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In this dissertation, we examine several different aspects of computing the numeri-
cal solution of the convection-diffusion equation. The solution of this equation of-
ten exhibits sharp gradients due to Dirichlet outflow boundaries or discontinuities in
boundary conditions. Because of the singular-perturbed nature of the equation, nu-
merical solutions often have severe oscillations when grid sizes are not small enough
to resolve sharp gradients. To overcome such difficulties, the streamline diffusion dis-
cretization method can be used to obtain an accurate approximate solution in regions
where the solution is smooth. To increase accuracy of the solution in the regions con-
taining layers, adaptive mesh refinement and mesh movement based on a posteriori
error estimations can be employed. An error-adapted mesh refinement strategy based
on a posteriori error estimations is also proposed to resolve layers. For solving the
sparse linear systems that arise from discretization, goemetric multigrid (MG) and al-

gebraic multigrid (AMG) are compared. In addiiton, both methods are also used as



preconditioners for Krylov subspace methods. We derive some convergence results
for MG with line Gauss-Seidel smoothers and bilinear interpolation. Finally, while
considering adaptive mesh refinement as an integral part of the solution process, it is
natural to set a stopping tolerance for the iterative linear solvers on each mesh stage so
that the difference between the approximate solution obtained from iterative methods
and the finite element solution is bounded by an a posteriori error bound. Here, we
present two stopping criteria. The first is based on a residual-type a posteriori error
estimator developed by Veénfth. The second is based on an a posteriori error esti-
mator, using local solutions, developed by Kay and Silvester. Our numerical results
show the refined mesh obtained from the iterative solution which satisfies the second

criteria is similar to the refined mesh obtained from the finite element solution.
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Chapter 1

Introduction

1.1 Problem Description

The purpose of this dissertation is to study the convection-diffusion equation

—eAu+b-Vu+cu=f,
(1.1)

u=g 0onos,

where the domaif is convex with Lipschitz boundar§2, andb, ¢, f are sufficiently
smooth0 < ¢ < |b] < 1. In order to ensure existence and uniqueness of the solution,

we assume
1
di > c— §V -b>dy >0, forsome constantg andd;, (1.2)

and
/ g*(b-n)dS > 0. (1.3)
oN
When|b| > ¢, the problem is referred to as a convection-dominated flow problem.

Otherwise, the problem is diffusion-dominated.



Finite element methods are widely used to compute approximate solutions, especially
for complex domains. In our analysis, we always assume the underlying meshes is
quasi-uniform, i.e. the minimal angle of all elements in the underlying rgshs

bounded well abové® and belowl80°. The mesh Peéet number is defined by

I

er 26 Y

whereT € $y,, with diameterh,r. Here, we will restrict our efforts to convection-

dominated flow especially wheR., > 1 forall T € Sy, .

1.2 Historical Overview

It is well known that the standard Galerkin discretization of (1.1) yields inaccurate,
oscillatory solutions near boundary layers in convection dominated flows and, if the
diffusion parameter is decreased without proportional reduction of the discretization
mesh size, then these inaccuracies propagate into regions where the solution is smooth
[56]. The streamline diffusion discretization method (SD) introduced by Hughes and
Brooks [54] is designed to overcome these problems by introducing a small amount
of artificial diffusion in the direction of streamlines. The first mathematical analy-
sis of the SD method was given by Johnson arigieét, who obtained locabD (h*/?)

error estimates in thé? norm and globab(h?*/2) error estimates in a special mesh-
dependent so-called SD-norm. The numerical solution obtained from the SD method
has the desirable property that the accuracy in regions where the exact solution is
smooth will not be degraded as a result of discontinuities and layers in the exact solu-

tion [85], [58]. However, the numerical solution obtained from the SD method can be
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oscillatory in regions where there are layers, and it may also suffer from overshooting
and undershooting. On the other hand, this localization property opens a possibility of
reducing oscillation, overshooting and undershooting through local grid refinement.
Many modified streamline diffusion methods have been proposed to improve the SD
approach by adding shock-capturing term (SD-SC) or crosswind diffusion (SD-CD)

[22], [55], [58], [88].

To obtain an accurate finite element solution on a given mesh, usually a so-called
quasi-uniform or isotropic mesh is desirable [6]. Delaunay triangulation (DT) is one

of the most important algorithms to produce such a triangulation because the DT al-
gorithm maximizes the minimal angle of the triangulation [15], [12]. Mesh operations
such as edge swapping and mesh relaxation can also be employed to improve mesh
quality [31], [45], [60]. One commom technique to increase the accuracy of the fi-
nite element solution is mesh refinement, the so-called h-method. In addition to the
regular mesh refinement, Rivara’s longest side bisection algorithm (LSB), [83], [84],
guarantees that the minimal angle of the refined mesh will not be less than one half
of the minimal angle of original mesh. Moreover, the meshes generated by LSB are
nested. As a result, meshes from both regular refinement and LSB refinement possess

shape regularity and are suitable for multigrid algorithms.

Another grid adaptation technique is based on moving meshes. Mesh movement de-
rived from equidistribution principle and direct minimization have been studied by
many researchers such as Azevedo [28], Baines [9], Felippa [43], Huang and Rus-
sell [52], Tourigny [93], [94], and literatures cited therein. The idea to make use

of a posteriori error estimator in mesh movement is presented by Bank and Smith
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[10]. This approach requires the computation of approximate second derivatives for
all elements and solutions of a local optimization problem at each node which is com-
plicated and time-consuming. Here, we examine a mesh movement strategy based on
equidistributing an a posteriori error estimator. How mesh movement can improve the
accuracy of the numerical solutions in the adaptive process is still not clear. In par-
ticular, for convection-diffusion problems, node movement may be in the wrong di-
rection, when approximate solutions contain serious oscillations in regions containing
layers. As a result, mesh movement may actually degrade the quality of the underly-
ing meshes and the accuracy of the numerical solutions. Nonetheless, our numerical
studies suggests this simple strategy for mesh movement can significantly improve

the accuracy of finite element solutions.

There are cases in which anisotropic meshes,consisting of long thin triangles, may
produce more accurate solutions [76], [81] than the isotropic meshes. For the convection-
diffusion problems, anisotropic mesh adaptation including Shishkin meshes have been
shown to be effective [4], [23], [27], [30], [65]. However, rigorous theoretical analysis
on anisotropic meshes has not been fully developed. Even though we shall not pursue
any theoretical results in this area, our error-adapted mesh refinement algorithm in
section 3.5 is capable of producing long-thin triangles in the layer region which clus-
ter nodes in these regions. Moreover, in contrast to the moving mesh strategy where
the nested grid structures can’t be maintained and interpolation between grids has to
be computed for multigrid solvers, the grids generated by the error-adapted refine-
ment algorithm is ready to be used in multigrid solvers without any extra computation

cost.
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For an adaptive refinement procedure to succeed, reliable and efficient a posterori
error estimators are needed. For the reliability and efficiency of a posteriori error es-

timators, a standard measure is the so-called effectivity index, defined as

estimated error

eff =

true error

An estimator is called asymptotically exact if its effectivity index converges to 1 when
the mesh size approaches 0. If the effectivity index is much smaller than 1, the es-
timator is under-estimating the error. On the other hand, if the effectivity index is
much greater than 1, the estimator is over-estimating the error. If the estimator does
not under-estimate or over-estimate the error globally, then the estimator is reliable,
meaning the error on the global domain can be properly controlled by the estimator.
If the estimator does not under-estimate or over-estimate the error locally, then the
error estimator is efficient, meaning the estimator is able to pinpoint exactly where
the error is large and where the error is small. For two-dimensional problems, sev-
eral estimators have been shown to be asymptotically exact when used on uniform
meshes provided the solution of the problem is smooth enough [7], [33], [34]. Esti-
mators based on computing residuals, so-called residual-type estimators, and estima-
tors based on solving a local Dirichlet problem, so-called Dirichlet-type estimators,
were introduced by Balta and Rheinboldt [8]. Estimators based on solving a lo-

cal Neumann problem, so-called Neumann-type estimators, were first given by Bank
and Weiser [11]. These estimators have been studied by many researchers such as
Ainsworth [2], Johnson, Eriksson [40] [57] , Kay and Silvester [59] and (Meinf[96]

[97]. The Zienkiewicz-Zhu (ZZ) type of estimators based on recovery of gradient and

Hessian are also well developed, see [3], [73], and articles cited therein.
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For convection-diffusion problems, numerical results in [72] show the residual-type
error estimator and the ZZ estimator are not as reliable as the Neumann-type estimator.
Here, our numerical results also show that the Neumann-type estimator introduced by
Kay and Silvester is more reliable than \M@nth’s residual-type estimator. One of our
goals is to understand how the quality of estimators may degrade if we replace the
exact finite element solution by approximate iterative solution. In other words, we are
interested in finding the largest stopping tolerance for the iterative solver, such that
the reliability and efficiency of error estimator will not change too much when these

estimators are computed from approximate solutions obtained from iterative methods.

Multigrid methods (MG) are among the most efficient methods for solving the lin-
ear systems arising from discretization of elliptic partial differential equations. There
has been intensive research on the convergence of MG since it was introduced by
Fedorenko [42]. For symmetric positive-definite elliptic problems, thanks to many
researchers, such as Bank, Braess, Bramble, Brandt, Dupont, Hackbusch, Mandel and
McCormick, etc, the convergence theory has matured. However, for singular pertur-
bation problems, the development of theoretical analysis is far less advanced. The
difficulties arise from the weak coercivity and poor regularity in these type of prob-

lems.

The major ingredients for convergence analysis of MG are calledppeoximation
propertyand thesmoothing property One approach for convergence analysis is the
so-calledcompact perturbation technique, which relies on a strong approximation

property and treats the lower order terms as a small perturbation of the symmetric pos-
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itive define term. The technique has been successfully applied to diffusion-dominated
flow problems and Bramble, Pasciak, Wang, Xu have shown robust MG uniform con-
vergence [17], [18], [19], [20], [99]. In these studies, uniform convergence of MG can
be established with one step of standard Jacobi or Gauss-Seidel smoothing even with-
out regularity assumptions. For convection-dominated flow problems, this approach
requires coarse grids with very small grid sizg,,,.. < ¢, which is usually not valid

in practical computations.

With realistic coarse grids in mind, matrix-dependent prolongation and restriction
operators have been proposed by Dendy [29], De Zeeuw [105], Reusken [79] and
Wesseling [100] to enhance the approximation property on uniform meshes. It is not
clear how to generalize these results on complex domains where one can only use
unstructured meshes. The algebraic multigrid method developed by Rugeldnea St
[86], [92], is readily adapted to such applications. Convergence of AMG is estab-
lished when the coefficient matrix is a symmetric M-matrix. This is typically not the
case for the convection-diffusion problem, but numerical studies in [92] also suggest
AMG is still applicable. Both matrix-dependent operators and AMG require comput-
ing correction operators on coarse grids. These seem not to be a natural choice of

methods if adaptive process is involved.

Another approach requires a strong smoothing property to compensate for poor ap-
proximation property in this type of problems. In this direction, it is very important

to find a robust smoother. Robust smoothers such as the Gauss-Seidel method with
flow-oriented ordering and the incomplete LU factorization (ILU) method have been

studied by many researchers such as Bey [13] [14], Chernesky and Elman [37] [38],
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Hackbusch and Probst [51], Wesseling [100] and Wittum [102]. Recently, researchers
such as Reusken, Pflaum prove MG convergende iwith the help of special grid-

ding techniques such as semi-coarsening [75], [80]. Szepessy shows MG convergence
in L' by residual damping through large smoothing steps [74]. Moreover, Ramage
have demonstrated that MG convergence rates can be significantly improved if the
SD discretization is employed with an optimal stabilization parameter [77]. Here, we
would like to study MG convergence of the SD-discretized flow problems. We prove
some MG convergence results for a simple constant flow problem when mesh size
h > /€, where only standard bilinear prolongation and restriction operators are con-

sidered in MG algorithm.

For problems containing recirculating flows, it is not easy to obtain a robust smoother.
As a result, MG fails to converge without special treatments on discretization meth-
ods and prolongation operators [104], [105]. However, some numerical experiments
indicate that MG is a robust preconditioner in Krylov subspace solver [70]. Here, we
would also like to investigate whether MG and AMG, as preconditioners of GMRES
solver, are still robust in these convection-diffusion problems on adaptively refined

unstructured grids.

1.3 Dissertation Outline

First we review many aspects of computing accurate finite element solutions for
convection-diffusion equations and discuss some difficulties associated with using
multigrid for solving the linear system that arise from discretization of (1.1). In Chap-

ter 2, linear discretization methods are studied. We briefly review two finite element
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methods, the standard Galerkin method and the streamline diffusion method. Some
fundamental properties of the solutions from both methods are also presented. Our
numerical results show that the Galerkin method produces oscillatory solutions glob-
ally, whereas the solution obtained from streamline diffusion method are oscillatory
only in the regions where there are layers. In Chapter 3, a posteriori error estimations
as well as a mesh movement strategy and an error-adapted mesh refinement strategy
based on these estimations are introduced. First, theoretical results of residual-type of
a posteriori error estimator by Vénfth and Neumann-type of a posteriori error estima-

tor by Kay and Silvester are reviewed. Then a comparison of reliability and effectivity
of both estimators is given. Numerical results for a mesh movement strategy, based
on equidistribution of the error estimators, are also shown here after a brief overview
on the mesh movement strategies based on equidistribution principles. In Section 3.5,
the error-adapted mesh refinement algorithm is presented. In Chapter 4, the algorithm
and convergence of several linear iterative solvers are studied. For stationary itera-
tive methods, Jacobi, Gauss-Seidel, line Jacobi and line Gauss-Seidel as well as the
Krylov subspace iterative method, GMRES, are presented. For multigrid methods,
geometric multigrid (MG) and algebraic multigrid (AMG) algorithm are presented.
We prove geometric multigrid will converge when the mesh size satisfies,/e for

a simple constant flow problem on uniform mesh. For more difficult problems such
as those with circulating flows, the performance of MG, AMG and GMRES with GS,
MG and AMG preconditioners are compared. In Chapter 5, stopping criteria of the
iterative linear solver in adaptive mesh refinement process are studied. We develop
two stopping criteria, one associated with \eth’s residual-type error indicator and

the other associated with Kay and Silvester's Neumann-type error indicator. We show

that it is necessary for the iterative solution to satisfy our stopping criteria in order
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to ensure that the error arising from the iterative solution is bounded by the a poste-
rior error estimations. Our numerical results show error estimators computed from
the multigrid solution, which satisfy our stopping criteria, produce almost identical

mesh refinements as error estimators computed from exact finite element solution. In

Chapter 6, we draw some conclusions.
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1.4 Notation and Terminology

The following notations are used in this thesis.

e The notationr < y for x,y € R is defined as there is a constank ¢ < oo

such thatr < y.

e Let(-,-) be the inner product in?(2) defined by(f, g) = [, fg

The notatior|| f||, and| f|; denotes the usual Sobolev norm and semi-norm over

1/2
the global domair?, defined by||f||, = (ngk HD"‘fo)) and||f||, =
1/2
<Z|a‘:k ||D“f||(2)> , respectively, wherd f||2 = (f, f), for f € H*. Also,
1/2
1 loor = (Zm\ o |D° fy|§) is the Sobolev norm of f defined on a sub-

domaing, C €.

e Let< - - > denote the Euclidean inner product BA.

The notation||z|| is defined agz| =< x,z >'/2 for x € R™.

e The L? norm of a given matrix is defined as

IA]l = sup | <Az, >|
veRn ||

e Let Abeamatrix4d = (a;;),1 <i,j < n. If 27 Az > 0 for all nonzerar € R",
A is called positive define.
If a;; > 0 for alliand j, then A is called a non-negative matrix and is denoted
asA > 0.
If Ais nonsingulara;; < 0for j #iandA~! > 0, Ais called a M-matrix.

If there exist permutation matrix P such that

PTAP — A Aip
O AQ}Q
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A is called reducible. If no such permutation exists, A is called irreducible.
If >, laijl < lai;| Vi, Ais called diagonal dominant.
If Ais diagonal dominantand; ; |a; ;| < |a;,| for some i, A is called weakly

diagonal dominant.

Let d denote the function that measures the diameter of a given domaif. Let

be a given domain and;, be a mesh such that

max {d(T) : T € S} < hd(Q).

The meshyy, is called quasi-uniform if there exists> 0 such that
min{d(Br) : T € 3} > rhd(f2),
whereBr is the largest ball contained ih.

Let V;,7 = 1---m denote the nodes &Ff,,. Let ¢; be the nodal basis function

at nodeN;. The nodal interpolant | is defined as

=1

S; = supp(¢;). Letw; be theL? orthogonal projection onto the piecewise linear

function space irb;. The quasi-interpolant | is defined as

=1

Let £ denote the set of edges®),. For any element’ € &, and edgel € €,

wr = U T/, (:)T: U T/, wE:UT’, wi:UT'

pA£T'NTEE T'NT#o EcCT' N;eT’
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Chapter 2

Linear Discretization Methods

In this chapter, we review two finite element methods for discretizing the convection-
diffusion equation (1.1), the standard Galerkin method (GK) and the streamline-diffusion
finite element method (SDFEM). We consider finite element techniques with isopara-
metric bilinear elements for the convection-diffusion problem with small viscosity

e. We illustrate the solution behavior in both analysis and numerical experiments on

some model problems.

A weak solution of (1.1)-(1.2) is given hy € H'(€2) such that
B(u,v) = F(v), Yv € H} (), (2.1)
where the bilinear form is defined as
B(u,v) = €¢(Vu, Vv) + (b- Vu,v) + (cu,v), (2.2)
and the linear functional on the right hand side is defined as

F(v) = (f,v) +/ (gv)n - dS. (2.3)

o0

The existence and uniqueness of the weak solution are established by the Lax-

Milgram theorem since the bilinear form B is coercive and continuoug’o?).
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Moreover, when f and g are smooth enough, a smoother solutien 7% can be

obtained if the underlying domain is convex [48].

Lemma 2.0.1 (Continuity) For all u € H'(2) andv € H}(Q), there exists a con-
stant’ > 0 such that

[B(u, v)| < T{ully f[vlly (2.4)
Proof: From (2.2), we have

Blu,v)| = ye(w,vm+(u,b.w)+([2(c—%v.m—c]u,v)\

< elulifoly + ully foly + (1 +2dy) [[ullg 0]l , » By (1.2)

< Dllully flvfly

wherel’ = €+ 2(1 + d,).

Lemma 2.0.2 (Coercivity) For all u € H}(), there exist constant > 0 such that
|B(u,u)| = 7 Jull; (2.5)
Proof: By Green’s formula,
/ u?b - ndS = / V - (uPb)dwdy = /(V -b)u*dxdy + 2 / (b- Vu)udxdy
o0N Q Q Q
Therefore,

1 1
B(u,u) = e/Vu-Vuda:dy+/(c— —V-b)qua:dy—l——/ g*b-ndS
Q Q 2 2 Jaq

v

eluly + do [|u||,, by (1.2) and (1.3)

> 7 ||ul,, for somey > 0.
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Remark 2.0.3 If the energy norm, defined &su||| = €||Vul|, + do ||u

o IS consid-
ered, the continuity and coercivity can be also estimated in terms of energy norm as

in the following: for allu, v € H}(Q),
_ 1
B, v)| < [llull o]+ €2 [llulll [0y = = Hull ]l (2.6)

and

B(u,u) > |[lul|[*. (2.7)

Moreover, the following lemma gives us an estimation of the regularity of the weak
solution in terms of given data. For problems with exponential boundary layers, this

estimation is sharp as mentioned in Remark 1.17 in [85]

Lemma 2.0.4 If the weak solution: € H?*(2) and u|sq = 0, then the following
inequality holds.

42 ||U||2 + e'/? ||U||1 + HUHO <C ||f||0> (2.8)
for some constar® > 0.

Proof: see Lemma 1.18 in p. 186 [85].

2.1 Galerkin Discretization

Assume we are given a quasi-uniform meésh with node pointsey,...,x,,. LetV},
be the finite-dimensional subspace consisting of piecewise linear or bilinear functions
defined ory;,. The Galerkin finite element method seeks an approximate solution

of the weak solution u iV, which satisfies

23



By (un,vn) = Fge(vn), Yo, € Vi, (2.9)

Whereng =B anngk(v) = (fh, Uh) + fm(ghvh)n -dS.
Clearly, each functiom;, € V}, has a unique representation= >, v} ¢;, wherev},

is the nodal value and; is the linear nodal basis function at nadesatisfying

1 ifx=ua
¢i(x) =
0 ifx+#u

Using (2.2) and (2.3), (2.9) can be rewritten as

/Vuthhd:cdy—l—/(b Vup)vpdzdy —l—c/uhvhd:cdy = /fvhdxdy
e€Sy < ~ / [ ~ [ ~ / eE\Sh\q’_/
I 11 111
" (2.10)

Each term is then computed elementwise. The computation is done on a reference

element instead of on the actual element through an isoparametric magping

(D—l
n
n
m /—\
©.1) 1.1 (1.1
Y y
— A1

® | o

(a) Triangular Element (b) Rectangular Element

Let ¢ andn be the reference coordinatels.: (¢,7n) — (z,y) is defined by

d
(z, = (@)X m), (2.11)
=1

where d is the degree of freedom of the associated elementaird....d, is the linear

element nodal basis function f Moreover, from isoparametric formulatiar, and

24



v, can also be represented as

d d
up, = _upxi(&,n) ando, = > vixi(€,n) (2.12)
i=1 i=1

on each element, wheté adv; are the function values on nodg

For linear triangular elementd,= 3 and
xi(&mn) =1-=¢—1n
x2(6m) = ¢ (2.13)
xs(&,m) = 1.

For bilinear rectangular elements= 4 and

e =a—oa—n

4
1
xa(6m) = 71+ 91 =)
h (2.14)
xa(6m) = 11+ O +1)
1
xa(&m) = 1= (1 +n).
The Jacobian matriX arising from coordinate transformation is
9z Oz
J=| % (2.15)
9y Oy
o On

and can directly be computed from (2.11) and the above definitions of the nodal basis

functions. Since (I) and (Il) can be rewritten as

T -
ou, ou, | L B | % 2||m
/ Vi Von = / (Gon O0ny | omon | 0e De |0 ey (2.16)
9 On | e o o o du,
e é Oy Oy dy 8y_ on
o on | | ou |
/ (b- Vup)vy, = / onlbr, ba) | OO % | |J|d€dn, and, (2.17)
o On Oup,
e é dy 0Oy on |

25



and the following relationships holds

S

23 @ o5 ox 0On dy On ox
ox

_ —1 S -1 -5 -1~J D e il

the associated element discrete matrices can be computed directly from (2.11), (2.12),

and the definition of the nodal basis functions (2.13 and (2.14). Similarly, (1ll) and

the righthand side of (2.10) can be rewritten as

/ iy, = / vnunlJ]dgdn, (2.19)
and
[ fon= [ onsalidean, (2.20)

respectively. Clearly, the discrete matrix of (2.19) and (2.20) can also be computed
by the same way. L&t be the discrete matrix of (2.16J, be the discrete matrix of
(2.17), andM. be the discrete matrix of (2.19) and (2.20). Now, (2.9) can be written

in the following matrix form
(eH +C + cM)uy, = Mf, (2.21)

whereH = > o He, C = 3 g, Ces @AM = 3 o M.. The matrix on the

eeSy,

lefthand side of (2.21) is usually called the stiffness matrix and the matrix on the

righthand side is called the mass matrix.

The usual stencil notation for the stiffness matrix and mass matrix at each node can

be obtained by assembling the element matrices of neighbor elements of that node.
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On uniform triangular meshes, the stencil notation is:

0 -1 0 —by+by by +2by 0
He~ | =1 4 =1 |, C B | —(2b + by) 0 2y + by |, and
0 -1 0 0 —(by +2by) by — by

110

On uniform rectangular mesh, the stencil notation is:

~1 -1 -1 “bi+by  Aby by +by

Heogx | =1 8 —1 [, Crfgx | —4b 0  db |, and
~1 -1 -1 —(by+by) —4by by — by
141

M~ x| 4 16 4

The stiffness matrix arises from the Galerkin discretization can be denoted as
Agk = €H +C + e M.

Since we consider < h andc < |b|, clearly,C is the dominating term. Standard
Fourier analysis suggests that the solution will contain large oscillatory modes. A

detail analysis can be found at section 3.5 of [39].
Remark 2.1.1 For V - b = 0, we have

(b-Vu,v) = —(u,b-Vv) = ((V-b)u,v) = —(b- Vu,u).
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It follows that the matri>xC is skew-symmetric in this case. For our problem,
|(b- Vu,v) + (b- Vv, u)| < 2(c—doy)(u,v).

Sincelc| < 1 and the mass matri#t from (u, v) is O(h?), the symmetric part af is
in the order ofh?. Therefore( is nearly skew-symmetric. Moreover, for smallx

is also nearly skew-symmetric.
Lemma 2.1.2 Letv € H™(Q). The interpolant’ satisfies

Jo = "], = B[], (2.22)
for 0 < k < m wherem = 0,1 or 2.

Proof: See [56] Theorem 4.2 or [21] Theorem 4.4.20.
O
Now, we can prove an a priori error estimation for the Galerkin finite element solution.

Theorem 2.1.3 (A priori error estimation) If w; satisfies (2.9) and u is the weak

solution of (2.2), then there exist a constahtindependent witth ande, such that
h
lu = unll; < C(1+ E)h|u|2. (2.23)
Proof: From coercivity, we have

vl = un||? < Byp(u — un, u — up) = Bor(u — up, u — ul) + Bog(u — up, ul — up).

(2.24)
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Since Byy.(u — up, u’ — up,) = 0, from the orthogonality property of the Galerkin

discretization, we only need to estima®gy, (v — up,, u — u’).

IN

|B(u — up, u — ul)| elu—upliu —u'ly + Ju— g ||u— uIHO

+ cllu—unlly||u—u'||,, by the Cauchy-Schwarz inequality

IN

(creh + coh? + 03/12) luw — unl|y w2,

by Lemma 2.1.2 and the Poinéinequality
for some constants;, ¢z, c3 > 0. As a result, (2.24) implies

lu—unll; < =(creh + cah® + c3h?) lu — uy |, Jul2

S|~

e(er + 02% + ng)h [Jw — unll; |ul2
Recall thaty = O(¢). Therefore, we have
Ju = wnlly < €1+ D)l
for some constant’ independent withh ande.
O

The estimate (2.23) shows the Galerkin finite element solutjpnonverges to the
weak solutionu with error of O(h?) in H' norm whenh > e. However, the fact
that the constant’ is proportional to%, for h > ¢, indicates the upper bound is very
poor unless u is very smooth, namely, < 1. Unfortunately, for the convection-
dominated flow problems, one can only boyng} in the order ofc—2 as shown in
Lemma 2.0.4 ok~! when neither an outflow nor an inflow boundary present ([85]

p.180-186).
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2.2 Streamline Diffusion Discretization

As defined in [56] p.185, the streamline diffusion finite element method (SDFEM)

seeks an approximate solution(ivi,, |||-||,;) which satisfies
Bsa(up,vp) = Fsq(v), ,forallv € Vj, (2.25)
where
Bua(un,vn) = Byr(un,vn) + > 0r(b- Vuy + cup, b - Vou)r, (2.26)
TeS)
and
Fua(vn) = (fasvn) + D> (f,67b - Vo). (2.27)
TeS),

Here,d; is the stabilization parameter afid|||,, is defined as follows:
lolllsg = (€lVollg+ > orllb- Vollgr +do [ T15)' 72, Yo € Vi
TeSSy
Furthermore, the SDFEM discretization matrix of (2.26) has the following stencil
form

Asp =Ack +C+ M, (2.28)
whereM = §;C7,

b1bo —(byby + 12) 0
C o X | —(b2 +biby) 2(b3 4+ b2 4 biby) —(b? 4 byby) |, for triangular element

0 —(byby + b3) b1b2
and
—5(01 +83) + gbibs 3bY — 3b5 —5 (b1 + b5) — 3buds
C ~ o x —2p2 + 112 (b2 + 03) —2p% + 103 , for rectangular elemer
—5(0F +03) — gbaba 507 — 505 —§ (b + 03) + 3babn
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Notice that the stabilization ter@is in the same orde? (k) as the skew-symmetric

C in Agk. With the help of a proper choice on the stabilization paramgteit can

be shown that the SDFEM solutions no longer suffer from large oscillation [39]. In
the following, we show the existence of the SDFEM solution and derive the a priori

error bound for the SDFEM solution. First let's show the coercivity3gf.

Theorem 2.2.1[Coercivity] If 0 < §r < %2170 wherecr = max |c| for eachT € 3y,

then

1
&mwaMﬂ@WEW. (2.29)
Proof: By Green'’s formula, (2.2) and (2.19) imply

Bua(v,0) > eloff +do Jollg+ Y dr b Vollg,

TeSy,

(2.30)
+ Z dr(cv,b- Vo),
TeS,
foranyv € V. Since
1) drlev,b-Vo)rl <Y brer [ollor 1D Vol
TeS, TeSy,
1, 9 1
< Y G lvlir + 50r lb- Vol
TeIy
1
< 5(do lollg + D or 11~ Vollgz)
TeIy
1
< Sl
inequality (2.29) can be derived directly from (2.30).
O

Remark 2.2.2 For P.,. > 1, ér is usually set equal td,h for some constand,.

A good choices of, = ﬁ(l — 2-) hsa been shown in [44]. Here, we simply set

~ _1

0o A 5T
07 2f]
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By simple calculation, (2.19) can be written as

A ~

Bga(un, v) = Bga(un, vi) + Bsa(un, vp), (2.31)

whereB is the symmetric part of the operator and defined as

A

1
Bgi(up,vn) = €(Vup, Vop) + ((c — §div(b))uh,vh) + Z dr(b- Vug,b- Vuy)

TeSSy

+ % Z dr(cb, V(upup)),

TeSS,

andB,, is the skew-symmetric part,

1 1
Bsd(uh, Uh) = 5[(quh, vh)—(uh, b-Vvh)]—§ Z 5T[(cb~Vuh, vh)—(uh, Cb'V’Uh>].
TeSy

(2.32)

IA
S
S—
=
<
g
=
q
£
=

IA

Z(ST /‘b Vuh]2+—/|cuh|

TeS
by arithmetic-geometric mean inequality

5l [ P+ 3 o b T

TeSSy
by assumption of theorem 2.2.1

IN

Bga(un, un) > (1 = 535) ||lunll]4- SO, By is positive definite. It is natural to define

an energy norm|u|||,=(u, u)1/2 Clearly,

1 2
(1- 2\/—) a3 < [llunlll; < (1+ ﬁ) unlllsp (2.33)

s0,[|-|[l, is equivalent td|-[||5 -
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Lemma 2.2.3 For anyu € H', we have
Co max {/e, \/do} ully < [[[ulllsp < Cooh™? |Jully, (2.34)
where(Cy; andC, are constants.

Proof: By definition of|||u|||,,, the upper bound can be derived from the inverse

inequality and the lower bound is obvious from the Poigédaequality.

Lemma 2.2.4 Foru € H'(Q2) andv € H} (), there exist constants,; andCy, such
that
| Boa(u, )| < Coa ()™ [Jlull] 4 0]l - (2.35)

| Bsa(u, v)| < Cha(he) ™ [[[ull] o v]]] 4 - (2.36)

Proof:

D=

(b Vu, v) — (u,b- V)] = %[2@ Y, 0) + (div(bu, v)]

1 ¢ —dy

< —=\or ||b- Vull, ||v|,) + —=Vdo |||, ||v

(Tgh\/gv T | o llvllo) N o [[ullg [[v]lg

1 C—do

< -
V2 P

< (mgxc)\/_é—THluH’sdHUHO’ by 07 < pre

< ¢h V2 |ull| 4 llvll, for some constarit
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Also,

Z dr[(cb - Vu,v) — (u,cb - Vv)]

TeSy,
< > drer(lo- Vally llvllg + 110 Volly [lully),
TeSS,
CT\/_
< > g Worlle-Vullg Vdallellg + v/or b+ Vollg v/do lully). by or < 5%
TG\S}L
< wnunudnwnud,

< e 2 |ulll,, |||, » for some constarit, by Lemma 2.2.3

After substituting the above estimations into (2.32). It follows that (2.35) holds.

The inequality (2.36) then follows from Lemma 2.2.3.

Now, we can prove the continuity inequality.

Theorem 2.2.5 (Continuity) For all u,v € V}, there exists some constant C such
that
| Bua(u, 0)] < C(he) ™2 [[[ull] 4 0] 54 - (2.37)

Proof: SinceB,, is positive definite, by (2.33), we have

| Baa(u )| < l[ullly [I[oll, < &l[ullloq llv]l],4 for some constant
Combine with (2.36), (2.31) implies

[Boa(u, 0)| < |Baa(u, 0)| + | Baa(u, v)] < C(he) ™2 [|ull] 4 [[[0]]]4

for some constant’ > 0.
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Again, by the Lax-Milgram Lemma, the SD finite element solution exists. An a priori

error estimation can be easily obtained from Lemma 2.2.4.

Theorem 2.2.6 (A priori error estimate) Suppose:, € H?() is the weak solution
and uy, is the discrete solution obtained from SD discretization on linear elements.

Then the discretization error satisfies

[l —unll] g < B2 ul (2.38)
fork =1or2.
Proof:

1
§|Hu—uhH\§d < |Bsa(u — up,u — up)|
= |Bsa(u — up,u—v)| Yo €V,

= | Byg(u — up, u — v) + Beglu — up, u — v)|

IA

e = ] [l = wlll, [+ A2 [l = unll] g [l = vy

A

hy 2w — inf [ju— ]|, .
[ [ T
By Lemma 2.1.2, we have
lw—unll|,, < h*2|uly, fork=1or2
O

From the a priori error estimation, the finite element solution obtained using SDFEM
method approximates the weak solution with order anfy:®>/?) (compared ta)(h?)

for the Galerkin method (see Theorem 2.1.3)). On the other hand, there is no large
constant of magnitudéhidden inside the error bound for SDFEM. Consequently, this

estimate is much more reliable than the a priori estimate from the Galerkin method.
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Unfortunately, the regularity of u remains a difficulty for global convergence as dis-
cussed in the end of Section 2.1. Nevertheless, Johnson has éhjgé#wrconvergence

on a region excluding the layers [58]. Niijima [69] provedh''/®log(h)) pointwise
convergence and Zhou sharpened the bour(d(ﬂof),% < «a < 2[107]. For sim-

ple flows with smooth domain and data, the weak solution is smooth in the interior
regions, [85] pages 176-185. Moreover, the SDFEM method is capable of removing
the oscillatory modes with carefully chosen stabilization paramigtef39] section

3.5. Therefore, we expect SDFEM solution to approximate the weak solution well in
the region away from layers. In the next section, our numerical results support this

observation.

2.3 Numerical Tests

In this section, we present two simple examples to compare the solution qualities
from the SDFEM method and the GK method. Also, the convergence behavior of
the SDFEM method for refined mesh is investigated. Our numerical results clearly
show that the error in regions away from layers is much smaller than the global error.
Moreover, the local convergence rate in regions away from layers is also faster than the
global convergence rate under the SD-norm. However, the global convergence rate in
our numerical tests is onl9(h'/?) instead o0 (h3/?) which is the best approximation
order one can expect from the a priori error estimate. This should not be a surprise.
If one combines the regularity estimate (2.8) in Lemma 2.0.4, and the a priori error
estimate (2.38) in Theorem 2.2, one can bound the errern,, in terms of the given

data f as shown in the following:

by 1
[l = unlllg = ()" [ fll » wherek = 1,2.

36



Clearly, whenh > ¢, we obtain a better error bound with ord@(h'/?) by letting
k=1.

In our test problems, we estimate the ertor u;, on a very fine adaptively refined
mesh,3, which is generated by 3 refinement steps from an initial 64x64 mesh with
threshold value 0.25 in the maximum marking strategy defined in Chapter 3. The
discrete solution, is injected to; by standard bilinear interpolation. For problems
whose exact solution is known, the error- u;, on 3y is available. Otherwise, the
SDFEM solutionuy on 3y is then treated as exact solution u and the efor wy, is

treated as the true errar— wuy,.

Problem 1: Downstream boundary layers

Consider

ehe/e _ 1 pby/e _
POy T Y

u(z,y) = (2.39)

on the domairf2 = [0, 1] x [0, 1], where(f;, B2) = (cosf,sin@) for 0° < 6 < 90°.

Direct calculation shows u satisfies
—e-Au—+ (51752) -Vu =0.

with Dirichlet boundary conditiory = « on 0f2. Clearly, exponential layers near
boundaryr = 1 andy = 1 are expected. we examine the convergence rate in regions

that exclude layers. First, the regioy
Qo ={(z,y) €Q:2<09ANy<0.9}.

is obtained empirically. Next, since the width of the exponential layer of the solution

u is O(e) and the local pointwise errofu(zo) — un(xo)| of any interior pointz,
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is usually estimated with respect fa||, 5 ., Where B, (z) is a ball with radius

r ~ h|log(h)| [58], it is reasonable to assume that the exponential laye#, dfas
width abouth|log(h)| + €. To define a region that does not include the layers, we
exclude fromt2 a region of width2(h|log(h)| + €) next to the outflow boundaries. Let

2y 5, denote this region,
Qop={(r,y) €Q:2x<1—-2hlogh+e)ANy<1—2(hlogh+¢)}.

The local convergence rate is then examined on bigtand(, j,.

The following are numerical results for the case- 1e — 03 andd = 15°. Clearly,
Figure 2.1 shows GK solution suffer serious oscillation on whole domain but SD
solution maintains good solution quality with small oscillation in the layer regions.
The third column of Table 2.1 shows SD solution has much smaller error in the regions
away from layer comparing to the global error in the first column. On a fixed domain
), excluding layer regions, the convergence rate is better tAavhich may due to

the fact that the solution u belong () for a > 2.
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mesh | [[ju —unlll,uq | llv—unlllag, | v —unlllag,,
8x8 3.82 3.33e-01 3.17e-03
16x16 2.69 8.82e-02 1.82e-03
32x32 1.87 9.91e-03 1.13e-04
64x64 1.26 3.41e-06 1.15e-07

Table 2.1: Error estimation of SD solution

(a) MeshS (b) Solution u orky ¢

(c) GK Solution on uniform 32x32 (d) SD Solution on uniform 32x32

grid grid

Figure 2.1:
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Problem 2: Characteristic and downstream layer

ou
l fy=0andz>0o0rx =1,

uloq =
0 otherwise,

whereQ2 = [-1,1] x [-1,1].
This problem exhibits an internal layer in the interior region and a exponential layer
on the boundary = 1. The internal layer arises due to the discontinuity of the given

boundary data and has widfh(,/¢). We set the width of layers &(h|log(h)| + /€)

and let(, ;, denote the region excluding layers,
Qop={(z,y) €Q:2>2(hlogh+e?) Ay < 1—2(hlogh +&'/?),
orz < —2(hlogh +&'/%)}.

Also, another domaify, that excludes layers are empirically chosen to be
Qo={(z,y) €eN:2>02Ny<08Ux < —0.2}.

Again, the local convergence rate is examined on bpthnd(, ;, and the exact error

is computed on a mesh .

For the case = 1073, figure 2.2 shows that the GK solution suffer serious oscillation

on the whole domain. On the other hand, the SDFEM solution has good solution
quality. The third column of table 2.2 shows the error in the region away from layers
is much smaller than the global error in the first column. Also, on the fixed domain

o, the convergence rate is better thgnas we seen in problem 1.
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mesh | |[lu — unll|sqq | v —unllsgq, | v —unllsq,,
8x8 5.53 3.15e-01 7.28e-03
16x16 3.88 6.69e-02 1.40e-03
32x32 2.70 4.03e-03 3.12e-04
64x64 1.84 2.13e-04 6.78e-05

Table 2.2: Error estimate of SD solution

(a) MeshS (b) Solution oriy ¢

L | |

AN ‘N ‘ N N
3 ANNmmmmmummnm
(c) GK Solution on 32x32 grid (d) SD Solution on 32x32 grid

Figure 2.2:
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Chapter 3

A Posteriori Error Estimations and Mesh

Improvement

In Chapter 2, we have shown that the theoretical convergence rate ir the SD-

FEM solutions, but only:'/? convergence rate is observed in our numerical results.
This result can be explained if the error is bounded in terms of data. Even though
the a priori error bound is capable of revealing the asymptotic behavior of the error,
it is not computable and can't be used to estimate the exact error. On the other hand,
our numerical results also show that errors in the regions excluding layers are much
smaller than the global errors. This phenomenon suggests that one can increase the
accuracy of the approximate solution without overloading the computational cost by
placing more grid points in the regions where errors are large. Therefore, it is natural
to acquire some computable error indicators to pinpoint where the error is large and,
at the same time, properly bound the exact error on the whole domain. In this chapter,

we consider such a posteriori error indicator.

To validate the reliability and efficiency of the error indicators, the global effectivity
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index, defined as
(ZTG%;L 77}2L,'1—')1/2
||U - UhHQ

Eq =

and the local effectivity index, defined as

Nh,T
Er = max ,
tey, HU — uhHT

are computed, wherg:|| represents the norms used to measure the exact error in
these indicators. Obviously, H,, ~ 1, the error indicator is reliable in measuring the
global error. Otherwise, iE, > 1, the error indicator under-estimates the error and
if Eq < 1 the error indicator over-estimates the error. Moreover, the local ifgex

can be used to determine how sharp the local a posteriori lower bound is.

With an error indicator in hand, adaptive mesh refinement can be accomplished by
the decision of selecting elements, the so-called marking strategy, and the refinement
strategies such as the regular refinement or the longest-side bisection algorithm [83]
[84]. A heuristic marking strategy is the maximum marking strategy [72] where an

elementl™ will be marked for refinement if
N+ > 6 max nr, (3.1)
TeSy,
with a prescribed thresholdl < # < 1. Some other marking strategies can also be

seenin[72].

In this chapter, we study two types of a posteriori error estimators where the approxi-
mate solution is obtained from SDFEM. In Section 3.1, we introduce a residual-type
of error indicator proposed by Vénfth in [97]. Hereafter, we call it the VR-indicator.

In Section 3.2, instead of studying the Neumann-type of error indicator byiNerf
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in which the size of each local problem is at least 12x12 in triangular elements, we
introduce a Neumann-type of error indicator proposed by Kay and Silvester in [59]
where the size of each local problem is only 4x4 in triangular elements. Hereafter, we
call it the KS-indicator. In Section 3.3, we present numerical results indicating that

the a posteriori bounds in our studies are sharp.

3.1 Residual-type a Posteriori Error Estimation

First, let us introduce the following abbreviations:

Rr(up) = f+eAuy —b-Vu, — cuy
Rur(up) = frn+€Auy, —b-Vu, — cuy
Ry go(un) = —[eVuy-nglg if E €
Rp,(up) = g—¢€Vu,-ng ifEely
Rnpgy(up) = gn—€Vuy-ng ifEely
Rg,(up) = 0 ifEelp
whereng is the unit vector normal to the edge &is the given Neumann condition
on boundary" y and|-| denotes the jump of a function across the edge E. The VR-

indicator consists of the element residual compongpt;, and the element edge-flux

componentsR,, z, andR;, g, , and is written as

2 2 2
= (07 | Baa()llo otpe D [Buma(wn)lggtoe Y [ Rumy (wn)llg )",
EeoTnQ EecoTnI'y

with pr = min{%, 1} andpp = /2 min{h—\/’%, 1}. Lete, = u — uy and|||-||| =
(e||[V-||*+do ||-]|*)"/? denote the usual energy norm wheés the constant described

in (1.2). Assumel, > e. Verfurth’s a posteriori error estimation reads as follows:
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(Global Upper Bound):
lenllo <D miat +4 > p2llf = fullor+ D € Voellg—alls z} (3-2)
TeS, TeSSy, Eel'n
and

(Local Lower Bound):

o 2 {1+ llellaowy + €2 [0l oy o7} llenllL,,

o lf = fallowr + 1 D € 0plg—anlls 53>

EedTnI'y

(3.3)

In the following, we outline the basic proof only for problems with only Dirichlet
boundary conditions. The same scheme can be extended to problems with Neumann

conditions and we refer to [97] for detalils.

First, by integration by parts, for alt € H;(f2), we have

Blen,w) = > {(Rua(un), w)r + (f = fo,w)r} + D (R g (un), w)e. (3.4)

TeS), EeQ

By Cauchy-Schwarz inequality, it is clear that

Blen,w)l < Y (IBnr(wnlloz + 1 = fallor) lwlloz+ D 1 Rnso @il g 1wllo x

T EecQ
Let w = e, — I(en,) Where the operatof is the quasi-interpolation operator of

Clément. By the interpolation estimates in Lemma 3.2 of [97],
Lo = Twlgr = prlllwlls,.

2. lw=Twlly g = vrEllwlls,,
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for allw € H'(&r), the above inequality implies
|B(en, en — I(en))] < Z pr (| Bnr(un)llo.r + I1f = falloz) lenllls,
TeSIy

+ 3 o 1B (wn) o s llenll] s, (3.5)

Few

<A i)+ () o2 I = Sallor)*H lllealllq

TeS) Te)
Second, the bilinear forms(e;, w) can also be rewrite as
B(en, w) = Bualen,w) = > dp(Rr(un),b- Vw)r Yw €V,
TeSy,
Letw = I(ep,). The orthogonality ofB,, implies By, (e, w) = 0. Therefore,

|Blen I(en)l < Y or | Re(un)llog 16~ VI(en) oz

TeSy,

= > sr(IRur(@n)llor + I1f = Fallor) 1Bllacr 2 17 (en) oz

TeS,
by a simple scaling argument. Again, from the interpolation estimates in Lemma 3.2
of [97],

[Tl = [[lwlllz,

we have

|Blen, L)l 2L me)?+ (07 Y 1 = fullon)*Hlealllo (3:6)
TSy TeS)

Now, from the coercivity estimate (2.29), (3.5) and (3.6), clearly the upper bound
(3.2) holds.

For the local lower bound, one would require judicious cut-off functiopnsn each

element T and cut-off functiongz » on each interior edge E, wheteis a scaling
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parameter between 0 and 1. The cut-off functions are essentially scaled bubble func-
tions and are rigorously defined in [97]. First, by choosing= 1Ry, r(us), (3.4)

implies
(R, (un), Y1 Ry (un))r = Blen, YrRur(un)) + (f — fr, Yo Bur(un))r.  (3.7)
By the following inequalities, in Lemma 3.3 of [97],

HUHQT'fg(UW¢TU>T7
”UwTHO,T < HUHQT? (3.8)
Hogrlll = pz' [0l

for all v € P, one can show that

1B (un)llor = llenllly {1+ lello p)oz" + €2 ]l 1}

+1f = fullor-

(3.9)

Next, by choosing test functiom = g yPg R £, (u,) With the scaling parameter
¥ = min {h—\/’g, 1}, wherePg is a continuation operator which extends function value

on an edge E to its neighboring elements, (3.4) implies

(Rh,E(z<uh)v wEﬁPERh,EQ (uh)) - B(Gh, wEﬁPERh,E(z(uh))

- Z (Rur(un), Ve9Pe Ry go (Un))r

TCwg

- Z (f = frs VB0 PRy g (un))r

TCwg

(3.10)

Again, by the following inequalities, in Lemma 3.3 of [97],

||U||()7E = (v, Y9 Ppv)E,

[0 Pevlly,, =o' vlop, (3.11)

-1/2

|||¢EJ9PEU|H07U_,E = Pg HUHO,Ea
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forall v € Py|g, one can show

— —-1/2
1 Rn 0 (wn)llg i = Menllly {1+ el ooy + €207 bl 2w

o he (3.12)
+pp min{—e, 1} f— fh||()7wE

By combining (3.9), (3.12) and the definition gf r, the local lower bound (3.3)
holds.

Remark 3.1.1 The parametergr, pr = min {\%, 1} appearing in the VR-indicator

is a direct result from scaling factors between the energy norm and the other norms,
such asL? norm andH' norm, while estimating the error in terms of the residual,
Ry, 7, and the edge-fluxi;, . R e, . For convection-diffusion equations with coef-
ficient c=0in (1.1), the energy norm is simgly||| = €!/2 || V-|| without theL?-norm
component. Obviously, the scaling factors between the energy norm and the other
norms are different and lead to differemt and px in the error indicator. By follow-

ing Verfurth’s arguments and carefully adjusting the scaling factors in the auxiliary

inequalities of [97], one can show that the same upper and lower bound holds with

priPE = .

3.2 Neumann-type a Posteriori Error Estimation

The basic idea of the KS-estimator is based on solving a local (element) Poisson prob-
lem over a higher order approximation space with given data from interior residuals

and flux jumps along element edges. First, we introduce some abbreviations. The
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interior residual of element T and the flux jump of edge E are denoted as follows:

RT = (f — b . Vuh)|T
RY. = PL(Ry), whereP2 is the L*(T)-projection ontaP(T)
[2w], i EeQ

Rp = § —2(§%) if Eely

0 |fE€FD

The approximation space is denotedgs= Q1 P Br , where
Qr = span{go® | Yr = 4x;x;,,j are the endpoints of andE € T N(QLJTw)}
is the space spanned by the quadratic edge bubble functions and

3
By = span{ip o @' by = 27 [ [ xi}
=1
is the space spanned by cubic interior bubble function. For an element T, the estimator
is given by

Nh,T = HveTHO,T’

whereer € Q, satisfies

1
e(Ver, Vo)r = (Ry,v)r — 3¢ Z (Rg,v)E (3.13)
EedT

Lete, = u — uy. The Kay and Silvester’s a posteriori error estimation can be read as

following:

(Global Upper Bound):

IV (enllon = (X mir+ Z ) || B — B2, )" (3.14)

TeS) TeSy

49



(Local Lower Bound):
hr hr 0
Nh,T = ||€h”07wT+ Z ?||b~Veh||0’T+ Z ? HRT—RTHO,T (315)
TCwr TCwr

To derive the upper bound, first, the bilinear fof#(e;, e;,) is written as

B(eh, eh) = B(eh, €p — Ieh) — B(eh, ]6h>

= DB(u,ep — ley) — B(up, en — Lep) — Z or(f —b-Vup —cup,b-Viey)

TeSy

1
= Z [(RT, Eep — Ieh)T — 5T<RT; b- VI@h)T -+ 56 Z (RE, Ep — Ieh)E].

TeS) Ec(Qul'y)

From coercivity estimate (2.29), interpolation estimates (2.1.2) and the Cauchy-Schwarz

inequality, it can be shown

Vel = 3 hrllBe+ [Re = Bllr 5 3 b IRl Vel

TeSy, Ec(QUI'y)

< Venllog { D 13 | R2llg,r + 1 [|7r = Bl

TeS,

€
P Y helRel

Ee(QUI'y)

(3.16)
Now, it remains to bound R%||, » and || Rg||, 5 in terms ofr, 7. By choosing a
cut-off functionyr € Br, (3.13) and (3.8) imply
[BS|S = (RS vrRS)r = e(Ver, Vir RY)r < ehz [[Verlly o || B3], (3:17)
Similarly, by choosing the cut-off functiongz € Qr, (3.13) and (3.11) imply

c|Rll; z = €(Re,YeRe)s = Y —e(VEr, VigRe)r + (Ry,, e Re)r

T'Cwr

—1/2 1/2
< Rslloe Y lehg* I Verllom + hi

T Cwr

| R

o]

(3.18)
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By plugging (3.17) and (3.18) into (3.16), the global upper bound (3.14) holds. To
show the local lower bound, first, we set= e in (3.13). By a standard scaling
argument, it is clear that

€
elVerllor = (R, er)r — 3 > (Rg,er)e

Ec(QNI'n)

< hr | Bllp IVerlor+ 5 D2 e IRslos IVerloy-

Te(QN'y)

(3.19)

Now we only need to bounfiR? |, - and||Rz||, ;- in terms ofVe,. Again, from a

proper chosen cut-off function, we have
|RY|[; 7 = (RS, vrRY)r = (RS, — Ry, vrRY)r + B(u — uy, b7 RY)
= HR?F - RT”O,T ”wTR%Ho,T te HVehHO,T vaR%HO,T + 16 vefLH(),T HwTR%HO,T
= HR?F - RT”O,T ||R%”0,T + i HvehHO,T HRZOFHO,T + HvehHO,T HR?FHO,T
(3.20)

Similarly, by using the cut-off function g, it can be shown

€ ||RE||8E = e(Re,YeRE)E

= Z e(Vun, ViypRg)7, by the definition ofRx and the Green formula

T Cwg

= > —e(Ven, ViuRe)r + ¢(Vu, VipRe)r
T'Cwg

= Z [(RT — R% + R(I]v —b- Veh — C€p, Q/JERE)T/ - €(V€h, VwERE>T’]
T Cwg

Therefore, by (3.11) and (3.20), we have

R}, — Ry

ehil® | Rullos = D [hr

T'Cwg

o+ hor [|b- Ve, + CehHO,T' +e HvehHo,T/]
(3.21)
By plugging (3.20) and (3.21) into (3.19), the local lower bound (3.15) holds.
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3.3 Numerical Results

In this section, we compute both global and local effectivity indices of the VR-
indicator and the KS-indicator for Problem 1 in Section 2.3. In order to see how
the effectivity indices change in terms of the diffusion parametnd mesh size h,

the problem is solved over uniform meshes with mesh &ize 1, .-, -5 and &, for

€ = 1. 796+ 037 @nd 1555 Since the true solution has exponential layers along the
boundary at x=1 and y=1, one requires a mesh which is fine enough in layer regions,
to obtain a better approximation of the exact error. To generate such a mesh, first, the
problem withe = ﬁ is solved on a 64x64 initial mesh. Three refinement steps are
performed by using the maximum marking strategy on KS-indicator with threshold
valued = 0.75. The mesh3;, similar to the mesh shown in Figure 2.1 (a), consists
of 11271 nodes and 21377 elements. The discrete true solution u is obtained directly
by (2.39) onSJ,. The SDFEM solutiony, is also prolonged by standard bilinear
interpolation ontd3 ;. Then, an approximation to the exact error can be computed as
lu = wnlloq = (D llu—unllg )",

TeSy

where|lu — uh||§,T is calculated by 7-point Gaussian quadrature.

First, the VR-indicator, the KS-indicator and the exact error are plotted in the follow-

1

w051 Where the exact error is measured in Hieseminorm

ing figure for the case =
and the VR-indicator is scaled by a factorﬁf to reflect the scaling factor between

the H'-seminorm and the energy norm. The table beside the figure contains the ac-
tual data for plotting the error and error indicators. It is clear that the KS-indicator
provides a more reliable upper bound than the VR-indicator. In fact, similar results

hold forh > e.
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Exact error v.s. error indicators

llw—unlll | fu—unly | (Creq, mhr)'”

400
VR KS *: VR-indicator

=or 0 : KS-indicator

X : Exact error

3001

1/8 0.773 2475 |15.22| 99.40

2501

1o -ull

2001

1/16 0.765 2448 |10.39| 67.85

1501

1/32 0.745 23.85 | 7.126| 46.54 o}

1/64 0.703 2249 |4.895| 31.97

Moreover, from Table 3.1, we can see that the local effectivity indices of VR-indicator
and KS-indicator blow up in a rate ¢¥(P.) ash > ¢. Furthermore, the numerical
data in Table 3.2 also show that the global effectivity indices blow up in a rate of
O(v/P.) as mentioned in [59]. The above results indicate that the local lower bounds
of the a posteriori error estimation of Véarth, Kay and Silvester, are sharp and sup-
port the well-known equivalence of residual type error indicator and local-problem

type error indicator.

€ 8x8 16x16 32x32 64x64 € 8x8 16x16 32x32 64x64

L 112.43 8620 8.610 7.741 | L |2504 1714 1.687 1.557

L | 45,26 22.69 12.46 8.627 L 19242 4637 2536 1.750

L 1181.0 90.51 45.26 22.67 l_136.95 18.48 9.239 4.629

L 17241 3620 181.0 90.54 L 11478 73.90 36.95 18.48
(a) Er of VR-indicator (b) Er of KS-indicator

Table 3.1: Comparison of the local effectivity indices

53



€ 8x8 16x16 32x32 64x64 € 8x8 16x16 32x32 64x64

6—14 5.764 4.673 4.825 5.064 | L |1.156 0.951 0.979 1.02

O

ﬁ 10.01 7.137 5.415 4555 | ;1. | 2.044 1457 1.105 0.929

T124 19.68 13.58 9.562 6.966 L 14016 2772 1952 142

1024

o

ﬁ 41.49 28.62 19.96 14.04 L 18.470 5.842 4.075 2.867

4096
(a) Eq, of VR-indicator (b) Eq; of KS-indicator

Table 3.2: Comparison of the global effectivity indices

3.4 Moving Mesh

Although adaptive mesh refinement can greatly improve the accuracy of the numer-
ical solution when a reliable a posterior error estimator is available, without proper
threshold value in the marking strategies, under-refinement or over-refinement may
occur in the refinement process. As a result, in order to obtain an accurate approxi-
mate solution, number of refinement steps may become too large if under-refinement
occurs, or, the discrete linear system may become too large to solve if over-refinement
occurs. Especially, for convection-dominant problems, i.e. the mesktRaghber
mingyegs, Pe, > 1, if the diffusion parameter is extremely small, it is not practical

to resolve layers by simply increasing number of nodes with a regular mesh refine-
ment process. With the above difficulties in mind, it is desirable to be able to increase
the accuracy of the numerical solution in the layer regions with fix amount of nodes.
A natural approach to achieve this goal is to cluster nodes in the layer regions using

moving meshes.

Moving mesh methods such as moving mesh partial differential equations (MM-
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PDES) by Huang and Russell [52], moving finite element (MFE) by Miller [66][67]

and gradient weighted moving finite element (GWMFE) by Carlson and Miller [25]
[26] are well known for solving time-dependent problems. In one-dimensional do-
mains, these methods have been demonstrated to produce highly accurate solutions for
many time-dependent problems. However, in two-dimensional and three-dimensional
domains, not only more mathematic analysis is needed for unstructured grids but also
carefully tuning of parameters to prevent mesh tangling is needed even for structured

grids.

The basic idea of moving mesh algorithms is how best to represent the given data
by a smooth function, by data points or by solution of a related PDE. One technique
to develop a moving mesh algorithm is based on a so-called equidistribution princi-
ple, where nodes are relocated to equidistribute a given monitor funttiokany
moving mesh techniques, including MMPDES, are based on this technique. If data
is generated from a smooth function u, some possible candidates for monitor func-
tions areY; = |Vu| andT,; = (1 + |Vul?)'/2. In one-dimensional space, T, is
employed, the node movement tends to equidistribute function values u, #gndsif
employed, the node movement tends to equidistribute the arc-length of u. Monitor
functions related to some error measures are also popular [1]. In two-dimensional
or three-dimensional space, there is still no rigorous definition and analysis of the

equidistribution methodology.
The other technique to develop a moving mesh algorithm is based on direct mini-

mization where nodes are relocated to minimize a measure of the error between the

targeted function and its approximation. Moving mesh techniques such as MFE and
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GWMFE are in this category. For self-adjoint problems, where the solutions can be
obtained by minimizing a known energy functional, mesh movement based on di-
rect minimization is a natural approach toward obtaining an optimal solution within
a finite dimensional space. In [93] and [94], Baines, Tourigny aitsémann have
shown that an energy functional decreases in a monotone fashion with their moving

mesh algorithm.

For non self-adjoint problems such as convection-diffusion problems, the solutions
are not derived from minimization of any energy functional. Theoretical analysis of

moving mesh algorithms for such problems is an open question. Recently, Bank and
Smith [10], Cao, Huang and Russell [24] have been employed an a posterior error
indicator as a monitor function in their moving mesh strategies. Their approaches
seem promising from the numerical results of some reaction-diffusion problems in
their studies. Here, for coding simplicity, we study a moving mesh strategy proposed

by Baine [53] and use the KS indicator as a monitor function.

First, let us briefly review the equidistribution principle in one-dimensional space.
Letz;,j =1,---,n be aset of irregularly spaced grid points(in= [, b]. Suppose
these points are related to the regularly spaced grid pgints= 1 - - - n in the domain

(2 = [0, 1] by discrete values of the continuous variable

B fax Y(s)ds

- fab Y(s)ds

By differentiating the above equation twice, we obtain the mesh equation

dex

d_g( (x)d_f) =0 (3.22)

with boundary condition:(0) = a andz(1) = b.
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When Y (z) is not constant, (3.22) is nonlinear and may be solved iteratively by the

algorithm
d dxPt!

F

with 20 = &, provided it converges. Whel is constant or piecewise constant, ie,
T does not depend on x, the solution of (3.22) can be approximated directly by finite

element or finite difference methods. Consider the monitor function
YT(x)=nrforxeT.

Clearly, Y (x) is a piecewise constant function. Linear finite element discretization of

(3.22) give rises to the following tridiagonal linear system:
Tx =0b, with T; = [T(ZL‘Z-_%), —T(w; 1) = T(xjp1), T(ijr%)]. (3.23)

If one solves (3.23) by iterative methods such as Jacobi or Gauss-Seidel, at kth iter-
ation, node movemerﬁtxg? of nodexf, from one point Jacobi step, can be computed
simply by aY weighted averaging on the adjacent nodes, i.e.
k k k k
bt T(xjié)(xj —xi )+ 'I”(:z:j+

J J T(z; 1)+ Tl

) (@1 — )
)

; k+1 k +1 _ k k
The new locationz;™" of z7 can then be updated by/; = xj + vyox where

drj =2
j

N= N

0 <~ < 1is the so-called relaxation parameter. Clearly,fox % nodes remain
ordered and mesh tangling is prevented. One step of point Gauss-Seidel is essentially
the same as one point Jacobi step except node positions are updated immediately, and

mesh tangling can not occur with this strategy.

For two-dimensional problems, there is no proper mathematical definition for equidis-

tribution. On uniform grids, a useful grid adaption technique is to treat 2D “equidis-
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tribution” as 1D equidistribution along the x-axis and y-axis separately [9], [106]. In

other words, we have the following equations:

Ve(Y(z,y)Vex) =0 (3.24)
and

Vi (T(z,y)Vyy) =0, (3.25)

wherez, y are coordinates on a domdn= [a, as] X [b1, bs], @ndg, n are coordinates
on the domairf) = [0, 1] x [0, 1]. If boundary nodes are fixed, (3.24) and (3.25) have

the following Dirichlet boundary conditions

$(0>77):a17 x(]-?n):a% ,.I(é-,O):ZE(g,l):é,
and

y(gao) :blv y(€71) :b27 7y(0777) :y(lvn) =,

respectively. If boundary nodes are allowed to move, the following Neumann condi-

tion can be posed:

2(0,n) = a1, (1,n) = az, ,2y(§,0) = zy(§,1) =0,
and
y(€,0) = b1, y(&1) = b2, ,ue(0,m) = ye(1,m) = 0.
Clearly, whenY is piecewise constant, the analysis used in one dimensional case can

be repeated here. Therefore, one step of point Jacobi or point Gauss-Seidel is again

equivalent to & -weighted averaging on the adjacent nodes.

Since an unstructured grid is a natural result from adaptive refinement process, we

employee the following moving mesh algorithm:
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1. Compute coordinates;, center point off;, andh;, the smallest height df},

forall T € w,,.
2. Letn, be the number of elementsdin, anddz; = =, — ;.
3. Compute

L T(@)

4, If ||(5[L’Z|| < ’Yminlgjgni Bj, thenxf‘ew =x; + 51‘1

Otherwisez*" = x; + (ymin<j<y, Bj)”g—izju, wherey < 1 is the relaxation

parameter.

Algorithm 3.4.1: Moving mesh algorithm

The algorithm is basically the same as the moving mesh algorithm in [53] except the
monitor function is replaced by the KS error indicator. In [53], the relaxation param-
eter~ is set to 0.5 and the location of each node is updated after all moving directions
are calculated (Jacobi type). In our numerical tests, we set0.6 and the location

of each node is updated immediately after its moving direction is computed (Gauss-

Seidel type).
Two numerical tests are presented here. The first problem is Problem 2 in Chapter

2 with e = 10~*. The second problem is a variant of the “lIAHR/CEGB” workshop

problem [91] as follows,
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Problem 3: Flow with curved internal layer and boundary layer
—e-Au+p-Vu=00nQ=[-1,1] x [0, 1],

wheree = 107* and = (2y(1 — %), —2z(1 — y?)). The boundary conditions are

given asu|r, = 1, ulr, = 0 and%“|r,, = 0, where
I = {(x,y) €0z =10or —05<z<0Ny=0}
'y = {(z,y) €00 <z <1ny=0}

Fg - 89—(F1UF2)

In both problems, two moving mesh steps are performed and these are followed by
one local optimization procedure (LOP), so-called edge swaps strategy introduced by

Lawson [64], [12], [82], before each mesh refinement step. We call this process,
two moving mesh steps— LOP — mesh refinement

moving mesh refinement. In order to compare moving mesh refinement and regular

refinement, we carefully choose refinement steps and threshold valuéise maxi-

mum marking strategy so that both methods produce a similar number of nodes in the

finest meshes. Four moving mesh refinement steps are performed for both problems,
six regular refinement steps are performed for Problem 2 and seven regular refinement
steps are perform for Problem 3. In both refinement methods, the thresholdvalue

in the maximum marking strategy (3.1) equals to 0.25. To access solution accuracy,

since there is no mathematical expression for the exact solution, the KS error estima-
tor is used to represent the true error in our tests. Clearly, from Figure 3.1 and Figure

3.2, we can see that the mesh movement strategy improves solution quality. More-

over, the error from moving mesh refinement is less than the error from regular mesh

refinement.
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Figure 3.1: fixed mesh refinement vs moving mesh mesh refinement
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Figure 3.2: fixed mesh refinement vs moving mesh mesh refinement
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Although moving mesh strategies may increase the solution accuracy without increas-
ing the number of nodes, there are still some disadvantages. For example, to success-
fully improve the solution accuracy, a carefully chosen relaxation parameter is needed
especially for problems in two or more dimensions. To demonstrate the importance of
choosing proper relaxation parameter, we solve Problem 3 on two meshes, one from
moving mesh refinement with relaxation parametet 0.5 and the other from reg-

ular mesh refinement. The errors of these two solutions are plotted in Figure 3.3 (f).
Clearly, unlike what is shown in Figure 3.2 (f), the error from moving mesh refine-
ment is no longer strictly less than the error from regular refinement along the whole

refinement process. This is caused by only a small changk of
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Figure 3.3: fixed mesh refinement vs moving mesh mesh refinement

64



3.5 Error-Adapted Mesh Refinement Strategy

The computational overhead of moving mesh strategi€s,isx N where N is the

total number of nodes ard,,, is the cost of computing a move direction. In addition

to the drawback that the moving mesh in Section 3.4 is very sensitive to the relaxation
parameter, ifC,,, is large and, in addition, one has an efficient linear solver, such
as multigrid methods, for the convection-diffusion equation, then the cost for mesh
movement will be high compared to the cost of solving the linear system. Moreover,

if one would like to use multigrid methods to solve the sparse linear system, expensive
interpolation must be computed for each moving mesh step on all grid levels because
the grids after mesh movement are no longer nested. In adaptive refinement process, it
may be more desirable to increase the accuracy of the approximate solutions without

reducing the efficiency of linear solvers.

In this section, we propose an error-adapted mesh refinement strategy in which new
nodes are added to marked edges adaptively, according to the distribution of errors.
The cost for computing interpolation in our method is basically free. We also expect
nodes will cluster to the region where error is large in the adaptive refinement pro-
cess. In the following, we present the idea of our error-adapted refinement strategy

and some numerical tests.

Suppose; ; is an edge in a marked element T with end pojtandp;. In regular
refinement and longest side bisection method, a new pBies always inserted in
the mid-point ofe; ;. In the new algorithm, the location of new node on edggis

determined by recovered error estimatprandn; on nodesp; andp; respectively,

where the recovered error estimator is computed from an area-weighted averaging
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of nr over its adjacent elementg, € w;, for any nodep;. The basic idea behind this
algorithm comes from a tension spring model. One can think of each edge as a tension
spring connecting its end points. The newly added ngd# is located at the mid-

point of ¢, ;, initially. When errors are uniformly distributed across edgg no force

is introduced ang"*” = p™. Otherwise, we considefr; ; = (n; — nZ)li_jl where

€;; = p; — pi, @s an external force posed ph and movep™ to the equilibrium of

the simple tension spring system on edgge Hence, the displacemedit; ; can be

computed as

1 , ,
oz ; = Wﬂ’j’ wherekK; ; is the tension constant of edgg;,
Z?j

and the location of new nogé¢< can be updated by
pnew — pmid + 5Ii,j'

It is possible thap™" is located outside of; ; and produces mesh tangling. Here, for
simplicity, we set; ; = 1 on alle; ;, and modify the external force as follows:

mineeE}*L ‘Fi,j‘

(1= (i 2))a,, i e, € By andn, > 1,

ming e p* |F; j . .
FiIJ - (1 - (|e+_hj|‘]‘)a)€j7i, if €;; € E;: andT]j < (326)
0, otherwise

where0 < a < 1is a relaxation parameter. Clearly< Fl.’J < 1, and the displace-

mentézx; ; can now be safely computed as

1
e — / _‘4 .
0y = 5 Fj ;€5

As a resultp™ will be always located if; ;.

Remark 3.5.1 The external force in (3.26) has very little effect on determining the

location of new nodes, for small, i.e., « — 0. On the other hand, for large,
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i.e.,a — 1, the newly inserted nodes can be moved away from the mid points of the

marked edges. Hereafter, we calthe error-sensitivity parameter.

To preserve the quasi-uniform structure of the refined mesh outside regions contain-
ing layer, a small threshold value in the maximum marking strategy and large error-
sensitivity parametett &~ 1 should not be combined. Otherwise, long-thin elements
may also appear outside the layer regions from our error-adapted refinement process
and further degrade the solution quality. With careful chosen error-sensitivity param-
eter, our numerical results show the error-adapted refinement strategy quickly cluster

new nodes to layer regions and still maintain good quality mesh in the other regions.

In the following, first, an example is given to demonstrate the importance of the error-
sensitivity parameter in our error-adapted refinement strategy. We solve Problem 2
with e = 10~ on both regular refined meshes and error-adapted refined meshes gen-
erated by the KS-estimator. Three refined meshes are plotted for each refinement
strategy. In Figure 3.4, a threshold valie- 0.05 is used in the maximum marking
strategy and the error-sensitivity parametdas equal to 1. One can see that serious
mesh distortion appears on the whole domain. However, in Figure 3.5, with a thresh-
old valued = 0.25 anda = s, it is clear that the error-adapted mesh refinement
clusters nodes to layer regions and still maintains good mesh-quality mesh outside

layer regions.
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(a) Regular refinement

(b) Error-adapted refinement

Figure 3.4: Regular refinement vs Error-adapted refinentest0.05 anda = 1 for

Problem 2

(a) Regular refinement

(b) Error-adapted refinement

Figure 3.5: Regular refinement vs Error-adapted refinenteat0.25 anda = % for

Problem 2.
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Second, we present more examples to show that the error-adapted mesh refinement is
good for resolving boundary layers. In these examples, if the error-adapted refinement
is employed, the refinement strategy is replaced by Longest-Side Bisection algorithm
when the minimal height of the triangles is less tjai\Iso, the KS-estimator is used

in these examples.

First, consider constant flow problems such as Problem 2 in Chapter 2 where both
an exponential boundary layer and an parabolic internal layer exist. In this problem,
since the wind3 is perpendicular to the wall y=1, the terfn|3 - Ve,||, in the a
posteriori lower error bound (3.15) is expected to be dominant. Therefore, it is not
surprising that the error indicatgt- in the boundary layer near the wall y=1 has ex-
tremely large value compared g in other regions. In this case, our error-adapted
mesh refinement process is able to cluster new nodes to the boundary layer region
efficiently as seen in the following results. Two test cases, 10~* ande = 1073,

are given. In both cases, the error-sensitivity parameisrset tooa = %

In the case of = 1073, 10 refinement steps are performed with marking threshold
valued = 0.25. Both algorithms are able to resolve the boundary layer. However,
from Figure 3.6 , it is clear that the error-adapted mesh provides higher resolution
near the boundary poini0, 0), where the jump discontinuity appears. Moreover, the
regular refinement algorithm generates 5979 node points whereas only 1973 nodes

are generated by our refinement algorithm.
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Figure 3.6: Isotropic refinement vs error-adapted refinement for the:cas® 3

For the case of = 10*, in general, it is hard to fully resolve the boundary layer
and produce an accurate internal layer without paying an extremely high computing
cost. Here, from Figure 3.7, a clear internal layer can be seen from the solution
on the mesh generated by the error-adapted algorithm. The solution on the mesh
generated by regular refinement fails to resolve the internal layer. Again, only 2729
nodes are generated by our algorithm compared 7001 nodes from regular refinement.
In this numerical test, 16 refinement steps are performed with marking threshold value

0 =0.5.
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Another constant flow problem in our tests is the same problem as Problem 2 except
the wind 3 is (cos(2m), sin(2n)). In this example¢ = 10~* and 12 refinement steps

are performed with threshold valde= 0.5 and error-sensitivity parameter = %

Again, the solution from the error-adapted refinement algorithm is better as shown in

Figure 3.8.

Next consider Problem 3, the “IAHR/CEGB” workshop problem [91]. With a curved
internal layer due to a jump discontinuity on the Dirichlet boundary and an exponen-
tial layer on the hot walt = 1, this problem not only can be used to test discretization
strategies but also can be a challenge problem to our error-adaptive mesh refinement

strategy. Unlike the constant flow problems, whgres perpendicular to the wallf
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Figure 3.8: Isotropic refinement vs error-adapted refinement for the-casé® —*

is parallel with the wall: = 1 in this case. Thereforé, ||3 - Ve, ||, may no longer

be the dominating term in the a posteriori lower error bound, £¢f&r — Ry llor

cannot be treated as a low order term. In this situation, we can not expect the error
indicatorny to be significantly larger in the layer region near the wa: 1 thann,

in the internal layer region. As a result, if we try to resolve the exponential layer more
quickly in boundary layer region by increasing the mesh error-sensitivity parameter
«, Some anisotropic elements may appear in the interior region, where isotropic ele-
ments are desirable, this leads to larger errors in these regions. In our numerical tests,
a smalla = 1/8 is chosen and 8 mesh refinement steps are performed. Figure 3.9
shows that only errors in boundary layer are reduced significantly by our new refine-

ment strategy in this case.
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The next problem is very similar to the above “IAHR/CEGB” workshop problem
with ¢ = 1073. The only differences are that the wigklis changed tqy(4 — (1 —
7)?),2(1 — z)(1 — y?)) and the hot wall boundary condition, = 1 onz = 1, is
replaced by a cold wall with = 0 onz = 1. In this problem/ is now perpendicular
to the wallz = 1. Therefore, |3 - Ve, |, is again the dominant term and a large
error indicatornpr in boundary layer is expected. As shown in the first problem, the
error-adaptive mesh refinement algorithm should be able to cluster node points in the
boundary region efficiently. In this numerical test, the mesh error-sensitivity parame-
tero = 3. First, a fine initial mesh is generated followed by three regular refinement

steps. The solution computed on this fine mesh, denotésh bis then considered to
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be the exact solution. Two mesh&s, and<S,, are generated from a 4x4 initial mesh
with same threshold valug = 0.25. Eight refinement steps are performed to gener-
ate regular-refined mesk; and fourteen refinement steps are performed to generate
error-adapted mesbh,. Again, from Figure 3.10, we can see the solution from regular
mesh refinement, with 2858 node points, fails to present accurate internal layer struc-
ture. In contrast, the solution on error-adapted refined mesh, with 2749 node points,

shows both accurate internal layer and boundary layer.
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Chapter 4

Methods for Solving Sparse Systems

In this chapter, we study several linear iterative methods for solving the linear system,
Au = f, (4.1)

Our goal is to find out which one is the most suitable solver on the adapted refined
mesh for the matrixd = Agp arising from SDFEM discretization of the convection-
diffusion equation.

First we introduce the stationary iterative methods based on matrix splitings

M — N. The popular Jacobi and Gauss-Seidel methods belong to this category. It
is well known that if the matrix4 is an M-matrix, these types of iteration methods
converge. Moreover, the Stein-Rosenberg theorem implies the Gauss-Seidel method
converges faster than the Jacobi method. However, for the convection-dominate flow
problems, the matri¥isp is only a positive definite matrix, due to the coercivity of
Bsp), but not an M-matrix. As a result, it is difficult to show the stationary iterative
methods converge. In fact, Bey has shown that there exists a positive define matrix
for which the Gauss-Seidel method never converges but the Jacobi method converges
[13]. In addition, although the flow-oriented Gauss-Seidel method shows good con-

vergence in many numerical studies for simple flows, the node numbering becomes
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more difficult for complex flows such as flows with closed characteristics.

Second, we study Krylov-subspace methods such as the generalized minimum resid-
ual method (GMRES) [87], which is a natural candidate for solving a nonsymmetric
linear system. In theory, this method is guaranteed to converge and the convergence
rate can be bounded in terms of the spectrumi @nd the condition number of the
eigenvectors. Even though the estimated convergence rate may much greater than the
actual convergence rate [41], it may still reveal the fact that the convergence rate can
be slow for small mesh sizes and large convection for the convection dominant prob-
lems. As a result, the computation cost may become too expensive. One way to im-
prove the convergence rate of GMRES is by using preconditioning. Instead of solving
the linear systemiu = f, one can solve the linear systeWi-*Au = M~! f where

the preconditioning matri¥\/ is nonsingular. 1fA/~*A ~ I and M~'A is closer

to a normal matrix, one would expect an improved convergence rate. Good precon-
ditioning matrices can be derived from a convergent stationary iteration or from an
incomplete LU factorization ifd is an M-matrix. Although this is not the case for the
convection-dominated flow, numerical studies in [89] still show these preconditioners

are robust.

Unlike stationary iterative methods and Krylov subspace methods, where the conver-
gence rates decrease as the mesh is refined, multigrid methods (MG) are well known
for having a mesh-independent convergence property for self-adjoint elliptic problems

if the solution u had?? regularity, i.e.

lully < coll o (4.2)

For problems with solutiom € H'**(Q),0 < a < 1, the mesh-independent conver-
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gence can still be shown [19] if the bilinear form B of the associated partial differential
equation has strong coercivity and continuity, namely there exist con$taqts:,

¢y < oo such that for alb € V), ¢ H'*«
a ol < B(v,v) < ea ||l (4.3)

For non-self-adjoint elliptic problems, if the skew-symmetric part of the operator can
be treated as a small perturbation term, for problems that are diffusion-dominated,
the MG convergence is still mesh-independent as shown in [17], [20]. Unfortunately,
in the convection dominant case, MG convergence can not be proved due to the fact
that the constant, ~ PS/Q andc; ~ e. However, MG uniform convergence can
still be achieved by using special gridding techniques, for example, using meshes ob-
tained from semi-coarsening [80] and Shishkin meshes [46] with operator-dependent
interpolations. This is because those techniques improve the regularity of the discrete
solution in the sense that the coarse grid provides a better approximation for the error
on the fine grid. On the other hand, without knowing such a priori formulated grids,
algebraic multigrid (AMG) [86] first defines the algebraic smooth error, then selects a
set of grid points to interpolate these smooth error. Although the convergence results
of AMG has only been established for M-matrices with a 2-level scheme, AMG con-
vergence still appears to be essentially independent of mesh size in many numerical
studies [62].

In the following, we present implementations and convergence results of each lin-
ear solver. For simplicity, only Problem 2 in Section 2.3 on a uniféfnx NV rectan-
gular meshes is discussed in our analysis. Numerical results compare the performance

of these solvers on the adaptive refined mesh.
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4.1 Stationary Iteration Methods

Given a matrix splittingd = M — N, the corresponding stationary iteration f@f)
is written as

My, 1 = Nuy, + f. (4.4)

By subtracting)M u,,, from both sides of (4.4), we have the alternative form:
Umt1 = Uy + M_l(f - Aum) (45)

One can think of the matriX/ as an approximation of. If M = A, u! = u;, and the
equation (4.5) represents a direct solver. gt and A;, denote the diagonal matrix
and the lower triangular matrix of the matrikrespectively, and let | be the identity
matrix. The following Table 4.1 shows some of the well known stationary iteration

methods in terms of the choice of matrix M:

Jacobi M= Ap
Damped Jacobi M =w'tApwhered <w < 1
Gauss-Seidel M= Ap + AL

Successive Over-RelaxationV/ = w™'(Ap + wA) where0 < w < 2

Richardson M =w™||A|ll where( < w < 2

Table 4.1: Stationary iterative methods

One can also partition the mesh into a set of independent blocks which induces a block
partitioning of A. Table 4.1 can also represent the block-version of those iterative
methods withA, denoting the block diagonal matrix of A amt}, denote the block

lower triangular matrix of A.
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(a) Lexicographical node ordering (b) Block partition of matrix4

Figure 4.1:

For example, if one partitions the uniform mesh into a union of horizontal lines and
numbers the grid points in lexicographical order, as shown in Figure 4.1, then the
discrete matrix4Asp in (2.28) of Problem 2, with stabilization paramedter= g can

be represented in the following matrix form:

D v ]
-L D -U 0
Asp = o (4.6)
o _p
0 -L D -U
-L D
The blocks are tridiagonal matrices
D= hx tridiagl}y — £, 3+ 3.5 — 4l
L =hxtridiag[; + 35,2+ 35,5 + 35, 4.7)

U = e x tridiag[z, 3, 3].
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The block diagonal matrix, block lower triangular matrix and block upper triangular
matrix of Agp is defined as follows:

D 0 0 —U

Ap = , A = andAy =

I D | i -L 0 | i 0 |
The block Gauss-Seidel method is then defined by (4.5) Wite: Ap+A;, . Because
each block consists of nodes on a horizontal line, this block Gauss-Seidel method is
called the horizontal line Gauss-Seidel (HGS) method. If the node ordering in HGS is
reversed, we call the resulting block Gauss-Seidel method the backward HGS. Sim-
ilarly, one can define another block Gauss-Seidel method where each block consists
of nodes on a vertical line. This block Gauss-Seidel method is then called the vertical
line Gauss-Seidel (VGS) method. Again, by reversing the node ordering, one obtains

the backward VGS. For general convergence analysis of the stationary iterative meth-

ods, we refer to Chapter 4 [50] by Hackbusch.

It has been shown that the HGS method converges for our model problem on a uniform
mesh with mesh sizé < ¢ [37]; we consider this method in the following analysis
and also allow mesh sizés > ¢. In order to analyze the convergence of HGS, the

equation (4.5) is rewritten in the error reduction form,
emi1 = (I — M~ Agp)em, (4.8)

wheree; = u — u; is the iterative error at ith iteration, by subtractingrom (4.5).
By direct computing, the error reduction operafot = I — (Ap + Ap) tAsp =

—(Ap + Ap) ' Ay can be written in the following matrix form:

E* =G, Go, (4.9)
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where

G

I
0 (O'L)"?* ... DL
0 (D'

I

(D7'L)*> DL

andGy, =

From (4.9), the convergence results of the HGS iterative method can be shown by

estimating||G:|| and||G.||. In the following,

vector Euclidian norm depending on either input argument is a matrix or a vector.

From (4.7), D and U are symmetric. The following inequalities

U= p(U) <€

D7 = o=

|| represents the matrik? norm or

<

1

h
by

10e

3

~

3
~h

I

for h > ¢, follow directly from the Gerschgorin circle theorem. Therefore, we have

€
|Gal| < 3%'

To estimatg|G, ||, the following lemmas are needed.

(4.10)

Lemma 4.1.1 Given two symmetric matrices, and B,. Assume thaf3;, By > 0,

B; is irreducible andB; is positive definite. The following properties hold.

1. There exist a positive eigenvectofr such that

By'Bix" = p(By'By)xt

(4.11)

2. If aI — By ' B is non-singular anda! — By ' B;)~! > 0thenp(B; ' B) < a.
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Proof: The existence of a positive eigenvector satisfying (4.11) is essentially a gener-
alization of the well-known Perron and Frobenius theorem ([95] Theorem 2.7). Using
(4.11), one can prove the second result using a standard argument of Perror-Frobenius

theory, see Theorem 3.16 in [95].

Lemma 4.1.2 Let L and D be the matrices defined in (4.7). For ahy> (1 + %)%

the matrixo(D — L) — D is an M-matrix.

Proof: Let us choosé = h—j forsomey > 0. From (4.7),D—L = ¢ xtridiag[—2,7, —2].

Therefore, we have

—2y Ty —2vy | e 2 8l €
a ~hox tridiag]- — —, 2+ 26 2 _ &

3 30 3 ) hxtridiagly — oot e = o]

h x tridi [(27 41 )]

= ridiag|—(— + - — — — + = .
I T T3 3 T3 3 V3 6 3

5(D—L)—D = hxtridiag|

Since

1
3w B tewm T
clearly, fory > 1 + < the matrixj(D — L) — D is irreducible and weakly diagonal
dominant. This implies the matriX D — L) — D and(6(D — L) — D)~! are positive
definite. Moreover, since the off-diagonal entries&fD — L) — D) are all negative,

the matrixd(D — L) — D is an M-matrix for§ > (1 + 2¢)%,
O

Now, we estimatélG' || in the following. First, let us estimateD~'L||. Considering

DL =1- DD - L), we have

al —-D'L=DYD-L)—(1—a)l = (1—04){D‘1[$(D—L)—D]}. (4.12)
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Let us choosev satisfyingﬁ =06=(1+ %)% Lemma 4.1.2 implies the matrix
(D — L) — D is an M-matrix. Consequently;=—(D — L) — D)~! > 0. Then
using the equation (4.12) ardd > 0, it follows that the matrixa7 — D' L > 0. Since

D is also positive definite, by Lemma 4.1.1, we can conclude that

1 € 1 €

|D7'L|| = p(D~'L) <a=l-2=1-f ) <1——. (4.13)

By utilizing (4.13), we estimatéG, || in the following.

Letz = (zy,29,---,2n) € Vi, Wherez; € RN andY Y, |lzi]|* = 1. Itis clear
that |G1z|| < ||Guy| for y = (||lz1]| =™, [|z2|| 2T, -+, ||zn||2T). Therefore, the

eigenvector corresponding to the maximum eigenvalue has the following form:

N—-1
= (0, 1", Boar™, -+ Byax™), where d 37 = 1.
=1

By direct computing,

2
}1/2

N

Gyl = {Z Z D' L) Fat

= {Z (Z BLliTM12 wherel = p(D'L).

i=1 k=1

Sincel < 1andY. Y ' 42 = 1, the inequalities

7 N-—1
||G1H<{Z Zﬁ <D VPN (4.14)
=1 = =1
and
N—-1 7 7 N—-1 1
G < O D BID @22 < 0> (ke
=1 k:j\,_l k=1 =1 k=1 (415)
S (- PP < ()

=1
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hold. Recall that < 1 — 35 from (4.13). By combining (4.14) and (4.15), we have
1 3h
< —min{——=,1}. :
|Gl < min {721} (4.16)

Therefore, from (4.10) and (4.16), the following theorem holds.

Theorem 4.1.3For h > ¢, the error reduction matrix.® of the line Gauss-Seidel it-
erative method for problem 4.1, obtained from SDFEM discretization of the convection-

diffusion equation with wind b=(0,1), satisfies the following inequality:
€ 3h
*l <3—=min{——,1}. .
1B < 375 min{==,1) (4.17)
O

Theorem 4.1.3 shows that the error reduction rate is decreasee:ds For a given
stopping tolerance, less iterative steps is expected as shown in Table 4.2, where the
stopping tolerancér,,|| < 107 |||, o is the initial residual and,), is the residual

at m-th iterative step, is chosen.

Mesh | e=10"2 =103 e=10"* e=10"°

16 x 16 8 6 4 3
32 x 32 8 7 5 4
64 x 64 9 8 6 4

Table 4.2: HGS convergence on rectangular mesh for Problem 2

4.2 Krylov Subspace Method: GMRES

An alternative methodology for solving a linear systetn, = f, is based on Krylov

subspaces. Iterative methods that take this approach include the well-known conjugate
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gradient method (CG) [5], minimal residual method (MINRES) [71]and generalized
minimal residual method (GMRES) [87]. Given &n x N matrix A and a vector
v € RV, the k-dimensional Krylov subspade< N, generated by the matriz with

respect to vectos is defined as
Kk(A,U) - Span{u A’U7 AQU, . 7Ak—lv}'

The above mentioned methods generate iterative solutignsn translated Krylov
subspace, + K,,(A4,ry), whereuy is the initial guess and, is the initial resid-

ual, such that either the erref, = u — u,, with respect to the A-norm, defined as
lemll 4 = V< Aem, e >, is minimized or thely-norm of the residuall| Ae,, ||, is
minimized. For a systematic comparison on these methods, we refer to the article in

[36] pages 69-118 by EIman. Here, we summarize the GMRES method as follows.

First, anly-orthonormal basigvg, v1, - - - ,v,,—1} Of the Krylov subspacé,,, (A, vg)

is generated by the Arnoldi process as shown in Algorithm 4.2.1,

First, choose an initial vectag with ||vy|| = 1;
forj=0:m—1do
hij =< Avj,v; > fori=1---7,

. j
i1 = Avj — 320, hijui,

hjsri = |04,
Vit = hi;J:j'
end for
Algorithm 4.2.1: The Arnoldi process
LetV},, denote the matriky, v1, - - - , vp—1] @aNdH,, = (h; ;) Wwhered <i,j < m—1.
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The following relation holds directly from the construction of Algorithm 4.2.1:

AV, = Vi Hyp, (4.18)

whereH,, is a(m + 1) x m matrix satisfying(Hy); ; = H, ; forall0 <i,j <m —1
andH,,(m + 1,:) = [0,0,- -+ ,0, hypm_1]. The GMRES method computes iterative

solutionsu,, = ug + 2, € ug + K, (A, 1) such that

1f = Aum| = |[f = Afuo + 2]l = _ min flrg — Az]. (4.19)

z€Km(A,r0)

SinceV,, is an orthonormal basis df (A, ry), we have: = V,,y for somey € R™.
Letvy = %ro, wherefs = ||ro||. From (4.19), the GMRES iterative solution can then

be obtained by finding the minimum of the following function

J(y) = min || for — AVy|| = min [[Vons1[Be’ — Hiny]

|, by(4.18),  (4.20)

on R™, wheree! = (1,0,--- ,0) € R™*1. Moreover, sincé/, ., is orthonormal, one
can rewrite (4.20) as

J(y) = myin |Be" — Hpyl|- (4.21)

To further simplify (4.21), let us consider the QR factorization&f. Becausdd,,, is
an upper Hessenberg matrix, the QR factorizatio/gf can be easily computed by

introducing m plane-rotations [47] page 343. Let
H,, = QmnR (4.22)

be the QR factorization aff,,,, whereQ,, is an(m + 1) x (m + 1) matrix from plane
rotations and satisfigg),,|| = 1 andR,, is a(m + 1) x m matrix with zero last row.

By (4.22), (4.21) can be further transformed to the following
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whereg,, = BQ..c'. Now, it becomes clear that one can simply solve the upper
triangular part of

to find a vectory,, € R™ such that/(y,,) = min, ||gm — Ryl LEt 20 = Vi AS
a result, we have
U = U + 2Zm = U + Vv,
which satisfies (4.19). The complete GMRES algorithm is shown in Algorithm 4.2.2.
For GMRES computation cost and some cost-saving implementation issues, we refer

to Saad and Schultz [87].

The convergence properties of GMRES are summarized in the following theorem.

Theorem 4.2.1 Let u,, be the iterative solution generated after m steps of GMRES

with residualr,, = f — Au,,.

1. If Ais diagonalizableA = XAX !, whereA = diag[);] is the diagonal matrix

of eigenvalues of A and X is the matrix of eigenvectors, then
]l < 11X ]| X (in max @ (As)] [Iroll (4.24)
whereP,, denotes the set of polynomidls, of degree m for whicl#, = 1.

2. Let A and A be the symmetric and skew symmetric parts of A, respectively. If
is positive definite, then
)\min A 2
frall < (1= —2m 0y @es)
)\m'm<A)/\mam(A) + p(A)

wherep(A) is the spectral radius of.

Proof: See [35] and [87].
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Chooseuq, computery = f — Aug.

LetT = ||ro

, B =7andk = 0.
while 7 > tolerancedo
Sety; = %0 andk =k + 1.
for j=1:mdo
hij =< Avj,v; >, fori=1--- 7,
Oj11 = Avj — Zgzl hi Vi,

, and

hj+1,j = ||ﬁj+1

’ﬁ'.._l
Vil = 72
I hja

Computer = min,cp; ||Be! — H;yl|
If (7 < tolerance) break;
end for
Updateu;, = uo + Vjy,
If (7 < tolerance) break;
Computer, = f — Auy, and setr = ||ro||
if (7 < tolerance}hen
break;
else
setuy = u, andfg =7
end if

end while

Algorithm 4.2.2: The GMRES method with restarts after every m steps
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Notice that verifying the stopping tolerance of GMRES iteration is essentially free,
because the minimum of(y) is just the m+1 entry of,,, which is available from the
QR factorization off,,. Also, the QR factorization requires much less computation
time and storage than the Arnoldi process. Therefore, the amount of work and storage
of GMRES is mostly determined by the Arnoldi process. Unfortunately, the computa-
tion time and storage requirement of the Arnoldi process rises in proportotvts)
andO(m), respectively, as the iteration count m increases. As a result, unless one
is fortunate enough to obtain extremely fast convergence, the cost of GMRES will
rapidly become prohibitive. To overcome this drawback, a good preconditionér of
or a restarted version of GMRES [87] (see Algorithm 4.2.2) are generally considered

in practice.

Let M be a preconditioning matrix ofi. In Algorithm 4.2.2, if one replaces

by M~'A and f by M~ f, one obtains a preconditioned version of GMRES algo-
rithm. From Theorem 4.2.1, a good preconditiodéris one for whichA/~1A is

close to a normal matrix such that the matixof eigenvectors of\/ ! A satisfies

| X | XY ~ 1 and the eigenvalues dff ~' A are close to 1. For the convection-
diffusion equation discretized by the finite volume methods on a uniform mesh, Oost-
erlee and Washio have shown some multigrd methods with matrix-dependent prolon-
gation operators are good preconditioners and GMRES using multigrid as a precondi-
tioners leads to a faster convergence than the same multigrid methods as solvers [70].
For the convection-diffusion equations discretized by SDFEM on a uniform mesh, the
performance of GMRES with preconditioners from different types of Gauss-Seidel
methods or from incomplete block factorizations can be seen in [90]. In Section

4.5, we consider preconditioners such as one step of the Gauss-Seidel iteration with
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flow-oriented node numbering, one step of the standard V-cycle multigrid with bilin-
ear prolongation operator, and one step of the V-cycle algebraic multigrid. Perfor-
mance of these methods as GMRES precondiitoners and solvers are compared for the
convection-diffusion equations discretized by SDFEM on both a uniform mesh and

an adaptive refined mesh.

4.3 Multigrid Method

The efficiency of the multigrid algorithm is achieved from an elegant combination of
the smoothing procedure and the coarse grid correction procedure. The smoothing
procedure plays the role of reducing highly oscillatory error modes, and the coarse-
grid correction is used to correct the remaining smooth error modes. Hackbusch [49]
and Braess [16] give the first rigorous proof on the multigrid convergence and identify
that thesmoothing property and theapproximation property are the cornerstones for

the convergence analysis of multigrid methods.

Let A; andS; be the matrix from discretization and the error reduction matrix from an
iteration method on a mesh with sizg Let p and r be the prolongation and restriction

operator. Themoothing property is defined as

—+

An iterations; satisfies themoothing property if there is a functiom(v) independen
of S; with
|ASI| < n(v) ||Al]l forall0 < v < ocoandl > 0, (4.26)

wherelim, ., n(v) = 0.

and theapprozimation property is defined as
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A = pALr|| < Ca/llA[foralll > 0, (4.27)

whereC', is independent witfh.

In this section, we describe the multigrid algorithm and its recurrence relations. We
also give a proof of the V-cycle multigrid convergence for our model problem by es-

tablishing some inequalities similar to (4.26) and (4.27).

Assume we are given a nested sequence of finite dimensional subgpac&s) for
k=1,---,J,whereV, c V, c H'foralll < k andS;, is a regular refinement from
S,_; for all k. Let A, denote the matrix obtained from the SDFEM discretization of

the convection-diffusion equation dn. Clearly, for allwy,, vy € V4,
(Apwy, vk = Bag(wy, vg).
and the SDFEM solution;, € V}, satisfies
(Apug, vp) = (I" f,vp), forall v, € V4,

where(, -), denote the.? inner product or, andI* f is the nodal interpolation of f
on Vk. Since the SDFEM solution,, is unique on each subspaktg, the projection
operatorP;, : H' — V, is well defined and satisfieB,4( Pyu,v) = Bsg(u,v), Vv €
Vi. Let the prolongation operatdf , : V,_; — V; be the canonical bilinear inter-
polation. On uniform rectangular meshé$, , can be represented by the following

stencil notation:

11 1

4 2 4

I =11 1
k—1 5 1 3
11 1

4 2 4
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Let the restriction operatdr}f*1 : Vi, — Vi_1 be defined by
(I u,v)ey = (u, If ), Yu€Viandv € V.

Also, let M, ' : Vj, — V, represent a linear smoothing operator.

In order to define the multigrid operator, first, for= 1, let us defineVl G (wy, go) =
Agtge. Fork > 1, letw, be the initial guessy, be the initial righthand side and
yr be the iterative solution after one multigrid stepgn By defining the multigrid
operator on level kM Gy.(wg, gx), in terms of the multigrid operator on level— 1,
MG)._1, the standard multigrid algorithm can be described in Algorithm 4.3. The
usual V-cycle and W-cycle multigrid algorithm are represented by setting 1 and

2, respectively, in Algorithm 4.3.

(]

(]

—

(a) V cycle and W cycle

Figure 4.2:
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1. setx, = wy,

2. (pre-smoothing), = wy, + M, ' (gr — Apwy).

3. (restriction)gy, = I (gr — Apzy).-

4. (correction)q; = MGr_1(¢i—1,gx) for1 <i <m,m = 1o0r2andg = 0.
5. (prolongation),, = I¥ g,

6. setxy, = i + G

7. (post-smoothing)y = xx + M, (g — Apai)

8. Setyk = MGk(wk,gk) = Tk.

Algorithm 4.3.1: Multigrid Algorithm

In the following, we only discuss V-cycle multigrid without post-smoothing. Let the
initial error on level k be denoted @& = w;, — wy,, and the error after one step of
multigrid iteration be denoted @&$ = u; — . The error reduction operator for one

multigrid iteration can be defined as
ET(e)) = e. (4.28)

To derive the recursive relation of the multigrid error reduction operatorg dehote

the exact coarse grid correction, i.e.,
¢ = A0 gk — Awew) = AL LT A (g — ). (4.29)
Since, for allu,, v, € V;,

(I Ay, T ow)ier = (Awun, Loy 7 on)i = Boa(ug, iy I o)

= Baa(Prrup, I[F o) = (Ap_1 Prooyup, I op) k-1,
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we have

If (I A, — Ay 1 Pey) = 0.

Therefore, the relation

IF Ay = Ay Py, (4.30)
k

holds onV}, because the bilinear interpolation operatpr, has full rank. By plugging

(4.30) into (4.29), we have

(j = Pk_l(uk — {L‘k) (431)
Moreover, since the functiopin step 2 approximates the functignby (4.28),
q—q=E"q (4.32)
By combining (4.31) and (4.32), the errgr can be written as

€, = Ugp — Y = U — T — 115—1(] = Up — Tk — [1?—1(@ - E%9)

= up—xp — I} (I — E) Py (us, — 7)

= (I = I Py + If B P (wg — )

= (I —If  Poy + If_ B Py (I — M7  Ag) (uy, — wy) by (4.8)

= (I = i P + I, B Py Efey,

whereE{ = I — M, ' A is the error reduction from the smoothing step. Thus, the

error reduction operators of multigrid iteration satisfy the following recursive relation,
B =[(I —If | Pey) + If BT Py ) E;. (4.33)

Remark 4.3.1 For 2-grid multigrid method (k=1) ;"¢ = 0. From (4.30),P,_; =

At IFT1 Ay Inthis case, (4.33) can be rewritten as

By = (1 = I AL T AN EY = (A = T AL T (AGE).
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Clearly, thesmoothing property (4.26) and theapprozimation property (4.27) can

guarantee thaf| E"/|| < 1 with enough smoothing steps.
From (4.33), we have

IEZN < (|0 = B P B[] + (| Iy B P B

IN

(2 = 2y P B+ (| B | 1P B2

Here, instead of deriving (4.26) and (4.27) for the multigrid convergence, we show
that,
(I = i Pe) || + 1P B < 1, (4.34)

hold, whenh; > /e and HGS is employed in the smoothing step, for our model
problem. Then, the convergence of the multigrid algorithm 4.3.1 can then be estab-

lished by mathematical induction.

Theorem 4.3.2[Smoothing Property] LetS; be the error reduction operator of v

steps of HGS oir,. The following inequality holds:
1ARSE]| < e(1 +3-5 min {25 13) &l (4.35)

Proof: From (4.6) and (4.9), by directly computing, we have

0 U-UD'L)D'U —-UD'U
0 -UD 'L)’D'U

ApSy = | : ~U(M'L)D'U ~UD'U
0 —um 'Ly 'plu ... ~U(M'L’D'U UMD 'L)D™'U
0 0 0 0

= diag[U[(T\ — T2G>),
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where

_0 I _ _0 DL I _
00 . 0 (D'L)?

Ti=|: : 1 andl; = | : . DL I
00 - 01 0o ('L ... (D7'L)*> DL
00 -~ 00 0 0 0 0

By using the same argument in deriving Theorem 4.1.3, one can Biigfs| <

3557 min {%£,1}. Therefore,

|48l < 1435 mm{g’jf 1)

= (1+3 mln{\/_ 1}).

Hence, (4.35) holds.

Remark 4.3.3 From Theorem 4.1.3, we hay&,|| < 1 for h, > +/3e. Thus, (4.35)

implies the smoothing property (4.26) by the faet || A|| for all £ > 0.

With the help of Theorem 4.3.2, we show (4.34) in the following. Assursteps of
HGS are employed in the smoothing step, £&.= Sy. Forh;, > /3¢, we have

1P Bl = (| AL 17  ASE] ], by (4.30)
€ _ o—
< (L 35) |11l by (4.39) (4.36)
€
<(1+ 3h2)(3h2 , by (4.17)
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Moreover, lete € V,, ¢ HY,

o1 "
(I = i1 Peon) Ef(e)|| < ehi? [[(I = Pie1)S ()|l = chy>—= (I — Py-1)Sp(e)]|

e I
< chi?y/ %|S}j(e)!1, by the a priori error bound (2.38)

h . )
< chi?y/ —5 |A,Sy (), , by the regularity estimate (2.8)
< 1 v— 1
Va1 +355)3 550" el
where c is a constant. Therefore, we have
€
(I = iy P Ef|| < ev/ (1 +3h2)(3h )t (4.37)
k

From (4.36) and (4.37), the inequality (4.34) holds for 2 andh; > v/3e. Now,

we can state our multigrid convergence result as follows:

Theorem 4.3.4 If more then 2 steps of HGS are employed in the smoothing procedure

of the multigrid algorithm 4.3.1, then
IE7I <1,
for hy > V/3e.

Remark 4.3.5 By direct expansion, equation (4.33) can be rewritten as

J-1 k—1

ET =Y (I = Pro)Ey s ([ [ Pressi B i), (4.38)
k=1 =1

where[[,_, Py s B5 101 = 1. Leth; = h;/+/6 for all i. By plugging (4.36) and
(4.37) into (4.38), two steps of HGS smoothing imply

m 1/2 -
I < SR (5 )H
T—k+1) 1=1 VI—kti41
_ k-1
J- iLl/2 k-1 1
< J—k+1 h2 :
k=1 J—k+1 =1
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A sharper estimate of MG convergence,

# < b (4.39)

J

15711 =

for h; > /¢, can be obtained from directly estimating the righthand side of the above

inequality.

Similar to the convergence behavior of HGS, the estimate (4.39) shows that the error
reduction rate of MG is also decreased:as 0 and less iterative steps are expected
for smallere. For Problem 2, two, three and four levels V-cycle MG are tested on
16 x 16, 32 x 32 and64 x 64 uniform rectangular meshes, respectively, with 1 step HGS
pre-smoothing and post-smoothing. The results are shown in Table 4.3 for various
The stopping tolerance in our computationfis, | < 107 ||r|| wherer, is the initial
residual and-,, is the residual at m-th iterative step. By comparing the numerical
results in Table 4.2 and Table 4.3, it is evident that MG converges faster than HGS as

expected from (4.17) and (4.39).

Mesh | e=10"%2 e€=10"3 e=10"* e=10"°

16 x 16 4 2 2 1
32 x 32 4 3 2 1
64 x 64 5 4 2 2

Table 4.3: MG convergence on uniform rectangular mesh for Problem 2

4.4 Algebraic Multigrid Method

In previous section, we have shown a MG convergence result of the Problem 2 in

Section 2.3. With fixed coarse grids and interpolation operators, our MG convergence
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result is essentially achieved through the robust smoothing property of HGS in The-
orem 4.3.2. Unfortunately, it is hard to show that such a smoothing property still
holds if the underlying mesh is unstructured or the flow is more complicated. Since
the other major component of MG is theprozimation property, an alternative way

to achieve MG convergence is to find better interpolation operators and coarse grids.
The basic idea of the algebraic multigrid method (AMG) is to employee an algebraic
coarsening process (selecting coarse nodes and defining interpolation) to ensure that
the algebraic smooth errors, i.e. the errors which can not be efficiently reduced by
relaxation iterations, can be captured by the coarse grid correction. In order to in-
troduce the AMG briefly, we consider two level V-cycle with post-smoothing here.
Only the coarsening strategy proposed by Ruge aabe$t[86] is studied here. Sim-

ilar strategies can be found in Reusken [79] and Wagner, Kinzelbach and Wittum [98].

First, let us introduce some notation. Liéf andVy denote the fine grid space and

the coarse grid space. Ldi, denote the matrix arising from a discretization method
such as Galerkin or SDFEM, and, the diagonal matrix of4,. Forv € V}, let

v, =< Duv,v >, |[v|l, =< Apv,v > and|v|, =< D;'Av, Ayv >. Since

the coarsening process does not produce a mesh in geometric sense, the coarse grid

operatorAy onVy is defined by
Ay =TI A TIE (4.40)

where[” is the interpolation operator to be defined by coarsening procest’ard
(I1)T. As shown in Remark 4.3.1, the two-grid error reduction operator then can be
written as

E™ = B°FE°, (4.41)
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whereFE* is the error reduction operator from the smoothing step and
EC=1—1I}AG TP A, (4.42)

is the coarse grid correction.

Multigrid methods using the coarse grid operator (4.40) are called Galerkin-type
methods due to their origin in the finite element Galerkin discretization. For sym-
metric positive define M-matrixl;, = (a; ;), it can be shown that the coarse grid cor-
rection E£¢ is an orthogonal projection froi, to Vi ([101] Chapter 5) with respect

to the inner produck -, - >4, i.e. for allv, € V,, andvy € Vy, < A, E v, vy >= 0.

By using this orthogonal property, tBewoothing assumption,

3 a > 0 such that||E*e, ||3 < |len]|? — a |lexll3, foranye, € Vi, (4.43)

and theapprozimation assumption

min ||e), — IZ€H||(2) < Blex|? with 8 > 0 independent witt,, (4.44)
en

Ruge and Stben [86] show the following theorem holds.

Theorem 4.4.1Let A, be a symmetric positive define matrix. Suppose the smooth
operator £° satisfies (4.43) and the interpolation operatty has full rank and sat-

isfies (4.44). Thew > « and the convergence rate of the two level V-cycle satisfies

IE2E]l, <y /1= 5
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Proof: By orthogonality, for any;, € R(E°) C V), andey € Vi, we have

||6h||? =<< Aheh,eh >=< Aheh,eh—lﬁ,eh >4 < Aheh,ll}f, >=< Aheh, eh—IZeh > .
(4.45)
SinceA;, > 0 andD;'A > 0, (4.45) implies

lenlly < AP(Dy AR e, AP (D AL T2 (en — Then) >

IN

Y

|40t any 2| | 43/ (D7 4a) 2w — Thyen)

by the Schwarz inequality,

= lenll, [|en — Ifen]|, -

By (4.44), we have
lenll? < B llenlls - (4.46)

The convergence estimate of the theorem is a direct result of (4.43) and (4.46) as

shown in the following:

S C C C « C
12 Eenll} < e} - ol B} < (1 - 5) 1B

«Q 2
=) lleall -

(-5

O

In [86] Theorem 4.2, Ruge andiiten also show that the usual point Guass-Seidel
iteration satisfies themoothing assumption (4.43). In particular, if4, is also an M-
matrix, one hasy = %1 Therefore, it remains to construct the interpolation operator
such that (4.44) holds for the AMG to converge. The special coarsening strategy in
AMG serves this purpose. First, let the set of fine grid points be denotédaaxi

the set of coarse grid nodes be denoted'a3 he neighborhood of the ith nodgis

defined asV; = {j € F'|j # i anda;; # 0}. We consider the interpolation operator

102



I which has the following form:
(Then), Z wi, (en); (4.47)

wherew; ; = 6, ; for v; € C and¢; ; denotes the Kronecker symbol. On any given
set of coarse grid pointS, for any errore = (ey, e, - - - €,) € V},, if the interpolation
weightsw; ;, for all 7, j € F, satisfy the following two conditions:
Z Z a; ; Wy '(67; — 6‘)2 < é Z —Q; -(Gi — 6‘)2 (448)
kl 7_7 .7 —_— 2 — 7] .7 ?
v, €F ’U]'GC ]

and

Za” — s;)e€; <ﬁz<2a”> e;, (4.49)

v, EF
wheres; = Zujeo w; ; < 1, then theapprozimation assumption (4.44) holds ([86]
Theorem 5.3). For the case thaj is a M-matrix and diagonal dominant, one can
consider the interpolation weights ; = 7;|a; ;| where0 < 7, < m which
ensuress; < 1. Obviously, it is sufficient to require that for evety € F and
v, e C;CN,NC

0 < a;w;; < Blail (4.50)
and
0<a;;(l—s;)< 52 aij, (4.51)
J

for (4.48) and (4.49) to hold.

With the above simple inequalities (4.50) and (4.51), more practical conditions in the
coarsening strategies which us@s an input parameter can be derived. For example,

given( > 1, if the coarse grid C is selected such that for each I,

ﬂ(@m - Z ai,j) = ﬁ Z Q; j 2 (7% WhereCi g NZ NncC. (452)
v ¢C; v ¢Ci
J#i
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and the interpolation weight is definedas; = % clearly, we have
vj Pt

Qj
m\am! < Blai|, by (4.52)
vj Cz 1,

@i Wij =

and

2 vsecs @il > Gig
am’(l - Si) = Q54 l-==1]= Qi ~— 7n < B a; j
( D e, G > Z g

’L)]¢C

Therefore, by (4.50) and (4.51), th@proximation assumption holds.

Recall that the algebraic smooth eredris more slowly reduced by the smoothét,
i.e.||Ee’||, =~ ||e*|,. By thesmoothing assumpt'éon (4.43), the erroe® has to satisfy

lef]], < ||e®]|, or more explicitly>", - ef wherer = (rq,rg, -+ , 1) =

Ape®. Therefore, on average, one can exﬁeﬁt<< a;i|e;| for all i. Consequently,
one obtains a good approximation Qr
;;€; ~ Z —amej, (453)
JEN;

through its neighboring error values, j € N;. Moreover, since

Hesul - < D 1/2Ah6 D1/2 s s< HD 1/2Ah6 |D1/2€SH ‘6 H He HO?

Je*ll, < lle], implies ], < [}, or, expliciy,
S S 1 S S S
< Ape’ e’ > = 3 Z —a; (€] — ej)2 + Z (Z ai,j> (e5)?
i i ]
<K < Dpe’,e® >= Zam(e 2

For the important casE#j |la; ;| ~ a;,;, the above inequality means that, on average

for each i,

5 3 —ausel — ) < asi(ed)” (4.54)
i#£]
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In other word, the smooth error generally varies slowly in the so-called strong-connected
direction where’Z?—*Jj‘ is relative large. The condition (4.52), in turn, suggests that the

algebraic coarsening should be done in the direction of strong connections.

Now we can introduce the coarsening strategy proposed by Ruge @benStFirst,

let us introduce some definitions.

Definition 4.4.2 A nodev; € F is strongly connected to a node € F' with respect
to A;, denoted a®; — v; if

—a;; > pmax(—a;m,),
where the strong connection parametesatisfied) < u < 1. Let N7 denote the set

of all strongly connected neighborsaf i.e.,
Nf = {v; € N;|v; — v;},
and (N)T denote the set of nodes which are strongly connecteg te.,
(NI = {v; € Flv; — v} = {v; € Flv; € st}.

The interpolatory node€¢’; in (4.52) are defined as strong C-node neighbors, i.e.,
C; = N N C. Also, the noninterpolatory nodds; are split into strongD? and weak

D} noninterpolatory nodes where

D; = N;\ Cy;, D = D;n N? andD}Y = D;\ D;.

Since a large set of coarse grid points C is not practical due to expensive computation

cost and memory requirement on the coarse grids, one would'likebe as small as
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possible withC; # ¢ for all i. If condition (4.52) is employed, this means the input
parameters may become very large. As a result, a slow convergence rate of AMG
is expected according to Theorem 4.4.1. To get good interpolations and maintain a

reasonable complexity of coarse grid the following two criteria are used.

Criterion 4.4.3 For each node); € F, each node); € N7 should be either i or

should be strongly connected to at least one nodg;in

Criterion 4.4.4 C should be a maximal subset of all nodes with the property that no

two C-nodes are strongly connected to each other.

The criterion 4.4.3 shall ensure that the interpolation is good enough. The criterion
4.4.4 is taken as a guideline to force the generated coarse grid to significant fewer
nodes than the fine grid. In fact, the criterion 4.4.3 arises naturally from the following
analysis. First, equation (4.53) can be rewritten as
a;ie; = Z —a;je; + Z —a; jej + Z —a; j€; — Z —a; j(e; —e;). (4.55)
JEC; jeD? jeDW jeDY
Since we have ;. pw —aqj(e; — €;) < aize; by (4.54), equation (4.55) implies

(ai,i + Z —am)ei ~ Z —ai’jej + Z —ai,jej. (456)

jeDW jes; jeD?
Recall that the smooth error varies slowly in the direction of strong connection. As a

result, forj € D?, the error value; can be replaced by

o _ 2kec, lakler
! ZmG i

as long as there exist strong connections— v, for somek € C;. Plugging (4.57)

(4.57)

into (4.56), the following formula for computing interpolation weighst in Ruge and

Stilben’s AMG coarsening algorithm is obtained

1 i
Wij = —=— | Gi; + Z za A ’ (4.58)

Ay keDS meC; Akm
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wherea; ; = a;; + Z,CGDI_W a; . Based on the criterion 4.4.3 and the criterion 4.4.4,
the Ruge and &ben coarsening strategy consists of two coarsening steps as outlined
in Algorithm 4.4.1 and Algorithm 4.4.2. Algorithm 4.4.1 tends to produce grids with
very few strong C-node to C-node connection. Algorithm 4.4.2 ensures that the crite-

rion 4.4.3 holds and computes the interpolation weight according to (4.58).

For(i =1:n), z = |(N2)T

while (U # ¢) do
geti € U with maximalz; thensetC' = C U {i} andU = U \ {i};
for (j € (NY)T nU) do
F=FU{j}U=U\{j}
For(k € NP), z, = 2z + 1
end for
For(j e N°NU) z; =2 — 1;

end while

Algorithm 4.4.1: Preliminary C-point selection
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T = o;
while (F\ T # ¢){
picki € F'\ T;setT’ =T U {i} anddone = 0;
C; = N°NC; DS =N\ C;; DV = N;\ N*; C; = ¢;
while (done == 0){
di = ai;+ D pepw Giks dj = aiVj € C;
for (k € D?){
if (N7 NC; +#0) dj:dj+%w€0i;
else{ |
if (C; #0){C =CU{i}; F=F\{i}; break;}
else{
Ci = {k}; C; = C; U {k}; DY = D7\ {k};

done = 0; break;

}

¥
¥

Algorithm 4.4.2: Final C-point selection and definition of interpolation weights

Although most of the theoretical analysis of AMG is limited to M-matrices, nu-

merical studies in [92] show fast convergence of AMG even if the matfixs not

symmetric, such as in the case of finite difference discretization of the convection-

diffusion equation. Numerical studies of the AMG convergence for the matrix from
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SDFEM discretization of the convection-diffusion equation will be presented below in

Section 4.5. Here, we show coarse grids from the AMG coarsening on two problems.

The first is Problem 2 in Section 2.3. The second problem is the convection-diffusion

problem with closed characteristic as follows:

Problem 4: Flows with closed characteristics
—e- Au+ (b1, bs) - Vu = 0, with
(b1.by) = (2(2y — 1)(1 = (22 — 1)?), —2(22 — 1)(1 — (2y — 1)*)) and,
1 ify=1,
ulon =
0 otherwise
whereQ) = [0,1] x [0, 1].

A sample solution is shown in Figure 4.3.

i S [ TS 5 U
R A R T %

Bl e e e e s 3 1
_r‘f//j HHHHHHHH \:?‘\?\\“

R U SIS .\\:\\\"
r £ BT e o BET Wy A \'\“ 08

eV ss e i By 1029
21810 % b TIVNER -

fff!ﬁf ‘\\"Ll&
L ;1IT1| e W o.
] QHQQQ::;;;;;;H . > =N

% B8 e rcdom g 0 S OSSOSOSSos SN\
JRi et} S 77— AW\
B casaiasst it ST A
Fodod v s S s T e e '
e e o G R 2% W
i S T o4

ST e o e

(a) Flow field (b1, ba) (b) 3D representation of solution

Figure 4.3: Flow field and solution of Problem 4
In both problems, the diffusion parameteis 10~2 and the input parameter, used

to define the strong connection in Definition 4.4.2, is set to 0.25. Figure 4.4 (a) shows

that the coarse grid obtained from AMG coarsening is the same as the coarse grid
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obtained from semi-coarsening the fine grid in the y-direction for Problem 2. Fig-
ure 4.4 (b) shows that the coarse grid from AMG coarsening tends to be symmetric
with respect to the center of the domdinin Problem 4. These results suggest that
AMG coarsening strategies coarsen the fine grid in a direction that follows the flow
field (b1, b2). In fact, with the help of standard matrix-dependent interpolafign

and restriction//” defined in [78], MG convergence on a mesh obtained from semi-
coarsening is proved by Reusken [80] for Problem 2. Naturally, one may conjecture
that 3 in the approzimation assumption (4.44) can be small in AMG and a faster
MG convergence rate can be obtained. Our numerical studies in Section 4.5 give an

answer to this question.

09

(a) Problem 2 (b) Problem 4

Figure 4.4: Coarse grids from AMG coarsening

4.5 Numerical Comparisons of GMRES, MG and AMG

In this section, we compare the performance of different linear solvers for the dis-
crete convection-diffusion equation, including MG, AMG, GMRES and precondi-
tioned GMRES. Two test problems, Problem 2 and Problem 4, are discretized on both

an uniform32 x 32 triangular mesh and an adaptively refined mesh fer10—2, 1073
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and10~*. The adaptively refined mesh is generated by refining an isitiad uniform

mesh four times based on the KS error indicator and the maximum marking strategy.
The threshold valué in the maximum marking strategy is chosen such that elements
in the layer regions can be refined for both problems. For Problein=20.1, 0.01

and 0.001 fore = 1072,1072 and10~4, respectively. The adaptive meshes and solu-
tions of Problem 2 are shown in Figure 4.5. For Problerfi 4 0.1 for all e. The

adaptive meshes and solutions of Problem 4 are shown in Figure 4.6.

In Section 4.1 and Section 4.2, it has been shown that the horizontal line Gauss-Seidel
method (HGS) converges and MG converges with HGS smoother, iwtser'/?, for

Problem 2. On uniform meshes, we would also like to use one step of HGS as a
smoother and a preconditioner in Problem 2. For Problem 4, because the flow field

has closed characteristics, our strategy is to use four Gauss-Seidel sweeps,
HGS — VGS — backward HGS— backward VG$

as a smoother of MG and AMG, and preconditioner of GMRES. We call the above
four sweep Gauss-Seidel method the alternating direction Gauss-Seidel method (ADGS).
On unstructured meshes, there is no natural horizontal line or vertical line. However,
one can order the nodes by using the y-coordinate as the primary key and the x-
coordinate as the secondary key to obtain a node ordering similar to the node ordering

in HGS. Here, we call the point Gauss-Seidel method, associated with this node or-
dering, HGS. Similarly, if one orders the nodes by using x-coordinate as primary key
and y-coordinate as secondary key, one obtain a node ordering similar to the node or-
dering in VGS. We call the point Gauss-Seidel method, associated with such ordering,
VGS. By reversing the node numbering, the backward HGS and backward VGS on

unstructured grids can be defined from HGS and VGS respectively. Again, on the un-
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structured meshes, one step of HGS is used both as a smoother of MG and AMG, and
preconditioner of GMRES for Problem 2. For Problem 4, ADGS is used as a smoother
of MG and AMG, and preconditioner for GMRES. In addition, MG and AMG, with

the above Gauss-Seidel smoothers, are also used as preconditioners of GMRES for
both problems. In the following, GMRES with MG preconditioner is denoted as
GMRES-MG and GMRES with AMG preconditioner is denoted as GMRES-AMG.

To compare the performance of MG and AMG as solvers or preconditioner of GM-
RES, four levels of V-cycle are performed in our computation. In MG, the coarse
grids are eithet x 4, 8 x 8, 16 x 16 uniform meshes, or meshes generated during the
refinement process. In AMG, the coarse grids are generated from AMG coarsening
of the finest adaptive mesh. The comparison of coarse grid complexity of MG and
AMG on both uniform mesh and unstructured mesh is shown in Table 4.5 and Table
4.7, respectively. Our results show that, with heuristic strong connection parameter
1 = 0.25, the number of coarse grid points generated from AMG coarsening pro-
cess is greater than the number of grid points on the adaptive mesh at the same mesh
level, if the the32 x 32 uniform mesh is the finest mesh. However, fewer coarse
grid points are generated by AMG coarsening compared to the number of coarse grid
points on the meshes from adaptive refinement. As a result, we do not expect AMG

and GMRES-AMG to perform well if the problems are solved on the adaptive meshes.

In Table 4.4 and Table 4.6, one can see that AMG and GMRES-AMG converge faster
than MG and GMRES-MG, respectively, for Problem 2 especially on the uniform
mesh. On the other hand, MG and GMRES-MG outperform AMG and GMRES-
AMG for Problem 4 on the adaptive mesh. Both MG and AMG produce better pre-
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conditioning for GMRES than Gauss-Seidel methods. If the problems are solved on
both uniform meshes and adaptive refined meshes, GMRES-MG and GMRES-AMG
are the best choices among these solvers. However, one should be reminded that
AMG involves more preprocessing time and may also need a carefully chosen strong
connection parameter. On the other hand, these problems are usually solved on an
mesh similar to the adaptive refined mesh to obtain more accurate solutions in those
regions. Under this circumstance, our numerical studies suggest that MG or GMRES
with MG preconditioner are the best choices in solving the test problems. Overall,
GMRES-MG seems to be a good choice of linear solver for the convection-diffusion
problems when solution accuracy, numerical stability (on both uniform and adaptive

meshes) and computation cost are our concerns.

In the following tests, the stopping tolerance for iterative methods is set to be
7l < 107° [Jro]l

wherer, is the initial residual and,, is the residual at m-th iteration. Also, the

notation” — ” represents that the number of iterations is greater than 200.
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Numerical results for Problem 2:

ponis=797, elements=1460

(@) Mesh:e = 1072 (b) Mesh:e = 1073 (c) Mesh:e = 10~%

(d) Solution:e = 1072 (e) Solution:e = 103 (f) Solution: e = 10~*

Figure 4.5: Solutions and adaptive meshes for various

€ 107211073 | 1074 € 1072 {1073 | 1074
GMRES 58 75 94 GMRES 65 | 146 -
MG 13 27 51 MG 4 22 | 59
AMG 7 7 9 AMG 4 8 14
GMRES-GS | 26 32 | 43 GMRES-GS | 11 31 | 59
GMRES-MG | 14 | 20 28 GMRES-MG 5 16 | 36
GMRES-AMG | 8 9 12 GMRES-AMG| 4 8 14

(a) Iterative steps on uniform mesh (b) Iterative steps on adaptive mesh

Table 4.4: Iteration steps for various iteration methods
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MG AMG

€ 1072,1073,107* | 1072 | 1073 | 1074
level=1 1089 1089 | 1089 | 1089
level=2 289 480 | 479 | 479
level=3 81 307 | 331 | 231
level=4 25 157 | 108 | 108

(a) Number of points in coarse grids from uniform mesh

MG AMG

€ 107211073 | 1074 | 1072 | 1073 | 10~*

level=1| 797 | 1275| 2102| 797 | 1275| 2102
level=2| 410 | 649 | 1047 | 348 | 580 | 996
level=3| 215 | 320 | 528 | 159 | 304 | 523
level=4| 122 | 176 | 239 | 88 | 166 | 281

(b) Number of points in coarse grids from adaptive mesh

Table 4.5: Comparison on coarse grids from MG and AMG
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Numerical results for Problem 4:

poinis=1045,clements=1957

(a) Mesh:e = 1072 (b) Mesh:e = 1073 (c) Mesh:e =104

(d) Solution:e = 102 (e) Solution:e = 1073 (f) Solution: e = 10~*

Figure 4.6: Solutions and adaptive meshes for varies

€ 107211073 | 1074 € 1072 {1073 | 1074
GMRES - - - GMRES - - -
MG 26 | 187 - MG 8 19 | 13
AMG 29 - - AMG 23 | 142 | -
GMRES-GS | 37 59 77 GMRES-GS | 34 42 | 40
GMRES-MG | 13 32 45 GMRES-MG 8 12 | 14
GMRES-AMG | 11 24 33 GMRES-AMG| 10 16 | 16

(a) Iterative steps on uniform mesh (b) Iterative steps on adaptive mesh

Table 4.6: Iteration steps for various iteration methods
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MG AMG

€ 1072,1073,107* | 1072 | 1073 | 1074
level=1 1089 1089 | 1089 | 1089
level=2 289 502 | 500 | 498
level=3 81 289 | 288 | 280
level=4 25 168 | 146 | 151

(a) Number of points in coarse grids from uniform mesh

MG AMG

€ 1072 1073 [ 107* | 1072 | 1073 | 10~*

level=1| 1223| 1046 | 1231| 1223 | 1046| 1231
level=2| 629 | 645 | 824 | 573 | 461 | 565
level=3| 315 | 381 | 390 | 311 | 254 | 323
level=4| 161 | 203 | 202 | 171 | 127 | 179

(b) Number of points in coarse grids from adaptive mesh

Table 4.7: Comparison on coarse grids from MG and AMG
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Chapter 5

Stopping Criteria for Iterative Linear Solvers

Let n, + denote an error indicator for a finite element solution of the convection-
diffusion equation discussed in Chapter 2. In this chapter, we seek some stopping
criteria for the iterative solutions such that meshes generated/ffgrwill not be too
different with the mesh generated from, wheren,, - is the error indicator com-
puted from the SD-solution,, on each elemert € 3, andn;, , is the error indicator

computed from the solutiom} obtained after n steps of an iterative solution algorithm.

It is natural to require large enough n such that
[l =il < co Y ma®, (5.1)
TES,
where constant, > 0 is small. In other word|||u — «}||| is still bounded by the same
a posteriori upper bound. On the other hand, it is also desirable to have sufficient
iteration steps so tha;lgvT is close ton, 1, i.e. there exist constants, c; ~ 1 such
that

e < Ny < C2Na,T- (5.2)

As a resulty;  can still produce similar mesh refinementgg for any refinement
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strategy. In the following, we first assume

un — upllly, = chwrnnr (5.3)

wr —

on each mesh level, whetg,,,. are constants to be determined. In Lemma 5.1.1 and

5.2.1 , we show what order of magnitude @f,,., in terms of h and, is needed

7
for (5.2) to hold. Obviously, for developing computable stopping criteria, (5.3) is
not enough becausg, 1 is still an unknown quantity. It will be more satisfactory if
one can replace, r by the error indicatory,, r, whereT,, is the parent element of
element T and, is the diameter of,. In other word, if there exists a constants> 0

independent with mesh size h such that

. T
a < min
TeSy, nhp,Tp

then (5.3) can be replaced by the following inequality

|”U/h - U;ZLH‘LUT j OécherT]h‘PvTP7

Then, one can have computable stopping criteria, as shown in Theorem 5.1.4 and
5.2.4, that imply (5.1) and (5.2). Unfortunately, although the global error reduction
rate has been studied bydBer and Nochetto [32] [68] and papers cited therein for
some self-adjoin problems, there is still no known estimation of the local reduction

rate for the error estimators.

Nevertheless, the stopping criteria in Theorem 5.1.5 and 5.2.5 are given to ensure that
(5.1) holds for the iterative solutions satisfying these criteria under the assumption
that the adaptive refinement process converges at a rate slower’than< 2. This
assumption is generally true since the underlying weak solutions are generally not in

H?(Q). In addition, in Theorem 5.1.6 and Theorem 5.2.6, we show that when the
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maximum marking strategy is employed for the mesh refinement, (5.2) holds in the
marked regions for the iterative solutions satisfying our stopping criteria and severe

over-refinement will not occur, under the assumption

maxresy, Mh,T

> 0,
MaxXT, ey, Mhy, T,

is a constant independent with mesh size h. Our numerical studies support this as-
sumption. Furthermore, we also derive computable stopping criteria in Theorem 5.1.7
and 5.2.7 and show that both (5.1) and (5.2) hold without any assumptiop on
when the iterative solutions satisfying these stopping criteria and the marking strategy
in [68] is employed. In section 5.3, stopping criteria in Theorem 5.1.6 and 5.2.6 are
used in our numerical tests. Our numerical results show that almost identical meshes
are produced by,  andn;, 7. For simplicity, only Dirichlet boundary condition is
considered and the interpolation errors from data and boundary conditions are high
order terms that can be ignored. Moreover, only one level of mesh refinement is con-

sidered in our analysis.
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5.1 Stopping Criteria Associated with Residual-Type a
Posteriori Error Estimation

Recall that for any function u in the finite element spageof <&, Verfurth’s error

indicator is
1 _ 2
+ 5 Z € 1/2aE H[eanEu]EHO;E
E€dTNQ

+ Y e Paglgy— eOngullyy
E€dTNTy

wherear = min {he /2, 1},T € 3, anday = min {|E|e 2,1}, E € 0T N Q.
Let uy, ups be any two functions iv,. The following lemma gives a measure on how
closeu, has to be withy; so that the associated error indicators will have the same

profile.

Lemma 5.1.1 Letn}. andn? be the error indicator of;; andu, on element T respec-

tively. If

lur = ualll,,,. < W(zh,w%, wherecy, ., = ¢/>max {¥ 1} (5.4)

then

nr < np < =y (5.5)

N —
DN o

Proof: From the definition ofi.. andn?,,

I — 7| <
{lazx([fn — eAuy = - Vuy — curlly g = || fn — €Dug = b- Vug — cusl|y 1)

~
I

1
+5¢ 21 ap(llednmllly p — Nednpualllo 0)*}

EcoT

J/

a'e

11
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Now let us estimate (I) and (I1):
(I) < af|b-V(ug —ur) + cluz — u)|57
< az([lb- Vuz = wn)llop + lle(uz — u)llr)?
< a%(Hb”oo;T [V (uz — Ul)Ho;T + ”CHO;T [z — Ul”o;T)2

161, lellor
= O‘%“( \/ET\/E [V (ug — UI)HO;T + TC(ZJ(,)T do [|uz — U1||0;T)2

10l 5.7 Hc”g-T 2 2
< O‘%( —+ d07 )(GHV(W_UI)HO;T"‘dOHW_UIHO;T)

2
= Crlllug — wi|l[g,7

b||§o. c|?.
whereC; = a%(—” =l 4 lIllor ('i‘g’T).

By applying the trace inequality (Lemma 3.1 [97]),

1
(1) < 56_1/2 > apllelOn, (2 — )&l

EeoT
1 _
< ¢ an{hy el0n (u2 = u)lellyg
EeoT
) el@n (wa = wn)]gllg/s |V (e[0ns (uz — )] ) I/}
1 _
< 5571/2 Z aE{Qth & €[00 (u2 — Ul)]EHO;T}Q;
EeoT
by inverse estimate, Lemma 4.5.3 [21],
< 662 max {apthy' (€ ||V (uz — ) o)

2
= Crrlllus — willlo, »

WhereC[[ = 661/2 MaXgpesT {CKE}h;l

Clearly, whenh < /¢, ar =~ ap ~ \/ig we haveC; ~ (4)%, andC;; ~ 1. Also,
whenh > /e, ar =~ ap =~ 1, we haveC| ~ % andCyr ~ % < 1. Therefore(; is

always greater tha@';;. As a result, for convection-dominated flows, we have

7 — 0zl < V207 [|ug — ualll,,, - (5.6)
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From (5.4), this implies

< 0+ V201Chpnr = (14 v/2C1Ch iy - (5.7)
M 2 05 = V201 Chag iy = (1= V/2C1Chy )y (5.8)
Let's choose’), ., = mé/? max {¥°, 1} < L(/20;)~". itis then clear that
1 3,
577 < 77 < 577T
m

Clearly, if one replaces;. by n;, 7 andn? by ny.r» the following corollary holds.

Corollary 5.1.2 Letu,, be the finite element solution ang be the iterative solution.

If the number of iterations is large enough that

1
Up — Uy < ——Cho , 5.9
wherecy, . = €'/2 max {‘/f, 1}, then
1 " 3
3T S My S ST (5.10)

Moreover, for some marking strategies such as the marking strategy in [32], one may

not particularly require the values of error indicators from the exact solution and it-

erative solution to be similar on each element but only requires thattherm of

the error indicator from exact solution is close to theenorm of the error indicator

computed from iterative solution in a set of elements. The result in Corollary 5.1.2

can be easily generalized for a set of elements.

Corollary 5.1.3 Letw,, be the finite element solution ang be the iterative solution.

If the number of iterations is large enough such that

(D s —upll2,)? < M{WHZ a2 (5.11)
M 2], 7€

TeSy TeSy
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whereS; C Sy, andey,,, = €/2 max {%, 1}, then
1 n
5( Z W}%,T)l/z < (Z 77h,T2)1/2 <
TeS TeS;
Proof: By the triangle inequality and (5.6),
O ma) 2= O D < (O Innr —np gl
TES], TES;, TES,

< () 20 [l —up |2 )17

Tes]

DN o

O ma) (5.12)
TS

The result follows from the same arguments used to establish Lemma 5.1.1.
O

Now, lety;" be the residual of the solution obtained after n step of an iterative solver.

Since

il = (= Anull, fo — Apup)il
= (An(un — u), Ap(un — uf)) i

min {A(AhAZ)}l/2 |un — up |7

v

v

e/?ht [|un — UZHo;wT

v

—1, € - n
MG+ do) ™ [l —

we have,

llun = uplll,, < % l7lly . wheres = max {J-, 1}. (5.13)

wr —

Similarly, by the same argument,
[lun — uilllg < &1V lloq, Wherex = max{hmﬁ, 1}. (5.14)

Clearly, if nis large enough such that

h?

Chywr (min

)nh Ty
K TeES 77hp,Tp pp

Il <
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the inequality,

|HUh - UZ“L,JT S Chwr T, T

holds. As a result of Corollary 5.1.2, (5.1) and (5.2) holds for the iterative solutions

satisfying the following stopping criterion.

Theorem 5.1.4 Leta = minycg, —2=Z-. If the number of iterations n is large enough
hon

hp,Tp

such that the residual

€
el = X3 hy Ty VT € Sy, (5.15)
then
1 3
5T < M < 5T (5.16)
and
[ = upllle < (Y maa)'™. (5.17)
TeS,
O

In next theorem, we provide a stopping criterion such that the global a posteriori error
bound won't be affected by the iterative solution satisfying this stopping criterion. For
this purpose, we assume that the finite element solutions strictly converge to the weak
solution u with a rate slower thal’/? along the adaptive mesh refinement process,

i.e.
1L = alll
2v2  |[lu—u,[lq

whereu, is the finite element solution of¥;, andu,, is the finite element solution

(5.18)

on the parent meshy,, of S;,. This assumption is generally true because the a priori

error estimation in Chapter 2 only show%? convergence and the numerical studies
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in Chapter 2 even suggest the convergence rate isfdfily

From the local lower bound in [97] Proposition 4.1, we have
_ 2
Y n, < Y (T llelly, + € bl ar? [[fu = w1,
T,,e%hp Te%hp

<A1+ el € bl g 1,

Pl o

SR

< 32{1+ lefl o, + 2677 1]l max oz} [[lu - un|lg,, by (5.18)
hp

~64C"7 Y p o,

TE%h
(5.19)
where
bl| e /2 if By > v/
O = 6_1/2 ||b||OO m(@x ap = H Hoo \/_ (520)
T 6]l Pmaze™t  otherwise

Clearly, if n is large enough such thiat} ||, < ooz (X req, i, 1,)"/% by (5.14), the

above inequality implies

llun —willla = > i

TeSSy

Therefore, from (5.14) and (5.20), the following theorem holds.

Theorem 5.1.5 Assume (5.18) holds. If n is large enough such that

n 1
Irilla < g CC 2 Mhr)*” (5.21)

TG%hp

whereC' = €/hyq.. We have

llun = upllle < (D nir)™>

TeS,
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Although the a posteriori upper bound is maintained for iterative solutions satisfying
the stopping criterion (5.21), without Theorem 5.1.4, there is no guarantee that the
marking strategies will select the same elements that would be selected if the error
indicator is computed from the exact solution. Unfortunately, the conataimt The-

orem 5.1.4 is unknown due to lack of estimations on local error reduction rate. To
deal with this difficulty, the marking strategy has to be taken into consideration in
the search for a stopping criterion. In the following theorem, we show that the er-
ror indicatorsy;; » andn;, 7 are similar in regions where elements are selected by the
maximum marking strategy, and that serious over-refinement will not occur when the

iterative solutions satisfy our stopping criterion.

Theorem 5.1.6 Let o, » be a constant satisfying

maxresy, Mh,T
Qoo < b : (5.22)
MaxXT, ey, Mhy,Tp

Assume the maximum marking strategy is used with threshold #alfie

€

i llr = (%)ameTiré%):p Mh,1,, foralT e 3y, (5.23)
then
1 3
5T Sy < 5.1 (5.24)

for any marked element T. On the other hand, for eleriiesutisfying

0
N7 < 1 Te%),f Nh,T (5.25)

will not be marked by the same marking strategy wjth replaced byy;, ;.

Proof: First, for any elemenft € 3, (5.13) and (5.22) imply
NG

n 1/2 €
Mun = uplll,, = e /2 max { - 1Yoy o0 Tlgé%fp Nhy, Ty
(5.26)

<

N

1/2 A
€/“max { o }GITne%);nhj.
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Let T be a marked element satisfying
N7 = 0 max ny, . (5.27)
’ TeSS, ’
From (5.26), we have

1
—e'? max { Ve 7

lan =3, < 5

By Corollary 5.1.2, the inequality (5.24) holds. Now, Etbe an element satisfying
(5.25). Recalling (5.6), we have

7 — Mgl < (€72 mln{\/— D) s = wplll,,, - (5.28)

By combining (5.26) and (5.28), we have

7 = thp| < 3 max .

Therefore,

0

n
= < 7+ — Max Np.1
Mha < Tt maxa,

IA

0
5 max by (5.25),

n 24
0 max 1, by (5.24)

IA

The second part of the theorem is proved.
O

Now, let us consider the marking strategy in [32] where a set of elem@ijtsre

marked such that

Y- ma)?=00> " i)', (5.29)
Te%;

TeSy
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where0 < # < 1. Assume n is large enough such that

lun = upllley < (@chwr)® D i1, (5.30)
TPE\Shp
We have
n 2 n 2
Do Mlun = will2, < 4w —upllf
S5
= ach wT Z nhp Ty
Tpe\fhp
< 64(acy,, )?C" Z ., by (5.19)
TeSSy
1
< 64(O‘Ch,wTC/)2§ Z 77}21,T-
_ 0 _ 0 1/2 Ve i
Let us choosexr = 6v2o bl 16\@“1)”;6/ max{m, 1}. Obviously, (5.19) and
(5.30) implies

[ — uplllq < (> )2

TeSy,

Moreover, from Corollary 5.1.3, we have

%<Z )= (L S 50 i)

TeS \yh

l\DOJ

Using similar argument, the following inequality also holds:

0 0
(=) ma)? < (D M) < W+ (D mn) (5.31)
TeSS) TeSS) TeSy,
Recalling (5.14), we have

h
llun = uplllg < &g, wheres = maX{%a 1}. (5.32)

A computable stopping criterion similar to (5.15) can be shown in the following,

without assumingningcs, n:”“; =0(1).
tpsip
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Theorem 5.1.7 Suppose the marking strategy (5.29) is used. If the iteration number

is large enough such that

(> mp"? (5.33)

TPE\Sh

||7h||9 =
8\/_HbH

whereC' = max {zh—\f, 1}, then there exist a small constagtsuch that

[llun — uilllg < cof Z 77]%,T>1/2’ (5.34)
TeSS,
and
1
(X ) < (X i YT 63
TG\Y}L \yh

Proof: From (5.30) and (5.32), if

QCh,
il < =227 n, )2

TpG%hp

then (5.30) holds. As a result, from the above argument, (5.34) and (5.35) hold. Since

h 0
k=max{—,1}, a = ———¢'/?
RCRTCITTN

we have

—6, 1} andcy, ,,, = €'/? max{%g, 1},

max { .

3/2
Hhwr _ 0 ‘ maX{M,l}.
K 8V2 bl P
Therefore, (5.33) implies (5.34) and (5.35).

Remark 5.1.8 From (5.31) and (5.35),

( E Uh,T2)1/2 > 5( E 77h,T2)1/2 E 77hT 1/2 = —2+9( § h,T )1/2-
TeSy, TeS;, €Sn

Te\sh
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Therefore, for any subsé&t; C Sy, which satisfies (5.29), can also be marked by the
following marking strategy:
0
(3 ha®)'? 2 55 (3 i), (5.36)

TeS; TeSy,
However, for large, (5.36) results in under-refinement comparing to the mesh gener-
ated from marking strategy (5.29). Hence, more iterative steps are needed to overcome

this drawback. On the other hand, one can also employee the following strategy:

Let S, be the maximal subset such that
n 0 n
( E TIh,Tz)l/2 < E 77h,T2)1/2-
- 2+6
TeSS) TS,
Elements in the the complement set of <y, are marked for

mesh refinement

For large , the above marking strategy produces less under-refinement. For example,
for 0 = 1, (5.29) produces fully refinement and, obviously, the above marking strategy

marks more elements than (5.36).

5.2 Stopping Criteria Associated with Neumann-Type
a Posteriori Error Estimation

Using the same analysis as in section 5.1, we can derive a similar stopping criterion
for iterative solvers when the Kay-Silvester error indicator is employed for mesh re-
finement. Recall we assume the interpolation errors are high order terms and can be

ignored. Hence, in the following analysis, the second term in the a posteriori upper
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bound will be ignored. Again, one would like to have enough iterations such that the

following inequalities hold,

IV (un — up)llg < co( Y mi.)'?, for a small constanty, (5.37)
TeSy,
and
cannr < Ny < canpr, for some small constants andcs, (5.38)

whereu, is the exact finite element solutiom; is the iterative solution ang, r, 7y,

are the corresponding error indicators. In this case, first, we also assume

IV (un = wi)llor < Chowptin- (5.39)

Heren, r = |Ver||,  is the error indicator witle; € Q) satisfying

1
e (Ver, Vo), = (R}, v), — € > (Re,v)g, (5.40)
Ee&(T)

where

RT = f—b‘VUh,

Ry = m(Rr),
| ez Iz E€&na
R = —2(%) Eecé&n
0 E e &, p,

andr? is the L? projection onto constant function spaeeg(T).

Letu;, € H'(Q) ande; r € Qr satisfy

1
e(Veir, Vo), = (R)p,v), — 5€ > (Rip,v)y, fori=1,2, (5.41)

E€&(T)
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where
Rir = f—0b-Vu,,
Ry = 7 (Rir),
[ gnﬂ le E€é&qn
Rip = —2(5 Du; L) E€é&nn

0 E€é&p.

From (5.41), we have

1

€ (V(@LT — 62,T), VU)T = (R(IJ,T — Rg,T? U)T — 56 Z (RI,E — RQ’E, U)E
Ec&(T)
(5.42)
Letv = e v — eo . From the Schwartz inequality, (5.42) implies
e[[V(err —ear ||0T HR Rg,THM lerr —earllyr
1
1 (5.43)
+ 56 Z ||R1,E - R2,E||0’E leir — 62,T||07E .
E€&(T)
I
First, let's estimate{ R ; — RS 7| .
Bz = Boallgp = 7"(f = b Vun) = 7°(f = b- V)|
= || (V(uz — u1)))
|| o 640
= b V(uy — U2)||0,T
< bl oo 7 1V (ur = ua) o 7 -
Sincee;  — ear € Qp, from a scaling argument, we have
lerr — earllgr < Cr)hr |V(err —exr)lly - (5.45)
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From (5.44) and (5.45), it is clear that

(1) < CO7) 0]l o 1 b IV (w1 = w2) [l V(€17 — €2,7)[lg 1 (5.46)

Now, let’s estimatg| R, r — Ry g||, - FOr £ € &, using the trace inequality,

8u1 3u2
IRue ~ Reslye = o s 1 522 s

0,F

o 2 e

0.5 (5.47)

0,1

< (1 (1 = wa) o+ 1V (= o)y, ),

whereT},;, is the triangle sharing edge E with T, iB,, N T = E.

A similar result holds fot= € &, . Again, from a scaling argument, we have

CORL IV (err — ear)lop - (5.48)

lerr — 62,T||07E <

By (5.47) and (5.48), we have

1 _
IT) < —GZ C(Or)hy*hp [V (uy — us)llor + IV(ur = u2)llgz, ] IV(err —ear)lly 1

pee
3 hg
< 50(9T) fgag(hT)l/ze IV (ur = u2)llg o, V(e —exr)llop-
(5.49)

LetCr = C(QT) Hb“oo,T (hTT) andCH = %C(HT) MaXpeg(T) (Z—i)l/z By Combining

(5.43), (5.46) and (5.49), we have

[Cr+ Cul V(w1 —w2)llg o, = Cr[V(w —u2)llg

IV(err —exr)|lor <
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because’; is the dominating term whea < h. Recally; , = |[[Vey ||, and

M = [ Vear|l, - The above inequality implies

|77llz,T - 77]21,T| = Cr[[V(u — UZ)HO,WT : (5.50)

Clearly, if |V (u1 — u2)lly,, < 5675 7> We have

DN o

77f1L,T < 772,T < 77i11,T- (5.51)

N | —

Now a result analogous to Lemma 5.1.1 can be written as follows:

Lemma 5.2.1 Let 7, ,, and 7;, - be the error indicator ofu; and u, on element T

respectively. If

€

IV (g — us) < chvan,ll,T, wherecy, ., = O(E)’ (5.52)

||07wT

then

77f1L,T < ﬁ}QL,T < 77i11,T- (5.53)

N | —
N W

By replacingy, ;- andr; » and by, » andy;! -, the following corollary holds.

Corollary 5.2.2 Letu,, be the finite element solution ang be the iterative solution.

If the iteration steps are large enough such that

€
I = )l < Chase i, wherecy ., = O(5), (5:54)
then
1 3
5T < M < 5T (5.55)

Of course, one can also obtain a similar result as in Corollary 5.1.3.
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Corollary 5.2.3 Letu,, be the finite element solution ang be the iterative solution.

If the iterative steps are large enough such that

, where$s

Z IV (un — uh)”ow)l/z < mm {Cth} Z 77hT 1/2 (5.56)

TeS

Tes

» C Spandey., = O(5) then

%(Z nr)'? < Z Mha') > Z ). (5.57)

TeS;

Letr} be the residual of the nth iterative solution. Since

we have

”TZHT

Y 1V

Y

The same analysis also gives

2
\yh \yh
O

||fh - AthHT
| An(un — uy) |l
min A(ApA5)? Jup, — ult|
\/Ehil ||uh - UZHO,wT
VeIV (un —unn)ly,,, by inverse inequality
IV - (un = up)llgor <€ il - (5.58)
IV - (un = ui)llgqp = €2 17l - (5.59)

From Corollary 5.2.2 and (5.58), obviously, the following theorem holds.

Theorem 5.2.4 Let o, = mingeg, n— whereT, € 3y, is the parent triangle of T
py

with diameterh,,.

If the number of iteration is large enough such that the residual

¢3/2
il = O‘nh_nhp,Tp; VT € Sy, (5.60)
P
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then

1 3
oI, <M < oM. (5.61)
and
IV (un = wi) g = (D ). (5.62)
Te\fh

In next theorem, we provide a computable stopping criterion such that (5.37) holds
by assuming

Lo Ju=tiho (5.63)

2 - |’LL — Uhp|17Q

where u is the weak solution ang, is the finite element solution on parent més}).

Since the interpolation error is only O(h) it norm, this assumption is reasonable.

Theorem 5.2.5 Assume (5.63) holds. If n is large enough such that the resiguaf
nth iterative solution satisfying
Irrllq = h Z Uh,, Tp 1/27 (5.64)
max TG\Sh
whereh,,.... is the maximum diameter of triangles&n,, we have

IV un = i) lo. = (D mi )™

Tey

Proof: From the local lower bound in [59] Theorem 1,

(> w2 Y <Hv<u—uhp>Ho,%+% > Wl [V (= un)l, )

Tpeghp Te%hp TGpr

2hmax
< (bl D V= s,

Tpedhp

hmax
< 16(=22 ] [l = s,

hmax
< 64(=" ||b]| ,)* lu — unllg, by (5.63)

< 64( v 0]/ ) Z 77hT

TeSy,

(5.65)
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By plugging the above estimate (5.64) and (5.65) into (5.59), the theorem holds.

O

Although, the Theorem 5.2.5 provide a computable stopping criterion such that the
global posteriori upper bound will not be violated, the refined mesh generated from
such iterative solution can be very different from the refined mesh generated from
exact solution without Theorem 5.2.4. On the other hand, in Theorem S%ﬁ.a,nd

nn,.7, Can be very small in the regions where elements have never been refined by the
mesh refinement process. As a result, one may need a very large iteration number
for (5.60) to be satisfied on elements in these regions. Therefore,cgvean be
estimated, (5.60) may still not be a proper stopping criterion for iterative solvers in
real applications, especially whens small. Again, one needs to take the marking
strategy into consideration in finding a suitable stopping criterion. In mesh refinement
point of view, intuitively, it is not necessary to keep the same profile betwgen
andnj,  in the unmarked regions. The stopping criterion in the following lemma
guarantees that when the maximum marking strategy is used, the mesh generated
from n;; » will not produce serious over-refinement compared to the mesh generated
from n, 7. Moreover, the same profile is kept betwegnr andn;, ;- in the marked

regions.

Theorem 5.2.6 Let o, », be a constant satisfying

maxreg, 1h,T (5.66)
maXTpe%hp Thyp, T,

aﬂ,OO —

Assume the maximum marking strategy is used with threshold #alfie

3/2

n €
Il = (

T@)QU’MQT%%); N, 1,. fOrall T e Sy, (5.67)
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then
1 .3
3T ST S ST (5.68)

for any marked element T. On the other hand, for elerfiesutisfying

0
Nh 1 < 1 ;ne%f Nh, T (5.69)

will not be marked by the same marking strategy wjth replaced byy;, ;.
Proof: First, for any element € S, (5.58) and (5.67) imply

€
IV Cun = ti)llowy = g7 tnoc max mh,z,

e (5.70)
< ié’ max
an” res, T
Let T be a marked element satisfying
NMpp > 0 maxny, . (5.71)
’ TeSy,

From (5.70), we have

19 Can = ), < 57
By Corollary 5.2.2, the inequality (5.68) holds. Now, Etbe an element satisfying
(5.69). Recall that (5.50) implies

€ n n
E’Uh,T - Wh,T’ < [V(un - Uh)Ho,wT : (5.72)

By combining (5.70) and (5.72), we have

_ n_| <
— sl < = maxny, .
|77h,T 77h,T| 1 res M,

Therefore,

0

n
= < 5 4 — max Ny
o = ThT 4Tes Mh,

IN

0
3 max iy, by (5.69),

IA

0 max . 7, by (5.68)
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The second part of the theorem is proved.

O

Next, let's consider the marking strategy (5.29). By using an argument similar to
that used in Theorem 5.1.7, we show that iterative solutions satisfying the following

stopping criterion can safely replace the exact solution.

Theorem 5.2.7 If the marking strategy (5.29) is used and the number of iterative

steps is large enough such that

Il = =5 M, )2, (5.73)
64Hb|! h TGZ%

then there exist a small constantsuch that

IV (un — up)llg < col Y mi )2, (5.74)

TeSy

and

w

%(Z ) < Z M) 5 Z ). (5.75)

TeS

[\D

Proof: First, itis clear (5.74) holds from Theorem 5.2.5. Now, since
IV (un = i)l = e il
we have

SNV —upl?, < 41V —up)ll
TS}

< 4t i llo

< 4<64HbH hi TEZ% Nh,y, T,,
< 64||b|| hg TGZ\” Tt

< 64Hb|] h2 T; 77hT
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Therefore, (5.75) is a direct result from Corollary 5.2.3.

5.3 Numerical Results

In this section, we compare the refined meshes of Problems 1, 2 and 3 for different
values ofe = 1072, 10~% and10~*. The iteration steps among different linear solvers
and stopping criteria are also compared. In each problem, first the linear systems are

directly solved on the coarsest 4x4 grid. Then the following procedures are followed:
1. Compute error estimatary.

2. Select elements according to the maximum marking strategy.

w

. Refine selected elements and generate a new mesh.

SN

. Obtain the initial guess by interpolating the current solution to the new mesh.

(62

. Solve linear system so that a given stopping critet§prs satisfied.

Three differentS;, i = 0, 1, 2, are chosen. I is given, the linear systems are solved
directly. S, is the heuristic stopping tolerance, i.e., ftfenorm of the residual of iter-

ative solutions less thar)—5. S, is the stopping criterion in Theorem 5.1.6 and 5.2.6.
The threshold in the maximum strategy is carefully chosen so that more detail layer
structures of the solutions can be seen during each refinement step in both interior and
boundary layer regions. The threshold is set to 0.25 for Problem 1. For Problem 2
and 4, the threshold is set to 0.1. For the number of refinement steps, four steps are
performed for the case= 102, seven steps are performed for the case10-3, and

eight steps are performed for the cases*. Both MG and GMRES with the same
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Gauss-Seidel smooother or preconditioner are employed as the iterative solvers. One
HGS step is applied on Problem 1, one VGS step is applied on problem 2 and one
ADGS step, consisting of HGS, VGS, backward HGS and backward VGS, is applied

on Problem 4.

As shown in the following numerical results, the meshes, generated from MG or GM-
RES iterative solutions that satisfying our stopping criteria, are almost the same as the
mesh generated from exact finite element solutions in all cases. Not surprisingly, MG
requires fewer iterations to reach the stopping criteria than GMRES, especially when
our stopping criteria is used. The total amount of work of MG with our stopping cri-
teria is about half of the amount of work of MG with the heuristic stopping criterion.
However, no such saving can be seen from GMRES. Our numerical results indicate
MG iterative methods with the stopping criteria in previous sections are the method
of choice if fast and reliable iterative solutions are expected in the adaptive refinement

process.
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Problem 1 with VR error estimator:

e | —Tesy T g0 refined meshes

MaxXry, €Sy, Mp

1072 | 0.481 0.483 0.459 0.412

1073 | 0.487 0.509 0.490 0.491 0.482 0.469 0.429

10~* | 0.4850.532 0.476 0.505 0.493 0.495 0.491 0.485

Table 5.1: Verification of the assumption (5.22) of the new stopping criteria

e | Tol | Iterations e | Tol | Iterations
S ] 911109 S1 | 9111420
1072 102
Sy | 2321 Sy | 2526 27 30
‘ S1 1101515151198 f S1 110121419 202326
1073 1073
Sy | 3544211 Sy | 2527 2930293130
) S1 1101617212117 1310 ) S1 | 1012151924 23 26 26
10~ 10~
Sy | 47697521 Sy | 2527 28 3033333331
(a) MG iteration steps (b) GMRES iteration steps

Table 5.2: Comparison of iteration counts for different stopping criteria

€ Tolerance| Node number

1072 | Sy, 51,5, | 47 102 218 442

So, 51 | 47 102 220 464 940 1879 3736

1073
S 47 102 220 464 941 1880 3737

1074 So, 51 | 47 102 221 474 980 1950 3835 7582

S 47102 221 473 976 1949 3834 7561

Table 5.3: Comparison of number of nodes of refined meshes from MG solutions
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Problem 1 with KS error estimator:

e | —Tesy T g0 refined meshes

MaxXry, €Sy, Mp

1072 | 0.481 0.483 0.459 0.413

1073 | 0.487 0.509 0.489 0.491 0.483 0.469 0.428

10~* | 0.4850.532 0.477 0.505 0.492 0.495 0.492 0.485

Table 5.4: Verification of the assumption (5.66) of the new stopping criteria

e | Tol | Iterations e | Tol | Iterations
S1 | 811109 St ] 9111420
1072 1072
Sy, | 3443 S, | 2526 27 29
|51 1101515151198 1 S51110121419202326
1073 1073
Se | 4775432 Sy | 2527 28 30 30 29 28
) S111016172121171310 ) S1 11012151924 23 26 26
10~ 10~
Sy | 599129743 Sy | 2527 283133333332
(a) MG iteration steps (b) GMRES iteration steps

Table 5.5: Comparison of iteration steps for different stopping criteria

€ Tolerance| Node number

1072 | Sy, 51,8, | 47102 218 442

1073 | Sy, 51,59 | 47 102 220 464 940 1879 3736

S 47 102 220 464 944 1883 3740

) So, S1 47102 221 474 980 1950 3835 7582
10~

S 47 102 221 474 980 1951 3836 7575

Table 5.6: Comparison of number of nodes of refined meshes from MG solutions
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Problem 2 with VR error estimator:

€

MaAXTeg, T
maxr, €Sy, MMp

on refined meshes

1072 | 0.50.50.505

103 | 0.50.5050.50.50.505

107*{ 0.50.50.50.50.50.50.50.5

Table 5.7: Verification of the assumption (5.22) of the new stopping criteria

€ Tol | Iterations € Tol | Iterations
S; | 1210912 Sy | 11121317
1072 1072
Se | 3336 Se | 26 26 26 30
S; 116131198815 S; 111121212131528
1073 1073
Sy | 43332311 Sy | 2626 26 26 27 27 35
, S; 1161412109888 , S; 1 11121212131516 17
10~ 10~
Sy | 64433222 Sy | 26 26 26 26 27 27 28 28

(a) MG iteration steps

(b) GMRES iteration steps

Table 5.8: Comparison of iteration steps for different stopping criteria

Tolerance| Node number
1072 | Sy, 51,52 | 50 97 190 394
_3 So, S1 5091174 343 697 1350 2702
0 So 5091 174 343 683 1359 2705
1074 So, S1 5091174 343 679 1346 2674 5331
S 5091174 343 679 1346 2688 5369

Table 5.9: Comparison of number of nodes of refined meshes from MG solutions
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Problem 2 with KS error estimator:

MaAXTeg, T
maxr, €Sy, MMp

1072 | 0.50.50.50.499

€ on refined meshes

103 | 0.50.5050.50.50.505

107*{ 0.50.50.50.50.50.50.50.5

Table 5.10: Verification of the assumption (5.66) of the new stopping criteria

e | Tol | Iterations e | Tol | Iterations
S1 11210912 Sy 11121317
1072 1072
Sy | 4447 Sy | 26 26 26 30
S1 116131198815 S1111121212131528
1073 1073
Se | 74443413 Sy | 26 26 26 26 27 27 35
) S1 1161412109888 ) S1 11112121213151617
10~ 10~
S, | 96554333 Sy | 26 26 26 26 27 27 28 28
(a) MG iteration steps (b) GMRES iteration steps

Table 5.11: Comparison of iteration steps for different stopping criteria

€ Tolerance| Node number

10~ | Sp, S1, S, | 5097 190 394

So, 51 5091174 343 697 1350 2702

1073
S 5091 174 343 683 1359 2702

1074 S0, 51 | 5091174343 679 1346 2674 53381

S 5091174 343679 1346 2688 5334

Table 5.12: Comparison of number of nodes of refined meshes from MG solutions
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Problem 4 with VR error estimator:

€ | e, g0 refined meshes

WaxXTy €Sy, Mp

1072 | 0.350.290.26 0.26

1073 | 0.350.29 0.750.65 0.84 0.65 0.31

10~* | 0.350.290.481.840.77 0.78 0.69 0.38

Table 5.13: Verification of the assumption (5.22) of the new stopping criteria

e | Tol | Iterations e | Tol | Iterations
L2 S; 1191085 102 S; 116153235
Sy | 3332 Sy | 273032 36
. S1 3625211291110 . S; | 28354141 485357
. S, | 6894354 0 Sy | 293544 41 46 55 58
104 S; 13644281918191916 104 S1 | 293748393544 6776
Sy, 111141496566 Sy | 2937483835446776
(a) MG iteration steps (b) GMRES iteration steps

Table 5.14: Comparison of iteration steps for different stopping criteria

€ Tolerance| Node number

) So,S1 | 72167 4151134
10~

S 721714231138

, So, S1 73 197 453 699 1113 1754 2815
10~

S 73197 459 705 1131 1779 2839

1074 So, 51 73 205 459 790 1154 1785 2753 4144

Sa 73205457 787 1148 1783 2728 4119

Table 5.15: Comparison of number of nodes of refined meshes from MG solutions
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Problem 4 with KS error estimator:

€ | —2Tes, T g0 refined meshes

WaxXTy €Sy, MMp

1072 | 0.340.300.36 0.24

1073 | 0.340.370.510.68 0.750.44 0.17

107* | 0.340.310.330.240.71 0.54 0.82 0.52

Table 5.16: Verification of the assumption (5.66) of the new stopping criteria

e | Tol | Iterations e | Tol | Iterations

102 S; 1201086 102 Sy | 152320 36
Sy | 6543 Sy | 27 3033 36

L S1 1412116141818 10 . S; | 283437 39455453
. S, 1131110811106 0 Sy | 2834 37 394554 53

» Sy | 5227222417151525 » S | 282439 3235425669
. Sy 1221716169911 21 0 Sy | 283539 3235425569

(a) MG iteration steps (b) GMRES iteration steps

Table 5.17: Comparison of iteration steps for different stopping criteria

€ Tolerance| Node number

10~ | Sy, S;,S, | 70 168 390 911

, So, 51 70 176 345 592 948 1458 2391
10~

S 70176 345 592 948 1458 2391

1074 So, 51 70176 354 764 1143 1752 2674 40093

Sa 70176 354 764 1143 1750 2688 4082

Table 5.18: Comparison of number of nodes of refined meshes from MG solutions
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Chapter 6

Conclusions, Summary and Future Research

In this thesis, we concentrate on finding an accurate and efficient solver for solving the
convection-diffusion equations. To achieve this goal involves accurate discretization
methods, regularity estimates, a priori error estimations, reliable a posteriori error
estimations and fast linear solvers. In this work, we have found that an accurate
approximate solution of the convection-diffusion equation can be obtained by SDFEM
discretization on adaptive refinement meshes. In this scenario, the question of how to
compute the approximate solution that satisfies a pre-described accuracy efficiently

can be broken into the following three questions:
1. How reliable is the a posteriori error estimation?

2. How fast and accurate can one refine the meshes to resolve boundary and inte-

rior layers?
3. What is the most efficient linear solver under the adapted refined meshes?

Our studies do not answer the first question and only show that the Kay and Silvester’s
a posteriori error estimation is more reliable than the Mehfs error estimation. For

guestion 2, with a carefully chosen error-adaptive sensitivity parameter, our error-
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adapted mesh refinement strategy can be a remedy in case regular refinement fails to
resolve the sharp gradient layers of the solution. Finally, the multigrid method com-
bined with our stopping criteria seems to be a promising answer to the second and

third questions. We summarize our results in the following.

In Chapter 2, we study the well known Galerkin discretization method (GK) and
the streamline upwinding finite element discretization method (SDFEM). For both
methods, the existence of the approximate solution and the a priori error estimation
between the approximation solutiap and the exact solution are proved. Our nu-
merical results in Section 2.3 show that SDFEM produces more accurate solutions.
Furthermore, the errdiju — ;||| decreases in the order 6fh'/?) is observed and
suggests that the a priori error estimation (2.38) in term§\ok||, may provide a
better error bound. The theoretical impact from this observation is reflected on the

proof of our multigrid convergence result, Theorem 4.3.4.

In Chapter 3, we study the a posteriori error estimations including the residual type of
error estimation (VR) proposed by Vérth and the Neumann-type of error estimation
(KS) proposed by Kay and Silvester. Our numerical results in Section 3.3 shows that
the KS error estimation is more reliable than the VR error estimation. In addition,
the local lower bounds of both error estimations are sharp and can be considered as
efficient error indicators to pinpoint where the exact error is large. In order to increase
the accuracy of the approximate solution, we use the KS indicator to refine meshes
and move grid points to where the value of KS error indicator is large. First, our
numerical results in Section 3.4 show that a simple moving mesh strategy, Algorithm

3.4.1, is able to increase the solution accuracy. However, drawbacks of the moving
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mesh strategy include the necessity of a carefully chosen relaxation parameter and
expensive computation overhead if fast multigrid linear solvers are desired. Second,
the regular refinement strategy either requires too many refinement steps or generates
too many grid points to resolve layers, or even fails to resolve the layer when the con-
vection term is strongly dominant. We introduce an error-adapted mesh refinement
strategy in Section 3.5 to overcome these difficulties. The meshes generated from
the error-adapted refinement strategy are nested and can be directly used in multi-
grid solvers. Moreover, our numerical results show that the error-adapted refinement
strategy generates significantly fewer nodes than regular refinement strategy and is

capable of quickly resolving the boundary layer.

In Chapter 4, first, we prove the convergence of horizontal line Gauss-Seidel method
(HGS) for the convection-diffusion problem with vertical wind (Problem 2). Theorem
4.1.3 shows the error reduction factor of HGS is proportiona@b(e; ) for h > \/e.

In asymptotical limite — 0, HGS is the exact solver. This suggests that HGS is

a good smoother if multigrid method is employed to solve the sparse linear system
of Problem 2. Moreover, since, HGS is a convergent iterative method, HGS may as
well be a good preconditioner for the GMRES method. Second, in Theorem 4.3.2
and Remark 4.3.3, we show that HGS satisfies the usuadthing property (4.26).

The convergence of the V-cycle multigrid with HS smoother is then proved in The-
orem 4.3.4 by utilizing themoothing property, the a priori error estimate and the
regularity estimates. Moreover, we conclude that MG converges faster than HGS for
Problem 2, since the MG convergence factoi§) as stated in Remark 4.3.5.
The numerical results in Section 4.1 and Section 4.3 support our theoretical analysis.

Finally, in the search of a fast linear solver for the convection-diffusion equations, our
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numerical studies in Section 4.5 show that GMRES with multigrid preconditioner is
the best choice among the linear solvers: standard multigrid (MG), algebraic multi-
grid (AMG), GMRES, GMRES with Gauss-Seidel preconditioner and GMRES with
AMG preconditioner. Here, we like to note that MG with Gauss-Seidel smoother can
as well be a fast solver for the convection diffusion problems on adaptive mesh when

using the stopping criteria we propose in Chapter 5.

In Chapter 5, we give two stopping criteria for the iterative linear solvers. The error
indicator computed from iterative solutions satisfying the stopping criteria in Theo-
rem 5.1.6 and Theorem 5.2.6 will generate a mesh similar to the mesh generated by
the error indicator computed from exact solution. Furthermore, if the iterative solu-
tions satisfy the stopping criteria in Theorem 5.1.5 and Theorem 5.2.5, then the error
between iterative solution and exact solution is bounded below by the upper bound in
the a posteriori error estimation. If the upper bound of the a posteriori error estimation
is optimal, then one can not distinguish the exact solution and iterative solution in the
sense of measuring the true error. we suggest that the stopping criteria in Theorem
5.1.5 and Theorem 5.2.5 only need to be verified at the finest mesh where a reliable
solution is expected. For the purpose of accelerating the mesh refinement process and
avoiding refinement over wrong locations, a linear solver which can more quickly sat-
isfy our stopping criteria is preferred. Our numerical studies in Section 5.3 indicate
that MG with Gauss-Seidel smoother requires fewer iterative steps to satisfy our stop-
ping criteria than to satisfy the heuristic stopping tolerance, residual less@hén

However, no such savings is seen if GMRES is used to solve the linear system.
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Itis important to realize that different discretization schemes directly affect the funda-
mental property of the discrete matrix and the error estimations. A good property of
the discrete matrix such as M-matrix is a foundation of choosing and developing fast
and stable linear solvers. Recently, Xu and Zikatanov propose a new edge-averaged
finite element discretization scheme (EAFE) [103] which guarantees the resulting dis-
crete matrix is an M-matrix. A multigrid linear solver based on EAFE and graph
matching is proposed in [61]. It will be our interests to know a posteriori error esti-
mations for this discretization scheme and see how different linear solvers perform for
the linear systems arising from EAFE. Moreover, since anisotropic meshes are gen-
erally generated for real applications in computational fluid dynamics and our error-
adapted refinement strategy also tends to produce anisotropic meshes in boundary
layer regions, the a posteriori error estimation for the convection-diffusion equation
on anisotropic meshes, such as the error estimation by Kunert [63], are topics of our
future work. We also wish to explore how iterative solvers, in particular multigrid
methods, perform for the anisotropic meshes generated from refinement process. To
search fast linear solvers for solving more difficult problems such as the Navier-Stokes
equations will always be our long-term goals. Hopefully, we can find stopping criteria
for these iteration methods and apply the error-adapted mesh refinement strategy to

these problems.
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