the other hand, incorporation of both species remains 

possible, especially in solutions with pH < 8.6, where boric acid is dominant 

(Klochko et al., 2009). 

In that regard, a focused investigation of boron speciation by NMR and 

measurement of the boron isotope contrast between solutions and aragonite 

precipitated across a range of set pH conditions by ICP-MS has great appeal.  Since 

both biological and inorganic processes may potentially affect boron speciation and 

isotopic composition in carbonates, it is important to constrain each effect separately. 

To isolate purely inorganic effects on the boron isotope co-precipitation with 

carbonates, we have designed a series of pH-controlled δ11B calibration experiments 

of inorganic calcite and inorganic aragonite.  Results to date reveal that precipitates 
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from our experiments at pH = 8.7 fall exactly along the borate ion δ11B curve 

predicted by our empirically determined boron isotope fractionation factor (Byrne et 

al., 2005; Klochko et al., 2006).  Upon completion, we hope to better constrain the 

pH/δ11B relationship across a wide range of pH further testing our measured constant.  

Once completed these studies will provide the necessary inorganic baseline for paleo-

studies of inorganic carbonate accumulations (i.e. Neoproterozoic cap carbonates; 

reference) and future investigations of the purely biological effects on the boron 

isotope distributions in carbonates.  

 

5.2 Experimental design 

5.2.1 Scope of the project 

This project was specifically designed to investigate boron speciation in 

inorganic calcite and aragonite – as well as the magnitude of boron isotope 

fractionation between solution and a carbonate precipitated in a given solution – 

across a range of controlled pH conditions: low pH ~ 7.3, mid pH ~ 8.7 and high pH 

~ 10 (Table 5.1).   

The earlier inorganic calcite precipitation study (Sanyal et al., 2000) was 

conducted in starting solutions with total boron concentration (BT) of 74 ppm (6.8 

mmol/kg H2O), which is ~ 15 times that of natural seawater (~ 4.8 ppm, or 0.4 

mmol/kg H2O).  It has been shown that an increase in boron concentration by a factor 

of 125 (600 ppm or 0.05 mol/kg H2O) has no observable effect on the boron isotope 

equilibrium exchange between boric acid and borate in solution (see Chapter 3;  
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Table 5.1 – Scope of the project 
 

pH Phase Boron concentration 
7.3 8.7 10 

Low boron concentration  
(0.42 mmol/kg H2O) - completed 

pilot 
study 

completed
Aragonite 

High boron concentration  
(7.9 mmol/kg H2O) - completed - 

Low boron concentration  
(0.42 mmol/kg H2O) - - - 

Calcite 
High boron concentration  
(7.9 mmol/kg H2O) - 

pilot 
study 

completed 
- 
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Klochko et al., 2006).  However, higher boron concentration in solution may affect 

overall boron uptake as well as the resulting boron isotope fractionation between the 

calcium carbonate and the parent solution.  To investigate potential effects of the 

boron concentration on the magnitude of boron isotope exchange between carbonate 

and a solution, experiments for each carbonate phase and each experimental pH will 

be conducted.  These will entail two different solutions with two different total boron 

concentrations including a) natural seawater: 0.42 mmol/kg H2O (or 4.5 ppm), and b) 

a solution comparable to that used by a study by Sanyal et al. (2001): 7.9 mmol/kg 

H2O (or 85 ppm). The total boron concentrations in solutions will henceforth be 

reported in mmol/kg H2O. 

 

5.2.2 Constant addition method of inorganic carbonate precipitation 

Inorganic carbonate precipitation experiments were conducted using the 

“constant addition” method (Kim et al., 2006), which is illustrated in Fig.5.1.  In this 

method, thermally and isotopically equilibrated starting solution was placed in an air-

tight Teflon® reaction vessel.  Two titrant solutions containing: 1) NaHCO3/Na2CO3 

(with relative proportions depending on the pH of the experiment), and 2) CaCl2 

solution, were simultaneously injected at a constant and selected rate of 0.05 ml/h by 

a dual syringe pump.  The addition of the two titrants to the experimental solution led 

to supersaturation and the spontaneous nucleation of calcite or aragonite.  The 

experimental solution was stirred constantly with a floating magnetic stir bar.  During 

the experiment an aliquot of the solution was sampled with a plastic syringe every 
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Figure 5.1 – Schematic illustration of the constant addition method for inorganic 
carbonate precipitation experiments (from Kim et al., 2006). 
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two days including the first and last. These solutions were filtered through a Millipore 

0.45 μm Durapore® syringe filter, and stored in plastic vials for boron concentration 

and isotope analyses. The pH of the experimental solutions was monitored daily with 

a VWR® Symphony SP70P (#14002-860) pH electrode with a precision of better than 

± 0.01 pH units.  Before each application, the pH electrode was calibrated using three 

of four NIST-traceable buffers at 25oC (i.e., 4.00, 7.00, 10.00, and 11.00). The 

reaction vessel was connected to a NESLAB® circulating temperature bath set for 

25oC; the temperature of the experimental solutions were monitored daily with a 

digital thermometer. 

 

5.2.3 Solution preparation  

The experimental starting solutions and the titrants were prepared 

gravimetrically by dissolving Sigma-Aldrich® analytical grade reagents in18 MΩ 

Milli-Q® water.  These solutions were stored in a closed container and placed in a 

temperature controlled incubator at the constant temperature of 25 ± 0.01oC) until 

thermal and isotopic equilibria were established (~ 10 days).  The chemical 

composition of the two titrants and the starting experimental solutions were adjusted 

so that the pH of the experimental solution remained nearly invariant during the 

course of the carbonate precipitation (Table 5.2). This chemical adjustment required a 

substantial amount of method development, which included running precipitation 

experiments with variety of chemical compositions, and monitoring changes, in 

particular focusing on pH variability.  
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Table 5.2 – Chemical composition of the titrants and starting solutions. 
 

1 2 (A) 2 (B) 3 (A) 3 (B) 4 (B) 5 (A) 5 (B) 6 (A) 6 (B) 

Experiment  UMD 
Arag 

Oct3107 

UMD 
Arag 

Apr2208A 

UMD 
Arag 

Apr2208B 

Aug.28, 
2008 

Arag(A) 

Aug.28, 
2008 

Arag(B) 

Oct.2, 
2008 

Arag(B) 

Oct.20, 
2008 

Arag(A) 

Oct.20, 
2008 

Arag(B) 

Dec.19, 
2008_Blank 

Arag(A) 

Dec.19, 
2008_Blank 

Arag(B) 

NaHCO3 0 5 5 8.75 5 5 8.75 5 8.75 8.75 

Na2CO3 10 5 5 1.25 5 5 1.25 5 1.25 1.25 

H3BO3 5 10 10 0.42 7.9 7.9 0.42 7.9 0 0 

CaCl2*2H2O 0.25 2 2 0.5 0.5 1 0.5 0.5 0.5 0.5 

MgCl2*6H2O 1 0.5 0.5 2 2 4 2 2 2 2 St
ar

tin
g 

so
lu

tio
n,

 
m

m
ol

/k
g 

H
2O

 

NaCl 0 700 700 685 685 685 685 685 685 685 

NaHCO3 0 0 0 40 40 60 60 60 60 60 

Na2CO3 80 80 80 40 40 20 20 20 20 20 

Ti
tr

an
t (

-),
 

m
m

ol
/k

g 
H

2O
 

NaCl 0 700 700 580 580 620 620 620 620 620 

CaCl2*2H2O 3 3 3 3 3 3 3 3 3 3 

H3BO3 0 0 10 5 20 20 10 20 0 0 

Ti
tr

an
t (

+)
, 

m
m

ol
/k

g 
H

2O
 

NaCl 0 700 700 695 695 695 695 695 695 695 

Ionic strength 0.06 0.79 0.79 0.71 0.76 0.77 0.71 0.76 0.71 0.71 
pH of starting 
solution 10.12 8.63 8.63 8.62 8.73 8.71 8.61 8.72 8.67 8.67 
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 The first experiment in the series (Exp.1; UMD_Arag_Oct3107) was 

conducted at pH = 10.12 as a pilot precipitation to investigate the magnitude of pH 

fluctuations, boron concentration changes, carbonate yield and mineralogy at a set pH 

setting.  Therefore, for simplicity, the experimental and the titrant solutions for this 

particular precipitation were prepared in low ionic strength media (I = 0.06) with no 

boron in the titrants.  All the experiments that followed were conducted in NaCl 

media (I = 0.71-0.79). 

 The next two experiments (Exp. 2(A) and 2(B); UMD_Arag_Apr2208) were 

designed to test for boron concentration changes during the inorganic calcite 

precipitation.  The starting solutions for both experiments (Exp. 2(A) and Exp. 2(B)) 

were identical (BT = 10 mmol/kg H2O); however, boric acid was also added to one of 

the titrants (BT = 10 mmol/kg H2O) for the Exp. 2(B) to maintain constant supply of 

boron into the reaction vessel. 

 Experiments 3-5 were part of the method development for the inorganic 

aragonite precipitation at “mid” pH ~ 8.7 with “low” (BT = 0.42 mmol/kg H2O) and 

“high” (BT = 7.9 mmol/kg H2O) boron concentration in the starting solutions.  The 

relative proportions of NaHCO3/Na2CO3 in the titrant solutions were adjusted for 

each experiment to reduce pH variability (Table 5.2). 

Two blank aragonite precipitation experiments (Exp. 6(A) and 6(B)) were 

conducted to test for boron contamination. 

Upon the termination of each experiment, one last aliquot of a sample solution 

was collected.  The remaining sample solution was run through a vacuum filtration 

system using 0.45 μm Durapore® membrane filters until all the suspended calcium 
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carbonate was collected.  Salts were thoroughly rinsed with 5-6 liters of 18 MΩ Milli-

Q® water, followed by ultra-pure methanol.  The calcium carbonate on the filter was 

placed to dry in the oven at ~ 50oC overnight. The carbonate was then collected from 

the filter and weighed. An average carbonate yield from a 4-week precipitation 

experiment was ~ 50 mg. 

Plastic vials for solution and carbonate samples were pre-cleaned in 3 M HCl 

solution for 24 hours at ~ 80oC, and then thoroughly rinsed with 18 MΩ Milli-Q® 

water.  After cleaning, vials were stored in a sealed plastic container.  When sampling 

solutions the vials were rinsed with an aliquot of a sample solution, which was 

discarded, and then a second aliquot taken and stored. 

 

5.3 Instrumental analyses 

5.3.1 X-ray diffraction 

 X-ray diffraction analyses (XRD) of the carbonate samples were performed by 

Peter Y. Zavalij of the X-ray Crystallographic Center at the Department of Chemistry 

& Biochemistry, University of Maryland. A Bruker D8 Advance diffractometer used 

in the analyses was equipped with Cu-sealed tube and LynxEye PSD detector   

Twenty minute exposures were taken using monochromatic, Cu Kα radiation. 

Samples were spinned to average grain orientations. Crystal structure of the carbonate 

phases were established via their characteristic diffraction patterns.  In either case, the 

calcite and aragonite samples have been determined to be 99% mineralogically pure. 
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5.3.2 Scanning Electron Microscopy 

Images of the two carbonate phases (Fig. 5.2) were obtained by AMRAY 

1620D Scanning Electron Microscopy (SEM) at 20 kV by Tim Mougel (director of 

the Laboratory for Biological Ultrastructure) at the University of Maryland. Samples 

were coated with < 20nm layer of Au:Pd alloy with 60%:40% relative abundances. 

 

5.3.3 11B MAS NMR 

11B MAS NMR analyses were performed by George Cody at the W. M. Keck 

solid-state NMR facility at the Geophysical Laboratory, Carnegie Institution for 

Science.  The instrument used in this study is a three channel Varian-Chemagnetics 

Infinity solid-state NMR spectrometer.  The static field strength of the magnet is ~ 

7.05 T. The Larmor frequency of 11B in this static magnetic field is 96.27 MHz.  For 

the current experiments, ~ 50 mg of powdered samples were placed in 5mm diameter 

zirconia rotar cells.  The sample was spun at a magic angle of 54.7o at a frequency 

(ωr/2π) of 12 kHz. 

 

5.3.4 Boron concentration and isotope analyses 

The isotopic composition of the inorganic carbonates were determined with a 

new method developed at the University of Bristol using multi-collector inductively 

coupled plasma mass spectrometry (MC-ICPMS) (Foster, 2008).  Unlike the more 

standard negative ion thermal ionization mass spectrometry (NTIMS) approach  
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Figure 5.2 – Scanning electron micrograph (SEM) images of (a) inorganic 
calcite+vaterite (Exp. 2(A)) and (b) inorganic aragonite (Exp. 1). 
 

 (b) 
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previously used to analyze boron in carbonates (e.g. Pelejero et al., 2005; Hönisch et 

al., 2008), for MC-ICPMS it is necessary to first separate boron from the 

predominantly Ca matrix of the dissolved marine carbonate. This is achieved using 

the boron specific resin Amberlite IRA 743 (Foster, 2008).  Samples were dissolved 

in 0.5 M HNO3 
and buffered to a pH of 5 using a 2 M Na acetate 0.05 M acetic acid 

buffer.  Column yields using this procedure were determined using isotope dilution 

and are consistently ~95%.  All boron isotope analyses were carried out using a 

ThermoFinnigan Neptune MC-ICPMS.  Instrumental mass bias was corrected by 

using the average value of bracketing, intensity-matched (to within 10 %) NIST SRM 

951 boric acid standards.  As a consequence, boron isotope ratios are essentially 

determined as delta values. Each analysis consisted of a 2 minute simultaneous 

collection of masses 11 and 10 on Faraday cups.  Solution concentrations were 

typically 30-50 ppb boron.  

Boron concentration analyses were conducted as part of the trace element 

analyses (Ca, Mg, Sr, Na, Mn, Li, B, Ba, Cd, U, Al, Cu, Fe, Nd and Zn) on a Thermo 

Finnigan Element 2 ICP-MS.  The B/Ca ratio determined in these analyses is precise 

and accurate to 5% (at 95% confidence). 

 

5.4 Results and Discussion 

5.4.1 Overview 

At the time of writing this dissertation the time-consuming carbonate 

precipitation experiments were still underway.  The results presented here include 1) 
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quantification of pH drift in the experimental system, 2) the mineralogy of 

precipitates determined by XRD, and 3) variations in solution and carbonate B 

abundance and isotope composition by MC-ICPMS.  Specific results of the pilot 

experiment for inorganic aragonite precipitation at pH ~ 10 (Exp.1) and the 

experiment for inorganic calcite precipitation (Exp. 2(A) and 2(B)) will be presented, 

but the discussion concentrates on the method development for the inorganic 

aragonite precipitation at pH ~ 8.7.  This part of the project has been successfully 

completed and the results are presented here (Table 5.3). 

 

5.4.2 pH drift 

pH variability during carbonate synthesis has been a primary concern in the 

method development, insofar as the sole purpose of this project is to constrain boron 

isotopic composition and speciation in carbonates precipitated at a set pH.  The pH 

drift observed at the early stages of the method development (Exp. 1-3) was a 

characteristic increase in pH values (Fig. 5.3a).  As described above, pH in the 

reaction vessel was regulated via constant addition of the titrant solutions with 

various proportions of NaHCO3/Na2CO3.  In that regard, it is interesting to compare 

the pH variations during Exp. 3, 4 and 5. 

During Exp. 3(A), pH of the parent solution increased from 8.62 to 9.28 pH 

units (ΔpH = 0.66); and during Exp. 3(B), pH of the parent solution increased from 

8.73 to 9.08 pH units (ΔpH = 0.35). Titrants for these experiments contained 40 

mmol/kg H2O NaHCO3 and 40 mmol/kg H2O Na2CO3.   
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Figure 5.3 – pH variations during carbonate precipitation experiments monitored with VWR® Symphony SP70P (#14002-860) pH 
electrode with precision better than ± 0.01 pH units. 
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The pH drift was significantly reduced during Exp. 4 (A: ΔpH = 0.2, B: ΔpH = 0.06) 

and 5 (A: ΔpH = 0.25, B: ΔpH = 0.07) by adjusting NaHCO3 and Na2CO3 

concentrations to 60 and 20 mmol/kg H2O, respectively (Fig. 5.3b).  Notably, the pH 

drift in solutions (A) with lower boron concentration (BT = 0.42 mmol/kg H2O) was 

always larger than in solutions (B) with higher boron concentration (BT = 7.9 

mmol/kg H2O).  This should be expected, insofar as the boric acid is part of total 

seawater alkalinity.  The degree of deviation from equilibrium conditions depends on 

the presence of a buffer in solution.  At ~ 20 fold increase in BT the buffer provided 

by the conversion of boric acid B(OH)3
o to borate B(OH)4

- is significant, suppressing 

any large perturbations in the carbonate system. 

 

5.4.3 Boron concentration and isotopic composition 

Aliquots of solutions collected during each of the completed precipitation 

experiments have been analyzed for boron concentration.  A significant decrease in 

dissolved boron was observed during the experiments with no constant boron addition 

via titrants.  For example, during aragonite precipitation in Exp. 1, boron 

concentration dropped ~ 6 fold from 6.4 to 1.58 mmol/kg H2O; and during calcite 

precipitation in Exp. 2(A), boron concentration decreased from 10.47 to 7.56 

mmol/kg H2O.  Ideally, it is desirable to maintain constant boron concentration 

throughout the duration of the precipitation experiment.  To address this issue, boron 

was constantly supplied to the reaction vessel via a titrant at a 0.5 ml/h rate 

throughout the experiments. This adjustment resulted in a small overall increase in 
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Table 5.3 – Experimental details, boron isotope and concentration data. Boron concentration data has 5% uncertainty (at 95% 
confidence). 

Experi
ment Sample ID Type Duration 

hrs 
carbonate 
recovered, 

mg 
Ionic 
str. 

pH 
drift 
min-
max 

pH,  
ave. 

B, 
ppm 

[B], 
mmol/
kg H2O 

δ11B 2σ 

1 UMD Arag Oct3107 aragonite 648 ~ 50  10.12 - 
10.61 10.52 98  -9.73 0.19 

 UMD_Arag_Oct3107#1 starting 
solution   0.06    6.40   

 UMD_Arag_Oct3107#2 solution       5.28   
 UMD_Arag_Oct3107#3 solution       4.66   
 UMD_Arag_Oct3107#4 solution       4.66   
 UMD Arag Oct31-07#5 solution       3.27 -12.85 0.14 
 UMD Arag Oct31-07#9 solution       2.62   

 UMD Arag Oct31-07#14 final 
solution       1.58 -12.78 0.15 

2 (A) UMD Arag Apr2208A calcite 168 60  8.63 - 
9.34 8.87 124  -26.06 0.17 

 UMD Arag Apr2208 #1A starting 
solution   0.79    10.47 -13.02 0.16 

 UMD Arag Apr2208 #3A solution       9.22   

 UMD Arag Apr2208 #4A final 
solution       7.56 -12.94 0.19 

2 (B) UMD Arag Apr2208B calcite 168 80  8.63 - 
9.34 8.92 140    

 UMD Arag Arp2208 #1B starting 
solution   0.79    9.91 -12.96 0.17 

 UMD Arag Arp2208 #3B solution       10.40   

 UMD Arag Arp2208 #4B final 
solution       8.93 -12.88 0.16 
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Table 5.3 – Continued… 

 
 
 

Experi
ment Sample ID Type Duration 

hrs 
carbonate 
recovered, 

mg 
Ionic 
str. 

pH 
drift 
min-
max 

pH,  
ave. 

B, 
ppm 

[B], 
mmol/
kg H2O 

δ11B 2σ 

3 (A) Aug.28, 2008_ Arag(A) aragonite 503 44.1  8.62 - 
9.28 9.10 19  -20.88 0.20 

 Aug.28, 2008_ Arag(A)#1 starting 
solution   0.71    0.42 -12.34 0.19 

 Aug.28, 2008_ Arag(A)#5 solution       1.07   
 Aug.28, 2008_ Arag(A)#9 solution       1.36   

 Aug.28, 2008_ Arag(A)#13 final 
solution       1.67 -12.77 0.19 

3 (B) Aug.28, 2008_ Arag(B) aragonite 503 44.7  8.73 - 
9.08 8.95 107  -22.87 0.19 

 Aug.28, 2008_ Arag(B)#1 starting 
solution   0.76    8.84 -12.83 0.19 

 Aug.28, 2008_ Arag(B)#5 solution       8.82   
 Aug.28, 2008_ Arag(B)#9 solution       9.00   

 Aug.28, 2008_ Arag(B)#13 final 
solution       9.32 -12.83 0.17 

4 (B) Oct.2, 2008_Arag(B) aragonite 276 26.7  8.67 - 
8.73 8.70 163  -26.67 0.15 

 Oct2 2008_Arag(B)#1 starting 
solution   0.77    8.25 -12.96 0.20 

 Oct2 2008_Arag(B)#3 solution       8.63   

 Oct2 2008_Arag(B)#4 final 
solution       8.93 -12.92 0.20 
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Table 5.3 – Continued… 

Experi
ment Sample ID Type Duration 

hrs 
carbonate 
recovered, 

mg 
Ionic 
str. 

pH 
drift 
min-
max 

pH,  
ave. 

B, 
ppm 

[B], 
mmol/
kg H2O 

δ11B 2σ 

5 (A) Oct.20, 2008_Arag(A) aragonite 576 48.3  8.61 - 
8.86 8.73 30  -25.23 0.20 

 Oct20 2008_Arag(A)#1 starting 
solution   0.71    0.45 -12.32 0.18 

 Oct20 2008_Arag(A)#5 solution       1.79   
 Oct20 2008_Arag(A)#9 solution       2.97   

 Oct20 2008_Arag(A)#11 final 
solution       3.70 -12.86 0.19 

5 (B) Oct.20, 2008_Arag(B) aragonite 576 48.9  8.70 - 
8.77 8.74 90  -25.99 0.15 

 Oct20 2008_Arag(B)#1 starting 
solution   0.76    7.98 -12.83 0.22 

 Oct20 2008_Arag(B)#7 solution       8.64   
 Oct20 2008_Arag(B)#11 solution       9.24 -12.84 0.17 

6 (A) Dec.19, 
2008_BlankArag(A) aragonite 715 59.3  8.67 - 

9.05  0.63    

 Dec.19, 
2008_BlankArag(A)#1 

starting 
solution   0.71    0.005   

 Dec.19, 
2008_BlankArag(A)#5 

final 
solution       0.008   

6 (B) Dec.19, 
2008_BlankArag(B) aragonite 715 69.0  8.67 - 

9.03  0.21    

 Dec.19, 
2008_BlankArag(B)#1 

starting 
solution   0.71    0.006   

 Dec.19, 
2008_BlankArag(B)#5 

final 
solution       0.008   
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 dissolved boron during experiments with higher starting boron abundances 

(Experiments (B): BT = 7.9 mmol/kg H2O).  This increase was more pronounced 

during experiments with lower starting boron abundances (Experiments (A): BT = 

0.42 mmol/kg H2O).  As expected, boron concentrations were higher in carbonates 

precipitated from solutions with higher boron abundances relative to those with lower 

boron abundances. 

The boron concentration in blank solutions (Exp. 6 (A, B)) was found to be as 

low as 0.005-0.008 mmol/kg H2O, which is two to three orders of magnitude lower 

than those in the experiments.  Similarly, boron concentrations in blank carbonates 

were found to be 3-4 orders of magnitude lower than those of other precipitates with 

boron in starting solutions. 

Boron isotope analyses of both starting and final solutions for each 

experiment have shown that the boron isotopic composition of the parent solutions 

remained unchanged (-12.92 ± 0.25‰ (2σ), except for the Exp. 3(A) where δ11B of 

solutions increased from -12.34 ± 0.19‰ to -12.77 ± 0.19‰).  Small solution δ11B 

variations during the precipitation cannot be absolutely ruled out at this point in the 

experiments; future analyses of the remaining solution aliquots will address this 

question. 

 Boron concentrations and isotopic compositions in the inorganic calcite and 

aragonite materials were in the range of abundances and compositions of natural 

biogenic carbonates. Boron concentrations ranged from 19 to 163 ppm.  Boron 

isotopic compositions have demonstrated distinctly light boron isotope signatures 
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ranging from -20.88 ± 0.20‰ (2σ) to -26.06 ± 0.17‰ (2σ) compared to parent 

solution -12.92 ± 0.25‰ (2σ). The magnitude of the offset towards lighter values in 

carbonates compared to the parent solution is typical for marine carbonates. 

 

5.4.4 Boron speciation 

To determine boron speciation in carbonates across the range of experimental 

pH conditions from 8.6 to 10, inorganic carbonates precipitated during this study have 

been analyzed by 11B MAS NMR (Klochko et al., 2009).  Unfortunately, the results 

of this effort are as yet inconclusive. The few analyses attempted thus far produced 

anomalously low spectra, which are undistinguishable from the background spectra.  

Such problems typically occur when the abundance of boron in the precipitates is too 

low and below detection limits.  However, total boron abundances in the experimental 

carbonates determined by MC-ICPMS are high and are comparable with those of the 

natural carbonates analyzed in Klochko et al. (2009). Therefore, there is likely to be a 

different explanation for the lack of signal in the present sample set, which is likely 

the result of insufficient material for the NMR analysis.  Typically ~ 200 mg of 

carbonate material is used; however, due to the slow growth of aragonite and calcite 

in our equilibrium experiments, the largest sample produced for the NMR analyses 

was ~80 mg.  It seems most likely that this sample size is too small and increasing 

yields (hence longer reactions) from the precipitation experiments will help in the 

future NMR analyses of boron speciation. 
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5.4.5 δ11B – pH calibration 

Insofar as the pH stability was achieved during three of the inorganic 

carbonate precipitation experiments in this study, the results of these – Exp. 4(B), 

Exp. 5(A) and Exp.(B) – are of special interest for our δ11B-pH calibration study.  

The pH variability during these experiments has been especially low during 

experiments (B) with higher boron concentration BT = 7.9 mmol/kg H2O (Fig. 5.3b), 

which allows us to put a solid constraint on the boron isotopic composition of the 

inorganic aragonite at pH ranges 8.67-8.73 and 8.70-8.77 (Exp. 4(B) and 5(B), 

respectively). 

The boron isotopic composition of inorganic aragonites precipitated in this 

study (Exp. 4(B), Exp. 5(A) and Exp.(B)) at pH ~ 8.7, as well as results of previous 

culture and precipitation studies across the pH range of interest are plotted in Fig.5.4. 

In order to plot the results of the three experiments of this study, pH values 

determined in this study on the “NBS” pH scale were converted to the “total” pH 

scale using -0.14 correction factor. The values not corrected for “NBS” are also 

plotted for comparison. Within analytical uncertainty, there is no observed difference 

in isotopic composition between the aragonite samples precipitated in high-boron and 

low-boron solutions at pH ~8.7. 

Most importantly, the boron isotopic composition of all three aragonite 

samples reflect the boron isotopic composition of aqueous borate predicted using the 

the 11-10KB = 1.0272 (boron fractionation factor) empirically determined by Klochko 

et al., 2006.  We thus conclude that boron incorporation into inorganic aragonite  
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Figure 5.4 – The results of the biogenic carbonates culture experiments (Sanyal et al., 1996; 2001; Hönisch et al., 2004), 
inorganic calcite precipitation experiments (Sanyal et al., 2000) and inorganic aragonite precipitation experiments (this study: 
Exp.4(B), 5(A), 5(B)).  The pHNBS values from this study and (Sanyal et al., 1996; 2000; 2001) were recalculated to fit the total 
pH scale (pHT = pHNBS – 0.14). Data from this study, not corrected for “NBS” is plotted in dark grey for comparison. 
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occurs via preferential uptake of borate ions from solution without isotope 

fractionation at pH range of parent solutions 8.67-8.73 and 8.70-8.77.  The NMR 

study (Chapter 3; Klochko et al. 2009), however, shows almost equal abundances of 

borate ion and boric acid in the biogenic samples.  Coupled together these 

observations suggest that structural rearrangement of borate ion must occur during 

mineral incorporation without further fractionation (Klochko et al., 2009).   

Furthermore, the fact that these inorganic precipitates formed at pH ~8.7 fall 

exactly on the predicted isotopic composition for solution borate ion supports the 

view that observed 11B enrichments observed in cultured biogenic aragonite relative 

to aqueous borate ion (Hönisch et al., 2004) may be a purely biological effect driven 

by pH increase at the site of calcification in corals. 

 

5.4.6 Future work 

 It is too soon to predict whether samples precipitated at higher and lower pH 

will also confirm our previous study of the boron isotope fractionation constant 

(Klochko et al., 2006).  However, the success in the experiments at pH ~8.7 justify 

the feasibility of our analytical design and measurements.  Once completed, with both 

aragonite and calcite precipitates grown across the pH interval of interest and 

measured by both NMR and MC-ICPMS techniques, this study should provide the 

most rigorously constrained working curve relating δ11B compositions in ancient 

inorganic carbonates with paleo-pH estimates. 
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CHAPTER 6 - CONCLUSIONS 

The boron isotopic composition measured in marine carbonates is considered 

to be a tracer of seawater pH. However, an accurate application of this proxy has been 

hampered by our lack of intimate understanding of chemical kinetics and 

thermodynamic isotope exchange between the two dominant boron-bearing species in 

seawater: boric acid B(OH)3
o and borate ions B(OH)4

-, as well as their subsequent 

partitioning into a carbonate lattice.  In this dissertation I have taken on a task of a 

systematic empirical re-evaluation of the fundamental parameters and assumptions, 

on which boron isotope paleo-pH proxy is based. As a result of this research we have 

come to strikingly different values of the boron isotope exchange constant in solution, 

boron speciation and partitioning in carbonates, suggesting that the most parameters 

and assumptions that were believed to be previously constrained and have been 

widely applied to the δ11B-pH reconstructions were incorrect. 

 Our empirical analysis of the boron isotope fractionation constant between 

dissolved boron species (B(OH)3
o and B(OH)4

-) have shown a significantly larger 

value 11-10KB = 1.0272 ± 0.0006 (2σ) than a widely used theoretical estimate of 

1.0194 (Kakihana et al., 1977). Determination of this constant in various media, 

temperature and total boron concentrations presented here in Chapters 2-3 and in 

Klochko et al. (2006) is an important milestone on our way to better understanding of 

the boron isotopic signatures observed in marine carbonates, especially because it has 

highlighted more discrepancies in our current view of the proxy.  

More specifically, a thorough evaluation of empirical δ11B-pH calibrations of 

cultured foraminifera, corals and inorganic precipitates (Sanyal et al., 1996; Sanyal et 
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al., 2000; Sanyal et al., 2001; Hönisch et al., 2004), which have been used to validate 

the applicability of the proxy, has shown that none of the data sets have reflected 

boron isotopic composition of the aqueous borate (believed to be preferentially 

uptaken by the marine carbonates); and there are significant offsets in isotopic 

composition between the datasets. These discrepancies between the experimentally 

predicted boron isotopic composition of aqueous borate and the isotopic composition 

of the calibrated carbonates have led us to propose that (a) species vital effects, and 

particularly the pH modification in the micro-environments of biogenic calcifiers; 

combined with (b) pH-dependent incorporation of both boron species into a 

carbonates, could result in unique slightly heavier isotopic signatures (Klochko et al., 

2006; Klochko et al., 2009). 

Our own investigation of boron structural composition in modern marine 

carbonates of different mineralogy (calcite and aragonite) calcified in modern 

seawater (pH ~ 8.2) has indeed shown dual presence of trigonally-coordinated boric 

acid and tetrahedrally-coordinated borate in almost equal abundances (Chapter 4; 

Klochko et al., 2009). The results were contrary to the findings of the previous and 

the only study of boron speciation in carbonates, which reported 100% trigonal 

presence in aragonite and 90% tetrahedral presence in calcite (Sen et al., 1994). 

Although such large presence of trigonal boric acid reported in both studies cannot be 

entirely attributed to the boric acid incorporation directly from seawater, some 

fractional boric acid incorporation into carbonates cannot be ruled out, especially at 

pH < 8.6.  



 

 131

To date, the community has recognized the importance of our new empirical 

constant and several publications have considered it in their reconstructions of paleo-

pH (Foster, 2008; Hönisch et al., 2008; Kasemann et al., 2009; Liu et al., 2009; Wei 

et al., 2009). However, it is important to realize that the boron isotope fractionation 

constant determined in Klochko et al. (2006) is only applicable to the isotope 

exchange between boric acid and borate in solution. Further investigation of potential 

boron isotopic fractionation associated with inorganic and biological effects during 

carbonate precipitation is needed to constrain the proxy. In the absence of a detailed 

knowledge of said effects, different groups have chosen various approaches for their 

paleo-pH reconstructions. For example, in their reconstruction of the deep water 

Pleistocene pH variations using benthic foraminifera, Hönisch et al. (2008) have 

chosen to use Kakihana’s relationship (11-10KB = 1.0194) combined with constant 

species-specific downward offset inferred from the earlier calibration study (Sanyal et 

al., 2001). Paleo reconstructions of surface pH of mid-late Holocene in South China 

Sea (Liu et al., 2009) and ocean acidification during the last 200 years in the Great 

Barrier Reef  (Wei et al., 2009) using Porites fossilized corals, have also applied 

Kakihana’s value (11-10KB = 1.0194) with no additional correction factors. 

Alternatively, a reconstruction of pH variations in the Caribbean Sea during the last 

130 Kyr using planktonic foraminifera (Foster, 2008) has applied the new empirical 

constant of 11-10KB = 1.0272 (Klochko et al., 2006) combined with a + 0.8‰ “vital 

effect” correction factor, which was obtained in their own core-top δ11B-pH 

calibration.  
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Regardless of the choice of the constant applied in these studies, all 

publications agree that there is a lack of understanding of biological effects on the 

boron isotopic composition of the marine carbonates, and until those are constrained 

the reconstruction of the absolute paleo-pH changes will remain a challenge. 

Moreover, the situation is complicated by our inability to predict purely inorganic 

effects associated with the potential pH-dependent boric acid partitioning into the 

carbonates at pH < 8.6. To this end we have initiated a δ11B-B speciation-pH 

calibration project designed to investigate boron isotope fractionation and speciation 

in inorganic carbonates precipitated across a range of pH conditions. Although this 

project is still underway, our results obtained from the aragonite precipitates grown at 

pH range of parent solutions 8.67-8.73 and 8.70-8.77 are in excellent agreement with 

the boron isotopic composition of the aqueous borate predicted by the empirical 11-

10KB = 1.0272 determined in Klochko et al. (2006), suggesting the boron 

incorporation into inorganic aragonite occurs via preferential uptake of borate ions 

from solution without isotope fractionation at this pH range. 

Our future efforts will be directed to extending these precipitation experiments 

to pH ranges lower and higher then ~ 8.7, and inorganic calcite, which would provide 

the community with an important inorganic baseline for the future calibration studies. 
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