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In two-armed randomized clinical trials (RCTs) designed to compare a new treatment 

with a control, a key endpoint is often measured and analyzed both at baseline and 

after treatment for two groups. More powerful and precise statistical inferences are 

possible once the between-group comparisons have been adjusted for covariates. In 

this thesis we propose a new method for ordered categorical outcomes which adjusts 

for baseline without relying on any specific assumptions on the data generating 

process. Based on baseline and post-treatment values, data are composed of counts of 

patients who have improved from one category to another, stayed the same or 

deteriorated. Not all patterns are comparable. Hence, the ordering is only partial. We 

develop an approach to test the treatment effects based on comparing each 

observation in one group to each observation in the other group to which it is 

comparable. The power comparisons of this test with four common approaches are 

conducted in our simulation study. 
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Chapter 1: Introduction 

 
Many randomized trials involve measuring an ordinal outcome at baseline and 

after treatment to determine the effectiveness of treatment. For example, in the 

simplest pretest-posttest designs (only one measurement is made after treatment), 

consider the evaluation of an endovascular approach relative to standard procedure 

for the treatment of abdominal aortic aneurysm. Each patient condition may be 

classified as good (G), fair (F), serious (S) or critical (C). After treating the patient for 

a period of time, their health conditions are again rated on same scale from good to 

critical. The purpose of such clinical trials is to assess the effectiveness of a new 

treatment relative to a standard control approach in improving the state of patients, or 

in reducing the magnitude of deterioration. 

 

Adjusting between-group comparisons for covariates often improves the 

analysis (Senn, 1989). The most common approaches to adjust for an ordinal 

covariate seem to be treating it as binary, nominal, or continuous.  

 

When the covariate is binary or nominal, the adjustment generally consists of 

comparing outcomes across treatment groups, within each level of the covariate. One 

typical nonparametric test is Fisher’s exact test,   which combines categories to create 

a 2 × 2 table to test homogeneity of each outcome probability among the rows. 

Moses, Emerson, and Hosseini (1984) and Zimmermann (1993) cited this common 
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practice as inefficient because ignoring the ordering among the categories or 

collapsing categories will result in a loss of power. 

 

To exploit the ordering, numerical scores may be assigned to the ordered 

categories, and simply subtract baseline values from post-treatment values. The 

primary response variable is then the change on the pain scale from baseline. Thus, 

we have a single vector-valued endpoint which captures both baseline and subsequent 

pain measurements. When the choice of scores is not apparent, integer (equally 

spaced) scores are often assigned. Berger and Ivanova (2001) showed this practice 

generally leads to unnecessarily conservative tests. 

 

By treating the ordinal response variable as continuous, we can use the 

analysis of covariance (ANCOVA) with the post-treatment value as the response 

variable and the baseline values as the covariate (Maurer and Commences, 1988; 

Laird and Wang, 1990). ANCOVA is a merger of ANOVA and regression for 

continuous variables. ANCOVA tests whether certain factors have an effect after 

removing the variance for which quantitative predictors (covariates) account. The 

inclusion of covariates can increase statistical power because it accounts for some of 

the variability. 

 

Another method to adjust for baseline is to resort to ordinal regression models 

which utilize the ordinal nature of the data by describing various models of stochastic 

ordering and thus eliminating the need of assigning scores. The most widely used 
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model in ordinal regression is the cumulative logit model which models cumulative 

logits by combining the probability of the event and all events that are ordered before 

it. This model has a complete set of parameter estimates for each cumulative logit 

(that is, multiple intercepts and multiple estimates for each predictor). A popular 

submodel of the cumulative logit models is the proportional odds model (see Agresti, 

1990). The model assumes that the odds of responses below a given response level 

are constant regardless of the level you pick. The proportional odds model plays an 

immensely important role in the practical application of analysis of categorical data. 

Readers interested in further details are referred to McCullagh, 1980 and Agresti, 

1990. However, compared with design-based non-parametric tests, regression based 

tests are less transparent in terms of interpretation and inference. Also, regression 

based methods may not be appropriate when the model does not fit the data.  

 

In this thesis, we explore a new nonparametric method to adjust for baseline 

which does not rely on any assumptions. Specifically, we consider the information-

preserving composite endpoint (Berger, 2002), which consists of the pair of values for 

each patient, one at baseline and one after treatment,  and determine which of these 

patterns indicate the most improvement. It will turn out that some pairs cannot be 

ranked above, equivalent to or below others, resulting in only a partial ordering. To 

the extent that pairs of categories, and therefore pairs of observations, are 

comparable, the experiment is still informative. We exploit the information that is 

present to compute a modified U-statistic (Serfling, 1988).  
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In Chapter 2 we illustrate, through a series of examples, some situations in 

which partial ordering arise in RCTs. In Chapter 3 we present several methods for 

adjusting for an ordinal baseline variable, and explore the partial ordering on the 

outcome levels induced by each. In Chapter 4 we develop an exact approach to 

between-group analysis adjusting for ordinal baseline covariates (Berger, 2004) based 

on the partial ordering discussed in Chapter 3. Three traditional methods for 

categorical data analysis (Fisher’s exact test, ANCOVA, proportional odds 

regression) are introduced in Chapter 5, and we conduct a series of simulations to 

compare these conventional tests with our proposed procedure in term of 

unconditional power. The results are summarized and discussed in Chapter 6.  
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Chapter 2: Partial ordering in clinical trials 
 
 

In this section we define partial orderings and illustrate, through a series of 

examples, how they may arise in RCTs. The partial ordering is defined 

mathematically as a mapping on the product space of the elements of a set into the 

space {>, <, =, ≠}, where a ≠ b indicates that a and b are not comparable, or that none 

of a < b, a = b, or a > b would be accurate. For example, if the set is 1, 2, A, B, then 

there are six pairs of elements,  and one partial ordering on this set might be 1 < 2, 1 ≠ 

A, 1 ≠ B, 2 ≠ A, 2 ≠ B, and A < B. Any partial ordering satisfies reflexivity (a = a), 

and antisymmetry (if a > b, then b < a; if a = b, then b = a; if a < b, then b > a; if a ≠ 

b, then b ≠ a). In addition, a proper partial ordering will satisfy the property of 

transitivity, so that a > b > c implies that a > c (Kolmogorov and Fomin, 1970). 

Partial orderings can arise naturally in a variety of settings within the general guise of 

RCTs. In the remainder of this section we illustrate the diversity of RCT situations 

which result in partial orderings. 

 

Example 2.1 (Partially Ordered Sample Space with a Completely Ordered 

Endpoint) 

Suppose that two patients are randomized to each of the experimental 

treatment E and the standard of care control S, and suppose further that the primary 

efficacy endpoint is trichotomous, with three completely ordered outcome levels. For 

example, these outcome levels may be cure (C), improvement (I), or failure (F) in the 

evaluation of pneumonia, or other disease. Even though these three outcome levels 
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are completely ordered (C > I > F), the permutation sample space is only partially 

ordered because the endpoint is ordinal but not interval. To see this, suppose that the 

2 × 3 contingency table (by convention, we list the S row first, then the E row, 

separated by a semi-colon, with columns separated by a comma and listed in order of 

increasing benefit, or F, I, C) is observed to be (1, 1, 0; 0, 1, 1), indicating that in the 

S group there was one F and one I, while in the E group there was one I and one C. 

For simplicity, we may also write this as (F, I; I, C). The permutation sample space is 

the set of 2 × 3 contingency tables that preserve the row margin (2, 2) and the column 

margin (1, 2, 1). With these fixed margins, there are two degrees of freedom, so may 

denote a 2 × 3 contingency table (viewed as a point in the permutation sample space) 

by only the first two elements. The observed data are then considered as (1, 1). The 

other points of the sample space are (0, 1) = (I, C; F, I),  (0, 2) = (I, I; F, C), and (1, 0) 

= (F, C; I, I). Clearly, (F, I; I, C) provides the most evidence that E is superior to S, 

and (I, C; F, I) provides the least. But it sis not clear how (I, I; F, C) and (F, C; I, I) 

compare to each other without making judgments concerning the relative spacing 

among C, I, and F. That means it is hard to compare two improved patients to one 

cured patient and another patient with no improvement. 

 

Example 2.2 (Multivariate response with ordinal margin) 

Stevens (1951) distinguishes the classification of scale types as nominal, 

ordinal, interval and ratio scales. However this list is incomplete since only a partial 

order may exist among the categories. More complex order structure arises when a 

bivariate or a multivariate response is observed even though the categories for each 
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margin are ordinal. For instance, consider two binary endpoints, y1 and y2, each 

scored as 0 and 1, with 1 corresponding to the better outcomes. We may consider the 

pair (y1, y2) as a single vector-valued endpoint, and each patient may be classified as 

(0, 0), (0, 1), (1, 0), or (1, 1). It is clear that (1, 1) > (1, 0) > (0, 0) and (1, 1) > (0, 1) > 

(0, 0), but (1, 0) ≠ (0, 1), which results in a partial order. 

 

Example 2.3 (Censored Data) 

Consider survival data with right-censoring. The usual complete ordering on 

uncensored observations still holds. That is, death at nine months is better than death 

at six months (9 > 6). It remains to compare censored observations to censored and 

uncensored observations. Obviously, equality holds if and only if both the time and 

the censoring indicator are common to the two observations. It seems reasonable to 

define the censored observation to be greater than the uncensored one if and only if 

its time is equal to or greater than the time of the uncensored one (11+ > 11, 6+ > 1). 

If the time of the censored observation is less than the time of the uncensored one, 

there is no way to compare these quantities. For example, if we were to try to 

compare 6+ to 8, then without assuming some sort of model which enable us to 

estimate the actual time of death of the patient whose survival time was right-

censored at six months, we would only conclude that 6+ ≠ 8. Two observations with 

different censoring times may or may not be considered comparable, e.g., 6+ < 10+ or 

6+ ≠ 10+. 
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Example 2.4 (Missing Data) 

Consider a phase III clinical trial with missing data, where each patient might 

be classified on their final result as missing, failure or success. We can consider 

missing as better than failure but worse than success, or we can just consider that it is 

non-comparable to either one.  

 

Example 2.5 (Adjustment for Ordinal Baseline) 

Consider the evaluation of a new therapy for functional gastro-intestinal 

disorder. Each patient may be classified based on pain as disabling (D), severe (S), 

moderate (M), mild (L), slight (T), or none (N). Obviously, these six outcome levels 

are completely ordered, but they are different from the outcomes in Example 2.1. 

These outcomes represent a point in time, and not change, so the baseline value needs 

to be considered. Suppose that to enter the study a patient would need to be in one of 

the four categories D, S, M, or L. At the end of the study, the patient can be in any of 

the six states. Then we have a single vector-valued endpoint which captures both 

baseline and subsequent pain measurements (Berger, 2002), with 4 × 6 = 24 partially 

ordered outcome levels, as we will study in detail in Chapter 3. This study is precisely 

the kind of problem that motivated this research. 
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Chapter 3: Adjusting for an ordinal baseline variable by 

inducing partial ordering 

Based on the study described in Example 2.5, the development of partial 

orderings on the 24 categories is informative. If we ignore the comparison of a given 

category to itself, then there are IJ (IJ – 1)/2 pairs of distinct categories for an I × J 

contingency table, or, with 24 categories, 24(23)/2 = 276 pairs of distinct categories. 

In this section we present several methods for adjusting for an ordinal baseline 

variable, and we can actually linearly order these partial orderings by how many of 

the pairs of categories they treat as comparable. This is important, because 

comparative information derives from comparisons of categories. Hence, a partial 

ordering that compares more pairs of categories will provide a more informative 

analysis. However, as we will see, there is a danger in pretending that certain 

categories can be compared when in fact they cannot. We first present the partial 

ordering for the specific case of the 4 × 6 contingency table (Table 1), then generalize 

to an I × J contingency table. We remark that the orderings are based not on the 

perspective of the patient, who would regard as best starting at L and ending at N, but 

rather from the perspective of the evaluation of the medical intervention. This being 

the case, the most clinical benefit derives then for the (D, N) pattern. 

 

Table 1: The 4 × 6 contingency table of Example 2.5 
Baseline Post Treatment Pain Assessment

Pain D S M L T N
D (D, D) (D, S) (D, M) (D, L) (D, T) (D, N)
S (S, D) (S, S) (S, M) (S, L) (S, T) (S, N)
M (M, D) (M, S) (M, M) (M, L) (M, T) (M, N)
L (L, D) (L, S) (L, M) (L, L) (L, T) (L, N)  
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3.1 Stratify by Baseline 

The idea behind stratifying for baseline is that two categories are comparable 

only if they have the same first component (baseline), or are in the same row of Table 

1. Now each category is comparable to five other categories, resulting in (4 × 6 × 5)/2 

= 60 comparable pairs of categories out of 24(23)/2 = 276 pairs of categories.  In 

general, with an I × J contingency table, each row category would be comparable to J 

– 1 categories, and the number of comparable pairs of categories would be IJ (J – 

1)/2, out of IJ (IJ – 1)/2 pairs of categories. Obviously, this is a sparse partial 

ordering, which is tantamount to treating baseline as a nominal variable (when in fact 

it is ordinal), and does not treat as comparable the categories (D, N) and (L, D), even 

though the former represents improvement  from disabling pain to no pain and the 

latter represents degradation from mild pain to disabling pain. 

 

3.2 Forward and Backward Stratification 

With forward or backward stratification, two outcome levels are comparable 

only if they have the same first (baseline) or second (post-treatment) component, or 

are in either the same row or the same column of Table 1. Now each category is 

comparable to 5 + 3 = 8 other categories, resulting in (4 × 6 × 8)/2 = 96 comparable 

pairs of categories out of 276 pairs of categories. In general, with an I × J 

contingency table, each category would be comparable to (J -1) + (I – 1) categories, 

and the number of comparable pairs of categories would be IJ (J + I – 2)/2, out of (IJ 
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– 1)/2 pairs of categories. This partial ordering is still sparse, and still considers (D, 

N) ≠ (L, D).  

 

3.3 Enrichment  

One can enrich the partial ordering of Section 3.2 by making it transitive. 

Thus, if (D, N) > (D, D), which is meaningful because going from disabling pain to 

no pain reflects better on the treatment than starting with disabling pain and 

remaining with disabling pain, and if (D, D) > (L, D), which is also meaningful 

because starting with disabling pain and remaining with disabling pain reflects better 

on the treatment than going from mild pain to disabling pain, then it is only 

reasonable that (D, N) > (L, D). Define two categories as comparable if one 

dominates a category that dominates the other. Any category is then comparable to 

any other category Northeast or Southwest of it (Table 1). To find the total number of 

comparable pairs of categories, consider the four cells (categories), at which a pair of 

rows and a pair of columns intersect (Diaconis and Sturmfels, 1998). This gives 

4!/[(2!)(2!)] = 6 pairs of cells, of which five (all but the upper-left vs. the lower-right) 

are comparable. As there are 4!/[(2!)(2!)] = 6 pairs of rows, and 6!/[(2!)(4!)] = 15 

pairs of columns (Table 1), there are 6 × 15 = 90 pairs of non-comparable categories, 

and 276 – 90 = 186 pairs of comparable categories. In general, with an I × J 

contingency table, there would be I!/[(2!)( I - 2)!] pairs of rows and J!/[(2!)(J - 2)!] 

pairs of columns, or I!J!/[(2!)( I – 2)!(2!)(J – 2)!] pairs of non-comparable categories. 
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An equivalent derivation is to start with the IJ (I + J - 2)/2 from Section 3.2, 

and then recognized that symmetry half of the remaining [IJ (IJ – 1) – IJ (I + J -2)]/2 

pairs of categories are comparable, and the other half are not. Yet a third derivation, 

which is also instructive, comes from using the five comparable pairs of categories 

from each of the I!J!/[(2!)( I – 2)!(2!)(J – 2)!] pairs of rows and columns and then 

subtracting away the over count, which is IJ [(I – 2)(J – 1) + (J -2)(I – 1)]/2. This is 

evident because each categories is compared to each of the other (J – 1) categories in 

its row (I – 1) times instead of once, and each category is compared to each of the 

other (I – 1) categories in its column (J – 1) times instead of once. 

 

3.4 Direction of Effect 

The aforementioned partial orderings do not compare come improvement 

categories, such as (L, N), to some worsening categories, such as (M, D). If both 

dimensions are measured on the same scale, then one can enrich the partial ordering 

by considering as comparable pairs of categories which differ in the direction of 

effect. For instance, (M, D) < (M, M) < (L, N). To find the number of comparable 

categories, consider rows r1 and r2 > r1, columns c1 and c2 > c1, such that they are not 

interweaving, i.e., the two columns are either within the interval of the two rows or 

outside the interval. Mathematically, r1 ≤ c1 < c2 ≤ r2 or c1 ≤ r1 < r2 ≤ c2, and both 

equalities cannot hold at the same time. These two pairs will intersect at four cells, 

which give six pairs of cells. All of these are comparable (the upper left vs. lower 

right is also comparable since one is above or on the diagonal and the other is below 
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or one the diagonal, but they are not on the diagonal at the same time). Obviously, the 

number of ways to choose the columns from outside the interval (r1, r2) is: 

                                           ))(1( 21 rJr −− . 

The number of ways to choose columns inside the interval (r1, r2), where )1( 12 −− rrI is 

an index function is: 

2/)2)(1( )1(1212 12 −−−−−− rrIrrrr . 

The number of ways to choose one at the endpoint and the other outside the interval 

is: 

)1()( 12 −+− rrJ . 

The number of ways to choose one at the endpoint and the other inside the interval is: 

)1(2 12 −− rr . 

So for a fixed pair of rows, there are: 

)1(2)1()(2/)2)(1())(1(),( 1212)1(12122121 12
−−+−+−+−−−−+−−= −− rrrrJIrrrrrJrrrK rr

 
ways to choose a pair of columns such that they intersect at four cells, of which a total 

of six pairs are comparable. Hence, the total number of non-comparable pairs is: 

∑ −−
),(

21

21

)),(2/)1((
rr

rrKJJ , 

where the sum is over all possible pairs of rows (r2 > r1). 

 

In our example of pain, I = 4, J = 6, and there are six possible pairs of rows. 

We find that: 

)112(2)11()26(2/)212)(112()26)(11()2,1( )112( −−+−+−+−−−−+−−= −−IK

            400400 =++++= , 
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5)113(20)36(00)3,1( =−−++−++=K , 

7)114(20)46(2/)214)(114(0)4,1( =−−++−+−−−−+=K , 

70)12()36(0)36)(12()3,2( =+−+−++−−=K , 

7)124(2)12()46(0)46)(12()4,2( =−−+−+−++−−=K , 

80)13()46(0)46)(13()4,3( =+−+−++−−=K . 

So the total number of non-comparable pairs is (15)(6) – (4 + 5 + 7 + 7 + 7 + 8) = 52, 

and the number of comparable pairs is 276 – 52 = 224.  

 

3.5 Compare Non-change 

One additional modification is to consider the non-change categories as 

comparable. None of the previously discusses partial orderings would consider (D, D) 

comparable to (S, S), for example. It is not entirely clear how these categories are to 

be compared. One might argue that all of these categories represent no change, so 

they are all equivalent. However, one could also argue that more baseline pain means 

more room (and need) for improvement, so that (L, L) > (M, M) > (S, S) > (D, D). 

The opposite ranking would result if one were to take the view that the healthier the 

patient is to start with, the easier it is to improve. It is not our intention to resolve this 

issue, but rather to point out that these categories may or may not be considered 

comparable. If they are, then there are k!/[(2!)(k - 2)!] fewer pairs of non-comparable 

cells than in Section 3.4, where k = min(I, J). When I = 4 and J = 6, k = 4, and there 

are 46 pairs of non-comparable categories, and 230 comparable pairs of categories. 
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3.6 Sort by Change 

In Section 3.4 the main diagonal (representing no change) was used as a line 

of demarcation to separate improvement from deterioration. Other diagonals can be 

used the same way. Using all diagonals parallel to the main diagonal in this way, and 

equating all cells within a given diagonal, is tantamount to assigning equally-spaced 

scores assigned to the six pain evaluations (say D = 1, S = 2, M = 3, L = 4, T = 5, and 

N = 6), and then ranking the categories by the change from baseline (delta). This 

would be a complete (and obviously transitive) ordering which would consider all 

276 pairs of categories as comparable. However, the relative spacings among 

categories measured on an ordinal but not an interval scale are unknown (Bajorski 

and Petkau, 1999), so it is artificial to compare overlapping changes unless one set 

contains the other. The comparison of pairs of categories not considered comparable 

by the partial ordering in Section 3.5, e.g., (D, S) and (S, M), provides only pseudo-

information. 
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Chapter 4: An exact approach based on partial ordering 

In this section we will develop our methodology for constructing an exact 

permutation test based on partial ordering of the baseline outcome pairs of categories. 

We will give the definition of the test statistic and technical details of how to compute 

p-values and power of our test. Theoretically, similar to Fisher’s exact test, this 

approach can be explained as follows. Enumerate all possible tables consistent with 

the given margins, and calculate the statistic value of each. The significance value (p-

value) of the observed table is then the percentage of those test statistics which are no 

less than the observed one. One real life sample is presented for better illustration. 

Furthermore, in order to extend the bounds of feasibility of our exact procedure for 

practical use, we explore an efficient algorithm which finds the approximate 

significance level of an I × J contingency table without enumerating all possible 

tables. 

 

4.1 Methodology 

The idea of our approach is that although baseline-outcome pairs cannot be 

ordered completely, a partial ordering can still be obtained based on the relationships 

defined in Chapter 3. Our analysis is based on the partial ordering presented in 

Section 3.5, equating all no-change categories. Then an exact permutation test 

statistic can be defined and the null reference distribution function can be derived. 
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The statistical analysis will be dictated by the design to be a two-armed 

parallel RCT with 1:1 randomization to each of the experimental arm E and the 

standard of care control arm S, and the partial ordering. However, a word of caution 

is required here that a philosophical decision needs to be reached prior to performing 

the analysis. It is desirable to settle whether to treat one category as better than 

another if it does not necessarily reflect superiority of E to S. An extreme example is 

given below to clarify this issue. 

 

Suppose that there are 100 patients randomized to each of E and S. Consider 

that each patient randomized to E has outcome (D, N), and each patient randomized 

to S has outcome (L, N). Then every patient on each arm leaves the study pain-free. 

The difference in outcomes is actually a difference only in the baseline component of 

the outcomes, one of which is 100% disabling pain and the other is 100% slight pain. 

Obviously, going from D to N is better than going from L to N, as discussed in 

Section 3.2. But in the evaluation of one treatment relative to another, can this 

superiority be explained by the difference in treatments? Unless there is selection bias 

(Berger and Exner, 1999), randomization ensures that the baseline distribution within 

each arm is necessarily the same, so the observed difference must be a random 

occurrence (Senn, 1994), and the apparent superiority may not be attributable to the 

treatments. This situation can be avoided by stratifying for the baseline pain score in 

the design. So we consider this to be a philosophical issue and not a statistical one. 
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Once the issues of partial ordering have been settled, then under the 

hypothesis that active treatment is about the same or superior to control treatment, we 

want to test the hypotheses: 

                    ControlActiveH =:0 , 

                    ControlActiveH A >: . 

Suppose n1 patients have been given the active treatment and n2 patients have 

been given the control treatment. The outcomes are from an I × J contingency table. 

In a two-armed RCT, the data structure is a 2 × IJ contingency table, with two rows 

(one for each of the active and control treatments) and IJ columns, with some partial 

ordering on these IJ columns. The row margins are n1 and n2 respectively. Given the 

two samples and in absence of any further assumption about the samples, the 

modified U-statistic is the ratio of pairs favorable to the active group to the total 

number of informative pairs (pairs that are favorable to one of the two groups), i.e. 

 

        
groupcontroloractivethetofavorablepairscomparableofTotal

groupactivethetofavorablepairsof
T

#

#= . 

 

This is an estimator of
)()(

)(

ACPCAP

CAP

>+>
>=θ , where )( CAP >  is the probability 

that the active treatment will produce the better outcome and the control will produce 

the worse outcome. While we deal with the ties differently from Munzel and 

Tamhane (2002), we retain the expression “tendentiously larger” for the active group 

if 5.0>θ , or for the control group if 5.0<θ . Under the null hypothesis the cell 

probabilities are common to both groups, so 5.0=θ . 
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In order to efficiently compute the test statistic based on partial ordering, one 

needs to keep track of the set of comparable cells for each cell in contingency table. 

To this end, a comparison matrix M can be defined in order to calculate the newly 

defined test statistic. For a 2 × 9 contingency table with 3 baseline and 3 outcome 

categories ranging from 1 = best to 3 = worst, partial ordering has a comparison 

pattern of Table 2: 

Table 2: Comparison pattern 

Active
Control (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

(1,1) = C C A = C A A =
(1,2) A = C A A ≠ A A A
(1,3) A A = A A A A A A
(2,1) C C C = C C A ≠ C
(2,2) = C C A = C A A =
(2,3) A ≠ C A A = A A A
(3,1) C C C C C C = C C
(3,2) C C C ≠ C C A = C
(3,3) = C C A = C A A =

 

In Table 2, A or C means active or control treatment is favored by this comparison, 

“=” means equal treatment effect and “≠” represents non-comparable pairs. Based on 

Table 2, the comparison matrix M (33 by 33) is defined as follows: 

 


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where 

 

 





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×
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















−
=

×

101

110

111
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








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





=
×

110
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335A .      

 
As we mentioned above, if the active group has n1 patients with the observed pairs of 

values )},(,),,(),,{( 101
2

0
2

1
1

0
1 11 nn aaaaaa K and the control group has n2 

patients with the observed pairs )},(,),,(),,{( 101
2

0
2

1
1

0
1 22 nn cccccc K , and the 

category levels are less than 9 (this is normal in the practical research), we can rewrite 

these pairs as },,,{ 101
2

0
2

1
1

0
1 11 nn aaaaaa K and },,,{ 101

2
0
2

1
1

0
1 22 nn cccccc K  based 

on the formula:  

                                  Baseline × 10 + Post-treatment.  

 
To obtain all possible pair combinations between two treatment groups, the observed 

combination matrix X  has the following form: 
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where  

                            

2

1010

1
2

0
2

10

1
1

0
1

10

2

2
22

2

,

,

,

,

,

×

×
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




















=

nnnii

ii

ii

ni

ccaa

ccaa

ccaa

B

LL

LL
. 

The two components of each row, for example, ],[ 1
2

0
2

1
1

0
1 ccaa decides the position in 

comparison matrix M , and the corresponding values (1, -1 or 0) in matrix M  give us 

the comparison result of this pair of observed values based on the partial orderings. 

Therefore, we can easily calculate the total number of comparable pairs which are 

favorable to the active or control treatment by using matrix M and X  together, i.e., 

the counts of -1 and 1 represent the number of pairs favorable to active and control 

group respectively. Thus, the test statistic can be easily calculated using the observed 

data. We have developed the S-Plus code, which includes building the comparison 

matrix M and the observed combination matrixX , and providing the value of the test 

statisticT . 

 

4.2 Conditional P-value 

In this section we discuss regarding computations of p-values of the tests we 

have proposed. Exact calculation of the conditional p-value requires enumerating all 

possible tables under fixed row and column margins. The immediate difficulty in 

exact calculation is that the required computation can very easily grow beyond the 

capacity of even modern computers. The sample space can very quickly grow to be 
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something that limits implementation of any exhaustive procedures. Next we provide 

technical details for computation of the p-values. 

 

4.2.1 Exact conditional p-value 

One usually looks at a conditional sample space where the entries are 

conditioned on the margins of the contingency table. Because the marginals are 

sufficient statistics the conditional inference is optimal. Under the null hypothesis of 

no association between row and column categories, the probability of the sampled 

cr × table with total sample size N is: 

                 

∏ ∏

∏ ∏

= =

= ==
r

i

c

j
ij

r

i

c

j
ji

xN

xx

P

1 1

1 1
..

)!(!

!!

  . 

Recall that a p-value is the probability of the observed data or more extreme 

data occurring under the null hypothesis, thus, for k×2  contingency table in two-

armed CRTs, the conditional probability of obtaining a test statistic that is same as or 

more extreme than the observed one under the null hypothesis (i.e. conditional p-

value) is: 
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where the rejection region is the set }:{'
)( obsctc tTx ≥Γ∈=Γ , cΓ  is the set of all 

tables X  with the marginal fixed at c . ],,,[ 21 kcccc L=  is the vector of column 

marginal counts. For size α  level, the critical region is  

                               ]),|(:min[)( 0 αα ≤≥= cHtTPtct . 

 

4.2.2 Monte Carlo estimate of conditional p-value 

Substantial research has been done on exact inference for contingency tables 

over the past decade, in terms of developing both new analysis and efficient 

algorithms for computation. The main problem of applying the exact test is that for 

moderate sized tables, the number of table probability to be enumerated can easily 

reach into the billions. Thus, in order to make our exact procedure feasible for 

practical use, an appropriate algorithm needs to be explored. 

 

It has been shown that the number of possible table grows factorially fast as 

the number of baseline categories, number of outcome categories, or the total sample 

size increases. Thus, the number of operations to enumerate )(cΓ  grows faster than 

any polynomial in the minimum margin count. To extend the bounds of feasibility, 
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much research has been done both in exploring new methods for complete 

enumeration and enhancing Monte Carlo approximation accuracy. 

 

Pagano and Halvorsen (1981) came up with an efficient algorithm which finds 

the exact significance level of JI ×  contingency table without enumerating all 

possible tables. Later in 1983, Pagano and Trichler gave another algorithm which 

reduced the computing time to polynomial time as opposed to exponential time 

otherwise. However, because it involves inverting the characteristic function of the 

statistic, this algorithm is only good for statistics which are linear combinations of 

either the original observations or the ranks, such as the Wilcoxon test. At the same 

time, Mehta and Patel (1983) gave a network algorithm by recursively summing the 

probability in the required contingency tables, which eventually lead to creation of 

StatXact. Morgan and Blumenstein (1991) gave another algorithm for exact 

conditional tests for hierarchical models in multidimensional contingency tables. Both 

network and Morgan’s algorithms depend on complete enumeration, and will thus 

give the exact p-value. 

 

In this thesis, a Monte Carlo procedure given by Patefield (1981) was 

developed as a function Permu( ) in S-Plus to approximate significance levels of the 

proposed exact test on cr × table. It efficiently generates random tables under fixed 

row and column margins. The idea is as follows: 

Let ija  denote cell counts in a cr × contingency table with the row and 

column totals )1,;1,( .. cjaria ji ≤≤≤≤ . The conditional probability distribution of 
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entry lma  given the entries in the previous rows, i.e. ),,1,1,,1,( cjliaij KK =−=  

and the previous entries in rowl , i.e. )1,,1,( −= mjaij K  is found to be 
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where ∑
=

=
r

i
iaN

1
.  and )11,11( −≤≤−≤≤ cmrl . The above conditional probability 

is valid when either 1=l  or 1=m  if the convention 0).().(
0

1

0

1
∑∑

==

==
ji

 is employed. 

 

To ensure the rest cell counts are at least zero, the range of lma  is such that all 

the factorial terms are non-negative. The conditional expected value of lma  given 

previous entries and the row and column totals is 
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When the denominator in this expression is zero, 0=lmE . 
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Although formula for the conditional probability distribution of  lma  appears 

rather complicated, each of the terms is evaluated sequentially as 1,,1 −= rl K ; 

1,,1 −= cm K  in only a few lines of code. For each ),( ml  the algorithm generates a 

random number, RAND, between 0 and 1. The probability distribution of lma  is then 

accumulated, starting with lma  equal to the nearest integer tolmE . The value of lma  is 

chosen with the required conditional probability when the cumulative probability 

exceeds RAND. Given the fixed marginals, the function Permu( ) can provide one 

sampled table as the output. Thus, the procedure for using our proposed exact test is 

to sample table by a large number of calls of Permu( ) and to estimate the significance 

level by the proportion of samples with a value of the test statistic T  (as we defined 

in Section 4.1) that provides at least as much evidence against the null hypothesis as 

the value of the observed statistic obst , that is, 

 
tablessampledofTotal

tTwithtablessampledof
ctTP obs

#

#
)|(

≥=≥ . 

 
To evaluate the performance of the Monte Carlo procedure, we compare the 

estimated p-values with the exact p-values produced by a complete enumeration of 

tables using a recursive method.  

 

Consider a 62× contingency table with 2 baseline (2 and 3) and 3 outcome 

categories (1, 2, and 3) where 1 = best and 3 = worst. Two sets of RCT samples with 

different sizes are given in Table 3. 
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              Table 3: 2 Sets of RCT 2 × 6 Contingency Tables 
 
 
 
 
              
 

The comparisons of the exact and approximate p-values for these two samples 

are listed in Table 4.  

                            Table 4: P-value comparisons 

Sample tobs Type # of Permutations P-value

1 0.8076923 Complete Enumeration 782 0.032
Monte Carlo 500 0.030

2 0.5490909 Complete Enumeration 7,532 0.349
Monte Carlo 1,000 0.346

 
 
As can be seen from the tables, the approximate p-values are reliable whereas 

the time required to generate random tables is much less dependent on sample size. 

The difference between complete enumeration and the Monte Carlo algorithm is quite 

substantial when dealing with large tables, which enables us to easily handle the large 

tables that previously would have been impractical to calculate. 

 

4.3 Power  

The performance of our proposed exact test needs to be evaluated compared to 

other widely used tests in term of power. As a preamble to that investigation we start 

off by discussing the formula involved in the power calculation. 

 

Sample Size Treatment (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) 

1 10 Active 1 1 0 4 2 2 

  10 Control 2 2 3 1 1 1 

2 20 Active 7 3 2 5 2 1 
  20 Control 6 3 2 4 3 2 
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4.3.1 Exact conditional power 

The exact size α conditional power is computed by integrating the point 

probabilities of each table in sample space under an alternative hypothesis AH  over 

the rejection region of the null hypothesis0H : 

∑
Γ∈

≥==≥
c

AA
x

txTobs IcxXPctxTP
αθθ )()|()|)(( , 

where ]),|(:min[ 0 αα ≤≥= HctTPtt obs  and cΓ  is the set of all possible tables 

given row and column margins. Due to the discrete nature of the data, the significance 

level α  would not be exhausted fully. 

 

Because of the nice exponential family form, the conditional point probability 

)|( cxXP =θ  has nice form. Let kxx 111 ,,L  and kxx 221 ,,L  represent the samples 

from population aF  (active group) andcF  (control group), which arise from 

multinomial ),( 1.1 πn  and ),( 2.2 πn  respectively, where the s'π  are the associated 

probabilities. Let jji xxc 21 += , the column totals. Thus, for each element in the 

sample space, the point probabilities can be calculated. Under 0H  it has a simple 

form as follows: 
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Under AH , it has the form: 
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4.3.2 Exact unconditional power 

It is obvious that when conducting a conditional test we compute the exact p-

value with the marginal responses fixed at their observed values. When designing a 

study, however, the marginal responses that will arise once the data are gathered are 

unknown; a priori we can specify only the distributions of the responses, 1π  and 2π . 

Consequently, we must compute power unconditionally with respect to all possible 

margins. We can then obtain exact unconditional power as the expected value of these 

terms, 

            ∑
Ω∈

=≥=≥
c

cCPctxTPtxTP )()|)(())((
αα θθ , 

where )()()(},:{ 2211.2.1 xXPxXPcCPnncc
cx

j ====+==Ω ∑ ∑
Γ∈

ααα θθθ . 

The computation is practically infeasible since even for a moderate sample 

size, Ω  can be quite large. For example, for 5=K  and 50.2.1 =+ nn , Ω  contains 

316,251 distinct vectors c . 
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Alternatively, to reduce the computational burden we can instead estimate 

exact power from a sample of Ω , given .1n  and .2n . In simulation studies power is 

usually estimated by the crude Monte Carlo estimator,α̂ , which is given by: 

 

                  
N

TTPI
N

i
obsi∑

=

≤≥
= 1

})({
ˆ

α
α , 

where N  is the number of Monte Carlo samples. 

 

We are now in a position to put our methodology to the litmus test. We will 

compare it with Fisher’s exact test, ANCOVA, and proportional odds model via 

extensive simulations in Chapter 5. 
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Chapter 5:  Comparison with other tests 

In Chapter 4 we have developed an exact approach to between-group analysis 

adjusting for ordinal baseline covariates. In order to evaluate the performance of our 

methodology, we compare it with Fisher’s exact test, ANCOVA and the proportional 

odds model, three widely used tests for categorical data as well to decide if our test is 

really desirable. The choice of which method to use can be determined by analysis of 

the statistical properties of each. An important criterion for a good statistical method 

is that it should reduce the rate of false negative (β ). The β  of a statistical test is 

usually expressed in terms of statistical power (β−1 ). A method that requires 

relatively fewer data to provide a certain level of statistical power is described as 

efficient.   

 

5.1 Other tests for categorical data 

5.1.1 Fisher’s exact test 

Fisher’s exact test is a statistical significance test used in the analysis of 

categorical data where sample sizes are small. It is named after its inventor, R. A. 

Fisher, and is one of a class of exact tests. The test is used to examine the significance 

of the association between two variables in 2 × 2 contingency table. With large 

samples, a chi-squared test can be used in this situation. However, this test is not 

suitable when sample sizes are small or when the "expected value" in any of the cells 

of the table is below 10, that is, when the data are very unequally distributed among 
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the cells of the table. The Fisher test is, as its name states, exact, and it can therefore 

be used regardless of the sample characteristics. It is also very useful for highly 

imbalanced tables. 

 

Fisher's exact test is based on exact probabilities from the hypergeometric 

distribution. Under 0H , the exact probability of observing one particular sampled 

table, given fixed row and column margins, has been given in Section 4.1.2. The one-

sided probability for the Fisher’s exact test is calculated by generating all tables that 

are more extreme than the table given by the user, in the direction specified by the 

one-sided alternative. The p-values of these tables are added up, including the p-value 

of the table itself. Because the calculation of Fisher’s exact test involves permuting 

the observed cell frequencies it is also referred to as a permutation test, like our 

proposed exact test in Chapter 4.  

 

In two-armed RCTs, the data often include small and zero cell counts. If the 

response is ordinal, we can combine categories to create a 2 × 2 table by treating the 

ordinal covariate as binary (improved or non-improved). Obviously, this converting is 

inefficient because ignoring the ordering among the categories or collapsing 

categories will result in a loss of power. This can be verified by the simulations in 

Section 5.2. 
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5.1.2 Analysis of covariance (ANCOVA) 

In most experiments the scores on the covariates are collected before and after 

the experimental treatment. By treating the ordinal response variable as continuous, 

we can use ANCOVA with the post-treatment value as the response variable and the 

baseline value as the covariate.  

 

ANCOVA, or analysis of covariance is a general linear model with one 

continuous explanatory variable and one or more factors. ANCOVA is a merger of 

ANOVA (analysis of variance) and regression for continuous variables. ANCOVA 

tests whether certain factors have an effect after removing the variance of which 

quantitative predictors (covariates) account. The inclusion of covariates can increase 

statistical power because it accounts for some of the variability. The analysis of 

covariance includes the same assumption as the analysis of variance: independent 

sampling, equal corresponding population variances and normally distributed 

corresponding populations. In addition it includes two other assumptions related to 

the relationship between the covariate and the dependent variable. It is assumed that 

the covariance between the covariate and the dependent variable, within each sample 

or column, do not differ significantly from each other. In other words, if we were to 

compute prediction equations within each sample or column, the slopes of the lines 

would not differ significantly from each other. It is also assumed that the relationship 

between the covariate and the dependent variable is linear--that the relationship is 

best described by a straight line.   
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In this thesis, the ANCOVA model is written as: 

 

                      ,ijijiij xY εβαµ +++=   inji ,,1;2,1 L==  ,    

                                     
where ijY  is the response of the  j-th unit, receiving treatment i with associated 

baseline covariates ijx . In this model, the effect of the i-th treatment is modeled via 

the parameter iα . The i values 1, 2 represent the active and control treatment 

respectively.  

 

Now, our interest of examining whether or not there is any treatment effect 

becomes to test the null hypothesis 210 : αα =H  against the alternative hypothesis 

21: αα <AH  (lower level is better). The p-value can be derived by using the F 

distribution. Readers interesting in further details about the computation of p-value 

are referred to Rencher, 2000. 

 

5.1.3 Proportional odds model  

The most well-known cumulative logit model for ordinal response is the 

proportional odds model. Under this model, we assume that the log of the cumulative 

odds ratio is proportional to the distance between the values of the explanatory 

variables.  

 

Let Y be an ordinal variable with k levels, and let )( jYP i ≤  be the cumulative 

probability of responding of categories j  from group i  (active or control group).  
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    .2,1;,,2,1,)( 21 ==+++=≤ ikjjYP ijiii LL πππ  

 
Then we have 1−k  cumulative probabilities to look at, since 1)( =≤ kYP i . Let 
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be the cumulative logits. We can incorporate all 1−k  cumulative logits into the 

following model (Agresti, 1990): 

 
                              .1,,1,')]([logit −=+=≤ kjXjYP j Lβα  

where β  denotes the effects of explanatory variables X . The covariate X  can be 

continuous or categorical. In our case, there are two explanatory variables: binary 

treatment factor (active or control) and ordinal baseline variable.  

 

The above cumulative logit model satisfies 
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The odds of making response j≤  at aXX =  is )]('exp[ ca XX −β  times the odds 

at cXX = . The log cumulative odds ratio is proportional to the distance between aX  

and cX . The same proportionality constant applies to each logit. Cumulative logit 
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models simultaneously fit all 1−k  logit models for the k  categories of the response. 

There are different methods to fit the proportional odds model. In this thesis, we use 

GEE (Generalized Estimating Equations) by using the GENMOD procedure in SAS 

to estimate the parameters. See Liang, Zeger and Qaqish (1992) and Lipsitz, Kim and 

Zhao (1994) for a description of GEE methods for ordinal responses. 

 

5.2 Simulations: Comparison of performance 

5.2.1 Methods 

As comparison we employ the three common tests in the previous section and 

our proposed exact permutation test based on partial ordering. We compare more 

generally the unconditional power of these four one-sided tests (active is better than 

control) in moderate and small samples.  

 

Let us consider the 2 × 3 contingency tables with 2 baseline and 3 outcome 

categories ranging from 1 = best to 3 = worst. In a two-armed RCT, the data structure 

is 2 × 6 contingency tables, with the active samples from multinomial ),( 1.1 πn  and 

the control samples form multinomial ),( 2.2 πn , where the π ’s are the associated 

transition probability vectors from baseline to post-treatment. The initial probabilities 

to generate the baseline data is (0, 0.55, 0.45). Nine sets of transition probability 

vectors are given in Table 5. 
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                                Table 5: Transition Probabilities 

No. Transition Probabilities 
π1 (0.63, 0.23, 0.14; 0.56, 0.26, 0.18) 

π2 (0.54, 0.27, 0.19; 0.49, 0.29, 0.22) 

π3 (0.45, 0.30, 0.25; 0.42, 0.31, 0.27) 

π4 (0.36, 0.33, 0.31; 0.35, 0.33, 0.32) 

π5 (0.30, 0.33, 0.37; 0.29, 0.32, 0.39) 

π6 (0.27, 0.32, 0.41; 0.25, 0.30, 0.45) 

π7 (0.18, 0.30, 0.52; 0.14, 0.23, 0.63) 

π8 (0.12, 0.25, 0.63; 0.07, 0.16, 0.77) 

π9 (0.03, 0.13, 0.84; 0.01, 0.04, 0.95) 

 

For each iπ , the first three components are the conditional probabilities of 

falling in category 1, 2, 3 after treatment given that the initial level 2 (sum = 1); the 

last three components represent the conditional probabilities of falling in category 1, 

2, 3 category given that the baseline level is 3 (sum = 1). From Table 4, it can be seen 

that with the index number increases, the transition probabilities more and more shift 

to the higher level, which means given the same baseline values, the sample 

generated from iπ  tends to be better than the one generated from jπ  if ji < . The 

initial probabilities are always same for two treatment groups; however, due to 

sampling error, with random assignment of subjects to the groups, the baseline status 

may differ between treatment groups, that is, they may have same distributions with 

different realizations. By choosing different combinations of set of transition 

probabilities and sample sizes, we generate a variety of datasets for different cases. 

For equal treatment effects ( :0H Active = Control is true), the same transition 

probabilities are used; for unequal treatment effects (explicitly :AH Active > Control 

is true), the index number of the transition probabilities aπ  for active group should be 
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smaller than cπ  for control group. For each combination of set of transition 

probabilities and sample sizes, we generate 500 pseudo-datasets by sampling from the 

baseline distribution and the distribution created by the given set of the transition 

probabilities and find out how many of the 500 p-values are under significance level 

=α 0.1 or 0.05, i.e. the unconditional power.  

 

5.2.2 Results 

Simulation 1:  

Table 6 displays the power of the four tests for all possible combinations of 

set of transition probabilities, when 30.2.1 =+ nn , in balanced ( .2.1 nn = =15) samples. 

To compute the p-value for our proposed exact test based on the partial ordering, we 

randomly selected 1000 permutations of the treatment groups (subject to Monte Carlo 

sampling) and recomputed the test statistic. As we mentioned in Chapter 4, this set of 

1000 values serves as the null reference distribution for this exact permutation test. 

For simplicity, ),(),( jica ππππ =  is abbreviated as ji − . Power performance 

comparisons for {1-1, …, 1-8}, {2-2, 2-3, …, 2-9}, …, {6-6, 6-7, …, 6-9} for 

1.0=α  (similar curves were observed for 05.0=α ) are shown in Figure 1. 

 

The results show that when the active experiment is slightly better than the 

control treatment, the proportional odds model gives the highest power among these 

four tests and the partial ordering test is more powerful than ANCOVA and Fisher’s 

exact test; when the active experiment becomes much better than the control 
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  Table 6: Simulation 1, Balanced Data, N=30 
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                   Figure 1(a): Simulation 1, balanced data, N=30, α = 0.1
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                  Figure 1(b): Simulation 1, balanced data, N=30, α = 0.1 



 

 42 

5 - (5:9)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5-5 5-6 5-7 5-8 5-9

Transition Probabilities

P
ow

er

Partial Ordering

Fisher's Exact

ANCOVA

Proportional Odds

 

6 - (6:9)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

6-6 6-7 6-8 6-9

Transition Probabilities

P
ow

er

Partial Ordering

Fisher's Exact

ANCOVA

Proportional Odds

 

                Figure 1(c): Simulation 1, balanced data, N=30, α = 0.1 
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treatment, the power of ANCOVA grows fastest and becomes most powerful while 

the partial ordering  is less powerful than ANCOVA and proportional odds model. As 

we expected, Fisher’s exact test is the worst one. Additionally, all these tests are 

conservative and partial ordering test is kind of less conservative than others. 

 

Simulation 2: 

Power increase when sample size increases. Next we evaluate the effects of 

sample size on the tests. One thousand permutations were selected to compute the p-

value for our proposed exact test with α = 0.1. Table 7 shows the power of the four 

tests with transition probabilities {1-1, …, 1-7}, for sample size }50,30{.2.1 =+ nn  in 

balanced ( .2.1 nn = ) samples. The plot for each test is shown in Figure 2. 

 

         Table 7:  Simulation 2, Balanced Data, N= {30, 50}  

 Transition Power  (significance level = 0.1) 
Sample 
Size 

 
probabilities 

Partial 
Ordering 

Fisher's 
Exact ANCOVA 

Proportional 
Odds 

25*2 1-1 0.008 0 0 0 
  1-2 0.058 0 0 0.124 
  1-3 0.232 0.018 0.158 0.516 
  1-4 0.656 0.46 0.922 0.892 
  1-5 0.934 0.92 1 0.998 
  1-6 0.978 0.994 1 1 
  1-7 1 1 1 1 

15*2 1-1 0.016 0 0 0 
  1-2 0.02 0 0 0.068 
  1-3 0.134 0 0.046 0.214 
  1-4 0.428 0.02 0.576 0.52 
  1-5 0.826 0.432 0.934 0.898 
  1-6 0.852 0.74 0.986 0.948 
  1-7 0.994 0.98 1 0.998 
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                    Figure 2(a): Simulation 2, balanced samples, N= {30, 50}, α = 0.1  
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              Figure 2(b): Simulation 2, balanced samples, N = {30, 50}, α = 0.1 
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Obviously, the power of the proportional odds test increases more quickly 

when the difference of two treatments is small and partial ordering is the second 

position; when the active experiment outperforms control treatment in a large scale, 

the ANCOVA test rises in power most quickly and becomes the most powerful test. 

Proportional odds test is still powerful. The power curves of the partial ordering and 

Fisher’s exact test seem to have the similar slopes and their power does not change as 

dramatically as the other two with larger sample sizes.  

 

Simulation 3: 

From Simulation 1 and 2, we can conclude that partial ordering test tends to 

be less powerful than ANCOVA and proportional odds test when the active 

experiment is much better than the control treatment. Therefore, in the following 

simulations we only focus on the case that the difference between the two treatments 

is small. 

 

Based on the results from Simulation 1, we slightly increase the sample size 

from 30 to 40 in balanced samples with transition probabilities {1-1, 1-2, 1-3, 1-4}, 

{2-2, 2-3, …, 2-6}, …, {4-4, 4-5, 4-6, 4-7} and α = 0.1. One thousand permutations 

for partial ordering were selected for each sample.  Figure 3, 4, 5, 6 show the 

differences in power between these tests. 

 

The comparison results show that for the case of small difference between the 

two treatments, proportional odds model is overall most powerful. The superiority of  



 

 47 

N=15*2 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1-1 1-2 1-3 1-4

Transition Probabilities

P
ow

er

Partial Ordering

Fisher's Exact

ANCOVA

Proportional Odds

 

N=20*2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1-1 1-2 1-3 1-4

Transition Probabilities

P
ow

er

Partial Ordering

Fisher's Exact

ANCOVA

Proportional Odds

 

       Figure 3: Simulation 3, {1-1,…, 1-4}, balanced samples, N= {30, 40}, α = 0.1 
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      Figure 4: Simulation 3, {2-2,…, 2-6}, balanced samples, N= {30, 40}, α = 0.1 
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     Figure 5: Simulation 3. {3-3,…, 3-6}, balanced samples, N= {30, 40}, α = 0.1 
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       Figure 6: Simulation 3, {4-4,…, 4-7}, balanced samples, N= {30, 40}, α = 0.1 
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partial ordering over ANCOVA is increased for some cases, and decreased for other cases. 

The possible reason is that the slight increase of the sample size may be not big enough to 

improve the power performance significantly for ANCOVA method. 

 

Simulation 4: 

In this simulation, we increase the sample size from 30 to 80, in balanced 

samples, α=0.1. From the results of Simulation 1, we choose some points of ),( ca ππ  

where the power of partial ordering is higher than ANCOVA for small sample size. 

The results are shown in Table 8 and Figure 7. 

 

                      Table 8: Simulation 4, balanced samples, N = {30, 80} 

Sample Transition Power  (significance level = 0.1) 

Size 
 

probabilities 
Partial 
Ordering 

Fisher's 
Exact ANCOVA 

Proportional 
Odds 

15*2 1-3 0.134 0 0.046 0.214 
  2-4 0.164 0.002 0.006 0.23 
  3-5 0.152 0.004 0.028 0.198 
  3-6 0.306 0.054 0.27 0.52 
  4-6 0.068 0.004 0.04 0.168 
  5-7 0.168 0.012 0.152 0.362 
  6-7 0.13 0 0.02 0.304 
  7-8 0.078 0 0 0.114 

40*2 1-3 0.532 0.284 0.768 0.89 
  2-4 0.528 0.266 0.842 0.902 
  3-5 0.45 0.242 0.698 0.866 
  3-6 0.718 0.63 1 0.976 
  4-6 0.236 0.048 0.174 0.612 
  5-7 0.618 0.55 1 0.958 
  6-7 0.37 0.152 0.528 0.782 
  7-8 0.286 0.048 0.252 0.63 
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               Figure 7: Simulation 4, balanced samples, N= {30, 80}, α = 0.1 



 

 53 

Form the plots, it can be seen that for most of the points, ANCOVA is more 

powerful than partial ordering in large sample N = 80. This means that for large 

sample size, even if the difference of two treatments is small, partial ordering is less 

powerful than ANCOVA and proportional odds test. Fisher’s exact test always gives 

the lowest power.  

 

Simulation 5: 

 Since our partial ordering does not show the obvious advantage over 

ANCOVA and proportional odds model, we decrease the sample size to 20 in 

balanced samples, to evaluate the power performance of our test. Five hundred 

permutations were selected to compute the p-value of partial ordering for each sample 

with α = 0.1. Table 9 and Figure 8 display the results. 

                        
                               Table 9: Simulation 5, balanced sample, N=20  

Sample Transition Power  (significance level = 0.1) 

Size 
 

probabilities 
Partial 
Ordering 

Fisher’s 
Exact ANCOVA 

Proportional 
Odds 

10*2 1-1 0.034 0 0.01 0.02 
  1-2 0.036 0 0.004 0.012 
  1-3 0.082 0.012 0.034 0.112 
  1-4 0.216 0.052 0.22 0.248 
  1-5 0.354 0.102 0.298 0.466 
  2-2 0 0 0 0 
  2-3 0.03 0 0 0 
  2-4 0.144 0.004 0.098 0.132 
  2-5 0.338 0.06 0.174 0.404 
  2-6 0.416 0.078 0.304 0.446 
  3-3 0.008 0 0 0 
  3-4 0.026 0.002 0.02 0.06 
  3-5 0.036 0.008 0.024 0.094 
  3-6 0.064 0.008 0.03 0.104 
  4-4 0.008 0 0 0 
  4-5 0.03 0 0 0 
  4-6 0.03 0 0 0.048 
  4-7 0.286 0.156 0.522 0.434 
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             Figure 8(a): Simulation 5, balanced samples, N=20, α = 0.1 
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               Figure 8(b): Simulation 5, balanced samples, N=20, α = 0.1 
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From the results, we can conclude that our partial ordering method shows 

great superiority over other tests in very small sample if the tiny difference between 

two treatments exists. Partial ordering is overall more powerful than ANCOVA and 

even better than proportional odds for some cases. It is slightly less conservative than 

others. 

 

Simulation 6: 

 

                       Table 10: Simulation 6, unbalanced samples, n1. =15,  n2.=10 

                       
Sample Transition Power  (significance level = 0.1) 

Size 
 

probabilities 
Partial 
Ordering 

Fisher's 
Exact ANCOVA 

Proportional 
Odds 

Act=15 1-1 0.006 0 0 0 
Con=10 1-2 0.02 0 0 0 

  1-3 0.182 0 0.05 0.026 
  1-4 0.38 0 0.318 0.246 
  1-5 0.648 0.09 0.72 0.398 
  1-6 0.78 0.102 0.88 0.488 
  1-7 0.948 0.944 0.994 0.958 
  1-8 0.998 0.998 1 0.994 
  2-2 0.006 0 0 0 
  2-3 0.028 0 0 0 
  2-4 0.156 0 0.214 0.056 
  2-5 0.318 0.036 0.27 0.12 
  2-6 0.396 0.058 0.43 0.208 
  2-7 0.892 0.828 0.964 0.858 
  2-8 0.99 0.992 0.996 0.952 
  2-9 1 1 1 1 
  3-3 0.004 0 0 0 
  3-4 0.048 0 0.04 0 
  3-5 0.122 0.006 0.062 0.036 
  3-6 0.116 0 0.164 0.026 
  3-7 0.786 0.46 0.93 0.698 
  3-8 0.948 0.846 0.998 0.878 
  3-9 1 1 1 1 
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         Figure 9(a): Simulation 6, unbalanced samples, n1. =15, n2. = 10, α = 0.1 



 

 58 

3 - (3:9)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3-3 3-4 3-5 3-6 3-7 3-8 3-9

Transition Probabilities

P
ow

er

Partial Ordering

Fisher's Exact

ANCOVA

Proportional Odds

 

          Figure 9(b): Simulation 6, unbalanced samples, n1. =15, n2. = 10, α = 0.1 

 

Our previous simulations are based on balanced samples. A test based on 

balanced samples will be powerful than the unbalanced ones. Table 10 displays the 

power comparison for unbalanced small samples with size of active group n1. =15 and 

size of control group n2. = 10, given α = 0.1. The plots are shown in Figure 9. 

 

By contrast, proportional odds model is always less powerful than partial 

ordering and ANCOVA. When the difference between two treatments is small, our 

partial ordering has the best performance in terms of power; otherwise, ANCOVA is 

the most powerful test among these four tests. Not surprisingly, the power of Fisher’s 

exact test is lowest.  
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Chapter 6:  Conclusion 

 

6.1 Applications 

Ordinal categorical data arise frequently in a wide variety of experimental 

studies. For example, in clinical trials comparing anti-inflammatory drugs in 

Rheumatoid arthritis, joint pain is often measured on an ordinal scale such as severe, 

moderate, little or none. A multi clinic study of analgesics relief of headache is 

recorded in ordinal responses as well.  We can keep on going because the number of 

examples is really unlimited. 

 

Such abundance of real examples makes statistical analysis of ordered 

categorical data an important field of study. In this thesis we focus on two-armed 

clinical trials designed to compare a new treatment to a control where for each patient 

an ordered categorical response is observed on entry to the study and at a single 

follow-up evaluation.  Typically in an RCT where data arise from independent 

samples from two populations, each with same k  distinct ordered categories, the 

problem is to test whether there is difference in the two multinomial populations. We 

have developed a new class of ordinal statistics that adjust for baseline differences 

based on partial ordering the baseline, post-treatment pairs. We have devoted a 

significant proportion of this thesis to compare the power performance of our test to 

those commonly used tests, Fisher’s exact test, ANCOVA and proportional odds 

model, for categorical data analysis. Through a variety of simulation studies based on 
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2 × 6 contingency tables, we conclude that in small balanced or unbalanced samples, 

out test tends to outperform other three tests when the new experiment is slightly 

better than the control treatment, which is the normal case in practical studies. Thus, 

we provide a good option to conduct the statistical analysis if the sample size is 

limited or unbalanced. Also, clinical trials would have much greater sensitivity if this 

simple, but comprehensive, nonparametric methods can be used.  

 

6.2 Future Work 

          One big concern about our simulation is the conservativeness of four tests 

involved. The mid-P-value, described by Lancaster (1961), modifies the exact test so 

that it rejects more often. For a test statistic T  with observed value obst  and one-sided 

AH  such that large T  contradicts 0H , 

 

                     )(
2

1
)|( obsobs tTPctTPvaluePMid =+>=−− , 

 
with probabilities calculated from the null distribution. Thus, the mid-P-value is lee 

than the ordinary p-value by half the probability of the observed result. Unlike an 

exact test with ordinary p-value, a test using the mid-P-value is less conservative. 

Although this test was not evaluated here, it may be particularly useful for our 

proposed test. Also, the conservativeness of other tests needs to be investigated 

deeply.  

 

Secondly, it has been shown that our proposed test is not the most powerful 

test for all cases. Also it is really hard to find an optimal test for our problem (Berger 
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and Ivanova, 2002). Our research based on the power performance in some common 

situations may then motivate future extensive investigation. 
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