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Chapter 1: Introduction

Many randomized trials involve measuring an ordmatcome at baseline and
after treatment to determine the effectivenessreatinent. For example, in the
simplest pretest-posttest designs (only one meamsuneis made after treatment),
consider the evaluation of an endovascular approalelive to standard procedure
for the treatment of abdominal aortic aneurysm.hEpatient condition may be
classified as good (G), fair (F), serious (S) datical (C). After treating the patient for
a period of time, their health conditions are agated on same scale from good to
critical. The purpose of such clinical trials is assess the effectiveness of a new
treatment relative to a standard control approadmproving the state of patients, or

in reducing the magnitude of deterioration.

Adjusting between-group comparisons for covariabéen improves the
analysis (Senn, 1989). The most common approachesadjust for an ordinal

covariate seem to be treating it as binary, nomoratontinuous.

When the covariate is binary or nominal, the adpestt generally consists of
comparing outcomes across treatment groups, wéthah level of the covariate. One
typical nonparametric test is Fisher’'s exact testhich combines categories to create
a 2 x 2 table to test homogeneity of each outcomodagbility among the rows.

Moses, Emerson, and Hosseini (1984) and Zimmern{a883) cited this common



practice as inefficient because ignoring the orderemong the categories or

collapsing categories will result in a loss of powe

To exploit the ordering, numerical scores may bgigaed to the ordered
categories, and simply subtract baseline valuem famst-treatment values. The
primary response variable is then the change orpdie scale from baseline. Thus,
we have a single vector-valued endpoint which aagtboth baseline and subsequent
pain measurements. When the choice of scores isapparent, integer (equally
spaced) scores are often assigned. Berger andvag2001) showed this practice

generally leads to unnecessarily conservative.tests

By treating the ordinal response variable as caotis, we can use the
analysis of covariance (ANCOVA) with the post-treant value as the response
variable and the baseline values as the covarMearer and Commences, 1988;
Laird and Wang, 1990). ANCOVA is a merger of ANOVand regression for
continuous variables. ANCOVA tests whether cert@ators have an effect after
removing the variance for which quantitative préalis (covariates) account. The
inclusion of covariates can increase statisticalgrobecause it accounts for some of

the variability.

Another method to adjust for baseline is to retmdrdinal regression models
which utilize the ordinal nature of the data bya#sng various models of stochastic

ordering and thus eliminating the need of assigrsogres. The most widely used



model in ordinal regression is the cumulative logtdel which models cumulative
logits by combining the probability of the eventaall events that are ordered before
it. This model has a complete set of parametemastis for each cumulative logit
(that is, multiple intercepts and multiple estinsafer each predictor). A popular
submodel of the cumulative logit models is the prtipnal odds model (see Agresti,
1990). The model assumes that the odds of respdretew a given response level
are constant regardless of the level you pick. pioportional odds model plays an
immensely important role in the practical applioatof analysis of categorical data.
Readers interested in further details are refetoe®icCullagh, 1980 and Agresti,
1990. However, compared with design-based non-petratests, regression based
tests are less transparent in terms of interpogtadind inference. Also, regression

based methods may not be appropriate when the rdodsinot fit the data.

In this thesis, we explore a new nonparametric otetio adjust for baseline
which does not rely on any assumptions. Specificalle consider the information-
preserving composite endpoint (Berger, 2002), whimhsists of the pair of values for
each patient, one at baseline and one after tregtmend determine which of these
patterns indicate the most improvement. It willntwut that some pairs cannot be
ranked above, equivalent to or below others, rigguih only a partial ordering. To
the extent that pairs of categories, and therefpagrs of observations, are
comparable, the experiment is still informative. \&ploit the information that is

present to compute a modified U-statistic (Serflib@88).



In Chapter 2 we illustrate, through a series ofngplas, some situations in
which partial ordering arise in RCTs. In Chaptew8 present several methods for
adjusting for an ordinal baseline variable, andl@epthe partial ordering on the
outcome levels induced by each. In Chapter 4 weeldpvan exact approach to
between-group analysis adjusting for ordinal basetiovariates (Berger, 2004) based
on the partial ordering discussed in Chapter 3.e&htraditional methods for
categorical data analysis (Fisher's exact test, AN@, proportional odds
regression) are introduced in Chapter 5, and welwtina series of simulations to
compare these conventional tests with our propopeacedure in term of

unconditional power. The results are summarizeddistlssed in Chapter 6.



Chapter 2: Partial ordering in clinical trials

In this section we define partial orderings andsitate, through a series of
examples, how they may arise in RCTs. The partiademng is defined
mathematically as a mapping on the product spadbeotlements of a set into the
space {>, <, =#}, where a# b indicates that a and b are not comparable,aimibne
ofa<b,a=Db, ora>b would be accurate. Fan®le, if the setis 1, 2, A, B, then
there are six pairs of elements, and one pantiirong on this set might be 1 < 2#£1
A, 1+£B,2£A, 2+ B, and A < B. Any partial ordering satisfies reilgty (a = a),
and antisymmetry (if a> b, then b < a; ifa=Hertb = a; ifa < b, then b > a; itfa
b, then b# a). In addition, a proper partial ordering willtisey the property of
transitivity, so that a > b > ¢ implies that a XKonlmogorov and Fomin, 1970).
Partial orderings can arise naturally in a vartgettings within the general guise of
RCTs. In the remainder of this section we illugrdie diversity of RCT situations

which result in partial orderings.

Example 2.1 (Partially Ordered Sample Space with &Completely Ordered
Endpoint)

Suppose that two patients are randomized to eachhefexperimental
treatment E and the standard of care control S,sapgose further that the primary
efficacy endpoint is trichotomous, with three coatply ordered outcome levels. For
example, these outcome levels may be cure (C),angmnent (1), or failure (F) in the

evaluation of pneumonia, or other disease. Evenghdhese three outcome levels



are completely ordered (C > | > F), the permutasample space is only partially
ordered because the endpoint is ordinal but netuat. To see this, suppose that the
2 x 3 contingency table (by convention, we list Beow first, then the E row,
separated by a semi-colon, with columns separateddomma and listed in order of
increasing benefit, or F, I, C) is observed to bel( O; 0, 1, 1), indicating that in the
S group there was one F and one |, while in thedagthere was one | and one C.
For simplicity, we may also write this as (F, 1d). The permutation sample space is
the set of 2 x 3 contingency tables that presdrgedaw margin (2, 2) and the column
margin (1, 2, 1). With these fixed margins, there tvo degrees of freedom, so may
denote a 2 x 3 contingency table (viewed as a poitite permutation sample space)
by only the first two elements. The observed datatlen considered as (1, 1). The
other points of the sample space are (0, 1) =;(E,@), (0,2)=(l, I; F, C), and (1, 0)
= (F, C; I, I). Clearly, (F, I; I, C) provides thmost evidence that E is superior to S,
and (I, C; F, 1) provides the least. But it sis ot@ar how (I, I; F, C) and (F, C; I, 1)
compare to each other without making judgments eomnicg the relative spacing
among C, |, and F. That means it is hard to compaeeimproved patients to one

cured patient and another patient with no improvame

Example 2.2 (Multivariate response with ordinal magin)

Stevens (1951) distinguishes the classificationscdle types as nominal,
ordinal, interval and ratio scales. However thés is incomplete since only a partial
order may exist among the categories. More compleber structure arises when a

bivariate or a multivariate response is observezshehough the categories for each



margin are ordinal. For instance, consider two fyinendpoints, yl and y2, each
scored as 0 and 1, with 1 corresponding to theebetitcomes. We may consider the
pair (y1, y2) as a single vector-valued endpoint] @ach patient may be classified as
(0,0),(0,1),(1,0),0r(,1).Iltisclear ti{at 1) > (1,0) > (0, 0) and (1, 1) > (0, 1) >

(0, 0), but (1, 0¥ (0, 1), which results in a partial order.

Example 2.3 (Censored Data)

Consider survival data with right-censoring. The@alscomplete ordering on
uncensored observations still holds. That is, daatiine months is better than death
at six months (9 > 6). It remains to compare cests@bservations to censored and
uncensored observations. Obviously, equality hdl@dnd only if both the time and
the censoring indicator are common to the two ofadeEms. It seems reasonable to
define the censored observation to be greater ttimmincensored one if and only if
its time is equal to or greater than the time efdimcensored one (11+ > 11, 6+ > 1).
If the time of the censored observation is less ttee time of the uncensored one,
there is no way to compare these quantities. Famglke, if we were to try to
compare 6+ to 8, then without assuming some sornofiel which enable us to
estimate the actual time of death of the patienbsehsurvival time was right-
censored at six months, we would only conclude @kat 8. Two observations with
different censoring times may or may not be consdeomparable, e.g., 6+ < 10+ or

6+# 10+,



Example 2.4 (Missing Data)

Consider a phase 11l clinical trial with missingtdawhere each patient might
be classified on their final result as missing]Jui@ or success. We can consider
missing as better than failure but worse than ss;a@ we can just consider that it is

non-comparable to either one.

Example 2.5 (Adjustment for Ordinal Baseline)

Consider the evaluation of a new therapy for fioral gastro-intestinal
disorder. Each patient may be classified basedaam @s disabling (D), severe (S),
moderate (M), mild (L), slight (T), or none (N). @busly, these six outcome levels
are completely ordered, but they are different fritv@ outcomes in Example 2.1.
These outcomes represent a point in time, andhotge, so the baseline value needs
to be considered. Suppose that to enter the stpdyient would need to be in one of
the four categories D, S, M, or L. At the end dof gtudy, the patient can be in any of
the six states. Then we have a single vector-vakretpoint which captures both
baseline and subsequent pain measurements (B20§&), with 4 x 6 = 24 partially
ordered outcome levels, as we will study in detaChapter 3. This study is precisely

the kind of problem that motivated this research.



Chapter 3: Adjusting for an ordinal baseline variabde by

inducing partial ordering

Based on the study described in Example 2.5, theldement of partial
orderings on the 24 categories is informative. éf ignore the comparison of a given
category to itself, then there ad(1J — 1)/2 pairs of distinct categories for br J
contingency table, or, with 24 categories, 24(23)/276 pairs of distinct categories.
In this section we present several methods for stidigl for an ordinal baseline
variable, and we can actually linearly order thpadial orderings by how many of
the pairs of categories they treat as comparabl@s Ts important, because
comparative information derives from comparisonscafegories. Hence, a partial
ordering that compares more pairs of categories prvdvide a more informative
analysis. However, as we will see, there is a damgepretending that certain
categories can be compared when in fact they caMWietfirst present the partial
ordering for the specific case of the 4 x 6 corgimgy table (Table 1), then generalize
to anl x J contingency table. We remark that the orderings lmased not on the
perspective of the patient, who would regard as $testing at L and ending at N, but
rather from the perspective of the evaluation ef tiedical intervention. This being

the case, the most clinical benefit derives thernlfe (D, N) pattern.

Table 1: The 4 x 6 contingency table of Example 2.5

Baseline Post Treatment Pain Assessment
Pain D S M L T N
D (D, D) (D, S) (D, M) (D, L) (D, T) (D, N)
S (S, D) (S,9) (S, M) (S, L) (S, T) (S, N)
M (M, D) (M, S) (M, M) (M, L) (M, T) (M, N)
L (L, D) (L, S) (L, M) (L, L) (L, T (L, N)




3.1 Stratify by Basdline

The idea behind stratifying for baseline is thap twategories are comparable
only if they have the same first component (basglior are in the same row of Table
1. Now each category is comparable to five otheegmies, resulting in (4 x 6 x 5)/2
= 60 comparable pairs of categories out of 24(28)/276 pairs of categories. In
general, with ah x J contingency table, each row category would be @ratge tal
— 1 categories, and the number of comparable phicategories would b&) (J —
1)/2, out of1J (IJ — 1)/2 pairs of categories. Obviously, this is parse partial
ordering, which is tantamount to treating basetise nominal variable (when in fact
it is ordinal), and does not treat as comparat#ectitegories (D, N) and (L, D), even
though the former represents improvement frombiiilsg pain to no pain and the

latter represents degradation from mild pain taldisg pain.

3.2 Forward and Backward Stratification

With forward or backward stratification, two outcertevels are comparable
only if they have the same first (baseline) or selc(post-treatment) component, or
are in either the same row or the same column bleTéd. Now each category is
comparable to 5 + 3 = 8 other categories, resulting x 6 x 8)/2 = 96 comparable
pairs of categories out of 276 pairs of categories.general, with anl x J
contingency table, each category would be comparab{ -1) + ( — 1) categories,

and the number of comparable pairs of categoriadduoeld (J + | — 2)/2, out of(1J

10



— 1)/2 pairs of categories. This partial orderiaggiill sparse, and still considers (D,

N) # (L, D).

3.3 Enrichment

One can enrich the partial ordering of Section By2making it transitive.
Thus, if (D, N) > (D, D), which is meaningful becgugoing from disabling pain to
no pain reflects better on the treatment than istartvith disabling pain and
remaining with disabling pain, and if (D, D) > (D), which is also meaningful
because starting with disabling pain and remaimith disabling pain reflects better
on the treatment than going from mild pain to dis@p pain, then it is only
reasonable that (D, N) > (L, D). Define two categeras comparable if one
dominates a category that dominates the other. catggory is then comparable to
any other category Northeast or Southwest of ib(@4d). To find the total number of
comparable pairs of categories, consider the fells ¢categories), at which a pair of
rows and a pair of columns intersect (Diaconis &tdrmfels, 1998). This gives
41/[(2")(21)] = 6 pairs of cells, of which five (Bbut the upper-left vs. the lower-right)
are comparable. As there are 4!/[(2")(2")] = 6 padf rows, and 6!/[(2!)(4))] = 15
pairs of columns (Table 1), there are 6 x 15 = 8@spof non-comparable categories,
and 276 — 90 = 186 pairs of comparable categotieggeneral, with an x J
contingency table, there would b (2")(I - 2)!] pairs of rows and!/[(2))(J - 2)!]

pairs of columns, adJ/[(2D)(1 — 2)1(2")J — 2)!] pairs of non-comparable categories.

11



An equivalent derivation is to start with the(l + J - 2)/2 from Section 3.2,
and then recognized that symmetry half of the ramgi[lJ (IJ — 1) =13 (I + J -2)]/2
pairs of categories are comparable, and the othlérale not. Yet a third derivation,
which is also instructive, comes from using theefsomparable pairs of categories
from each of the B/[(2))(1 — 2)!1(21)J — 2)!] pairs of rows and columns and then
subtracting away the over count, whichdq(l — 2)Jd — 1) + 0 -2)(I — 1)]/2. This is
evident because each categories is compared toogdod other J— 1) categories in
its row ( — 1) times instead of once, and each categoryngpaced to each of the

other ( — 1) categories in its columd € 1) times instead of once.

3.4 Direction of Effect

The aforementioned partial orderings do not comparme improvement
categories, such as (L, N), to some worsening oateg such as (M, D). If both
dimensions are measured on the same scale, thecaarenrich the partial ordering
by considering as comparable pairs of categorieshwtiffer in the direction of
effect. For instance, (M, D) < (M, M) < (L, N). Tiind the number of comparable
categories, consider rowsand g > r;, columns ¢and ¢ > ¢, such that they are not
interweaving, i.e., the two columns are either wittihe interval of the two rows or
outside the interval. Mathematically, ¥ ¢ < g <r, or g <r; < 1, < ¢, and both
equalities cannot hold at the same time. Thesep&is will intersect at four cells,
which give six pairs of cells. All of these are qmamable (the upper left vs. lower

right is also comparable since one is above otherdtagonal and the other is below

12



or one the diagonal, but they are not on the diaganthe same time). Obviously, the
number of ways to choose the columns from outdidertterval (1, r,) is:

(- -r,).
The number of ways to choose columns inside trexvat (i, r2), wherel, _, _;is

an index function is:
(= =1(r,-r=-2)1 _ /2.
The number of ways to choose one at the endpoahtta other outside the interval
is:
J-r)+(r,-1.
The number of ways to choose one at the endpothtrenother inside the interval is:
2(r,-r-1.
So for a fixed pair of rows, there are:
K(r,r) = =D@ -r) + (= =90, =2 . 12+ (3 —1,) +(r, =D +2(r, -r, -1
ways to choose a pair of columns such that theysett at four cells, of which a total

of six pairs are comparable. Hence, the total nurabeon-comparable pairs is:

2. Q0 -1/2-K(r,1,),

(rp.r2)

where the sum is over all possible pairs of rows ().

In our example of pain, = 4,J = 6, and there are six possible pairs of rows.

We find that:

K(@2)=@-1(6-2)+(2-1-1(2-1-2)1 5., /2+(6-2) + L-1) +2(2-1-1)
=0+0+4+0+0=4,

13



K@$3)=0+0+(6-3)+0+2(3-1-1) =5,

K@L4) =0+ (4-1-1)(4-1-2)/2+ (6-4)+0+2(4-1-1) =7,

K (23)=(2-1)(6-3)+0+(6-3)+(2-1)+0=7,
K(24)=(2-1)(6-4)+0+(6-4)+(2-1)+24-2-1)=7,

K (34)= (3-1)(6-4)+0+ (6-4)+ (3-1)+0=8.

So the total number of non-comparable pairs is(@)5) (4 +5+7 + 7 + 7 + 8) = 52,

and the number of comparable pairs is 276 — 524= 22

3.5 Compare Non-change

One additional modification is to consider the mb@ange categories as
comparable. None of the previously discusses parikerings would consider (D, D)
comparable to (S, S), for example. It is not ehtickear how these categories are to
be compared. One might argue that all of thesegoats represent no change, so
they are all equivalent. However, one could alguarthat more baseline pain means
more room (and need) for improvement, so that (L> (M, M) > (S, S) > (D, D).
The opposite ranking would result if one were kettéhe view that the healthier the
patient is to start with, the easier it is to imgolt is not our intention to resolve this
issue, but rather to point out that these categamay or may not be considered
comparable. If they are, then there RIE2!")(k - 2)!] fewer pairs of non-comparable
cells than in Section 3.4, wheke= min(, J). Whenl = 4 andJ = 6,k = 4, and there

are 46 pairs of non-comparable categories, ancc@8{parable pairs of categories.

14



3.6 Sort by Change

In Section 3.4 the main diagonal (representing mange) was used as a line
of demarcation to separate improvement from deteiem. Other diagonals can be
used the same way. Using all diagonals parallghéanain diagonal in this way, and
equating all cells within a given diagonal, is &anbunt to assigning equally-spaced
scores assigned to the six pain evaluations (saylpS=2,M=3,L=4,T =5, and
N = 6), and then ranking the categories by the gbanom baseline (delta). This
would be a complete (and obviously transitive) ardg which would consider all
276 pairs of categories as comparable. However, rél@ive spacings among
categories measured on an ordinal but not an @ltessale are unknown (Bajorski
and Petkau, 1999), so it is artificial to compavertapping changes unless one set
contains the other. The comparison of pairs ofgmies not considered comparable
by the partial ordering in Section 3.5, e.g., (Pa8d (S, M), provides only pseudo-

information.

15



Chapter 4: An exact approach based on partial orddang

In this section we will develop our methodology f@wnstructing an exact
permutation test based on partial ordering of teebne outcome pairs of categories.
We will give the definition of the test statistindatechnical details of how to compute
p-values and power of our test. Theoretically, Emto Fisher's exact test, this
approach can be explained as follows. Enumeratpaoatsible tables consistent with
the given margins, and calculate the statisticevalueach. The significance value (p-
value) of the observed table is then the percertégjfgose test statistics which are no
less than the observed one. One real life sampteeisented for better illustration.
Furthermore, in order to extend the bounds of bBelatsi of our exact procedure for
practical use, we explore an efficient algorithm iakh finds the approximate
significance level of arl x J contingency table without enumerating all possible

tables.

4.1 Methodology

The idea of our approach is that although basalirteeme pairs cannot be
ordered completely, a partial ordering can stillofained based on the relationships
defined in Chapter 3. Our analysis is based onpidwial ordering presented in
Section 3.5, equating all no-change categories.nTae exact permutation test

statistic can be defined and the null referenceidigion function can be derived.
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The statistical analysis will be dictated by thesige to be a two-armed
parallel RCT with 1:1 randomization to each of #weerimental arm E and the
standard of care control arm S, and the partiaéramd. However, a word of caution
is required here that a philosophical decision sg¢ede reached prior to performing
the analysis. It is desirable to settle whethetréat one category as better than
another if it does not necessarily reflect supéyiaf E to S. An extreme example is

given below to clarify this issue.

Suppose that there are 100 patients randomizedcto & E and S. Consider
that each patient randomized to E has outcome {Dah each patient randomized
to S has outcome (L, N). Then every patient on eaohleaves the study pain-free.
The difference in outcomes is actually a differeonty in the baseline component of
the outcomes, one of which is 100% disabling paith the other is 100% slight pain.
Obviously, going from D to N is better than goimgrh L to N, as discussed in
Section 3.2. But in the evaluation of one treatmesative to another, can this
superiority be explained by the difference in tneants? Unless there is selection bias
(Berger and Exner, 1999), randomization ensurdsthieabaseline distribution within
each arm is necessarily the same, so the obseiffededce must be a random
occurrence (Senn, 1994), and the apparent suggrindy not be attributable to the
treatments. This situation can be avoided by §gmagj for the baseline pain score in

the design. So we consider this to be a philosapiBsue and not a statistical one.
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Once the issues of partial ordering have been esdetithen under the
hypothesis that active treatment is about the samseperior to control treatment, we
want to test the hypotheses:

H, : Active= Control,
H , : Active> Control.

Suppose npatients have been given the active treatmennapadtients have
been given the control treatment. The outcomedrane anl x J contingency table.
In a two-armed RCT, the data structure is ald gontingency table, with two rows
(one for each of the active and control treatmeans)lJ columns, with some partial
ordering on thes&) columns. The row margins are and n respectively. Given the
two samples and in absence of any further assumgmlmout the samples, the
modified U-statistic is the ratio of pairs favoralto the active group to the total

number of informative pairs (pairs that are favéeab one of the two groups), i.e.

a #of pairs favorableto theactivegroup
Total # of comparablepairs favorableto theactiveor control group

P(A>C)
P(A>C)+P(C>A)

This is an estimator &f =

, where P(A>C) is the probability

that the active treatment will produce the betigicome and the control will produce
the worse outcome. While we deal with the tieseddhtly from Munzel and

Tamhane (2002), we retain the expression “tendesiiydarger” for the active group
if 6> 05, or for the control group &< 05. Under the null hypothesis the cell

probabilities are common to both groupsgso05.
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In order to efficiently compute the test statidi@sed on partial ordering, one
needs to keep track of the set of comparable tmilsach cell in contingency table.
To this end, a comparison matrM can be defined in order to calculate the newly
defined test statistic. For a 2 x 9 contingencyetatith 3 baseline and 3 outcome
categories ranging from 1 = best to 3 = worst, ipldrdering has a comparison
pattern of Table 2:

Table 2: Comparison pattern

Active
Control (1,1 (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)
(1,1 = C C A = C A A =
(1,2) A = C A A # A A A
(1,3) A A = A A A A A A
(2,1) C C C = C C A # C
(2,2) = C C A = C A A =
(2,3) A £ C A A = A A A
(3,1) C C C C C C = C C
(3,2) C C C # C C A = C
(3,3) = C C A = C A A =

In Table 2, A or C means active or control treatimsriavored by this comparison,
“=" means equal treatment effect ang fepresents non-comparable pairs. Based on

Table 2, the comparison matri (33 by 33) is defined as follows:

Qloilo v Osar Ongy Osgh O Osg
Os40 - ﬁ3x3 s, &exs O, ﬁsxs
M 4y = Ora0r  Ozar Onry Ongy Oy Qg
Os40 - ﬁys Qs é3x3 - Osa A23x3 :
Ora0r O7ar Onry Ongy Oy Ogg
Q40 » ﬁsxe, » Osa s ﬁ:&xs O, é:&xs
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where

0 1 1 -1 0 1 -1 -1 O
ﬁaxsz -1 0 1], i:%: -1 -1 0 |, isxsz -1 -1 -1},
-1 -1 0 -1 -1 -1 -1 -1 -1
1 1 1 1 1
4305 = 0 1], 5 403 =1 1 1
-1 0 1 o 1 1

As we mentioned above, if the active group hapatients with the observed pairs of
0 1 0 1 0 1
values {( a;, a;), (a,, a;), ..., (&, @,)} and the control group has;n
. . d 0 1 0 1 0 1
patients with the observed pdit<;, C;), (C,,Cy), ..., (an, C,, )}, and the
category levels are less than 9 (this is normé#iénpractical research), we can rewrite
. 0,1 A0,1 0,1 01 AO0A1 0 AL

these pairs ag @, &;, a,a;, ..., anlanl} and{C/C, C,C;, ..., anCnZ} based
on the formula:

Baseline x 10asktreatment.

To obtain all possible pair combinations betweea tieatment groups, the observed

combination matrixX has the following form:

_1n2><2

2 n,x2

Anlnzxz -

n,x2
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where

ai ai ! Cl Cl
a’a; ., CyC;
_in2><2 - !
0,41 0 A1
aiaﬁ ! CnZan

n,x2

The two components of each row, for exampte) a,, c;c; ] decides the position in

comparison matrixM , and the corresponding values (1, -1 or 0) in ma# give us
the comparison result of this pair of observed &slbased on the partial orderings.
Therefore, we can easily calculate the total nundfecomparable pairs which are
favorable to the active or control treatment byngsnatrix M and X together, i.e.,
the counts of -1 and 1 represent the number of aworable to active and control
group respectively. Thus, the test statistic caedmly calculated using the observed
data. We have developed the S-Plus code, whicludesl building the comparison
matrix M and the observed combination maiXix and providing the value of the test

statisticT .

4.2 Conditional P-value

In this section we discuss regarding computatidns-\alues of the tests we
have proposed. Exact calculation of the conditigriahlue requires enumerating all
possible tables under fixed row and column margiie immediate difficulty in
exact calculation is that the required computatian very easily grow beyond the

capacity of even modern computers. The sample sgaterery quickly grow to be
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something that limits implementation of any exhagsprocedures. Next we provide

technical details for computation of the p-values.

4.2.1 Exact conditional p-value

One usually looks at a conditional sample spacereviibe entries are
conditioned on the margins of the contingency taBlecause the marginals are
sufficient statistics the conditional inferenceoimal. Under the null hypothesis of
no association between row and column categoties ptobability of the sampled

r x c table with total sample sizN is:

ﬁ X; ! | X ;!

P: |=1r j=1
NET ] %)

i=1 =1

(]

o

Recall that a p-value is the probability of the etved data or more extreme
data occurring under the null hypothesis, thus, Zark contingency table in two-
armed CRTSs, the conditional probability of obtagentest statistic that is same as or
more extreme than the observed one under the gpbthesis (i.e. conditional p-

value) is:
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P(T=t]c)= > P(X=x|H,c)

XDI—(;(I)

1

Xyt (t = X))

- j=1
= Z J T ,

n] .
xXar | - |
¢ |_| Xg P (t = %))

i=1

where the rejection region is the s&f, ={x0OF,:T 2t,}, I, is the set of all

tables X with the marginal fixed at. c=[c,, c,,- -, c,] is the vector of column

marginal counts. For size level, the critical region is

t,(c)=min[t:P(T 2t|H,,c)<a .]

4.2.2 Monte Carlo estimate of conditional p-value

Substantial research has been done on exact in&efen contingency tables
over the past decade, in terms of developing bat @mnalysis and efficient
algorithms for computation. The main problem of Igjny the exact test is that for
moderate sized tables, the number of table prabalbd be enumerated can easily
reach into the billions. Thus, in order to make ewact procedure feasible for

practical use, an appropriate algorithm needs texipéored.

It has been shown that the number of possible tgues factorially fast as
the number of baseline categories, number of outcoategories, or the total sample

size increases. Thus, the number of operationsitmeratel’ (c) grows faster than

any polynomial in the minimum margin count. To edehe bounds of feasibility,
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much research has been done both in exploring neathads for complete

enumeration and enhancing Monte Carlo approximatamuracy.

Pagano and Halvorsen (1981) came up with an effi@kyorithm which finds
the exact significance level of xJ contingency table without enumerating all
possible tables. Later in 1983, Pagano and Trichdere another algorithm which
reduced the computing time to polynomial time apased to exponential time
otherwise. However, because it involves inverting tharacteristic function of the
statistic, this algorithm is only good for statstiwhich are linear combinations of
either the original observations or the ranks, saglthe Wilcoxon test. At the same
time, Mehta and Patel (1983) gave a network algariby recursively summing the
probability in the required contingency tables, etheventually lead to creation of
StatXact. Morgan and Blumenstein (1991) gave amotfgorithm for exact
conditional tests for hierarchical models in muftidnsional contingency tables. Both
network and Morgan’s algorithms depend on compégtemeration, and will thus

give the exact p-value.

In this thesis, a Monte Carlo procedure given byefradd (1981) was
developed as a function Permu( ) in S-Plus to apprate significance levels of the
proposed exact test anx c table. It efficiently generates random tables urfdesd
row and column margins. The idea is as follows:

Let a; denote cell counts in axccontingency table with the row and

column totalga ,1<i<r;a;,1< j<c). The conditional probability distribution of
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entry a,,, given the entries in the previous rows, (ee,i=1,...,1-1 j=1...,c

and the previous entries in réwi.e.(a;, j =1..., m= 1) is found to be

| m-1

Rm:(a.—iaj)!(N—Za 38+ a)

i=1 j= i=1

x (a,, Zam)'[Z(a Za,-)]!

j=m+1

(@) @, - Y@ - 3a)

m | m

x(N-2 3 Za +ZZ&,)'[Z(a —Zay,)]'}‘1

j= i=1 j=1
where N = Zail and (1<l <r-211<m<c-1). The above conditional probability
i=1
is valid when eithet =1 or m=1 if the conventlonZ( ) Z( ) =0 is employed.
i=1 J
To ensure the rest cell counts are at least Zeexainge ofa,, is such that all

the factorial terms are non-negative. The conditicexpected value o, given

previous entries and the row and column totals is

[y

m-1

_Z_:aim)(al._zalj)

' i=1 =1

(a Z au )

m

j

When the denominator in this expression is z&gQ,= . O
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Although formula for the conditional probabilitystiiibution of a,, appears
rather complicated, each of the terms is evaluseguentially ak=1,...,r -1,
m=1...,c—1 in only a few lines of code. For ea¢h m the algorithm generates a
random numbefRAND, between 0 and 1. The probability distributionayf is then
accumulated, starting with,, equal to the nearest integerg8q. The value ofa,, is

chosen with the required conditional probability emhthe cumulative probability
exceedsRAND. Given the fixed marginals, the function Permufan provide one
sampled table as the output. Thus, the proceduresiag our proposed exact test is
to sample table by a large number of calls of Pémaund to estimate the significance
level by the proportion of samples with a valudled test statistid (as we defined
in Section 4.1) that provides at least as muchesdd against the null hypothesis as

the value of the observed statistjg, , that is,

P(T 2t|c) = # of sampled tables with T >t
B Total # of sampled tables

obs

To evaluate the performance of the Monte Carlo gaace, we compare the
estimated p-values with the exact p-values produmed complete enumeration of

tables using a recursive method.

Consider a2x 6 contingency table with 2 baseline (2 and 3) andu®ame

categories (1, 2, and 3) where 1 = best and 3 stwdwo sets of RCT samples with

different sizes are given in Table 3.
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Table 3: 2 Sets of RCT 2 x 6 ContmpeTables

Sample Size Treatment 20 | 2,2 | 2,3) | 3,1) | (3,2 | (3,3
1 10 Active 1 1 0 4 2 2
10 Control 2 2 3 1 1 1
2 20 Active 7 3 2 5 2 1
20 Control 6 3 2 4 3 2

The comparisons of the exact and approximate pegdior these two samples
are listed in Table 4.

Table 4: P-value conmgpams

Sampld s Type # of Permutationg P-valfie

1 0.8076928 Complete Enumeration 782 0.082
Monte Carlo 500 0.030

2 0.5490909 Complete Enumeration 7,532 0.349
Monte Carlo 1,000 0.344

As can be seen from the tables, the approximat@yes are reliable whereas
the time required to generate random tables is negdh dependent on sample size.
The difference between complete enumeration andithrege Carlo algorithm is quite
substantial when dealing with large tables, whicalbdes us to easily handle the large

tables that previously would have been impracticalalculate.

4.3 Power

The performance of our proposed exact test neells évaluated compared to
other widely used tests in term of power. As a piigle to that investigation we start

off by discussing the formula involved in the powatculation.
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4.3.1 Exact conditional power

The exact sizea conditional power is computed by integrating thenpo

probabilities of each table in sample space undealt@rnative hypothesisi , over

the rejection region of the null hypothekis:

Py, (T(X) 2ty [€) = D> Py (X = X[C) Iy (ya

xar,

a

where t, =minft: P(T >t_.|c,H,)<a ] and I', is the set of all possible tables

obs
given row and column margins. Due to the discreteine of the data, the significance

level @ would not be exhausted fully.

Because of the nice exponential family form, thedittonal point probability

P,(X =x]|c) has nice form. Letx,,---, x,, and x,,, -+, X,, represent the samples
from population F, (active group) an#&, (control group), which arise from

multinomial (n,, 7z) and (n,, 77,) respectively, where ther's are the associated
probabilities. Letc; = x; +X,;, the column totals. Thus, for each element in the

sample space, the point probabilities can be cated! UnderH, it has a simple

form as follows:

1

=~

P(X = x|, Ho) = — 12—

k

vor

- V! Yot
1

X, ;!

]

UnderH ,, it has the form:
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k ]T” X k ]T

yl] y21
YT, rl Y Y2J

P(X = Xx]|c, HA)—

4.3.2 Exact unconditional power

It is obvious that when conducting a conditionak t@e compute the exact p-
value with the marginal responses fixed at theseobed values. When designing a
study, however, the marginal responses that wskeannce the data are gathered are

unknown; a priori we can specify only the distribat of the responses; andr, .
Consequently, we must compute power unconditionaltir respect to all possible

margins. We can then obtain exact unconditionalgzaxg the expected value of these

terms,

P, T 21) =2 P, (T(X) 2t]c) P(C=c),

cdQ

whereQ ={c: D c; =n, +n,}, P, (C=¢)= > P, (X, =X) P, (X; =%,).
X,

The computation is practically infeasible sincerever a moderate sample

size, Q can be quite large. For example, fidr=5 and n, +n, = 50 Q contains

316,251 distinct vectors.
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Alternatively, to reduce the computational burdea gan instead estimate

exact power from a sample &1, given n, and n,. In simulation studies power is

usually estimated by the crude Monte Carlo estimatpwhich is given by:

N

Z I{P(T| 2 Tobs) < a}

N

where N is the number of Monte Carlo samples.

We are now in a position to put our methodologyh® litmus test. We will

compare it with Fisher's exact test, ANCOVA, andgwrtional odds model via

extensive simulations in Chapter 5.
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Chapter 5: Comparison with other tests

In Chapter 4 we have developed an exact approabétieeen-group analysis
adjusting for ordinal baseline covariates. In orteevaluate the performance of our
methodology, we compare it with Fisher's exact, t&dCOVA and the proportional
odds model, three widely used tests for categodatd as well to decide if our test is
really desirable. The choice of which method to cese be determined by analysis of
the statistical properties of each. An importaitecdon for a good statistical method

is that it should reduce the rate of false negai#¢. The S of a statistical test is
usually expressed in terms of statistical powér £). A method that requires

relatively fewer data to provide a certain levelstétistical power is described as

efficient.

5.1 Other tests for categorical data

5.1.1 Fisher’s exact test

Fisher's exact test is a statistical significanest tused in the analysis of
categorical data where sample sizes are smak. famed after its inventor, R. A.
Fisher, and is one of a class of exact tests. &$tad used to examine the significance
of the association between two variables in 2 xoftingency table. With large
samples, a chi-squared test can be used in thiatisih. However, this test is not
suitable when sample sizes are small or when thge'ted value” in any of the cells

of the table is below 10, that is, when the datavary unequally distributed among
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the cells of the table. The Fisher test is, agatsie states, exact, and it can therefore
be used regardless of the sample characteristidgs. dlso very useful for highly

imbalanced tables.

Fisher's exact test is based on exact probabilite® the hypergeometric

distribution. UndeH,, the exact probability of observing one particutampled

table, given fixed row and column margins, has bgieen in Section 4.1.2. The one-
sided probability for the Fisher’'s exact test ifkcokated by generating all tables that
are more extreme than the table given by the urseghe direction specified by the
one-sided alternative. The p-values of these tadrkesidded up, including the p-value
of the table itself. Because the calculation ohEi& exact test involves permuting
the observed cell frequencies it is also referechds a permutation test, like our

proposed exact test in Chapter 4.

In two-armed RCTs, the data often include small am@ cell counts. If the
response is ordinal, we can combine categoriesc@te a 2 x 2 table by treating the
ordinal covariate as binary (improved or non-im@a) Obviously, this converting is
inefficient because ignoring the ordering among teegories or collapsing
categories will result in a loss of power. This daverified by the simulations in

Section 5.2.
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5.1.2 Analysis of covariance (ANCOVA)

In most experiments the scores on the covariagesalected before and after
the experimental treatment. By treating the ordmeabonse variable as continuous,
we can use ANCOVA with the post-treatment valughasresponse variable and the

baseline value as the covariate.

ANCOVA, or analysis of covariance is a general dinenodel with one
continuous explanatory variable and one or moréofac ANCOVA is a merger of
ANOVA (analysis of variance) and regression for tcwmous variables. ANCOVA
tests whether certain factors have an effect atteroving the variance of which
guantitative predictors (covariates) account. Tietusion of covariates can increase
statistical power because it accounts for somehef variability. The analysis of
covariance includes the same assumption as thgsaaf variance: independent
sampling, equal corresponding population varianeesl normally distributed
corresponding populations. In addition it include® other assumptions related to
the relationship between the covariate and the rabgre variable. It is assumed that
the covariance between the covariate and the depérdriable, within each sample
or column, do not differ significantly from eachhet. In other words, if we were to
compute prediction equations within each sampleotumn, the slopes of the lines
would not differ significantly from each other.i¢talso assumed that the relationship
between the covariate and the dependent variabliegar--that the relationship is

best described by a straight line.
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In this thesis, the ANCOVA model is written as:

Yij = U +afi+,6’xij +&, i=1,2; j=1,-,n,,
where Y, is the response of thg-th unit, receiving treatmerit with associated
baseline covariateg; . In this model, the effect of theth treatment is modeled via

the parameter,. The i values 1, 2 represent the active and control rtreat

respectively.

Now, our interest of examining whether or not ther@ny treatment effect
becomes to test the null hypothests : a, = a, against the alternative hypothesis
H,:a, <a, (lower level is better). The p-value can be defil®y using the F

distribution. Readers interesting in further detaibout the computation of p-value

are referred to Rencher, 2000.

5.1.3 Proportional odds model

The most well-known cumulative logit model for ardi response is the
proportional odds model. Under this model, we asstimat the log of the cumulative
odds ratio is proportional to the distance betwésn values of the explanatory

variables.

Let Y be an ordinal variable witklevels, and letP(Y, < j Je the cumulative

probability of responding of categorigsfrom groupi (active or control group).
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P(Y, < ) =7, + M, + o4 7, =12, kil =12

Then we havek -1 cumulative probabilities to look at, sinegy; < k) = . et

logit P(Y < j) = Iog%

g B _
=log——, j=12- k-1

”j+1+"'+”k

be the cumulative logits. We can incorporate kat1l cumulative logits into the

following model (Agresti, 1990):

logitfP(Y < j)]=a, +B'X, j=1--, k-1
where [ denotes the effects of explanatory variabks The covariateX can be

continuous or categorical. In our case, there ae @xplanatory variables: binary

treatment factor (active or control) and ordinadddane variable.

The above cumulative logit model satisfies

logit[ P(Y < j | X,)]-logit[ P(Y < j | X,)] :|og{';gz i II i;;ggz j :iﬂ

=a,+BX,-a,-['X,

=B(X, = X,).
The odds of making responsej at X =X, is exp[8'(X, — X, )] times the odds
atX = X,. The log cumulative odds ratio is proportionathe distance betweeKX ,

andX_.. The same proportionality constant applies to dagfit. Cumulative logit
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models simultaneously fit ak —1 logit models for thek categories of the response.
There are different methods to fit the proportioodtls model. In this thesis, we use
GEE (Generalized Estimating Equations) by usingGlENMOD procedure in SAS
to estimate the parameters. See Liang, Zeger aglQéL992) and Lipsitz, Kim and

Zhao (1994) for a description of GEE methods falirwal responses.

5.2 Simulations: Comparison of performance

5.2.1 Methods

As comparison we employ the three common testisarptevious section and
our proposed exact permutation test based on partigring. We compare more
generally the unconditional power of these four-sited tests (active is better than

control) in moderate and small samples.

Let us consider the 2 x 3 contingency tables witha8eline and 3 outcome
categories ranging from 1 = best to 3 = worst. twararmed RCT, the data structure

is 2 x 6 contingency tables, with the active sasifitem multinomial(n, , /) and
the control samples form multinomidh,, 77,), where then’s are the associated

transition probability vectors from baseline to pveatment. The initial probabilities
to generate the baseline data is (0, 0.55, 0.4b)e Nets of transition probability

vectors are given in Table 5.
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Table 5: TransitiBrobabilities

No. Transition Probabilities

m (0.63, 0.23, 0.14; 0.56, 0.26, 0.18)
1 (0.54, 0.27, 0.19; 0.49, 0.29, 0.22)
1) (0.45, 0.30, 0.25; 0.42, 0.31, 0.27)
my (0.36, 0.33, 0.31; 0.35, 0.33, 0.32)
s (0.30, 0.33, 0.37; 0.29, 0.32, 0.39)
ITs (0.27, 0.32, 0.41; 0.25, 0.30, 0.45)
1, (0.18, 0.30, 0.52; 0.14, 0.23, 0.63)
ITs (0.12, 0.25, 0.63; 0.07, 0.16, 0.77)
Ty (0.03, 0.13, 0.84; 0.01, 0.04, 0.95)

For eachrr,, the first three components are the conditionababilities of

falling in category 1, 2, 3 after treatment givéattthe initial level 2 (sum = 1); the
last three components represent the conditionddgiitities of falling in category 1,
2, 3 category given that the baseline level isuBn(s 1). From Table 4, it can be seen
that with the index number increases, the transgimbabilities more and more shift
to the higher level, which means given the sameellves values, the sample
generated fronvz, tends to be better than the one generated frgnif i < j. The
initial probabilities are always same for two treanht groups; however, due to
sampling error, with random assignment of subjexthe groups, the baseline status
may differ between treatment groups, that is, timay have same distributions with
different realizations. By choosing different comdgions of set of transition
probabilities and sample sizes, we generate atyasfedatasets for different cases.
For equal treatment effectsH{ Active = Control is true), the same transition

probabilities are used; for unequal treatment efféexplicitly H , : Active > Control

is true), the index number of the transition praliéds 77, for active group should be
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smaller than 7z, for control group. For each combination of set tadnsition

probabilities and sample sizes, we generate 50@dpsdatasets by sampling from the
baseline distribution and the distribution creabsdthe given set of the transition
probabilities and find out how many of the 500 fues are under significance level

a =0.1 or 0.05, i.e. the unconditional power.

5.2.2 Results
Simulation 1:

Table 6 displays the power of the four tests fopaksible combinations of
set of transition probabilities, whem +n, = 3 balanced i, =n, =15) samples.
To compute the p-value for our proposed exactliased on the partial ordering, we
randomly selected 1000 permutations of the treatmpeups (subject to Monte Carlo

sampling) and recomputed the test statistic. Asngationed in Chapter 4, this set of

1000 values serves as the null reference distabubr this exact permutation test.
For simplicity, (7,, ,) = (s, ;) is abbreviated ad - j. Power performance
comparisons for {1-1, ..., 1-8}, {2-2, 2-3, ..., 2-9},., {6-6, 6-7, ..., 6-9} for

a = 0.1 (similar curves were observed to= 005) are shown in Figure 1.

The results show that when the active experimestightly better than the
control treatment, the proportional odds model gitlee highest power among these
four tests and the partial ordering test is moregréul than ANCOVA and Fisher’s

exact test; when the active experiment becomes nhetter than the control
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Transition
probabilities

Table 6: Simulation 1, Balanced Data, N=30

Power 1 (significance lewvel = 0_1)

Power 2 {significance level = 0.05)

Partial Ordering

Fisher's Exact ANCOWA

Proportional Odds

Partial Ordering

Fisher's Exact ANCOWVA Proportional Odds

1-1 0016 o o u] [u] u] o u]

1-2 o0z o o 0.068 o004 u] u] u]

1-3 o134 o 0046 0.214 o034 [u] u] 0036
1-4 o.4zg 0.0z 0576 0.52 015 u] 0064 0.4
1-5 0826 o432 0934 0o.g92 0454 o.noz 0626 0676
1-6 o.g52 o744 0926 0.942 0G4 0.286 o204 0.792
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40




3-(3:9)

1
—e— Partial Ordering V/;-
0.9 1 _,—Fisher's Exact
0.8 | —e—ANCOVA
—a— Proportional Odds
Va/avi
L)
S 05
(@]
; i
i
i
- // /
3-3 34 3-6 3-7 3-8 3-9
Transition Probabilities
4 -(4:9)
1 &
—e— Partial Ordering M
0.9 1 4 Fishers Exact // //
0.8 1 —e—ANCOVA
—a— Proportional Odds /,:/
0.7
0.6
7]
2 05
[e)
o
0.4 A
0.3 A
0.2
7 4/
0 » » - T T
4-4 4-5 4-6 4-7 4-8 4-9

Transition Probabilities

Figure 1(b): Simulation 1, baleddata, N=30y = 0.1

41




5-(5:9)

1
—e— Partial Ordering M
0.9 4 —a— Fisher's Exact
0.8 |—e—ANCOVA
—a— Proportional Odds
y g S/
) S
S 05
o
0.4 / // /
o3 /4 A
0.2 // /
0.1 ‘V/
0 » 4 /
5-5 5-6 5-7 5-8 5-9
Transition Probabilities
6 - (6:9)
1 A
—e—Partial Ordering /
0.9 1 —a—Fisher's Exact //
0.8 —eo— ANCOVA
—a— Proportional Odds // /
0.7
0.6 | M
o
= 05
[e)
0.4 // /
0.3
0.2
0.1 -
0 - T
6-6 6-7 6-8 6-9

Transition Probabilities

Figure 1(c): Simulation 1, balanckda, N=30¢ = 0.1

42




treatment, the power of ANCOVA grows fastest andopges most powerful while
the partial ordering is less powerful than ANCO¥Ad proportional odds model. As
we expected, Fisher's exact test is the worst @wmglitionally, all these tests are

conservative and partial ordering test is kindesfl conservative than others.

Simulation 2:

Power increase when sample size increases. Nexvaleate the effects of
sample size on the tests. One thousand permutatieres selected to compute the p-
value for our proposed exact test witl= 0.1. Table 7 shows the power of the four

tests with transition probabilities {1-1, ..., 1-#r sample sizen, +n, ={30,53 in

balanced , =n,) samples. The plot for each test is shown in Egur

Table 7. Simulation 2, Balanced Data,{R6&, 50}

Transition Power (significance level = 0.1)
Sample Partial Fisher's Proportional
Size probabilities | Ordering Exact ANCOVA Odds
25*2 1-1 0.008 0 0 0
1-2 0.058 0 0 0.124
1-3 0.232 0.018 0.158 0.516
1-4 0.656 0.46 0.922 0.892
1-5 0.934 0.92 1 0.998
1-6 0.978 0.994 1 1
1-7 1 1 1 1
15*2 1-1 0.016 0 0 0
1-2 0.02 0 0 0.068
1-3 0.134 0 0.046 0.214
1-4 0.428 0.02 0.576 0.52
1-5 0.826 0.432 0.934 0.898
1-6 0.852 0.74 0.986 0.948
1-7 0.994 0.98 1 0.998
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Obviously, the power of the proportional odds testreases more quickly
when the difference of two treatments is small agadtial ordering is the second
position; when the active experiment outperformstics treatment in a large scale,
the ANCOVA test rises in power most quickly and drees the most powerful test.
Proportional odds test is still powerful. The powerves of the partial ordering and
Fisher’s exact test seem to have the similar slapdsheir power does not change as

dramatically as the other two with larger samptesi

Simulation 3:

From Simulation 1 and 2, we can conclude that glastidering test tends to
be less powerful than ANCOVA and proportional od@st when the active
experiment is much better than the control treatm&herefore, in the following
simulations we only focus on the case that theedifice between the two treatments

is small.

Based on the results from Simulation 1, we slightlyrease the sample size
from 30 to 40 in balanced samples with transitioobpbilities {1-1, 1-2, 1-3, 1-4},
{2-2, 2-3, ..., 2-6}, ..., {4-4, 4-5, 4-6, 4-7} and = 0.1. One thousand permutations
for partial ordering were selected for each sampkgure 3, 4, 5, 6 show the

differences in power between these tests.

The comparison results show that for the case aflstifference between the

two treatments, proportional odds model is overalst powerful. The superiority of
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partial ordering over ANCOVA is increased for sonases, and decreased for other cases.
The possible reason is that the slight increashefsample size may be not big enough to

improve the power performance significantly for AQIKZA method.

Simulation 4:

In this simulation, we increase the sample sizenf@0 to 80, in balanced

samplesp=0.1. From the results of Simulation 1, we choasaes points of(77,,77.)

where the power of partial ordering is higher tRCOVA for small sample size.

The results are shown in Table 8 and Figure 7.

Table 8: Simulation 4, baledsamples, N = {30, 80}

Sample Transition Power (significance level = 0.1)
Partial Fisher's Proportional

Size probabilities | Ordering Exact ANCOVA  Odds

15*2 1-3 0.134 0 0.046 0.214
2-4 0.164 0.002 0.006 0.23
3-5 0.152 0.004 0.028 0.198
3-6 0.306 0.054 0.27 0.52
4-6 0.068 0.004 0.04 0.168
5-7 0.168 0.012 0.152 0.362
6-7 0.13 0 0.02 0.304
7-8 0.078 0 0 0.114

40*2 1-3 0.532 0.284 0.768 0.89
2-4 0.528 0.266 0.842 0.902
3-5 0.45 0.242 0.698 0.866
3-6 0.718 0.63 1 0.976
4-6 0.236 0.048 0.174 0.612
5-7 0.618 0.55 1 0.958
6-7 0.37 0.152 0.528 0.782
7-8 0.286 0.048 0.252 0.63
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Form the plots, it can be seen that for most ofpbiats, ANCOVA is more
powerful than partial ordering in large sample NB& This means that for large
sample size, even if the difference of two treatt®és small, partial ordering is less
powerful than ANCOVA and proportional odds tessHér’'s exact test always gives

the lowest power.

Simulation 5:

Since our partial ordering does not show the adwi@dvantage over
ANCOVA and proportional odds model, we decrease shmple size to 20 in
balanced samples, to evaluate the power performahceur test. Five hundred
permutations were selected to compute the p-vdlpartial ordering for each sample

with a = 0.1. Table 9 and Figure 8 display the results.

Table 9: Simulatidnbalanced sample, N=20

Sample Transition Power (significance level = 0.1)
Partial Fisher's Proportional
Size probabilities | Ordering Exact ANCOVA Odds
10*2 1-1 0.034 0 0.01 0.02
1-2 0.036 0 0.004 0.012
1-3 0.082 0.012 0.034 0.112
1-4 0.216 0.052 0.22 0.248
1-5 0.354 0.102 0.298 0.466
2-2 0 0 0 0
2-3 0.03 0 0 0
2-4 0.144 0.004 0.098 0.132
2-5 0.338 0.06 0.174 0.404
2-6 0.416 0.078 0.304 0.446
3-3 0.008 0 0 0
3-4 0.026 0.002 0.02 0.06
3-5 0.036 0.008 0.024 0.094
3-6 0.064 0.008 0.03 0.104
4-4 0.008 0 0 0
4-5 0.03 0 0 0
4-6 0.03 0 0 0.048
4-7 0.286 0.156 0.522 0.434
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From the results, we can conclude that our padidering method shows
great superiority over other tests in very smathgie if the tiny difference between
two treatments exists. Partial ordering is ovenadre powerful than ANCOVA and

even better than proportional odds for some cdsesslightly less conservative than

others.
Simulation 6:
Table 10: Simulation 6, uldlveged samples, nl1. =15, n2.=10
Sample Transition Power (significance level = 0.1)
Partial Fisher's Proportional
Size probabilities | Ordering Exact ANCOVA Odds

Act=15 1-1 0.006 0 0 0

Con=10 1-2 0.02 0 0 0
1-3 0.182 0 0.05 0.026
1-4 0.38 0 0.318 0.246
1-5 0.648 0.09 0.72 0.398
1-6 0.78 0.102 0.88 0.488
1-7 0.948 0.944 0.994 0.958
1-8 0.998 0.998 1 0.994
2-2 0.006 0 0 0
2-3 0.028 0 0 0
2-4 0.156 0 0.214 0.056
2-5 0.318 0.036 0.27 0.12
2-6 0.396 0.058 0.43 0.208
2-7 0.892 0.828 0.964 0.858
2-8 0.99 0.992 0.996 0.952
2-9 1 1 1 1
3-3 0.004 0 0 0
3-4 0.048 0 0.04 0
3-5 0.122 0.006 0.062 0.036
3-6 0.116 0 0.164 0.026
3-7 0.786 0.46 0.93 0.698
3-8 0.948 0.846 0.998 0.878
3-9 1 1 1 1
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Our previous simulations are based on balanced Iseamp test based on
balanced samples will be powerful than the unba&dmnes. Table 10 displays the
power comparison for unbalanced small samples sizth of active groupin=15 and

size of control groupa= 10, giveno = 0.1. The plots are shown in Figure 9.

By contrast, proportional odds model is always l|pssverful than partial
ordering and ANCOVA. When the difference betweeo treatments is small, our
partial ordering has the best performance in teshymwer; otherwise, ANCOVA is
the most powerful test among these four tests.shggrisingly, the power of Fisher’s

exact test is lowest.
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Chapter 6: Conclusion

6.1 Applications

Ordinal categorical data arise frequently in a wideiety of experimental
studies. For example, in clinical trials compariagti-inflammatory drugs in
Rheumatoid arthritis, joint pain is often measuoedan ordinal scale such as severe,
moderate, little or none. A multi clinic study ohalgesics relief of headache is
recorded in ordinal responses as well. We can keegoing because the number of

examples is really unlimited.

Such abundance of real examples makes statistitalysas of ordered
categorical data an important field of study. Imstthesis we focus on two-armed
clinical trials designed to compare a new treatniert control where for each patient
an ordered categorical response is observed oy mtthe study and at a single
follow-up evaluation. Typically in an RCT wheretdaarise from independent
samples from two populations, each with saknalistinct ordered categories, the
problem is to test whether there is differencehim tivo multinomial populations. We
have developed a new class of ordinal statistias aldjust for baseline differences
based on partial ordering the baseline, post-treatnpairs. We have devoted a
significant proportion of this thesis to compare fjower performance of our test to
those commonly used tests, Fisher's exact test, @W& and proportional odds

model, for categorical data analysis. Through &tsaof simulation studies based on
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2 x 6 contingency tables, we conclude that in sivalhnced or unbalanced samples,
out test tends to outperform other three tests whennew experiment is slightly
better than the control treatment, which is themadrcase in practical studies. Thus,
we provide a good option to conduct the statistaadlysis if the sample size is
limited or unbalanced. Also, clinical trials woulddve much greater sensitivity if this

simple, but comprehensive, nonparametric methodbeaised.

6.2 Future Work

One big concern about our simulationhie tonservativeness of four tests
involved. The mid-P-value, described by Lancast®6(), modifies the exact test so

that it rejects more often. For a test statiStiovith observed valu¢,,, and one-sided

H , such that largd contradictsd ,

Mid — P —value= P(T >t0bs|c)+%P(I' =tope) »

with probabilities calculated from the null disution. Thus, the mid?-value is lee
than the ordinary p-value by half the probabilifytiee observed result. Unlike an
exact test with ordinary p-value, a test using itid-P-value is less conservative.
Although this test was not evaluated here, it mayparticularly useful for our
proposed test. Also, the conservativeness of otb&is needs to be investigated

deeply.

Secondly, it has been shown that our proposeddeastt the most powerful

test for all cases. Also it is really hard to fiad optimal test for our problem (Berger
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and Ivanova, 2002). Our research based on the ppgrésrmance in some common

situations may then motivate future extensive itigagon.
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