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In this dissertation, we examine several different aspects of computing the numeri-

cal solution of the convection-diffusion equation. The solution of this equation of-

ten exhibits sharp gradients due to Dirichlet outflow boundaries or discontinuities in

boundary conditions. Because of the singular-perturbed nature of the equation, nu-

merical solutions often have severe oscillations when grid sizes are not small enough

to resolve sharp gradients. To overcome such difficulties, the streamline diffusion dis-

cretization method can be used to obtain an accurate approximate solution in regions

where the solution is smooth. To increase accuracy of the solution in the regions con-

taining layers, adaptive mesh refinement and mesh movement based on a posteriori

error estimations can be employed. An error-adapted mesh refinement strategy based

on a posteriori error estimations is also proposed to resolve layers. For solving the

sparse linear systems that arise from discretization, goemetric multigrid (MG) and al-

gebraic multigrid (AMG) are compared. In addiiton, both methods are also used as
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preconditioners for Krylov subspace methods. We derive some convergence results

for MG with line Gauss-Seidel smoothers and bilinear interpolation. Finally, while

considering adaptive mesh refinement as an integral part of the solution process, it is

natural to set a stopping tolerance for the iterative linear solvers on each mesh stage so

that the difference between the approximate solution obtained from iterative methods

and the finite element solution is bounded by an a posteriori error bound. Here, we

present two stopping criteria. The first is based on a residual-type a posteriori error

estimator developed by Verfürth. The second is based on an a posteriori error esti-

mator, using local solutions, developed by Kay and Silvester. Our numerical results

show the refined mesh obtained from the iterative solution which satisfies the second

criteria is similar to the refined mesh obtained from the finite element solution.
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Chapter 1

Introduction

1.1 Problem Description

The purpose of this dissertation is to study the convection-diffusion equation

− ε4u + b · ∇u + cu = f,

u = g on∂Ω,

(1.1)

where the domainΩ is convex with Lipschitz boundary∂Ω, andb, c, f are sufficiently

smooth,0 ≤ c ¿ |b| ≤ 1. In order to ensure existence and uniqueness of the solution,

we assume

d1 ≥ c− 1

2
∇ · b ≥ d0 ≥ 0, for some constantsd0 andd1, (1.2)

and ∫

∂Ω

g2(b · n)dS ≥ 0. (1.3)

When |b| À ε, the problem is referred to as a convection-dominated flow problem.

Otherwise, the problem is diffusion-dominated.
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Finite element methods are widely used to compute approximate solutions, especially

for complex domains. In our analysis, we always assume the underlying meshes is

quasi-uniform, i.e. the minimal angle of all elements in the underlying mesh=hk
is

bounded well above0o and below180o. The mesh Peclét number is defined by

PeT
=
‖b‖∞,T hT

2ε
,

whereT ∈ =hk
with diameterhT . Here, we will restrict our efforts to convection-

dominated flow especially whenPeT
> 1 for all T ∈ =hk

.

1.2 Historical Overview

It is well known that the standard Galerkin discretization of (1.1) yields inaccurate,

oscillatory solutions near boundary layers in convection dominated flows and, if the

diffusion parameterε is decreased without proportional reduction of the discretization

mesh size, then these inaccuracies propagate into regions where the solution is smooth

[56]. The streamline diffusion discretization method (SD) introduced by Hughes and

Brooks [54] is designed to overcome these problems by introducing a small amount

of artificial diffusion in the direction of streamlines. The first mathematical analy-

sis of the SD method was given by Johnson and Nävert, who obtained localO(h3/2)

error estimates in theL2 norm and globalO(h3/2) error estimates in a special mesh-

dependent so-called SD-norm. The numerical solution obtained from the SD method

has the desirable property that the accuracy in regions where the exact solution is

smooth will not be degraded as a result of discontinuities and layers in the exact solu-

tion [85], [58]. However, the numerical solution obtained from the SD method can be
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oscillatory in regions where there are layers, and it may also suffer from overshooting

and undershooting. On the other hand, this localization property opens a possibility of

reducing oscillation, overshooting and undershooting through local grid refinement.

Many modified streamline diffusion methods have been proposed to improve the SD

approach by adding shock-capturing term (SD-SC) or crosswind diffusion (SD-CD)

[22], [55], [58], [88].

To obtain an accurate finite element solution on a given mesh, usually a so-called

quasi-uniform or isotropic mesh is desirable [6]. Delaunay triangulation (DT) is one

of the most important algorithms to produce such a triangulation because the DT al-

gorithm maximizes the minimal angle of the triangulation [15], [12]. Mesh operations

such as edge swapping and mesh relaxation can also be employed to improve mesh

quality [31], [45], [60]. One commom technique to increase the accuracy of the fi-

nite element solution is mesh refinement, the so-called h-method. In addition to the

regular mesh refinement, Rivara’s longest side bisection algorithm (LSB), [83], [84],

guarantees that the minimal angle of the refined mesh will not be less than one half

of the minimal angle of original mesh. Moreover, the meshes generated by LSB are

nested. As a result, meshes from both regular refinement and LSB refinement possess

shape regularity and are suitable for multigrid algorithms.

Another grid adaptation technique is based on moving meshes. Mesh movement de-

rived from equidistribution principle and direct minimization have been studied by

many researchers such as Azevedo [28], Baines [9], Felippa [43], Huang and Rus-

sell [52], Tourigny [93], [94], and literatures cited therein. The idea to make use

of a posteriori error estimator in mesh movement is presented by Bank and Smith
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[10]. This approach requires the computation of approximate second derivatives for

all elements and solutions of a local optimization problem at each node which is com-

plicated and time-consuming. Here, we examine a mesh movement strategy based on

equidistributing an a posteriori error estimator. How mesh movement can improve the

accuracy of the numerical solutions in the adaptive process is still not clear. In par-

ticular, for convection-diffusion problems, node movement may be in the wrong di-

rection, when approximate solutions contain serious oscillations in regions containing

layers. As a result, mesh movement may actually degrade the quality of the underly-

ing meshes and the accuracy of the numerical solutions. Nonetheless, our numerical

studies suggests this simple strategy for mesh movement can significantly improve

the accuracy of finite element solutions.

There are cases in which anisotropic meshes,consisting of long thin triangles, may

produce more accurate solutions [76], [81] than the isotropic meshes. For the convection-

diffusion problems, anisotropic mesh adaptation including Shishkin meshes have been

shown to be effective [4], [23], [27], [30], [65]. However, rigorous theoretical analysis

on anisotropic meshes has not been fully developed. Even though we shall not pursue

any theoretical results in this area, our error-adapted mesh refinement algorithm in

section 3.5 is capable of producing long-thin triangles in the layer region which clus-

ter nodes in these regions. Moreover, in contrast to the moving mesh strategy where

the nested grid structures can’t be maintained and interpolation between grids has to

be computed for multigrid solvers, the grids generated by the error-adapted refine-

ment algorithm is ready to be used in multigrid solvers without any extra computation

cost.

12



For an adaptive refinement procedure to succeed, reliable and efficient a posterori

error estimators are needed. For the reliability and efficiency of a posteriori error es-

timators, a standard measure is the so-called effectivity index, defined as

eff =
estimated error

true error

An estimator is called asymptotically exact if its effectivity index converges to 1 when

the mesh size approaches 0. If the effectivity index is much smaller than 1, the es-

timator is under-estimating the error. On the other hand, if the effectivity index is

much greater than 1, the estimator is over-estimating the error. If the estimator does

not under-estimate or over-estimate the error globally, then the estimator is reliable,

meaning the error on the global domain can be properly controlled by the estimator.

If the estimator does not under-estimate or over-estimate the error locally, then the

error estimator is efficient, meaning the estimator is able to pinpoint exactly where

the error is large and where the error is small. For two-dimensional problems, sev-

eral estimators have been shown to be asymptotically exact when used on uniform

meshes provided the solution of the problem is smooth enough [7], [33], [34]. Esti-

mators based on computing residuals, so-called residual-type estimators, and estima-

tors based on solving a local Dirichlet problem, so-called Dirichlet-type estimators,

were introduced by Babǔska and Rheinboldt [8]. Estimators based on solving a lo-

cal Neumann problem, so-called Neumann-type estimators, were first given by Bank

and Weiser [11]. These estimators have been studied by many researchers such as

Ainsworth [2], Johnson, Eriksson [40] [57] , Kay and Silvester [59] and Verfürth [96]

[97]. The Zienkiewicz-Zhu (ZZ) type of estimators based on recovery of gradient and

Hessian are also well developed, see [3], [73], and articles cited therein.
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For convection-diffusion problems, numerical results in [72] show the residual-type

error estimator and the ZZ estimator are not as reliable as the Neumann-type estimator.

Here, our numerical results also show that the Neumann-type estimator introduced by

Kay and Silvester is more reliable than Verfürth’s residual-type estimator. One of our

goals is to understand how the quality of estimators may degrade if we replace the

exact finite element solution by approximate iterative solution. In other words, we are

interested in finding the largest stopping tolerance for the iterative solver, such that

the reliability and efficiency of error estimator will not change too much when these

estimators are computed from approximate solutions obtained from iterative methods.

Multigrid methods (MG) are among the most efficient methods for solving the lin-

ear systems arising from discretization of elliptic partial differential equations. There

has been intensive research on the convergence of MG since it was introduced by

Fedorenko [42]. For symmetric positive-definite elliptic problems, thanks to many

researchers, such as Bank, Braess, Bramble, Brandt, Dupont, Hackbusch, Mandel and

McCormick, etc, the convergence theory has matured. However, for singular pertur-

bation problems, the development of theoretical analysis is far less advanced. The

difficulties arise from the weak coercivity and poor regularity in these type of prob-

lems.

The major ingredients for convergence analysis of MG are called theapproximation

propertyand thesmoothing property. One approach for convergence analysis is the

so-calledcompact perturbation technique, which relies on a strong approximation

property and treats the lower order terms as a small perturbation of the symmetric pos-
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itive define term. The technique has been successfully applied to diffusion-dominated

flow problems and Bramble, Pasciak, Wang, Xu have shown robust MG uniform con-

vergence [17], [18], [19], [20], [99]. In these studies, uniform convergence of MG can

be established with one step of standard Jacobi or Gauss-Seidel smoothing even with-

out regularity assumptions. For convection-dominated flow problems, this approach

requires coarse grids with very small grid size,hcoarse ¿ ε, which is usually not valid

in practical computations.

With realistic coarse grids in mind, matrix-dependent prolongation and restriction

operators have been proposed by Dendy [29], De Zeeuw [105], Reusken [79] and

Wesseling [100] to enhance the approximation property on uniform meshes. It is not

clear how to generalize these results on complex domains where one can only use

unstructured meshes. The algebraic multigrid method developed by Ruge and Stüben

[86], [92], is readily adapted to such applications. Convergence of AMG is estab-

lished when the coefficient matrix is a symmetric M-matrix. This is typically not the

case for the convection-diffusion problem, but numerical studies in [92] also suggest

AMG is still applicable. Both matrix-dependent operators and AMG require comput-

ing correction operators on coarse grids. These seem not to be a natural choice of

methods if adaptive process is involved.

Another approach requires a strong smoothing property to compensate for poor ap-

proximation property in this type of problems. In this direction, it is very important

to find a robust smoother. Robust smoothers such as the Gauss-Seidel method with

flow-oriented ordering and the incomplete LU factorization (ILU) method have been

studied by many researchers such as Bey [13] [14], Chernesky and Elman [37] [38],
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Hackbusch and Probst [51], Wesseling [100] and Wittum [102]. Recently, researchers

such as Reusken, Pflaum prove MG convergence inL2 with the help of special grid-

ding techniques such as semi-coarsening [75], [80]. Szepessy shows MG convergence

in L1 by residual damping through large smoothing steps [74]. Moreover, Ramage

have demonstrated that MG convergence rates can be significantly improved if the

SD discretization is employed with an optimal stabilization parameter [77]. Here, we

would like to study MG convergence of the SD-discretized flow problems. We prove

some MG convergence results for a simple constant flow problem when mesh size

h À √
ε, where only standard bilinear prolongation and restriction operators are con-

sidered in MG algorithm.

For problems containing recirculating flows, it is not easy to obtain a robust smoother.

As a result, MG fails to converge without special treatments on discretization meth-

ods and prolongation operators [104], [105]. However, some numerical experiments

indicate that MG is a robust preconditioner in Krylov subspace solver [70]. Here, we

would also like to investigate whether MG and AMG, as preconditioners of GMRES

solver, are still robust in these convection-diffusion problems on adaptively refined

unstructured grids.

1.3 Dissertation Outline

First we review many aspects of computing accurate finite element solutions for

convection-diffusion equations and discuss some difficulties associated with using

multigrid for solving the linear system that arise from discretization of (1.1). In Chap-

ter 2, linear discretization methods are studied. We briefly review two finite element
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methods, the standard Galerkin method and the streamline diffusion method. Some

fundamental properties of the solutions from both methods are also presented. Our

numerical results show that the Galerkin method produces oscillatory solutions glob-

ally, whereas the solution obtained from streamline diffusion method are oscillatory

only in the regions where there are layers. In Chapter 3, a posteriori error estimations

as well as a mesh movement strategy and an error-adapted mesh refinement strategy

based on these estimations are introduced. First, theoretical results of residual-type of

a posteriori error estimator by Verfürth and Neumann-type of a posteriori error estima-

tor by Kay and Silvester are reviewed. Then a comparison of reliability and effectivity

of both estimators is given. Numerical results for a mesh movement strategy, based

on equidistribution of the error estimators, are also shown here after a brief overview

on the mesh movement strategies based on equidistribution principles. In Section 3.5,

the error-adapted mesh refinement algorithm is presented. In Chapter 4, the algorithm

and convergence of several linear iterative solvers are studied. For stationary itera-

tive methods, Jacobi, Gauss-Seidel, line Jacobi and line Gauss-Seidel as well as the

Krylov subspace iterative method, GMRES, are presented. For multigrid methods,

geometric multigrid (MG) and algebraic multigrid (AMG) algorithm are presented.

We prove geometric multigrid will converge when the mesh size satisfiesh À √
ε for

a simple constant flow problem on uniform mesh. For more difficult problems such

as those with circulating flows, the performance of MG, AMG and GMRES with GS,

MG and AMG preconditioners are compared. In Chapter 5, stopping criteria of the

iterative linear solver in adaptive mesh refinement process are studied. We develop

two stopping criteria, one associated with Verfürth’s residual-type error indicator and

the other associated with Kay and Silvester’s Neumann-type error indicator. We show

that it is necessary for the iterative solution to satisfy our stopping criteria in order
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to ensure that the error arising from the iterative solution is bounded by the a poste-

rior error estimations. Our numerical results show error estimators computed from

the multigrid solution, which satisfy our stopping criteria, produce almost identical

mesh refinements as error estimators computed from exact finite element solution. In

Chapter 6, we draw some conclusions.
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1.4 Notation and Terminology

The following notations are used in this thesis.

• The notationx ¹ y for x, y ∈ R is defined as there is a constant0 < c ¿ ∞
such thatx ≤ y.

• Let (·, ·) be the inner product inL2(Ω) defined by(f, g) =
∫
Ω

fg

The notation‖f‖k and|f |k denotes the usual Sobolev norm and semi-norm over

the global domainΩ, defined by‖f‖k =
(∑

|α|≤k ‖Dαf‖2
0

)1/2

and‖f‖k =
(∑

|α|=k ‖Dαf‖2
0

)1/2

, respectively, where‖f‖2
0 = (f, f), for f ∈ Hk. Also,

‖f‖Ω0,k =
(∑

|α|≤k ‖Dαf‖2
0

)1/2

is the Sobolev norm of f defined on a sub-

domainΩ0 ⊂ Ω.

• Let < ·, · > denote the Euclidean inner product onRn.

The notation‖x‖ is defined as‖x‖ =< x, x >1/2 for x ∈ Rn.

• TheL2 norm of a given matrix is defined as

‖A‖ = sup
x∈Rn

| < Ax, x > |
‖x‖

• Let A be a matrixA = (aij), 1 ≤ i, j ≤ n. If xT Ax > 0 for all nonzerox ∈ Rn,

A is called positive define.

If ai,j ≥ 0 for all i and j, then A is called a non-negative matrix and is denoted

asA ≥ 0.

If A is nonsingular,aij ≤ 0 for j 6= i andA−1 ≥ 0, A is called a M-matrix.

If there exist permutation matrix P such that

PTAP =




A1,1 A1,2

0 A2,2


 ,
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A is called reducible. If no such permutation exists, A is called irreducible.

If
∑

j 6=i |ai,j| ≤ |ai,i| ∀i, A is called diagonal dominant.

If A is diagonal dominant and
∑

j 6=i |ai,j| < |ai,i| for some i, A is called weakly

diagonal dominant.

• Let d denote the function that measures the diameter of a given domain. LetΩ

be a given domain and=h be a mesh such that

max {d(T ) : T ∈ =h} ≤ hd(Ω).

The mesh=h is called quasi-uniform if there existsr > 0 such that

min {d(BT ) : T ∈ =h} ≥ rhd(Ω),

whereBT is the largest ball contained inT .

• Let Ni, i = 1 · · ·m denote the nodes of=h. Let φi be the nodal basis function

at nodeNi. The nodal interpolant I is defined as

Iu =
m∑

i=1

u(Ni)φi

Si = supp(φi). Letπi be theL2 orthogonal projection onto the piecewise linear

function space inSi. The quasi-interpolant I is defined as

Iu =
m∑

i=1

πiu(Ni)φi.

Let E denote the set of edges in=h. For any elementT ∈ =h and edgeE ∈ E ,

ωT =
⋃

ø6=T ′∩T∈E
T ′, ω̃T =

⋃

T ′∩T 6=ø

T ′, ωE =
⋃

E⊂T ′
T ′, ωi =

⋃

Ni∈T ′
T ′
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Chapter 2

Linear Discretization Methods

In this chapter, we review two finite element methods for discretizing the convection-

diffusion equation (1.1), the standard Galerkin method (GK) and the streamline-diffusion

finite element method (SDFEM). We consider finite element techniques with isopara-

metric bilinear elements for the convection-diffusion problem with small viscosity

ε. We illustrate the solution behavior in both analysis and numerical experiments on

some model problems.

A weak solution of (1.1)-(1.2) is given byu ∈ H1(Ω) such that

B(u, v) = F (v), ∀v ∈ H1
0 (Ω), (2.1)

where the bilinear form is defined as

B(u, v) = ε(∇u,∇v) + (b · ∇u, v) + (cu, v), (2.2)

and the linear functional on the right hand side is defined as

F (v) = (f, v) +

∫

∂Ω

(gv)n · dS. (2.3)

The existence and uniqueness of the weak solution are established by the Lax-

Milgram theorem since the bilinear form B is coercive and continuous onH1(Ω).
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Moreover, when f and g are smooth enough, a smoother solutionu ∈ H2 can be

obtained if the underlying domainΩ is convex [48].

Lemma 2.0.1 (Continuity) For all u ∈ H1(Ω) andv ∈ H1
0 (Ω), there exists a con-

stantΓ > 0 such that

|B(u, v)| ≤ Γ ‖u‖1 ‖v‖1 (2.4)

Proof: From (2.2), we have

|B(u, v)| = |ε(∇u,∇v) + (u, b · ∇v) + ([2(c− 1

2
∇ · b)− c]u, v)|

≤ ε|u|1|v|1 + ‖u‖0 |v|1 + (1 + 2d1) ‖u‖0 ‖v‖0 , , by (1.2)

≤ Γ ‖u‖1 ‖v‖1 ,

whereΓ = ε + 2(1 + d1).

2

Lemma 2.0.2 (Coercivity) For all u ∈ H1
0 (Ω), there exist constantγ > 0 such that

|B(u, u)| ≥ γ ‖u‖2
1 (2.5)

Proof: By Green’s formula,

∫

∂Ω

u2b · ndS =

∫

Ω

∇ · (u2b)dxdy =

∫

Ω

(∇ · b)u2dxdy + 2

∫

Ω

(b · ∇u)udxdy

Therefore,

B(u, u) = ε

∫

Ω

∇u · ∇udxdy +

∫

Ω

(c− 1

2
∇ · b)u2dxdy +

1

2

∫

∂Ω

g2b · ndS

≥ ε|u|1 + d0 ‖u‖0 , by (1.2) and (1.3),

≥ γ ‖u‖1 , for someγ > 0.
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2

Remark 2.0.3 If the energy norm, defined as|‖u‖| = ε ‖∇u‖0 + d0 ‖u‖0, is consid-

ered, the continuity and coercivity can be also estimated in terms of energy norm as

in the following: for allu, v ∈ H1
0 (Ω),

|B(u, v)| ≤ |‖u‖| |‖v‖|+ ε−1/2 |‖u‖| ‖v‖0 ¹
1

ε
|‖u‖| |‖v‖| (2.6)

and

B(u, u) ≥ |‖u‖|2 . (2.7)

Moreover, the following lemma gives us an estimation of the regularity of the weak

solution in terms of given data. For problems with exponential boundary layers, this

estimation is sharp as mentioned in Remark 1.17 in [85]

Lemma 2.0.4 If the weak solutionu ∈ H2(Ω) and u|∂Ω = 0, then the following

inequality holds.

ε3/2 ‖u‖2 + ε1/2 ‖u‖1 + ‖u‖0 ≤ C ‖f‖0 , (2.8)

for some constantC > 0.

Proof: see Lemma 1.18 in p. 186 [85].

2

2.1 Galerkin Discretization

Assume we are given a quasi-uniform mesh=h with node pointsx1,...,xn. Let Vh

be the finite-dimensional subspace consisting of piecewise linear or bilinear functions

defined on=h. The Galerkin finite element method seeks an approximate solutionuh

of the weak solution u inVh which satisfies

23



Bgk(uh, vh) = Fgk(vh), ∀vh ∈ Vh, (2.9)

whereBgk = B andFgk(v) = (fh, vh) +
∫

∂Ω
(ghvh)n · dS.

Clearly, each functionvh ∈ Vh has a unique representationv =
∑n

i=1 vi
hφi, wherevi

h

is the nodal value andφi is the linear nodal basis function at nodexi satisfying

φi(x) =





1 if x = xi

0 if x 6= xi

Using (2.2) and (2.3), (2.9) can be rewritten as

∑

e∈=h

ε

∫

e

∇uh∇vhdxdy

︸ ︷︷ ︸
I

+

∫

e

(b · ∇uh)vhdxdy

︸ ︷︷ ︸
II

+c

∫

e

uhvhdxdy

︸ ︷︷ ︸
III

=
∑

e∈=h

∫

e

fvhdxdy

︸ ︷︷ ︸
IV

(2.10)

Each term is then computed elementwise. The computation is done on a reference

element̂e instead of on the actual element through an isoparametric mappingΦ.

�����

�����

Φ

�−Φ η

ξ�

�

���	
���
�����	�����
�

�

������

�

�����

���	
��
�������	������


�−Φ

Φ

������

η

ξ
�������

Let ξ andη be the reference coordinates.Φ : (ξ, η) 7→ (x, y) is defined by

(x, y) = Φ(ξ, η) =
d∑

i=1

(xi, yi)χi(ξ, η), (2.11)

where d is the degree of freedom of the associated element andχi, i=1...d, is the linear

element nodal basis function ofê. Moreover, from isoparametric formulation,uh and
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vh can also be represented as

uh =
d∑

i=1

ui
hχi(ξ, η) andvh =

d∑
i=1

vi
hχi(ξ, η) (2.12)

on each element, whereui
h advi

h are the function values on nodexi.

For linear triangular elements,d = 3 and

χ1(ξ, η) = 1− ξ − η

χ2(ξ, η) = ξ

χ3(ξ, η) = η.

(2.13)

For bilinear rectangular elements,d = 4 and

χ1(ξ, η) =
1

4
(1− ξ)(1− η)

χ2(ξ, η) =
1

4
(1 + ξ)(1− η)

χ3(ξ, η) =
1

4
(1 + ξ)(1 + η)

χ4(ξ, η) =
1

4
(1− ξ)(1 + η).

(2.14)

The Jacobian matrixJ arising from coordinate transformation is

J =




∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η


 (2.15)

and can directly be computed from (2.11) and the above definitions of the nodal basis

functions. Since (I) and (II) can be rewritten as

∫

e

∇uh∇vh =

∫

ê

[
∂vh

∂ξ
,
∂vh

∂η
]




∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y




T 


∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y







∂uh

∂ξ

∂uh

∂η


 |J |dξdη, (2.16)

∫

e

(b · ∇uh)vh =

∫

ê

vh[b1, b2]




∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y







∂uh

∂ξ

∂uh

∂η


 |J |dξdη, and, (2.17)
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and the following relationships holds

∂ξ

∂x
= |J |−1 ∂y

∂η
,

∂ξ

∂y
= −|J |−1∂x

∂η
,

∂η

∂x
= −|J |−1∂y

∂ξ
,

∂η

∂y
= |J |−1∂x

∂ξ
, (2.18)

the associated element discrete matrices can be computed directly from (2.11), (2.12),

and the definition of the nodal basis functions (2.13 and (2.14). Similarly, (III) and

the righthand side of (2.10) can be rewritten as

∫

e

uhvh =

∫

ê

vhuh|J |dξdη, (2.19)

and ∫

e

fhvh =

∫

ê

vhfh|J |dξdη, (2.20)

respectively. Clearly, the discrete matrix of (2.19) and (2.20) can also be computed

by the same way. LetHe be the discrete matrix of (2.16),Ce be the discrete matrix of

(2.17), andMe be the discrete matrix of (2.19) and (2.20). Now, (2.9) can be written

in the following matrix form

(εH + C + cM)uh = Mf, (2.21)

whereH =
∑

e∈=h
He, C =

∑
e∈=h

Ce, andM =
∑

e∈=h
Me. The matrix on the

lefthand side of (2.21) is usually called the stiffness matrix and the matrix on the

righthand side is called the mass matrix.

The usual stencil notation for the stiffness matrix and mass matrix at each node can

be obtained by assembling the element matrices of neighbor elements of that node.
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On uniform triangular meshes, the stencil notation is:

H ∼




0 −1 0

−1 4 −1

0 −1 0




, C ∼ h
6
×




−b1 + b2 b1 + 2b2 0

−(2b1 + b2) 0 2b1 + b2

0 −(b1 + 2b2) b1 − b2




, and

M∼ h2

12
×




1 1 0

1 6 1

0 1 1




.

On uniform rectangular mesh, the stencil notation is:

H ∼ 1
3
×




−1 −1 −1

−1 8 −1

−1 −1 −1




, C ∼ h
12
×




−b1 + b2 4b2 b1 + b2

−4b1 0 4b1

−(b1 + b2) −4b2 b1 − b2




, and

M∼ h2

36
×




1 4 1

4 16 4

1 4 1




.

The stiffness matrix arises from the Galerkin discretization can be denoted as

AGK = εH + C + cM.

Since we considerε ¿ h andc < |b|, clearly,C is the dominating term. Standard

Fourier analysis suggests that the solution will contain large oscillatory modes. A

detail analysis can be found at section 3.5 of [39].

Remark 2.1.1 For ∇ · b = 0, we have

(b · ∇u, v) = −(u, b · ∇v)− ((∇ · b)u, v) = −(b · ∇v, u).
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It follows that the matrixC is skew-symmetric in this case. For our problem,

|(b · ∇u, v) + (b · ∇v, u)| ≤ 2(c− d0)(u, v).

Since|c| < 1 and the mass matrixM from (u, v) is O(h2), the symmetric part ofC is

in the order ofh2. Therefore,C is nearly skew-symmetric. Moreover, for smallε, AGK

is also nearly skew-symmetric.

Lemma 2.1.2 Letv ∈ Hm(Ω). The interpolantvI satisfies

∥∥v − vI
∥∥

k
¹ hm−k|v|m, (2.22)

for 0 ≤ k ≤ m wherem = 0, 1 or 2.

Proof: See [56] Theorem 4.2 or [21] Theorem 4.4.20.

2

Now, we can prove an a priori error estimation for the Galerkin finite element solution.

Theorem 2.1.3 (A priori error estimation) If uh satisfies (2.9) and u is the weak

solution of (2.2), then there exist a constantC, independent withh andε, such that

‖u− uh‖1 ≤ C(1 +
h

ε
)h|u|2. (2.23)

Proof: From coercivity, we have

γ ‖u− uh‖2
1 ≤ Bgk(u− uh, u− uh) = Bgk(u− uh, u− uI) + Bgk(u− uh, u

I − uh).

(2.24)
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SinceBgk(u − uh, u
I − uh) = 0, from the orthogonality property of the Galerkin

discretization, we only need to estimateBgk(u− uh, u− uI).

|B(u− uh, u− uI)| ≤ ε|u− uh|1|u− uI |1 + |u− uh|1
∥∥u− uI

∥∥
0

+ c ‖u− uh‖0

∥∥u− uI
∥∥

0
, by the Cauchy-Schwarz inequality,

≤ (c1εh + c2h
2 + c3h

2) ‖u− uh‖1 |u|2,

by Lemma 2.1.2 and the Poincaré inequality,

for some constants,c1, c2, c3 > 0. As a result, (2.24) implies

‖u− uh‖2
1 ≤ 1

r
(c1εh + c2h

2 + c3h
2) ‖u− uh‖1 |u|2

, =
1

r
ε(c1 + c2

h

ε
+ c3

h

ε
)h ‖u− uh‖1 |u|2

Recall thatγ = O(ε). Therefore, we have

‖u− uh‖1 ¹ C(1 +
h

ε
)h|u|2,

for some constantC independent withh andε.

2

The estimate (2.23) shows the Galerkin finite element solutionuh converges to the

weak solutionu with error of O(h2) in H1 norm whenh À ε. However, the fact

that the constantC is proportional to1
ε
, for h À ε, indicates the upper bound is very

poor unless u is very smooth, namely|u|2 ¿ 1. Unfortunately, for the convection-

dominated flow problems, one can only bound|u|2 in the order ofε−
3
2 as shown in

Lemma 2.0.4 orε−1 when neither an outflow nor an inflow boundary present ([85]

p.180-186).
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2.2 Streamline Diffusion Discretization

As defined in [56] p.185, the streamline diffusion finite element method (SDFEM)

seeks an approximate solution in(Vh, |‖·‖|sd) which satisfies

Bsd(uh, vh) = Fsd(v), , for all v ∈ Vh, (2.25)

where

Bsd(uh, vh) = Bgk(uh, vh) +
∑

T∈=h

δT (b · ∇uh + cuh, b · ∇vh)T , (2.26)

and

Fsd(vh) = (fh, vh) +
∑

T∈=h

(f, δT b · ∇vh). (2.27)

Here,δT is the stabilization parameter and|‖·‖|sd is defined as follows:

|‖v‖|sd = (ε ‖∇v‖2
0 +

∑

T∈=h

δT ‖b · ∇v‖2
0;T + d0 ‖T‖2

0)
1/2, ∀v ∈ Vh.

Furthermore, the SDFEM discretization matrix of (2.26) has the following stencil

form

ASD = AGK + C̄ + M̄, (2.28)

whereM̄ = δTCT ,

C̄ ∼ δT ×




b1b2 −(b1b2 + b2
2) 0

−(b2
1 + b1b2) 2(b2

1 + b2
2 + b1b2) −(b2

1 + b1b2)

0 −(b1b2 + b2
2) b1b2




, for triangular element

and

C̄ ∼ δT ×




−1
6
(b2

1 + b2
2) + 1

2
b1b2

1
3
b2
1 − 2

3
b2
2 −1

6
(b2

1 + b2
2)− 1

2
b1b2

−2
3
b2
1 + 1

3
b2
2

4
3
(b2

1 + b2
2) −2

3
b2
1 + 1

3
b2
2

−1
6
(b2

1 + b2
2)− 1

2
b1b2

1
3
b2
1 − 2

3
b2
2 −1

6
(b2

1 + b2
2) + 1

2
b1b2




, for rectangular element.
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Notice that the stabilization term̄C is in the same orderO(h) as the skew-symmetric

C in AGK . With the help of a proper choice on the stabilization parameterδT , it can

be shown that the SDFEM solutions no longer suffer from large oscillation [39]. In

the following, we show the existence of the SDFEM solution and derive the a priori

error bound for the SDFEM solution. First let’s show the coercivity ofBsd.

Theorem 2.2.1 [Coercivity] If 0 < δT ≤ 1
2

d0

c2T
, wherecT = max |c| for eachT ∈ =h,

then

Bsd(v, v) >
1

2
|‖v‖|2sd ∀v ∈ Vh. (2.29)

Proof: By Green’s formula, (2.2) and (2.19) imply

Bsd(v, v) > ε|v|21 + d0 ‖v‖2
0 +

∑

T∈=h

δT ‖b · ∇v‖2
0,T

+
∑

T∈=h

δT (cv, b · ∇v)T ,

(2.30)

for anyv ∈ Vh. Since

|
∑

T∈=h

δT (cv, b · ∇v)T | ≤
∑

T∈=h

δT cT ‖v‖0,T ‖b · ∇v‖0,T

≤
∑

T∈=h

(
1

2
c2
T δT ‖v‖2

0,T +
1

2
δT ‖b · ∇v‖0,T )

≤ 1

2
(d0 ‖v‖2

0 +
∑

T∈=h

δT ‖b · ∇v‖0,T )

<
1

2
|‖v‖|sd ,

inequality (2.29) can be derived directly from (2.30).

2

Remark 2.2.2 For PeT
À 1, δT is usually set equal toδ0h for some constantδ0.

A good choices ofδ0 = 1
2‖b‖(1 − 1

Pe
) hsa been shown in [44]. Here, we simply set

δ0 ≈ 1
2‖b‖ .
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By simple calculation, (2.19) can be written as

Bsd(uh, vh) = B̂sd(uh, vh) + B̌sd(uh, vh), (2.31)

whereB̂ is the symmetric part of the operator and defined as

B̂sd(uh, vh) = ε(∇uh,∇vh) + ((c− 1

2
div(b))uh, vh) +

∑

T∈=h

δT (b · ∇uh, b · ∇vh)

+
1

2

∑

T∈=h

δT (cb,∇(uhvh)),

andB̌sd is the skew-symmetric part,

B̌sd(uh, vh) =
1

2
[(b·∇uh, vh)−(uh, b·∇vh)]−1

2

∑

T∈=h

δT [(cb·∇uh, vh)−(uh, cb·∇vh)].

(2.32)

Since

1

2

∑

T∈=h

δT (cb,∇(uhuh)) =
1

2
|

∑

T∈=h

δT

∫

T

2(cu)(b∇uh)|

≤
∑

T∈=h

δT

∫

T

|b · ∇uh||cuh|

≤
∑

T∈=h

δT [
1

2
√

2

∫

T

|b · ∇uh|2 +
1√
2

∫

T

|cuh|2],

by arithmetic-geometric mean inequality,

≤ 1

2
√

2
[d0

∫

Ω

|uh|2 +
∑

T∈=h

δT ‖b · ∇uh‖2
T ],

by assumption of theorem 2.2.1,

B̂sd(uh, uh) ≥ (1 − 1
2
√

2
) |‖uh‖|sd. So,B̂sd is positive definite. It is natural to define

an energy norm|‖u‖|h=(u, u)
1/2

B̂sd
. Clearly,

(1− 1

2
√

2
) |‖uh‖|2sd ≤ |‖uh‖|2h ≤ (1 +

1

2
√

2
) |‖uh‖|2SD , (2.33)

so,|‖·‖|h is equivalent to|‖·‖|SD.
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Lemma 2.2.3 For anyu ∈ H1, we have

Cs1 max {√ε,
√

d0} ‖u‖0 ≤ |‖u‖|SD ≤ Cs2h
−1/2 ‖u‖0 , (2.34)

whereCs1 andCs2 are constants.

Proof: By definition of|‖u‖|sd, the upper bound can be derived from the inverse

inequality and the lower bound is obvious from the Poincaré inequality.

2

Lemma 2.2.4 For u ∈ H1(Ω) andv ∈ H1
0 (Ω), there exist constantsCb1 andCb2 such

that

|B̌sd(u, v)| ≤ Cb1(h)−1/2 |‖u‖|sd ‖v‖0 . (2.35)

|B̌sd(u, v)| ≤ Cb2(hε)−1/2 |‖u‖|sd |‖v‖|sd . (2.36)

Proof:

1
2

[(b · ∇u, v)− (u, b · ∇v)] =
1

2
[2(b · ∇u, v) + (div(b)u, v)]

≤ (
∑

T∈=h

1√
δT

√
δT ‖b · ∇u‖0 ‖v‖0) +

c− d0√
d0

√
d0 ‖u‖0 ‖v‖0

≤ max
T∈=h

(
1√
δT

,
c− d0√

d0

) |‖u‖|sd ‖v‖0

≤ (max
Ω

c)

√
2√
δT

|‖u‖|sd ‖v‖0 , by δT ≤ d0

2c2T
,

≤ c̃h−1/2 |‖u‖|sd ‖v‖0 for some constant̃c.
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Also,

∑

T∈=h

δT [(cb · ∇u, v)− (u, cb · ∇v)]

≤
∑

T∈=h

δT cT (‖b · ∇u‖0 ‖v‖0 + ‖b · ∇v‖0 ‖u‖0),

≤
∑

T∈=h

cT

√
δT√

d0

(
√

δT ‖b · ∇u‖0

√
d0 ‖v‖0 +

√
δT ‖b · ∇v‖0

√
d0 ‖u‖0), by δT ≤ d0

2c2T

≤ 1√
2
|‖u‖|sd |‖v‖|sd ,

≤ c̃h−1/2 |‖u‖|sd ‖v‖0 , for some constant̃c, by Lemma 2.2.3.

After substituting the above estimations into (2.32). It follows that (2.35) holds.

The inequality (2.36) then follows from Lemma 2.2.3.

2

Now, we can prove the continuity inequality.

Theorem 2.2.5 (Continuity) For all u, v ∈ Vh, there exists some constant C such

that

|Bsd(u, v)| ≤ C(hε)−1/2 |‖u‖|sd |‖v‖|sd . (2.37)

Proof: SinceB̂sd is positive definite, by (2.33), we have

|B̂sd(u, v)| ≤ |‖u‖|h |‖v‖|h ≤ c̃ |‖u‖|sd |‖v‖|sd , for some constant̃c

Combine with (2.36), (2.31) implies

|Bsd(u, v)| ≤ |B̂sd(u, v)|+ |B̌sd(u, v)| ≤ C(hε)−1/2 |‖u‖|sd |‖v‖|sd ,

for some constantC > 0.

2
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Again, by the Lax-Milgram Lemma, the SD finite element solution exists. An a priori

error estimation can be easily obtained from Lemma 2.2.4.

Theorem 2.2.6 (A priori error estimate) Supposeu ∈ H2(Ω) is the weak solution

and uh is the discrete solution obtained from SD discretization on linear elements.

Then the discretization error satisfies

|‖u− uh‖|sd ¹ hk− 1
2 |u|k (2.38)

for k = 1 or 2.

Proof:

1

2
|‖u− uh‖|2sd ≤ |Bsd(u− uh, u− uh)|

= |Bsd(u− uh, u− v)| ∀v ∈ Vh

= |B̂sd(u− uh, u− v) + B̌sd(u− uh, u− v)|

¹ |‖u− uh‖|h |‖u− v‖|h |+ h−1/2 |‖u− uh‖|sd ‖u− v‖0

¹ h
−1/2
k |‖u− uh‖|sd inf

v∈Vh

‖u− v‖0 .

By Lemma 2.1.2, we have

|‖u− uh‖|sd ¹ hk− 1
2 |u|k, for k=1 or 2.

2

From the a priori error estimation, the finite element solution obtained using SDFEM

method approximates the weak solution with order onlyO(h3/2) (compared toO(h2)

for the Galerkin method (see Theorem 2.1.3)). On the other hand, there is no large

constant of magnitude1
ε

hidden inside the error bound for SDFEM. Consequently, this

estimate is much more reliable than the a priori estimate from the Galerkin method.
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Unfortunately, the regularity of u remains a difficulty for global convergence as dis-

cussed in the end of Section 2.1. Nevertheless, Johnson has shownO(h2) convergence

on a region excluding the layers [58]. Niijima [69] provedO(h11/8log(h)) pointwise

convergence and Zhou sharpened the bound toO(hα), 3
2
≤ α ≤ 2 [107]. For sim-

ple flows with smooth domain and data, the weak solution is smooth in the interior

regions, [85] pages 176-185. Moreover, the SDFEM method is capable of removing

the oscillatory modes with carefully chosen stabilization parameterδT , [39] section

3.5. Therefore, we expect SDFEM solution to approximate the weak solution well in

the region away from layers. In the next section, our numerical results support this

observation.

2.3 Numerical Tests

In this section, we present two simple examples to compare the solution qualities

from the SDFEM method and the GK method. Also, the convergence behavior of

the SDFEM method for refined mesh is investigated. Our numerical results clearly

show that the error in regions away from layers is much smaller than the global error.

Moreover, the local convergence rate in regions away from layers is also faster than the

global convergence rate under the SD-norm. However, the global convergence rate in

our numerical tests is onlyO(h1/2) instead ofO(h3/2) which is the best approximation

order one can expect from the a priori error estimate. This should not be a surprise.

If one combines the regularity estimate (2.8) in Lemma 2.0.4, and the a priori error

estimate (2.38) in Theorem 2.2, one can bound the erroru− uh in terms of the given

data f as shown in the following:

|‖u− uh‖|sd ¹ (
h

ε
)k− 1

2 ‖f‖0 , wherek = 1, 2.
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Clearly, whenh À ε, we obtain a better error bound with orderO(h1/2) by letting

k = 1.

In our test problems, we estimate the erroru − uh on a very fine adaptively refined

mesh,=f , which is generated by 3 refinement steps from an initial 64x64 mesh with

threshold value 0.25 in the maximum marking strategy defined in Chapter 3. The

discrete solutionuh is injected to=f by standard bilinear interpolation. For problems

whose exact solution is known, the erroru − uh on=f is available. Otherwise, the

SDFEM solutionuf on=f is then treated as exact solution u and the erroruf − uh is

treated as the true erroru− uh.

Problem 1: Downstream boundary layers

Consider

u(x, y) =
eβ1x/ε − 1

eβ1/ε − 1
+

eβ2y/ε − 1

eβ2/ε − 1
(2.39)

on the domainΩ = [0, 1] × [0, 1], where(β1, β2) = (cos θ, sin θ) for 0o < θ < 90o.

Direct calculation shows u satisfies

−ε ·∆u + (β1, β2) · ∇u = 0.

with Dirichlet boundary conditiong = u on ∂Ω. Clearly, exponential layers near

boundaryx = 1 andy = 1 are expected. we examine the convergence rate in regions

that exclude layers. First, the regionΩ0

Ω0 = {(x, y) ∈ Ω : x < 0.9 ∧ y < 0.9} .

is obtained empirically. Next, since the width of the exponential layer of the solution

u is O(ε) and the local pointwise error,|u(x0) − uh(x0)| of any interior pointx0,
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is usually estimated with respect to‖u‖2,Br(x0) whereBr(x0) is a ball with radius

r ∼ h| log(h)| [58], it is reasonable to assume that the exponential layer ofuh has

width abouth| log(h)| + ε. To define a region that does not include the layers, we

exclude fromΩ a region of width2(h| log(h)|+ε) next to the outflow boundaries. Let

Ω0,h denote this region,

Ω0,h = {(x, y) ∈ Ω : x < 1− 2(h log h + ε) ∧ y < 1− 2(h log h + ε)} .

The local convergence rate is then examined on bothΩ0 andΩ0,h.

The following are numerical results for the caseε = 1e − 03 andθ = 15o. Clearly,

Figure 2.1 shows GK solution suffer serious oscillation on whole domain but SD

solution maintains good solution quality with small oscillation in the layer regions.

The third column of Table 2.1 shows SD solution has much smaller error in the regions

away from layer comparing to the global error in the first column. On a fixed domain

Ω0 excluding layer regions, the convergence rate is better thanh2 which may due to

the fact that the solution u belong toHα(Ω0) for α > 2.
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mesh |‖u− uh‖|sd,Ω |‖u− uh‖|sd,Ω0
|‖u− uh‖|sd,Ω0,h

8x8 3.82 3.33e-01 3.17e-03

16x16 2.69 8.82e-02 1.82e-03

32x32 1.87 9.91e-03 1.13e-04

64x64 1.26 3.41e-06 1.15e-07

Table 2.1: Error estimation of SD solution
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Problem 2: Characteristic and downstream layer

−ε ·∆u + ∂u
∂y

= 0

u|∂Ω =





1

0

if y = 0 andx > 0 or x = 1,

otherwise,

whereΩ = [−1, 1]× [−1, 1].

This problem exhibits an internal layer in the interior region and a exponential layer

on the boundaryy = 1. The internal layer arises due to the discontinuity of the given

boundary data and has widthO(
√

ε). We set the width of layers to2(h| log(h)|+√ε)

and letΩ0,h denote the region excluding layers,

Ω0,h = {(x, y) ∈ Ω : x > 2(h log h + ε1/2) ∧ y < 1− 2(h log h + ε1/2),

or x <− 2(h log h + ε1/2)}.

Also, another domainΩ0 that excludes layers are empirically chosen to be

Ω0 = {(x, y) ∈ Ω : x > 0.2 ∧ y < 0.8 ∪ x <− 0.2} .

Again, the local convergence rate is examined on bothΩ0 andΩ0,h and the exact error

is computed on a mesh .

For the caseε = 10−3, figure 2.2 shows that the GK solution suffer serious oscillation

on the whole domain. On the other hand, the SDFEM solution has good solution

quality. The third column of table 2.2 shows the error in the region away from layers

is much smaller than the global error in the first column. Also, on the fixed domain

Ω0, the convergence rate is better thanh2 as we seen in problem 1.
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mesh |‖u− uh‖|sd,Ω |‖u− uh‖|sd,Ω0
|‖u− uh‖|sd,Ω0,h

8x8 5.53 3.15e-01 7.28e-03

16x16 3.88 6.69e-02 1.40e-03

32x32 2.70 4.03e-03 3.12e-04

64x64 1.84 2.13e-04 6.78e-05

Table 2.2: Error estimate of SD solution
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Chapter 3

A Posteriori Error Estimations and Mesh

Improvement

In Chapter 2, we have shown that the theoretical convergence rate ish3/2 for the SD-

FEM solutions, but onlyh1/2 convergence rate is observed in our numerical results.

This result can be explained if the error is bounded in terms of data. Even though

the a priori error bound is capable of revealing the asymptotic behavior of the error,

it is not computable and can’t be used to estimate the exact error. On the other hand,

our numerical results also show that errors in the regions excluding layers are much

smaller than the global errors. This phenomenon suggests that one can increase the

accuracy of the approximate solution without overloading the computational cost by

placing more grid points in the regions where errors are large. Therefore, it is natural

to acquire some computable error indicators to pinpoint where the error is large and,

at the same time, properly bound the exact error on the whole domain. In this chapter,

we consider such a posteriori error indicator.

To validate the reliability and efficiency of the error indicators, the global effectivity
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index, defined as

EΩ =
(
∑

T∈=h
η2

h,T )1/2

‖u− uh‖Ω

,

and the local effectivity index, defined as

ET = max
t∈=h

ηh,T

‖u− uh‖T

,

are computed, where‖·‖ represents the norms used to measure the exact error in

these indicators. Obviously, ifEΩ ≈ 1, the error indicator is reliable in measuring the

global error. Otherwise, ifEΩ À 1, the error indicator under-estimates the error and

if EΩ ¿ 1 the error indicator over-estimates the error. Moreover, the local indexET

can be used to determine how sharp the local a posteriori lower bound is.

With an error indicator in hand, adaptive mesh refinement can be accomplished by

the decision of selecting elements, the so-called marking strategy, and the refinement

strategies such as the regular refinement or the longest-side bisection algorithm [83]

[84]. A heuristic marking strategy is the maximum marking strategy [72] where an

elementT ∗ will be marked for refinement if

ηT ∗ > θ max
T∈=h

ηT , (3.1)

with a prescribed threshold0 ≤ θ ≤ 1. Some other marking strategies can also be

seen in [72].

In this chapter, we study two types of a posteriori error estimators where the approxi-

mate solution is obtained from SDFEM. In Section 3.1, we introduce a residual-type

of error indicator proposed by Verfürth in [97]. Hereafter, we call it the VR-indicator.

In Section 3.2, instead of studying the Neumann-type of error indicator by Verfürth
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in which the size of each local problem is at least 12x12 in triangular elements, we

introduce a Neumann-type of error indicator proposed by Kay and Silvester in [59]

where the size of each local problem is only 4x4 in triangular elements. Hereafter, we

call it the KS-indicator. In Section 3.3, we present numerical results indicating that

the a posteriori bounds in our studies are sharp.

3.1 Residual-type a Posteriori Error Estimation

First, let us introduce the following abbreviations:

RT (uh) = f + ε∆uh − b · ∇uh − cuh

Rh,T (uh) = fh + ε∆uh − b · ∇uh − cuh

Rh,EΩ
(uh) = −[ε∇uh · nE]E if E ∈ Ω

REN
(uh) = ḡ − ε∇uh · nE if E ∈ ΓN

Rh,EN
(uh) = ḡh − ε∇uh · nE if E ∈ ΓN

RED
(uh) = 0 if E ∈ ΓD

wherenE is the unit vector normal to the edge E,ḡ is the given Neumann condition

on boundaryΓN and[·]E denotes the jump of a function across the edge E. The VR-

indicator consists of the element residual component,Rh,T , and the element edge-flux

components,Rh,EΩ
andRh,EN

, and is written as

ηh,T = (ρ2
T ‖Rh,T (uh)‖2

0,T +ρE

∑

E∈∂T∩Ω

‖Rh,EΩ
(uh)‖2

0,E+ρE

∑

E∈∂T∩ΓN

‖Rh,EN
(uh)‖2

0,E)1/2,

with ρT = min {hT√
ε
, 1} andρE = ε−1/2 min {hE√

ε
, 1}. Let eh = u − uh and |‖·‖| =

(ε ‖∇·‖2+d0 ‖·‖2)1/2 denote the usual energy norm whered0 is the constant described

in (1.2). Assumed0 À ε. Verfürth’s a posteriori error estimation reads as follows:
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(Global Upper Bound):

|‖eh‖|Ω ¹ {
∑

T∈=h

η2
h,T}+ {

∑

T∈=h

ρ2
T ‖f − fh‖2

0,T +
∑

E∈ΓN

ε−1/2ρE ‖ḡ − ḡh‖2
0,E} (3.2)

and

(Local Lower Bound):

ηh,T ¹ {1 + ‖c‖∞,ωT
+ ε−1/2 ‖b‖∞,ωT

ρT} |‖eh‖|ωT

+ ρT ‖f − fh‖0,ωT
+ {

∑

E∈∂T∩ΓN

ε−1/2ρE ‖ḡ − ḡh‖2
0,E}1/2.

(3.3)

In the following, we outline the basic proof only for problems with only Dirichlet

boundary conditions. The same scheme can be extended to problems with Neumann

conditions and we refer to [97] for details.

First, by integration by parts, for allw ∈ H1
0 (Ω), we have

B(eh, w) =
∑

T∈=h

{(Rh,T (uh), w)T + (f − fh, w)T}+
∑
E∈Ω

(Rh,EΩ
(uh), w)E. (3.4)

By Cauchy-Schwarz inequality, it is clear that

|B(eh, w)| ≤
∑

T∈=h

(‖Rh,T (uh)‖0,T + ‖f − fh‖0,T ) ‖w‖0,T +
∑
E∈Ω

‖Rh,EΩ
(uh)‖0,E ‖w‖0,E

Let w = eh − I(eh) where the operatorI is the quasi-interpolation operator of

Clément. By the interpolation estimates in Lemma 3.2 of [97],

1. ‖w − Iw‖0,T ¹ ρT |‖w‖|ω̃T
,

2. ‖w − Iw‖0,E ¹
√

ρE |‖w‖|ω̃T
,
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for all w ∈ H1(ω̃T ), the above inequality implies

|B(eh, eh − I(eh))| ≤
∑

T∈=h

ρT (‖Rh,T (uh)‖0,T + ‖f − fh‖0,T ) |‖eh‖|ω̃T

+
∑
E∈ω

ρ
1/2
E ‖Rh,EΩ

(uh)‖0,E |‖eh‖|ω̃T

¹ {(
∑

T∈=h

η2
h,T )1/2 + (

∑

T∈=h

ρ2
T ‖f − fh‖2

0,T )1/2} |‖eh‖|Ω .

(3.5)

Second, the bilinear formB(eh, w) can also be rewrite as

B(eh, w) = Bsd(eh, w)−
∑

T∈=h

δT (RT (uh), b · ∇w)T ∀w ∈ Vh

Let w = I(eh). The orthogonality ofBsd impliesBsd(eh, w) = 0. Therefore,

|B(eh, I(eh))| ≤
∑

T∈=h

δT ‖RT (uh)‖0,T ‖b · ∇I(eh)‖0,T

¹
∑

T∈=h

δT (‖Rh,T (uh)‖0,T + ‖f − fh‖0,T ) ‖b‖∞,T h−1 ‖I(eh)‖0,T ,

by a simple scaling argument. Again, from the interpolation estimates in Lemma 3.2

of [97],

|‖Iw‖|T ¹ |‖w‖|ω̃T
,

we have

|B(eh, I(eh))| ¹ {(
∑

T∈=h

η2
h,T )1/2 + (ρ2

T

∑

T∈=h

‖f − fh‖2
0,T )1/2} |‖eh‖|Ω . (3.6)

Now, from the coercivity estimate (2.29), (3.5) and (3.6), clearly the upper bound

(3.2) holds.

For the local lower bound, one would require judicious cut-off functionsψT on each

element T and cut-off functionsψE,ϑ on each interior edge E, whereϑ is a scaling
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parameter between 0 and 1. The cut-off functions are essentially scaled bubble func-

tions and are rigorously defined in [97]. First, by choosingw = ψT Rh,T (uh), (3.4)

implies

(Rh,T (uh), ψT Rh,T (uh))T = B(eh, ψT Rh,T (uh)) + (f − fh, ψT Rh,T (uh))T . (3.7)

By the following inequalities, in Lemma 3.3 of [97],

‖v‖0,T ¹ (v, ψT v)T ,

‖vψT‖0,T ≤ ‖v‖0,T ,

|‖vψT‖| ¹ ρ−1
T ‖v‖0,T ,

(3.8)

for all v ∈ Pk, one can show that

‖Rh,T (uh)‖0,T ¹ |‖eh‖|T {(1 + ‖c‖∞,T )ρ−1
T + ε−1/2 ‖b‖∞,T}

+ ‖f − fh‖0,T .

(3.9)

Next, by choosing test functionw = ψE,ϑPERh,EΩ
(uh) with the scaling parameter

ϑ = min {hE√
ε
, 1}, wherePE is a continuation operator which extends function value

on an edge E to its neighboring elements, (3.4) implies

(Rh,EΩ
(uh), ψE,ϑPERh,EΩ

(uh)) = B(eh, ψE,ϑPERh,EΩ
(uh))

−
∑

T⊂ωE

(Rh,T (uh), ψE,ϑPERh,EΩ
(uh))T

−
∑

T⊂ωE

(f − fh, ψE,ϑPERh,EΩ
(uh))T

(3.10)

Again, by the following inequalities, in Lemma 3.3 of [97],

‖v‖0,E ¹ (v, ψE,ϑPEv)E,

‖ψE,ϑPEv‖0,ωE
¹ ε1/2ρE

1/2 ‖v‖0,E ,

|‖ψE,ϑPEv‖|0,ωE
¹ ρ

−1/2
E ‖v‖0,E ,

(3.11)
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for all v ∈ Pk|E, one can show

‖Rh,EΩ
(uh)‖0,E ¹ |‖eh‖|ωE

{1 + ‖c‖∞,ωE
+ ε−1/2ρT ‖b‖∞,ωE

}ρ−1/2
E

+ ρ
−1/2
E min {hE√

ε
, 1} ‖f − fh‖0,ωE

(3.12)

By combining (3.9), (3.12) and the definition ofηh,T , the local lower bound (3.3)

holds.

Remark 3.1.1 The parametersρT , ρE = min { h√
ε
, 1} appearing in the VR-indicator

is a direct result from scaling factors between the energy norm and the other norms,

such asL2 norm andH1 norm, while estimating the error in terms of the residual,

Rh,T , and the edge-flux,Rh,EΩ
, Rh,EN

. For convection-diffusion equations with coef-

ficient c=0 in (1.1), the energy norm is simply|‖·‖| = ε1/2 ‖∇·‖ without theL2-norm

component. Obviously, the scaling factors between the energy norm and the other

norms are different and lead to differentρT andρE in the error indicator. By follow-

ing Verf̈urth’s arguments and carefully adjusting the scaling factors in the auxiliary

inequalities of [97], one can show that the same upper and lower bound holds with

ρT , ρE = h√
ε
.

3.2 Neumann-type a Posteriori Error Estimation

The basic idea of the KS-estimator is based on solving a local (element) Poisson prob-

lem over a higher order approximation space with given data from interior residuals

and flux jumps along element edges. First, we introduce some abbreviations. The
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interior residual of element T and the flux jump of edge E are denoted as follows:

RT = (f − b · ∇uh)|T
R0

T = P0
T (RT ), whereP0

T is theL2(T )-projection ontoP 0(T )

RE =





[ ∂uh

∂nE
]E if E ∈ Ω

−2( ∂uh

∂nE
) if E ∈ ΓN

0 if E ∈ ΓD

The approximation space is denoted asQT = QT

⊕
BT , where

QT = span{ψE◦Φ−1| ψE = 4χiχj, i,j are the endpoints ofE andE ∈ ∂T
⋂

(Ω
⋃

ΓN)}

is the space spanned by the quadratic edge bubble functions and

BT = span{ψT ◦ Φ−1| ψT = 27
3∏

i=1

χi}

is the space spanned by cubic interior bubble function. For an element T, the estimator

is given by

ηh,T = ‖∇eT‖0,T ,

whereeT ∈ QT satisfies

ε(∇eT ,∇v)T = (R0
T , v)T − 1

2
ε

∑

E∈∂T

(RE, v)E (3.13)

Let eh = u− uh. The Kay and Silvester’s a posteriori error estimation can be read as

following:

(Global Upper Bound):

‖∇(eh)‖0,Ω ¹ (
∑

T∈=h

η2
h,T +

∑

T∈=h

(
h

ε
)2

∥∥RT −R0
T

∥∥
0,T

)1/2 (3.14)
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(Local Lower Bound):

ηh,T ¹ ‖eh‖0,ωT
+

∑
T⊂ωT

hT

ε
‖b · ∇eh‖0,T +

∑
T⊂ωT

hT

ε

∥∥RT −R0
T

∥∥
0,T

(3.15)

To derive the upper bound, first, the bilinear formB(eh, eh) is written as

B(eh, eh) = B(eh, eh − Ieh)−B(eh, Ieh)

= B(u, eh − Ieh)−B(uh, eh − Ieh)−
∑

T∈=h

δT (f − b · ∇uh − cuh, b · ∇Ieh)

=
∑

T∈=h

[(RT , eh − Ieh)T − δT (RT , b · ∇Ieh)T +
1

2
ε

∑

E∈(Ω∪ΓN )

(RE, eh − Ieh)E].

From coercivity estimate (2.29), interpolation estimates (2.1.2) and the Cauchy-Schwarz

inequality, it can be shown

ε ‖∇eh‖2
0,Ω ¹

∑

T∈=h

hT (
∥∥R0

T

∥∥
0,T

+
∥∥RT −R0

T

∥∥
0,T

+
ε

2

∑

E∈(Ω∪ΓN )

h
1/2
E ‖RE‖0,E) ‖∇eh‖0,ω̃T

¹ ‖∇eh‖0,Ω {
∑

T∈=h

[h2
T

∥∥R0
T

∥∥2

0,T
+ h2

T

∥∥RT −R0
T

∥∥2

0,T

+ (
ε

2
)2

∑

E∈(Ω∪ΓN )

hE ‖RE‖2
0,E]}1/2.

(3.16)

Now, it remains to bound‖R0
T‖0,T and ‖RE‖0,E in terms ofηh,T . By choosing a

cut-off functionψT ∈ BT , (3.13) and (3.8) imply

∥∥R0
T

∥∥2

0,T
¹ (R0

T , ψT R0
T )T = ε(∇eT ,∇ψT R0

T )T ≤ εh−1
T ‖∇eT‖0,T

∥∥R0
T

∥∥
0,T

(3.17)

Similarly, by choosing the cut-off functionψE ∈ QT , (3.13) and (3.11) imply

ε ‖RE‖2
0,E ¹ ε(RE, ψERE)E =

∑

T ′⊂ωT

−ε(∇ET ′ ,∇ψERE)T ′ + (R0
T ′ , ψERE)T ′

¹ ‖RE‖0,E

∑

T ′⊂ωT

[εh
−1/2
E ‖∇eT ′‖0,T ′ + h

1/2
T ′

∥∥R0
T ′

∥∥
0,T ′ ]

(3.18)
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By plugging (3.17) and (3.18) into (3.16), the global upper bound (3.14) holds. To

show the local lower bound, first, we setv = eT in (3.13). By a standard scaling

argument, it is clear that

ε ‖∇eT‖2
0,T = (R0

T , eT )T − ε

2

∑

E∈(Ω∩ΓN )

(RE, eT )E

¹ hT

∥∥R0
T

∥∥
0,T
‖∇eT‖0,T +

ε

2

∑

T∈(Ω∩ΓN )

h
1/2
E ‖RE‖0,E ‖∇eT‖0,T .

(3.19)

Now we only need to bound‖R0
T‖0,T and‖RE‖0,T in terms of∇eh. Again, from a

proper chosen cut-off functionψT , we have

∥∥R0
T

∥∥2

0,T
¹ (R0

T , ψT R0
T )T = (R0

T −RT , ψT R0
T )T + B(u− uh, ψT R0

T )

¹
∥∥R0

T −RT

∥∥
0,T

∥∥ψT R0
T

∥∥
0,T

+ ε ‖∇eh‖0,T

∥∥∇ψR0
T

∥∥
0,T

+ ‖b · ∇eh‖0,T

∥∥ψT R0
T

∥∥
0,T

¹
∥∥R0

T −RT

∥∥
0,T

∥∥R0
T

∥∥
0,T

+
ε

hT

‖∇eh‖0,T

∥∥R0
T

∥∥
0,T

+ ‖∇eh‖0,T

∥∥R0
T

∥∥
0,T

(3.20)

Similarly, by using the cut-off functionψE, it can be shown

ε ‖RE‖2
0,E ¹ ε(RE, ψERE)E

=
∑

T ′⊂ωE

ε(∇uh,∇ψERE)T ′ , by the definition ofRE and the Green formula

=
∑

T ′⊂ωE

−ε(∇eh,∇ψERE)T ′ + ε(∇u,∇ψERE)T ′

=
∑

T ′⊂ωE

[(RT −R0
T + R0

T − b · ∇eh − ceh, ψERE)T ′ − ε(∇eh,∇ψERE)T ′ ].

Therefore, by (3.11) and (3.20), we have

εh
1/2
E ‖RE‖0,E ¹

∑

T ′⊂ωE

[hT ′
∥∥R0

T ′ −RT ′
∥∥

0,T ′ + hT ′ ‖b · ∇eh + ceh‖0,T ′ + ε ‖∇eh‖0,T ′ ]

(3.21)

By plugging (3.20) and (3.21) into (3.19), the local lower bound (3.15) holds.
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3.3 Numerical Results

In this section, we compute both global and local effectivity indices of the VR-

indicator and the KS-indicator for Problem 1 in Section 2.3. In order to see how

the effectivity indices change in terms of the diffusion parameterε and mesh size h,

the problem is solved over uniform meshes with mesh sizeh = 1
8
, 1

16
, 1

32
and 1

64
for

ε = 1
64

, 1
256

, 1
1024

and 1
4096

. Since the true solution has exponential layers along the

boundary at x=1 and y=1, one requires a mesh which is fine enough in layer regions,

to obtain a better approximation of the exact error. To generate such a mesh, first, the

problem withε = 1
1024

is solved on a 64x64 initial mesh. Three refinement steps are

performed by using the maximum marking strategy on KS-indicator with threshold

valueθ = 0.75. The mesh=f , similar to the mesh shown in Figure 2.1 (a), consists

of 11271 nodes and 21377 elements. The discrete true solution u is obtained directly

by (2.39) on=f . The SDFEM solutionuh is also prolonged by standard bilinear

interpolation onto=f . Then, an approximation to the exact error can be computed as

‖u− uh‖0,Ω = (
∑

T∈=f

‖u− uh‖2
0,T )1/2,

where‖u− uh‖2
0,T is calculated by 7-point Gaussian quadrature.

First, the VR-indicator, the KS-indicator and the exact error are plotted in the follow-

ing figure for the caseε = 1
1024

, where the exact error is measured in theH1-seminorm

and the VR-indicator is scaled by a factor of1√
ε

to reflect the scaling factor between

theH1-seminorm and the energy norm. The table beside the figure contains the ac-

tual data for plotting the error and error indicators. It is clear that the KS-indicator

provides a more reliable upper bound than the VR-indicator. In fact, similar results

hold forh À ε.
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|‖u− uh‖| |u− uh|1 (
∑

T∈=h
η2

h,T )1/2

VR KS

1/8 0.773 24.75 15.22 99.40

1/16 0.765 24.48 10.39 67.85

1/32 0.745 23.85 7.126 46.54

1/64 0.703 22.49 4.895 31.97
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1/h

||
∇

 (
u

−
u

h
)|

|

Exact error v.s. error indicators

* : VR−indicator
o : KS−indicator
x : Exact error 

Moreover, from Table 3.1, we can see that the local effectivity indices of VR-indicator

and KS-indicator blow up in a rate ofO(Pe) ash À ε. Furthermore, the numerical

data in Table 3.2 also show that the global effectivity indices blow up in a rate of

O(
√

Pe) as mentioned in [59]. The above results indicate that the local lower bounds

of the a posteriori error estimation of Verfürth, Kay and Silvester, are sharp and sup-

port the well-known equivalence of residual type error indicator and local-problem

type error indicator.

ε 8x8 16x16 32x32 64x64

1
64

12.43 8.620 8.610 7.741

1
256

45.26 22.69 12.46 8.627

1
1024

181.0 90.51 45.26 22.67

1
4096

724.1 362.0 181.0 90.54

(a)ET of VR-indicator

ε 8x8 16x16 32x32 64x64

1
64

2.504 1.714 1.687 1.557

1
256

9.242 4.637 2.536 1.750

1
1024

36.95 18.48 9.239 4.629

1
4096

147.8 73.90 36.95 18.48

(b) ET of KS-indicator

Table 3.1: Comparison of the local effectivity indices
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ε 8x8 16x16 32x32 64x64

1
64

5.764 4.673 4.825 5.064

1
256

10.01 7.137 5.415 4.555

1
1024

19.68 13.58 9.562 6.966

1
4096

41.49 28.62 19.96 14.04

(a)EΩ of VR-indicator

ε 8x8 16x16 32x32 64x64

1
64

1.156 0.951 0.979 1.022

1
256

2.044 1.457 1.105 0.929

1
1024

4.016 2.772 1.952 1.422

1
4096

8.470 5.842 4.075 2.867

(b) EΩ of KS-indicator

Table 3.2: Comparison of the global effectivity indices

3.4 Moving Mesh

Although adaptive mesh refinement can greatly improve the accuracy of the numer-

ical solution when a reliable a posterior error estimator is available, without proper

threshold value in the marking strategies, under-refinement or over-refinement may

occur in the refinement process. As a result, in order to obtain an accurate approxi-

mate solution, number of refinement steps may become too large if under-refinement

occurs, or, the discrete linear system may become too large to solve if over-refinement

occurs. Especially, for convection-dominant problems, i.e. the mesh Peclét number

minT∈=h
PeT

À 1, if the diffusion parameterε is extremely small, it is not practical

to resolve layers by simply increasing number of nodes with a regular mesh refine-

ment process. With the above difficulties in mind, it is desirable to be able to increase

the accuracy of the numerical solution in the layer regions with fix amount of nodes.

A natural approach to achieve this goal is to cluster nodes in the layer regions using

moving meshes.

Moving mesh methods such as moving mesh partial differential equations (MM-
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PDES) by Huang and Russell [52], moving finite element (MFE) by Miller [66][67]

and gradient weighted moving finite element (GWMFE) by Carlson and Miller [25]

[26] are well known for solving time-dependent problems. In one-dimensional do-

mains, these methods have been demonstrated to produce highly accurate solutions for

many time-dependent problems. However, in two-dimensional and three-dimensional

domains, not only more mathematic analysis is needed for unstructured grids but also

carefully tuning of parameters to prevent mesh tangling is needed even for structured

grids.

The basic idea of moving mesh algorithms is how best to represent the given data

by a smooth function, by data points or by solution of a related PDE. One technique

to develop a moving mesh algorithm is based on a so-called equidistribution princi-

ple, where nodes are relocated to equidistribute a given monitor functionΥ. Many

moving mesh techniques, including MMPDES, are based on this technique. If data

is generated from a smooth function u, some possible candidates for monitor func-

tions areΥ1 = |∇u| andΥ2 = (1 + |∇u|2)1/2. In one-dimensional space, ifΥ1 is

employed, the node movement tends to equidistribute function values u, and ifΥ2 is

employed, the node movement tends to equidistribute the arc-length of u. Monitor

functions related to some error measures are also popular [1]. In two-dimensional

or three-dimensional space, there is still no rigorous definition and analysis of the

equidistribution methodology.

The other technique to develop a moving mesh algorithm is based on direct mini-

mization where nodes are relocated to minimize a measure of the error between the

targeted function and its approximation. Moving mesh techniques such as MFE and
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GWMFE are in this category. For self-adjoint problems, where the solutions can be

obtained by minimizing a known energy functional, mesh movement based on di-

rect minimization is a natural approach toward obtaining an optimal solution within

a finite dimensional space. In [93] and [94], Baines, Tourigny and Hülsemann have

shown that an energy functional decreases in a monotone fashion with their moving

mesh algorithm.

For non self-adjoint problems such as convection-diffusion problems, the solutions

are not derived from minimization of any energy functional. Theoretical analysis of

moving mesh algorithms for such problems is an open question. Recently, Bank and

Smith [10], Cao, Huang and Russell [24] have been employed an a posterior error

indicator as a monitor function in their moving mesh strategies. Their approaches

seem promising from the numerical results of some reaction-diffusion problems in

their studies. Here, for coding simplicity, we study a moving mesh strategy proposed

by Baine [53] and use the KS indicator as a monitor function.

First, let us briefly review the equidistribution principle in one-dimensional space.

Let xj, j = 1, · · · , n be a set of irregularly spaced grid points inΩ = [a, b]. Suppose

these points are related to the regularly spaced grid pointsξj, j = 1 · · ·n in the domain

Ω̃ = [0, 1] by discrete values of the continuous variable

ξ =

∫ x

a
Υ(s)ds∫ b

a
Υ(s)ds

.

By differentiating the above equation twice, we obtain the mesh equation

d

dξ
(Υ(x)

dx

dξ
) = 0 (3.22)

with boundary conditionx(0) = a andx(1) = b.
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WhenΥ(x) is not constant, (3.22) is nonlinear and may be solved iteratively by the

algorithm
d

dξ
(Υ(xp)

dxp+1

dξ
) = 0 (p = 0 · · · ),

with x0 = ξ, provided it converges. WhenΥ is constant or piecewise constant, ie,

Υ does not depend on x, the solution of (3.22) can be approximated directly by finite

element or finite difference methods. Consider the monitor function

Υ(x) = ηT for x ∈ T .

Clearly,Υ(x) is a piecewise constant function. Linear finite element discretization of

(3.22) give rises to the following tridiagonal linear system:

Tx = b, with Ti = [Υ(xi− 1
2
),−Υ(xj− 1

2
)−Υ(xj+ 1

2
), Υ(xj+ 1

2
)]. (3.23)

If one solves (3.23) by iterative methods such as Jacobi or Gauss-Seidel, at kth iter-

ation, node movementδxk
j of nodexk

j , from one point Jacobi step, can be computed

simply by aΥ weighted averaging on the adjacent nodes, i.e.

δxj = xk+1
j − xk

j =
Υ(xk

j− 1
2

)(xk
j − xk

j−1) + Υ(xk
j+ 1

2

)(xk
j+1 − xk

j )

Υ(xj− 1
2
) + Υ(xj+ 1

2
)

.

The new locationxk+1
j of xk

j can then be updated byxk+1
j = xk

j + γδxk
j where

0 ≤ γ ≤ 1 is the so-called relaxation parameter. Clearly, forγ ≤ 1
2
, nodes remain

ordered and mesh tangling is prevented. One step of point Gauss-Seidel is essentially

the same as one point Jacobi step except node positions are updated immediately, and

mesh tangling can not occur with this strategy.

For two-dimensional problems, there is no proper mathematical definition for equidis-

tribution. On uniform grids, a useful grid adaption technique is to treat 2D “equidis-
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tribution” as 1D equidistribution along the x-axis and y-axis separately [9], [106]. In

other words, we have the following equations:

∇ξ(Υ(x, y)∇ξx) = 0 (3.24)

and

∇η(Υ(x, y)∇ηy) = 0, (3.25)

wherex, y are coordinates on a domainΩ = [a1, a2]× [b1, b2], andξ, η are coordinates

on the domaiñΩ = [0, 1]× [0, 1]. If boundary nodes are fixed, (3.24) and (3.25) have

the following Dirichlet boundary conditions

x(0, η) = a1, x(1, η) = a2, , x(ξ, 0) = x(ξ, 1) = ξ,

and

y(ξ, 0) = b1, y(ξ, 1) = b2, , y(0, η) = y(1, η) = η,

respectively. If boundary nodes are allowed to move, the following Neumann condi-

tion can be posed:

x(0, η) = a1, x(1, η) = a2, , xη(ξ, 0) = xη(ξ, 1) = 0,

and

y(ξ, 0) = b1, y(ξ, 1) = b2, , yξ(0, η) = yξ(1, η) = 0.

Clearly, whenΥ is piecewise constant, the analysis used in one dimensional case can

be repeated here. Therefore, one step of point Jacobi or point Gauss-Seidel is again

equivalent to aΥ-weighted averaging on the adjacent nodes.

Since an unstructured grid is a natural result from adaptive refinement process, we

employee the following moving mesh algorithm:
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1. Compute coordinates̃xj, center point ofTj, andh̃j, the smallest height ofTj,

for all Tj ∈ ωxi
.

2. Let ni be the number of elements inωxi
anddxj = x̃j − xi.

3. Compute

δxi =

∑ni

j=1 Υ(x̃j)dxj∑ni

j=1 Υ(x̃j)

4. If ‖δxi‖ ≤ γ min1≤j≤ni
h̃j, thenxnew

i = xi + δxi.

Otherwise,xnew
i = xi + (γ min1≤j≤ni

h̃j)
δxi

‖δxi‖ , whereγ < 1 is the relaxation

parameter.

Algorithm 3.4.1: Moving mesh algorithm

The algorithm is basically the same as the moving mesh algorithm in [53] except the

monitor function is replaced by the KS error indicator. In [53], the relaxation param-

eterγ is set to 0.5 and the location of each node is updated after all moving directions

are calculated (Jacobi type). In our numerical tests, we setγ = 0.6 and the location

of each node is updated immediately after its moving direction is computed (Gauss-

Seidel type).

Two numerical tests are presented here. The first problem is Problem 2 in Chapter

2 with ε = 10−4. The second problem is a variant of the “IAHR/CEGB” workshop

problem [91] as follows,
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Problem 3: Flow with curved internal layer and boundary layer

−ε ·∆u + β · ∇u = 0 onΩ = [−1, 1]× [0, 1],

whereε = 10−4 andβ = (2y(1 − x2),−2x(1 − y2)). The boundary conditions are

given asu|Γ1 = 1, u|Γ3 = 0 and ∂u
∂n
|Γ2 = 0, where

Γ1 = {(x, y) ∈ ∂Ω|x = 1 or − 0.5 ≤ x ≤ 0 ∩ y = 0}

Γ2 = {(x, y) ∈ ∂Ω|0 < x ≤ 1 ∩ y = 0}

Γ3 = ∂Ω− (Γ1 ∪ Γ2).

.

In both problems, two moving mesh steps are performed and these are followed by

one local optimization procedure (LOP), so-called edge swaps strategy introduced by

Lawson [64], [12], [82], before each mesh refinement step. We call this process,

two moving mesh steps−→ LOP−→ mesh refinement,

moving mesh refinement. In order to compare moving mesh refinement and regular

refinement, we carefully choose refinement steps and threshold valuesθ in the maxi-

mum marking strategy so that both methods produce a similar number of nodes in the

finest meshes. Four moving mesh refinement steps are performed for both problems,

six regular refinement steps are performed for Problem 2 and seven regular refinement

steps are perform for Problem 3. In both refinement methods, the threshold valueθ

in the maximum marking strategy (3.1) equals to 0.25. To access solution accuracy,

since there is no mathematical expression for the exact solution, the KS error estima-

tor is used to represent the true error in our tests. Clearly, from Figure 3.1 and Figure

3.2, we can see that the mesh movement strategy improves solution quality. More-

over, the error from moving mesh refinement is less than the error from regular mesh

refinement.
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Figure 3.1: fixed mesh refinement vs moving mesh mesh refinement
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Figure 3.2: fixed mesh refinement vs moving mesh mesh refinement
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Although moving mesh strategies may increase the solution accuracy without increas-

ing the number of nodes, there are still some disadvantages. For example, to success-

fully improve the solution accuracy, a carefully chosen relaxation parameter is needed

especially for problems in two or more dimensions. To demonstrate the importance of

choosing proper relaxation parameter, we solve Problem 3 on two meshes, one from

moving mesh refinement with relaxation parameterγ = 0.5 and the other from reg-

ular mesh refinement. The errors of these two solutions are plotted in Figure 3.3 (f).

Clearly, unlike what is shown in Figure 3.2 (f), the error from moving mesh refine-

ment is no longer strictly less than the error from regular refinement along the whole

refinement process. This is caused by only a small change ofγ!
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Figure 3.3: fixed mesh refinement vs moving mesh mesh refinement
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3.5 Error-Adapted Mesh Refinement Strategy

The computational overhead of moving mesh strategies isCmv × N where N is the

total number of nodes andCmv is the cost of computing a move direction. In addition

to the drawback that the moving mesh in Section 3.4 is very sensitive to the relaxation

parameter, ifCmv is large and, in addition, one has an efficient linear solver, such

as multigrid methods, for the convection-diffusion equation, then the cost for mesh

movement will be high compared to the cost of solving the linear system. Moreover,

if one would like to use multigrid methods to solve the sparse linear system, expensive

interpolation must be computed for each moving mesh step on all grid levels because

the grids after mesh movement are no longer nested. In adaptive refinement process, it

may be more desirable to increase the accuracy of the approximate solutions without

reducing the efficiency of linear solvers.

In this section, we propose an error-adapted mesh refinement strategy in which new

nodes are added to marked edges adaptively, according to the distribution of errors.

The cost for computing interpolation in our method is basically free. We also expect

nodes will cluster to the region where error is large in the adaptive refinement pro-

cess. In the following, we present the idea of our error-adapted refinement strategy

and some numerical tests.

Supposeei,j is an edge in a marked element T with end pointspi andpj. In regular

refinement and longest side bisection method, a new nodepmid is always inserted in

the mid-point ofei,j. In the new algorithm, the location of new node on edgeei,j is

determined by recovered error estimatorηi andηj on nodespi andpj respectively,

where the recovered error estimator is computed from an area-weighted averaging

65



of ηT over its adjacent elements,T ∈ ωi, for any nodepi. The basic idea behind this

algorithm comes from a tension spring model. One can think of each edge as a tension

spring connecting its end points. The newly added nodepnew is located at the mid-

point ofei,j, initially. When errors are uniformly distributed across edgeei,j, no force

is introduced andpnew = pmid. Otherwise, we considerFi,j = (ηj − ηi)
~ei,j

|ei,j | , where

~ei,j = pj − pi, as an external force posed onpmid and movepmid to the equilibrium of

the simple tension spring system on edgeei,j. Hence, the displacementδxi,j can be

computed as

δxi,j =
1

2Ki,j

Fi,j, whereKi,j is the tension constant of edgeei,j,

and the location of new nodepnew can be updated by

pnew = pmid + δxi,j.

It is possible thatpnew is located outside ofei,j and produces mesh tangling. Here, for

simplicity, we setKi,j = 1 on all ei,j, and modify the external force as follows:

F ′
i,j =





(1− (
mine∈E∗

h
|Fi,j |

|Fi,j | )α)~ei,j, if ei,j ∈ E∗
h andηj > ηi

(1− (
mine∈E∗

h
|Fi,j |

|Fi,j | )α)~ej,i, if ei,j ∈ E∗
h andηj < ηi

0, otherwise,

(3.26)

where0 ≤ α ≤ 1 is a relaxation parameter. Clearly,0 ≤ F ′
i,j < 1, and the displace-

mentδxi,j can now be safely computed as

δxi,j =
1

2
F ′

i,j~ei,j.

As a result,pnew will be always located inei,j.

Remark 3.5.1 The external force in (3.26) has very little effect on determining the

location of new nodes, for smallα, i.e., α → 0. On the other hand, for largeα,
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i.e., α → 1, the newly inserted nodes can be moved away from the mid points of the

marked edges. Hereafter, we callα the error-sensitivity parameter.

To preserve the quasi-uniform structure of the refined mesh outside regions contain-

ing layer, a small threshold value in the maximum marking strategy and large error-

sensitivity parameterα ≈ 1 should not be combined. Otherwise, long-thin elements

may also appear outside the layer regions from our error-adapted refinement process

and further degrade the solution quality. With careful chosen error-sensitivity param-

eter, our numerical results show the error-adapted refinement strategy quickly cluster

new nodes to layer regions and still maintain good quality mesh in the other regions.

In the following, first, an example is given to demonstrate the importance of the error-

sensitivity parameter in our error-adapted refinement strategy. We solve Problem 2

with ε = 10−4 on both regular refined meshes and error-adapted refined meshes gen-

erated by the KS-estimator. Three refined meshes are plotted for each refinement

strategy. In Figure 3.4, a threshold valueθ = 0.05 is used in the maximum marking

strategy and the error-sensitivity parameterα is equal to 1. One can see that serious

mesh distortion appears on the whole domain. However, in Figure 3.5, with a thresh-

old valueθ = 0.25 andα = 1
3
, it is clear that the error-adapted mesh refinement

clusters nodes to layer regions and still maintains good mesh-quality mesh outside

layer regions.
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Figure 3.4: Regular refinement vs Error-adapted refinement:θ = 0.05 andα = 1 for

Problem 2
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(b) Error-adapted refinement

Figure 3.5: Regular refinement vs Error-adapted refinement:θ = 0.25 andα = 1
3

for

Problem 2.
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Second, we present more examples to show that the error-adapted mesh refinement is

good for resolving boundary layers. In these examples, if the error-adapted refinement

is employed, the refinement strategy is replaced by Longest-Side Bisection algorithm

when the minimal height of the triangles is less thanε
2
. Also, the KS-estimator is used

in these examples.

First, consider constant flow problems such as Problem 2 in Chapter 2 where both

an exponential boundary layer and an parabolic internal layer exist. In this problem,

since the windβ is perpendicular to the wall y=1, the termh
ε
‖β · ∇eh‖0 in the a

posteriori lower error bound (3.15) is expected to be dominant. Therefore, it is not

surprising that the error indicatorηT in the boundary layer near the wall y=1 has ex-

tremely large value compared toηT in other regions. In this case, our error-adapted

mesh refinement process is able to cluster new nodes to the boundary layer region

efficiently as seen in the following results. Two test cases,ε = 10−4 andε = 10−3,

are given. In both cases, the error-sensitivity parameterα is set toα = 1
3
.

In the case ofε = 10−3, 10 refinement steps are performed with marking threshold

valueθ = 0.25. Both algorithms are able to resolve the boundary layer. However,

from Figure 3.6 , it is clear that the error-adapted mesh provides higher resolution

near the boundary point(0, 0), where the jump discontinuity appears. Moreover, the

regular refinement algorithm generates 5979 node points whereas only 1973 nodes

are generated by our refinement algorithm.

69



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
refined mesh after mesh improvement

points=5879, elements=10505

(a) Isotropic mesh

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Contour plot of so-

lution

−1

−0.5

0

0.5

1

−1−0.8−0.6−0.4−0.200.20.40.60.81

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(c) 3D representation

of solution

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Mesh after 10 refinement steps with threshold value=0.25

points=1973, elements=3575

(d) Error-adapted mesh

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(e) Contour plot of so-

lution

−1

−0.5

0

0.5

1

−1−0.8−0.6−0.4−0.200.20.40.60.81

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(f) 3D representation of

solution

Figure 3.6: Isotropic refinement vs error-adapted refinement for the caseε = 10−3

For the case ofε = 10−4, in general, it is hard to fully resolve the boundary layer

and produce an accurate internal layer without paying an extremely high computing

cost. Here, from Figure 3.7, a clear internal layer can be seen from the solution

on the mesh generated by the error-adapted algorithm. The solution on the mesh

generated by regular refinement fails to resolve the internal layer. Again, only 2729

nodes are generated by our algorithm compared 7001 nodes from regular refinement.

In this numerical test, 16 refinement steps are performed with marking threshold value

θ = 0.5.
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solution

Figure 3.7: Isotropic refinement vs error-adapted refinement for the caseε = 10−4

Another constant flow problem in our tests is the same problem as Problem 2 except

the windβ is (cos(5
6
π), sin(5

6
π)). In this example,ε = 10−4 and 12 refinement steps

are performed with threshold valueθ = 0.5 and error-sensitivity parameterα = 1
3
.

Again, the solution from the error-adapted refinement algorithm is better as shown in

Figure 3.8.

Next consider Problem 3, the “IAHR/CEGB” workshop problem [91]. With a curved

internal layer due to a jump discontinuity on the Dirichlet boundary and an exponen-

tial layer on the hot wallx = 1, this problem not only can be used to test discretization

strategies but also can be a challenge problem to our error-adaptive mesh refinement

strategy. Unlike the constant flow problems, whereβ is perpendicular to the wall,β
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solution

Figure 3.8: Isotropic refinement vs error-adapted refinement for the caseε = 10−4

is parallel with the wallx = 1 in this case. Therefore,h
ε
‖β · ∇eh‖0 may no longer

be the dominating term in the a posteriori lower error bound, i.e.,h
ε
‖RT −R0

T‖0,T

cannot be treated as a low order term. In this situation, we can not expect the error

indicatorηT to be significantly larger in the layer region near the wallx = 1 thanηT

in the internal layer region. As a result, if we try to resolve the exponential layer more

quickly in boundary layer region by increasing the mesh error-sensitivity parameter

α, some anisotropic elements may appear in the interior region, where isotropic ele-

ments are desirable, this leads to larger errors in these regions. In our numerical tests,

a smallα = 1/8 is chosen and 8 mesh refinement steps are performed. Figure 3.9

shows that only errors in boundary layer are reduced significantly by our new refine-

ment strategy in this case.
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Figure 3.9: Isotropic refinement vs error-adapted refinement

The next problem is very similar to the above “IAHR/CEGB” workshop problem

with ε = 10−3. The only differences are that the windβ is changed to(y(4 − (1 −
x)2), 2(1 − x)(1 − y2)) and the hot wall boundary condition,u = 1 on x = 1, is

replaced by a cold wall withu = 0 onx = 1. In this problem,β is now perpendicular

to the wallx = 1. Therefore,h
ε
‖β · ∇eh‖0 is again the dominant term and a large

error indicatorηT in boundary layer is expected. As shown in the first problem, the

error-adaptive mesh refinement algorithm should be able to cluster node points in the

boundary region efficiently. In this numerical test, the mesh error-sensitivity parame-

terα = 1
3
. First, a fine initial mesh is generated followed by three regular refinement

steps. The solution computed on this fine mesh, denoted by=0, is then considered to
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be the exact solution. Two meshes,=1 and=2, are generated from a 4x4 initial mesh

with same threshold valueθ = 0.25. Eight refinement steps are performed to gener-

ate regular-refined mesh=1 and fourteen refinement steps are performed to generate

error-adapted mesh=2. Again, from Figure 3.10, we can see the solution from regular

mesh refinement, with 2858 node points, fails to present accurate internal layer struc-

ture. In contrast, the solution on error-adapted refined mesh, with 2749 node points,

shows both accurate internal layer and boundary layer.
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Figure 3.10: Isotropic mesh refinement vs error-adapted mesh refinement
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Chapter 4

Methods for Solving Sparse Systems

In this chapter, we study several linear iterative methods for solving the linear system,

Au = f, (4.1)

Our goal is to find out which one is the most suitable solver on the adapted refined

mesh for the matrixA = ASD arising from SDFEM discretization of the convection-

diffusion equation.

First we introduce the stationary iterative methods based on matrix splittingsA =

M − N . The popular Jacobi and Gauss-Seidel methods belong to this category. It

is well known that if the matrixA is an M-matrix, these types of iteration methods

converge. Moreover, the Stein-Rosenberg theorem implies the Gauss-Seidel method

converges faster than the Jacobi method. However, for the convection-dominate flow

problems, the matrixASD is only a positive definite matrix, due to the coercivity of

BSD), but not an M-matrix. As a result, it is difficult to show the stationary iterative

methods converge. In fact, Bey has shown that there exists a positive define matrix

for which the Gauss-Seidel method never converges but the Jacobi method converges

[13]. In addition, although the flow-oriented Gauss-Seidel method shows good con-

vergence in many numerical studies for simple flows, the node numbering becomes
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more difficult for complex flows such as flows with closed characteristics.

Second, we study Krylov-subspace methods such as the generalized minimum resid-

ual method (GMRES) [87], which is a natural candidate for solving a nonsymmetric

linear system. In theory, this method is guaranteed to converge and the convergence

rate can be bounded in terms of the spectrum ofA and the condition number of the

eigenvectors. Even though the estimated convergence rate may much greater than the

actual convergence rate [41], it may still reveal the fact that the convergence rate can

be slow for small mesh sizes and large convection for the convection dominant prob-

lems. As a result, the computation cost may become too expensive. One way to im-

prove the convergence rate of GMRES is by using preconditioning. Instead of solving

the linear systemAu = f , one can solve the linear systemM−1Au = M−1f where

the preconditioning matrixM is nonsingular. IfM−1A ≈ I andM−1A is closer

to a normal matrix, one would expect an improved convergence rate. Good precon-

ditioning matrices can be derived from a convergent stationary iteration or from an

incomplete LU factorization ifA is an M-matrix. Although this is not the case for the

convection-dominated flow, numerical studies in [89] still show these preconditioners

are robust.

Unlike stationary iterative methods and Krylov subspace methods, where the conver-

gence rates decrease as the mesh is refined, multigrid methods (MG) are well known

for having a mesh-independent convergence property for self-adjoint elliptic problems

if the solution u hasH2 regularity, i.e.

‖u‖2 < c0 ‖f‖0 . (4.2)

For problems with solutionu ∈ H1+α(Ω), 0 < α < 1, the mesh-independent conver-
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gence can still be shown [19] if the bilinear form B of the associated partial differential

equation has strong coercivity and continuity, namely there exist constants0 ¿ c1,

c2 ¿∞ such that for allv ∈ Vh ⊂ H1+α

c1 ‖v‖2
1 < B(v, v) < c2 ‖v‖2

1 . (4.3)

For non-self-adjoint elliptic problems, if the skew-symmetric part of the operator can

be treated as a small perturbation term, for problems that are diffusion-dominated,

the MG convergence is still mesh-independent as shown in [17], [20]. Unfortunately,

in the convection dominant case, MG convergence can not be proved due to the fact

that the constantc0 ≈ P
3/2
e and c1 ≈ ε. However, MG uniform convergence can

still be achieved by using special gridding techniques, for example, using meshes ob-

tained from semi-coarsening [80] and Shishkin meshes [46] with operator-dependent

interpolations. This is because those techniques improve the regularity of the discrete

solution in the sense that the coarse grid provides a better approximation for the error

on the fine grid. On the other hand, without knowing such a priori formulated grids,

algebraic multigrid (AMG) [86] first defines the algebraic smooth error, then selects a

set of grid points to interpolate these smooth error. Although the convergence results

of AMG has only been established for M-matrices with a 2-level scheme, AMG con-

vergence still appears to be essentially independent of mesh size in many numerical

studies [62].

In the following, we present implementations and convergence results of each lin-

ear solver. For simplicity, only Problem 2 in Section 2.3 on a uniformN ×N rectan-

gular meshes is discussed in our analysis. Numerical results compare the performance

of these solvers on the adaptive refined mesh.
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4.1 Stationary Iteration Methods

Given a matrix splittingA = M −N , the corresponding stationary iteration for (??)

is written as

Mum+1 = Num + f. (4.4)

By subtractingMum from both sides of (4.4), we have the alternative form:

um+1 = um + M−1(f − Aum). (4.5)

One can think of the matrixM as an approximation ofA. If M = A, u1 = uh and the

equation (4.5) represents a direct solver. LetAD andAL denote the diagonal matrix

and the lower triangular matrix of the matrixA respectively, and let I be the identity

matrix. The following Table 4.1 shows some of the well known stationary iteration

methods in terms of the choice of matrix M:

Jacobi M = AD

Damped Jacobi M = ω−1AD where0 < ω < 1

Gauss-Seidel M = AD + AL

Successive Over-RelaxationM = ω−1(AD + ωAL) where0 < ω < 2

Richardson M = ω−1 ‖A‖I where0 < ω < 2

Table 4.1: Stationary iterative methods

One can also partition the mesh into a set of independent blocks which induces a block

partitioning ofA. Table 4.1 can also represent the block-version of those iterative

methods withAD denoting the block diagonal matrix of A andAL denote the block

lower triangular matrix of A.
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Figure 4.1:

For example, if one partitions the uniform mesh into a union of horizontal lines and

numbers the grid points in lexicographical order, as shown in Figure 4.1, then the

discrete matrixASD in (2.28) of Problem 2, with stabilization parameterδT = h
2
, can

be represented in the following matrix form:

ASD =




D −U

−L D −U 0

−L
. .. . . .

. .. . . . −U

0 −L D −U

−L D




(4.6)

The blocks are tridiagonal matrices

D = h× tridiag[1
6
− 1

3
ε
h
, 2

3
+ 8

3
ε
h
, 1

6
− 1

3
ε
h
],

L = h× tridiag[1
6

+ 1
3

ε
h
, 2

3
+ 1

3
ε
h
, 1

6
+ 1

3
ε
h
],

U = ε× tridiag[1
3
, 1

3
, 1

3
].

(4.7)
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The block diagonal matrix, block lower triangular matrix and block upper triangular

matrix ofASD is defined as follows:

AD =




D

D

.. .

D




, AL =




0

−L 0

.. . . . .

−L 0




andAU =




0 −U

0
. . .

. . . −U

0




The block Gauss-Seidel method is then defined by (4.5) withM = AD+AL . Because

each block consists of nodes on a horizontal line, this block Gauss-Seidel method is

called the horizontal line Gauss-Seidel (HGS) method. If the node ordering in HGS is

reversed, we call the resulting block Gauss-Seidel method the backward HGS. Sim-

ilarly, one can define another block Gauss-Seidel method where each block consists

of nodes on a vertical line. This block Gauss-Seidel method is then called the vertical

line Gauss-Seidel (VGS) method. Again, by reversing the node ordering, one obtains

the backward VGS. For general convergence analysis of the stationary iterative meth-

ods, we refer to Chapter 4 [50] by Hackbusch.

It has been shown that the HGS method converges for our model problem on a uniform

mesh with mesh sizeh ¿ ε [37]; we consider this method in the following analysis

and also allow mesh sizesh > ε. In order to analyze the convergence of HGS, the

equation (4.5) is rewritten in the error reduction form,

em+1 = (I −M−1ASD)em, (4.8)

whereei = u − ui is the iterative error at ith iteration, by subtractingu from (4.5).

By direct computing, the error reduction operatorEs = I − (AD + AL)−1ASD =

−(AD + AL)−1AU can be written in the following matrix form:

Es = G1 ·G2, (4.9)
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where

G1 =




0 I

0 D−1L
.. .

...
...

.. . I

0 (D−1L)n−2 · · · D−1L I

0 (D−1L)n−1 · · · (D−1L)2 D−1L




andG2 =




0

D−1U

. . .

D−1U

D−1U




From (4.9), the convergence results of the HGS iterative method can be shown by

estimating‖G1‖ and‖G2‖. In the following,‖·‖ represents the matrixL2 norm or

vector Euclidian norm depending on either input argument is a matrix or a vector.

From (4.7), D and U are symmetric. The following inequalities

‖U‖ = ρ(U) ≤ ε

∥∥D−1
∥∥ = ρ(D−1) =

1

λmin(D)
<

1
h
3

+ 10ε
3

≈ 3

h
,

for h À ε, follow directly from the Gerschgorin circle theorem. Therefore, we have

‖G2‖ ≤ 3
ε

h
. (4.10)

To estimate‖G1‖, the following lemmas are needed.

Lemma 4.1.1 Given two symmetric matricesB1 andB2. Assume thatB1, B2 ≥ 0,

B1 is irreducible andB2 is positive definite. The following properties hold.

1. There exist a positive eigenvectorx+ such that

B−1
2 B1x

+ = ρ(B−1
2 B1)x

+ (4.11)

2. If αI −B−1
2 B1 is non-singular and(αI −B−1

2 B1)
−1 ≥ 0 thenρ(B−1

2 B1) < α.
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Proof: The existence of a positive eigenvector satisfying (4.11) is essentially a gener-

alization of the well-known Perron and Frobenius theorem ([95] Theorem 2.7). Using

(4.11), one can prove the second result using a standard argument of Perror-Frobenius

theory, see Theorem 3.16 in [95].

2

Lemma 4.1.2 Let L andD be the matrices defined in (4.7). For anyδ ≥ (1 + 2ε
h
)h

ε
,

the matrixδ(D − L)−D is an M-matrix.

Proof: Let us chooseδ = hγ
ε

for someγ > 0. From (4.7),D−L = ε
3
×tridiag[−2, 7,−2].

Therefore, we have

δ(D − L)−D = h× tridiag[
−2γ

3
,
7γ

3
,
−2γ

3
]− h× tridiag[

1

6
− ε

3h
,
2

3
+

8ε

h
,
1

6
− ε

3h
]

= h× tridiag[−(
2γ

3
+

1

6
− ε

3h
),

7γ

3
− 2

3
− 8ε

3h
,−(

2γ

3
+

1

6
− ε

3h
)].

Since
7γ

3
− 2

3
− 8ε

3h
− 2(

2γ

3
+

1

6
− ε

3h
) = γ − 1− 2ε

h
,

clearly, forγ ≥ 1 + 2ε
h

, the matrixδ(D − L)−D is irreducible and weakly diagonal

dominant. This implies the matrixδ(D−L)−D and(δ(D−L)−D)−1 are positive

definite. Moreover, since the off-diagonal entries of(δ(D−L)−D) are all negative,

the matrixδ(D − L)−D is an M-matrix forδ ≥ (1 + 2ε
h
)h

ε
.

2

Now, we estimate‖G1‖ in the following. First, let us estimate‖D−1L‖. Considering

D−1L = I −D−1(D − L), we have

αI−D−1L = D−1(D−L)−(1−α)I = (1−α){D−1[
1

1− α
(D−L)−D]}. (4.12)
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Let us chooseα satisfying 1
1−α

= δ = (1 + 2ε
h
)h

ε
. Lemma 4.1.2 implies the matrix

1
1−α

(D − L) − D is an M-matrix. Consequently,( 1
1−α

(D − L) − D)−1 ≥ 0. Then

using the equation (4.12) andD ≥ 0, it follows that the matrixαI−D−1L > 0. Since

D is also positive definite, by Lemma 4.1.1, we can conclude that

∥∥D−1L
∥∥ = ρ(D−1L) < α = 1− 1

δ
= 1− ε

h
(

1

1 + 2 ε
h

) < 1− ε

3h
. (4.13)

By utilizing (4.13), we estimate‖G1‖ in the following.

Let x = (x1, x2, · · · , xN) ∈ Vh, wherexi ∈ RN and
∑N

i=1 ‖xi‖2 = 1. It is clear

that ‖G1x‖ < ‖G1y‖ for y = (‖x1‖ x+, ‖x2‖ x+, · · · , ‖xN‖ x+). Therefore, the

eigenvector corresponding to the maximum eigenvalue has the following form:

y = (0, β1x
+, β2x

+, · · · , βN−1x
+), where

N−1∑
i=1

β2
i = 1.

By direct computing,

‖G1y‖ = {
N∑

i=1

∥∥∥∥∥
i∑

k=1

βk(D
−1L)i−kx+

∥∥∥∥∥

2

}1/2

= {
N∑

i=1

(
i∑

k=1

βkl
i−k)2}1/2, wherel = ρ(D−1L).

Sincel < 1 and
∑N−1

i=1 β2
i = 1, the inequalities

‖G1‖ ≤ {
N−1∑
i=1

(
i∑

k=1

βk)
2}1/2 ≤ (

N−1∑
i=1

i)1/2 ≤ N (4.14)

and

‖G1‖ ≤ {
N−1∑
i=1

[
i∑

k=1

β2
k ][

i∑

k=1

(li−k)2]}1/2 ≤ {
N−1∑
i=1

i∑

k=1

(li−k)2}1/2

≤ { 1

1− l2
(
N−1∑
i=1

1− l2i)}1/2 ≤ (
N

1− l
)1/2

(4.15)
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hold. Recall thatl < 1− ε
3h

from (4.13). By combining (4.14) and (4.15), we have

‖G1‖ ≤ 1

h
min { 3h√

ε
, 1}. (4.16)

Therefore, from (4.10) and (4.16), the following theorem holds.

Theorem 4.1.3 For h À ε, the error reduction matrixEs of the line Gauss-Seidel it-

erative method for problem 4.1, obtained from SDFEM discretization of the convection-

diffusion equation with wind b=(0,1), satisfies the following inequality:

‖Es‖ ≤ 3
ε

h2
min { 3h√

ε
, 1}. (4.17)

2

Theorem 4.1.3 shows that the error reduction rate is decreased asε → 0. For a given

stopping tolerance, less iterative steps is expected as shown in Table 4.2, where the

stopping tolerance‖rm‖ < 10−6 ‖r0‖, r0 is the initial residual andrm is the residual

at m-th iterative step, is chosen.

Mesh ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5

16× 16 8 6 4 3

32× 32 8 7 5 4

64× 64 9 8 6 4

Table 4.2: HGS convergence on rectangular mesh for Problem 2

4.2 Krylov Subspace Method: GMRES

An alternative methodology for solving a linear system,Au = f , is based on Krylov

subspaces. Iterative methods that take this approach include the well-known conjugate
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gradient method (CG) [5], minimal residual method (MINRES) [71]and generalized

minimal residual method (GMRES) [87]. Given anN × N matrix A and a vector

v ∈ RN , the k-dimensional Krylov subspace,k ≤ N , generated by the matrixA with

respect to vectorv is defined as

Kk(A, v) = span{v, Av, A2v, · · · , Ak−1v}.

The above mentioned methods generate iterative solutionsum on translated Krylov

subspaceu0 + Km(A, r0), whereu0 is the initial guess andr0 is the initial resid-

ual, such that either the errorem = u − um with respect to the A-norm, defined as

‖em‖A =
√

< Aem, em >, is minimized or thel2-norm of the residual,‖Aem‖, is

minimized. For a systematic comparison on these methods, we refer to the article in

[36] pages 69-118 by Elman. Here, we summarize the GMRES method as follows.

First, anl2-orthonormal basis{v0, v1, · · · , vm−1} of the Krylov subspaceKm(A, v0)

is generated by the Arnoldi process as shown in Algorithm 4.2.1,

First, choose an initial vectorv0 with ‖v0‖ = 1;

for j = 0 : m− 1 do

hi,j =< Avj, vi > for i = 1 · · · j,

v̂j+1 = Avj −
∑j

i=1 hi,jvi,

hj+1,i = ‖v̂j+1‖,
vj+1 =

v̂j+1

hj+1,j
.

end for

Algorithm 4.2.1: The Arnoldi process

Let Vm denote the matrix[v0, v1, · · · , vm−1] andHm = (hi,j) where0 ≤ i, j ≤ m−1.
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The following relation holds directly from the construction of Algorithm 4.2.1:

AVm = Vm+1H̄m, (4.18)

whereH̄m is a(m + 1)×m matrix satisfying(H̄k)i,j = Hi,j for all 0 ≤ i, j ≤ m− 1

andH̄m(m + 1, :) = [0, 0, · · · , 0, hm,m−1]. The GMRES method computes iterative

solutionsum = u0 + zm ∈ u0 + Km(A, r0) such that

‖f − Aum‖ = ‖f − A[u0 + zm]‖ = min
z∈Km(A,r0)

‖r0 − Az‖. (4.19)

SinceVm is an orthonormal basis ofKm(A, r0), we havez = Vmy for somey ∈ Rm.

Let v0 = 1
β
r0, whereβ = ‖r0‖. From (4.19), the GMRES iterative solution can then

be obtained by finding the minimum of the following function

J(y) = min
y
‖βv1 − AVmy‖ = min

y

∥∥Vm+1[βe1 − H̄my]
∥∥, by (4.18), (4.20)

onRm, wheree1 = (1, 0, · · · , 0) ∈ Rm+1. Moreover, sinceVm+1 is orthonormal, one

can rewrite (4.20) as

J(y) = min
y

∥∥βe1 − H̄my
∥∥. (4.21)

To further simplify (4.21), let us consider the QR factorization ofH̄m. BecausēHm is

an upper Hessenberg matrix, the QR factorization ofH̄m can be easily computed by

introducing m plane-rotations [47] page 343. Let

H̄m = QmRm (4.22)

be the QR factorization of̄Hm, whereQm is an(m + 1)× (m + 1) matrix from plane

rotations and satisfies‖Qm‖ = 1 andRm is a(m + 1)×m matrix with zero last row.

By (4.22), (4.21) can be further transformed to the following

J(y) = min
y

∥∥Qm[βe1 − H̄my]
∥∥ = min

y
‖gm −Rmy‖,
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wheregm = βQme1. Now, it becomes clear that one can simply solve the upper

triangular part of

Rmy = gm (4.23)

to find a vectorym ∈ Rm such thatJ(ym) = miny ‖gm −Rmy‖. Let zm = Vmym. As

a result, we have

um = u0 + zm = u0 + Vmy,

which satisfies (4.19). The complete GMRES algorithm is shown in Algorithm 4.2.2.

For GMRES computation cost and some cost-saving implementation issues, we refer

to Saad and Schultz [87].

The convergence properties of GMRES are summarized in the following theorem.

Theorem 4.2.1 Let um be the iterative solution generated after m steps of GMRES

with residualrm = f − Aum.

1. If A is diagonalizable,A = XΛX−1, whereΛ = diag[λi] is the diagonal matrix

of eigenvalues of A and X is the matrix of eigenvectors, then

‖rm‖ ≤ ‖X‖
∥∥X−1

∥∥ min
φm∈Pm

max
i
|φm(λi)| ‖r0‖ , (4.24)

wherePm denotes the set of polynomialsPm of degree m for whichP0 = 1.

2. Let Â andǍ be the symmetric and skew symmetric parts of A, respectively. IfÂ

is positive definite, then

‖rm‖ ≤
(

1− λmin(Â)2

λmin(Â)λmax(Â) + ρ(Ǎ)2

)
‖r0‖ , (4.25)

whereρ(Ǎ) is the spectral radius of̌A.

Proof: See [35] and [87].
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2

Chooseu0, computer0 = f − Au0.

Let τ = ‖r0‖, β = τ andk = 0.

while τ > tolerancedo

Setv1 = r0

β
andk = k + 1.

for j = 1 : m do

hi,j =< Avj, vi >, for i = 1 · · · , j,

v̂j+1 = Avj −
∑j

i=1 hi,jvi,

hj+1,j = ‖v̂j+1‖, and

vj+1 =
v̂j+1

hj+1,j

Computeτ = miny∈Rj

∥∥βe1 − H̄jy
∥∥

If (τ < tolerance) break;

end for

Updateuk = u0 + Vjy,

If (τ < tolerance) break;

Computer0 = f − Auk and setτ = ‖r0‖
if (τ < tolerance)then

break;

else

setu0 = uk andβ = τ

end if

end while

Algorithm 4.2.2: The GMRES method with restarts after every m steps
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Notice that verifying the stopping tolerance of GMRES iteration is essentially free,

because the minimum ofJ(y) is just the m+1 entry ofgm, which is available from the

QR factorization ofH̄m. Also, the QR factorization requires much less computation

time and storage than the Arnoldi process. Therefore, the amount of work and storage

of GMRES is mostly determined by the Arnoldi process. Unfortunately, the computa-

tion time and storage requirement of the Arnoldi process rises in proportion toO(m2)

andO(m), respectively, as the iteration count m increases. As a result, unless one

is fortunate enough to obtain extremely fast convergence, the cost of GMRES will

rapidly become prohibitive. To overcome this drawback, a good preconditioner ofA

or a restarted version of GMRES [87] (see Algorithm 4.2.2) are generally considered

in practice.

Let M be a preconditioning matrix ofA. In Algorithm 4.2.2, if one replacesA

by M−1A andf by M−1f , one obtains a preconditioned version of GMRES algo-

rithm. From Theorem 4.2.1, a good preconditionerM is one for whichM−1A is

close to a normal matrix such that the matrixX of eigenvectors ofM−1A satisfies

‖X‖ ‖X−1‖ ≈ 1 and the eigenvalues ofM−1A are close to 1. For the convection-

diffusion equation discretized by the finite volume methods on a uniform mesh, Oost-

erlee and Washio have shown some multigrd methods with matrix-dependent prolon-

gation operators are good preconditioners and GMRES using multigrid as a precondi-

tioners leads to a faster convergence than the same multigrid methods as solvers [70].

For the convection-diffusion equations discretized by SDFEM on a uniform mesh, the

performance of GMRES with preconditioners from different types of Gauss-Seidel

methods or from incomplete block factorizations can be seen in [90]. In Section

4.5, we consider preconditioners such as one step of the Gauss-Seidel iteration with

90



flow-oriented node numbering, one step of the standard V-cycle multigrid with bilin-

ear prolongation operator, and one step of the V-cycle algebraic multigrid. Perfor-

mance of these methods as GMRES precondiitoners and solvers are compared for the

convection-diffusion equations discretized by SDFEM on both a uniform mesh and

an adaptive refined mesh.

4.3 Multigrid Method

The efficiency of the multigrid algorithm is achieved from an elegant combination of

the smoothing procedure and the coarse grid correction procedure. The smoothing

procedure plays the role of reducing highly oscillatory error modes, and the coarse-

grid correction is used to correct the remaining smooth error modes. Hackbusch [49]

and Braess [16] give the first rigorous proof on the multigrid convergence and identify

that thesmoothing property and theapproximation property are the cornerstones for

the convergence analysis of multigrid methods.

Let Al andSl be the matrix from discretization and the error reduction matrix from an

iteration method on a mesh with sizehl. Let p and r be the prolongation and restriction

operator. Thesmoothing property is defined as

An iterationSl satisfies thesmoothing property if there is a functionη(v) independent

of Sl with

‖AlSl‖ ≤ η(v) ‖Al‖ for all 0 ≤ v < ∞ andl > 0, (4.26)

wherelimv→∞ η(v) = 0.

and theapproximation property is defined as
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∥∥A−1
l − pA−1

l−1r
∥∥ ≤ CA/‖Al‖for all l ≥ 0, (4.27)

whereCA is independent withl.

In this section, we describe the multigrid algorithm and its recurrence relations. We

also give a proof of the V-cycle multigrid convergence for our model problem by es-

tablishing some inequalities similar to (4.26) and (4.27).

Assume we are given a nested sequence of finite dimensional subspaces(Vk,=k) for

k = 1, · · · , J , whereVl ⊂ Vk ⊂ H1 for all l < k and=k is a regular refinement from

=k−1 for all k. Let Ak denote the matrix obtained from the SDFEM discretization of

the convection-diffusion equation onVk. Clearly, for allwk, vk ∈ Vk,

(Akwk, vk)k = Bsd(wk, vk).

and the SDFEM solutionuk ∈ Vk satisfies

(Akuk, vk)k = (Ikf, vk), for all vk ∈ Vk,

where(·, ·)k denote theL2 inner product onVk andIkf is the nodal interpolation of f

on VK . Since the SDFEM solutionuk is unique on each subspaceVk, the projection

operatorPk : H1 → Vk is well defined and satisfiesBsd(Pku, v) = Bsd(u, v), ∀ v ∈
Vk. Let the prolongation operatorIk

k−1 : Vk−1 → Vk be the canonical bilinear inter-

polation. On uniform rectangular meshes,Ik
k−1 can be represented by the following

stencil notation:

Ik
k−1 =




1
4

1
2

1
4

1
2

1 1
2

1
4

1
2

1
4




.
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Let the restriction operatorIk−1
k : Vk → Vk−1 be defined by

(Ik−1
k u, v)k−1 = (u, Ik

k−1v)k, ∀ u ∈ Vk andv ∈ Vk−1.

Also, letM−1
k : Vk → Vk represent a linear smoothing operator.

In order to define the multigrid operator, first, fork = 1, let us defineMG0(w0, g0) =

A−1
0 g0. For k > 1, let wk be the initial guess,gk be the initial righthand side and

yk be the iterative solution after one multigrid step onVk. By defining the multigrid

operator on level k,MGk(wk, gk), in terms of the multigrid operator on levelk − 1,

MGk−1, the standard multigrid algorithm can be described in Algorithm 4.3. The

usual V-cycle and W-cycle multigrid algorithm are represented by settingm = 1 and

2, respectively, in Algorithm 4.3.

(a) V cycle and W cycle

Figure 4.2:
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1. setxk = wk

2. (pre-smoothing)xk = wk + M−1
k (gk − Akwk).

3. (restriction)ḡk = Ik−1
k (gk − Akxk).

4. (correction)qi = MGk−1(qi−1, ḡk) for 1 ≤ i ≤ m, m = 1 or 2 andq0 = 0.

5. (prolongation)̄qm = Ik
k−1qm

6. setxk = xk + q̄m

7. (post-smoothing)xk = xk + M−1
k (gk − Akxk)

8. setyk = MGk(wk, gk) = xk.

Algorithm 4.3.1: Multigrid Algorithm

In the following, we only discuss V-cycle multigrid without post-smoothing. Let the

initial error on level k be denoted ase0
k = uk − wk, and the error after one step of

multigrid iteration be denoted ase1
k = uk − yk. The error reduction operator for one

multigrid iteration can be defined as

Emg
k (e0

k) = e1
k. (4.28)

To derive the recursive relation of the multigrid error reduction operators, letq̃ denote

the exact coarse grid correction, i.e.,

q̃ = A−1
k−1I

k−1
k (gk − Akxk) = A−1

k−1I
k−1
k Ak(uk − xk). (4.29)

Since, for alluk, vk ∈ Vk,

(Ik−1
k Akuk, I

k−1
k vk)k−1 = (Akuk, I

k
k−1I

k−1
k vk)k = Bsd(uk, I

k
k−1I

k−1
k vk−1)

= Bsd(Pk−1uk, I
k−1
k vk) = (Ak−1Pk−1uk, I

k−1
k vk)k−1,
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we have

Ik
k−1(I

k−1
k Ak − Ak−1Pk−1) = 0.

Therefore, the relation

Ik−1
k Ak = Ak−1Pk−1, (4.30)

holds onVk because the bilinear interpolation operatorIk
k−1 has full rank. By plugging

(4.30) into (4.29), we have

q̃ = Pk−1(uk − xk). (4.31)

Moreover, since the functionq in step 2 approximates the functionq̃, by (4.28),

q̃ − q = Emg
k−1q̃, (4.32)

By combining (4.31) and (4.32), the errore1
k can be written as

e1
k = uk − yk = uk − xk − Ik

k−1q = uk − xk − Ik
k−1(q̃ − Emg

k−1q̃)

= uk − xk − Ik
k−1(I − Emg

k−1)Pk−1(uk − xk)

= (I − Ik
k−1Pk−1 + Ik

k−1E
mg
k−1Pk−1)(uk − xk)

= (I − Ik
k−1Pk−1 + Ik

k−1E
mg
k−1Pk−1)(I −M−1

k Ak)(uk − wk) by (4.8),

= (I − Ik
k−1Pk−1 + Ik

k−1E
mg
k−1Pk−1)E

s
ke

0
k,

whereEs
k = I − M−1

k Ak is the error reduction from the smoothing step. Thus, the

error reduction operators of multigrid iteration satisfy the following recursive relation,

Emg
k = [(I − Ik

k−1Pk−1) + Ik
k−1E

mg
k−1Pk−1]E

s
k. (4.33)

Remark 4.3.1 For 2-grid multigrid method (k=1),Emg
0 = 0. From (4.30),Pk−1 =

A−1
k−1I

k−1
k Ak. In this case, (4.33) can be rewritten as

Emg
1 = (I − Ik

k−1A
−1
k−1I

k−1
k Ak)E

s
1 = (A−1

k − Ik
k−1A

−1
k−1I

k−1
k )(AkE

s
1).
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Clearly, thesmoothing property (4.26) and theapproximation property (4.27) can

guarantee that‖Emg
1 ‖ < 1 with enough smoothing steps.

From (4.33), we have

‖Emg
k ‖ ≤

∥∥(I − Ik
k−1Pk−1)E

s
k

∥∥ +
∥∥Ik

k−1E
mg
k−1Pk−1E

s
k

∥∥

≤
∥∥(I − Ik

k−1Pk−1)E
s
k

∥∥ +
∥∥Emg

k−1

∥∥ ‖Pk−1E
s
k‖ .

Here, instead of deriving (4.26) and (4.27) for the multigrid convergence, we show

that,
∥∥(I − Ik

k−1Pk−1)E
s
k

∥∥ + ‖Pk−1E
s
k‖ < 1, (4.34)

hold, whenhk À
√

ε and HGS is employed in the smoothing step, for our model

problem. Then, the convergence of the multigrid algorithm 4.3.1 can then be estab-

lished by mathematical induction.

Theorem 4.3.2 [Smoothing Property] LetSv
k be the error reduction operator of v

steps of HGS onVk. The following inequality holds:

‖AkS
v
k‖ ≤ ε(1 + 3

ε

h2
k

min {3hk√
ε
, 1})

∥∥Sv−1
k

∥∥ . (4.35)

Proof: From (4.6) and (4.9), by directly computing, we have

AkSk =




0 U− U(D−1L)D−1U −UD−1U

0 −U(D−1L)2D−1U
.. . . ..

...
...

.. . −U(D−1L)D−1U −UD−1U

0 −U(D−1L)n−1D−1U · · · −U(D−1L)2D−1U −U(D−1L)D−1U

0 0 · · · 0 0




= diag[U ](T1 − T2G2),
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where

T1 =




0 I

0 0
.. .

...
...

.. . I

0 0 · · · 0 I

0 0 · · · 0 0




andT2 =




0 D−1L I

0 (D−1L)2 .. . .. .

...
...

.. . D−1L I

0 (D−1L)n−1 · · · (D−1L)2 D−1L

0 0 · · · 0 0




.

By using the same argument in deriving Theorem 4.1.3, one can show‖T2G2‖ ≤
3 ε

h2
k
min {3hk√

ε
, 1}. Therefore,

‖AkSk‖ ≤ ε(1 + 3
ε

h2
k

min {3hk√
ε
, 1})

= ε(1 + 3
ε

h2
k

min {3hk√
ε
, 1}).

Hence, (4.35) holds.

2

Remark 4.3.3 From Theorem 4.1.3, we have‖Sk‖ < 1 for hk >
√

3ε. Thus, (4.35)

implies the smoothing property (4.26) by the factε ≤ ‖Ak‖ for all k > 0.

With the help of Theorem 4.3.2, we show (4.34) in the following. Assumev steps of

HGS are employed in the smoothing step, i.e.Es
k = Sv

k . Forhk >
√

3ε, we have

‖Pk−1E
s
k‖ =

∥∥A−1
k−1I

k−1
k AkS

v
k

∥∥ , by (4.30),

≤ (1 + 3
ε

h2
k

)
∥∥Ik−1

k

∥∥ ‖Sk‖v−1 , by (4.35),

≤ (1 + 3
ε

h2
k

)(3
ε

h2
k

)v−1
∥∥Ik−1

k

∥∥ , by (4.17).

(4.36)
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Moreover, lete ∈ Vk ⊂ H1,

∥∥(I − Ik
k−1Pk−1)E

s
k(e)

∥∥ ≤ ch−2
k ‖(I − Pk−1)S

v(e)‖0 = ch−2
k

1√
ε
|‖(I − Pk−1)S

v
k(e)‖|

≤ ch−2
k

√
hk

ε
|Sv

k(e)|1, by the a priori error bound (2.38)

≤ ch−2
k

√
hk

ε2
‖AkS

v
k(e)‖0 , by the regularity estimate (2.8)

≤ c
√

hk(1 + 3
ε

h2
k

)(3
ε

h2
k

)v−1 ‖e‖ ,

where c is a constant. Therefore, we have

∥∥(I − Ik
k−1Pk−1)E

s
k

∥∥ ≤ c
√

hk(1 + 3
ε

h2
k

)(3
ε

h2
k

)v−1. (4.37)

From (4.36) and (4.37), the inequality (4.34) holds forv ≥ 2 andhk À
√

3ε. Now,

we can state our multigrid convergence result as follows:

Theorem 4.3.4 If more then 2 steps of HGS are employed in the smoothing procedure

of the multigrid algorithm 4.3.1, then

‖Emg
J ‖ < 1,

for hJ À
√

3ε.

Remark 4.3.5 By direct expansion, equation (4.33) can be rewritten as

Emg
J =

J−1∑

k=1

(I − PJ−k)E
s
J−k+1(

k−1∏

l=1

PJ−k+lE
s
J−k+l+1), (4.38)

where
∏0

l=1 PJ−k+lE
s
J−k+l+1 = I. Let h̃i = hi/

√
6 for all i. By plugging (4.36) and

(4.37) into (4.38), two steps of HGS smoothing imply

‖Emg
J ‖ ≤ c

J−1∑

k=1

h̃
1/2
J−k+1

(
ε

h̃2
J−k+1

)
k−1∏

l=1

ε

h̃2
J−k+l+1

< c

J−1∑

k=1

h̃
1/2
J−k+1

(
ε

h̃2
J−k+1

)(
k−1∏

l=1

(
1

22
)l

)(
ε

h̃2
J

)k−1

.
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A sharper estimate of MG convergence,

‖Emg
J ‖ ¹ ε

h
3/2
J

¹ ε1/4, (4.39)

for hJ À
√

ε, can be obtained from directly estimating the righthand side of the above

inequality.

Similar to the convergence behavior of HGS, the estimate (4.39) shows that the error

reduction rate of MG is also decreased asε → 0 and less iterative steps are expected

for smallerε. For Problem 2, two, three and four levels V-cycle MG are tested on

16×16, 32×32 and64×64 uniform rectangular meshes, respectively, with 1 step HGS

pre-smoothing and post-smoothing. The results are shown in Table 4.3 for variousε.

The stopping tolerance in our computation is‖rm‖ < 10−6 ‖r0‖ wherer0 is the initial

residual andrm is the residual at m-th iterative step. By comparing the numerical

results in Table 4.2 and Table 4.3, it is evident that MG converges faster than HGS as

expected from (4.17) and (4.39).

Mesh ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5

16× 16 4 2 2 1

32× 32 4 3 2 1

64× 64 5 4 2 2

Table 4.3: MG convergence on uniform rectangular mesh for Problem 2

4.4 Algebraic Multigrid Method

In previous section, we have shown a MG convergence result of the Problem 2 in

Section 2.3. With fixed coarse grids and interpolation operators, our MG convergence
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result is essentially achieved through the robust smoothing property of HGS in The-

orem 4.3.2. Unfortunately, it is hard to show that such a smoothing property still

holds if the underlying mesh is unstructured or the flow is more complicated. Since

the other major component of MG is theapproximation property , an alternative way

to achieve MG convergence is to find better interpolation operators and coarse grids.

The basic idea of the algebraic multigrid method (AMG) is to employee an algebraic

coarsening process (selecting coarse nodes and defining interpolation) to ensure that

the algebraic smooth errors, i.e. the errors which can not be efficiently reduced by

relaxation iterations, can be captured by the coarse grid correction. In order to in-

troduce the AMG briefly, we consider two level V-cycle with post-smoothing here.

Only the coarsening strategy proposed by Ruge and Stüben [86] is studied here. Sim-

ilar strategies can be found in Reusken [79] and Wagner, Kinzelbach and Wittum [98].

First, let us introduce some notation. LetVh andVH denote the fine grid space and

the coarse grid space. LetAh denote the matrix arising from a discretization method

such as Galerkin or SDFEM, andDh the diagonal matrix ofAh. For v ∈ Vh, let

‖v‖0 =< Dhv, v >, ‖v‖1 =< Ahv, v > and‖v‖2 =< D−1
h Ahv, Ahv >. Since

the coarsening process does not produce a mesh in geometric sense, the coarse grid

operatorAH onVH is defined by

AH = IH
h AhI

h
H , (4.40)

whereIh
H is the interpolation operator to be defined by coarsening process andIH

h =

(Ih
H)T . As shown in Remark 4.3.1, the two-grid error reduction operator then can be

written as

Emg = EsEc, (4.41)
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whereEs is the error reduction operator from the smoothing step and

Ec = I − Ih
HA−1

H IH
h Ah (4.42)

is the coarse grid correction.

Multigrid methods using the coarse grid operator (4.40) are called Galerkin-type

methods due to their origin in the finite element Galerkin discretization. For sym-

metric positive define M-matrixAh = (ai,j), it can be shown that the coarse grid cor-

rectionEc is an orthogonal projection fromVh to VH ([101] Chapter 5) with respect

to the inner product< ·, · >1, i.e. for allvh ∈ Vh andvH ∈ VH , < AhE
cvh, vH >= 0.

By using this orthogonal property, thesmoothing assumption,

∃ α > 0 such that‖Eseh‖2
1 ≤ ‖eh‖2

1 − α ‖eh‖2
2 , for anyeh ∈ Vh, (4.43)

and theapproximation assumption

min
eH

∥∥eh − Ih
HeH

∥∥2

0
≤ β ‖eh‖2

1 with β > 0 independent witheh, (4.44)

Ruge and Sẗuben [86] show the following theorem holds.

Theorem 4.4.1 Let Ah be a symmetric positive define matrix. Suppose the smooth

operatorEs satisfies (4.43) and the interpolation operatorIh
H has full rank and sat-

isfies (4.44). Thenβ ≥ α and the convergence rate of the two level V-cycle satisfies

‖EsEc‖1 ≤
√

1− α
β
.
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Proof: By orthogonality, for anyeh ∈ R(Ec) ⊂ Vh andeH ∈ VH , we have

‖eh‖2
1 =< Aheh, eh >=< Aheh, eh−Ih

Heh > + < Aheh, I
h
H >=< Aheh, eh−Ih

Heh > .

(4.45)

SinceAh > 0 andD−1
h A > 0, (4.45) implies

‖eh‖1 = < A
1/2
h (D−1

h Ah)
1/2eh, A

1/2
h (D−1

h Ah)
−1/2(eh − Ih

HeH) >

≤
∥∥∥A

1/2
h (D−1

h Ah)
1/2eh

∥∥∥
∥∥∥A

1/2
h (D−1

h Ah)
−1/2(eh − Ih

HeH)
∥∥∥ ,

by the Schwarz inequality,

= ‖eh‖2

∥∥eh − Ih
HeH

∥∥
0
.

By (4.44), we have

‖eh‖2
1 ≤ β ‖eh‖2

2 . (4.46)

The convergence estimate of the theorem is a direct result of (4.43) and (4.46) as

shown in the following:

‖EsEceh‖2
1 ≤ ‖Eceh‖2

1 − α ‖Eceh‖2
2 ≤ (1− α

β
) ‖Eceh‖2

1

≤ (1− α

β
) ‖eh‖2

1 .

2

In [86] Theorem 4.2, Ruge and Stüben also show that the usual point Guass-Seidel

iteration satisfies thesmoothing assumption (4.43). In particular, ifAh is also an M-

matrix, one hasα = 1
4
. Therefore, it remains to construct the interpolation operator

such that (4.44) holds for the AMG to converge. The special coarsening strategy in

AMG serves this purpose. First, let the set of fine grid points be denoted asF and

the set of coarse grid nodes be denoted asC. The neighborhood of the ith nodevi is

defined asNi = {j ∈ F |j 6= i andai,j 6= 0}. We consider the interpolation operator
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Ih
H which has the following form:

(
IhHeH

)
i
=

∑
vj∈C

wi,j (eH)j (4.47)

wherewi,j = δi,j for vi ∈ C andδi,j denotes the Kronecker symbol. On any given

set of coarse grid pointsC, for any errore = (e1, e2, · · · en) ∈ Vh, if the interpolation

weightswi,j, for all i, j ∈ F , satisfy the following two conditions:

∑
vi∈F

∑
vj∈C

ai,iwi,j(ei − ej)
2 ≤ β

2

∑
i,j

−ai,j(ei − ej)
2, (4.48)

and
∑
vi∈F

ai,i(1− si)e
2
i ≤ β

∑
i

(∑
j

ai,j

)
e2

i , (4.49)

wheresi =
∑

vj∈C wi,j ≤ 1, then theapproximation assumption (4.44) holds ([86]

Theorem 5.3). For the case thatAh is a M-matrix and diagonal dominant, one can

consider the interpolation weightswi,j = ηi|ai,j| where0 ≤ ηi ≤ 1∑
vj∈C |ai,j | , which

ensuressi ≤ 1. Obviously, it is sufficient to require that for everyvi ∈ F and

vj ∈ Ci ⊆ Ni ∩ C

0 ≤ ai,iwi,j ≤ β|ai,j| (4.50)

and

0 ≤ ai,i(1− si) ≤ β
∑

j

ai,j, (4.51)

for (4.48) and (4.49) to hold.

With the above simple inequalities (4.50) and (4.51), more practical conditions in the

coarsening strategies which useβ as an input parameter can be derived. For example,

givenβ ≥ 1, if the coarse grid C is selected such that for eachvi ∈ F ,

β(ai,i −
∑

vj /∈Ci

j 6=i

ai,j) = β
∑

vj /∈Ci

ai,j ≥ ai,i whereCi ⊆ Ni ∩ C. (4.52)
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and the interpolation weight is defined aswi,j =
|ai,j |∑

vj /∈Ci
ai,j

, clearly, we have

ai,iwi,j =
ai,i∑

vj /∈Ci
ai,j

|ai,j| ≤ β|ai,j|, by (4.52)

and

ai,i(1− si) = ai,i

(
1−

∑
vj∈Ci

|ai,j|∑
vj /∈Ci

ai,j

)
= ai,i

∑
j ai,j∑

vj /∈Ci
ai,j

≤ β
∑

j

ai,j.

Therefore, by (4.50) and (4.51), theapproximation assumption holds.

Recall that the algebraic smooth errores is more slowly reduced by the smootherEs,

i.e. ‖Eses‖1 ≈ ‖es‖1. By thesmoothing assumption (4.43), the errores has to satisfy

‖es‖2 ¿ ‖es‖1 or more explicitly
∑

i
r2
i

ai,i
¿ ∑

i rie
s
i wherer = (r1, r2, · · · , rn) =

Ahe
s. Therefore, on average, one can expect|ri| ¿ ai,i|ei| for all i. Consequently,

one obtains a good approximation forei,

ai,iei ≈
∑
j∈Ni

−ai,jej, (4.53)

through its neighboring error valuesej, j ∈ Ni. Moreover, since

‖es‖1 = < D
−1/2
h Ahe

s, D
1/2
h es >≤

∥∥∥D
−1/2
h Ahe

s
∥∥∥

∥∥D1/2es
∥∥ = ‖es‖2 ‖es‖0 ,

‖es‖2 ¿ ‖es‖1 implies‖es‖1 ¿ ‖es‖0 or, explicitly,

< Ahe
s, es > =

1

2

∑
i,j

−ai,j(e
s
i − es

j)
2 +

∑
i

(∑
j

ai,j

)
(es

i )
2

¿ < Dhe
s, es >=

∑
i

ai,i(e
s
i )

2.

For the important case
∑

i6=j |ai,j| ≈ ai,i, the above inequality means that, on average

for each i,
1

2

∑

i6=j

−ai,j(e
s
i − es

j)
2 ¿ ai,i(e

s
i )

2. (4.54)
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In other word, the smooth error generally varies slowly in the so-called strong-connected

direction where|ai,j |
ai,i

is relative large. The condition (4.52), in turn, suggests that the

algebraic coarsening should be done in the direction of strong connections.

Now we can introduce the coarsening strategy proposed by Ruge and Stüben. First,

let us introduce some definitions.

Definition 4.4.2 A nodevi ∈ F is strongly connected to a nodevj ∈ F with respect

to Ah, denoted asvi → vj if

−ai,j ≥ µ max
m6=i

(−ai,m),

where the strong connection parameterµ satisfies0 ≤ µ ≤ 1. LetNS
i denote the set

of all strongly connected neighbors ofvi, i.e.,

NS
i = {vj ∈ Ni|vi → vj},

and(NS
i )T denote the set of nodes which are strongly connected tovi, i.e.,

(NS
i )T = {vj ∈ F |vj → vi} = {vj ∈ F |vi ∈ NS

j }.

The interpolatory nodesCi in (4.52) are defined as strong C-node neighbors, i.e.,

Ci = NS
i ∩C. Also, the noninterpolatory nodesDi are split into strongDS

i and weak

DW
i noninterpolatory nodes where

Di = Ni \ Ci, DS
i = Di ∩NS

i andDW
i = Di \DS

i .

2

Since a large set of coarse grid points C is not practical due to expensive computation

cost and memory requirement on the coarse grids, one would likeC to be as small as

105



possible withCi 6= ø for all i. If condition (4.52) is employed, this means the input

parameterβ may become very large. As a result, a slow convergence rate of AMG

is expected according to Theorem 4.4.1. To get good interpolations and maintain a

reasonable complexity of coarse grid the following two criteria are used.

Criterion 4.4.3 For each nodevi ∈ F , each nodevj ∈ NS
i should be either inC or

should be strongly connected to at least one node inCi.

Criterion 4.4.4 C should be a maximal subset of all nodes with the property that no

two C-nodes are strongly connected to each other.

The criterion 4.4.3 shall ensure that the interpolation is good enough. The criterion

4.4.4 is taken as a guideline to force the generated coarse grid to significant fewer

nodes than the fine grid. In fact, the criterion 4.4.3 arises naturally from the following

analysis. First, equation (4.53) can be rewritten as

ai,iei =
∑
j∈Ci

−ai,jej +
∑

j∈DS
i

−ai,jej +
∑

j∈DW
i

−ai,jei −
∑

j∈DW
i

−ai,j(ei − ej). (4.55)

Since we have
∑

j∈DW
i
−ai,j(ei − ej) ¿ ai,iei by (4.54), equation (4.55) implies

(ai,i +
∑

j∈DW
i

−ai,j)ei ≈
∑
j∈Ci

−ai,jej +
∑

j∈DS
i

−ai,jej. (4.56)

Recall that the smooth error varies slowly in the direction of strong connection. As a

result, forj ∈ DS
i , the error valueej can be replaced by

ej =

∑
k∈Ci

|aj,k|ek∑
m∈Ci

|aj,m| (4.57)

as long as there exist strong connectionsvj → vk for somek ∈ Ci. Plugging (4.57)

into (4.56), the following formula for computing interpolation weighst in Ruge and

Stüben’s AMG coarsening algorithm is obtained

wi,j = − 1

ãi,i


ai,j +

∑

k∈DS
i

ai,kak,j∑
m∈Ci

ak,m


 , (4.58)
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whereãi,i = ai,i +
∑

k∈DW
i

ai,k. Based on the criterion 4.4.3 and the criterion 4.4.4,

the Ruge and Stüben coarsening strategy consists of two coarsening steps as outlined

in Algorithm 4.4.1 and Algorithm 4.4.2. Algorithm 4.4.1 tends to produce grids with

very few strong C-node to C-node connection. Algorithm 4.4.2 ensures that the crite-

rion 4.4.3 holds and computes the interpolation weight according to (4.58).

C = ø; F = ø; U = {1, 2, · · · , n};
For (i = 1 : n), zi = |(NS

i )T |;
while (U 6= ø) do

geti ∈ U with maximalzi then setC = C ∪ {i} andU = U \ {i};
for (j ∈ (NS

i )T ∩ U ) do

F = F ∪ {j}; U = U \ {j};
For (k ∈ NS

j ), zk = zk + 1;

end for

For (j ∈ NS
i ∩ U) zj = zj − 1;

end while

Algorithm 4.4.1: Preliminary C-point selection
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T = ø;

while (F \ T 6= ø){
pick i ∈ F \ T ; setT = T ∪ {i} anddone = 0;

Ci = NS
i ∩ C; DS

i = NS
i \ Ci; DW

i = Ni \NS
i ; C̃i = ø;

while (done == 0){
di = ai,i +

∑
k∈DW

i
ai,k; dj = ai,j∀j ∈ Ci

for (k ∈ DS
i ){

if (NS
k ∩ Ci 6= ø) dj = dj +

ai,kak,j∑
m∈Ci

ak,m
∀j ∈ Ci;

else{
if (C̃i 6= ø){C = C ∪ {i}; F = F \ {i}; break;}
else{

C̃i = {k}; Ci = Ci ∪ {k}; DS
i = DS

i \ {k};
done = 0; break;

}
}

}
}
if (i ∈ F ) {C = C ∪ C̃i; F = F \ C̃i; wi,j = −dj/di∀j ∈ Ci}

}
Algorithm 4.4.2: Final C-point selection and definition of interpolation weights

Although most of the theoretical analysis of AMG is limited to M-matrices, nu-

merical studies in [92] show fast convergence of AMG even if the matrixAh is not

symmetric, such as in the case of finite difference discretization of the convection-

diffusion equation. Numerical studies of the AMG convergence for the matrix from
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SDFEM discretization of the convection-diffusion equation will be presented below in

Section 4.5. Here, we show coarse grids from the AMG coarsening on two problems.

The first is Problem 2 in Section 2.3. The second problem is the convection-diffusion

problem with closed characteristic as follows:

Problem 4: Flows with closed characteristics

−ε ·∆u + (b1, b2) · ∇u = 0, with

(b1, b2) = (2(2y − 1)(1− (2x− 1)2),−2(2x− 1)(1− (2y − 1)2)) and,

u|∂Ω =





1 if y = 1,

0 otherwise,

whereΩ = [0, 1]× [0, 1].

A sample solution is shown in Figure 4.3.

(a) Flow field(b1, b2)
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(b) 3D representation of solution

Figure 4.3: Flow field and solution of Problem 4

In both problems, the diffusion parameterε is 10−2 and the input parameterµ, used

to define the strong connection in Definition 4.4.2, is set to 0.25. Figure 4.4 (a) shows

that the coarse grid obtained from AMG coarsening is the same as the coarse grid
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obtained from semi-coarsening the fine grid in the y-direction for Problem 2. Fig-

ure 4.4 (b) shows that the coarse grid from AMG coarsening tends to be symmetric

with respect to the center of the domainΩ in Problem 4. These results suggest that

AMG coarsening strategies coarsen the fine grid in a direction that follows the flow

field (b1, b2). In fact, with the help of standard matrix-dependent interpolationIh
H

and restrictionIH
h defined in [78], MG convergence on a mesh obtained from semi-

coarsening is proved by Reusken [80] for Problem 2. Naturally, one may conjecture

that β in the approximation assumption (4.44) can be small in AMG and a faster

MG convergence rate can be obtained. Our numerical studies in Section 4.5 give an

answer to this question.
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(a) Problem 2
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(b) Problem 4

Figure 4.4: Coarse grids from AMG coarsening

4.5 Numerical Comparisons of GMRES, MG and AMG

In this section, we compare the performance of different linear solvers for the dis-

crete convection-diffusion equation, including MG, AMG, GMRES and precondi-

tioned GMRES. Two test problems, Problem 2 and Problem 4, are discretized on both

an uniform32×32 triangular mesh and an adaptively refined mesh forε = 10−2, 10−3
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and10−4. The adaptively refined mesh is generated by refining an initial8×8 uniform

mesh four times based on the KS error indicator and the maximum marking strategy.

The threshold valueθ in the maximum marking strategy is chosen such that elements

in the layer regions can be refined for both problems. For Problem 2,θ = 0.1, 0.01

and 0.001 forε = 10−2, 10−3 and10−4, respectively. The adaptive meshes and solu-

tions of Problem 2 are shown in Figure 4.5. For Problem 4,θ = 0.1 for all ε. The

adaptive meshes and solutions of Problem 4 are shown in Figure 4.6.

In Section 4.1 and Section 4.2, it has been shown that the horizontal line Gauss-Seidel

method (HGS) converges and MG converges with HGS smoother, whenh À ε1/2, for

Problem 2. On uniform meshes, we would also like to use one step of HGS as a

smoother and a preconditioner in Problem 2. For Problem 4, because the flow field

has closed characteristics, our strategy is to use four Gauss-Seidel sweeps,

HGS→ VGS→ backward HGS→ backward VGS,

as a smoother of MG and AMG, and preconditioner of GMRES. We call the above

four sweep Gauss-Seidel method the alternating direction Gauss-Seidel method (ADGS).

On unstructured meshes, there is no natural horizontal line or vertical line. However,

one can order the nodes by using the y-coordinate as the primary key and the x-

coordinate as the secondary key to obtain a node ordering similar to the node ordering

in HGS. Here, we call the point Gauss-Seidel method, associated with this node or-

dering, HGS. Similarly, if one orders the nodes by using x-coordinate as primary key

and y-coordinate as secondary key, one obtain a node ordering similar to the node or-

dering in VGS. We call the point Gauss-Seidel method, associated with such ordering,

VGS. By reversing the node numbering, the backward HGS and backward VGS on

unstructured grids can be defined from HGS and VGS respectively. Again, on the un-
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structured meshes, one step of HGS is used both as a smoother of MG and AMG, and

preconditioner of GMRES for Problem 2. For Problem 4, ADGS is used as a smoother

of MG and AMG, and preconditioner for GMRES. In addition, MG and AMG, with

the above Gauss-Seidel smoothers, are also used as preconditioners of GMRES for

both problems. In the following, GMRES with MG preconditioner is denoted as

GMRES-MG and GMRES with AMG preconditioner is denoted as GMRES-AMG.

To compare the performance of MG and AMG as solvers or preconditioner of GM-

RES, four levels of V-cycle are performed in our computation. In MG, the coarse

grids are either4× 4, 8× 8, 16× 16 uniform meshes, or meshes generated during the

refinement process. In AMG, the coarse grids are generated from AMG coarsening

of the finest adaptive mesh. The comparison of coarse grid complexity of MG and

AMG on both uniform mesh and unstructured mesh is shown in Table 4.5 and Table

4.7, respectively. Our results show that, with heuristic strong connection parameter

µ = 0.25, the number of coarse grid points generated from AMG coarsening pro-

cess is greater than the number of grid points on the adaptive mesh at the same mesh

level, if the the32 × 32 uniform mesh is the finest mesh. However, fewer coarse

grid points are generated by AMG coarsening compared to the number of coarse grid

points on the meshes from adaptive refinement. As a result, we do not expect AMG

and GMRES-AMG to perform well if the problems are solved on the adaptive meshes.

In Table 4.4 and Table 4.6, one can see that AMG and GMRES-AMG converge faster

than MG and GMRES-MG, respectively, for Problem 2 especially on the uniform

mesh. On the other hand, MG and GMRES-MG outperform AMG and GMRES-

AMG for Problem 4 on the adaptive mesh. Both MG and AMG produce better pre-

112



conditioning for GMRES than Gauss-Seidel methods. If the problems are solved on

both uniform meshes and adaptive refined meshes, GMRES-MG and GMRES-AMG

are the best choices among these solvers. However, one should be reminded that

AMG involves more preprocessing time and may also need a carefully chosen strong

connection parameter. On the other hand, these problems are usually solved on an

mesh similar to the adaptive refined mesh to obtain more accurate solutions in those

regions. Under this circumstance, our numerical studies suggest that MG or GMRES

with MG preconditioner are the best choices in solving the test problems. Overall,

GMRES-MG seems to be a good choice of linear solver for the convection-diffusion

problems when solution accuracy, numerical stability (on both uniform and adaptive

meshes) and computation cost are our concerns.

In the following tests, the stopping tolerance for iterative methods is set to be

‖rm‖ ≤ 10−6 ‖r0‖ ,

wherer0 is the initial residual andrm is the residual at m-th iteration. Also, the

notation”− ” represents that the number of iterations is greater than 200.
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Numerical results for Problem 2:
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(a) Mesh:ε = 10−2
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(b) Mesh:ε = 10−3
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(c) Mesh:ε = 10−4
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(d) Solution:ε = 10−2
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(e) Solution:ε = 10−3
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(f) Solution: ε = 10−4

Figure 4.5: Solutions and adaptive meshes for variousε

ε 10−2 10−3 10−4

GMRES 58 75 94

MG 13 27 51

AMG 7 7 9

GMRES-GS 26 32 43

GMRES-MG 14 20 28

GMRES-AMG 8 9 12

(a) Iterative steps on uniform mesh

ε 10−2 10−3 10−4

GMRES 65 146 -

MG 4 22 59

AMG 4 8 14

GMRES-GS 11 31 59

GMRES-MG 5 16 36

GMRES-AMG 4 8 14

(b) Iterative steps on adaptive mesh

Table 4.4: Iteration steps for various iteration methods
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MG AMG

ε 10−2,10−3,10−4 10−2 10−3 10−4

level=1 1089 1089 1089 1089

level=2 289 480 479 479

level=3 81 307 331 231

level=4 25 157 108 108

(a) Number of points in coarse grids from uniform mesh

MG AMG

ε 10−2 10−3 10−4 10−2 10−3 10−4

level=1 797 1275 2102 797 1275 2102

level=2 410 649 1047 348 580 996

level=3 215 320 528 159 304 523

level=4 122 176 239 88 166 281

(b) Number of points in coarse grids from adaptive mesh

Table 4.5: Comparison on coarse grids from MG and AMG
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Numerical results for Problem 4:
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(a) Mesh:ε = 10−2
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(b) Mesh:ε = 10−3
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(c) Mesh:ε = 10−4
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(d) Solution:ε = 10−2
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(e) Solution:ε = 10−3
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(f) Solution: ε = 10−4

Figure 4.6: Solutions and adaptive meshes for variesε

ε 10−2 10−3 10−4

GMRES - - -

MG 26 187 -

AMG 29 - -

GMRES-GS 37 59 77

GMRES-MG 13 32 45

GMRES-AMG 11 24 33

(a) Iterative steps on uniform mesh

ε 10−2 10−3 10−4

GMRES - - -

MG 8 19 13

AMG 23 142 -

GMRES-GS 34 42 40

GMRES-MG 8 12 14

GMRES-AMG 10 16 16

(b) Iterative steps on adaptive mesh

Table 4.6: Iteration steps for various iteration methods
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MG AMG

ε 10−2,10−3,10−4 10−2 10−3 10−4

level=1 1089 1089 1089 1089

level=2 289 502 500 498

level=3 81 289 288 280

level=4 25 168 146 151

(a) Number of points in coarse grids from uniform mesh

MG AMG

ε 10−2 10−3 10−4 10−2 10−3 10−4

level=1 1223 1046 1231 1223 1046 1231

level=2 629 645 824 573 461 565

level=3 315 381 390 311 254 323

level=4 161 203 202 171 127 179

(b) Number of points in coarse grids from adaptive mesh

Table 4.7: Comparison on coarse grids from MG and AMG
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Chapter 5

Stopping Criteria for Iterative Linear Solvers

Let ηh,T denote an error indicator for a finite element solution of the convection-

diffusion equation discussed in Chapter 2. In this chapter, we seek some stopping

criteria for the iterative solutions such that meshes generated fromηn
h,T will not be too

different with the mesh generated fromηh,T , whereηh,T is the error indicator com-

puted from the SD-solutionuh on each elementT ∈ =h andηn
h,T is the error indicator

computed from the solutionun
h obtained after n steps of an iterative solution algorithm.

It is natural to require large enough n such that

|‖uh − un
h‖|2 ¹ c0

∑

T∈=h

ηh,T
2, (5.1)

where constantc0 > 0 is small. In other word,|‖u− un
h‖| is still bounded by the same

a posteriori upper bound. On the other hand, it is also desirable to have sufficient

iteration steps so thatηn
h,T is close toηh,T , i.e. there exist constantsc1, c2 ≈ 1 such

that

c1ηh,T < ηn
h,T < c2ηh,T . (5.2)

As a result,ηn
h,T can still produce similar mesh refinement asηh,T for any refinement
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strategy. In the following, we first assume

|‖uh − un
h‖|ωT

¹ ch,ωT
ηh,T (5.3)

on each mesh level, wherech,ωT
are constants to be determined. In Lemma 5.1.1 and

5.2.1 , we show what order of magnitude ofch,ωT
, in terms of h andε, is needed

for (5.2) to hold. Obviously, for developing computable stopping criteria, (5.3) is

not enough becauseηh,T is still an unknown quantity. It will be more satisfactory if

one can replaceηh,T by the error indicatorηhp,Tp whereTp is the parent element of

element T andhp is the diameter ofTp. In other word, if there exists a constantα À 0

independent with mesh size h such that

α < min
T∈=h

ηh,T

ηhp,Tp

,

then (5.3) can be replaced by the following inequality

|‖uh − un
h‖|ωT

¹ αch,ωT
ηhp,Tp ,

Then, one can have computable stopping criteria, as shown in Theorem 5.1.4 and

5.2.4, that imply (5.1) and (5.2). Unfortunately, although the global error reduction

rate has been studied by Dörfer and Nochetto [32] [68] and papers cited therein for

some self-adjoin problems, there is still no known estimation of the local reduction

rate for the error estimators.

Nevertheless, the stopping criteria in Theorem 5.1.5 and 5.2.5 are given to ensure that

(5.1) holds for the iterative solutions satisfying these criteria under the assumption

that the adaptive refinement process converges at a rate slower thanhσ, σ ≤ 2. This

assumption is generally true since the underlying weak solutions are generally not in

H2(Ω). In addition, in Theorem 5.1.6 and Theorem 5.2.6, we show that when the
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maximum marking strategy is employed for the mesh refinement, (5.2) holds in the

marked regions for the iterative solutions satisfying our stopping criteria and severe

over-refinement will not occur, under the assumption

maxT∈=h
ηh,T

maxTp∈=hp
ηhp,Tp

À 0,

is a constant independent with mesh size h. Our numerical studies support this as-

sumption. Furthermore, we also derive computable stopping criteria in Theorem 5.1.7

and 5.2.7 and show that both (5.1) and (5.2) hold without any assumption onηh,T

when the iterative solutions satisfying these stopping criteria and the marking strategy

in [68] is employed. In section 5.3, stopping criteria in Theorem 5.1.6 and 5.2.6 are

used in our numerical tests. Our numerical results show that almost identical meshes

are produced byηn
h,T andηh,T . For simplicity, only Dirichlet boundary condition is

considered and the interpolation errors from data and boundary conditions are high

order terms that can be ignored. Moreover, only one level of mesh refinement is con-

sidered in our analysis.
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5.1 Stopping Criteria Associated with Residual-Type a

Posteriori Error Estimation

Recall that for any function u in the finite element spaceVh of =h, Verfürth’s error

indicator is

ηT
2 = α2

T ‖fh − ε4u− b · ∇u− c · u‖2
0;T

+
1

2

∑

E∈∂T∩Ω

ε−1/2αE ‖[ε∂nE
u]E‖2

0;E

+
∑

E∈∂T∩ΓN

ε−1/2αE ‖gh − ε∂nE
u‖2

0;E

whereαT = min {hε−1/2, 1}, T ∈ =h andαE = min {|E|ε−1/2, 1}, E ∈ ∂T ∩ Ω.

Let u1, u2 be any two functions inVh. The following lemma gives a measure on how

closeu2 has to be withu1 so that the associated error indicators will have the same

profile.

Lemma 5.1.1 Letη1
T andη2

T be the error indicator ofu1 andu2 on element T respec-

tively. If

|‖u1 − u2‖|ωT
≤ 1

2
√

2 ‖b‖∞
ch,wT

η1
T , wherech,ωT

= ε1/2 max {
√

ε
h

, 1} (5.4)

then
1

2
η1

T ≤ η2
T ≤

3

2
η1

T . (5.5)

Proof: From the definition ofη1
T andη2

T ,

|η1
T − η2

T | ≤

{[αT (‖fh − ε4u1 − b · ∇u1 − cu1‖0,T − ‖fh − ε4u2 − b · ∇u2 − cu2‖0,T )]2︸ ︷︷ ︸
I

+
1

2
ε−1/2[

∑

E∈∂T

αE(‖[ε∂nE
u1]‖0,E − ‖[ε∂nE

u2]‖0,E)2

︸ ︷︷ ︸
II

]}1/2.
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Now let us estimate (I) and (II):

(I) ≤ α2
T ‖b · ∇(u2 − u1) + c(u2 − u1)‖2

0;T

≤ α2
T (‖b · ∇(u2 − u1)‖0;T + ‖c(u2 − u1)‖0;T )2

≤ α2
T (‖b‖∞;T ‖∇(u2 − u1)‖0;T + ‖c‖0;T ‖u2 − u1‖0;T )2

= α2
T (
‖b‖∞;T√

ε

√
ε ‖∇(u2 − u1)‖0;T +

‖c‖0;T√
d0

√
d0 ‖u2 − u1‖0;T )2

≤ α2
T (
‖b‖2

∞;T

ε
+
‖c‖2

0;T

d0

)(ε ‖∇(u2 − u1)‖2
0;T + d0 ‖u2 − u1‖2

0;T )

= CI |‖u2 − u1‖|20;T ,

whereCI = α2
T (

‖b‖2∞;T

ε
+

‖c‖20;T
d0

).

By applying the trace inequality (Lemma 3.1 [97]),

(II) ≤ 1

2
ε−1/2

∑

E∈∂T

αE ‖ε[∂nE
(u2 − u1)]E‖2

0;E

≤ 1

2
ε−1/2

∑

E∈∂T

αE{h−1/2
T ‖ε[∂nE

(u2 − u1)]E‖0;T

+ ‖ε[∂nE
(u2 − u1)]E‖1/2

0;T ‖∇(ε[∂nE
(u2 − u1)]E)‖1/2

0;T}2

≤ 1

2
ε−1/2

∑

E∈∂T

αE{2h−1/2
T ‖ε[∂nE

(u2 − u1)]E‖0;T}2,

by inverse estimate, Lemma 4.5.3 [21],

≤ 6ε1/2 max
E∈∂T

{αE}h−1
T (ε ‖∇(u2 − u1)‖2

0;ωT
)

= CII |‖u2 − u1‖|20;ωT
,

whereCII = 6ε1/2 maxE∈∂T {αE}h−1
T .

Clearly, whenh <
√

ε, αT ≈ αE ≈ h√
ε
. we haveCI ≈ (h

ε
)2, andCII ≈ 1. Also,

whenh >
√

ε, αT ≈ αE ≈ 1, we haveCI ≈ 1
ε
, andCII ≈

√
ε

h
< 1. Therefore,CI is

always greater thanCII . As a result, for convection-dominated flows, we have

|η2
T − η1

T | ≤
√

2CI |‖u2 − u1‖|ωT
. (5.6)
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From (5.4), this implies

η2
T ≤ η1

T +
√

2CICh,ωT
η1

T = (1 +
√

2CICh,ωT
)η1

T . (5.7)

η2
T ≥ η1

T −
√

2CICh,ωT
η1

T = (1−
√

2CICh,ωT
)η1

T . (5.8)

Let’s chooseCh,ωT
= 1

2
√

2‖b‖∞
ε1/2 max {

√
ε

h
, 1} ¹ 1

2
(
√

2CI)
−1. it is then clear that

1

2
η1

T ≤ η2
T ≤

3

2
η1

T .

2

Clearly, if one replacesη1
T by ηh,T andη2

T by ηn
h,T , the following corollary holds.

Corollary 5.1.2 Letuh be the finite element solution andun
h be the iterative solution.

If the number of iterations is large enough that

|‖uh − un
h‖|ωT

≤ 1

2
√

2 ‖b‖∞
ch,ωT

ηh,T , (5.9)

wherech,ωT
= ε1/2 max {

√
ε

h
, 1}, then

1

2
ηh,T ≤ ηn

h,T ≤
3

2
ηh,T . (5.10)

Moreover, for some marking strategies such as the marking strategy in [32], one may

not particularly require the values of error indicators from the exact solution and it-

erative solution to be similar on each element but only requires that theL2 norm of

the error indicator from exact solution is close to theL2 norm of the error indicator

computed from iterative solution in a set of elements. The result in Corollary 5.1.2

can be easily generalized for a set of elements.

Corollary 5.1.3 Letuh be the finite element solution andun
h be the iterative solution.

If the number of iterations is large enough such that

(
∑

T∈=∗h

|‖uh − un
h‖|2ωT

)1/2 ≤ 1

2
√

2 ‖b‖∞
min
T∈=∗H

{ch,ωT
}(

∑

T∈=∗h

η2
h,T )1/2, (5.11)
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where=∗h ⊂ =h andch,ωT
= ε1/2 max {

√
ε

h
, 1}, then

1

2
(
∑

T∈=∗h

η2
h,T )1/2 ≤ (

∑

T∈=∗h

ηn
h,T

2)1/2 ≤ 3

2
(
∑

T∈=∗h

η2
h,T )1/2. (5.12)

Proof: By the triangle inequality and (5.6),

|(
∑

T∈=∗h

η2
h,T )1/2 − (

∑

T∈=∗h

ηn
h,T

2)1/2| ≤ (
∑

T∈=∗h

|ηh,T − ηn
h,T |2)1/2

≤ (
∑

T∈=∗h

2CI |‖uh − un
h‖|2ωT

)1/2.

The result follows from the same arguments used to establish Lemma 5.1.1.

2

Now, letγn
h be the residual of the solution obtained after n step of an iterative solver.

Since

‖γn
h‖T = 〈fh − Ahu

n
h, fh − Ahu

n
h〉1/2

T

= 〈Ah(uh − un
h), Ah(uh − un

h)〉1/2
T

≥ min {Λ(AhA
∗
h)}1/2 ‖uh − un

h‖T

≥ ε1/2h−1 ‖uh − un
h‖0;ωT

≥ ε1/2h−1(
ε

h2
+ d0)

−1/2 |‖uh − un
h‖|ωT

,

we have,

|‖uh − un
h‖|ωT

≤ κ ‖γn
h‖T , whereκ = max { h√

ε
, 1}. (5.13)

Similarly, by the same argument,

|‖uh − un
h‖|Ω ≤ κ ‖γn

h‖0,Ω , whereκ = max {hmax√
ε

, 1}. (5.14)

Clearly, if n is large enough such that

‖γn
h‖T ≤

ch,ωT

κ
(min
T∈=h

ηh,T

ηhp,Tp

)ηhp,Tp ,
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the inequality,

|‖uh − un
h‖|ωT

≤ ch,ωT
ηh,T ,

holds. As a result of Corollary 5.1.2, (5.1) and (5.2) holds for the iterative solutions

satisfying the following stopping criterion.

Theorem 5.1.4 Letα = minT∈=h

ηh,T

ηhp,Tp
. If the number of iterations n is large enough

such that the residual

‖γn
h‖T ¹ αη

ε

h
ηhp,Tp , ∀T ∈ =h, (5.15)

then
1

2
ηh,T ≤ ηn

h,T ≤
3

2
ηh,T , (5.16)

and

|‖uh − un
h‖|Ω ≤ (

∑

T∈=h

η2
h,T )1/2. (5.17)

2

In next theorem, we provide a stopping criterion such that the global a posteriori error

bound won’t be affected by the iterative solution satisfying this stopping criterion. For

this purpose, we assume that the finite element solutions strictly converge to the weak

solution u with a rate slower thanh3/2 along the adaptive mesh refinement process,

i.e.
1

2
√

2
<

|‖u− uh‖|Ω∣∣∥∥u− uhp

∥∥∣∣
Ω

, (5.18)

whereuh is the finite element solution on=h anduhp is the finite element solution

on the parent mesh=hp of =h. This assumption is generally true because the a priori

error estimation in Chapter 2 only showsh3/2 convergence and the numerical studies
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in Chapter 2 even suggest the convergence rate is onlyh1/2.

From the local lower bound in [97] Proposition 4.1, we have

∑

Tp∈=hp

ηhp,Tp

2 ≤
∑

T∈=hp

{1 + ‖c‖L∞ωT

+ ε−1/2 ‖b‖∞,ωT
αT}2

∣∣∥∥u− uhp

∥∥∣∣2
ωTp

≤ 4{1 + ‖c‖∞ + ε−1/2 ‖b‖∞ max
T∈=hp

αTp}2
∣∣∥∥u− uhp

∥∥∣∣2
Ω

≤ 32{1 + ‖c‖∞ + 2ε−1/2 ‖b‖∞ max
T∈=hp

αT}2 |‖u− uh‖|2Ω , by (5.18),

≈ 64C ′2 ∑

T∈=h

η2
h,T ,

(5.19)

where

C ′ = ε−1/2 ‖b‖∞ max
T∈=hp

αT =




‖b‖∞ ε−1/2 if hmax >

√
ε.

‖b‖∞ hmaxε
−1 otherwise

(5.20)

Clearly, if n is large enough such that‖rn
h‖Ω ≤ 1

8κC′ (
∑

T∈=h
η2

hp,Tp
)1/2, by (5.14), the

above inequality implies

|‖uh − un
h‖|Ω ¹

∑

T∈=h

η2
h,T .

Therefore, from (5.14) and (5.20), the following theorem holds.

Theorem 5.1.5 Assume (5.18) holds. If n is large enough such that

‖rn
h‖Ω ≤

1

8 ‖b‖∞
C(

∑

T∈=hp

η2
hp,Tp

)1/2, (5.21)

whereC = ε/hmax. We have

|‖uh − un
h‖|Ω ≤ (

∑

T∈=h

η2
h,T )1/2.
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Although the a posteriori upper bound is maintained for iterative solutions satisfying

the stopping criterion (5.21), without Theorem 5.1.4, there is no guarantee that the

marking strategies will select the same elements that would be selected if the error

indicator is computed from the exact solution. Unfortunately, the constantαη in The-

orem 5.1.4 is unknown due to lack of estimations on local error reduction rate. To

deal with this difficulty, the marking strategy has to be taken into consideration in

the search for a stopping criterion. In the following theorem, we show that the er-

ror indicatorsηn
h,T andηh,T are similar in regions where elements are selected by the

maximum marking strategy, and that serious over-refinement will not occur when the

iterative solutions satisfy our stopping criterion.

Theorem 5.1.6 Letαη,∞ be a constant satisfying

αη,∞ ≤ maxT∈=h
ηh,T

maxTp∈=hp
ηhp,Tp

. (5.22)

Assume the maximum marking strategy is used with threshold valueθ. If

‖γn
h‖T ¹ (

ε

4hp

)αη,∞θ max
Tp∈=hp

ηhp,Tp , for all T ∈ =h, (5.23)

then
1

2
ηh,T ≤ ηn

h,T ≤
3

2
ηh,T , (5.24)

for any marked element T. On the other hand, for elementT̄ satisfying

ηh,T̄ <
θ

4
max
T∈=h

ηh,T (5.25)

will not be marked by the same marking strategy withηh,T replaced byηn
h,T .

Proof: First, for any element̄T ∈ =h, (5.13) and (5.22) imply

|‖uh − un
h‖|ωT̄

¹ 1

4
ε1/2 max {

√
ε

h
, 1}αη,∞θ max

Tp∈=hp

ηhp,Tp

<
1

4
ε1/2 max {

√
ε

h
, 1}θ max

T∈=h

ηh,T .

(5.26)
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Let T̄ be a marked element satisfying

ηh,T̄ ≥ θ max
T∈=h

ηh,T . (5.27)

From (5.26), we have

|‖uh − un
h‖|ωT̄

<
1

4
ε1/2 max {

√
ε

h
, 1}ηh,T̄ .

By Corollary 5.1.2, the inequality (5.24) holds. Now, letT̄ be an element satisfying

(5.25). Recalling (5.6), we have

|ηh,T̄ − ηn
h,T̄ | ≤ (ε−1/2 min { h√

ε
, 1}) |‖uh − un

h‖|ωT̄
. (5.28)

By combining (5.26) and (5.28), we have

|ηh,T̄ − ηn
h,T̄ | ≤

θ

4
max
T∈=h

ηh,T .

Therefore,

ηn
h,T̄ ≤ ηh,T̄ +

θ

4
max
T∈=h

ηh,T

≤ θ

2
max
T∈=h

ηh,T by (5.25),

≤ θ max
T∈=h

ηn
h,T , by (5.24).

The second part of the theorem is proved.

2

Now, let us consider the marking strategy in [32] where a set of elements,=∗h are

marked such that

(
∑

T∈=∗h
η2

h,T )1/2 ≥ θ(
∑

T∈=h

η2
h,T )1/2, (5.29)
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where0 < θ ≤ 1. Assume n is large enough such that

|‖uh − un
h‖|2Ω ≤ (αch,ωT

)2
∑

Tp∈=hp

η2
hp,Tp

. (5.30)

We have

∑

T∈=∗h

|‖uh − un
h‖|2ωT

≤ 4 |‖uh − un
h‖|2Ω

¹ (αch,ωT
)2

∑

Tp∈=hp

η2
hp,Tp

≤ 64(αch,ωT
)2C ′2 ∑

T∈=h

η2
h,T , by (5.19),

≤ 64(αch,ωT
C ′)2 1

θ2

∑

T∈=∗h

η2
h,T .

Let us chooseα = θ
16
√

2C′‖b‖∞
= θ

16
√

2‖b‖2∞
ε1/2 max {

√
ε

hmax
, 1}. Obviously, (5.19) and

(5.30) implies

|‖uh − un
h‖|Ω ¿ (

∑

T∈=h

η2
h,T )1/2.

Moreover, from Corollary 5.1.3, we have

1

2
(
∑

T∈=∗h

η2
h,T )1/2 ≤ (

∑

T∈=∗h

ηn
h,T

2)1/2 ≤ 3

2
(
∑

T∈=∗h

η2
h,T )1/2.

Using similar argument, the following inequality also holds:

(1− θ

2
)(

∑

T∈=h

η2
h,T )1/2 ≤ (

∑

T∈=h

ηn
h,T

2)1/2 ≤ (1 +
θ

2
)(

∑

T∈=h

η2
h,T )1/2. (5.31)

Recalling (5.14), we have

|‖uh − un
h‖|Ω ≤ κ ‖γn

h‖Ω , whereκ = max { h√
ε
, 1}. (5.32)

A computable stopping criterion similar to (5.15) can be shown in the following,

without assumingminT∈=h

ηh,T

ηhp,Tp
= O(1).
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Theorem 5.1.7 Suppose the marking strategy (5.29) is used. If the iteration number

is large enough such that

‖γn
h‖Ω ¹

θ

8
√

2 ‖b‖2
∞

ε3/2

h
C(

∑

Tp∈=hp

ηhp,Tp

2)1/2, (5.33)

whereC = max {2
√

ε
hp

, 1}, then there exist a small constantc0 such that

|‖uh − un
h‖|Ω ≤ c0(

∑

T∈=h

η2
h,T )1/2, (5.34)

and
1

2
(
∑

T∈=∗h

η2
h,T )1/2 ≤ (

∑

T∈=∗h

ηn
h,T

2)1/2 ≤ 3

2
(
∑

T∈=∗h

η2
h,T )1/2. (5.35)

Proof: From (5.30) and (5.32), if

‖γn
h‖Ω ≤

αch,ωT

κ
(

∑

Tp∈=hp

η2
hp,Tp

)1/2,

then (5.30) holds. As a result, from the above argument, (5.34) and (5.35) hold. Since

κ = max { h√
ε
, 1}, α =

θ

16
√

2 ‖b‖∞
ε1/2 max {

√
ε

h
, 1} andch,ωT

= ε1/2 max {
√

ε

h
, 1},

we have
αch,ωT

κ
=

θ

8
√

2 ‖b‖∞
ε3/2

hp

max {2
√

ε

hp

, 1}.

Therefore, (5.33) implies (5.34) and (5.35).

2

Remark 5.1.8 From (5.31) and (5.35),

(
∑

T∈=∗h

ηn
h,T

2)1/2 ≥ 1

2
(
∑

T∈=∗h

ηh,T
2)1/2 >

θ

2
(
∑

T∈=h

ηh,T
2)1/2 ≥ θ

2 + θ
(
∑

T∈=h

ηn
h,T

2)1/2.
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Therefore, for any subset=∗h ⊂ =h, which satisfies (5.29), can also be marked by the

following marking strategy:

(
∑

T∈=∗h

ηn
h,T

2)1/2 ≥ θ

2 + θ
(
∑

T∈=h

ηn
h,T

2)1/2. (5.36)

However, for largeθ, (5.36) results in under-refinement comparing to the mesh gener-

ated from marking strategy (5.29). Hence, more iterative steps are needed to overcome

this drawback. On the other hand, one can also employee the following strategy:

Let =̄h be the maximal subset such that

(
∑

T∈=̄h

ηn
h,T

2)1/2 <
θ

2 + θ
(
∑

T∈=h

ηn
h,T

2)1/2.

Elements in the the complement set of =̄h are marked for

mesh refinement .

For largeθ, the above marking strategy produces less under-refinement. For example,

for θ = 1, (5.29) produces fully refinement and, obviously, the above marking strategy

marks more elements than (5.36).

5.2 Stopping Criteria Associated with Neumann-Type

a Posteriori Error Estimation

Using the same analysis as in section 5.1, we can derive a similar stopping criterion

for iterative solvers when the Kay-Silvester error indicator is employed for mesh re-

finement. Recall we assume the interpolation errors are high order terms and can be

ignored. Hence, in the following analysis, the second term in the a posteriori upper
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bound will be ignored. Again, one would like to have enough iterations such that the

following inequalities hold,

‖∇(uh − un
h)‖0 ≤ c0(

∑

T∈=h

η2
h,T )1/2, for a small constantc0, (5.37)

and

c1ηh,T < ηn
h,T < c2ηh,T , for some small constantsc1 andc2, (5.38)

whereuh is the exact finite element solution,un
h is the iterative solution andηh,T , ηn

h,T

are the corresponding error indicators. In this case, first, we also assume

‖∇(uh − un
h)‖0,T ≤ ch,ωT

ηh,T . (5.39)

Hereηh,T = ‖∇eT‖0,T is the error indicator witheT ∈ QT satisfying

ε (∇eT ,∇v)T =
(
R0

T , v
)

T
− 1

2
ε

∑

E∈E(T )

(RE, v)E , (5.40)

where

RT = f − b · ∇uh,

R0
T = π0(RT ),

RE =





[| ∂uh

∂nE
|]E E ∈ Eh,Ω

−2( ∂uh

∂nE
) E ∈ Eh,N

0 E ∈ Eh,D,

andπ0 is theL2 projection onto constant function spaceP0(T ).

Let ui ∈ H1(Ω) andei,T ∈ QT satisfy

ε (∇ei,T ,∇v)T =
(
R0

i,T , v
)

T
− 1

2
ε

∑

E∈E(T )

(Ri,E, v)E , for i = 1, 2, (5.41)

132



where

Ri,T = f − b · ∇ui,

R0
i,T = π0(Ri,T ),

Ri,E =





[| ∂ui

∂nE
|]E E ∈ Eh,Ω

−2( ∂ui

∂nE
) E ∈ Eh,N

0 E ∈ Eh,D.

From (5.41), we have

ε (∇(e1,T − e2,T ),∇v)T =
(
R0

1,T −R0
2,T , v

)
T
− 1

2
ε

∑

E∈E(T )

(R1,E −R2,E, v)E .

(5.42)

Let v = e1,T − e2,T . From the Schwartz inequality, (5.42) implies

ε ‖∇(e1,T − e2,T )‖2
0,T ≤

∥∥R0
1,T −R0

2,T

∥∥
0,T
‖e1,T − e2,T‖0,T︸ ︷︷ ︸

I

+
1

2
ε

∑

E∈E(T )

‖R1,E −R2,E‖0,E ‖e1,T − e2,T‖0,E

︸ ︷︷ ︸
II

.
(5.43)

First, let’s estimate
∥∥R0

1,T −R0
2,T

∥∥
0,T

:

∥∥R0
1,T −R0

2,T

∥∥
0,T

=
∥∥π0(f − b · ∇u1)− π0(f − b · ∇u2)

∥∥
0,T

=
∥∥π0(b · (∇(u2 − u1)))

∥∥
0,T

¹ ‖b · ∇(u1 − u2)‖0,T

≤ ‖b‖∞,T ‖∇(u1 − u2)‖0,T .

(5.44)

Sincee1,T − e2,T ∈ QT , from a scaling argument, we have

‖e1,T − e2,T‖0,T ≤ C(θT )hT ‖∇(e1,T − e2,T )‖0,T . (5.45)
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From (5.44) and (5.45), it is clear that

(I) ≤ C(θT ) ‖b‖∞,T hT ‖∇(u1 − u2)‖0,T ‖∇(e1,T − e2,T )‖0,T (5.46)

Now, let’s estimate‖R1,E −R2,E‖0,E. ForE ∈ Eh,n, using the trace inequality,

‖R1,E −R2,E‖0,E =

∥∥∥∥[| ∂u1

∂nE

|]E − [| ∂u2

∂nE

|]E
∥∥∥∥

0,E

=

∥∥∥∥[| ∂u1

∂nE

− ∂u2

∂nE

|]E
∥∥∥∥

0,E

≤ h
−1/2
T

∥∥∥∥[| ∂(u1 − u2)

∂nE

|]E
∥∥∥∥

0,T

≤ h
−1/2
T (‖∇(u1 − u2)‖0,T + ‖∇(u1 − u2)‖0,Tnb

),

(5.47)

whereTnb is the triangle sharing edge E with T, ie,Tnb ∩ T = E.

A similar result holds forE ∈ Eh,N . Again, from a scaling argument, we have

‖e1,T − e2,T‖0,E ≤ C(θ)h
1/2
E ‖∇(e1,T − e2,T )‖0,T . (5.48)

By (5.47) and (5.48), we have

(II) ≤ 1

2
ε
∑
E∈E

C(θT )h
1/2
E h

−1/2
T [‖∇(u1 − u2)‖0,T + ‖∇(u1 − u2)‖0,Tnb

] ‖∇(e1,T − e2,T )‖0,T

≤ 3

2
C(θT ) max

E∈E
(
hE

hT

)1/2ε ‖∇(u1 − u2)‖0,ωT
‖∇(e1,T − e2,T )‖0,T .

(5.49)

Let CI = C(θT ) ‖b‖∞,T (hT

ε
) andCII = 3

2
C(θT ) maxE∈E(T ) (hE

hT
)1/2. By combining

(5.43), (5.46) and (5.49), we have

‖∇(e1,T − e2,T )‖0,T ≤ [CI + CII ] ‖∇(u1 − u2)‖0,ωT
≈ CI ‖∇(u1 − u2)‖0,ωT

,
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becauseCI is the dominating term whenε ¿ h. Recallη1
h,T = ‖∇e1,T‖0,T and

η2
h,T = ‖∇e2,T‖0,T . The above inequality implies

|η1
h,T − η2

h,T | ¹ CI ‖∇(u1 − u2)‖0,ωT
. (5.50)

Clearly, if ‖∇(u1 − u2)‖0,ωT
≤ 1

2CI
η1

h,T , we have

1

2
η1

h,T ≤ η2
h,T ≤

3

2
η1

h,T . (5.51)

Now a result analogous to Lemma 5.1.1 can be written as follows:

Lemma 5.2.1 Let η1
h,T and η2

h,T be the error indicator ofu1 and u2 on element T

respectively. If

‖∇(u1 − u2)‖0,ωT
≤ ch,ωT

η1
h,T , wherech,ωT

= O(
ε

h
), (5.52)

then
1

2
η1

h,T ≤ η2
h,T ≤

3

2
η1

h,T . (5.53)

By replacingη1
h,T andη2

h,T and byηh,T andηn
h,T , the following corollary holds.

Corollary 5.2.2 Letuh be the finite element solution andun
h be the iterative solution.

If the iteration steps are large enough such that

‖∇(uh − un
h)‖0,ωT

≤ ch,ωT
ηh,T , wherech,ωT

= O(
ε

h
), (5.54)

then
1

2
ηh,T ≤ ηn

h,T ≤
3

2
ηh,T . (5.55)

Of course, one can also obtain a similar result as in Corollary 5.1.3.
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Corollary 5.2.3 Letuh be the finite element solution andun
h be the iterative solution.

If the iterative steps are large enough such that

(
∑

T∈=∗h

‖∇(uh − un
h)‖2

0,ωT
)1/2 ≤ min

T∈=∗h
{ch,ωT

}(
∑

T∈=∗h

η2
h,T )1/2 (5.56)

, where=∗h ⊂ =h andch,ωT
= O( ε

h
) then

1

2
(
∑

T∈=∗h

η2
h,T )1/2 ≤ (

∑

T∈=∗h

ηn
h,T

2)1/2 ≤ 3

2
(
∑

T∈=∗h

η2
h,T )1/2. (5.57)

2

Let rn
h be the residual of the nth iterative solution. Since

‖rn
h‖T = ‖fh − Ahu

n
h‖T

= ‖Ah(uh − un
h)‖T

≥ min Λ(AhA
∗
h)

1/2 ‖uh − un
h‖T

º √
εh−1 ‖uh − un

h‖0,ωT

º √
ε ‖∇(uh − uh,n)‖0,ωT

, by inverse inequality,

we have

‖∇ · (uh − un
h)‖0,ωT

¹ ε−1/2 ‖γn
h‖T . (5.58)

The same analysis also gives

‖∇ · (uh − un
h)‖0,ΩT

¹ ε−1/2 ‖γn
h‖Ω . (5.59)

From Corollary 5.2.2 and (5.58), obviously, the following theorem holds.

Theorem 5.2.4 Letαη = minT∈=h

ηh,T

ηhp,Tp
, whereTp ∈ =hp is the parent triangle of T

with diameterhp. If the number of iteration is large enough such that the residual

‖γn
h‖T ¹ αη

ε3/2

hp

ηhp,Tp , ∀T ∈ =h, (5.60)
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then
1

2
ηh,T < ηn

h,T <
3

2
ηh,T , (5.61)

and

‖∇(uh − un
h)‖0,Ω ¹ (

∑

T∈=h

η2
h,T )1/2. (5.62)

In next theorem, we provide a computable stopping criterion such that (5.37) holds

by assuming
1

2
≤ |u− uh|1,Ω

|u− uhp |1,Ω

, (5.63)

where u is the weak solution anduhp is the finite element solution on parent mesh=hp .

Since the interpolation error is only O(h) inH1 norm, this assumption is reasonable.

Theorem 5.2.5 Assume (5.63) holds. If n is large enough such that the residualrn
h of

nth iterative solution satisfying

‖rn
h‖Ω ¹

ε

hmax

(
∑

T∈=hp

η2
hp,Tp

)1/2, (5.64)

wherehmax is the maximum diameter of triangles in=h, we have

‖∇(uh − un
h)‖0,Ω ¹ (

∑

T∈=h

η2
h,T )1/2.

Proof: From the local lower bound in [59] Theorem 1,

(
∑

Tp∈=hp

ηhp,Tp

2) ¹
∑

T∈=hp

(
∥∥∇(u− uhp)

∥∥
0,ωTp

+
hp

ε

∑
T∈ωTp

‖b‖∞,T

∥∥∇(u− uhp)
∥∥

0,T
)2

¹ (
2hmax

ε
‖b‖∞)2

∑

Tp∈=hp

∥∥∇(u− uhp)
∥∥2

0,ωTp

≤ 16(
hmax

ε
‖b‖∞)2

∥∥u− uhp

∥∥2

Ω

≤ 64(
hmax

ε
‖b‖∞)2 ‖u− uh‖2

Ω , by (5.63)

≤ 64(
hmax

ε
‖b‖∞)2

∑

T∈=h

η2
h,T .

(5.65)
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By plugging the above estimate (5.64) and (5.65) into (5.59), the theorem holds.

2

Although, the Theorem 5.2.5 provide a computable stopping criterion such that the

global posteriori upper bound will not be violated, the refined mesh generated from

such iterative solution can be very different from the refined mesh generated from

exact solution without Theorem 5.2.4. On the other hand, in Theorem 5.2.4,ε3/2

h
and

ηhp,Tp can be very small in the regions where elements have never been refined by the

mesh refinement process. As a result, one may need a very large iteration number

for (5.60) to be satisfied on elements in these regions. Therefore, evenαη can be

estimated, (5.60) may still not be a proper stopping criterion for iterative solvers in

real applications, especially whenε is small. Again, one needs to take the marking

strategy into consideration in finding a suitable stopping criterion. In mesh refinement

point of view, intuitively, it is not necessary to keep the same profile betweenηh,T

and ηn
h,T in the unmarked regions. The stopping criterion in the following lemma

guarantees that when the maximum marking strategy is used, the mesh generated

from ηn
h,T will not produce serious over-refinement compared to the mesh generated

from ηh,T . Moreover, the same profile is kept betweenηh,T andηn
h,T in the marked

regions.

Theorem 5.2.6 Letαη,∞ be a constant satisfying

αη,∞ ≤ maxT∈=h
ηh,T

maxTp∈=hp
ηhp,Tp

. (5.66)

Assume the maximum marking strategy is used with threshold valueθ. If

‖γn
h‖T ¹ (

ε3/2

4hp

)αη,∞θ max
Tp∈=hp

ηhp,Tp , for all T ∈ =h, (5.67)
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then
1

2
ηh,T ≤ ηn

h,T ≤
3

2
ηh,T , (5.68)

for any marked element T. On the other hand, for elementT̄ satisfying

ηh,T̄ <
θ

4
max
T∈=h

ηh,T (5.69)

will not be marked by the same marking strategy withηh,T replaced byηn
h,T .

Proof: First, for any element̄T ∈ =h, (5.58) and (5.67) imply

‖∇(uh − un
h)‖0,ωT̄

¹ ε

4hp

αη,∞θ max
Tp∈=hp

ηhp,Tp

<
ε

4h
θ max

T∈=h

ηh,T .

(5.70)

Let T̄ be a marked element satisfying

ηh,T̄ ≥ θ max
T∈=h

ηh,T . (5.71)

From (5.70), we have

‖∇(uh − un
h)‖0,ωT̄

<
ε

h
ηh,T̄ .

By Corollary 5.2.2, the inequality (5.68) holds. Now, letT̄ be an element satisfying

(5.69). Recall that (5.50) implies

ε

h
|ηh,T̄ − ηn

h,T̄ | ≤ ‖∇(uh − un
h)‖0,ωT̄

. (5.72)

By combining (5.70) and (5.72), we have

|ηh,T̄ − ηn
h,T̄ | ≤

θ

4
max
T∈=h

ηh,T .

Therefore,

ηn
h,T̄ ≤ ηh,T̄ +

θ

4
max
T∈=h

ηh,T

≤ θ

2
max
T∈=h

ηh,T by (5.69),

≤ θ max
T∈=h

ηn
h,T , by (5.68).
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The second part of the theorem is proved.

2

Next, let’s consider the marking strategy (5.29). By using an argument similar to

that used in Theorem 5.1.7, we show that iterative solutions satisfying the following

stopping criterion can safely replace the exact solution.

Theorem 5.2.7 If the marking strategy (5.29) is used and the number of iterative

steps is large enough such that

‖γn
h‖Ω ¹

θ

64 ‖b‖2
∞

ε5/2

h2
p

(
∑

Tp∈=hp

ηhp,Tp

2)1/2, (5.73)

then there exist a small constantc0 such that

‖∇(uh − un
h)‖Ω ≤ c0(

∑

T∈=h

η2
h,T )1/2, (5.74)

and
1

2
(
∑

T∈=∗h

η2
h,T )1/2 ≤ (

∑

T∈=∗h

ηn
h,T

2)1/2 ≤ 3

2
(
∑

T∈=∗h

η2
h,T )1/2. (5.75)

Proof: First, it is clear (5.74) holds from Theorem 5.2.5. Now, since

‖∇(uh − un
h)‖Ω ¹ ε−1/2 ‖γn

h‖Ω ,

we have

∑

T∈=∗h

‖∇(uh − un
h)‖2

ωT
≤ 4‖∇(uh − un

h)‖2
Ω

≤ 4ε−1 ‖γn
h‖2

Ω

≤ 4(
θ

64 ‖b‖2
∞

)2 ε4

h4
p

∑

Tp∈=hp

ηhp,Tp

2

≤ (
θ2

64 ‖b‖2
∞

)
ε2

h2

∑

T∈=h

η2
h,T

≤ (
1

64 ‖b‖2
∞

)
ε2

h2

∑

T∈=∗h

η2
h,T .

140



Therefore, (5.75) is a direct result from Corollary 5.2.3.

2

5.3 Numerical Results

In this section, we compare the refined meshes of Problems 1, 2 and 3 for different

values ofε = 10−2, 10−3 and10−4. The iteration steps among different linear solvers

and stopping criteria are also compared. In each problem, first the linear systems are

directly solved on the coarsest 4x4 grid. Then the following procedures are followed:

1. Compute error estimatorη.

2. Select elements according to the maximum marking strategy.

3. Refine selected elements and generate a new mesh.

4. Obtain the initial guess by interpolating the current solution to the new mesh.

5. Solve linear system so that a given stopping criterionSi is satisfied.

Three differentSi, i = 0, 1, 2, are chosen. IfS0 is given, the linear systems are solved

directly. S1 is the heuristic stopping tolerance, i.e., theL2 norm of the residual of iter-

ative solutions less than10−6. S2 is the stopping criterion in Theorem 5.1.6 and 5.2.6.

The thresholdθ in the maximum strategy is carefully chosen so that more detail layer

structures of the solutions can be seen during each refinement step in both interior and

boundary layer regions. The threshold is set to 0.25 for Problem 1. For Problem 2

and 4, the threshold is set to 0.1. For the number of refinement steps, four steps are

performed for the caseε = 10−2, seven steps are performed for the caseε = 10−3, and

eight steps are performed for the cases10−4. Both MG and GMRES with the same
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Gauss-Seidel smooother or preconditioner are employed as the iterative solvers. One

HGS step is applied on Problem 1, one VGS step is applied on problem 2 and one

ADGS step, consisting of HGS, VGS, backward HGS and backward VGS, is applied

on Problem 4.

As shown in the following numerical results, the meshes, generated from MG or GM-

RES iterative solutions that satisfying our stopping criteria, are almost the same as the

mesh generated from exact finite element solutions in all cases. Not surprisingly, MG

requires fewer iterations to reach the stopping criteria than GMRES, especially when

our stopping criteria is used. The total amount of work of MG with our stopping cri-

teria is about half of the amount of work of MG with the heuristic stopping criterion.

However, no such saving can be seen from GMRES. Our numerical results indicate

MG iterative methods with the stopping criteria in previous sections are the method

of choice if fast and reliable iterative solutions are expected in the adaptive refinement

process.
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Problem 1 with VR error estimator:

ε
maxT∈=h

ηT

maxTp∈=hp
ηTp

on refined meshes

10−2 0.481 0.483 0.459 0.412

10−3 0.487 0.509 0.490 0.491 0.482 0.469 0.429

10−4 0.485 0.532 0.476 0.505 0.493 0.495 0.491 0.485

Table 5.1: Verification of the assumption (5.22) of the new stopping criteria

ε Tol Iterations

10−2
S1 9 11 10 9

S2 2 3 2 1

10−3
S1 10 15 15 15 11 9 8

S2 3 5 4 4 2 1 1

10−4
S1 10 16 17 21 21 17 13 10

S2 4 7 6 9 7 5 2 1

(a) MG iteration steps

ε Tol Iterations

10−2
S1 9 11 14 20

S2 25 26 27 30

10−3
S1 10 12 14 19 20 23 26

S2 25 27 29 30 29 31 30

10−4
S1 10 12 15 19 24 23 26 26

S2 25 27 28 30 33 33 33 31

(b) GMRES iteration steps

Table 5.2: Comparison of iteration counts for different stopping criteria

ε Tolerance Node number

10−2 S0, S1, S2 47 102 218 442

10−3
S0, S1 47 102 220 464 940 1879 3736

S2 47 102 220 464 941 1880 3737

10−4 S0, S1 47 102 221 474 980 1950 3835 7582

S2 47 102 221 473 976 1949 3834 7561

Table 5.3: Comparison of number of nodes of refined meshes from MG solutions
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Problem 1 with KS error estimator:

ε
maxT∈=h

ηT

maxTp∈=hp
ηTp

on refined meshes

10−2 0.481 0.483 0.459 0.413

10−3 0.487 0.509 0.489 0.491 0.483 0.469 0.428

10−4 0.485 0.532 0.477 0.505 0.492 0.495 0.492 0.485

Table 5.4: Verification of the assumption (5.66) of the new stopping criteria

ε Tol Iterations

10−2
S1 8 11 10 9

S2 3 4 4 3

10−3
S1 10 15 15 15 11 9 8

S2 4 7 7 5 4 3 2

10−4
S1 10 16 17 21 21 17 13 10

S2 5 9 9 12 9 7 4 3

(a) MG iteration steps

ε Tol Iterations

10−2
S1 9 11 14 20

S2 25 26 27 29

10−3
S1 10 12 14 19 20 23 26

S2 25 27 28 30 30 29 28

10−4
S1 10 12 15 19 24 23 26 26

S2 25 27 28 31 33 33 33 32

(b) GMRES iteration steps

Table 5.5: Comparison of iteration steps for different stopping criteria

ε Tolerance Node number

10−2 S0, S1, S2 47 102 218 442

10−3 S0, S1, S2 47 102 220 464 940 1879 3736

S2 47 102 220 464 944 1883 3740

10−4
S0, S1 47 102 221 474 980 1950 3835 7582

S2 47 102 221 474 980 1951 3836 7575

Table 5.6: Comparison of number of nodes of refined meshes from MG solutions
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Problem 2 with VR error estimator:

ε
maxT∈=h

ηT

maxTp∈=hp
ηTp

on refined meshes

10−2 0.5 0.5 0.5 0.5

10−3 0.5 0.5 0.5 0.5 0.5 0.5 0.5

10−4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Table 5.7: Verification of the assumption (5.22) of the new stopping criteria

ε Tol Iterations

10−2
S1 12 10 9 12

S2 3 3 3 6

10−3
S1 16 13 11 9 8 8 15

S2 4 3 3 3 2 3 11

10−4
S1 16 14 12 10 9 8 8 8

S2 6 4 4 3 3 2 2 2

(a) MG iteration steps

ε Tol Iterations

10−2
S1 11 12 13 17

S2 26 26 26 30

10−3
S1 11 12 12 12 13 15 28

S2 26 26 26 26 27 27 35

10−4
S1 11 12 12 12 13 15 16 17

S2 26 26 26 26 27 27 28 28

(b) GMRES iteration steps

Table 5.8: Comparison of iteration steps for different stopping criteria

ε Tolerance Node number

10−2 S0, S1, S2 50 97 190 394

10−3
S0, S1 50 91 174 343 697 1350 2702

S2 50 91 174 343 683 1359 2705

10−4 S0, S1 50 91 174 343 679 1346 2674 5331

S2 50 91 174 343 679 1346 2688 5369

Table 5.9: Comparison of number of nodes of refined meshes from MG solutions
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Problem 2 with KS error estimator:

ε
maxT∈=h

ηT

maxTp∈=hp
ηTp

on refined meshes

10−2 0.5 0.5 0.5 0.499

10−3 0.5 0.5 0.5 0.5 0.5 0.5 0.5

10−4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Table 5.10: Verification of the assumption (5.66) of the new stopping criteria

ε Tol Iterations

10−2
S1 12 10 9 12

S2 4 4 4 7

10−3
S1 16 13 11 9 8 8 15

S2 7 4 4 4 3 4 13

10−4
S1 16 14 12 10 9 8 8 8

S2 9 6 5 5 4 3 3 3

(a) MG iteration steps

ε Tol Iterations

10−2
S1 11 12 13 17

S2 26 26 26 30

10−3
S1 11 12 12 12 13 15 28

S2 26 26 26 26 27 27 35

10−4
S1 11 12 12 12 13 15 16 17

S2 26 26 26 26 27 27 28 28

(b) GMRES iteration steps

Table 5.11: Comparison of iteration steps for different stopping criteria

ε Tolerance Node number

10−2 S0, S1, S2 50 97 190 394

10−3
S0, S1 50 91 174 343 697 1350 2702

S2 50 91 174 343 683 1359 2702

10−4 S0, S1 50 91 174 343 679 1346 2674 5331

S2 50 91 174 343 679 1346 2688 5334

Table 5.12: Comparison of number of nodes of refined meshes from MG solutions
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Problem 4 with VR error estimator:

ε
maxT∈=h

ηT

maxTp∈=hp
ηTp

on refined meshes

10−2 0.35 0.29 0.26 0.26

10−3 0.35 0.29 0.75 0.65 0.84 0.65 0.31

10−4 0.35 0.29 0.48 1.84 0.77 0.78 0.69 0.38

Table 5.13: Verification of the assumption (5.22) of the new stopping criteria

ε Tol Iterations

10−2
S1 19 10 8 5

S2 3 3 3 2

10−3
S1 36 25 21 12 9 11 10

S2 6 8 9 4 3 5 4

10−4
S1 36 44 28 19 18 19 19 16

S2 11 14 14 9 6 5 6 6

(a) MG iteration steps

ε Tol Iterations

10−2
S1 16 15 32 35

S2 27 30 32 36

10−3
S1 28 35 41 41 48 53 57

S2 29 35 44 41 46 55 58

10−4
S1 29 37 48 39 35 44 67 76

S2 29 37 48 38 35 44 67 76

(b) GMRES iteration steps

Table 5.14: Comparison of iteration steps for different stopping criteria

ε Tolerance Node number

10−2
S0, S1 72 167 415 1134

S2 72 171 423 1138

10−3
S0, S1 73 197 453 699 1113 1754 2815

S2 73 197 459 705 1131 1779 2839

10−4 S0, S1 73 205 459 790 1154 1785 2753 4144

S2 73 205 457 787 1148 1783 2728 4119

Table 5.15: Comparison of number of nodes of refined meshes from MG solutions
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Problem 4 with KS error estimator:

ε
maxT∈=h

ηT

maxTp∈=hp
ηTp

on refined meshes

10−2 0.34 0.30 0.36 0.24

10−3 0.34 0.37 0.51 0.68 0.75 0.44 0.17

10−4 0.34 0.31 0.33 0.24 0.71 0.54 0.82 0.52

Table 5.16: Verification of the assumption (5.66) of the new stopping criteria

ε Tol Iterations

10−2
S1 20 10 8 6

S2 6 5 4 3

10−3
S1 41 21 16 14 18 18 10

S2 13 11 10 8 11 10 6

10−4
S1 52 27 22 24 17 15 15 25

S2 22 17 16 16 9 9 11 21

(a) MG iteration steps

ε Tol Iterations

10−2
S1 15 23 20 36

S2 27 30 33 36

10−3
S1 28 34 37 39 45 54 53

S2 28 34 37 39 45 54 53

10−4
S1 28 24 39 32 35 42 56 69

S2 28 35 39 32 35 42 55 69

(b) GMRES iteration steps

Table 5.17: Comparison of iteration steps for different stopping criteria

ε Tolerance Node number

10−2 S0, S1, S2 70 168 390 911

10−3
S0, S1 70 176 345 592 948 1458 2391

S2 70 176 345 592 948 1458 2391

10−4 S0, S1 70 176 354 764 1143 1752 2674 4093

S2 70 176 354 764 1143 1750 2688 4082

Table 5.18: Comparison of number of nodes of refined meshes from MG solutions
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Chapter 6

Conclusions, Summary and Future Research

In this thesis, we concentrate on finding an accurate and efficient solver for solving the

convection-diffusion equations. To achieve this goal involves accurate discretization

methods, regularity estimates, a priori error estimations, reliable a posteriori error

estimations and fast linear solvers. In this work, we have found that an accurate

approximate solution of the convection-diffusion equation can be obtained by SDFEM

discretization on adaptive refinement meshes. In this scenario, the question of how to

compute the approximate solution that satisfies a pre-described accuracy efficiently

can be broken into the following three questions:

1. How reliable is the a posteriori error estimation?

2. How fast and accurate can one refine the meshes to resolve boundary and inte-

rior layers?

3. What is the most efficient linear solver under the adapted refined meshes?

Our studies do not answer the first question and only show that the Kay and Silvester’s

a posteriori error estimation is more reliable than the Verfürth’s error estimation. For

question 2, with a carefully chosen error-adaptive sensitivity parameter, our error-
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adapted mesh refinement strategy can be a remedy in case regular refinement fails to

resolve the sharp gradient layers of the solution. Finally, the multigrid method com-

bined with our stopping criteria seems to be a promising answer to the second and

third questions. We summarize our results in the following.

In Chapter 2, we study the well known Galerkin discretization method (GK) and

the streamline upwinding finite element discretization method (SDFEM). For both

methods, the existence of the approximate solution and the a priori error estimation

between the approximation solutionuh and the exact solutionu are proved. Our nu-

merical results in Section 2.3 show that SDFEM produces more accurate solutions.

Furthermore, the error|‖u− uh‖| decreases in the order ofO(h1/2) is observed and

suggests that the a priori error estimation (2.38) in terms of‖∇u‖0 may provide a

better error bound. The theoretical impact from this observation is reflected on the

proof of our multigrid convergence result, Theorem 4.3.4.

In Chapter 3, we study the a posteriori error estimations including the residual type of

error estimation (VR) proposed by Verfürth and the Neumann-type of error estimation

(KS) proposed by Kay and Silvester. Our numerical results in Section 3.3 shows that

the KS error estimation is more reliable than the VR error estimation. In addition,

the local lower bounds of both error estimations are sharp and can be considered as

efficient error indicators to pinpoint where the exact error is large. In order to increase

the accuracy of the approximate solution, we use the KS indicator to refine meshes

and move grid points to where the value of KS error indicator is large. First, our

numerical results in Section 3.4 show that a simple moving mesh strategy, Algorithm

3.4.1, is able to increase the solution accuracy. However, drawbacks of the moving
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mesh strategy include the necessity of a carefully chosen relaxation parameter and

expensive computation overhead if fast multigrid linear solvers are desired. Second,

the regular refinement strategy either requires too many refinement steps or generates

too many grid points to resolve layers, or even fails to resolve the layer when the con-

vection term is strongly dominant. We introduce an error-adapted mesh refinement

strategy in Section 3.5 to overcome these difficulties. The meshes generated from

the error-adapted refinement strategy are nested and can be directly used in multi-

grid solvers. Moreover, our numerical results show that the error-adapted refinement

strategy generates significantly fewer nodes than regular refinement strategy and is

capable of quickly resolving the boundary layer.

In Chapter 4, first, we prove the convergence of horizontal line Gauss-Seidel method

(HGS) for the convection-diffusion problem with vertical wind (Problem 2). Theorem

4.1.3 shows the error reduction factor of HGS is proportional toO( ε
h2 ) for h À √

ε.

In asymptotical limitε → 0, HGS is the exact solver. This suggests that HGS is

a good smoother if multigrid method is employed to solve the sparse linear system

of Problem 2. Moreover, since, HGS is a convergent iterative method, HGS may as

well be a good preconditioner for the GMRES method. Second, in Theorem 4.3.2

and Remark 4.3.3, we show that HGS satisfies the usualsmoothing property (4.26).

The convergence of the V-cycle multigrid with HS smoother is then proved in The-

orem 4.3.4 by utilizing thesmoothing property , the a priori error estimate and the

regularity estimates. Moreover, we conclude that MG converges faster than HGS for

Problem 2, since the MG convergence factor isO( ε
h3/2 ) as stated in Remark 4.3.5.

The numerical results in Section 4.1 and Section 4.3 support our theoretical analysis.

Finally, in the search of a fast linear solver for the convection-diffusion equations, our
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numerical studies in Section 4.5 show that GMRES with multigrid preconditioner is

the best choice among the linear solvers: standard multigrid (MG), algebraic multi-

grid (AMG), GMRES, GMRES with Gauss-Seidel preconditioner and GMRES with

AMG preconditioner. Here, we like to note that MG with Gauss-Seidel smoother can

as well be a fast solver for the convection diffusion problems on adaptive mesh when

using the stopping criteria we propose in Chapter 5.

In Chapter 5, we give two stopping criteria for the iterative linear solvers. The error

indicator computed from iterative solutions satisfying the stopping criteria in Theo-

rem 5.1.6 and Theorem 5.2.6 will generate a mesh similar to the mesh generated by

the error indicator computed from exact solution. Furthermore, if the iterative solu-

tions satisfy the stopping criteria in Theorem 5.1.5 and Theorem 5.2.5, then the error

between iterative solution and exact solution is bounded below by the upper bound in

the a posteriori error estimation. If the upper bound of the a posteriori error estimation

is optimal, then one can not distinguish the exact solution and iterative solution in the

sense of measuring the true error. we suggest that the stopping criteria in Theorem

5.1.5 and Theorem 5.2.5 only need to be verified at the finest mesh where a reliable

solution is expected. For the purpose of accelerating the mesh refinement process and

avoiding refinement over wrong locations, a linear solver which can more quickly sat-

isfy our stopping criteria is preferred. Our numerical studies in Section 5.3 indicate

that MG with Gauss-Seidel smoother requires fewer iterative steps to satisfy our stop-

ping criteria than to satisfy the heuristic stopping tolerance, residual less than10−6.

However, no such savings is seen if GMRES is used to solve the linear system.
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It is important to realize that different discretization schemes directly affect the funda-

mental property of the discrete matrix and the error estimations. A good property of

the discrete matrix such as M-matrix is a foundation of choosing and developing fast

and stable linear solvers. Recently, Xu and Zikatanov propose a new edge-averaged

finite element discretization scheme (EAFE) [103] which guarantees the resulting dis-

crete matrix is an M-matrix. A multigrid linear solver based on EAFE and graph

matching is proposed in [61]. It will be our interests to know a posteriori error esti-

mations for this discretization scheme and see how different linear solvers perform for

the linear systems arising from EAFE. Moreover, since anisotropic meshes are gen-

erally generated for real applications in computational fluid dynamics and our error-

adapted refinement strategy also tends to produce anisotropic meshes in boundary

layer regions, the a posteriori error estimation for the convection-diffusion equation

on anisotropic meshes, such as the error estimation by Kunert [63], are topics of our

future work. We also wish to explore how iterative solvers, in particular multigrid

methods, perform for the anisotropic meshes generated from refinement process. To

search fast linear solvers for solving more difficult problems such as the Navier-Stokes

equations will always be our long-term goals. Hopefully, we can find stopping criteria

for these iteration methods and apply the error-adapted mesh refinement strategy to

these problems.

153



Bibliography

[1] S. Adjerid and J. E. Flaherty. A moving-mesh finite element method with local

refinement for parabolic partial differential equations.Comput. Meth. Appl.

Mech. Engrg., 55:3–26, 1986.
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