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Genome-wide association studies of human complex disease have identified a large 

number of disease associated genetic loci. However, most of these risk loci do not 

provide direct information on the biological basis of a disease or on the underlying 

mechanisms. Recent genome-wide expression quantitative trait loci (eQTLs) 

association studies have provided information on genetic factors, especially SNPs, 

associated with gene expression variation. These eQTLs might contribute to 

phenotype diversity and disease susceptibility, but interpretation is handicapped by 

low reproducibility of the expression results. Our first major goal was to establish a 

list of consensus eQTLs by integrating publicly available data for specific human 



  

populations and cell types. We used linkage disequilibrium data from Hapmap and 

the 1000 Genomes Project to integrate the results of eQTL studies. Overall, we find 

over 4000 genes that are involved in high confidence eQTL relationships. We also 

assessed the possible underlying mechanisms of tissue dependent eQTLs by mapping 

these to known genome sites of functional elements. Results of comparison of eQTLs 

across studies on the same cell type versus those on different cell types suggest that 

tissue specific eQTLs are less common than pan-tissue eQTLs. Our second major 

goal was to use these results to elucidate the role eQTLs play in human common 

diseases. For this purpose, we matched the high confidence eQTLs to a set of 335 

disease risk loci identified from the Wellcome Trust Case Control Consortium 

(WTCCC1) genome-wide association study and follow-up studies for seven human 

common diseases. Our results show that the data are consistent with approximately 

50% of these disease loci arising from an underlying expression change mechanism. 

In many cases, the results provide a proposed expression mechanism for genes 

previously suggested as disease relevant, in others, new disease relevant genes are 

identified. A web-based database, ExSNP, was designed to provide comprehensive 

access to the eQTL data and results from our analysis, including original eQTLs, 

high-confidence eQTLs, cell type dependent eQTLs, population dependent eQTLs, 

disease associated eQTLs, and functionally annotated eQTLs. The website also 

incorporates a genome browser that allows visualization of the relative positions of 

eQTL SNPs to their associated genes and other neighboring genes, as well as the 

relationship to functional elements and disease associations. 
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Chapter 1: Introduction 

Genome-wide association studies (GWAS) have been successful in identifying 

genetic variants associated with numerous human traits and common diseases (Welter 

et al., 2014). There is, however, a substantial gap between these findings and a full 

understanding of how the loci contribute to complex trait diseases. Despite the large 

number of single nucleotide polymorphisms (SNPs) discovered to be reproducibly 

associated with traits, only rarely does a SNP affect protein function in an obvious 

manner (Manolio et al., 2009). A large number of SNPs from GWAS lie in intergenic 

or intronic regions, where the downstream mechanism by which the phenotype is 

influenced is unclear. In this thesis, we relate complex trait diseases to global gene 

expression, with the goal of identifying those disease loci where the underlying 

mechanism may involve change in expression of a gene. In the first part of the work, 

we systematically investigated the association of human genetic variants with gene 

expression. In the second part, we linked these expression relationships to GWAS 

results for disease traits, in this way providing putative expression mechanisms for a 

subset of disease related loci. 

 

1.1: Genome-wide expression quantitative trait loci (eQTL) 

Gene expression variation (i.e. transcript abundance) among individuals can be 

considered as a highly heritable quantitative trait in human populations (Cheung et 

al., 2005; Morley et al., 2004; Storey et al., 2007). Transcript levels of genes may be 

modified by genetic variants through various mechanisms in transcription and post-
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transcriptional processes. For instance, SNPs located on cis-regulatory regions, such 

as transcription factor binding sites, microRNA binding sites, splicing sites, or sites 

that regulate the decay rate of mRNA, may alter mRNA expression levels by 

affecting the binding affinity or activity of corresponding functional elements. An 

approach, genetical genomics, first introduced by Jansen and Nap, aims to identify 

genetic variants that modulate gene expression by merging the analyses of genetic 

variations and expression levels (Jansen & Nap, 2001). Such expression quantitative 

trait loci (eQTL) mapping utilizes statistical techniques to identify correlations 

between quantitative measurements of mRNA expression and genetic polymorphisms 

segregating in a population (Farrall, 2004; Gilad, Rifkin, & Pritchard, 2008). There 

are two main strategies for QTL mapping: association tests and linkage analysis in a 

cross population (Alberts et al., 2005). Technological developments and cost 

decreases in microarrays now allow the simultaneous measurement of the expression 

levels of thousands of genes in a large number of individuals from various species, as 

well as genotyping the status of up to a million variants in each individual, usually 

SNPs. Early studies have mapped genetic variants to gene expression in a number of 

model organisms, establishing the power of the approach. Organisms have included 

maize (Salvi et al., 2007; E.E. Schadt et al., 2003), Arabidopsis (DeCook, Lall, 

Nettleton, & Howell, 2006), yeast (Brem, Yvert, Clinton, & Kruglyak, 2002; Yvert et 

al., 2003), Caenorhabditis elegans (Y. Li et al., 2006), fly (Wayne & McIntyre, 2002), 

mice (Bystrykh et al., 2005; Chesler et al., 2005; Doss, Schadt, Drake, & Lusis, 

2005), rats (Hubner et al., 2005; Petretto, Mangion, Pravanec, Hubner, & Aitman, 

2006), and humans (Cheung et al., 2005; Deutsch et al., 2005; Monks et al., 2004; 
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Morley et al., 2004; Stranger et al., 2005). Next generation sequencing of RNA 

(RNA-Seq) is beginning to supplant microarray technology, using high-throughput 

sequencing platforms to obtain relatively unbiased measurements of expression 

across the entire length of a transcript (Zhong Wang, Gerstein, & Snyder, 2009). This 

technology has several advantages, including access to rare transcripts, more accurate 

quantification of abundance transcripts, novel gene structure, and alternative splicing 

(Mortazavi, Williams, McCue, Schaeffer, & Wold, 2008; Pan, Shai, Lee, Frey, & 

Blencowe, 2008; Sultan et al., 2008; E. T. Wang et al., 2008). Most recently, 

complete genome sequencing has also begun to supplant the use of microarrays for 

genotyping (Lappalainen et al., 2013).  

 

Many genome-wide eQTLs mapping studies have now been performed in a variety of 

human tissues and populations (Grundberg et al., 2012; Lappalainen et al., 2013). So 

far, hundreds of thousands of cis- and trans- regulatory eQTLs have been discovered. 

Cis-regulatory eQTL, where the presence of a genetic variant is associated with the 

level of transcripts from a gene located within a few hundred kilobases, have been 

predominantly reported. Trans-regulatory eQTL associations, where the genetic 

variant is distant from the transcript locus, are much harder to reliably identify due to 

multiple testing problems: analysis of trans effects involves of the order of 104 more 

statistical tests than for cis effects.  

 



 4 

 

Initially, most human eQTL mapping studies measured transcript abundance in easily 

accessible blood cells (peripheral blood lymphocytes and Epstein-Barr virus (EBV) 

transformed immortalized lyphobalstoid cell lines (LCLs)) (Morley et al., 2004). 

 

Since gene expression profiles vary in different tissues, it is only to be expected that 

some eQTLs are tissue specific, and it has been reported that 33-69% of eQTLs, 

depending on the analysis method and the tissue type, are not discovered in other 

tissues (Ding et al., 2010; Michaelson, Alberts, Schughart, & Beyer, 2010; Zeller et 

al., 2010). Recently, a number of studies have been performed on other human tissues 

or cell types (e.g., brain (Gibbs et al., 2010; Myers et al., 2007), liver (Greenawalt et 

al., 2011; Innocenti et al., 2011; Eric E Schadt et al., 2008), adipose (Emilsson et al., 

2008; Greenawalt et al., 2011; Nica et al., 2011), fibroblasts (Dimas et al., 2009), and 

skin (Ding et al., 2010; Nica et al., 2011). Dimas et al. (Dimas et al., 2009) identified 

eQTLs in three cell types: primary fibroblasts, LCLs and T–cells and estimated that a 

large proportion of regulatory variants are cell type-specific. 

 

1.2: Mapping complex disease traits with global gene expression 

Genome-wide association studies (GWAS) are providing a powerful approach to 

identifying common disease loci, and the GWAS catalog currently contains ~17,600 

loci where variants have been found to be associated with the phenotypes of ~1100 

human complex traits (http://www.genome.gov/gwastudies).  In each of these loci, 

there must be some mechanisms whereby genetic variants affect the function of one 

or more gene products.  
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There are a variety of possible mechanisms, including missense, where a resulting 

amino acid substitution in some way affects the level of function of a protein; effects 

on splicing; and effects on expression. Since eQTL studies have shown that SNPs 

affecting expression are widespread, it is likely that some of these are involved in the 

underlying mechanisms in disease loci.   

 

Two studies have demonstrated that SNPs associated with human traits are in general 

enriched for eQTLs (Cookson, Liang, Abecasis, Moffatt, & Lathrop, 2009; Nicolae et 

al., 2010). Another study also showed that chemotherapeutic drug susceptibility 

associated SNPs is enriched in eQTLs (Gamazon, Huang, Cox, & Dolan, 2010). A 

number of studies have incorporated information from eQTL association results and 

shown these provide a promising approach for improving functional interpretation of 

disease GWAS findings (Chu et al., 2011; Ertekin-Taner, 2011; Heid et al., 2010; 

Hrdlickova, Westra, Franke, & Wijmenga, 2011; Hsu et al., 2010; Lango Allen et al., 

2010; Moffatt et al., 2007; Richards et al., 2012; Speliotes et al., 2010; Wu et al., 

2012) and for prioritizing genes in an association region for functional experiments 

using animal models (Teslovich et al., 2010). Most of these studies used the most 

accessible eQTL data from LCL, and the general suitability of these for the study of 

traits/diseases not relevant to LCL has still to be established. Some studies have used 

eQTL data derived from a tissue appropriate to the disease of interest to link to 

disease-associated SNPs (Ding et al., 2010; Fransen et al., 2010; Innocenti et al., 

2011; Kang, Morgan, & Chen, 2012; Liu, 2011; Richards et al., 2012; Eric E Schadt 
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et al., 2008; Zhong et al., 2010). Ding et al. (Ding et al., 2010) reported an eQTL 

study of human skin that aimed to elucidate the role of regulation of gene expression 

in psoriasis. Innocenti et al. (Innocenti et al., 2011) and Schadt et al. (Eric E Schadt et 

al., 2008) mapped eQTLs in human liver tissue and demonstrated the role of some 

candidate genetic variants that affect gene expression and so play a role in human 

common diseases, for example NOD2 expression in leprosy, C2orf43 in prostate 

cancer, SORT1 expression in Coronary artery disease, CELSR2 expression in LDL 

cholesterol levels, and RPS26 expression in Type 1 diabetes. These studies 

demonstrate that eQTL mapping can facilitate efforts to understand the relationship 

between expression differences caused by genetic variations and human common 

diseases. Table 1.1 shows the studies that have used eQTL data to discover candidate 

causal genes for some human common diseases. Genes identified in this way might 

be useful to prioritize candidate genes and pathways associated with the risk of 

complex diseases and traits, such as basal cell carcinoma in a skin cancer GWAS (M. 

Zhang et al., 2013) and type 2 diabetes (Zhong et al., 2010). These studies suggest 

that genome-wide eQTL results provide an important reference source for 

investigating the expression effects of disease-associated SNPs and for prioritizing 

disease causal gene.   
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Table 1.1. Summary of candidate causal genes for human common diseases that were discovered using eQTL data 

Complex trait Genes Reference 
Acute lymphobalstic leukemia GSTM2; GAPDH; NCOR1 (French et al., 2008) 
Alzheimer disease Miltiple genes (Webster et al., 2009) 
Asthma GSDMA; ORDML3; HCG26; MEF2C; HLA-DQB1; 

GPSM3; PBX2; NUP35; POM121L2 
(L. Li et al., 2013; Moffatt et al., 2007) 

Celiac disease ILI8RAP; CCR3; IL12A; RGS1; SH2B3; TAGAP (Heap et al., 2009; Hunt et al., 2008) 
Coronary artery disease SORT1  (Eric E Schadt et al., 2008) 
Crohn's disease UBE2L3; BCL3 (Fransen et al., 2010) 
Drug metabolism ADME (Schröder et al., 2011) 
Glucocorticoids NQO1; AIRE; SGK1 (Maranville et al., 2011) 
Graves’ disease RNASET2; FGFR1OP; GDCG4p14 (Chu et al., 2011) 
LDL cholesterol levels CELSR2  (Eric E Schadt et al., 2008) 
leprosy NOD2  (Innocenti et al., 2011) 
pancreatic cancer BACH1 (Wu et al., 2012) 
prostate cancer C2orf43  (Innocenti et al., 2011) 
Psoriasis FUT2, TMEM77,RPS26, LOC348751, C17orf45, 

ERAP2, TNRC6B, ENDOD1 
(Ding et al., 2010) 

Type 1 diabetes RPS26  (Eric E Schadt et al., 2008) 
Type 2 diabetes ME1 (Zhong et al., 2010) 
Waist-hip ratio TBX15, AA553656, GRB14, PIGC, ZNRF3, STAB1 (Heid et al., 2010) 
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1.3: Integration of eQTL studies 

Despite the large number of identified human eQTL associations, few have been 

convincingly reproducible in multiple studies (Dixon et al., 2007; Göring et al., 2007; 

Myers et al., 2007; Stranger et al., 2007; Veyrieras et al., 2008). For example, Choy et 

al. showed that they were unable to detect evidence that eQTLs are convincingly 

associated with drug response by using eQTL data from LCL, probably as a 

consequence of biological noise and in vitro confounding artifacts (Choy et al., 2008). 

These observations show that putative eQTLs derived from a single study should be 

considered with care. Indeed, in our comparison of the results from 16 human 

genome-wide eQTL mapping studies, we observed that a large fraction of reported 

eQTLs are not reproduced in other studies. This is the case even for studies using the 

same cell types and with the same individuals, such as LCL data for the HapMap 

CEU population (Altshuler et al., 2010).  

 

A number of suggestions have been made to explain the apparent underlying low 

reproducibility of eQTLs. First, various expression microarray chips with different 

selected probes were used in different eQTL studies. Secondly, mRNA sequence 

polymorphisms in probe regions are known to influence hybridization on microarrays 

considerably (Gilad, Rifkin, Bertone, Gerstein, & White, 2005). Thus, mRNA fully 

matching the probes on the microarrays may hybridize better than mRNA that 

happens to carry a genetic variant in particular individuals, causing a difference in 

signal unrelated to expression level. The relatively new technology for gene 
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expression profiling, RNA-seq (Zhong Wang et al., 2009), already used in some 

eQTL studies, may provide a more reliable way for large-scale measurement of 

differences in gene expression.  

 

Thirdly, the complexity of microarray-based gene expression analysis has been 

shown to be one of the critical reasons for the difficulty reproducing expression 

studies (Ioannidis et al., 2009). There are many steps of data processing and analysis 

for which parameters and procedures are some times inadequately described, making 

replication difficult.  

 

Fourthly, some hidden confounding factors, including population structure (e.g., race, 

family-relatedness) and microarray array artifacts (batch effects), could also lead to 

spurious or missed associations (Listgarten, Kadie, Schadt, & Heckerman, 2010). In 

addition to these general issues for expression analysis, there are many confounders 

in specific cases. For example, for the studies that have used the most accessible cell 

type, LCL, there are many non-genetic factors that may be introduced in the path 

from the human donor to the study of an LCL in vitro. When new immortalized LCLs 

are obtained by infecting B-cells with the EB virus, a different sub-population of B-

cell will be selected, the amount of an individual response to the EB virus will vary, 

and so will the history of passage in cell culture as well as culture conditions. 

 

The apparent unreliability of eQTL studies hinders their use in analysis of complex 

trait disease. One way to address this issue is to compare the data across studies, and 
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in this way identify sets of eQTLs that have been observed multiple times, 

independently. To this end, we have integrated a number of publicly available eQTL 

studies, and have extracted several merged datasets that incorporate the consensus 

SNP-gene association pairs across various tissues and population combinations. In 

this study, linkage disequilibrium (LD) relationships were used to assist in 

determining these consensus associations. Linkage disequilibrium is a measure of the 

degree to which the presence of alleles at two loci are correlated. LD varies across the 

human genome, but typically extends up to at least 200 Kilobases. Thus, 

measurement of the status of one SNP in an individual provides information about the 

probability of the presence many SNPs nearby. Without this property, current 

microarrays, which only measure that status of about one million SNPs, would not 

effective for either eQTL or disease GWAS studies. However, there is a down side. 

LD also makes it quite difficult to distinguish which of the many alleles in a region 

that is associated with a phenotype is the real causal allele – many may exhibit 

approximately equal association strength with the phenotype. In this study, we used 

LD information to identify sets of SNPs that are highly correlated with marker eQTL 

SNPs and so define a consensus region representing one underlying QTL relationship. 

 

1.4: Overview 

This dissertation is organized as follows. In Chapter 2, we start with an overview of 

current available human genome-wide eQTL studies and show that consistency across 

these eQTL datasets is low. We then introduce a method to identify the high-

confidence eQTL associations by comparison across eQTL datasets. We also assess 
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the population-specific and tissue-specific eQTLs and the possible mechanisms 

underlying expression regulation for these eQTL associations. Chapter 3 first 

describes a method to map GWAS disease risk loci with the high-confidence eQTL 

associations. We then describe the application of this method for seven human 

diseases and diseases relevant to four tissue types to identity a set of disease risk loci 

with potential underlying expression mechanisms. Chapter 4 first summarizes a list of 

web-based eQTL databases and software. We then introduce an interactive and user-

friendly integrated web database that we have designed for querying and visualizing 

all available human eQTL data and high-confident eQTL associations. This 

comprehensive database will also allow better utilization of these data to elucidate the 

role of eQTLs in a set of complex trait diseases. Chapter 5 summarizes the 

conclusions from this project and discusses current challenges and future perspectives 

in genome-wide human eQTL studies, especially in relationship to complex trait 

disease.   
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Chapter 2: Meta-analysis of Genome-wide Expression 

Quantitative Trait Loci (eQTLs) for Various Human Populations 

and Cell Types  

2.1: Introduction 

Genome-wide eQTL association studies, combining whole-genome scale SNP 

genotyping arrays and whole-transcriptome expression arrays, have provided a 

powerful means of linking genetic variants to gene expression. Advances in high-

throughput technology in microarrays make it feasible to efficiently and 

quantitatively measure mRNA levels of thousands of genes in parallel (Schena et al., 

1996). Genotyping microarrays allow the status of a representative set of up to a 

million SNPs to be determined in a set of individuals. Statistical analysis of these two 

complementary types of data then permits associations between the presence of a 

SNP and the level of each transcript, so identifying expression quantitative trait loci 

(eQTLs). Application of these technologies for expression quantitative trait loci 

(eQTL) mapping studies for cells from various organisms, such as maize (Salvi et al., 

2007; E.E. Schadt et al., 2003), Arabidopsis (DeCook et al., 2006), yeast (Brem et al., 

2002; Yvert et al., 2003), Caenorhabditis elegans (Y. Li et al., 2006), fly (Wayne & 

McIntyre, 2002), mice (Bystrykh et al., 2005; Chesler et al., 2005; Eric E Schadt et 

al., 2005), rats (Hubner et al., 2005; Petretto et al., 2006), and humans (Cheung et al., 

2005; Deutsch et al., 2005; Monks et al., 2004; Morley et al., 2004; Stranger et al., 

2005) have revealed a large number of SNP/gene associations. Newer technologies, 

particularly RNA-seq for the measurement of transcript levels and whole genome 
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sequencing for genotyping are beginning to replace microarray use (Lappalainen et 

al., 2013).  

 

A number of genome-wide eQTL association studies have been conducted in Epstein-

Barr virus-transformed lymphoblastoid cell lines (LCLs), utilizing genotype data of 

various human populations to discover the genetic variants contributing to differences 

in gene expression within and among human ethnic groups (Price et al., 2008; 

Spielman et al., 2007; Storey et al., 2007; W. Zhang, Duan, Kistner, & Bleibel, 2008). 

In addition, a number of studies have reported eQTL associations identified in other 

cell types, including primary fibroblasts (Dimas et al., 2009), primary monocytes 

(Fairfax et al., 2012; Rotival et al., 2011; Zeller et al., 2010), as well as cells from 

brain (Gibbs et al., 2010; Myers et al., 2007), liver (Innocenti et al., 2011; Eric E 

Schadt et al., 2008), adipose (Emilsson et al., 2008; Nica et al., 2011), and skin (Ding 

et al., 2010; Nica et al., 2011) tissues. 

 

Several studies have demonstrated that eQTLs are involved in higher-level cellular 

phenotypes, such as development, differentiation, and maintenance, as well as whole-

body traits including disease susceptibility (Cookson et al., 2009; Hamza et al., 2011; 

Loo et al., 2012; Moffatt et al., 2007; Nica et al., 2010; Nicolae et al., 2010) and 

personalized drug response (Choy et al., 2008; Schröder et al., 2011).  

 

While producing large quantities of data, these studies suffer from considerable noise 

arising from the use of variety of statistical models and experimental limitations. A 
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natural next step is to derive more complete and reliable eQTL associations by 

combining results from multiple studies. Our objective in this work was to develop a 

method to integrate the results from available eQTL studies, and to establish a 

database that provides an efficient way to prioritize eQTLs for further analysis, 

particularly in the context of the role of expression variation in complex trait disease.  

 

To this end, we have integrated eQTL data from 16 publicly available genome-wide 

eQTL studies covering various human tissues and populations, and identified 

consensus SNP-gene associations across studies. We have also compared eQTLs 

across different tissues and populations so as to estimate the proportions of tissue-

dependent and population-dependent relationships. In order to help identify 

mechanisms underlying these eQTL associations, we have mapped eQTLs to 

annotated functional elements, discovering enrichments of tissue-specific 

transcription factor binding sites.  

 

2.2: Results 

Summary of Genome-wide eQTL. 

Table 2.1 summarizes 16 publicly available genome-wide eQTL studies collected in 

this study, and categorized them into 29 datasets by tissue and population. The 

majority of studies as far have been performed on Lymphoblastoid cell lines (LCLs). 

In addition to LCLs, we also include data from various tissues, mostly from 

Caucasian populations. The 3C study (Dimas et al., 2009) covers three cell types 

(3CL:LCLs, 3CF: primary fibroblasts, and 3CT: primary T-cells). Two studies (Gibbs 
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et al., 2010; Myers et al., 2007), BR and BR2, assessed the transcriptomes of cells 

from different brain regions. Two studies, MO (Zeller et al., 2010) and IM (Fairfax et 

al., 2012), were performed on various circulating immune cells, specifically primary 

monocytes (MO; IM_MO) and B-cells (IM_B). Two studies, LV (Eric E Schadt et 

al., 2008) and LV2 (Innocenti et al., 2011), investigated eQTLs in liver cells. A study 

of eQTLs in skin, SKN (Ding et al., 2010), is also included.  

 

Most of the studies are on Caucasian populations. Hapmap (The International 

HapMap 3 Consortium, 2010) populations have often been used, and in addition to 

Caucasian (HA_CEU; HA2_CEU; HRC ), we include Chinese (HA_CHB), Japanese 

(HA_JPT), and Yoruba (HA_YRI; HA2_YRI; HRY) data derived from Hapmap 

populations (Duan et al., 2008; Montgomery et al., 2010; Pickrell et al., 2010; 

Stranger et al., 2007) . 

 

Most studies used a combination of genotyping microarrays and transcription 

microarrays. Three studies, HRC (Montgomery et al., 2010), HRY (Pickrell et al., 

2010), and E-GEUV (Lappalainen et al., 2013), all on LCLs, used RNA sequencing 

technology rather than the older microarray technology to determine expression 

levels. One study, E-GEUV, used the 1000 genomes project populations (EUR and 

YRI), and so was able to include the genotypes of all SNPs down to about a 

frequency of 1%, instead of the limited number represented on a genotyping 

microarray.  
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 In this study, we define ‘exSNPs’ as the SNPs that correlate with change of 

expression of one or more genes. The corresponding genes are referred to as 

‘exGenes’, and an ‘eQTL association’ represents the relationships between one 

exSNP and its associated exGene. After processing the raw data from the 16 studies, 

there are totally 796,908 unique eQTL associations covering 15,170 unique exGenes 

and 548,344 unique exSNPs. The number of eQTL associations varies widely across 

studies (522 ~ 390,813). Variation in population sample size is probably the biggest 

factor in this spread (sample sizes range from 30 to 1490).  The expression level of 

most exGenes is associated with the presence of multiple exSNPs, primarily as a 

result of linkage disequilibrium, and in most cases only a single variant is likely 

actually causative of a change in expression. 

 

As in common practice, we consider ‘cis-eQTL’ associations to be those where the 

exSNPs are located within 1Mb of either the 5’ or 3’ end of the associated exGene. 

eQTL associations between an exGene and an exSNP located more than 1 Mb distant 

away from the gene region are referred to as ‘trans-eQTL’ associations. Figure 2.1 

shows the proportion of cis and trans-eQTLs in each dataset. Most datasets have a 

much higher fraction ( > 60%) of cis eQTLs. The predominance of cis-eQTLs is 

largely a consequence of the increased statistical power obtained by limiting the 

genome window in which associations are examined, thereby greatly reducing the 

size of multi-testing correction needed. Figure 2.2 shows the distribution of distances 

between exSNP-exGene pairs. The density falls off rapidly with distance, and 85% of 

cis-regulatory exSNPs are within 200Kb of the corresponding exGene. cis-eQTLs are 
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approximately  symmetrically distributed both upstream and downstream of the 

corresponding exGene, as well as within the gene. About 25% of cis-regulatory 

exSNPs fall within a gene region, and were assigned a distance of zero. Although 

linkage disequlibrium broadens this distribution, it is still apparent that the majority 

of SNPs involved in cis-eQTL relationships are located in the vicinity of the affected 

gene, including the 5’ and 3’ UTRs, and neighboring up-stream and down-stream 

regions. Because of linkage disequilibrium, it is difficult to determine the exact 

location of the underlying causal variants that directly affect gene expression. 
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Table 2.1. eQTL data for 16 selected genome-wide eQTL association studies  

Study ID Samples (size) Cell type Genotyping Phenotyping eQTL 
associations 

exSNPs exGenes 

HA HapMap CEU (30) 
HapMap CHB (45) 
HapMap JPT (45) 
HapMap YRI (30) 

LCL 
 

HapMap Project Illumina Human WG-6 3858 
4066 
5254 
3524 

3686 
3780 
5061 
3283 

239 
253 
274 
306 

BR Caucasians (193) Brain Cortex Affymetrix 500K Illumina HumanRefseq-8 624 545 209 

AS Childhood Asthma (206) LCL 1. Illumina Human-1 
2. Illumina 
HumanHap 300 

Affymatrix HG-U133 21116 12121 2632 

LV Caucasian liver donors (427) Liver cell 1. Illumina 650Y 
2. Affymetrix 500K 

Custom ink-jet 
microarray 

4362 2527 3824 

HA2 30 HapMap CEU (30) 
30 HapMap YRI (30) 

LCL 
 

HapMap Project Affymetrix GeneChip 
Human Exon 1.0 

4453 
5027 

3699 
4086 

722 
1659 

3C Caucasians (75) 
 

LCL 
Fibroblast 
T-cell 

Illumina 550K Illumina Human WG-6 554 
522 
546 

544 
508 
540 

436 
424 
429 

MO German (1490) Monocyte Affymetrix 6.0 Illumina Human HT-12 37694 29948 2752 

HRC HapMap CEU (60) LCL HapMap Project RNA-Seq 8908 3896 930 

HRY HapMap YRI (69) LCL HapMap Project RNA-Seq 799 779 786 

BR2 Caucasians (150) Cerebellum 
Frontal cortex 
Temporal cortex 
Pons 

Illumina Infinium 
HumanHap 550 

Illumina HumanRef-8 5243 
5512 
5335 
3411 

4399 
5198 
4059 
3284 

317 
329 
385 
275 

SKN Healthy skin individuals (57) Skin Perlegen Sciences 
array 

Affymatrix HG-U133 5410 4782 222 

LV2 Liver donors (266) Liver cell 1. Illumina 610 1. Agilent-014850 1170 1161 1170 
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2. Illumina 
HumanHap 550 

2. Illumina HumanRef-8 

IM British (288) Monocyte 
B-cell 

Illumina Human 
OmniExpress-12 

Illumina HumanHT-12 33740 
22453 

28956 
20333 

6063 
5449 

MuTHER Caucasian female twins (~160) 
 

LCL 
Skin 
Adipose 

Illumina 
1. HumanHap 300 
2. HumanHap 610Q 
3. 1M-Duo 
4. 1.2MDuo 1M  

Illumina Human HT-12 211977 
103537 
138885 

149684 
82933 

109689 

3945 
2495 
3136 

MRC Childhood Asthma (MRCA: 405) 
& Atopic Dermatitis (MRCE: 950) 

LCL 1. Illumina Human-1 
2. Illumina 
HumanHap 300 

1. Affymetrix HG-U133 
2. Illumina Human WG-6 

176848 109763 1251 

E-GEUV 1000 Genome - EUR (373) 
1000 Genome - YRI (89) 

LCL 1000 Genome 
Project 

Illumina HiSeq 2000 390813 
19314 

281446 
16932 

3048 
472 
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Figure 2.1. Fraction of cis- and trans- eQTL associations in each dataset. 

The number at the end of each row is the total number of eQTL associations. The fraction of associations classified as trans-eQTL in 

the HA2 study is much higher than others as a result of that study considering all associations out to 4Mb, as opposed to the more 

usual 1Mb.  
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Figure 2.2. Distribution of distances between each cis-exSNP and the associated exGene.  

Most distances are relatively short – less than 200Kb. 
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Linkage Disequilibrium relationships between eQTLs 

We presume that the underlying mechanistic origin of a cis-eQTL relationships is that 

a particular SNP or other variant falls on a functional element, such as a transcription 

factor binding site, a microRNA binding site, or splice site where the change leads to 

non-sense mediated decay. Then an association study will reveal a statistical 

relationship between the presence of that causal SNP and the level of expression of 

the gene. Typically, because of incomplete recombination within human genomes, 

any such variant is in linkage disequilibrium with a number of others nearby. That is, 

the presence of these other SNPs is correlated with the presence of the mechanism 

SNP. As a consequence, these nearby SNPs will also exhibit a correlation with the 

expression level of the same gene. In principle, it might be possible to identify which 

of the set of such SNPs is causal from the strength of the correlation between its 

presence and the level of gene expression. In practice, LD is often close to 1 for a 

number of neighboring SNPs, and the data are usually noisy, so it is not possible to 

make such a determination. Further, low sampling of SNPs using typical microarray 

genotyping technology (about 1 million out of the approximately 40 million SNPs) 

are usually included, only some of the nearby SNPs are assayed, and it is unlikely the 

causal SNP will itself be assayed.   

 

In spite of these limitations, it is usually possible to group exSNPs into LD blocks, 

and so approximately identify the number of unique causal relationships – each block 

will usually represent one relationship. To this end, for each dataset, we first 

determined the LD relationship (r2) between all the SNPs exhibiting an eQTL 
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relationship with the same gene, using LD data for the corresponding populations 

from the Hapmap (Altshuler et al., 2010)  and 1000 Genomes projects (Abecasis et 

al., 2010). For the two studies where the ethnicity of samples is not reported, IM and 

MO, we selected only SNP pairs with strong LD relationships appeared in all 

populations. 

 

Table 2.2 shows the number of total eQTL associations and the corresponding 

number of unique exSNPs and unique exGenes in each dataset. It also shows the 

number of unique eQTL relationships, each of which represent a set of LD related 

exSNPs associated with the same exGene, at three LD thresholds, r2 > 0.8, 0.5, and 

0.3. Here each eQTL relationship likely represents one mechanistic relationship 

between the presence of a causal variant and the expression level of the gene. The 

proportion of exGenes with single eQTL relationship ranges from 54% - 100% with 

an LD threshold of 0.8 to 72% - 100% at a threshold of 0.3. Some studies, EGEUV, 

MRC, MO studies have many genes with multiple eQTL relationships may be 

because the LD information between exSNPs associated with the same exGene is 

missing. Within each single study, we have confirmed that exSNPs in the same LD 

block are overwhelmingly associated with a change of expression of the same exGene 

(see Appendix).  
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Table 2.2. eQTL associations and unique eQTL relationships for each dataset 

Dataset Unique eQTL 
associations 

Unique 
exGenes 

Unique 
exSNPs 

Unique eQTL 
relationships  

(r2 > 0.8) 

Unique eQTL 
relationships  

 (r2 > 0.5) 

Unique eQTL 
relationships  

 (r2 > 0.3) 
HRC 4362 930 3896 1453 1116 1038 
HA_CEU 3787 239 3686 451 286 252 
HA2_CEU 4163 722 3699 1273 1166 1141 
EGEUV_EUR 390696 3048 281446 135826 103879 88142 
HRY 794 786 779 794 792 790 
HA_YRI 3419 306 3283 619 372 336 
HA2_YRI 5027 1659 4086 3007 2835 2813 
EGEUV_YRI 19314 472 16932 9349 6887 5709 
HA_CHB 3930 253 3780 453 293 265 
HA_JPT 5165 274 5061 481 317 290 
AS 14348 2632 12121 6596 4178 3328 
MRC 119958 1251 109763 17019 10894 8959 
3CL 554 436 544 531 494 469 
3CF 522 424 508 501 462 443 
3CT 546 429 540 525 475 462 
MuTHER_Fat 128181 3136 109689 19704 9056 5367 
MuTHER_LCL 189983 3945 149684 28861 12913 7379 
MuTHER_Skin 96412 2495 82933 14236 6471 3883 
SKN 4916 222 4782 384 243 227 
MO 37580 2752 29948 29690 23130 17598 
IM_MO 31914 6063 28956 27794 23695 19929 
IM_B 21674 5449 20333 19244 16665 14361 
LV 4171 3824 2527 4145 4126 4117 
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LV2 1170 1170 1161 1170 1170 1170 
BR 624 209 545 358 323 315 
BR2_Cer 5241 317 4399 572 374 344 
BR2_FC 5429 329 5198 625 381 347 
BR2_TC 5280 385 4059 681 441 409 
BR2_P 3389 275 3284 475 312 285 
Total - 15170 578094 - - - 

Unique eQTL associations are the numbers of unique exGene-exSNP pairs. Unique exGenes are the numbers of unique genes that 

have at least one eQTL association. Unique exSNPs are the numbers of SNPs that are involved in at least one eQTL association. 

Unique eQTL relationships are the numbers of unique blocks of LD-linked exSNPs, where all exSNPs in a block are associated with a 

change of expression of the corresponding exGene. 
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Pair-wise comparisons show low agreement between eQTL datasets 

To investigate how often the same eQTL relationships are found in different studies, 

we compared the eQTL associations between each pair of datasets and identified the 

common exGenes and the exSNPs that are associated with these. Table 2.3 

summarizes the level of agreement among the 16 different eQTL data sets. The 

diagonal shows the number of genes with at least one eQTL relationship discovered 

in each study (the exGenes), and the numbers in the upper triangle show the 

percentage of exGenes which are common between each pair of studies. In general, 

the agreement of most (92%) of pairwise comparisons between datasets is low (4%-

49%). 

 

Some differences between eQTL studies presumably arise from different biology as a 

function of cell type and population.  However, the fraction of common exGenes for 

studies on the same population and cell type are also often low. For example, the 

fractions of common exGenes among studies performing in LCLs for Caucasian 

populations (HRC, HA_CEU, HA2_CEU, and EGEUV_EUR) are usually not high 

(8% - 27%), with the exception of the comparison between EGEUV_EUR and 

HA_CEU (57%). Similarly, for the African population studies, HRY, HA_YRI, 

HA2_YRI, and EGEUV_YRI, the common exGene fractions between pairs are also 

usually low (14% - 33%), with the exception of the comparison between 

EGEUV_YRI and HRY (42%). In this latter case, the relatively high agreement may 

be because both studies used RNA-Seq technology. Studies on other cell types (skin, 
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liver, and two types of brain tissue) with the same populations tend to show an 

intermediate level of agreement (45%-59%). 

 

Studies on the same cell line but different populations have agreements of 7%-35%, 

in the same range as those with the same population.  There are two exceptions. First 

are the studies between EGEUV_CEU and HRY (56%), both RNA-Seq studies. 

Second are the studies using the 1000 genomes Caucasian and African populations, 

EGEUV_CEU and EGEUV_YRI, which share the highest fraction (77%) of exGenes, 

again likely reflecting the high quality of the recent RNA-Seq studies (Lappalainen et 

al., 2013), and also because essentially all SNPs with the frequency greater than 1% 

are included, removing the difficulties of comparing results from microarrays with 

different SNPs subsets. An anomaly is a relatively high level of agreement between 

EGEUV_EUR and HA_YRI (48%). The latter is an older study using a transcription 

array.  

 

Three sets of studies (MuTHER, 3C, and IM) measure expression in different cell 

types from the same population. The MuTHER study (Grundberg et al., 2012) used 

adipose, LCL, skin in a Caucasian population. Here levels of agreements are high 

(54%-60%). It is unclear to what extent this is a consequence of protocol and 

technology as opposed to expression being independent of sample type. The 3C 

(Dimas et al., 2009) study used LCLs, fibroblast, and T-cell lines in a Caucasian 

population. Here agreement is lower (29%-31%). The third study, IM (Fairfax et al., 
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2012) measured expression in monocyte and B-cell lines in a British population, 

producing an intermediate level of agreement (47%).  

 

The numbers in the lower triangle show the percentage of common exGenes which 

are associated with the same or LD related exSNPs between each pair of studies. This 

fraction should indicate if the unique eQTL relationships found in one study are the 

same as found in others. In general, HA_CEU, HA_CHB, HA_JPT and 

EGEUV_EUR have higher fractions of common exGenes with LD related exSNPs 

compared to other datasets, especially in LCL (50%-95%). Datasets from the IM 

study, IM_MO and IM_B, shows much lower fractions (0%-35%).    

 

There are several possible reasons for low consistency between studies, besides that 

due to different cell types and populations. First, a variety of genotyping arrays, with 

different tag SNPs and different probes have been used (see Table 2.1). Secondly, 

early studies relied on RNA microarrays to estimate transcript levels. Only three 

studies used more recent RNA-Seq technology. Thirdly, the analysis procedures and 

statistical models used in each study vary (for example, linear regression models, 

Spearman rank correlation). In addition, there are other possible confounders arising 

in the experimental procedures, for example the history of a cell culture and culture 

conditions, and differences in experimental protocols. Despite these issues, there is 

evidence that a substantial proportion of the cis-eQTL findings are reproducible 

(Greenawalt et al., 2011; Innocenti et al., 2011). Innocenti et al. estimated  49% - 
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67% cis-eQTL reproducibility between several datasets conducted in liver, which is 

consistent with the comparison between LV and LV2 (59%) in our datasets.  

 

We also performed hierarchical clustering to further compare these datasets (Figure 

2.3 & 2.4). Figure 2.3 shows the hierarchical cluster of all datasets based on the 

fraction of common exGenes. Two factors dominate the tree topology, cell type and 

specific study. Most of the datasets that used LCLs are grouped in one major branch, 

and studies that used monocytes or liver are also grouped. Datasets from the same 

study are usually grouped together, for example the 3C study, the BR2 study, and the 

MuTHER study (excepting MuTHER_LCL which is in the LCL group). Figure 2.4 

shows the hierarchical cluster based on the fraction of common exGenes which are 

associated with LD related exSNPs between pairs of studies.  The tree structure here 

is similar to that based just on common exGenes, again with the major factors 

determining tree topology being the cell type and the study.    
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Table 2.3. Pair-wise comparisons of eQTL datasets 

 

The diagonal gives the number of unique exGenes found in each study.  The numbers in the upper triangle are the percentage of 

common exGenes between each pair of studies.  The numbers in the lower triangle are the percentage of common exGenes associated 

with the same or LD-linked exSNPs  between each pair of studies.

Overlapped
gene_ratio HRC

HA
CEU

HA2
CEU

EGEUV
EUR HRY

HA
YRI

HA2
YRI

EGEUV
YRI

HA
CHB

HA
JPT AS MRC 3CL 3CF 3CT

MuTHER
Fat

MuTHER
LCL

MuTHER
Skin SKN MO

IM
MO

IM
B LV LV2 BR

BR2
Cer

BR2
FC

BR2
TC

BR2
P

HRC 928 18 8 27 10 11 17 11 13 15 25 15 14 10 10 23 33 19 14 23 38 33 25 12 8 10 10 6 9
HA_CEU 53 239 12 57 23 35 14 15 37 38 62 53 27 20 21 47 65 45 14 54 47 37 49 38 6 11 11 12 9
HA2_CEU 25 52 722 24 8 7 24 7 12 10 20 14 8 5 7 22 32 18 9 20 38 33 24 9 6 6 5 7 7
EGEUV_EUR 37 78 22 3048 56 48 21 77 58 54 32 59 50 37 40 29 49 29 42 34 37 34 30 39 24 33 35 26 26
HRY 35 54 31 66 780 33 16 42 24 24 37 24 22 12 14 34 49 28 17 31 39 34 30 19 6 10 11 8 7
HA_YRI 35 76 27 69 73 304 14 24 32 34 47 40 15 9 11 38 54 36 10 40 44 36 44 24 7 8 7 7 7
HA2_YRI 5 21 12 10 23 32 1659 16 15 15 19 13 13 12 12 20 29 17 13 20 35 31 21 13 12 14 12 9 13
EGEUV_YRI 55 68 52 78 74 80 36 472 17 14 39 24 14 8 8 28 45 25 12 33 37 31 31 21 5 7 4 4 5
HA_CHB 36 89 39 77 52 78 16 62 253 47 49 46 19 15 15 42 62 40 13 47 46 36 44 30 8 11 10 11 9
HA_JPT 28 87 37 76 64 81 10 54 95 274 52 47 18 14 15 46 64 43 11 49 48 43 43 26 7 8 8 8 8
AS 27 75 20 66 35 52 6 48 77 69 2629 49 45 36 38 28 39 25 64 27 40 36 30 34 27 31 30 26 26
MRC 31 86 19 89 68 80 8 77 86 83 81 1251 29 23 22 42 68 35 32 45 51 46 39 23 24 22 22 19 20
3CL 45 74 44 75 24 48 12 46 67 65 68 77 435 29 31 44 60 40 18 51 42 42 41 25 6 12 11 10 12
3CF 24 67 26 54 17 48 8 31 58 42 56 68 76 424 29 50 52 43 19 51 46 39 41 25 7 13 12 10 13
3CT 27 63 24 53 21 36 9 35 57 57 57 63 80 72 428 38 49 35 15 50 43 37 40 21 9 11 12 10 11
MuTHER_Fat 21 70 10 60 42 52 5 47 74 66 52 72 68 70 65 3134 54 60 48 41 47 40 33 43 35 47 49 42 42
MuTHER_LCL 23 77 12 79 59 64 5 57 79 77 66 90 80 70 66 77 3944 58 51 48 47 42 30 44 32 50 53 43 48
MuTHER_Skin 20 73 12 64 46 58 6 45 72 69 55 76 72 74 67 85 80 2495 45 38 46 41 34 36 28 40 44 36 37
SKN 50 88 29 78 51 82 28 58 86 88 87 83 73 81 61 85 80 90 222 50 43 42 59 44 7 12 11 11 8
MO 23 74 13 62 38 50 4 40 67 64 55 77 67 63 63 77 76 79 79 2748 59 40 35 42 33 39 36 32 35
IM_MO 5 11 1 22 9 13 1 11 21 21 11 34 13 16 12 33 33 35 16 53 6063 47 36 45 47 39 41 38 39
IM_B 4 15 4 23 8 11 0 10 26 22 15 28 18 8 14 21 32 22 12 10 1 5446 32 36 37 39 37 34 38
LV 14 52 7 35 10 25 2 16 44 41 34 52 37 33 30 46 43 46 62 38 7 5 3818 59 37 39 38 35 36
LV2 22 72 21 61 16 35 8 32 60 64 58 73 48 50 44 72 74 75 76 38 9 7 57 1169 20 23 22 22 22
BR 12 85 8 33 8 43 4 27 69 67 40 50 58 53 53 42 46 51 93 41 4 4 26 19 209 6 6 8 6
BR2_Cer 33 73 26 45 24 67 9 29 79 73 53 56 67 78 56 60 57 74 78 56 10 5 31 41 83 315 28 28 25
BR2_FC 22 96 22 46 26 67 7 29 88 78 52 57 69 80 63 67 58 77 76 62 10 7 44 53 85 86 329 36 28
BR2_TC 29 76 12 46 19 60 6 29 81 77 51 64 67 78 58 61 59 69 75 57 7 5 35 48 69 82 91 385 29
BR2_P 32 82 16 44 22 47 6 54 77 52 56 56 50 69 60 61 53 66 78 54 5 5 38 58 69 88 94 91 274
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Figure 2.3. Hierarchical clustering of the fraction of common exGenes between pairs 

of eQTL datasets.  

Distance scale is based on the % of common exgenes between pairs of datasets.  
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Figure 2.4. Hierarchical clustering of the fraction of common exGenes with LD 

related exSNPs between pairs of eQTL datasets.  

Distance scale is based on the % of common exgenes with  LD related exSNPs 

between pairs of datasets.  

 

High-confidence eQTL identification 

Given the high level of the variability between the studies apparently due to non-

biological causes, such as different microarrays and inherent noise in the data, it is 

desirable to identify the more reliable eQTL relationships. For this purpose, we 

compiled eQTL relationships that have been observed in at least two studies, for set 

of studies within the same population, for studies on the same cell types, and between 

any pair of studies, independent of population and cell type.  
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 For this purpose, the studies were grouped into 13 subsets (Table 2.4). The largest 

integrated set, AllCell_AllPop, includes all 29 datasets. The LCL_CEU, LCL_YRI, 

and LCL_ASN, and LCL sets integrate datasets performed in LCLs for Caucasian, 

African, Asian, and all populations, respectively (the Chinese CHB and Japanese JPT 

populations were combined into one Asian set (ASN)). Datasets for each of the other 

eight cell types were merged, independent of population (most are in fact Caucasian). 

 

Table 2.4. Classification of eQTL studies by cell type and population 

Class Tissue Population Studies Datasets 

AllCell_AllPop All All 16 All 
LCL_CEU LCL CEU 8 HA_CEU, HA2_CEU, HRC, AS, MRC, 3CL, 

EGEUV_EUR, MuTHER_LCL 
LCL_YRI LCL YRI 4 HA_YRI, HA2_YRI, HRY, EGEUV_YRI 
LCL_ASN LCL ASN 1 HA_CHB, HA_JPT 
LCL LCL All 9 HA_CEU, HA_YRI, HA_CHB, HA_JPT, 

HA2_CEU, HA2_YRI, HRC, HRY, AS, MRC, 
3CL, EGEUV_EUR, EGEUV_YRI, 
MuTHER_LCL 

Bcell B-cell All 1 IM_B 
Monocyte Monocyte All 2 MO, IM_MO 
Tcell T-cell All 1 3CT 
Brain Brain All 2 BR, BR2_Cer, BR2_FC, BR2_TC, BR2_P 
Liver Liver All 2 LV, LV2 
Skin Skin All 2 SKN, MuTHER_Skin 
Fibroblast Fibroblast All 1 3CF 
Fat Adipose All 1 MuTHER_Fat 
ASN indicates pooled CHB+JPT populations. 

 

To identify the common eQTL associations in the integrated set, the same algorithm 

was used as for finding agreements between pairs of studies. A high-confidence 
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eQTL relationship is defined as one for which supporting eQTLs are found in more 

than one study within an integrated set. Figure 2.5 illustrates how supporting eQTLs 

are identified. The number of studies in which supporting eQTLs are found is used as 

basis for an approximate confidence score. The idea here is that the more studies with 

data supporting the same eQTL relationship, the higher its reliability. We identified 

high-confidence unique eQTL relationships within the eight integrated sets that 

contain more than one study. Table 2.5 shows the number of unique eQTL 

relationships and high-confidence unique eQTL relationships in each integrated set at 

various LD levels. For the biggest integrated set, AllCell_AllPop, at the lowest LD 

threshold (r2 > 0.3), the  133,658 unique eQTL relationships in this set resulted in  

6,754 high-confidence unique eQTL relationships involving a total of 4,709 exGenes 

(HC-exGgenes). There are more high-confidence unique eQTL relationships in the 

LCL integrated set than others, as a consequence of the larger number of contributing 

studies. The comparison between one pair of studies, BR and BR2, shows the lowest 

agreement, and so there are the fewest high-confidence unique eQTL relationships in 

the Brain integrated set, consisting of only 16 HC-exGenes.  

 

In general, most exGenes (77%) contain only one high-confidence unique eQTL 

relationship in each integrated set at the lowest LD level (r2 > 0.3) (Figure 2.6). As 

the LD level (r2 threshold) increases, the LD haplotype block is broken out to 

multiple blocks. Therefore, the number of high confidence exGenes that contain more 

than one high-confidence eQTL relationship will also increase. We assumed that it is 

likely that in fact most exGenes are only involved in only one eQTL relationship - so 
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performed most of the analysis in terms of the number of exGenes, rather than 

relationships, to avoid double counting. Figure 2.7 shows the distribution of the 

number of studies in which each high-confidence exGene is identified, at various LD 

levels, for the AllCell_AllPop integrated set. Most (17-18%) HC-exGenes appear in 

four studies and 63-69% of HC-exGenes appear in fewer than five studies. 

 

As an estimate of the relative of quality of the eQTL datasets, we calculated the 

fraction of exGenes in each dataset that are part of high-confidence unique eQTL 

relationships (HC-exGenes) in the LCL_CEU integrated set (Figure 2.8). This quality 

measure varies widely. The lowest fraction of HC-exGenes is for the HA2 dataset 

(6.5%). The MRC dataset has the highest fraction of HC-exGenes (84%). 

 

We compared the number of high confidence eQTL relationships identified with that 

expected by chance. For this purpose, we first generated 1000 random sets of pseudo 

eQTL relationship data for each of the 11 selected eQTL datasets. For each these 

1000 full sets of pseudo data, we then used the algorithm  described above to identify 

implied high-confidence eQTL relationships and also calculated  the number of 

pseudo high-confidence eQTL genes so generated. In all cases the number of pseudo 

eQTL relationships is much much lower than that for the real data (typically more 

than a factor or 10), and the probability of the real data occurring by chance is too low 

to calculate. Thus, according to this model, the  high-confidence eQTL genes in each 

integrated set represent significant agreement between datasets, way beyond what 

would be expected by chance. Fuller details are given in the Appendix. 
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Figure 2.5. Identification of high confidence unique eQTL relationships. 

A high confidence eQTL relationship is defined as one found in two or more datasets. 

This figure illustrates two ways, either exact-match or imputed-match, to determine 

consensus associations. Exact-match: In Dataset 1, the presence of exSNP1 is 

associated with altered expression of the gene. Dataset 2 contains the exact same SNP 

– gene association, sufficient to classify the association as high confidence. Imputed-

match: Dataset 3 has an association between two other SNPs, exSNP2 and exSNP3 

and the expression level of the same gene. These SNPs are both in LD with exSNP1, 

so are considered to represent the same underlying relationship. As seen in datasets 1 

and 2.
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Table 2.5. Summary of eQTL relationships and high-confidence eQTL relationships found in each integrated set 

‘LD(r2)’ is the linkage disequilibrium threshold used for relating exSNPs. See text for dataset definitions.  

 
LD(r2) AllCell_AllPop LCL_CEU LCL_YRI LCL Brain Liver Skin Monocyte 

Unique exSNPs  548344 431758 23536 441971 9169 3588 84578 55943 
Unique exGenes 

 
15170 7869 2725 8918 1171 4295 2616 7186 

Total unique eQTL relationships 0.8 240785 190902 17110 192093 1939 4914 14419 53656 
HC unique eQTL relationships 0.8 18615 9585 257 9237 21 393 153 3562 
HC unique exGenes 0.8 4252 2079 203 2245 16 393 91 857 
Total unique eQTL relationships 0.5 169031 140831 14688 140481 1468 4803 6597 43065 
HC unique eQTL relationships 0.5 9506 4249 229 4210 16 485 93 3285 
HC unique exGenes 0.5 4482 2161 222 2345 16 485 93 899 
Total unique eQTL relationships 0.3 133658 114892 12892 113989 1390 4750 3999 34118 
HC unique eQTL relationships 0.3 6754 3032 238 3174 16 530 94 2741 
HC unique exGenes 0.3 4709 2231 237 2438 16 530 94 943 
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Figure 2.6. Number of high-confidence exGenes with 1, 2, 3... eQTL relationships at 

various LD thresholds (r2) in the AllCell_AllPop integrated set. 

At all thresholds, most exGenes appear to be involved in a single relationship. The 

proportion of exGenes with only one high-confidence unique eQTL relationship is 

34.5%, 55.4%, and 77% for r2 > 0.8, 0.5, and 0.3, respectively. 
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Figure 2.7. Number of HC-exGenes with support from 1, 2, 3, ... studies at various 

LD threshold (r2) in the AllCell_AllPop integrated set. 
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Figure 2.8. Approximate quality of each dataset, as reflected in the % of high-

confidence exGenes relative to the LCL_CEU integrated set, at an r2 > 0.3 LD 

threshold. 

 

Tissue dependence of eQTL relationships  

We made use of the data for different tissue types included in the 16 eQTL studies to 

perform limited testing on the extent to which eQTLs are conserved across tissue 

types. As noted earlier, only a fraction of eQTLs are found in multiple studies even 

when the same tissue and population have been used, so that simply looking at the 

fraction eQTLs common to studies in different tissues is not an adequate approach. 

To address this, we restricted the comparisons to situations where there are pairs of 

studies that share a tissue type, so providing a reference level of agreement, and that 

also have data on other tissues. 
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Two studies, each on LCLs and two other tissues, can each be used for this purpose: 

MuTHER with LCL, fat, and skin (Dimas et al., 2009), and 3C with LCL, fibroblast, 

and T-cell (Dimas et al., 2009). Both studies are in Caucasian populations, and so can 

be compared with the other LCL studies on that population. Figure 2.9 & 2.10 shows 

the fractions of common exGenes between pairs of datasets. Figure 2.9, shows the 

fraction of common exGenes between each of three MuTHER tissues and seven other 

studies conducted with LCL. The fraction of exGenes common to both LCL datasets 

varies widely, from 33-68%, reflecting the differing experimental and other factors 

discussed earlier. But in all seven of comparisons, the fraction of common exGenes is 

higher between LCL-LCL dataset pairs than for LCL to other tissue comparisons, 

indicating a level of tissue specificity. For the LCL-fat comparisons, the common 

exGene fraction is between 27 and 39% lower than for LCL-LCL, and for LCL - T-

cell comparisons it is 29 -50% lower. Similar levels of tissue conservation were found 

within the 3C study. Figure 2.10 shows similar comparisons between the seven 

reference LCL sets and the LCL, fibroblast and T-cell data for the 3C study. Here the 

differences between cell types appear generally rather small: 16-32% fewer for LCL 

to fibroblast comparisons, and 15-27% less for LCL to T-cell comparisons.  

 

These are very limited comparisons, but suggest that generally the level of 

conservation of eQTLs across tissues is fairly high, allowing extrapolation between 

tissue types, albeit at the expense of some false positives.  
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Figure 2.9. Comparisons of fractions of common exGenes between pairs of eQTL 

datasets of the same cell type and  pairs with different cell types for the MuTHER 

study. 

The blue bar shows the fractions of common exGenes between various LCL datasets 

and the MuTHER_LCL dataset. The red and green bars show the fractions of 

common exGenes between the other LCL datasets and the MuTHER_Fat and 

MuTHER_skin datasets, respectively.  
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Figure 2.10. Comparisons of fractions of common exGenes between pairs of eQTL 

datasets of the same cell type and pairs with different cell types for the 3C study. 

The blue bar shows the fractions of common exGenes between the LCL datasets and 

the 3C_LCL dataset. The red and green bars show the fractions of common exGenes 

between the LCL datasets and the 3C_Fibroblast and 3C_T-cell datasets, respectively. 

In both sets of comparisons, there is evidence of limited tissue specificity.   

 

Population dependence of eQTL relationships 

Since there are a number of studies using LCLs in Caucasian and African 

populations, we can also examine the extent of population dependent eQTL 
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Figure 2.11 shows the fractions of common exGenes between seven datasets 

conducted in LCL in Caucasian populations and the Caucasian and African datasets 

in the HA study. Differences between within and across population fractions are 

usually small, with the exception of the 3C comparison, where the fraction of 

common exGenes is about 25% smaller for across the populations than within 

Caucasian. Although this is a limited comparison, it supports the view that the 

differences in eQTLs across populations are not large.  

 

 

Figure 2.11. Comparisons of fractions of common exGenes between datasets in the 

same population versus datasets from different populations. 

The blue bar shows the fractions of common exGenes between various Caucasian 

datasets in Caucasian data in the HA_CEU dataset. The red bars are the fractions of 

common exGenes between the other Caucasian datasets and HA_YRI dataset. The 

results indicate low population dependence of eQTLs. 
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Relationship to Functional elements 

To explore the possible mechanisms underlying eQTL relationships, we examined the 

relationship between the locations of each exSNP and those of the following seven 

categories of functional element: microRNA target sites, transcription factor binding 

sites, DNaseI hypersensitivity regions, conservation sensitivity regions, programmed 

-1 ribosomal frameshift (-1 PRF) regions, and splicing sites. For each integrated 

eQTL set, we identified any exSNP that falls within the chromosomal position range 

of the known representatives for microRNA target sites, transcription factor binding 

sites, DNaseI hypersensitivity regions, and conservation sensitivity regions (Table 

2.6). For PRF and splicing SNPs, we searched for exSNPs that are in LD with these 

functional SNPs. 

 

To assess potential tissue specific mechanisms, we then investigated the co-

localization of tissue specific exSNPs and these functional elements and to see if 

there is any preference of functional elements for each tissue. In general counts for 

particular elements are small, so not statistically significant. But two transcription 

factor binding sites, Pol2 in Fibroblasts, and MafK (ab50322) in Liver, do appear 

much higher than background (Figure 2.12).
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Table 2.6. Number of exSNPs that fall on each type of functional element, and number of associated exGenes, for each integrated 

eQTL set 

 

AllCell 
AllPop 

LCL 
CEU 

LCL 
YRI 

LCL 
ASN LCL Bcell Tcell Monocyte Liver Fat Skin Fibroblast Brain 

miRNA target 
             SNPs 6738 5169 388 126 5267 491 14 1149 119 1835 1587 13 163 

exGenes 4077 2576 173 77 2630 408 14 964 137 1098 938 13 105 
miRNAs 752 748 411 236 748 524 24 650 241 711 703 13 285 
DNase 

             SNPs 113290 85831 4467 1554 87763 5690 152 15238 1007 27041 21632 139 2207 
exGenes 10870 5853 1107 294 6303 2610 141 4343 1425 2649 2189 132 563 
DNases 118 118 118 112 118 118 46 118 110 118 118 53 113 
TFBS 

             SNPs 71243 56056 3558 1004 57351 3296 82 8482 591 15397 12317 88 1221 
exGenes 9380 5300 830 254 5644 1829 81 3354 928 2359 1958 88 377 
TFs 148 148 147 142 148 148 110 148 140 147 146 107 139 
Sensitive 

             SNPs 2412 1921 91 32 1958 112 4 286 21 499 393 3 42 
exGenes 1797 1196 80 26 1243 103 4 274 28 429 317 3 29 
Ultra-Sensitive 

             SNPs 435 390 22 5 396 17 0 39 2 48 49 0 6 
exGenes 219 141 7 3 146 17 0 37 3 46 36 0 7 
prfDB              
SNPs 32 17 4 1 19 1 0 11 2 11 14 0 0 
exGenes 70 33 5 1 36 1 0 14 3 14 17 0 0 
Splicing              
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SNPs 4741 3318 275 192 3456 459 100 1242 578 1910 1609 98 227 
exGenes 4420 2410 204 116 2555 340 68 1032 615 1102 938 77 171 
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 A 

 

B 

 

Figure 2.12. Distribution of tissue-specific exGenes associated transcription factor 

binding sites. 

A. Fraction of exGenes for each tissue that are associated with the binding sites for 

each of 148 different transcription factors.Transcription factors are arranged 

sequentially along the X axis. Different colors represent different tissues (see key at 

right). Note the single large peaks for Liver (light blue) and Fibroblast (pink). B. 

Expected distribution of exGene coverage of each transcription factor, based on the 

fraction of bases in the genome included in sites for that factor. Transcription factors 

are arranged sequentially along the X axis. 
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2.3: Methods 

Data sources 

All eQTL association data in this study were collected from 16 publicly available 

studies that had been performed on various human tissues and populations. Table 2.1 

lists the studies included. The statistical models and acceptance thresholds used are as 

follows: 

HA study (Stranger et al., 2007) : Both significant cis-eQTLs, identified by a linear 

regression model or a Spearman rank correlation at a 0.001 permutation P-value 

threshold for each individual population, and significant trans-eQTLs, identified by 

linear regression model at a 0.001 permutation threshold per population, were 

included in this study. 

BR study (Myers et al., 2007) : Both cis- and trans- eQTLs, identified using the 

PLINK analysis toolset, with a one-degree-of-freedom allelic test of association at an 

empirical P-value < 0.05 threshold, were included in this study. 

AS study (Dixon et al., 2007) : Both cis- and trans-eQTLs with LOD > 6 

(corresponding to a ‘after Bonferroni correction’ P-value threshold of ~ 1.2 x 10-7) 

were selected as significant eQTL associations and included in this study. 

LV study (Eric E Schadt et al., 2008) : Both significant cis- and trans-eQTLs, 

determined by Kruskal-Wallis test (Kruskal and Wallis, 1952), were included in this 

study. 

HA2 study (Duan et al., 2008) : With the P-value of 2 x 10-8, all significant TC-eQTL 

associations were observed in the CEU and the YRI samples, respectively. Both 

significant cis- and trans-eQTLs were included in this study. 
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3C study (Dimas et al., 2009) : Spearman rank correlation was used to test for cis-

associations between SNP genotypes and probe expression levels for each tissue type. 

All significant cis-eQTLs for each of three cell types were included in this study. 

MO study (Zeller et al., 2010) : The association tests were performed by “TAMU 

ANOVA” and further checked by a Kruskal-Wallis test. Both significant cis- and 

trans- eQTLs sets were included in this study. 

HRC study (Montgomery et al., 2010) : All significant cis-eQTL at a 0.001 

permutation P-value thresholds were included in this study. 

HRY study (Pickrell et al., 2010) : Significant cis- eQTLs with genes or putative new 

exons at a FDR of 10% (corresponding to P = 2.4 x 10-5) were selected in this study. 

BR2 study (Gibbs et al., 2010) : All significant cis-eQTLs for each of the four tissue 

regions were included in this study. 

 

SKN study (Ding et al., 2010) : All significant cis-eQTLs with P-value threshold (P < 

9 x  10-7) from normal human skin were included in this study. 

LV2 study (Innocenti et al., 2011) : Both significant cis- and trans- eQTLs with Bayes 

Factor > 5 were collected in this study. 

IM study (Fairfax et al., 2012) : Both cis-and trans-eQTLs at a permuted P-value 

threshold (P<0.001) from primary monocytes and B-cells were selected in this study. 

MuTHER study (Grundberg et al., 2012; Nica et al., 2011) :  All significant (<1% 

FDR) cis- eQTL association for three tissue types (Fat, LCL, and Skin) were included 

in this study. 
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MRC study (Liang et al., 2013) : Both significant (<5% FDR) cis-and trans-eQTLs 

from a meta-analysis of British children with asthma or atopic dermatitis were 

selected in this study. 

E-GEUV study (Lappalainen et al., 2013) : All significant (below false discovery rate 

5%) gene cis-eQTLs for EUR and YRI populations from the 1000 Genomes Project 

(Abecasis et al., 2010) were selected in this study. 

 

Data preparation  

To efficiently analyze significant exSNP-exGene association pairs between these 

studies, all transcript names, probe IDs, or alias gene names were converted to current 

unique Entrez Gene IDs and Gene names (NCBI build 37.2). Ambiguities in alias 

gene names were resoved using chromosome location information. Transcript clusters 

(TCs) identified in the HA2 study were converted to Entrez gene IDs by mapping the 

region of each TC to gene ranges on the human genome assembly hg19. In addition, 

retired and discontinued SNP IDs were filtered out and all SNP IDs were converted to 

the current dbSNP IDs (dbSNP build 134). Retired or unmappable gene names were 

eliminated from the study. Any SNP with multiple chromosome coordinates on NCBI 

reference assembly 37.2 (dbSNP b134) were removed from each dataset.  

Linkage disequilibrium  

Linkage Disequilibrium (LD) information between pairs of SNPs was acquired from 

the HapMap project phase III (release 27) (The International HapMap 3 Consortium, 

2010) or derived from 1000 Genomes Project (phase1 release) (The 1000 Genomes 

Project Consortium, 2010) for several ethnic populations (CEU, YRI, CHB, and JPT 
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for Hapmap; EUR and YRI for YRI). For 1000 Genomes LD data, the r2 values for 

pairs of SNPs with MAFs  > 5% and located within 200,000 bp of each other were 

calculated using PLINK (v. 1.07) (Purcell et al., 2007). Figure 2.13 shows the 

distribution of differences in LD value obtained from the two sources. The spearmen 

correlation between LD values from Hapmap project and 1000 Genomes is 0.89. 

  

Figure 2.13. Histogram of differences in LD values for pairs of SNPs derived from 

Hapmap and 1000 Genomes data. 

 

Where both Hapmap and 1000 Genomes provided LD values for a SNP pair, the 

Hapmap value was used. Where possible, appropriate populations were used for 

obtaining LD values. HA_CEU, HA2_CEU, HRC, AS, BR, LV, 3C, BR, and BR2 

datasets are from Caucasian (CEU) populations and HA_YRI, HA2_YRI, and HRY 
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datasets are from Yoruba (YRI) populations. HA_CHB and HA_JPT datasets are 

Chinese (CHB) and Japanese (JPT) population, respectively. No clear ethnic identity 

is available for the MO and LV2 sets. For the LV2 dataset, individuals are mostly 

from the mixture of Caucasian and African populations. Therefore, we generated an 

intersection LD set occurring in both CEU and YRI populations. For the MO study, 

we generated an intersection of LD set among all four population CEU, CHB, JPT, 

and YRI populations.  

 

Hierarchical clustering 

The distance between each pair of datasets was defined as (1-f), where f is fraction of 

common exGenes between the two sets. The hclust module in R was used. 

 

Functional elements 

Date from several publicly available databases of annotated functional regions was 

used to identify eQTLs that fall on known transcriptional regulatory sites. MicroRNA 

gene regions were acquired from NCBI refGene. Data from Targetscan (5.1) 

(Grimson et al., 2007), microcosm from miRBase (v5) (Kozomara & Griffiths-Jones, 

2011), and microRNA.org (Aug 2010 release) (Betel, Wilson, Gabow, Marks, & 

Sander, 2008) were combined for the predicted microRNA binding sites. TargetScan 

predicts biological targets of miRNAs by searching for the presence of conserved 

8mer and 7mer sites that match the seed region of each miRNA. Other databases, 

microcosm and microRNA, computationally predict targets for microRNAs across 

many species by several methods, for example the degree of complementarity to the 
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miRNA, and conservation across multiple species. Transcription Factor binding sites 

and DNaseI hypersensitivity regions were downloaded from the Integrated regulation 

tracks of ENCODE Project (Dunham et al., 2012). Conservation sensitive and ultra-

sensitive sites were collected from the 1000 Genome Project (Phase 1) (Khurana et 

al., 2013). Potential programmed -1 ribosomal frameshift (-1 PRF) regions were 

collected from PRFdb (Plant, Wang, Jacobs, & Dinman, 2004). PRFdb used multiple 

algorithms to identify potential -1 PRF signals as defined by a heptameric slippery 

site followed by an mRNA pseudoknot in eukaryotic genes or sequences of interest. 

SNPs on potential splicing site were collected from SplicePort (Dogan, Getoor, 

Wilbur, & Mount, 2007). SplicePort implements a feature generation algorithm for 

the classification of potential splice sites, scoring each GT or AG dinucleotide using 

features within a window of 162 nucleotides (80 nt. on either side of any splice site 

region) to identify deleterious effects of genetic variation on splicing. The 

chromosome coordinates of all binding sites were converted to hg19 assembly and all 

eQTLs that locate on these binding sites were identified.  

 

2.4: Discussion 

There have now been a number of high-throughput studies for finding eQTLs in 

human populations and tissues, providing a wealth of data about the relationship 

between genetic variation and the level of gene expression. At present, though, 

reproducibility between studies is low (Dixon et al., 2007; Göring et al., 2007; Myers 

et al., 2007; Stranger et al., 2007; Veyrieras et al., 2008). We are interested in 

obtaining a conservative but relatively reliable set of eQTLs for use in other 
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applications, particularly identifying those human complex disease loci where a 

genetic variant affecting expression of a gene may be contributing to disease 

susceptibility. To this end, we compared the results of 16 independent eQTL studies, 

to find those variant/expression relationships that have been observed more than once. 

Across the 16 studies considered, more than 15,000 different genes have been 

reported as involved in an eQTL relationship, usually with a nearby (cis) variant. The 

number of human genes that are expressed at a high enough level for eQTL 

associations to be detected is probably not much larger than this, so at face value, 

almost every human gene has its expression affected by at least one variant. This 

remarkable observation may be misleading however - only a little over a quarter of 

these genes have been found to be involved in the same eQTL more than once, across 

the included studies. Most commonly, each gene is found to involve in a single eQTL 

relationship. 

 

The assumption that consensus eQTLs are more reliable than those only observed 

once requires statistical independence of each study. Each of the studies was 

performed by different investigators, and in general, different genotyping and 

transcription profiling technologies were used. Additionally, a third factor affecting 

reliability, the statistical analysis technique used, varies across studies. Thus, the 

condition of independence between studies is largely met.  

 

The inclusion of studies with data derived from different tissue types allowed us to 

estimate the extent to which eQTLs are conserved. The data are limited, and the 
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presence of large amounts of noise also restricts analysis, but nevertheless, the 

available comparisons suggest a substantial amount, larger than 50%, of at least 

partially tissue independent eQTL. It should be noted that although a study may be 

tissue specific, that tissue will often include a range of cell types. For instance, in 

eQTL studies of brain tissue (Gibbs et al., 2010; Myers et al., 2007) various types of 

cells are included, such as blood cells, subtypes of neuronal cells, and different glial 

cells, so it not possible to distinguish the eQTL relationships for each specific cell 

type. We also examined the limited data on conservation of eQTLs between 

Caucasian and African populations. Here the degree of population independence 

appears higher than across tissues.   

 

We have used the consensus eQTL results to generate several integrated datasets for 

use in other applications. In Chapter 3, we describe the use of one of these for 

analysis of complex disease loci. 
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Chapter 3: The role of Human expression quantitative Traits in 

complex trait disease 

3.1: Introduction 

A main challenge in interpreting personal genomes is to identify the causal variants 

underlying human complex traits and their functional consequences. In the past 

decade, Genome-wide association (GWA) studies have successfully identified 

thousands of genetic variants associated with numerous human complex traits, 

including diseases. So far, the GWAS catalog of the National Human Genome 

Research Institute lists ~12500 single nucleotide polymorphisms (SNPs) associated 

with one of more complex traits, gathered from ~1800 GWA studies 

(www.genome.gov/gwastudies/).  Each of these disease associated loci must harbor 

some underlying mechanism whereby the presence of a causal variant alters some 

molecular level process, and in turn, that perturbation affects higher level processes 

and pathways. A number of different mechanisms may be involved, including altered 

protein folding, half-life and function through missense SNPs (Sunyaev, Ramensky, 

& Bork, 2000; Z Wang & Moult, 2001), SNPs that affect splicing (G.-S. Wang & 

Cooper, 2007), and SNPs affecting RNA expression level (Nicolae et al., 2010). The 

majority of disease-associated SNPs are located in non-coding intergenic or intronic 

regions of the genome, including promoter regions, enhancers, or non-coding RNA 

genes (Hindorff et al., 2009; Ricaño-Ponce & Wijmenga, 2013), but generally there is 

little direct evidence on how these variants affect molecular level processes. One 

major source of difficulty in identifying mechanism is that genetic variants in a locus 



 58 

 

found to be associated with disease (the markers) are a small part of a larger set, all in 

linkage disequilibrium (LD) with each other, and any one of these might be causal.  

 

Genome-wide association studies have also been used to discover expression 

quantitative trait loci (eQTLs), by finding correlations between transcript expression 

levels and the presence of genetic variants (Jansen and Nap 2001). The recent 

emergence of high-throughput technologies, particularly transcription microarrays 

and RNA-sequencing, provide an efficient way to simultaneously measure the 

expression levels of thousands of genes. Microarray technology has also been used 

for large scale genotyping, and comparison of these two types of data then allows 

eQTL mapping in a large number of individuals (Lappalainen et al., 2013; Liang et 

al., 2013; Montgomery et al., 2010). Initially, data derived from Epstein-Barr virus 

transformed immortalized lyphobalstoid cell lines (LCLs) were used for population-

wide eQTL analysis in humans (Dixon et al., 2007; Duan et al., 2008; Stranger et al., 

2007). Recently, a number of studies have performed eQTL mapping on various 

human tissues, such as brain (Gibbs et al., 2010; Myers et al., 2007), liver 

(Greenawalt et al., 2011; Innocenti et al., 2011; Eric E Schadt et al., 2008), adipose 

(Emilsson et al., 2008; Greenawalt et al., 2011; Nica et al., 2011), fibroblasts (Dimas 

et al., 2009), and skin (Ding et al., 2010; Grundberg et al., 2012; Nica et al., 2011). So 

far, thousands of cis- and trans- regulatory eQTLs have been discovered in a variety 

of human tissues and populations.  
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A number of studies have combined information from eQTL association results and 

disease GWAS findings to improve the functional interpretation of disease associated 

loci (Chu et al., 2011; Ertekin-Taner, 2011; Heid et al., 2010; Hrdlickova et al., 2011; 

Hsu et al., 2010; Lango Allen et al., 2010; Moffatt et al., 2007; Richards et al., 2012; 

Speliotes et al., 2010; Wu et al., 2012). Several studies have shown that SNPs 

associated with human traits and chemotherapeutic drug susceptibility are in general 

enriched for eQTLs (Cookson et al., 2009; Gamazon, Huang, et al., 2010; Nicolae et 

al., 2010). Although most studies have used eQTL data from the most accessible cell 

type, LCL, it is not clear how good a proxy these are for human cells and tissues 

relevant to non-immune related disease, such as psychiatric traits or cancers (Choy et 

al., 2008; Nicolae et al., 2010). Some studies have used eQTL results from tissues 

partially appropriate to the disease of interest when linking to disease-associated 

SNPs (Ding et al., 2010; Fransen et al., 2010; Innocenti et al., 2011; Kang, Morgan, et 

al., 2012; Kang, Yang, Chen, & Zhang, 2012; Liu, 2011; Maranville et al., 2011; Eric 

E Schadt et al., 2008; Zhong et al., 2010). For example, Ding et al. (Ding et al., 2010) 

reported an eQTL study of human skin that aimed to elucidate the role of regulation 

of gene expression in psoriasis. Richards et al. (Richards et al., 2012) assigned eQTL 

status to schizophrenia susceptibility alleles based on eQTL data derived from adult 

human brain (Myers et al., 2007).  

 

A genetic variant may affect the expression level of a gene in a number of different 

ways, for example altering the affinity of a transcription factor to its cognate DNA 

binding site; altering affinity of a microRNA, or other factors that affect message 
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half-life; altering the relative propensity of different splicing isoforms, sometimes 

leading to nonsense mediated decay (Brogna & Wen, 2009; Maquat, 2004) and 

altering chromosome structure or other aspects of epigenetic control. In turn, altered 

expression may lead to altered disease susceptibility in variety of ways. Whatever the 

underlying mechanism, any SNP that alters expression sufficiently, as well as other 

SNPs in LD with it, will be detectable by an eQTL GWAS experiment. Thus, it is in 

principle possible to find which disease associated loci harbor an underlying 

expression mechanism by comparing the set of markers from a disease GWAS with 

the set of markers from an eQTL study: if the cause of disease risk is a change in 

expression discovered in an eQTL, the two sets of markers should be identical.  

 

In practice, a number of factors complicate relating disease GWAS and eQTL results. 

There is substantial noise in GWAS and eQTL measurements, so that some SNPs that 

should be markers will be not identified, and some that are considered markers may 

be false positives, and P-values for both types of association may not be reliable. 

Because of sparse sampling of SNPs on current microarrays (typically only about one 

million of the approximately 40 million common SNPs are assayed), it is unlikely a 

causal variant will be directly assayed for association in either the disease or eQTL 

studies, and only a few markers will be detected, making comparisons of the two 

marker distributions difficult, especially if different genotyping microarrays have 

been used.  Imputation methods (Howie, Donnelly, & Marchini, 2009) may be used 

to obtain estimated association P values for many SNPs not directly measured, 

solving this latter issue. Imputation requires the full genotyping data for each study 
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participant. In principle it is possible to obtain these full data for any study, but in 

practice, the need to deal with the human subjects issues for the disease data makes 

this effectively impossible for an analysis that makes use of many data sets. Also, 

available data from expression association studies often do not provide P-values, only 

information on whether the P value for each genotyped SNP is above or below a 

threshold. In order to address these data issues, we made use of one set of disease 

GWAS data with complete genotype information to investigate the properties of full 

marker distributions, and on that basis devised a method that can be applied to cases 

where only microarray marker SNP information is available.  

 

A further complication in relating eQTLs to disease GWAS is the apparent 

unreliability of individual eQTL studies, arising from a variety of issues in statistical 

analysis as well as experimental factors. So far, most eQTLs have not been 

reproducible in multiple studies, even within studies conducted on the same cell types 

in the same population (Dixon et al., 2007; Göring et al., 2007; Myers et al., 2007; 

Stranger et al., 2007; Veyrieras et al., 2008). In Chapter 2, we described integration of 

human genome-wide eQTL data from 16 publicly available studies to identify higher 

confidence eQTL relationships on the basis of consensus, both generally and within 

several specific cell types.  

 

In this study, we sought to identify which loci associated with complex trait disease 

may harbor an underlying expression mechanism, making use of the consensus 

eQTLs.  To this end, we examined each of a set of disease-associated loci to ascertain 
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whether any known eQTL relationship may have produced the disease association 

data.  

 

3.2: Results 

High-confident eQTLs 

In Chapter 2, we integrated 16 publicly available human genome-wide eQTL studies 

and identified those eQTL relationships that are found in two or more independent 

studies, making use of linkage disequilibrium (LD) relationships. These consensus 

eQTLs are regarded as relatively high-confidence (HC) eQTL associations. Several 

such sets were built.  The AllCell_AllPop set contains the high-confidence eQTL 

associations derived from comparisons across all 16 eQTL studies, and is used here. 

The number of consensus relationships discovered depends on the threshold for 

linkage disequilibrium used. Table 3.1 shows a summary of high-confident eQTLs at 

the most conservative LD level (r2 > 0.8). 

 

Table 3.1 Summary of high-confident eQTLs from 16 integrated sets  

Integrated set AllCell_AllPop 
Unique exGenes   15,170 
Unique eQTL relationships 240,785 
HC unique exGenes     4,252 
HC unique eQTL relationships   18,615 

 

‘Unique eQTL relationships’ are the number of associations found in at least one 

included study. ‘Unique exGenes’ are the number of genes participating on one or 

more eQTL relationships in at least one included study. ‘HC unique eQTL 
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relationships’ and  ‘HC exGenes’ are those found to be involved in the same eQTL 

relationship in at least two included studies. 

 

Identification of Disease loci with a possible expression related mechanism 

To investigate the role expression regulation plays in disease susceptibility, we 

compared results from disease GWA studies and those from eQTL GWA studies. For 

each identified disease risk locus in a set of common diseases, we estimated whether 

there is an eQTL consistent with an underlying expression mechanism driving altered 

disease risk. We assume that in each disease risk locus, an underlying 

causal/mechanism variant affects disease risk. Because of linkage disequilibrium, that 

usually result in a set of SNPs (marker SNPs), including the causal one if that is a 

SNP, occurring at a different frequency in disease populations than in control 

populations, and so being detectable in GWA studies. If the disease causal variant 

affects the expression level of a gene, there should also be a set of overlapping marker 

SNPs discovered in eQTL studies. Thus, comparison of the location of disease 

markers and of nearby eQTL markers in a locus provides a means of estimating 

whether a known eQTL relationship provides a possible basis for the disease 

mechanism.  The procedure for comparing disease and eQTL markers in described in 

Methods. 

 

 The diseases analyzed are Bipolar disorder (BD), Coronary artery disease (CAD), 

Crohn’s disease (CD), Hypertension (HT), Rheumatoid arthritis (RA), Type 1 

diabetes (T1D), and Type 2 diabetes (T2D)).   21 disease risk associated loci reported 
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in the seminal WTCCC1 GWA study of these diseases and a further 316 risk loci 

from meta-analyses and subsequent studies, extracted from the GWAS catalog 

(www.genome.gov/gwastudies/), were included.  

 

For each disease-associated locus in each set, we collected all disease marker SNPs 

and all neighboring marker SNPs involved in high confidence eQTLs that are within 

200,000 bps distance of any disease marker. The centiMorgan (cM) distance between 

each disease marker and each eQTL marker SNP was estimated using the Caucasian 

HapMap genetic map (A distance of 1 cM between locations corresponds to a 

recombination frequency of 1% per generation, and provides the measure of genetic 

linkage). 

 

Figure 3.1 shows the percentage of loci for each disease type where disease markers 

match high confidence eQTL markers from the AllCell_AllPop set, as a function of 

cM threshold. The number of loci included raises steeply at low cM values, but less 

steeply above 0.005 cM. The steep slope at low values is likely a consequence of 

different tag SNPs used on the microarray chips for disease and expression 

association studies – often the exact disease marker SNP is not present on the 

expression chip, but there is one very close in cM space. Above 0.05 cM, the curves 

begin to plateau, but extra loci do continue to be added as the distance increases. 

Saturation of the number of loci covered is between 45 -73%, depending on the 

disease. 
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Matches between disease and eQTL markers were collected for three thresholds, cM 

distances of zero, less than 0.005, and less than 0.05, based on the analysis described 

in Methods. Table 3.2 shows the number of disease loci that meet these criteria. 15%-

32% of the disease risk loci for each disease have putative expression mechanisms, 

based on the 0 cM threshold, and that increases to 23%-52% at a threshold of 0.005 

cM, and 29%-61% at a 0.05 cM threshold. There is considerable variation in the 

fraction of putative expression loci across the seven diseases, with Type 2 diabetes 

having the lowest values (31% at the 0.05 threshold), and Rheumatoid arthritis and 

Crohn’s disease having the highest (62% and 57% respectively at the 0.05 threshold). 

Appendix Table S5. shows all candidate expression loci for the seven diseases at a 

cM threshold 0.05 and the eQTL-associated genes for each locus. Each of these genes 

is a candidate for involvement in disease mechanism, based on the eQTL data. 

 

Table 3.2. Number of disease risk loci with possible underlying expression 

mechanisms in seven common diseases. 

Data at three thresholds of agreement between disease and expression markers are 

included – where at least one disease and expression SNP are identical (0 cM), where 

a disease and expression marker are less than 0.005 cM apart, and where the markers 

are less than 0.05 cM apart. 

Disease set BD CAD CD HT RA T1D T2D 
Loci included 65 45 84 17 34 50 42 
0 cM 13 8 24 3 12 12 7 
0.005 cM 20 15 37 6 18 19 10 
0.05 cM 26 23 48 8 21 24 13 
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To place these results in the context of previous studies, we defined three categories 

of eQTL-associated disease candidate genes.  Genes in category A are those where 

expression change has already been related to the relevant disease. Those in category 

B are cases where the eQTL candidate gene has already been proposed as disease 

involved, usually from a GWA study, but an expression mechanism has not 

previously been suggested. The genes in category C are those that have not previously 

been proposed as disease relevant. (Genes in the strong LD immune protein region on 

chromosome 6 are not included because of ambiguous candidate gene assignments).  

Table 3.3 shows the number of loci with genes in each category for each disease. 

Only a small number of disease candidate genes have a previously proposed 

expression mechanism. There are 94 genes in Category B – previously disease 

associated genes where we have now identified a putative expression mechanism. 

False positives are most likely to be in Category C, but we do expect a substantial 

fraction of these new disease candidate genes will turn out to be correct.  As 

illustrated below, in some cases, the new candidates are supported by circumstantial 

evidence of biological relevance. Appendix Table S6.  lists the Category assignment 

for each eQTL disease candidate gene. 

 

Table 3.3. Number of genes in each category for each disease. 

Category A genes are those where an expression mechanism has previously been 

suggested, and the new analysis supports that finding. Category B genes are those 

where the disease candidate gene has previously been suggested, and we have now 
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identified a putative expression mechanism. . Category C genes are those where the 

expression related candidate genes have not previously been suggested as disease 

relevant. 

Category BD CAD CD HT RA T1D T2D 
A 1 4 4 0 1 2 3 
B 21 12 38 3 12 9 4 
C 25 23 67 8 26 35 14 

 

We compared the overlap of disease and eQTL loci with that expected by chance in 

the following way. We selected all the WTCCC1 GWAS disease loci that have a 

single identified candidate gene, to provide the most confident subset of likely causal 

genes. We then determined how many of these genes are also exGenes in high 

confidence (HC) eQTL relationships at the most conservative eQTL LD level (r2 > 

0.8). We then used a chi-squared test on the 2 x 2 table of overlap and non-overlap 

between these HC-eQTL and disease GWAS genes (Table 3.4) to determine the 

probability the overlap is significantly different from chance. For disease GWAS 

genes, we selected the genes which are the only one gene reported in single locus for 

all disease sets of WTCCC1 data. And high-confidence eQTL genes were determined 

from AllCell_AllPop set at the most conservative LD level (r2 > 0.8). In this test, we 

calculated four numbers, including the number of GWAS reported genes which are 

overlapped with eQTL genes, the number of GWAS reported genes which are not 

overlapped with eQTL genes, the number of eQTL genes which are not reported in 

GWAS, and the number of genes which are neither eQTL genes nor GWAS reported 

genes. A Chi-squared test with Yates correction and 1 degree of freedom returns a P 
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value of 0.462 and a two-tailed value of 0.50. Thus the overlap of eQTL and disease 

genes is not significantly different from random.  

Table 3.4. The 2x2 table of numbers of genes in that are disease candidates and/or 

involved in in high-confidence eQTL relationships. 

 GWAS gene non GWAS gene      Total 
HC-exGene 41 4211 4252 

non HC-exGene 119 10629 10748 
Total 160 14840 15000 

 

Examples of disease associated eQTL relationships  

ADAM15 for Crohn’s disease  

A GWA study identified a region with a marker SNP, rs1142287, in chromosome 

region 1q22, that is significantly associated with Crohn’s disease risk (Franke et al., 

2010). This SNP is a synonymous variant located on the exon region of SCAMP3, 

and this gene and a neighboring one, MUC1, were reported as candidate genes for 

Crohn’s disease. MUC1 encodes a key constituent of mucus, the physical barrier that 

protects the intestinal epithelium from gut bacteria. MUC1 overexpression and 

hypoglycosylation have been reported in irritable bowel disease (IBD) (Campbell, 

Yu, & Rhodes, n.d.). Secretory carrier membrane protein 3 (encoded by SCAMP3) 

regulates EGFR trafficking within endosomal membranes. SCAMP3 is manipulated 

by intracellular salmonellae to acquire nutrients and influence host immune responses 

(Mota, Ramsden, Liu, Castle, & Holden, 2009). Thus, there is circumstantial evidence 

supporting both genes as Crohn’s disease relevant. In our analysis, there is one 

Crohn’s related eQTL relationship for MUC1, with expression data in two studies 
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included in the integrated eQTL set (Fairfax et al., 2012; Grundberg et al., 2012) but 

none for SCAMP3 (using the 0.05cM threshold). There is also a Crohn’s related 

eQTL relationship associated with the expression level of ADAM15, supported by 

expression data from the same two eQTL studies. ADAM15 encodes a member of the 

disintegrin and metalloproteinase (ADAM) protein family of type I transmembrane 

glycoproteins, involved in cell adhesion and proteolytic ectodomain processing of 

cytokines and adhesion molecules. Although no genome-wide association studies 

have suggested ADAM15 as a candidate for involvement in Crohn’s disease, Mosnier 

et al. (Mosnier et al., 2006) showed differential expression of ADAM15 in epithelial 

cells during inflammatory bowel disease compared with the normal colon and 

suggested a role of ADAM15 in leukocyte-endothelial cells transmigration associated 

with acute inflammatory changes in inflammatory bowel disease. On the basis of 

those results and our analysis, we suggest ADAM15 may be the candidate mechanism 

gene underlying the association between this chromosome region, 1q22, and Crohn’s 

disease. 

 

TSPAN3 and PSTPIP1 for Type 2 Diabetes 

A marker SNP, rs7178572, in chromosome region 15q24, was identified as associated 

with Type 2 Diabetes risk by two GWA studies  (Perry et al., 2012; Sim et al., 2011). 

This SNP is located on the intron region of HMG20A, and that gene was reported as a 

candidate gene for Type 2 Diabetes.  HMG20A encodes a high mobility group 

(HMG)-domain protein that activates REST (RE-1 silencing transcription factor)-

responsive genes that play a key role in the initiation of neuronal differentiation, 
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making it an unlikely candidate for involvement in Crohn’s. From our analysis, two 

alternative genes are suggested by the eQTL data. First, two studies included in the 

integrated eQTL set (Fairfax et al., 2012; Lappalainen et al., 2013) have many marker 

SNPs that lie within 0.05 cM of the disease marker and are significantly associated 

with the expression level of TSPAN3 (tetraspanin 3).  Second, three of eQTL studies 

(Grundberg et al., 2012; Lappalainen et al., 2013; Zeller et al., 2010) have found that 

some of these SNPs are also significantly associated with the expression level of 

PSTPIP1, (proline-serine-threonine phosphatase interacting protein 1).  

 

The protein encoded by TSPAN3 is a member of the transmembrane 4 superfamily, 

which are cell-surface proteins. These proteins mediate signal transduction events that 

play a role in the regulation of cell development, activation, growth and motility. 

PSTPIP1 gene encodes a protein which binds to the cytoplasmic tail of CD2, an 

effector of T cell activation and adhesion, negatively affecting CD2-triggered T cell 

activation, and so regulates the actin cytoskeleton. The latter gene is relevant to 

immune processes. Although there is still no direct evidence to show the relationship 

between these two genes and Type 2 Diabetes, the eQTL analysis suggests further 

investigation is warranted.  

 

GALNT4 for Hypertension 

A marker SNP rs2681472, on chromosome region 12q21.3, is significantly associated 

with Hypertension in European origin and East Asian populations (Cho et al., 2012; 

Hong et al., 2010) and these GWA studies have proposed the ATP2B1 gene (ATPase, 
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Ca++ transporting, plasma membrane 1) as a nearby candidate gene for involvement 

in hypertension. A recent study has shown that ATP2B1 is involved in calcium 

homeostasis, related to essential hypertension (Hirawa, Fujiwara, & Umemura, 2013). 

From our eQTL analysis, we found no eQTL SNPs in this region associated with 

ATP2B1 expression. However, two studies included in the integrated set (Grundberg 

et al., 2012; Zeller et al., 2010) have several SNPs that are within 0.005 cM of the 

disease marker and that are significantly associated with the expression level of 

another near-by gene, GALNT4 (polypeptide N-acetylgalactosaminyltransferase 4).  

Although there is no GWA study showing an association between GALNT4 and 

Hypertension, one recent GWA study suggested GALNT4 plays a causal role in 

susceptibility to atherosclerosis, related to high blood pressure (Erbilgin et al., 2013). 

The GALNT4 gene encodes the N-acetyl galactosaminyl transferase 4 enzyme and is 

thought to involve in endothelial-platelet interactions by O-glycosylating the 

threonine residues of the P-selectin glycoprotein ligand (PSGL-1). We suggest that 

the underlying mechanism in the 12q21.3 region associated with Hypertension likely 

involves altered expression of GALNT4.  
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Figure 3. 1. Percentage of disease loci with possible expression mechanisms as a function of the cM distance between the closest 

disease and expression marker SNPs. 

The AllCell_AllPop eQTL set was used. Two vertical dotted lines indicate the cM thresholds, 0.005 and 0.05. The maximum 

threshold used in this study is 0.05 cM.
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3.3: Methods 

High-confidence eQTL Data  

High-confidence eQTL data were derived on the basis of consensus within the 

included 16 independent human genome wide eQTL studies, as described in Chapter 

2. Briefly, for disease analysis, a high-confidence eQTL relationship is defined as one 

that is identified in at least two studies of these 16. The number of high confidence 

eQTL relationships so defined varies with the Linkage disequilibrium criterion used. 

For the disease analysis, the most conservative linkage disequilibrium level (r2 > 0.8) 

was used, providing a total of 4,252 unique genes with an expression level associated 

with the presence of at least one high-confidence eQTL SNP. 

Genome-wide associations studies of human common diseases 

Loci significantly associated with disease susceptibility for seven specific human 

common diseases (Bipolar disorder (BD), Coronary artery disease (CAD), Crohn’s 

disease (CD), Hypertension (HT), Rheumatoid arthritis (RA), Type 1 diabetes (T1D), 

and Type 2 diabetes (T2D)) were collected from the Wellcome Trust Case Control 

Consortium (WTCCC1) GWA study (The Wellcome Trust Case Control Consortium, 

2007) and from other related meta analyses and follow-up studies in the GWAS 

catalog (www.genome.gov/gwastudies/). Appendix Table S4. lists all the GWA 

studies included. 

LD Relationships  

LD relationships were taken directly from data in the Hapmap project (The 

International HapMap 3 Consortium, 2010) and also derived from the 1000 Genomes 
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project data (Abecasis et al., 2010), using PLINK (v. 1.07) (Purcell et al., 2007). The 

complete microarray genotype data were downloaded for the WTCCC1 study of 

seven complex trait diseases and the probabilities of each genotype for the SNPs in 

each disease locus from WTCCC1 GWA study not represented on the microarray  

were imputed using IMPUTE2 (Howie et al., 2009) and then the disease association 

P-value of each SNP was calculated using SNPTEST (Ferreira & Marchini, 2011).  

 

CentiMorgan distance calculation  

The genetic map data of all human chromosomes, calculated from HapmapII data 

with LDhat (ldhat.sourceforge.net/instructions.shtml) was acquired from NCBI FTP 

(ftp.ncbi.nlm.nih.gov/hapmap/recombination/2011-01_phaseII_B37/). Where 

necessary, the centiMorgan co-ordinates of disease associated marker SNPs and 

expression associated eQTLs were interpolated from those of the closest SNPs with 

defined centiMorgan values, based on chromosomal distance. 

 

Comparison of disease and eQTL markers  

We require a procedure that estimates whether or not the detected disease and eQTL 

markers in a locus arise from the same underlying causal variant. The model used for 

this purpose is shown in Figure 3.2. 
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Figure 3.2. Model for identifying those disease associated loci with a probable 

underlying expression mechanism. 

In this hypothetical case, a causal variant, at the position of the vertical dotted line, is 

related to disease susceptibility as a result of altering the expression level of the 

nearby gene. Because of LD, the presence of the causal variant will usually result in 

one or more nearby SNPs being associated with disease risk, and the blue curve 

represents the expected P-value distribution of these. Sparse sampling with a 

microarray and noise factors result in only one or a few of these associations being 

detected (blue dots). Since the causal variant affects expression, the same SNPs will 

be associated with expression level of the gene, with a co-located expected P value 

distribution, represented by the red curve, and, again because of noise and other 

factors, only some markers will be identified (red dots). In this example, there is 
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another eQTL in this region (eQTL1) where SNPs are associated with the expression 

level of the same gene, but unrelated to disease susceptibility, and so its eQTL P-

value distribution does not overlap with that for disease association. 

 

As noted earlier, imputation methods allow estimation of P-values for SNPs not 

present on the disease association microarray, given complete genotype information 

for all individuals in a study. We have used compete genotype data for the WTCCC1 

study of seven complex trait diseases (The Wellcome Trust Case Control Consortium, 

2007) in order to examine the relationship between disease association P-value 

distributions  and eQTL markers. P-values for SNPs not on the microarray were 

obtained using SNPTEST (Ferreira & Marchini, 2011). Full imputed disease 

association P value distributions were compared with marker SNPs for high-

confidence eQTL relationships derived across the 16 eQTL studies (AllCell_AllPop).  

 

Figure 3.3 shows Manhattan plots of these data for a region where SNPs are 

significantly associated with the risk of Type 1 diabetes in the WTCCC1 study, and 

that also contains eQTL associations. The left hand plots show the distribution of 

disease association P-values and the location of the expression marker SNPs as a 

function of the chromosome coordinate, in base-pair units. In these plots, it is often 

not possible to judge whether or not the disease and expression signals share a causal 

variant. The right hand figures show the same data, but as a function of the cross-over 

event probability, measured in centiMorgans (cM). For the example in Figure 3.3, the 

cM scale allows a clear distinction between situations where the underlying causal 
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variant for the disease and expression signals are the same (Figure 3.3A) and where 

they are different (Figure 3.3B). 
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A. RCL1 
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B. DCLRE1B 

   

Figure 3.3. Manhattan plots for a locus associated with Type 1 diabetes in the WTCCC1 data. 
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These plots show the relationship between disease association P-value for all SNPs in the region (blue points) and the location of high-

confidence expression associated SNPs (red dashes). There are two separate high confidence eQTL relationships in this region, each 

involving a different gene.  The dotted line indicates the significance threshold for disease P values (10-5). The left plots show the P-

value distribution of disease and expression SNPs as a function of chromosome coordinates and the right plot show the same data as a 

function of genetic map position, in centiMorgans (cM). (A) Disease associations and high-confidence eQTL SNPs associated with 

the expression level of RCL1 (RNA terminal phosphate cyclase-like 1). In chromosome co-ordinates (left), the disease markers appear 

widely spread, and there is no clear distinction between these and eQTL markers. On the cM scale (right), it is clear that the disease 

marker SNPs and eQTL SNPs occupy the same narrow range in the cross-over coordinate.  (B)  High confidence eQTL SNPs 

associated with DCLRE1B (DNA cross-link repair 1B) in the same locus. In chromosome co-ordinates (left) it is unclear whether 

these markers overlap with the disease markers or not. On the cM scale (right) there is a clear separation between expression and 

disease markers, reflecting low linkage disequilibrium between the two sets of markers, and so that it is unlikely the same causal 

variant generates both signals. Together, these plots show that the data are consistent with a disease susceptibility causal variant 

affecting the expression of RCL1, and inconsistent with an expression effect on DCLRE1B. 
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Appendix Figure S1 shows more plots for the other 16 of the 21 WTCCC1 loci that contain at least one high-confidence eQTL 

relationship. 14 of the 17 loci have eQTL markers that overlap with the disease marker SNPs.  Consistently, in this set, where there is 

overlap, the shortest distance between a disease marker and an eQTL marker is less than 0.05 cM, and in no case where there is not 

overlap is there a distance less than 0.05. On that basis, we adopted three thresholds for confidence that the disease and expression 

signals arise from a common underlying variant: When there is an exact match between a disease marker and an expression marker 

(i.e. these are the same SNP), when the closest disease and expression markers are with 0.005 cM, and when the two closest markers 

are within 0.05 cM. 
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3.4: Discussion: 

It has long been appreciated that expression mechanisms may play a major role in 

complex trait disease, and some studies have already provided data to support this 

idea (Cookson et al., 2009; Nicolae et al., 2010). Up to now, though, it has not been 

possible to determine how generally this is the case, or which disease associated loci 

may harbor expression related mechanisms. In this study, by combining current eQTL 

data and disease GWAS data, we have been able to address these questions on a 

relatively large scale. We find that, conservatively, approaching 50% of disease loci 

have a high confidence eQTL relationship consistent with an underlying expression 

mechanism. The fraction of loci with putative expression mechanisms ranges from 30 

to 60%, depending on the disease. We have illustrated that these data are useful for 

better identifying disease relevant genes in particular loci. Each proposed expression 

mechanism defines possible follow-up experiments.  

 

Like all computational models, this one is not a perfect replica of the real world, and 

there are both false positive and false negative aspects to the results. Where possible, 

we have taken a conservative approach, and placed most emphasis on minimizing 

potential false positives, particularly those that might arise from the apparent 

unreliability of large scale eQTL results, as evidenced by poor agreement between 

independent studies, discussed in Chapter 2. Thus, we include only consensus eQTLs 

– those found in more than one independent study.  Only approximately a quarter of 

the genes found to be involved in eQTL relationships in single studies qualify as high 

confidence as a result of having been observed in two or more studies, so it is likely 
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this filter prevents the identification of some bona fide eQTL-disease relationships.  

In this sense, there are a substantial fraction of false negatives.  

 

Decisions as to whether eQTL relationships found in different studies are identical are 

based on LD relationships between SNPs, and so are sensitive to the LD threshold 

used – the more lenient the LD threshold, the more relationships appear the same. We 

used three different LD thresholds for this, but for the purpose of establishing 

relationships to disease, considered only the most conservative (r2 > 0.8). There are 

68% fewer high confidence eQTLs than if the most lenient (r2 > 0.3) criterion weas 

used, possibly leading to the omission of some disease loci with underlying eQTLs.   

eQTL relationships may vary depending on cell type and also cell state– whether an 

immune system cell is active, for example. In complex trait disease, it is often 

difficult to know which cell type is implicated in each disease locus, and even if this 

is clear, expression data for that cell in that state are unlikely to be available. 

Typically, it has been assumed that these differences are secondary, and most 

disease/expression studies have used eQTLs from LCLs (Cookson et al., 2009; 

Nicolae et al., 2010). One study across multiple tissue types has suggested the degree 

of tissue dependence is large (69%-80%) (Dimas et al., 2009). Analysis across studies 

in Chapter 2 suggests this is not the case. There, between 20 and 40% fewer 

relationships are found comparing data for different tissues across studies as when 

comparing data for the same tissues across studies. The Chapter 2 results suggest that 

conservation across populations is higher than that across tissues, although the data 

are limited for both.  
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How does the variation of eQTLs across tissues affect the disease results?  Random 

expectation is that in about half the cases where an eQTL is present in one tissue and 

not the other, it will be the eQTL study tissue that does not exhibit it and the disease 

tissue that does, leading to false negatives, consistent with our conservative strategy. 

In the rest of the cases, the eQTL will not be present in the disease relevant cell type, 

but is in the reference eQTL datasets. In some of these instances, an eQTL present in 

a reference tissue will not apply to the disease tissue because in the latter the gene is 

not significantly expressed. We saw evidence of this in Chapter 2, where eQTLs 

specific to liver were for genes only expressed in that tissue. If a gene is not 

expressed in the disease relevant cell type, it cannot be disease relevant, so such cases 

are not of concern. Finally there will be a fraction of cases where a gene is, say, 

controlled by a different transcription factor in the two tissues, and so a variant may 

affect transcription factor binding and so expression in one cell (the eQTL reference) 

will not affect expression in the other, leading a false positive. At present, there are 

insufficient data to reliably estimate how common that situation is. Overall, given the 

20 – 40 % non-tissue transferability seen in Chapter 2, it’s likely there is between 5 

and 20% false positives from this cause. 

 

Most disease GWA studies have been conducted in Caucasian or closely related 

populations, and the majority of the eQTL data are from that source. But a few are not 

so there is also a consideration of transferability here too. From Chapter 2, the limited 

data suggest across population consistency is relatively large, and, following the 
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analysis of the previous paragraph for cell type consistency, and considering the 

dominance of appropriate populations in the eQTL data, false positives from this 

cause are expected to be minor. 

 

A key step in identifying which disease loci have a potential underlying expression 

related mechanism is comparing markers from eQTL studies with those from disease 

GWAS.  As described earlier, because of the absence of complete genotyping for 

individuals in both type of studies, this depends on the threshold used. For 79 of loci, 

there is exact agreement between at least one disease marker and one eQTL marker. 

Where that is not the case, in a further 125 of loci, the two markers are very close in 

LD space, less 0.005 cM. The remaining 51% included, out to a separation of 0.05 

cM, are still within a conservative threshold, so some eQTL disease mechanisms may 

have been missed for this reason.  

 

It may be that in some cases where there is an eQTL mechanism underlying a disease 

association, that is not the dominant mechanism contributing disease susceptibility. 

Other work in the lab (Ray and Moult, unpublished) has shown that a significant 

fraction of these disease loci have a potential high impact missense SNP disease 

mechanism. Expression effects for the data analyzed in Chapter 2 are usually 

relatively small, with a median value of 1.14 fold change in the level of expression, 

and few greater than two-fold. In contrast, high impact missense typically change in 

vivo activity of a protein by 5 to 10 fold, sometimes more (Yampolsky & Stoltzfus, 
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2005). Where both mechanisms are present in a locus, the missense one will likely 

dominate.  

 

GWAS disease studies typically find high frequency SNPs with modest phenotype 

effects (Hindorff et al., 2009). That suggests that genes involved in disease 

mechanism may not make good drug targets – reversing the effect of the disease 

associated variant will only have a small impact on disease. Consistent with this, a 

previous study in our group has shown that very few GWAS disease candidate genes 

are known drug targets for the corresponding disease (Cao & Moult, 2014).From this 

point of view, disease candidate genes where a subtle expression effect is enough to 

produce a detectable consequence in disease susceptibility may be worth closer 

examination for drug target potential – if a small effect is detectable, a bigger effect 

achieved by a drug may be useful. 

 

Nicolae et al. (Nicolae et al., 2010) has reported a higher than random relationship 

between eQTL SNPs and  GWAS disease risk SNPs. However, in this study, we did 

not find a greater than random coincidence of the genes involved in high confidence 

eQTL relationships and proposed candidate genes for involvement increased disease 

risk. Our test is straightforward, and, we believe, reasonably robust. So why is the 

difference in findings? Without extensive investigation of the earlier results, we 

cannot be completely certain, but there is one apparent strong bias in the earlier SNP 

based tests. In that work, sets of random disease markers were generated by randomly 

choosing SNPs from amongst all those represented on the microarray used for the 
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GWAS study. Microarray SNPs are chosen considering a number of criteria, and aim 

to approximately span the whole of the genome.  But real disease markers are heavily 

biased to be close to genes. And, as shown in Figure 2.2, so are cis-eQTL marker 

SNPs. Thus, markers chosen from a broadly randomly distributed set of SNPs are 

much less likely to overlap with eQTL SNPs than real markers will. To perform the 

SNP based test properly, markers should be chosen based on the observed distance of 

real markers from genes, in manner similar to that we used in testing our high 

confidence high eQTL relationships (see Appendix).  

At first glance a lack of enhanced overlap of eQTL and disease sites might seem 

surprising. In fact, we do expect to see this. The expectation of such enhancement 

rests on the assumption that eQTLs are fairly rare, so that only a subset of genes with 

the property could be involved in GWAS detectable disease risk. The 11 eQTL 

studies included in our work purported to find eQTL relationships for over 15000 

unique genes, probably essentially all genes with high enough expression to be 

relevant to eQTL.  While many of these are likely false positives, there are also many 

false negatives and even with this limited set of studies, our very conservative high 

confidence set covers over 4000 genes. So, in reality most genes probably do have an 

eQTL that potentially could contribute to disease risk. The determining factor is not 

whether an eQTL is there but rather whether perturbing the activity level of the gene 

product is relevant to the disease phenotype. 
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Chapter 4: Web-based database for query and visualization of 

human genome-wide expression quantitative trait loci  

4.1: Introduction 

Recent large-scale investigation of the relationship between human genetic variation 

and transcriptional regulation of gene expression is providing new biological insights 

into the mechanisms by which altered expression contributes to disease pathogenesis. 

With the rapid improvement of high-throughput technology, a number of genome-

wide expression quantitative trait loci (eQTL) mapping studies have together 

generated hundreds of thousands of associations between the presence of a SNP and 

altered expression of a gene for various human tissues in different populations. The 

analysis of the underlying mechanisms of these eQTL relationships is expected to be 

of great help in dissecting the relationship between genome variability and human 

complex traits. However, as a result of a number of factors, there is often substantial 

disagreement between the results of different eQTL studies (Dixon et al., 2007; 

Göring et al., 2007; Myers et al., 2007; Stranger et al., 2007; Veyrieras et al., 2008).  

To address this issue, we have implemented a procedure to identify the more high-

confidence regulatory eQTLs, based on consistency across multiple studies. 

 

Currently, there are a number of web-based databases and software for eQTL data 

interpretation and analysis. eQTL Explorer 

(web.bioinformatics.ic.ac.uk/eqtlexplorer/) facilitates mining of results from genome-

wide linkage analyses and provides visualization to aid interpretation of the eQTL 
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data through a Java graphical interface (Hubner et al., 2005; Mueller et al., 2006). 

eQTL Viewer (statgen.ncsu.edu/eQTLViewer/svgHome.html) is a web-based 

bioinformatics tool that generates a scalable two-dimensional graph for visualizing 

eQTL mapping results (Gelfond, Ibrahim, & Zou, 2007). SNPexp 

(tinyurl.com/snpexp) is a web-based tool for visualization of eQTL mapping results 

(Holm, Melum, Franke, & Karlsen, 2010). In addition, several online databases that 

collect data from multiple human genome-wide eQTL studies are also available. 

SCAN (www.scandb.org/newinterface/) is primarily designed for accessing 

functional annotation related to SNPs and includes results from one eQTL study 

conducted in Lymphoblastoid cell lines using individuals from HapMap populations 

and several eQTL studies in additional human tissues, such as brain and liver  

(Gamazon, Zhang, et al., 2010). eQTL Browser  (eqtl.uchicago.edu/) is a database 

that allows a user to navigate eQTLs from several recent studies in multiple tissues. 

seeQTL (www.bios.unc.edu/research/genomic_software/seeQTL/) provides 

reanalyzed eQTL associations from several studies and display the results in the 

genome browser (Xia et al., 2011). It also provides a consensus association score for 

each eQTL across all LCL studies that have used HapMap populations.  GTEx 

(www.gtexportal.org/home/), part of the NIH GTEx roadmap project, currently 

provide a central resource to archive and display association between genetic 

variation and high-throughput molecular-level phenotypes (The GTEx Consortium 

2013). Genevar (www.sanger.ac.uk/resources/software/genevar/) is a platform of 

database and web services designed for integrative analysis and visualization of SNP-

gene associations in eQTL studies (Yang et al., 2010).  
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The resource described in this study introduces additional capabilities not presently 

available. It provides comprehensive access to the results of work described in our 

previous two chapters. Briefly in Chapter 2, we integrated 29 eQTL datasets from 16 

publicly available genome-wide studies for various human tissues spanning a number 

of different populations. We made use of linkage disequilibrium (LD) information 

acquired from the HapMap project (Altshuler et al., 2010) and also LD data derived 

from the 1000 Genomes project (Abecasis et al., 2010) to develop a method for 

identifying more reliable eQTL relationships, based on consensus across studies. We 

also compared eQTLs across different tissues and populations to find currently cell 

type-dependent or population-dependent eQTLs. To illuminate possible mechanisms 

underlying the eQTL associations, we mapped eQTL SNPs to some annotated 

functional elements. In Chapter 3, we described mapping of eQTL relationships to the 

results of disease GWA studies on seven complex trait diseases so as to identify those 

disease loci with a putative eQTL mechanism. The ExSNP resource not only 

facilitates the querying of these useful eQTL data but also provides a comprehensive 

genome browser to visualize the relative positions of SNPs to their associated genes 

and other neighboring genes.    
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4.2: Construction and content 

Database construction  

The ExSNP database contains the following components: original eQTLs, high-

confidence eQTLs, cell type-dependent eQTLs, population-dependent eQTLs, disease 

associated eQTLs, and functionally annotated eQTLs (Figure 4.1). 

 

 

Figure 4.1. Workflow for the construction of the ExSNP database. 
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eQTL data sources and processing  

All genome-wide human eQTL association data were collected from 16 publicly 

available studies, covering various tissues and human populations. Nine of these 

studies were conducted in the most accessible cell type, lymphoblastoid cell lines 

(Dimas et al., 2009; Dixon et al., 2007; Duan et al., 2008; Grundberg et al., 2012; 

Lappalainen et al., 2013; Liang et al., 2013; Montgomery et al., 2010; Pickrell et al., 

2010; Stranger et al., 2007). Four of these LCL studies mapped eQTLs of individuals 

from the HapMap Project (Duan et al., 2008; Montgomery et al., 2010; Pickrell et al., 

2010; Stranger et al., 2007) and one study mapped eQTLs of individuals from the 

1000 Genomes Project (Lappalainen et al., 2013). Two studies performed eQTL 

mapping on LCLs in a Childhood Asthma sibling cohort (Dixon et al., 2007; Liang et 

al., 2013). In addition to those on LCLs, we included several studies on other single 

tissue types, specifically two on brain (Gibbs et al., 2010; Myers et al., 2007) and one 

each on liver (Innocenti et al., 2011; Eric E Schadt et al., 2008), monocytes (Zeller et 

al., 2010), and skin (Ding et al., 2010). Three of the included studies covered multiple 

tissue types. One of these (Dimas et al., 2009), investigated and compared eQTLs 

from three cell types: LCLs, primary fibroblasts, and primary T-cells. Another study 

(Fairfax et al., 2012) focused on two circulating immune cells, primary monocytes 

and B-cells. One study (Grundberg et al., 2012) discovered eQTLs in three cell types, 

LCLs, skins, adipose, derived from a subset of well-phenotyped healthy female twins 

in the MuTHER resource (Nica et al., 2011). Most of the 16 studies used transcript 

microarrays to measure RNA expression level. In contrast, three studies (Lappalainen 

et al., 2013; Montgomery et al., 2010; Pickrell et al., 2010) estimated transcript levels 
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of genes by using RNA-Seq methods. All but the 1000 genomes study used data from 

genotyping microarrays.  Since the individuals in that study were fully sequenced, full 

SNP information was already available.  

 

All transcript names, probe IDs and alias gene names used in each study were 

converted to current unique Entrez Gene IDs and Gene names (NCBI build 37.2). In 

addition, retired and discontinued SNP IDs were filtered out and all valid SNPs were 

converted to dbSNP rsIDs (build134). In total, there are 796,908 eQTL associations, 

comprising 548,344 unique SNPs and 15,170 unique genes. Linkage Disequilibrium 

(LD) data for pairs of SNPs were directly gathered from the International HapMap 

Project (Altshuler et al., 2010) and also derived from the 1000 Genomes Project 

(Abecasis et al., 2010) using PLINK (Purcell et al., 2007). 

 

Identification of consensus eQTLs  

We first identified the set unique eQTL relationships within each of the 29 datasets. 

Typically, as a result of linkage disequilibrium, each underlying unique eQTL 

relationship is associated with the presence of multiple SNPs (marker SNPs). Marker 

SNPs for each gene involved in an eQTL relationship were grouped into sub-sets 

based on linkage disequilibrium between them. We then compared these unique 

eQTL relationships across studies, to determine which pairs are compatible with the 

same underlying eQTL. The confidence score for each eQTL relationship is defined 

as the number of studies that have identified that relationship. Three different levels 
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of LD relationships were used, corresponding to r2 thresholds of 0.8, 0.5, and 0.3. 

Further details of this procedure were given in Chapter 2. 

 

Population-dependent and cell type-dependent eQTLs  

In order to examine eQTLs for various population and cell types, we divided all 

studies into 12 integrated sets. LCL has so far been the most commonly used cell 

type, allowing us to form three population specific datasets for the Caucasian, 

African, and Asian populations with this cell type. Eight studies were included in the 

Caucasian set (Dimas et al., 2009; Dixon et al., 2007; Duan et al., 2008; Grundberg et 

al., 2012; Lappalainen et al., 2013; Liang et al., 2013; Montgomery et al., 2010; 

Pickrell et al., 2010; Stranger et al., 2007). Four studies were included in the African 

set (Duan et al., 2008; Lappalainen et al., 2013; Pickrell et al., 2010; Stranger et al., 

2007), and one study was included in Asian set (Stranger et al., 2007). We then 

identified the population-dependent eQTL relationships which appear only in each 

single population set or across multiple populations..  

 

In addition, we constructed nine integrated sets, one for each cell type. These are LCL 

(Dimas et al., 2009; Dixon et al., 2007; Duan et al., 2008; Grundberg et al., 2012; 

Lappalainen et al., 2013; Liang et al., 2013; Montgomery et al., 2010; Pickrell et al., 

2010; Stranger et al., 2007), brain (Gibbs et al., 2010; Myers et al., 2007), liver 

(Innocenti et al., 2011; Eric E Schadt et al., 2008), monocyte (Fairfax et al., 2012; 

Zeller et al., 2010) , B-cell (Fairfax et al., 2012), T-cell (Dimas et al., 2009), 

fibroblast (Dimas et al., 2009), adipose (Grundberg et al., 2012), and skin (Ding et al., 
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2010; Grundberg et al., 2012). The cell type-dependent eQTL relationships which 

appear only in each single cell-type set or across multiple cell types have also been 

identified.   

 

Functional interpretation of eQTLs 

To identify possible mechanisms underlying these eQTL associations, we mapped 

marker SNPs for each eQTL relationship to several types of functional elements 

annotated on the human genome. Functional element data were acquired from several 

publicly available resources. Information on microRNA binding sites was taken from 

TargetScan (5.1) (Grimson et al., 2007), MicroCosm Targets (v5) (Kozomara & 

Griffiths-Jones, 2011), and microRNA.org (Aug 2010 release) (Betel et al., 2008). 

Transcription Factor binding sites and DNaseI hypersensitivity regions were extracted 

from the Integrated regulation tracks of the ENCODE Project (Dunham et al., 2012). 

The sensitive and ultra-sensitive sites discovered in the 1000 Genomes Project (Phase 

1) (Khurana et al., 2013) were used for sequence conservation analysis. Predicted 

potential programmed -1 ribosomal frameshift (-1 PRF) regions were collected from 

PRFdb (Belew, Hepler, Jacobs, & Dinman, 2008; Jacobs, Belew, Rakauskaite, & 

Dinman, 2007; Plant et al., 2004). Data of SNPs potentially affecting splicing were 

retrieved from SplicePort (Dogan et al., 2007). 

 

Disease associated eQTLs 

To investigate which disease risk loci discovered by GWAS may be related to an 

underlying eQTL mechanism, we compared SNPs that have been found to be 
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associated with disease risk with those involved in high confidence eQTL 

relationships. GWAS results for seven common human diseases (Bipolar disorder, 

Crohn’s disease, Coronary artery disease, Hypertension, Rheumatoid arthritis, Type 1 

diabetes, and Type 2 diabetes) were obtained from the GWAS catalog 

(www.genome.gov/gwastudies). Detailed data for the WTCCC1 study of these 

diseases (The Wellcome Trust Case Control Consortium, 2007) were used to derive a 

relationship between disease and eQTL marker SNPs consistent with the same 

underlying causal variant, and on this basis, marker SNPs for eQTLs that are within a 

threshold centi-Morgan (cM) distances (0.005 or 0.05) of disease risk markers were 

considered to represent the same mechanism. In addition to these seven diseases, we 

also investigated the relationship between high-confidence eQTL relationships and 

complex traits where eQTL data for the appropriate cell types are available, again 

taking data from the NHGRI GWAS Catalog (www.genome.gov/gwastudies/). The 

cell types are Brain, LCL, Liver, and Skin.  

  

Web implementation  

ExSNP is implemented using a LAMP (including Linux, Apache, MySQL, and 

PHP/Perl) platform. The web utility is supported and structured by a relational model 

using MySQL, and the web interface is executed in PHP-HTML. The server-side 

script is written in Perl (5.10). It provides a web-based interface for data query and 

search. The ExSNP browser leverages the power of Scalable Vector Graphics (SVG) 

to display a vector-based graph on the Website. 
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4.3: Use of the resource  

eQTL related Queries 

ExSNP provides three different approaches for data searching: by SNP ID, by Gene 

ID, and by Gene name. A user can search against all included eQTLs or just high-

confidence eQTLs. One can also ask if one or more SNPs of interest are in an LD 

relationship with any SNP associated with gene expression at various LD levels (r2 > 

0.8, 0.5, or 0.3). For retrieval of tissue-dependent or population-dependent eQTL 

relationships, a user can query by SNP ID, Gene ID, or Gene name and also select 

specific tissue/population sets. Disease associated eQTLs can be queried by SNP ID, 

Gene ID, or Gene name for a selected disease and specific eQTL set at various LD 

thresholds. SNPs located on functional regions can also be queried by selected 

functional element type. 

 

eQTL browsing 

The ExSNP browser is able to display the relative position of SNPs involved in eQTL 

relationships and the associated genes together with other near-by genes. The 

interactive interface allows a user to zoom in on a gene of interest and select specific 

sets of high-confident eQTLs for display. The browser also displays functional 

element regions for microRNA binding sites, transcription factor binding sites, and 

programmed -1 ribosomal frameshift signals, so as to facilitate identification of the 

possible functional impact of relevant SNPs. For example (Figure 4.2), there are total 

14 SNPs associated with the expression level of PTPRN2. 13 of these SNPs are 

located near 3’end of gene region and one falls on an distant upstream inter-genic 
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region (not shown in the figure). These SNPs are identified in up to four independent 

studies (Fairfax et al., 2012; Grundberg et al., 2012; Lappalainen et al., 2013; Zeller 

et al., 2010) for three different cell types, Monocytes, B-cells, and LCLs. At a 

threshold of r2 > 0.3, 12 out of the 14 SNPs form a single high-confidence eQTL 

relationship. 
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Figure 4.2. Sample screenshot from the ExSNP browser.  

This example shows all the eQTL associations of one gene, PTPRN2. The red bars in 

the plot show the transcripts of the target gene, PTPRN2. The green bars are the 
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transcripts of neighboring genes. The blue lines represent the location of each SNP 

associated with the expression level of the PTPRN2 gene. The red lines represent 

SNPs in high confidence eQTL relationships. The table section lists part of the set of 

SNPs associated with the expression level of PTPRN2, the studies in which each SNP 

was found, and the population and cell types of that study. The last column gives the 

number of studies in which that eQTL association was found. 

 

An example of a tissue dependent high-confidence eQTL relationship in liver  

There are a total of 28 genes that are found to be involved in eQTL relationship in 

both studies of liver (Innocenti et al., 2011; Eric E Schadt et al., 2008), but not 

reported in any other tissue. Although the molecular functions of many of these genes 

are still unknown, we found a few genes that are involved in lipid metabolism and 

that are primarily expressed in liver, for example APOC4. 

 

APOC4, apolipoprotein C-IV, encodes a lipid-binding protein that plays a role in lipid 

metabolism. Several GWA studies have demonstrated that APOC4 gene is associated 

with the level of blood low-density lipoprotein (LDL) cholesterol and the risk of 

coronary artery disease (Waterworth et al., 2010; Willer et al., 2008). Figure 4.3 

shows that two SNPs, located on the gene region of another gene, CLPTM1, are 

associated with the expression level of APOC4 (shown as red vertical lines). One 

SNP, rs11668758, is located in the intron region of CLPTM1and the other, 

rs3786505, is a synonymous variant. These two SNPs are in the same high-
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confidence eQTL relationship. This result illustrates that SNPs associated with the 

expression level of a gene may be located on another neighboring gene. 

 

 

Figure 4.3. Visualization of a Liver dependent high-confidence eQTL relationships 

for APOC4. 

The red lines show the locations of the eQTL SNPs, rs3786505 and rs11668758. The 

red boxes represent the transcripts of the APOC4 gene, with which these eQTL SNPs 

are involved in a high confidence eQTL relationship. The green boxes are the 

transcripts of the neighboring genes. 

 

An example of a high confidence eQTL relationship associated with human disease  

Several marker SNPs, including rs2872507, rs2305480, and rs2290400, in 

chromosome region of 17q12 , have been identified as associated with the risk of 

human complex disease, especially immune related diseases, such as Crohn's disease 

(Barrett et al., 2008; Franke et al., 2010), Rheumatoid arthritis (Okada et al., 2014; 
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Stahl et al., 2010), Asthma (Bønnelykke et al., 2013; Moffatt et al., 2007), and Type 1 

diabetes (Barrett et al., 2009). 

Different studies have proposed different disease relevant candidate genes for this 

locus. For Crohn’s disease, GSMDL, ZPBP2, ORMDL3, and IKZF3, were reported. 

In contrast, only IKZF3 was reported as a candidate for Rheumatoid arthritis, and 

only ORMDL3 for Asthma and Type 1 diabetes. Based on the eQTL analysis, six 

genes, GSDMA, GSDMAB, KRT222, ORMDL3, PGAP3, and ZPBP2, are found to 

have an eQTL association with these marker SNPs. Three of these eQTL genes, 

KRT222 (Montgomery et al., 2010), ZPBP2 (Grundberg et al., 2012) and PGAP3 

(Grundberg et al., 2012) were discovered only in one eQTL study. Two genes, 

GSDMB and ORMDL3, are in high-confidence eQTL relationships at the highest LD 

threshold (r2 > 0.8) (Figure 4.4).  Thus, the eQTL analysis suggests that these two 

genes are highly possible to be the candidates for involvement in susceptibility to 

these immune related diseases. Previous studies have shown that changes in the 

binding of an insulator protein, CTCF, and related chromatin remodeling on this 

autoimmune associated locus, might lead to alter the cis-regulatory of these two genes 

(Verlaan et al., 2009). This result demonstrates how the addition of eQTL information 

can be useful in reducing ambiguities in disease GWA study results. 
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Figure 4.4. Visualization of eQTL relationships for the chromosome region 17q12 

that is associated with the risk of Asthma and some autoimmune diseases. 

This plot shows the related position of genes in this locus and several of these gene 

associated with rs2872507. The blue line is the position of rs2872507. 

 

4.4: Conclusion  

ExSNP is designed with the intention of being an interactive and user-friendly 

integrated web database to query and visualize available human eQTL data and 

consensus eQTLs. It, so far, covers the broadest range of eQTL studies for various 

cell types and human populations. Users can search for all eQTL data and high-

confidence eQTLs by querying with a SNP ID or gene name. The eQTL browser also 

allows users to navigate and visualize the relative position of all cis-regulatory SNPs 

for each gene and to recognize what functional effects these eQTLs may be involved 

in. All analyzed data are available for users to download. 
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Chapter 5:  Conclusions and perspectives 

In this dissertation, we demonstrated a way to use expression quantitative trait loci 

(eQTLs) information for investigating putative expression mechanisms of human 

common diseases. Here we give a brief summary of the conclusions for our study and 

discuss future directions in this area. 

5.1: High Confidence eQTL sets  

In the first part of my dissertation, we overviewed available human genome-wide 

eQTL data and showed there is a high level of inconsistency among results from 

genome-wide eQTL association studies. Our objective was then to develop a method 

for integrating the results from the eQTL studies, so as to identify the high-confidence 

eQTLs. We integrated data from 16 publicly available genome-wide eQTL studies 

covering various human tissues and populations, and found consensus SNP-gene 

associations across these studies. We also compared eQTLs across different tissues 

and populations so as to estimate the proportions of tissue-dependent and population-

dependent relationships. In order to help understand mechanisms underlying these 

eQTL associations, we mapped eQTLs to annotated functional elements, discovering 

two enrichments of tissue-specific transcription factor binding sites.  

 

5.2: Disease associated eQTLs  

In the second part of my dissertation, we used the high-confidence eQTL data 

identified from genome-wide eQTL studies among various human tissues and 

populations to identify which loci associated with a set of common diseases may have 
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an underlying expression mechanism contributing to disease susceptibility. We 

developed an algorithm using centiMorgan distance, instead of conventional Linkage 

disequilibrium (R2), to estimate the overlap of disease associated loci and eQTL 

relationships. For that purpose, we used data from the WTCCC1 study to establish 

thresholds of centiMorgan distance and then applied the analysis to  all associated 

loci for seven human common diseases. In the end, we identified a large number of 

disease loci containing high-confidence eQTL relationships. We not only re-

discovered many genes that had previously been suggested to have altered expression 

contributing to disease susceptibility, but were also able to propose expression 

mechanisms for many genes previously suggested as disease relevant but for which 

no mechanisms has been proposed, as well as finding a set of new candidate genes for 

disease involvement, based on expression relationships. 

 

5.3: Web-based resource  

In the third part of my dissertation, we introduced a comprehensive web-based 

database, ExSNP, which incorporates all the analysis data from our studies, including 

original eQTLs, high-confidence eQTLs, cell type-dependent eQTLs, population-

dependent eQTLs, disease associated eQTLs, and functionally annotated eQTLs. The 

ExSNP resource not only facilitates the querying of these eQTL data but also 

provides a comprehensive genome browser to visualize the relative positions of SNPs 

to their associated genes and other neighboring genes. 
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5.4: Future perspectives  

Currently more and more studies are performing eQTL mapping by applying next-

generation sequencing technology, RNA-Seq, and whole genome sequencing, using 

larger sample populations. This will provide a relatively accurate estimate for the 

expression levels of different transcripts and much more complete SNP genotypes. 

There is a need to develop a better statistical model to reliably identify significant 

eQTLs, for example, incorporating other information such as pathway relationships. 

 

Undoubtedly, hundreds of thousands eQTLs in various tissues and populations will be 

identified in the near future. Currently the GTEx project (www.gtexportal.org/home/), 

funded by NHGRI, is performing the collection of eQTL studies towards an end goal 

of 900 donors and around 20,000 tissues samples.  This resource will enable studies 

of expression quantitative trait loci (eQTLs), alternative splicing, and the tissue 

specificity of gene regulatory mechanisms, and aid in the interpretation of genome-

wide association studies (GWAS).  

 

Establishing the presence of eQTL in a disease locus is indirect evidence of the 

disease relevance of the associated expression change. Further evidence is required. 

The eQTL relationships do not provide direct explanations of the underlying 

mechanisms of human common traits. Therefore, it is necessary to perform additional 

experiments to validate the eQTLs associated with human common traits. For 

example, one could examine the differences in gene expression level in an 

appropriate cell type between disease case and control populations. More information 
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on functional elements, such as enhancers and DNA methylation sites, would also 

facilitate understanding of the mechanisms that give rise to the eQTLs. 

 

In the post-GWAS era, the greatest challenge is to combine GWAS findings with 

additional molecular data to functionally characterize the associations. Since the 

etiologies of human common diseases are complex, no single molecular analysis is 

expected to fully unravel the disease mechanism. Multiple molecular levels may 

interact according to different physiological conditions, cell types and disease stages. 

As the various ‘Omics’ techniques advance, there are increasing size and complexity 

of high-throughput  data, including Transcriptomics, Proteomics, Metabolomics, and 

Epigenomics (Bauer, Glintschert, & Schuchhardt, 2014; Di Girolamo, Lante, Muraca, 

& Putignani, 2013). This information makes it possible to investigate the effect of 

risk variants on multiple molecular levels. Therefore, the next step is to develop new 

integrative approaches/algorithms that can combine ‘Omics’ data from these different 

molecular levels and prior knowledge of pathways and ontologies to facilitate the 

deduction of  causal processes from gene-disease associations from GWAS.  
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Appendix  

Figure S1.  Hierarchical cluster  

 

Figure S1.Hierarchical clustering of the fraction of common exGenes between pairs of 

eQTL datasets. Distance scale is based on the % of common exGenes between pairs of 

datasets. Blue boxes surround clustered datasets conducted in the same cell type, for 

example, LCL, monocytes, and liver. Orange boxes are for clustered datasets from the 

same study but conducted in different cell types or populations. The blue highlighted 

datasets are those performed in LCL for Caucasian populations. The grey highlighted 

datasets are those performed in LCL for African populations. The yellow highlighted 

datasets are those performed in LCL for Asian populations.   
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Method for the simulation of High-confidence eQTL datasets 

 

To generate the pseudo high-confidence eQTL data for each integrated set, we simulated a 1000 

random versions of the eQTL data for each dataset. There are a total 11 eQTL studies included in this 

simulation (Table S1). For each dataset of each eQTL study, we randomly generated ‘NULL’ eQTL 

association data (exSNP-exGene pairs) as follows. For each exGene with one or more associated 

exSNPs, we first randomly selected a pseudo exGene from the set of all RefGen genes and then 

randomly selected the same number of SNPs as there are exSNPs for the original exGene. These 

pseudo exSNPs were selected from the set of SNPs within  1MB of the selected gene, with a 

probability derived from the distribution of  the distances between exSNPs and the associated exGenes. 

(Table S2).   

 

We continually generated pseudo eQTL associations until we had simulated the number of exGenes 

and exSNPs in each dataset, and repeated the procedure 1000 times. For each run of the random 

simulation, we then calculated the average number of high-confidence eQTL associations, SNPs, and 

genes by using the same high-confidence algorithm (Table S3). Assuming the distribution of the 

number of simulated high-confidence eQTL data follows a normal distribution, we calculated the P-

value of the number of the observed high-confidence eQTL data and found that all these P-values are 

too small to calculate. 

 

Table S1. Microarray Chip used in each study 
 

Study Genotype Microarray 
HA HapMap Array 
BR Affymetrix GeneChip Human Mapping 500K 
AS Sentrix Human-1 & Illumina HumanHap300 
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LV Illumina 650Y & Affymetrix 500K 
HA2 HapMap Array 
3C Illumina 550K 
MO Affymetrix 6.0 
HRC HapMap Array 
HRY HapMap Array 
BR2 Illumina HumanHap 550 
LV2 Illumina 610 (UC) & Illumina HumanHap 550 (UW) 
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Table S2. Distribution of exSNP –exGene distances (in base pair units) for all cis-eQTL associations in 
all 11 studies  
 

Range Counts Frequency 
-1000000 ~ -950000 104 0.001 
-950000 ~ -900000 128 0.002 
-900000 ~ -850000 145 0.002 
-850000 ~ -800000 136 0.002 
-800000 ~ -750000 145 0.002 
-750000 ~ -700000 184 0.003 
-700000 ~ -650000 215 0.003 
-650000 ~ -600000 300 0.004 
-600000 ~ -550000 266 0.004 
-550000 ~ -500000 306 0.004 
-500000 ~ -450000 322 0.004 
-450000 ~ -400000 440 0.006 
-400000 ~ -350000 591 0.008 
-350000 ~ -300000 813 0.011 
-300000 ~ -250000 1144 0.016 
-250000 ~ -200000 1358 0.018 
-200000 ~ -150000 2128 0.029 
-150000 ~ -100000 3260 0.044 
-100000 ~ -50000 5314 0.072 

-50000 ~ 0 12134 0.165 
0 18675 0.254 

0 ~ 50000 11699 0.159 
50000 ~ 100000 4599 0.063 

100000 ~ 150000 2744 0.037 
150000 ~ 200000 1639 0.022 
200000 ~ 250000 1033 0.014 
250000 ~ 300000 769 0.010 
300000 ~ 350000 537 0.007 
350000 ~ 400000 438 0.006 
400000 ~ 450000 324 0.004 
450000 ~ 500000 216 0.003 
500000 ~ 550000 187 0.003 
550000 ~ 600000 163 0.002 
600000 ~ 650000 156 0.002 
650000 ~ 700000 181 0.002 
700000 ~ 750000 138 0.002 
750000 ~ 800000 157 0.002 
800000 ~ 850000 152 0.002 
850000 ~ 900000 105 0.001 
900000 ~ 950000 133 0.002 

950000 ~ 1000000 96 0.001 
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Table S3. Data for the randomly simulated high-confidence (HC) eQTL data. 

  AllCell 
AllPop 

LCL 
CEU 

LCL 
ASN 

LCL 
YRI LCL Liver Brain 

HC-eQTL relationships        Min. 285 0 0 0 34 0 6 
1stQ 620 35 1 0 153 0 111 

Median 754.5 67 6.5 0 224.5 0 165 
Mean 795.1 131.7 28.75 0.86 291.1 0.23 176.7 
3rdQ 922 133 20 0 351 0 232 
Max. 2430 1234 443 29 1559 4 584 

Observed 26626* 6079* 3028* 774* 11704* 507* 5068* 
HC-eQTL SNPs        Min. 285 0 0 0 34 0 6 

1stQ 617 35 1 0 153 0 111 
Median 750.5 67 6.5 0 224.5 0 165 

Mean 791.4 131.4 28.75 0.86 290.6 0.23 176.4 
3rdQ 914.2 133 20 0 351 0 231.2 
Max. 2366 1190 443 29 1559 4 584 

Observed 23741* 5849* 2985* 773* 11312* 502* 4779* 
HC-eQTL genes        Min. 47 0 0 0 8 0 2 

1stQ 62 5 1 0 18 0 8 
Median 67 6 1 0 21 0 10 

Mean 67.25 6.63 1.49 0.27 21.24 0.2 9.754 
3rdQ 72 8 2 0 24 0 12 
Max. 90 15 7 3 35 3 19 

Observed 1685* 277* 134* 105* 595* 390* 134* 
* indicates the significant P-value. For each integrated dataset, the median and mean 

number of HC-eQTL relationships, HC-eQTL SNPs, and HC-eQTL genes found is given 

as well as the minimum, maximum, and 1st and 3rd quantile values found in the1000 

simulations. Bold numbers are the observed in the real data.  
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Figure S2.  Additional examples of eQTL and disease data for WTCCC1 loci: Crohn’s Disease risk locus, Chr16, eQTL gene: NOD2 

(nucleotide-binding oligomerization domain containing 2) 
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Figure S3.  Additional examples of eQTL and disease data for WTCCC1 loci: Coronary artery disease risk locus, Chr 9, eQTL gene:  

CDKN2B (cyclin-dependent kinase inhibitor 2B) 
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Figure S4.  Additional examples of eQTL and disease data for WTCCC1 loci: Type 1 diabetes risk locus, Chr16, eQTL gene: DEXI 

(Dexi homolog) 
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Table S4.  WTCCC and included follow-up GWA studies for seven human common diseases 

Disease Set Disease/Trait PUBMED ID Loci count 
BD Bipolar disorder 22925353, 21771265, 21926972, 18711365, 19416921, 21738484, 

19488044, 21353194, 17554300, 17486107, 22688191 
65 

CAD Coronary artery disease 17634449, 19198611, 21378990, 19198612, 22319020, 21088011, 
21239051, 21606135, 17554300, 21378988 

45 

CD Crohn’s disease 17684544, 20570966, 17554261, 21102463, 18587394, 17554300, 
22936669, 17435756, 23128233, 22293688, 17804789, 17447842 

84 

HT Hypertension 19430479, 19304780, 17554300, 21909115, 21082022 17 
RA Rheumatoid arthritis 17804836, 20453842, 19503088, 18668548, 21653640, 17554300, 

17982456, 18794853 
34 

T1D Type 1 diabetes 17632545, 19966805, 19430480, 18840781, 18978792, 17554260, 
17554300, 22293688, 21980299, 18198356 

51 

T2D Type 2 diabetes 17293876, 19056611, 20581827, 20418489, 18372903, 17668382, 
17554300, 17463246, 17463248, 22693455, 17463249, 22101970, 
22293688, 17460697 

43 
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Table S5.  exGenes associated with high-confident eQTLs in the AllCell_AllPop integrated set at a 0.05 cM threshold for the 

WTCCC1 seven diseases.  

Disease Chromosome Loci exGenes 
BD 2 2q11.2 CIAO1, LIPT1, TSGA10, UNC50 
BD 2 2q37.3 ANKMY1 
BD 3 3p21.1 GLT8D1, GNL3, ITIH4, NT5DC2, TMEM110 
BD 3 3p22 CMTM8, LRRFIP2, TRANK1 
BD 3 3q27 MCCC1 
BD 4 4q22 PPM1K 
BD 5 5q15 ANKRD32, MCTP1 
BD 7 7p22 MAD1L1 
BD 8 8q24.3 SLC45A4 
BD 9 9p13 NUDT2 
BD 9 9p22 TTC39B 
BD 9 9q33 RALGPS1, RPL12, SLC2A8, ZNF79 
BD 11 11q13.2 CCS, CTSF, LRFN4, RIN1 
BD 11 11q24 SPA17 
BD 12 12q13.1 CACNB3 
BD 12 12q23 CMKLR1 
BD 14 14q11.2 HNRNPC, RPGRIP1 
BD 14 14q32.3 TDRD9 
BD 15 15q14 C15orf53 
BD 15 15q25 CTSH 
BD 16 16p12 COG7, DCTN5, GGA2 
BD 19 19p13.1 ATP13A1, LPAR2, MAU2 
BD 19 19q13.1 LOC400684 
BD 19 19q13.2 RABAC1 
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BD 20 20p13 CDC25B 
BD 20 20q13.1 PARD6B 
CAD 1 1p13.3 CELSR2, PSRC1, SORT1 
CAD 1 1q21.3 UBE2Q1 
CAD 2 2q33 FAM117B 
CAD 3 3p25 ANKRD28, COLQ 
CAD 3 3q22 CEP70, FAIM 
CAD 6 6p21.3 CCHCR1, DDR1, DEF6, DPCR1, HCG22, HCG27, HLA-B, HLA-C, HLA-DQB1, 

LST1, MICB, TCF19, TCP11, UHRF1BP1, VARS2 
CAD 6 6q14 FAM46A 
CAD 6 6q25.3 SLC22A3 
CAD 7 7q22 GPR22 
CAD 9 9p21 CDKN2B 
CAD 9 9q34.2 SURF1, SURF6 
CAD 10 10q23.3 LIPA 
CAD 10 10q24.3 AS3MT, C10orf26, C10orf32, NT5C2, SFXN2, USMG5 
CAD 11 11q22.3 PDGFD 
CAD 11 11q23.3 TAGLN 
CAD 11 11q24 FOXRED1, ST3GAL4 
CAD 12 12q24.1 FAM109A, SH2B3, TMEM116 
CAD 12 12q24.31 C12orf43, SPPL3 
CAD 15 15q25 ADAMTS7, CTSH 
CAD 17 17p11.2 PEMT, RASD1 
CAD 17 17p13 SRR 
CAD 17 17q21.3 ATP5G1, UBE2Z 
CAD 19 19p13.2 SMARCA4 
CD 1 1p13.2 AP4B1 
CD 1 1p31.1 DNAJB4, GIPC2, NEXN 
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CD 1 1p31.3 SLC35D1 
CD 1 1p36.2 PER3 
CD 1 1q22 ADAM15, MUC1, RIT1 
CD 1 1q23 CD244, LY9, SLAMF7 
CD 1 1q32.1 IL19 
CD 2 2p16 AHSA2, KIAA1841, LOC339803, PUS10 
CD 2 2p23 C2orf28, GPN1, KRTCAP3, SLC5A6 
CD 2 2q37.1 DGKD, SP110, SP140 
CD 3 3p21.3 AMT, HYAL3, IP6K2, KLHDC8B, NCKIPSD, NICN1, P4HTM, RBM6, UBA7, 

USP4, WDR6 
CD 4 4q24 BANK1 
CD 5 5p13.1 PTGER4 
CD 5 5q15 ERAP1, ERAP2, LNPEP 
CD 5 5q31.1 PDLIM4, SLC22A4, SLC22A5 
CD 5 5q31.3 FGF1, NDFIP1 
CD 5 5q35.2 CPEB4 
CD 6 6p21.3 AIF1, ATP6V1G2, CCHCR1, CLIC1, CSNK2B, DOM3Z, GPANK1, HCG22, 

HCG27, HLA-B, HLA-C, HLA-DOB, HLA-DPB1, HLA-DQA1, HLA-DQA2, HLA-
DQB1, HLA-DQB2, HLA-DRB1, HLA-DRB4, HLA-DRB5, HSPA1B, LST1, 
LY6G5C, MICB, PRRC2A, TAP2, TCF19, VARS2 

CD 6 6q22.3 THEMIS 
CD 6 6q25.3 RSPH3 
CD 6 6q27 FGFR1OP, RNASET2, RPS6KA2 
CD 7 7p15.2 SKAP2 
CD 8 8q21.3 RIPK2 
CD 9 9p24 JAK2 
CD 9 9q34.3 CARD9, DNLZ, INPP5E, SDCCAG3 
CD 10 10p11.2 CREM 
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CD 10 10q21.1 CISD1 
CD 10 10q21.2 ADO 
CD 11 11q12 C11orf10, FADS1, FADS2 
CD 11 11q13.1 CCDC88B, FKBP2, PRDX5, RPS6KA4, TRMT112, TRPT1 
CD 11 11q13.5 C11orf30 
CD 12 12q12 SLC2A13 
CD 13 13q14.1 LACC1, TNFSF11 
CD 14 14q24.1 ZFP36L1 
CD 14 14q31 GALC, GPR65 
CD 15 15q14 RASGRP1 
CD 16 16p11.2 APOBR, CCDC101, EIF3C, SPNS1, TUFM 
CD 16 16q12.1 NOD2, SNX20 
CD 17 17q12 GSDMA, GSDMB, ORMDL3, ZPBP2 
CD 17 17q21.2 CNTNAP1 
CD 19 19p13.2 CDC37, ICAM3, ICAM4 
CD 19 19p13.3 GPX4 
CD 20 20q13.3 STMN3 
CD 21 21q22.1 GART, IFNGR2, ITSN1, TMEM50B 
CD 22 22q11.2 UBE2L3 
CD 22 22q12.2 MTMR3, UQCR10 
CD 22 22q13.1 PDGFB, SYNGR1 
CD 22 22q13.2 CCDC134, EP300, L3MBTL2, MEI1, PMM1 
HT 1 1p13.2 ST7L 
HT 4 4q24 SLC39A8 
HT 6 6p21.3 AIF1, ATP6V1G2, CSNK2B, DOM3Z, GPANK1, HCG27, HLA-C, HLA-DQA1, 

HLA-DQB1, HLA-DRB1, HLA-DRB5, HSPA1B, LST1, LY6G5C, MICB 
HT 6 6p22.2 BTN3A2, BTN3A3, HIST1H2BD, TRIM38 
HT 8 8p23.1 XKR6 
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HT 12 12q21.3 GALNT4 
HT 15 15q26.1 FES 
HT 20 20q13.3 CTSZ, TH1L 
RA 1 1p13.2 AP4B1 
RA 1 1p36.3 MMEL1, TNFRSF14 
RA 2 2p14 SPRED2 
RA 2 2p16 AHSA2, LOC339803, PUS10 
RA 2 2q11.2 AFF3 
RA 4 4p15.2 ANAPC4, ZCCHC4 
RA 5 5q21 PAM, PPIP5K2 
RA 6 6p21.3 HCG22, HCG27, HLA-B, HLA-C, HLA-DOB, HLA-DPB1, HLA-DQA1, HLA-DQA2, 

HLA-DQB1, HLA-DQB2, HLA-DRA, HLA-DRB1, HLA-DRB4, HLA-DRB5, HLA-
DRB6, LOC285835, LST1, MICB, PRRC2A, PSMB9, TAP2, VARS2 

RA 6 6p22.1 BTN3A2, GABBR1, HCG4, HCG4B, HLA-A, HLA-F, HLA-G, VARS2, ZFP57, 
ZNRD1 

RA 6 6q27 FGFR1OP, RNASET2, RPS6KA2 
RA 7 7q32 IRF5, TNPO3 
RA 8 8p23.1 BLK, FAM167A, FDFT1, XKR6 
RA 9 9p13 NUDT2 
RA 9 9q33 C5, GSN, MEGF9 
RA 12 12q13.3 METTL21B, TSFM 
RA 12 12q24.1 FAM109A, SH2B3, TMEM116 
RA 14 14q24.3 BATF 
RA 17 17q12 GSDMA, GSDMB, ORMDL3, ZPBP2 
RA 20 20q13.1 CD40, PLTP 
RA 21 21q22.3 UBASH3A 
RA 22 22q12.3 IL2RB 
T1D 1 1p13.2 AP4B1 
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T1D 1 1p31.3 PGM1 
T1D 1 1q32.1 IL19 
T1D 2 2p23 ADCY3, POMC 
T1D 2 2q11.2 AFF3 
T1D 6 6p21.3 HCG27, HLA-DOB, HLA-DPB1, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-

DQB2, HLA-DRB1, HLA-DRB4, HLA-DRB5, PRRC2A, TAP2 
T1D 7 7p15.2 SKAP2 
T1D 8 8q24.1 TNFRSF11B 
T1D 12 12p13.3 CLEC2B, CLEC2D, CLECL1 
T1D 12 12q13.2 RPS26, SPRYD4, STAT2, SUOX 
T1D 12 12q24.1 ALDH2, FAM109A, SH2B3, TMEM116 
T1D 14 14q24.1 ZFP36L1 
T1D 15 15q14 RASGRP1 
T1D 15 15q25 CTSH 
T1D 16 16p11.2 APOBR, CCDC101, EIF3C, SPNS1, TUFM 
T1D 16 16p13.1 DEXI, RMI2 
T1D 16 16q23 CFDP1 
T1D 17 17q12 GSDMA, GSDMB, ORMDL3, ZPBP2 
T1D 17 17q21.2 CCR7, SMARCE1 
T1D 19 19p13.2 CDC37, ICAM3, ICAM4 
T1D 19 19q13.3 FKRP, PRKD2, STRN4 
T1D 21 21q22.3 UBASH3A 
T1D 22 22q12.2 MTMR3, UQCR10 
T1D 22 22q12.3 C1QTNF6 
T2D 2 2q36 IRS1 
T2D 3 3p25 PPARG 
T2D 4 4q27 CCNA2, EXOSC9 
T2D 6 6p21.3 HLA-DOB, HLA-DPB1, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DQB2, HLA-
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DRB1, HLA-DRB5, TAP2 
T2D 8 8q22.1 TP53INP1 
T2D 9 9p21 CDKN2B 
T2D 10 10p13 CAMK1D 
T2D 11 11p15.1 B7H6, NUCB2, SNORD14A 
T2D 11 11q13.4 STARD10 
T2D 12 12q13.1 CERS5, DIP2B, SLC11A2, TFCP2 
T2D 12 12q24.31 C12orf43 
T2D 15 15q24 PSTPIP1, TSPAN3 
T2D 15 15q26.1 HDDC3, RCCD1, UNC45A 
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Table S6. Categories of the proposed eQTL related disease candidate genes. 

Disease Chromosome Locus eQTL gene Category 
BD 2 2q11.2 CIAO1 C 
BD 2 2q11.2 LIPT1 B 
BD 2 2q11.2 TSGA10 B 
BD 2 2q11.2 UNC50 C 
BD 2 2q37.3 ANKMY1 C 
BD 3 3p21.1 GLT8D1 B 
BD 3 3p21.1 GNL3 B 
BD 3 3p21.1 ITIH4 B 
BD 3 3p21.1 NT5DC2 B 
BD 3 3p21.1 TMEM110 B 
BD 3 3p22 CMTM8 C 
BD 3 3p22 LRRFIP2 C 
BD 3 3p22 TRANK1 C 
BD 3 3q27 MCCC1 C 
BD 4 4q22 PPM1K C 
BD 5 5q15 ANKRD32 C 
BD 5 5q15 MCTP1 B 
BD 7 7p22 MAD1L1 B 
BD 8 8q24.3 SLC45A4 C 
BD 9 9p13 NUDT2 C 
BD 9 9p22 TTC39B B 
BD 9 9q33 RALGPS1 C 
BD 9 9q33 RPL12 C 
BD 9 9q33 SLC2A8 C 
BD 9 9q33 ZNF79 C 
BD 11 11q13.2 CCS B 
BD 11 11q13.2 CTSF B 
BD 11 11q13.2 LRFN4 B 
BD 11 11q13.2 RIN1 B 
BD 11 11q24 SPA17 C 
BD 12 12q13.1 CACNB3 A 
BD 12 12q23 CMKLR1 B 
BD 14 14q11.2 HNRNPC B 
BD 14 14q11.2 RPGRIP1 B 
BD 14 14q32.3 TDRD9 C 
BD 15 15q14 C15orf53 B 
BD 15 15q25 CTSH B 
BD 16 16p12 COG7 C 
BD 16 16p12 DCTN5 B 
BD 16 16p12 GGA2 C 
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BD 19 19p13.1 ATP13A1 C 
BD 19 19p13.1 LPAR2 C 
BD 19 19p13.1 MAU2 C 
BD 19 19q13.1 LOC400684 C 
BD 19 19q13.2 RABAC1 C 
BD 20 20p13 CDC25B C 
BD 20 20q13.1 PARD6B B 
CAD 1 1p13.3 CELSR2 A 
CAD 1 1p13.3 PSRC1 A 
CAD 1 1p13.3 SORT1 A 
CAD 1 1q21.3 UBE2Q1 C 
CAD 2 2q33 FAM117B C 
CAD 3 3p25 ANKRD28 C 
CAD 3 3p25 COLQ C 
CAD 3 3q22 CEP70 C 
CAD 3 3q22 FAIM C 
CAD 6 6q14 FAM46A C 
CAD 6 6q25.3 SLC22A3 B 
CAD 7 7q22 GPR22 C 
CAD 9 9p21 CDKN2B A 
CAD 9 9q34.2 SURF1 C 
CAD 9 9q34.2 SURF6 C 
CAD 10 10q23.3 LIPA B 
CAD 10 10q24.3 AS3MT C 
CAD 10 10q24.3 C10orf26 C 
CAD 10 10q24.3 C10orf32 C 
CAD 10 10q24.3 NT5C2 B 
CAD 10 10q24.3 SFXN2 C 
CAD 10 10q24.3 USMG5 C 
CAD 11 11q22.3 PDGFD B 
CAD 11 11q23.3 TAGLN C 
CAD 11 11q24 FOXRED1 C 
CAD 11 11q24 ST3GAL4 C 
CAD 12 12q24.1 FAM109A C 
CAD 12 12q24.1 SH2B3 B 
CAD 12 12q24.1 TMEM116 C 
CAD 12 12q24.31 C12orf43 B 
CAD 12 12q24.31 SPPL3 C 
CAD 15 15q25 ADAMTS7 B 
CAD 15 15q25 CTSH C 
CAD 17 17p11.2 PEMT B 
CAD 17 17p11.2 RASD1 B 
CAD 17 17p13 SRR B 
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CAD 17 17q21.3 ATP5G1 B 
CAD 17 17q21.3 UBE2Z B 
CAD 19 19p13.2 SMARCA4 C 
CD 1 1p13.2 AP4B1 C 
CD 1 1p31.1 DNAJB4 C 
CD 1 1p31.1 GIPC2 C 
CD 1 1p31.1 NEXN C 
CD 1 1p31.3 SLC35D1 C 
CD 1 1p36.2 PER3 B 
CD 1 1q22 ADAM15 A 
CD 1 1q22 MUC1 A 
CD 1 1q22 RIT1 B 
CD 1 1q23 CD244 B 
CD 1 1q23 LY9 C 
CD 1 1q23 SLAMF7 C 
CD 1 1q32.1 IL19 B 
CD 2 2p16 AHSA2 C 
CD 2 2p16 KIAA1841 C 
CD 2 2p16 LOC339803 C 
CD 2 2p16 PUS10 C 
CD 2 2p23 C2orf28 C 
CD 2 2p23 GPN1 B 
CD 2 2p23 KRTCAP3 C 
CD 2 2p23 SLC5A6 C 
CD 2 2q37.1 DGKD C 
CD 2 2q37.1 SP110 C 
CD 2 2q37.1 SP140 B 
CD 3 3p21.3 AMT C 
CD 3 3p21.3 HYAL3 C 
CD 3 3p21.3 IP6K2 C 
CD 3 3p21.3 KLHDC8B C 
CD 3 3p21.3 NCKIPSD C 
CD 3 3p21.3 NICN1 C 
CD 3 3p21.3 P4HTM C 
CD 3 3p21.3 RBM6 C 
CD 3 3p21.3 UBA7 C 
CD 3 3p21.3 USP4 C 
CD 3 3p21.3 WDR6 C 
CD 4 4q24 BANK1 C 
CD 5 5p13.1 PTGER4 A 
CD 5 5q15 ERAP1 C 
CD 5 5q15 ERAP2 B 
CD 5 5q15 LNPEP B 
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CD 5 5q31.1 PDLIM4 C 
CD 5 5q31.1 SLC22A4 B 
CD 5 5q31.1 SLC22A5 B 
CD 5 5q31.3 FGF1 C 
CD 5 5q31.3 NDFIP1 B 
CD 5 5q35.2 CPEB4 B 
CD 6 6q22.3 THEMIS C 
CD 6 6q25.3 RSPH3 C 
CD 6 6q27 FGFR1OP B 
CD 6 6q27 RNASET2 B 
CD 6 6q27 RPS6KA2 C 
CD 7 7p15.2 SKAP2 C 
CD 8 8q21.3 RIPK2 B 
CD 9 9p24 JAK2 B 
CD 9 9q34.3 CARD9 B 
CD 9 9q34.3 DNLZ C 
CD 9 9q34.3 INPP5E C 
CD 9 9q34.3 SDCCAG3 C 
CD 10 10p11.2 CREM B 
CD 10 10q21.1 CISD1 C 
CD 10 10q21.2 ADO C 
CD 11 11q12 C11orf10 C 
CD 11 11q12 FADS1 B 
CD 11 11q12 FADS2 C 
CD 11 11q13.1 CCDC88B C 
CD 11 11q13.1 FKBP2 C 
CD 11 11q13.1 PRDX5 B 
CD 11 11q13.1 RPS6KA4 C 
CD 11 11q13.1 TRMT112 C 
CD 11 11q13.1 TRPT1 C 
CD 11 11q13.5 C11orf30 B 
CD 12 12q12 SLC2A13 C 
CD 13 13q14.1 LACC1 B 
CD 13 13q14.1 TNFSF11 B 
CD 14 14q24.1 ZFP36L1 B 
CD 14 14q31 GALC B 
CD 14 14q31 GPR65 B 
CD 15 15q14 RASGRP1 B 
CD 16 16p11.2 APOBR C 
CD 16 16p11.2 CCDC101 C 
CD 16 16p11.2 EIF3C B 
CD 16 16p11.2 SPNS1 C 
CD 16 16p11.2 TUFM C 
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CD 16 16q12.1 NOD2 A 
CD 16 16q12.1 SNX20 C 
CD 17 17q12 GSDMA C 
CD 17 17q12 GSDMB C 
CD 17 17q12 ORMDL3 B 
CD 17 17q12 ZPBP2 B 
CD 17 17q21.2 CNTNAP1 C 
CD 19 19p13.2 CDC37 C 
CD 19 19p13.2 ICAM3 B 
CD 19 19p13.2 ICAM4 C 
CD 19 19p13.3 GPX4 B 
CD 20 20q13.3 STMN3 C 
CD 21 21q22.1 GART B 
CD 21 21q22.1 IFNGR2 B 
CD 21 21q22.1 ITSN1 C 
CD 21 21q22.1 TMEM50B B 
CD 22 22q11.2 UBE2L3 B 
CD 22 22q12.2 MTMR3 B 
CD 22 22q12.2 UQCR10 C 
CD 22 22q13.1 PDGFB C 
CD 22 22q13.1 SYNGR1 C 
CD 22 22q13.2 CCDC134 C 
CD 22 22q13.2 EP300 B 
CD 22 22q13.2 L3MBTL2 C 
CD 22 22q13.2 MEI1 C 
CD 22 22q13.2 PMM1 C 
HT 1 1p13.2 ST7L B 
HT 4 4q24 SLC39A8 B 
HT 6 6p22.2 BTN3A2 C 
HT 6 6p22.2 BTN3A3 C 
HT 6 6p22.2 HIST1H2BD C 
HT 6 6p22.2 TRIM38 C 
HT 8 8p23.1 XKR6 C 
HT 12 12q21.3 GALNT4 C 
HT 15 15q26.1 FES B 
HT 20 20q13.3 CTSZ C 
HT 20 20q13.3 TH1L C 
RA 1 1p13.2 AP4B1 C 
RA 1 1p36.3 MMEL1 B 
RA 1 1p36.3 TNFRSF14 B 
RA 2 2p14 SPRED2 B 
RA 2 2p16 AHSA2 C 
RA 2 2p16 LOC339803 C 
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RA 2 2p16 PUS10 C 
RA 2 2q11.2 AFF3 B 
RA 4 4p15.2 ANAPC4 C 
RA 4 4p15.2 ZCCHC4 C 
RA 5 5q21 PAM C 
RA 5 5q21 PPIP5K2 C 
RA 6 6q27 FGFR1OP C 
RA 6 6q27 RNASET2 C 
RA 6 6q27 RPS6KA2 C 
RA 7 7q32 IRF5 B 
RA 7 7q32 TNPO3 C 
RA 8 8p23.1 BLK B 
RA 8 8p23.1 FAM167A C 
RA 8 8p23.1 FDFT1 C 
RA 8 8p23.1 XKR6 C 
RA 9 9p13 NUDT2 C 
RA 9 9q33 C5 B 
RA 9 9q33 GSN C 
RA 9 9q33 MEGF9 C 
RA 12 12q13.3 METTL21B C 
RA 12 12q13.3 TSFM B 
RA 12 12q24.1 FAM109A C 
RA 12 12q24.1 SH2B3 B 
RA 12 12q24.1 TMEM116 C 
RA 14 14q24.3 BATF B 
RA 17 17q12 GSDMA C 
RA 17 17q12 GSDMB C 
RA 17 17q12 ORMDL3 C 
RA 17 17q12 ZPBP2 C 
RA 20 20q13.1 CD40 A 
RA 20 20q13.1 PLTP C 
RA 21 21q22.3 UBASH3A B 
RA 22 22q12.3 IL2RB B 
T1D 1 1p13.2 AP4B1 C 
T1D 1 1p31.3 PGM1 B 
T1D 1 1q32.1 IL19 C 
T1D 2 2p23 ADCY3 B 
T1D 2 2p23 POMC B 
T1D 2 2q11.2 AFF3 B 
T1D 7 7p15.2 SKAP2 C 
T1D 8 8q24.1 TNFRSF11B B 
T1D 12 12p13.3 CLEC2B C 
T1D 12 12p13.3 CLEC2D C 
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T1D 12 12p13.3 CLECL1 C 
T1D 12 12q13.2 RPS26 C 
T1D 12 12q13.2 SPRYD4 C 
T1D 12 12q13.2 STAT2 C 
T1D 12 12q13.2 SUOX C 
T1D 12 12q24.1 ALDH2 C 
T1D 12 12q24.1 FAM109A C 
T1D 12 12q24.1 SH2B3 A 
T1D 12 12q24.1 TMEM116 C 
T1D 14 14q24.1 ZFP36L1 C 
T1D 15 15q14 RASGRP1 B 
T1D 15 15q25 CTSH A 
T1D 16 16p11.2 APOBR C 
T1D 16 16p11.2 CCDC101 C 
T1D 16 16p11.2 EIF3C C 
T1D 16 16p11.2 SPNS1 C 
T1D 16 16p11.2 TUFM C 
T1D 16 16p13.1 DEXI C 
T1D 16 16p13.1 RMI2 C 
T1D 16 16q23 CFDP1 C 
T1D 17 17q12 GSDMA C 
T1D 17 17q12 GSDMB C 
T1D 17 17q12 ORMDL3 B 
T1D 17 17q12 ZPBP2 C 
T1D 17 17q21.2 CCR7 C 
T1D 17 17q21.2 SMARCE1 C 
T1D 19 19p13.2 CDC37 C 
T1D 19 19p13.2 ICAM3 C 
T1D 19 19p13.2 ICAM4 C 
T1D 19 19q13.3 FKRP C 
T1D 19 19q13.3 PRKD2 C 
T1D 19 19q13.3 STRN4 C 
T1D 21 21q22.3 UBASH3A B 
T1D 22 22q12.2 MTMR3 C 
T1D 22 22q12.2 UQCR10 C 
T1D 22 22q12.3 C1QTNF6 B 
T2D 2 2q36 IRS1 B 
T2D 3 3p25 PPARG A 
T2D 4 4q27 CCNA2 B 
T2D 4 4q27 EXOSC9 C 
T2D 8 8q22.1 TP53INP1 A 
T2D 9 9p21 CDKN2B A 
T2D 10 10p13 CAMK1D B 
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T2D 11 11p15.1 B7H6 C 
T2D 11 11p15.1 NUCB2 C 
T2D 11 11p15.1 SNORD14A C 
T2D 11 11q13.4 STARD10 C 
T2D 12 12q13.1 CERS5 C 
T2D 12 12q13.1 DIP2B C 
T2D 12 12q13.1 SLC11A2 C 
T2D 12 12q13.1 TFCP2 C 
T2D 12 12q24.31 C12orf43 C 
T2D 15 15q24 PSTPIP1 C 
T2D 15 15q24 TSPAN3 B 
T2D 15 15q26.1 HDDC3 C 
T2D 15 15q26.1 RCCD1 C 
T2D 15 15q26.1 UNC45A C 
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