
ABSTRACT

Title of dissertation: ON AGENT-BASED MODELING: MULTI-
DIMENSIONAL TRAVEL BEHAVIORAL
THEORY, PROCEDURAL MODELS AND
SIMULATION-BASED APPLICATIONS

Chenfeng Xiong, Doctor of Philosophy, 2015

Dissertation directed by: Professor Lei Zhang
Department of Civil and Environmental Engineering

This dissertation proposes a theoretical framework to modeling multidimen-

sional travel behavior based on artificially intelligent agents, search theory, proce-

dural (dynamic) models, and bounded rationality. For decades, despite the number

of heuristic explanations for different results, the fact that “almost no mathematical

theory exists which explains the results of the simulations” remains as one of the

large drawbacks of agent-based computational process approach. This is partly the

side effect of its special feature that “no analytical functions are required”. Among

the rapidly growing literature devoted to the departure from rational behavior as-

sumptions, this dissertation makes effort to embed a sound theoretical foundation for

computational process approach and agent-based microsimulations for transporta-

tion system modeling and analyses. The theoretical contribution is three-fold: (1) It

theorizes multidimensional knowledge updating, search start/stopping criteria, and

search/decision heuristics. These components are formulated or empirically mod-

eled and integrated in a unified and coherent approach. (2) Procedural and dynamic



agent-based decision-making is modeled. Within the model, agents make decisions.

They also make decisions on how and when to make those decisions. (3) Replace

conventional user equilibrium with a dynamic behavioral user equilibrium (BUE).

Search start/stop criteria is defined in the way that the modeling process should

eventually lead to a steady state that is structurally different to user equilibrium

(UE) or dynamic user equilibrium (DUE). The theory is supported by empirical ob-

servations and the derived quantitative models are tested by agent-based simulation

on a demonstration network. The model in its current form incorporates short-term

behavioral dimensions: travel mode, departure time, pre-trip routing, and en-route

diversion. Based on research needs and data availability, other dimensions can be

added to the framework. The proposed model is successfully integrated with a dy-

namic traffic simulator (i.e. DTALite, a light-weight dynamic traffic assignment

and simulation engine) and then applied to a mid-size study area in White Flint,

Maryland. Results obtained from the integration corroborate the behavioral rich-

ness, computational efficiency, and convergence property of the proposed theoretical

framework. The model is then applied to a number of applications in transportation

planning, operations, and optimization, which highlights the capabilities of the pro-

posed theory in estimating rich behavioral dynamics and the potential of large-scale

implementation. Future research should experiment the integration with activity-

based models, land-use development, energy consumption estimators, etc. to fully

develop the potential of the agent-based model.
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Chapter 1

Introduction

1.1 background

The study of travel demand estimation, forecasting, and adjustment has long

been a vital topic in the field of transportation planning. Being an induced demand,

travel demand is often regarded as the product of other activities. Individuals com-

mute to work, drop-off family members, travel for leisure, fly to customers/suppliers,

visit relatives/friends, and so forth. While these activities are often differentiated

by locations and time, how these spatial/temporal details can be accounted for be-

comes an essential question for transportation planners and researchers. Moreover,

these activities encompass interrelated travel decisions including destination, mode,

departure time, and route. Therefore, the complexity arising from the mutual effects

of these multidimensional decisions upon each other and from their decision timing

needs to be represented.

Traditional travel demand modeling structure distinguishes four decision di-

mensions: deciding the frequency of travel, choosing a destination, selecting a travel

mode, and traveling via a route. These decision dimensions are assumed to follow a

predefined sequential manner of trip generation, trip distribution, mode choice, and

trip assignment, as known as the “Four-Step” method. Travel behavior research

gradually moved from aggregate demand models to more disaggregate individual-
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level and activity-based models [24, 19]. While the majority of interest focuses on

advancing single-dimensional (single-facet) choices and more advanced representa-

tion of activity pattern such as scheduling [58, 24], land use influence [121], and

location choices [17], the linkages among different travel behavioral dimensions are

largely ignored [110] and individuals’ embedded behavioral processes that influence

them to change certain dimension(s) of their travel behavior remain unexploited.

Besides the rigid sequential assumption, travel demand models also rely on

other simple and sometimes unrealistic behavioral assumptions in order to keep

themselves analytically tractable. Perfect rationality theory is one of the well-known

assumptions assuming that individuals are fully rational, have perfect information,

and always maximize utility [122, 132]. Being an approach with rich results, math-

ematical rigor, and interesting applications, perfect rationality and utility maxi-

mization allow structural insights and explain similarities and differences in travel

behavior. However, if using this theory to calculate how certain variations in the sit-

uation are predicted to affect travel behavior, “these calculations obviously do not

reflect or usefully model the adaptive process by which subjects have themselves

arrived at the decision rules they use” [86].

The opposite holds true for the computational process models, a group of

new methods that departs from rationality assumptions and implement learning,

adaptations, information acquisition, and decision making efficiently by taking the

advantages of computer power. These models are microsimulations relying on heuris-

tic arguments and imitation of human behavior. A large number of real-world or

benchmark problems can be analyzed by applying these models to simulate nu-
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merical results in different set-ups. Examples on the rapidly growing list include

FAMOS, ALBATROSS, MILATRAS, ADAPTS, etc. [108, 9, 8, 136]. On one hand,

these models introduce more complex learning, adaptation, and behavioral rules

instead of utility maximization. But on the other hand, multi-agent simulation

cannot prove but only suggest a certain feature of travel pattern and still assumes

sequential decision process. Thus it requires additional theories to conceptualize

more rigorous behavioral foundation and better explain behavior adjustments along

multiple choice dimensions (see [8, 110]).

1.2 Vision of Agent-Based Modeling

Agent-Based Modeling (AgBM, to differentiate from ABM which stands for

Activity-Based Models) is an innovative modeling technique that describes a com-

plex system as a collection of autonomous decision making entities dubbed as agents.

It focuses on naturalistic (or descriptive) representation of individual behavior and

seeks to capture emergent global (or system-wide) patterns resulting from the local

interactions and decisions of individual agents. This bottom-up modeling paradigm

differs significantly from the conventional equation-based modeling paradigm [102]

which focuses on describing relationships between observables. These are the mea-

surable characteristics of interest associated with either separate individuals (e.g.

vehicle speed in the context of transportation), or with the aggregate measures of

individuals as a whole (vehicle volume passing through one freeway link). In con-

trast, AgBM describes the individual agent behavior with naturalistic languages
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such as if-then rules, and relies on simulation to explore system dynamics. Because

of this difference in modeling paradigm, AgBM exhibits a significant advantage in

the domains where system dynamics are highly non-linear and when discrete states

are involved. For example, human decisions are usually driven by a series of if-

then reasoning processes, which can be naturally represented in AgBM but are hard

to describe through equations. This advantage of AgBM becomes even more pro-

nounced when a complex behavior such as hysteresis (the phenomenon that the

dynamics during the onset and the offset of certain patterns such as congestion

is asymmetric), spatial and temporal correlation, and quasi-Markovian processes

(where the dynamics of a system depends not only on its current state, but also

previous states, or memory) are involved.

More importantly, AgBM differs from the more conventional modeling ap-

proach through its ability to capture complex system behavior via local interactions

between agents. As Bonabeau pointed out [21], AgBM is a “mindset more than a

technology”, which models a system from the perspective of its constituent units.

For example, in transportation, current equation-based models have formulas, which

directly forecast congestion. AgBM on the other hand never addresses congestion

directly; rather it mimics the activity of individual agents, which then produce con-

gestion. For many disciplines, this bottom-up modeling paradigm offers a better

representation of the real world. Moreover, AgBM provides a way to explore the

system dynamics cascading from local interactions between agents (dubbed as emer-

gent patterns). These system dynamics are sometimes counter-intuitive and hard to

capture through direct modeling of the process. Because of these advantages, signif-
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icant research efforts have been dedicated to AgBM in various disciplines, including

ecology, social science, economics, geography, and management science. Tesfatsion

and Judd [129] listed 22 special issues on the topic of AgBM between 1992 and 2011

in various journals, including Journal of Economics and Statistics, Proceedings of

the National Academy of Sciences, and Physica A: Statistical Mechanics and its Ap-

plications. The breadth and depth of these research works demonstrated the great

potential of AgBM in modeling our complex real world. As indicated by Grimm

et al. [61], the AgBM approach may one day “change our whole notion of scien-

tific theory” by reducing various complex systems into sets of conceptually simple

mechanism that can produce different dynamics in different context.

1.3 Objectives

Transportation systems are some of the most complex systems that involve

millions of agents with different characteristics interacting in both temporal and

spatial dimensions. At the local level, drivers maneuver their vehicles to achieve

desirable speed, keep a comfortable gap with leading vehicles, and/or turn to follow

a route. However, their maneuver is limited by nearby vehicles and can, in turn,

influence the behavior of other vehicles. This local interaction between vehicles can

form traffic jams as described by Helbing and Treiber [65]. In reaction to traffic con-

gestion, a traveler can adjust route, departure time, mode, and/or destination to

better suit personal objectives (e.g. arriving at work in time, making grocery shop-

ping, etc.). Changes in individual travel decisions can then alter the global travel
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demand pattern in a transportation system, triggering further shifts in individual

decisions. In the long term, the emergent travel demand pattern can influence pric-

ing strategies of road operators, network investment decisions of the government,

and shift economic activities. The interactions between individual agents and among

agents at different levels (e.g. individuals, operators, and regulators) are extremely

complex. Therefore, AgBM may be the ideal tool to address many challenges in the

transportation system.

Although studies on behavior of various components of the complex trans-

portation system have a long history in each discipline (e.g. studies on driving

behavior dates back to 1970s when CORSIM was first developed; simulation studies

on travel behavior starts in 1980s and 1990s), application of AgBM in the field of

transportation is still exploratory. Systematic modeling of interactions among vari-

ous agents/components of transportation system and the complex system dynamics

still remain explorative in a sense that no model based on individual behavior has

matured enough to satisfactorily replicate and predict global patterns, and to be

applied to support traffic management and policy making. Given the advances of

agent-based modeling techniques in other disciplines and its strength in decoding

the complex system pattern through intuitive description of individual behavior,

further research efforts of applying AgBM in transportation is warranted. Rec-

ognizing that numerous autonomous agents operate in the transportation system

and make various driving and travel decisions on dissimilar time scales that are

influenced by different factors (see Table A.1.), I envision a coherent agent-based

model that simulates transportation system dynamics as an evolutionary process
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with an explicit clock for time tracking. Different agents rely on behavioral rule sets

that can be empirically estimated to make driving and travel decisions as decision-

situations emerge or are triggered by external stimuli (e.g. information, recurrent

or non-recurrent congestion, toll, new travel option). Each person is tracked in the

agent-based model, and his/her spatial knowledge and experiences accumulate over

time as he/she makes decisions as a driver, an individual traveler, or as part of a

household.

Table 1.1: Driving and Travel Decisions on Dissimilar Time Scales and Influential
Factors

Decision dimension Agents Time Scale Influenced by

Driving behavior driver, Real-time Real-time surrounding traffic
vehicle conditions

En-route driver, Real-time Real-time congestion, traveler
diversion vehicle information, policies
Pre-trip route Person Daily, short Network knowledge, experience,
choice term information, policies
Departure Person Daily, short Schedule flexibility, dynamic
time term tolls, traffic information
Mode choice household Mid-term Modal performance, personal

person attributes, inertia, # of vehicles
Destination household Mid-term (shopping) Spatial knowledge, information,
choice person Long-term (work) network LOS, personal attributes
Trip frequency household Mid- to long-term, Activity patterns, household

person adjustable daily personal attributes

1.4 Contributions

Urged by the aforementioned theoretical and modeling issues, this disserta-

tion describes an alternative framework to modeling multidimensional aspects of

travel behavior. Descriptive theory and models are built upon economics and travel
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behavior research on learning [58, 7], search theory (Stigler 1961), and bounded

rationality [125, 93]. The theory recognizes that there are inconveniences and risks

associated with each behavior adjustment dimension, which is conceptualized as a

search cost unique to each individual and each behavior dimension. On the other

hand, an individual, based on his/her spatial knowledge, personal travel experiences,

and beliefs, forms subjective expectations on potential gains (search gain) from be-

havioral adjustments along each behavioral dimension. It is the interplay of these

search gains and search costs along all feasible behavioral adjustment dimensions

that collectively determine when individuals start seeking behavior changes, how

they initially change behavior, how they switch behavior adjustment dimensions,

and when they are satisfied and stop changing behavior. The theorization of mul-

tidimensional knowledge updating, search model, and behavior process becomes a

unified and coherent approach that models the activity and travel decision-making

with a consistent behavioral foundation and increased rigor. The theory is sup-

ported by empirical observations and the derived quantitative models are tested by

agent-based simulation.

Building on this vision, agent-based approach is broadly tested for integrated

driver and traveler behavior modeling with applications for transportation systems

management, capital investment evaluation, transportation planning, and beyond.

The framework of agent-based models developed in this research focuses on deci-

sion dimensions including en-route diversions, pre-trip route choice, departure time

choice, and mode choice; these dimensions collectively provide the crucial linkages

between traditional traffic simulation, travel demand and the emerging agent-based
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models. Data required for building driver and traveler agents will be collected with

techniques proven in our previous research, including interactive laboratory exper-

iments, driving simulators and traditional/web-based/GPS-based surveys. Agent

behavior rules will be empirically estimated with rule-based artificial intelligence

methods and possibly utility-based methods when detailed agent behavior data is

not available. Findings from this research will (1) Improve our understanding of

driver and traveler behavior; (2) Enhance transportation systems management; and

(3) Provide new insights for capital investments. The innovative agent-based mod-

eling and simulation approach developed in this dissertation and its applications in

transportation planning and operations could also significantly improve the mobility

and reliability of the transportation system.

The major contribution made by this dissertation can be viewed three-fold:

• it develops a pertinent new theory of choices with experimental observations

and estimations to demonstrate agents with systematic deviations from the ra-

tionality paradigm. Modeling components including knowledge, limited mem-

ory, learning, and subjective beliefs are proposed and empirically estimated to

construct adaptive agents with limited capabilities to remember, learn, evolve,

and gain higher payoffs. All agent-based models are based on empirical obser-

vations collected via various different data collection efforts.

• Modeling procedural and multidimensional agent-based decision-making. In-

dividuals choose departure time, mode, and/or route for their travel. Individ-

uals also choose how and when to make those choices. A behaviorally sound
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modeling framework should focus on modeling the procedural decision-making

processes. This study seeks answers to questions that largely remain unan-

swered including but not limited to: (1) when do individuals start seeking

behavior changes? (2) How do they initially change behavior? (3) How do

they switch behavior adjustment dimensions? (4) When do they stop making

changes?

• The transformation from the static user equilibrium to a dynamic behavioral

equilibrium. Traditional solution concepts are based on an implicit assumption

that agents have complete information and are aware of the prevailing user

equilibrium. However, a more realistic behavioral assumption is that individ-

uals have to make inferences. These inferences can either be their subjectively

perceived distributions of travel time and travel cost or be the multidimen-

sional alternatives they subjectively identified. In other word, individuals

determine their choice set and the attributes of each alternative rather sub-

jectively. It is the process of making inferences that occupies each individual

in making a decision. This process is the very reason for not using static equi-

librium theories or random utility maximization models to analyze behavior.

This dissertation is organized as follows:

• Chapter 2 provides a comprehensive review of existing studies of agent-based

modeling approach with a focus on modeling multidimensional behavior and

choices.

• Chapter 3 conceptualizes the overall modeling framework of the agent-based

13



modeling approaches.

• Chapter 4 develops multidimensional behavioral model and its single-dimensional

agent-based model components including mode search and switching, depar-

ture time search and switching, route choice, and en-route diversion. Calibra-

tion methods for these agent-based behavioral rules are discussed.

• Chapter 5 presents a number of applications of agent-based models in trans-

portation planning and operations.

• Chapter 6 concludes the dissertation with discussion on future research work

to further enhance the agent-based models and on the ongoing research efforts

to support further model development.

One major challenge for developing agent-based models in transportation is

due to the fact that no general framework for designing, testing, and analyzing such

models has yet been established, despite numerous successes of AgBM in various

disciplines. To better benefit from earlier successful applications of AgBM, the next

section provides a survey of recent advances of AgBM in both transportation and

other disciplines. To better inform model development efforts, I specifically focus

on the strengths and weaknesses of modeling methods adopted in previous studies

and their implications to their further extension in the field of transportation.

14



Chapter 2

Literature Review

2.1 Agent-Based Modeling Approach

The idea of Agent-Based Modeling (AgBM) is often attributed to Von Neu-

mann whose work laid the foundation for the construction and modeling of artificial

life [55]. Although many seminal works have been done (e.g. [123]) before the ad-

vent of the personal computer, AgBM only became popular when the computational

power became widely available. For example, AgBM has attracted significant inter-

est in the communities of Computer Science and Artificial Intelligence for designing

new software packages since the 1980s. Its value in social science was not widely

realized until the 1990s. As more computing power became available and people’s

understanding of this innovative modeling tool advanced, AgBM has been applied in

a wider span of disciplines. Besides AgBM, other terminologies have also been used,

such as Individual-Based Models (IBM) in ecology or Agent-based Computational

Modeling in economics.

Despite this broad range of applications of AgBM, there has been no consensus

in literature on the precise definition of AgBM in transportation. While reviewing

related transportation studies in the field, we first define the three essential elements

of an agent-based model that are typically defined in AgBM studies in other fields.

Fig. 2.1 illustrates a typical framework of agent-based models.
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Figure 2.1: Structure of a typical agent-based model

Three elements are illustrated in Figure 2.1 explicitly:

Agents: agents (A0, A1, A2, A3, · · · ) should have the following features: (1)

agents should be able to sense the environment and change it through its action;

(2) agents should act independently without centralized control; (3) agents should

be able to pursue their own objectives by acting responsively to the environment

changes, proactively to explore opportunities, and/or collectively through commu-

nication and cooperation with other agents. Flexibility is also interpreted as adap-

tive, goal-directed, and social ability by Macal and North [87]. They also argue that

agents should be heterogeneous, which distinguishes agent-based modeling from

particle simulation. Similar discussions of agent characteristics can also be found in

many other papers such as Macy and Willer [89], O’Sullivan [99], and etc. Despite
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this diversity in terminology, at the center of this modeling paradigm is the philoso-

phy of modeling complex systems through a bottom-up process, where system-wide

patterns emerge through local interactions between agents.

Behavioral Rules: A number of agent behavior rules shall be defined in an

agent-based model. Firstly, adaptive agents have the capability to learn. Rather

than following a fixed stimulus-response pattern, they continuously adapt to changes

in their environment according to their expectations and objectives. Also, agents

evaluate the results of the actions and their impacts according to their own expecta-

tions. And then agents search to identify better routines to meet their expectations.

The decisions are usually made asynchronously under bounded rationale. Adaptive

agents can even change their objectives and routines.

Environment: provides the playground where agents behave and interact.

Agents’ learning cycle of acting, evaluating, and adapting is based on the results

of actions dependent on the response of the environment. Agents may exchange

information with the environment through sensing or with other agents through

communication, and then act to fulfill their objectives. On the macro level, the

environment may evolve into different patterns, driven by the interactions between

agents. Researchers may conduct a series of experiments to test different assump-

tions about agent behavior, interaction mechanism, and information flow, which help

researchers to capture the critical causal mechanism that drives system dynamics of

the environment.

Agent-based models also allow researchers to answer a series of if-what ques-

tions through these simulation-based experiments, most of which are too costly to
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be conducted in the field. Answers to these hypothetical questions would then sup-

port decision-makers to take initiatives that influence the system dynamics (e.g.

implement new policy in transportation, or introduce new regulation in business)

and to build an efficient, fair, orderly, and robust system.

After two decades of development, agent-based models have moved from an

early demonstration of ideas and qualitative analysis to a more robust quantita-

tive analysis of system dynamics. Many modeling techniques have been applied in

various disciplines. Given the variety of agent-based models, findings from these

early studies could greatly inform and inspire current research efforts in the field of

transportation. In the following sub-sections, applications of agent-based modeling

in several disciplines will be surveyed.

2.2 Agent-Based Models in Transportation

A number of transportation related agent-based applications already exist in

the literature. Most of them are still under development or at the experimental

stages, but they clearly demonstrate that implementing these methods has a sig-

nificant potential to improve the performance of traffic and transportation systems.

Kikuchi et al. [76], Bernhardt [15], and Chen and Cheng [31] are examples of pa-

pers that review literature and examine how agent-based modeling is applied to

transportation modeling. These reviews demonstrate that the most common appli-

cations of AgBM in transportation are traffic or pedestrian simulation and demand

modeling efforts.
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2.2.1 Agent-Based Traffic Flow Simulation

There are many problems, such as congestion and incident management, signal

control optimization, public transport priority, etc. which, due to the high level of

complexity, cannot be solved by analytical methods. As a result, several microscopic

traffic simulation tools have been developed recently. They allow transport operators

to evaluate various alternatives in order to determine the optimum solution for any

traffic scenario. These tools are essentially based on microscopic driving behaviors

such as car following and lane changing which have a significant impact on the

accuracy of the models. Although a large number of models have been developed

for driving behaviors and reported in the literature, most of them are not completely

described. As a good examples in this field, can be mentioned to Gipps [57] and

Fritzsche [48]. To face the difficulties of modeling congested conditions, in the

last decade, agent-based simulation has received increasing attention in traffic flow

simulation. Computational performance, the accuracy of models in representing

the traffic flow, and the integration with advanced traffic management and traffic

information systems are the main challenges in these agent-based models.

Hidas develops a lane-change model for a multi-agent simulation system called

ARTEMiS (Analysis of Road Traffic and Evaluation by Micro-Simulation, previ-

ously named SITRAS) which models driver-vehicle objects as autonomous agents

[67, 68]. These papers present the details of the lane changing and merging models

developed using agent-based concepts. For the modeling, lane change maneuvers

are classified into free, forced and cooperative. These classifications are essential in
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simulating the congested traffic conditions more accurately. The lane change model

was implemented in ARTEMiS and tested on several simple hypothetical road net-

work scenarios. A number of new concepts like Lane-Change Plan are introduced

in this approach to model the maneuvers. Lane-Change Plan is created when a

vehicle determined that a lane change is essential, but it is not immediately feasible.

Because of the close relationships between the lane changing and car following mod-

els, it should be mentioned that Hidas describes car-following model implemented in

ARTEMiS [66]. This model is based on a desired spacing criterion, which is assumed

to be a linear function of the speed.

Panwai and Dia [101] study a car-following model that is based on a reactive

agent structure and a neural network approach. Reactive agents, unlike the cognitive

agents, are based on a simple approach for mapping perceptions to actions. In this

study, neural network is employed for this mapping. With application of different

Artificial Neural Network (ANN) techniques, four different models are proposed in

this study. After model development, all of them are interfaced to AIMSUN and

validated at the microscopic and macroscopic levels. Furthermore, the performance

of these models is compared to each other and to a number of existing car-following

models.

2.2.2 Agent-Based Travel Demand Models

Traditionally, researchers have been using the four-step travel demand mod-

els for travel demand forecasting. As more and more research efforts move from
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conventional trip-based models to activity-based models, application of AgBM in

travel demand modeling attracts increasing research interest. Most existing agent-

based travel demand models focus on single-dimensional (or single-faceted) travel

behavior. Some researchers focused on the departure time and route choice for a

specific trip (most of the time the commute trip), while others investigated the more

comprehensive activity patterns and the travel demands these activities generate.

System STARCHILD models the activity and travel scheduling decision as a

classification and choice process [114, 113], which is dependent on the basic concepts

of utility maximization within a constrained environment, and results in observed

travel/activity behavior. The key features are the detailed representation of con-

straints in the identification of alternatives, and the use of a classification method

to generate the choice set. However, the notation that all feasible activity schedules

are generated in order to select this maximum utility alternative is unrealistic.

SCHEDULER is one of the first computational process models (CPM) of

activity-travel patterns [50, 58]. A CPM focuses on the process of making a decision,

while the econometric approach such as utility maximization focuses on what fac-

tors affect the rational choice but not how the utility is maximized. SCHEDULER

works as follows. Activities are available in the Long-Term Calendar (stored in long-

term memory). Each activity has a priority and duration. A subset is retrieved for

scheduling on the basis of priority and duration. Information about spatio-temporal

constraints (feasible locations, open hours) is retrieved from a memory representa-

tion of the environment called the Cognitive Map (also stored in long-term memory).

The SCHEDULER then makes choice of location and departure times. The result-
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ing activity schedule is stored in the Short-Term Calendar (short-term memory)

for later execution. Drawing on empirical observations indicating that people often

use a nearest-neighbor heuristic in choosing sequences of locations, location choices

are modeled accordingly. SMASH is developed following the framework of SCHED-

ULER and include more factors that are known to affect activity scheduling [45].

However, the model still assumes a complete knowledge of all possible alternatives in

each scheduling step (inclusion, deletion, or substitution of an activity). GISICAS

is another model in the SCHEDULER framework with search heuristics combined

with GIS to generate feasible schedules [84].

AMOS (Activity-Mobility Simulator) is a unique system in that it predicts the

switch response to a policy change from a “baseline” activity schedule, which is an

input to the model [77, 79]. A neural network is used to predict an output signal

for each alternative, which is a scalar function of 36 decision-maker characteristics

under the policy change. A multinomial Logit model converts the output signals

to probabilities by using the output signal as the only explanatory variable in the

utility function. The parameters of the basic response model are estimated from

data supplied by a policy specific stated preference survey. The switch decision is

made with a satisficing rule, rather than utility maximization.

PCATS (Prism-Constrained Activity-Travel Simulator) is a micro-simulator

of individuals’ activity engagement and travel within Hagerstrand’s prism [80]. The

probability of choosing a daily activity-travel pattern is decomposed into a series of

conditional probabilities, each associated with an activity episode or trip (product of

conditional probabilities). These conditional probabilities are derived from utility
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maximization models and thus unbounded rationality is assumed. FAMOS is an

application of PCATS in Florida [107].

Zhang and Levinson propose an agent-based travel demand model [154]. In

this model, three types of agents interact with one another: node, arc, and traveler.

The goal of each traveler agent is to find and reach the activity with the lowest

travel costs. Travelers move between nodes through the connecting arcs and decide

to either accept or reject the opportunities at the nodes. During this search, they

learn arc costs. They add this information to the exchangeable knowledge base as

well. Similarly, node and arc agents also have specific properties and learning abil-

ities. Along with these properties, some other interaction rules (including learning

rules) complete the model. This framework enables the model to perform trip dis-

tribution and route assignment. A simple ten by ten grid network and the Chicago

sketch network are the numerical examples and are used for calibration. After the

calibration, resulted trip length distribution is close to the observed one and most

traffic is assigned to the shortest paths.

CEMDAP (Comprehensive Econometric Micro-simulator for Daily Activity-

travel Patterns) is a microsimulation model based on utility maximization economet-

ric models at various levels of decision making (pattern, tour, and stop). It simulates

both workers and non-workers along a continuous time frame [18]. ALBATROSS

[8] is a fully operational CPM of activity scheduling. It is designed as a rule-based

model in which situational, household, institutional and space-time constraints as

well as choice heuristics of individuals are explicitly represented. Central to the ap-

proach is the use of the decision tree for representing choice heuristics and deriving
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these heuristics from activity travel data. Note that although the theoretical frame-

work describes how a decision heuristics might evolve over time, the model does not

contain any dynamic element: the decision tree is generated from cross-sectional

data. AURORA is an agent-based microsimulation system that uses scheduling

heuristics and has elaborated learning models [4]. Congestion is the mechanism by

which agents interact. Perceived utilities of scheduling options are dependent of the

state of the agent, and implementing a schedule changes this state. Particularly,

an agent keeps a record of the history of each activity in his activity agenda to de-

termine the urgency of each optional activity at the time of scheduling. Long-term

adaptions are based on learning processes. Each time after having implemented

a schedule, an agent updates his knowledge regarding choice-sets, default settings

of activities and expected values of attributes of the transportation and land-use

system. Choice-set updating is relevant for choices where the choice-set is a subset

of the universal choice-set and does not necessarily include the optimal choice for

each possible schedule. This generally holds for location choice and route choice.

Location choice-sets are dynamic and changes follow from processes of knowledge

decay, reinforcement and exploration.

2.2.3 Integrated Agent-Based Models

Microscopic traffic simulation models exhibit strong advantages in capturing

detailed traffic dynamics and have been approved in practice as a valuable tool for

evaluating corridor capacity expansion and traffic operation improvements. Their
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applications have recently been extended to address a broader range of transportation-

related issues, including congestion management, multimodal corridor improvements,

evacuation planning, land use and economic development. However, a compre-

hensive analysis of many of these issues requires models that can consider various

demand responses to these traffic management strategies such as peak spreading,

modal shifts, and traffic diversions at the corridor and regional levels. These travel

demand dynamics can be readily addressed by agent-based travel demand models.

On the other hand, agents in demand models require traffic conditions and travel

experience as inputs for behavioral adjustments. Therefore, an integration of agent-

based travel demand models with microscopic traffic simulation models can provide

researchers with a powerful tool to simulate the complex transportation system and

provide answers to many interesting policy questions. Some research efforts have

been dedicated to this field.

Dia [40] presents an agent-based approach to model dynamic driver behavior

under the influence of real-time traffic information. For each form of the provided

information to drivers (e.g. quantitative delay, predictive and prescriptive delay),

a number of Multinomial Logit models are developed to determine the factors that

affect the propensity of the drivers to adjust their travel patterns and to determine

the values of these factors. This evaluation is based on a field behavioral survey

in a congested real-world commuting corridor. Based on these driver behavioral

models and to evaluate the impacts of providing drivers with travel information,

an agent-based framework for a microscopic traffic simulation tool is presented in

this study, which applies the Belief, Desire, and Intention (BDI) agent architecture.
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The feasibility of this approach is demonstrated through a case study on the same

corridor where the travel behavior survey was conducted.

Another study which applies the BDI concept is Rossetti et al. [117]. They

propose an extension to an existing microscopic simulation model called Dynamic

Route Assignment Combining user Learning and micro-simulation (DRACULA). In

this extension, the traffic domain is viewed as a multi-agent world and the behavior

of agents is represented in terms of mental attitudes, which allow them to make

decisions about route choice and departure time. The main part of this paper is

concerned with the reasoning mechanism of drivers modeled by means of BDI archi-

tecture. In addition, as the main goal of this work, a framework is presented which

model and implement commuter scenarios using BDI drivers. This framework was

designed in a way that influence of exogenous information on the drivers’ decision

making can also be assessed.

TRANSIMS has been developed by researchers at the Los Alamos National

Laboratory. It is based on four primary modules: population synthesizer, activity

generator, route planner, and traffic micro-simulator. The activity is generated by

matching household demographic data, and therefore not as sensitive to policies as

other more developed activity-based models. The multi-modal route choice is based

on shortest paths assuming global and perfect knowledge of the network, and thus

assumes unbounded rationality.

TRANSIMS was designed to be modular and improved by further updates.

Later versions of TRANSIMS included more advanced agent based activity models

such as SACSIM. Hao et al. focus on integration of an activity-based travel demand
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model, TASHA [64], with a dynamic agent-based traffic simulation model, MAT-

Sim. This research has two main objectives. The first is to develop an agent-based

framework that includes both travel demand modeling and traffic assignment by

integrating the above mentioned software. The second objective is to employ this

newly integrated model in vehicle emission modeling. In this study, an iterative

process is applied for the integration and a series of data conversions is proposed to

make this process possible. The modeling framework is implemented to the greater

Toronto area (GTA).

Flötteröd et al. [46] is another study which links the demand models to the

agent-based traffic simulation. This study concentrates on the calibration of de-

mand models in the context of dynamic traffic assignment. Calibration refers to

the estimation of the models’ parameters (such as the coefficients of a utility func-

tion) from time-dependent traffic counts. These parameters represent the simulated

travel behavior. The calibration simultaneously adjusts the route choice, depar-

ture time choice, and mode choice (car versus no car) of individual travelers by

employing a Bayesian framework. They assume that the supply simulator is to be

modeled without error. Therefore, calibration of supply models is not included in

this research.

2.2.4 Modeling Multimodal Traveling Agents

Current agent-based models are often limited to a single transportation mode

only. As many of them are used to support analysis of the complex transportation
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system comprising multiple modes, transit must be considered. Transit poses a

major challenge because mode choice decisions are usually based on comparison

between highway travel time and transit travel time for each traveler. The network

models must therefore be able to route travelers through a transit network (which,

with buses, also operates on the highway network). The network models must be

capable of estimating time to access transit, time to wait for transit, the amount

of time spent in the transit vehicle and the number of transfers required between

transit lines. Several efforts are now underway. In demand modeling, tools like

ALBATROSS and CEMDAP have some specific components for mode choice and

the transit demand between OD pairs is one the main outputs of them.

On the supply side, models must be capable of route assignment, estimating

time to access transit, time to wait for transit, the amount of time spent in the

transit vehicle and the number of transfers required between transit routes. Wahba

and Shalaby [135] develop MILATRAS, (Microsimulation Learning-Based Approach

for Transit Assignment) which is an agent-based transit assignment module for

PARAMICS (parallel microscopic simulation). PARAMICS is a traffic microscopic

simulator. This module is capable of tracing every agent through the transit net-

work, supporting transfers between routes, and dealing with boarding and alighting

at the passenger level. Moreover, it models behavioral responses of transit passen-

gers under information provision. Cortés et al. [37] propose a general framework to

evaluate transit systems with the capabilities of commercial microsimulators. The

focus of the study is more on the flexible transit and uses a bus rapid transit system

and a large-scale real-time routed transit as examples of framework implementa-

28



tions. Framework can be applied to any agent-based microsimulator but, in this

paper, it coded in PARAMICS. Rieser et al. [116] is another study in this area that

presents the extensions implemented into the agent-based simulation framework of

MATSim to support not only car legs, but also other modes of transport.

There are some researches in the literature which utilize the agent-based mod-

eling to study other aspects of transit systems. For instance, Balbo and Pinson show

how agent-based methodology is applied for the development of a Decision Support

System (DSS) for management of urban public transportation systems [10]. Li et

al. [85] propose an artificial urban transit system (AUTS) based on agent-based

modeling. AUTS can dynamically model the passenger’s behavior and route choice.

Forecasting transit flow, setting parameters for urban transit networks, evaluating

alternative modifications to the transit systems, and predicting the impact of spe-

cial/emergency events are some of the most important applications of this artificial

system.

Another area of study is integrating demand and supply models for transit,

which poses a major challenge. Demand models estimate transit ridership by com-

paring highway travel time to transit travel time for each passenger and commonly

work with passengers as the agent. On the other hand, the network models route

travelers through a transit network (which, with buses, also operates on the highway

network) and usually consider vehicles as the main agents. Even with the existing

challenges, several researches are carrying out merging the transit demand and sup-

ply models. TRANSIMS is one the commercial packages which employs agent-based

approach and model transit on both sides. In TRANSIMS, the transit network is
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defined by transit routes, stops, fares, driver plans, and schedules. C10 projects in

Strategic Highway Research Program 2 (SHRP2) are other researches on integrating

demand and supply models for transit in an agent-based framework.

2.3 Multidimensional Behavioral Studies in Transportation

2.3.1 Agent Behavior in Different Dimensions

2.3.1.1 Mode choice

also attracts lots of research interests. Although mode choice is obviously an

important dimension in travel decision-making process, it is usually treated as given

in many practices and is not part of the individual travel demand models [105].

One reason for this treatment is that the mode decision is constrained by factors

such as vehicle ownership, availability of public transit, and transit fare, all of which

are relatively stable and unlikely to change in a short time period. However, as

concepts such as Transit Oriented Development (TOD) and multimodal corridor

management attract increasing interests from both researchers and policy makers,

there is increasing need to internalize mode decisions and build a more comprehen-

sive model to support policy analysis. In addition, as congestion in general threatens

most metropolitan areas, peak-hour congestion is still the worst when people com-

mute [115]. Policies and strategies, such as congestion pricing, parking pricing,

managed lanes, enhanced transit services, among others, are commonly employed

to nudge travelers to gradually switch from auto to other non-auto modes [41, 49].
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Mode choice behavior has been traditionally modeled by the econometric the-

ory of random utility maximization. It assumes that an individual’s travel mode

choice is determined by the indirect utilities of each alternative mode and the indi-

vidual can choose the one with the highest utility level. For example, Koppelman

used a multinomial logit model to predict mode share changes in response to a

range of transit service improvements [82]. Later on, a great deal of advances has

been done following this line of research. Mixed logit models have been applied to

model mode choice and incorporate both observed and unobserved heterogeneities

[95]. The assumption of independence from irrelevant alternatives (IIA) has been

addressed by a series of studies on nested logit and generalized nested logit models

[133, 138].

One major deficiency of most existing studies is that they model static choice

and rely on cross-sectional datasets [78, 109, 105]. Increasing number of research on

dynamic models have been available (e.g. [137, 107, 34]). However, far less atten-

tion has been given to modeling the dynamics of mode choice. This is partly due to

longitudinal data collection difficulties [112]. Due to the challenges and budget con-

straints, a good and timely longitudinal travel behavior data is often lacking [109].

Meanwhile, a theoretically sound modeling framework is yet to be widely accepted.

Among the limited research, Goulias proposed a generalized mixed Markov latent

class model for activity pattern switching using the Puget Sound Transportation

Panel (PSTP) data from 1989 to 1993 [60]. Srinivasan and Bhargavi investigated

long-range commute mode choice dynamics (including exogenous variable change,

state-dependence, user sensitivity, and unobserved factors) in India using a five-year
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longitudinal dataset [128]. Their model captured persistent inertia which would

hinder the immediate effects, as predicted by traditional cross-sectional models, of

improved LOS in transit services. Research on short-term within-day [112] and

day-to-day [103] variability was also seen in literature.

As an alternative, process models attract increasing research attention. Ar-

entze and Timmermans developed an activity-based process model (ABATROSS)

wherein decision trees were employed to model the mode choice process [8]. Ben-

Akiva [12] proposed a planning and action choice model where the intrinsic plan of

changing modes was modeled as a process. A preliminary application of this model

in mode choice was a binary stated choice between auto and transit [2]. This paper

seeks to further uncover the factors that contribute to the dynamics of mode choice

behavior. In doing so, we first conceptualize a modeling framework which is formed

by a cyclic two-stage searching and switching process. The searching process serves

as a choice set generation step. At each time period, each traveler searches for one

alternative mode based on her/his habitual mode and previous travel experience.

Then the traveler makes a switching decision between the habitual mode and the

alternative one.

2.3.1.2 Departure time choice and route choice

Departure time and route choice are traditionally connected with traffic as-

signment models with an explicit and detailed representation of the transportation

network that is subject to congestion. Therefore travelers’ choice adjustment from
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day to day has been investigated since early days (see, e.g., [69, 28, 149, 36]), albeit

generally to answer questions about the existence and stability of traffic equilibrium,

and not in an attempt to derive more behaviorally realistic models. Route and de-

parture time choice have largely followed the utility-maximization paradigm in these

so-called day-to-day “dis-equilibrium” models (and also in equilibrium traffic assign-

ment models), with a few exceptions including the “indifference band” theory [93]

and the SILK-BUE model [151].

The learning model in route choice is first introduced to the transportation

community by Horowitz in a two-link stochastic equilibrium analysis [69], with the

assumption that the perceived travel time is based as the weighted average of travel

times in the past. Three learning scenarios are developed based on which past travel

times are available: 1) actual travel times on both routes; 2) perceived travel times

(actual time plus a random disturbance) on both routes; 3) perceived travel time on

the chosen routes only. It shows that the details of the route choice decision-making

process determine the convergence of the link volumes to equilibrium. When link

volumes converge to non-equilibrium values, the levels at which the volumes stabilize

typically depend on the initial link volumes or perceptions of travel costs. Later on

when the day-to-day dynamic models are applied to a general network for theoretical

analysis (see, e.g., [28, 149]), the third scenario is rarely used, largely because it is

difficult to derive meaningful theoretical results with such an assumption. The first

two scenarios however imply global knowledge in a general network, which in general

is a strong assumption.

Simulation-based dynamic traffic assignment models find it straightforward
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to apply the learning processes similar to those in [69] to simulated individuals.

Examples are DynaMIT [13] and Emmerink et al. [42]. Both assume that a traveler

updates travel times on experienced routes only. Ben-Akiva et al. assumes utility

maximization [13], and Emmerink et al. utilizes the “indifference band” theory [42],

which states that a traveler does not necessarily seek the optimum, and would stay on

the current route if the change in travel time from consecutive days is not larger than

a threshold. However, this “bounded rationality” is incomplete, since it also assumes

that if the threshold is exceeded, a shortest path is sought, which again implies

global network knowledge and unlimited computational capacity. DYNASMART

uses Bayesian updating to update travel time perceptions for joint departure time

and route choice, and also assume utility maximization [72]. DRACULA has a

similar link travel time updating mechanism and also assumes shortest path choice

[117]. Ettema et al. use reinforcement learning to update perceptions and assume

utility maximization in a day-to-day departure time choice simulation [44].

Nakayama et al. simulates a learning process in route choice by assuming

drivers are choosing from a set of simple decision rules based on experience [96].

The four rules are: no switching, random switching, experience based on a limited

number of past days, and experience based on all past experience. A reinforcement

learning model is used for the rule selection. The authors conclude that drivers

do not become homogeneous and rational; their attitudes toward and perceptions

of each of the two routes in the tested network become bipolar. The authors then

question the foundation of equilibrium analysis.

Ozbay et al. use stochastic learning automata (SLA) to analyze drivers’ day-
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to-day route choice behavior [100]. This can be viewed as a variant of reinforcement

learning. An internet based route choice simulator is developed to calibrate the

model. The calibrated SLA model is applied to a simple transportation network to

test if global user equilibrium, instantaneous equilibrium, and driver learning have

occurred over a period of time. It is shown that the sample network converges to

equilibrium, both in terms of global user and instantaneous equilibrium.

Arentze and Timmermans [5] and the subsequent Han et al. [63] deal with

spatial knowledge learning explicitly. When making a trip, individuals make obser-

vations that may increase their knowledge about their environment. Arentze and

Timmermans develop a measure of expected information gain based on a Bayesian

model of mental maps and belief updating [5]. They argue that expected information

gain is an element of the utility function of trip choice alternatives under conditions

of limited information and learning. The simulations conducted illustrate that ex-

pected information gain tends to favor longer trips and variety seeking in terms

of both route and destination choice. They argue, therefore, that individuals may

perceive a positive utility of travel through environments with which they are less

familiar.

Han et al. address one type of dynamics: the formation and adaptation of loca-

tion choice sets under influence of dynamic relationships within social networks [63].

It extends the dynamic model developed in earlier work, which simulates habitual

behavior versus exploitation and exploration as a function of discrepancies between

dynamic, context-dependent aspiration levels and expected outcomes. Principles of

social comparison and knowledge transfer are used in modeling the impact of so-
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cial networks through information exchange, adaptations of spatial choice sets and

formation of common aspiration levels. They demonstrate model properties using

numerical simulation with a case study of shopping activities.

SILK-BUE is a simulation-based traffic assignment program developed by

Zhang [151] where route choice is modeled without the perfect rationality assump-

tion (i.e. complete information and utility maximization). Bayesian learning is used

to update perceptions of route attributes. Expected search gain is compared to

search cost to determine whether a search will be performed at all. A search process

is explicitly modeled for the generation of choice set. Search rules are represented

by a decision tree generated from survey data, which determine whether an alterna-

tive will be considered. If an alternative is indeed going to be considered, another

decision tree is applied to decide whether the traveler will switch to the new alter-

native. The traffic equilibrium under the adopted positive assumptions is defined as

the Behavioral User Equilibrium at which the subjective search gain is lower than

the perceived search cost for all users. Results suggest that normative assumptions,

such as perfect information and unlimited human abilities to maximize utility, can

produce significant prediction biases.

2.3.1.3 En-route diversion

en-route route choice under information provision has been traditionally mod-

eled by the econometric theory of random utility maximization [11]. Mahmassani

and Liu [91] adopted a multinomial probit framework to model the commuters’ joint
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pre-trip departure time and en-route diversion behavior in response to real-time in-

formation, based on data from a laboratory interactive driving simulator. The study

suggests that commuters switch routes if the expected travel time savings exceed an

indifference band which varies with the remaining trip time to destination. Abdel-

Aty et al. [1] developed logit models to capture the effect of real-time information

on en-route diversion, using stated preference data. Khattack et al. [75] estimated a

bivariate ordinal probit model of drivers’ diversion and departure time choice when

traffic information is available.

Limitations exist in the en-route diversion models. First of all, they are often

not well-calibrated due to data limitation and other issues. The inherent bias of the

stated preference data and driving simulator data has long been argued as a major

deficiency of the models [22]. Koutsopoulos et al. [83] further assert that driving

simulators, for en-route diversion analysis, can be more useful if revealed preference

data collected from “actual en-route route choice behavior” and an appropriate

designed calibration become available.

Moreover, unlike the decisions of departure time and pre-trip route choice,

en-route diversion is a decision triggered by impulsion. When making en-route

diversion decisions, a driver usually has very limited reaction time to obtain the

real-time traffic information from the sources, process the information, compare the

original route and the diverting route, and make a decision. Therefore, some re-

searchers [104] emphasized the need for rule-based computational process models,

since it has long been claimed that utility-maximizing models do not always reflect

the true behavioral mechanisms underlying travel decisions (people may reason more
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in terms of “if-then” structures than in terms of utility maximizing decisions). AL-

BATROSS applies CHAID decision trees to model the activity scheduling behavior

[44]. Janssens et al. [71] developed a Bayesian network augmented tree (BNT) ap-

proach to look at multi-facet decision making processes. This approach took advan-

tage of both the Bayesian network and decision tree/rule induction method. Zhang

[152] developed a positive theoretical framework (referred to as the SILK theory)

for travel decision-making analysis, which was subsequently applied to model route

choices on a real-world transportation network in Twin Cities, Minnesota. Xiong

and Zhang [144] further explored the SILK framework and proposed a descriptive

departure time searching and switching model. This model has been successfully

integrated with a large-scale microscopic traffic simulation [153]. In modeling en-

route diversion behavior, few studies have been reviewed in this line of research. Paz

and Peeta [104] employed aggregate behavioral if-then rules and calibrated weight

vectors for these diversion rules, so as to match the estimated and actually observed

network states.

Other than rules that give only a simple classification, models that give prob-

ability estimates are favored in the field of practical data mining and artificial intel-

ligence for their flexibility in applications when combining decisions and sensitivity

analysis [14]. Naive Bayes model is one of the most efficient and effective algorithms

that predict probability estimates. Although its underlying conditional indepen-

dence assumption is rarely true in real-world applications, the correlation among

variables does not affect the performance optimality of naive Bayes model, as quan-

titatively proved by Zhang [150]. Except for some research in mode choice modeling
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[20], few travel behavior studies have explored this promising approach.

Existing research also tried to consider en-route diversion behavior and eval-

uate information provision in operations applications. Xu et al. developed a probit

model by employing real-world loop detector data and vehicle plate reader data to

analyze the impact of dynamic message signs (DMS) [147]. Their study emphasized

the significant behavioral difference between field data and stated preference data.

Quantitative evaluation of the impact on network travel conditions is lacking since

the network model of the study area is yet to be developed. Bustillos et al. em-

bedded en-route diversion in a real-world regional network to evaluate the impact

of incident scenarios and en-route behavior changes [27]. The en-route decision was

modeled as a delay tolerance threshold. Tsubota et al. explored the impact of en-

route behavior changes under information provision by employing the Macroscopic

Fundamental Diagram (MFD) as a measurement [131]. Assumed network and mi-

croscopic simulation was employed to simulate difference diversion ratios. These

studies all seek linkages between en-route diversion and operations applications. A

complete framework to integrate agents’ en-route diversion model, behavior calibra-

tion, network and simulation, and performance measures is yet to be developed and

in imperative needs.

2.3.2 Multidimensional Agent Behavior

The majority of travel behavior research focuses on single-dimensional (i.e.

single-faceted) choice of travel separately. However, the correlation between behav-
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ioral dimensions does exist. For obvious reasons, behavioral changes in one dimen-

sion (e.g. changes in travel mode) almost always cause changes in other dimensions

(e.g. departure time and/or route).

Very few studies consider more dimensions of travel behavior and responses.

Pendyala et al. developed an activity-based microsimulation (AMOS) which pre-

dicted multidimensional behavior using the Neural Network approach [106]. Ya-

mamoto et al. modeled departure time choice and route choice under congestion

pricing by conducting a stated preference survey (SP) in the Osaka-Kobe metropoli-

tan area [148]. These choice dimensions were analyzed by jointly considering the

prior and posterior activities. The activity durations were incorporated as endoge-

nous variables that influenced choices of departure time and/or route. Wen et al.

investigated mode and departure time choices under time-of-day pricing of tran-

sit services using similar SP survey conducted for Taipei Metro users and using a

random utility maximization approach [139].

Multi-faceted behavior adjustment rules were modeled by Arentze, Hofman,

and Timmermans as response strategies to possible policy scenarios [6]. In the

paper, the agent behavior rules were represented by several discrete choice models

describing the multi-dimensional (multi-faceted) reactions of individuals intended

for reducing the negative impact of the policy. Results indicate that agents tend

to change route and departure time more frequently if their commuting trips are

influenced by the policy. For non-work activities, changing route and switching to

bike are the most dominant responses. This multi-faceted policy response model is

linked to ALBATROSS model to predict different policy/planning sensitivities.
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Vrtic et al. have developed joint choice analysis to understand political ac-

ceptability of mobility pricing, route choice, mode choice, and departure time choice

behavior [134]. The study is supported by data collected from a large-scale self-

administered stated preference (SP) survey conducted in Switzerland. The agent

behavior is predicted by a series of multinomial logit models of the joint choices (e.g.

joint departure time and mode, route and departure time, etc.). Multidimensional

preferences can thus be predicted for Swiss travelers. The most significant behavior

response to increased congestion level is that Swiss travelers prefer to depart ear-

lier to make sure that they arrive on time. The study also unveils Swiss travelers’

nonlinear valuing of cost and time characteristics.

More recently, Sokolov, Auld, and Hope demonstrated a flexible framework for

developing integrated modeling systems using an agent-based approach named PO-

LARIS (Planning and Operations Language for Agent-based Regional Integrated

Simulation) [127]. The structure is designed in a fairly flexible way that travel-

ers’ short-term en-route behavior (lane-changing, car-following, etc.), mid-term trip

behavior (route choice, departure time, etc.), and long-term life-style behavior (lo-

cation choice, mode/destination choice) are all integrated within the agent-based

design. It provides an architecture overview of how an AgBM framework should be

constructed. Different specific behavior rules need to be filled into the framework.

To summarize the existing literature on multidimensional behavior modeling,

the authors believe that a universally well-accepted behavioral theory is still lacking.

Following a legacy model of Four-Step planning framework, one has to make strong

assumptions about the sequential choice behavior (making a trip – destination choice
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– mode choice – route choice) and accept the limited time-of-day representation. Re-

searchers make effort in relaxing this rigid framework. The later-on developed joint

choice models assume rational agent behavior and simultaneously determine agent

behavior. Neural network models (AMOS), decision-tree models (ALBATROSS),

and the fully agent-based framework (e.g. [127]) are the most flexible behavior

representations. These microsimulation models employed complex heuristic for the

output, but require additional theories to explain behavior adjustments along mul-

tiple choice dimensions.

2.4 Discussion

This section reviews traditional travel demand travel behavior models and

agent-based modeling systems in Transportation. The legacy models are classical

and have been widely applied in numerous applications. Being a practical approach,

the traditional models often rely on rigid assumptions, including aggregate demand

(e.g. direct demand models and/or aggregate modal split), fixed top-down decision-

making process, and perfect rationality assumption.

Thinking out-of-the-box, AgBM constructs a completely different bottom-up

approach to model travel demand. The breadth and depth of AgBM applications

have clearly demonstrated the great potentials. This innovative approach, which

relies on some local interaction rules between agents to explain complex system

dynamics, is both powerful and adaptive. Many models, such as the segregation

model by Schelling [123], exhibit a surprising beauty of simplicity and elegance. Yet
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their implication for various disciplines is profound. As Epstein and Axtell argued

[43], AgBM may one day fundamentally change our view towards scientific theories.

People would ask questions like “Can you grow it?” instead of “Can you explain

it”.

Although many research questions remain to be answered to fulfill such a

vision, we do see rapid development of AgBM during last few decades. It has

moved from early proof-of-idea and qualitative analysis to more rigorous quantita-

tive analysis. The applications of AgBM in various disciplines are three-folds: 1).

Improve our empirical understanding of complex systems. By capturing the salient

characteristics of a complex system, it helps researchers to understand how system-

wide regularities emerge and persist. 2). Improve our normative understanding of

complex systems. The rapid development of AgBM has greatly benefited from ad-

vances in computing technology during the past few decades. Agent-based models

allow researchers to test different scenarios within limited time and monetary bud-

get. For example, many cities want to develop and evaluate their evacuation plan.

Researchers know some local failure of transportation, communication, or electric

network would cascade into system failure, which cannot be captured through equa-

tions. AgBM simulation provides a way to answer various “what-if” questions and

provide insights to some unexpected events. 3). Develop heuristics to optimize our

system. AgBM allows researchers to improve the system based on understandings

built through experiments.

Notable efforts have been dedicated to applying AgBM approach in trans-

portation. Transportation systems consist of numerous intelligent agents such as
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travelers, drivers, and vehicles that interact with one another on various time scales

in urban and regional systems, producing important and often complex system-level

patterns, such as travel demand and congestion. Despite the successful applications

of AgBM listed in this report, significant research work is warranted before AgBM’s

potential in transportation is fully explored.

One long-lasting challenge is the lack of a widely-accepted general framework

for designing, testing, and analyzing agent-based models. This is true for both

transportation studies and other disciplines. There is no universal definition for

what constitute salient agent behaviors. As we move upward through different

hierarchies, we start to apply agent behaviors that have wider impacts. In this way,

we reduced the number of parameters for each hierarchy. The first objective of this

research is to propose a theoretical framework for agent-based driver and traveler

behavioral modeling, which could benefit from a wide spectrum of travel/activity

data and push forward the current state-of-the-art and state-of-the-practice in traffic

operations, management, and transportation planning.

Another challenge is modeling adaptive agent behavior along different behav-

ioral dimensions. A substantial difference between a legacy planning model and

an AgBM model is that the decision-makers in an AgBM keep evolving and make

flexible and dynamic behavior changes. For instance, when a road pricing scheme

is implemented on agents’ normal route to work, agent behavior theory needs to

explain why an agent may initially search and adjust route while someone else pre-

viously using the same route may switch to transit instead. In a fully operational

AgBM, multidimensional learning and knowledge need to be modeled. Agents have

44



the capability to remember and forget personal past experiences wherein they form

their own spatial knowledge and beliefs. From their agent-based cognitive spaces,

agents form subjective expectations on potential gains (search gain) from behavioral

adjustments along each behavior dimension. On the other hand, theory needs to

consider bounded rationality and recognize that there are inconveniences and risks

associated with each behavior adjustment dimension. The authors believe that the

interplay of these gains and impedance along all feasible behavioral dimensions col-

lectively determine when individuals start seeking changes, how they initially change

behavior, how they switch behavior dimensions, and when they are satisfied and stop

changing behavior.

As various agent-based models for different sub-systems are built and im-

proved, researchers may integrate these models into one mega model that includes

all major players of transportation systems: individual travelers, commercial trans-

porter, transit operator, infrastructure provider, and regulator. We may also include

other components such as agent-based land use model, regional economic model,

and even international trade and immigration models to simulate the interaction

between a wide-range of systems. It is also possible to gradually replace one or

a few of the modules of an existing planning model with agent-based models in

order to introduce AgBM capabilities that are particularly needed. For instance,

implementing an AgBM departure time searching and switching model to existing

planning applications can effectively enable the time-of-day sensitivity and predict

peak-spreading effects for future year and for analysis of behavior response to road

pricing scenarios. Being the third major objective of this research, demonstrating
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AgBM application capabilities in planning, operations/control, and optimization

(policy decision-making) are of essential importance.
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Chapter 3

The System of the Agent-Based Models

The objective of this research study is to develop a theoretical framework for

agent-based driver and traveler behavioral modeling, which could benefit from a

wide spectrum of travel/activity data and push forward the current state-of-the-

art and state-of-the-practice in traffic operations, management, and transportation

planning. The previous section has reviewed existing research efforts on activity-

based/agent-based models and their applications. As previously discussed, there

has been no consensus in literature on the precise definition of Agent-Based Mod-

eling System despite a broad range of applications of such system across multiple

disciplines. Yet most researchers agree that the essence of Agent-Based Modeling

paradigm is the philosophy of modeling complex systems through a bottom-up pro-

cess, where system-wide patterns emerge through local interactions among agents.

For example, some activity-based travel demand models capture travel demand

by modeling individual choices such as activity location, scheduling, and duration.

However, applications of agent-based modeling in transportation are still explorative

and unsystematic. Positive/descriptive models have not been adequately explored.

Many models aim at providing a good match of aggregate performance measures but

not reasonable assumptions of travel behavior. The lack of high-quality behavioral

data is often named as the reason that positive/descriptive approach is not usually
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adopted.

To bridge these gaps, I first propose a theoretical framework for Agent-Based

Modeling System in transportation based on existing data and innovative data

collection effort. This modeling system emphasizes an integrated and compre-

hensive framework that includes both dynamic network supply models and agent-

based travel demand models. A series of single-dimensional Agent-Based Modeling

(AgBM) components has been covered, with each focusing on one single behavioral

dimensions including travel mode choice, pre-trip routing, scheduling, and dynamic

routing. Based on these modeling experiences, I am exploring innovative methods

to capture how and when cumulative experiences resulting from agent decisions on

these shorter time scales trigger decision-making processes on longer time scales

(e.g. mode choice, destination choice). This leads to a multi-dimensional agent-

based modeling system that addresses a key theoretical and modeling issue in driver

and traveler behavior modeling. The proposed multi-dimensional AgBM can take

the place of traditional four-step sequential modeling approach and offer a more flex-

ible model structure regarding how agents actually behave. Meanwhile, the AgBM

framework also allows the flexibility to incorporate some or all of the existing AgBM

modules to enhance the current four-step modeling framework.

Fig. 3.1 provides a broad schematic of the structure of the agent-based model-

ing framework. It includes five primary modules: the agent synthesizer, the baseline

agent behavior generator, the multidimensional behavior response model, network

models, and performance measures.
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Figure 3.1: Structure of the agent based modeling (AgBM) framework

To support this innovative modeling effort, high-resolution longitudinal data

of individual travel/activity patterns are needed. Most existing data such as con-

ventional household travel survey data do not have sufficient detail to support the

development of a comprehensive AgBM framework. Therefore, I also design and

implement various surveys and data collection to support the modeling efforts.

GPS/Smartphone-based individual travel/activity survey and a multidimensional
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stated-adaptation survey have been conducted in the Washington D.C. metropoli-

tan area.

Vision of this study has been summarized in Fig. 3.1. Various AgBM modules,

and the multi-dimensional AgBM to be developed as part of this study, form the

modeling engine and play a central role in the comprehensive framework. The data

hub synthesizes data from existing data sources, enhances them through data filter-

ing and integration, and then informs the modeling engine. The modeling engine

can also be informed by existing models such as the conventional four-step regional

planning model. Actually, if data are not sufficient, a subset of the multi-dimensional

AgBM wherein data is particularly lacking can be replaced by conventional models.

The AgBM modeling engine needs to be interfaced with supply-side models (most of

them are developed with various commercial software packages under current prac-

tice) to provide a full picture of the transportation system dynamics. To facilitate

the communication with practitioners, policy makers, and the public, a visualiza-

tion module is needed to present the system performance and its dynamics. Outputs

from such a system will support various applications in both traffic operations and

transportation planning. They will be discussed in detail in the following sections

respectively to demonstrate the potential of the current system to benefit existing

practice.

In this framework, the agent synthesizer generates agent characteristics, as well

as the agenda of mandatory or fixed activities (e.g. fixed work arrangement) that

must be accomplished by each agent. Agents’ life style such as household composi-

tion, work status, vehicle ownership, social network formation, and other long-term
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decisions are also considered in this step. All the available revealed preference in-

formation supplemented by GPS-based survey and GPS-enabled smartphone survey

will be employed in the baseline agent behavior generator. The generator reads indi-

vidual trip records from survey data sources. The generator will correct any logical

inconsistency against these criteria and supplement missing information. Then a

coherent baseline agent behavior will be generated.

The multidimensional behavior response module is the focus of this deliver-

able. This module predicts agents’ behavior response to various planning and policy

scenarios. Agents’ response such as multidimensional search, information acquisi-

tion, learning and knowledge, and decision making are explicitly modeled. When

the scenario is introduced, the expected travel condition based on the agents’ base-

line travel pattern will be affected accordingly. This may motivate agents make

behavior adaptation along one or multiple behavior dimensions. Agents’ multidi-

mensional behavior response will be modeled by employing stated behavior data

collected from dimension-specific surveys and multidimensional stated adaptation

surveys. This module yields an altered agent behavior pattern for all individual

agents tracked in the model.

The modified agent behavior pattern is then fed into dynamic network models

to generate measures of effectiveness (MOEs) of interest. Depending on different

planning/policy analysis needs, simulators with different levels of details, as well as

the MOEs, can be selected strategically. The linkage with dynamic network mod-

els enables the ABM to produce various kinds of performance measures including,

but not limited to, level of service (LOS) of each link, queue length of each inter-
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section, total vehicle miles traveled, total and average delay, pollution and carbon

emissions, etc. In conjunction with baseline travel pattern, the dynamic network

models emit measures of change in travel characteristics under each model-specified

planning and policy scenario. The scenario can thus be evaluated based on various

performance measures. Moreover, an optimal planning and policy strategy can be

obtained through a simulation-based optimization module. This module samples

through the simulation of agent behavior response and network dynamics, and op-

timizes planning and policy objective(s) (e.g. minimize total travel time, maximize

toll revenue, etc.).

The complex transportation systems include two inter-dependent components:

the aggregate travel demand based on individual travel decisions and the network

supply. To explore the dynamics of these systems, and to better inform practitioners

and policy makers who rely more on aggregate system performance measures, the

ABM applications need to be interfaced with supply-side models or be integrated

with the existing modeling frameworks. These modeling frameworks include both

traffic operations and management models that focus more on intersection and corri-

dor level analysis and planning models that target on issues of larger scale. However,

as transportation systems become more complex and inter-related, the boundary be-

tween those two types of applications diminishes. Many corridor-level measures such

as road pricing, HOV/HOT lanes, and multi-modal corridor management strategies

may have significant regional impacts, thus affect planning decisions. Therefore, it

is helpful to analyze these two types of applications within an integrated framework.
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Chapter 4

Agent-Based Models

This chapter explores a descriptive theory of multidimensional travel behav-

ior, estimation of quantitative models, and its demonstration in an agent-based mi-

crosimulation. A descriptive theory on multidimensional travel behavior is concep-

tualized. It theorizes multidimensional knowledge updating, search start/stopping

criteria, and search/decision heuristics. These components are formulated or em-

pirically modeled and integrated in a unified and coherent approach. The theory is

supported by empirical observations and the derived quantitative models are tested

by agent-based simulation on a demonstration network. Based on artificially in-

telligent agents, learning and search theory, and bounded rationality, this chapter

makes effort to embed a sound theoretical foundation for computational process

approach and agent-based microsimulations. A pertinent new theory is proposed

with experimental observations and estimations to demonstrate agents with sys-

tematic deviations from the rationality paradigm. Procedural and multidimensional

decision-making is modeled. The numerical experiment highlights the capabilities

of the proposed theory in estimating rich behavioral dynamics.
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4.1 Multidimensional Travel Behavior

4.1.1 A Descriptive Theory of Multidimensional Behavior

The multidimensional travel decision-making theory is conceptualized in Fig.

4.1.

Experience 
Past travel experience

Supplement Information: ATIS, media, internet, map, etc.

Search cost 

exceeds gain 

for all d

Memory
Learning attributes of places, modes, paths, times, etc.

Forgetting outdated/unrepresentative information

Memorizing experiences subjectively

Subjective Beliefs 
Multidimensional knowledge

Beliefs and expectations 

Searching Dimension - d
Prioritizing the behavioral dimensions

Multidimensional Search Gain and Search Cost

Search Scope 
Agents find alternatives by heuristics

Decision Rules 
Agents select one alternative by heuristics

Travel Experience

d

it

it

 | mode, departure time, route, etc.
dt

g d 

habitual behavior

Figure 4.1: Conceptualization of multidimensional travel decision-making theory

he theory starts with the definition of artificially intelligent agents and their

characteristics. Each agent i is treated differently with socio-demographic attributes,

personal experience, knowledge, and subjective beliefs. At any given time, an agent

has a certain level of knowledge about places, activities, and transport networks in
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an urban area. This spatial/temporal knowledge can be employed to solve various

spatial/temporal decision tasks such as choosing destination, departure time, and

routes. This problem-solving process consists of several procedural steps in the true

behavioral sense. Firstly, each agent i at a given time period t possesses experiences,

denoted as Eit. Agents acquire Eit through past searches or through information

sources such as internet, media, advanced traffic information system (ATIS), etc.

Eit is time-variant as the agent searches and accumulates a-priori experiences in the

urban transportation network day-by-day. Travel experiences with similar payoffs

that occur routinely may reinforce the agent’s memory, while the travel experiences

that are not representative may be easily forgotten. Moreover, agents are assumed

to be able to search information about one behavioral adjustment dimension at a

time, e.g. agents may search for an alternative route or search for an alternative

travel mode. Thus each past experience can be mapped into one single dimension d

and form a multidimensional memory space Md.

The memory space keeps updating, alters the aspiration level, and changes

subjective beliefs Pd
it. An agent thus determines the expected gain gdt from a search

for alternatives in each behavioral dimension d based on his/her subjective beliefs.

Information acquisition and other mental efforts are explicitly modeled as perceived

search cost scdi when agents are searching for alternatives for each behavioral di-

mension. These search cost variables are recognized in this theory as inconveniences

and risks associated with each behavior adjustment dimension. It is the interplay

of these subjective search gains and costs that jointly determines when a search for

alternatives in dimension d is initiated or stopped in time period t. Although the
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subjective search gain is defined by individual’s beliefs and therefore can be quanti-

tatively derived, it is much more difficult to theoretically determine the magnitude

of perceived search cost which should be individually different. Once the multidi-

mensional behavioral adjustment evidences can be observed, the perceived search

cost and its relations with other variables can be empirically derived.

If an agent decides not to search in a dimension, habitual behavior in that

dimension is executed. Otherwise, the agent will employ a set of search rules to

search from her/his knowledge and identify a new alternative. After identifying an

alternative, she/he needs to determine whether or not to switch to that alternative.

The decision rules constitute a mapping from spatial/temporal knowledge (especially

experienced travel conditions corresponding to different alternatives) to a binary

decision: switch to the alternative or retain habit. Both the search rules and the

decision rules should be empirically estimated from observed search processes.

4.1.2 Modeling Imperfect Knowledge

Search, learning, and knowledge play a crucial role in making a decision. A

rational person will choose the best alternative from the set of feasible alternatives.

The term “rationality” would also require that this rational person holds the knowl-

edge that is derived from coherent inferences. In contrast, more realistic models are

intended to allow modelers to construct agents who systematically do not possess

perfect knowledge and do not make correct inferences but make biased ones.

An agent explores decision opportunities by searching her/his feasible envi-
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ronment and learns knowledge about the various payoffs related to the search and

decisions. Here the spatial/temporal knowledge is generalized as multidimensional

vectors with each vector corresponding to a particular dimension. Assume that each

agent i at any given time period t possesses a list of past experiences, Eit. Each

experience is characterized by a generalized cost:

CEit
=
∑
n

λnψn (4.1)

Wherein n denotes the index of different related attributes such as travel time,

cost, schedule delays, mode comfort, etc. ψ denotes the vector of attributes; λ

denotes the coefficients to translate values into monetary costs (e.g. value of time).

This generalized cost is adopted to measure the outcome of each event and to set an

anchoring point for the search model. Assuming that in each behavioral dimension

d, an individual’s perceptual capabilities allow the separation of generalized cost

into a number of categories. If CE that falls into the generalized-cost category j has

been observed mj times in prior experiences, the memory this individual has about

the generalized cost in dimension d is fully described by a vector Md = (m1, · · · ,

mj, · · · , mJ). Individuals update memory space through learning and forgetting

processes. Bayesian learning relies on the premise of some prior knowledge. When

new information from various sources becomes available, learning occurs and obeys

the Bayes’ rule. Forgetting relies on the cognitive weighting of each past experience,

which can be measured as a function of the recentness and representativeness of

the experience. Once the weight is lower than a certain threshold parameter, the
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experience will be eliminated from Eit.

According to Bayesian learning rules, when a new alternative in this dimension

is experienced and the associated generalized cost falls into category j, the updated

memory becomes Md = (m1, · · · , mj + 1, · · · , mJ). Let the vector P d = (p1, · · · ,

pj, · · · , pJ) represent an individual’s subjective beliefs, where pj is the subjective

probability that an additional search in dimension d would lead to an alternative

with jth level of generalized cost. In order to quantitatively link Md and P d, we

assume that individuals’ prior beliefs and memory follow a Dirichlet distribution,

which is a J-parameter distribution. Therefore the posterior beliefs will also be

Dirichlet distributed since the Dirichlet is the conjugate prior of the multinomial

distribution [118]. The probability density function is defined as:

P =
Γ(N)∏J

j=1 Γ(mj)
·

J∏
j=1

p
mj−1
j (4.2)

where N denotes the total number of Md observations and Gamma function

Γ(mj) = (mj − 1)!. According to the law of large numbers, as sample size N grows,

this assumption asymptotically converges to:

E(pj) =
mj

N
(4.3)

Bayesian learning is capable of describing updates of spatial knowledge about

the attributes of spatial objects, and relations between spatial objectives when re-

peated observations are available. Travel time on a roadway section, waiting time
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at a transit station, level of congestion for a specific trip during a peak hour, at-

tractiveness of housing unit in a neighborhood, distance between an origin and a

destination, closeness of a shopping center to the route from work back home, etc.

4.1.3 Modeling Multidimensional Search

An individual, based on her/his past experience and subjective beliefs , forms

expectations on potential gain (search gain) from behavioral adjustments along each

dimension. The decision to search for a new alternative is based on the interplay

of subjective search gain and perceived search cost. Let an agent’s generalized cost

on the currently used alternative be C. The subjective search gain (gdt) is based

on subjective beliefs, P , and defined as the expected improvement in regard to

generalized cost savings per trip from an additional search:

gdt =
∑

j(∀Cj<C)

pj · (C − Cj) (4.4)

where C is actually the minimum of all experienced generalized costs because

individuals can select from all tried alternatives in dimension d and pick the one with

the lowest costs Cd
min. We assume all individuals start with a preferred travel pattern.

It can be the stabilized travel pattern with an initial generalized cost C0. Once a

policy/congestion stimulus emerges, travel condition deteriorates. Let us further

assume that individuals have the initial beliefs that search and switching to another

alternative will lead to a travel condition as good as their original travel condition

C0 until they search and experience otherwise. As the search process proceeds, the
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subjective probability of finding an alternative with C0 after N searches is 1/(N+1).

Therefore, Eq. 4.4 can be further simplified as:

gdt =
Cd

min − C0

N + 1
(4.5)

While C0 remains universal among all dimensions, Cd
min, the currently best

travel option(s) in dimension d, can differ in each dimension d since the search

processes in different dimensions vary and result in diverse outcomes. The subjective

search gain gdt evolves and reflects how much value each search can gain based on

subjective beliefs. Once gdt is less than or equal to zero, it indicates that search

along dimension d is no longer worthwhile and the search process will not initiate.

A positive gdt will asymptotically decrease to zero as the number of searches increases

and as a better alternative is found (Cd
min getting increasingly closer to C0).

Furthermore, the theory formulates satisficing behavior that even with positive

gains, individuals may stop search whence the gain is lower than the perceived

search cost. The search and information acquisition is no longer free as this theory

recognizes the inconveniences and risks associated with each behavior adjustment

dimension. This impedance is conceptualized as a search cost for each agent and each

dimension. Search cost can be perceived and inferred once individuals’ searching

sequence can be reconstructed using empirical observations collected from survey.

The empirical data provides evidence about agents’ search and decision processes.

Each individual follows her/his own path along the three dimensions in reaching the

final behavior decisions. When it is observed that an individual ends her/his search
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in dimension d and has searched N times along that dimension for the time being,

it infers that the individual satisfices after N rounds of search in d. The search

cost must be lower than gd,t−1 so that the Nth search is meaningful and rewarding.

Meanwhile, the search cost must be higher than so that the (N + 1)th search does

not occur. Let us denote individual i’s search cost along dimension d as scdi, which

is viewed as an innate personal characteristic for individual i. It can be estimated

by using the lower and upper bounds:

scdt ≤ gd,t−1 =
Cd

min,t−1 − C0

N
(4.6)

scdt ≥ gdt =
Cd

min,t − C0

N + 1
(4.7)

s̄cdt =
1

2
(gd,t−1 + gdt) (4.8)

Note that for each individual, only one of the multidimensional perceived

search costs can be perceived from the empirical data. A subsequent regression

analysis for all survey subjects and all dimensions thus needs to be estimated in

order to empirically model search cost. We specify that the search cost model in

dimension d as:

scdt = β0+β1C0 + β2gender + β3fixedsch+ β4purpose+ β5income1+

β6income2 + β7income3 + β8distance+ β9peak + β10veh+ εi

(4.9)

where C0 is the generalized cost for the originally reported travel experience;

distance measures the mileage that the subject travels; Dummy variables include

61



gender (equals to 1 if the subject is female), fixedsch (equals to 1 if the subject

has fixed travel schedule), purpose (equals to 1 if the trip purpose is work/school),

peak (equals to 1 if the travel is in peak-hour periods), and veh (equals to 1 if

household number of vehicles is greater than 2). Different household annual income

levels are considered in the model (income1: less than $50,000; income2: $50,000

- 100,000; income3: $100,000 - $150,000; income4: $150,000 and above). In our

model, C0 is identified as an instrumental variable (IV) in order to better incorporate

the sufficiently high correlation between C0 and other independent variables. We

employ generalized method of moments (GMM) and two-stage least-squares (2SLS)

estimator. Denoting the IV as z and the independent variables as x, we can estimate

parameters β from the population moment conditions:

E[z(scdi − xβ)] = 0 (4.10)

The estimation result is reported in Table 4.1. The search cost is positively

related to the initially experienced generalized cost of the travel. Lower-income

agents have higher search costs along mode dimension. Female agents are more re-

luctant to search departure times and routes than to search alternative modes. Fixed

schedule and traveling during peak-hour increase the search cost for all dimensions.

Travel distance has a negative impact on search cost meaning that the longer the

travel distance, the more likely she/he will search for alternatives. The coefficients

for trip purpose indicate that agents doing commute travels have more incentive

to search for alternative modes and departure times. By estimating and applying
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search cost models, one can make personal/household characteristics endogenous

in the search process and model diversified and behaviorally rich multidimensional

search. It helps explain why some travelers may adjust routes first while others

may adjust departure time first in response to the same stimulus. This feature can

potentially provide rich level of detail especially for policy/social equity analysis

whence measuring the impacts/benefits by different socio-economic strata of society

is of interest.

Table 4.1: Multidimensional Perceived Search Cost Models (Generalized Method of
Moments and Instrumental Variable)

Models: Search cost Search cost Search cost
(d: mode) (d: departure time) (d: route)

Variables Coeff. (std. err.) Coeff. (std. err.) Coeff. (std. err.)

Generalized cost C0 0.023 (0.010) 0.008 (0.001) 0.001 (0.000)
gender (female) 0.014 (0.088) 0.162 (0.071) 0.098 (0.046)
fixed schedule 0.118 (0.065) 0.194 (0.080) 0.115 (0.045)
purpose (work/school) -0.101 (0.062) -0.091 (0.056) 0.098 (0.048)
Income (< $50k) 0.188 (0.106) -0.272 (0.201) -0.299 (0.060)
Income ($50k – $100k) 0.085 (0.41) -0.285 (0.203) -0.207 (0.066)
Income ($100k – $150k) -0.007 (0.007) -0.542 (0.234) -0.089 (0.086)
Travel distance (10 mi) -0.020 (0.003) -0.008 (0.001) -0.006 (0.000)
Peak-hour travel 0.161 (0.094) 0.112 (0.062) 0.010 (0.041)
Number of Cars (¿ 2) -0.088 (0.021) 0.298 (0.092) -0.035 (0.053)
Constant 1.341 (0.148) 0.402 (0.225) 0.384 (0.068)

It is hypothesized that agents will search the most rewarding dimension with

the highest search gain/cost ratio. Successive unrewarding searches along a particu-

lar behavioral adjustment dimension (e.g. route) will lead to diminishing subjective

search gain for that dimension and at a later point cause the search to shift to a

different behavior dimension (e.g. departure time). Once the ratios for all dimen-

sions drop down below one, the multidimensional search process ceases. Since gdt is
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monotonically decreasing and converges to zero, the search is guaranteed to reach

stability. The interplay of these search gains and costs along all feasible behavioral

dimensions defines the bounded rationality embedded in the theory. It collectively

determines the prospects for profitable searches over finite horizon and guarantees

a convergence of behavioral changes. It quantitatively theorizes when individu-

als start seeking behavioral changes, how they initially change behavior, how they

switch behavioral adjustment dimensions, and when they stop the search.

4.1.4 Search Rules and Decision Rules

An agent will keep the status quo and repeat her/his habitual behavior once

she/he decides not to search in any dimension. Once determining a dimension to

search, a search process is invoked to find useful alternatives to meet travel demand.

Spatial/temporal search is not random and can be biased [70]. For instance, if a

person currently departs at 8 am and is not satisfied with the resulting travel and/or

schedule delay, the person may be more likely to try departing at 7:30 am and 8:30

am than 7 am and 9 am (i.e. an anchoring effect). Different knowledge extracting

technologies can be applied to mine individuals’ search rules and decision rules. I

adopt production rules for more shorter-term search: departure time search and

route search. For more longer-term search such as travel mode search, the search

process is dynamic and is correlated to the status of the previous time period.

In the following section, the mode search is conceptualized as a hidden Markov

process wherein the current behavioral state is dependent to the a-priori behavioral
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state. This process can be generalized to cover other behavioral dimensions such as

destination choice.

After each round of search, a new alternative is identified. Agents either

change behavior to use the new alternative or stay with their habitual behavior.

This is determined by a set of decision rules. Even though during the multidimen-

sional search process many alternatives may be visited, the final decision is assumed

to be the outcome of a series of switching decisions. Production rules derived by

various machine learning algorithms [111, 30, 35] are selected here to represent deci-

sion rules. Departing from random utility maximization, this assumption about the

search-decision procedure relaxes the unrealistic assumption of human information

processing and computational capabilities and incorporates individual-based his-

torical dependencies. It also improves the computational efficiency of agent-based

simulation since the execution of production rules only requires minimum compu-

tational resources. These search and decision rules are empirically derived for each

behavioral dimension and are discussed in greater details in the following sections

of this chapter.

4.1.5 Empirical Data Collection

The development of those quantitative models can be data intensive. This

research conducts a stated adaptation experiment administered online to explore

possible substitutions to the longitudinal information that is typically missing. This

survey method is particularly useful when one seeks answers from respondents on
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a number of what-if questions such as “what would you react if you were faced

with specific constraints/conditions” [6]. It helps capture respondents’ multi-faceted

behavioral responses. Furthermore, it has the capability to infer the procedural

decision-making process which embeds the behavioral foundation of the proposed

theory and models since respondents will naturally exhibit satisficing behavior if

playing the scenarios repeatedly for a sufficient number of iterations. The survey

procedure is reported in Fig 4.2.

Starting from a self-reported most recent trip, exogenous policy/congestion

changes are assumed in each scenario to alter the travel condition for that trip. It

is further assumed that each agent will adapt to those changes by searching new

modes, departure time, and/or routes. The dimensions wherein the behavior ad-

justment occurs are asked explicitly in the survey for each subject. The subject then

is asked to elaborate the alternative she/he would identify and search along that

dimension (this data infers the determination of search rules). Once a search has

been recorded by a subject, the program will feed a corresponding travel condition

simulated in the back-end for the subject to consider and make a switching decision

between the alternative and the habitual one (this data infers the decision rules).

Another round of behavior adjustment (could be in the same dimension or in an-

other dimension) will occur unless the subject states satisfactory about the travel

experience. Iteratively repeating this process, a complete behavioral adjustment

sequence of each subject can be observed. Initial samples include 110 University

of Maryland staffs and students. They perform adaptations under schemes such as

overall congestion increase and road-pricing scenarios.
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Figure 4.2: The Stated Preference Experiment Flowchart

4.1.6 Agent-Based Simulation Results

The proposed multidimensional behavioral theory and models have been esti-

mated and implemented in an agent-based simulation to demonstrate the capability.

A toy network with one origin-destination pair, three alternative routes, and three

travel modes (auto, carpool, and transit) is employed. The scenario that is ana-

lyzed in this simulation is an assumed 10 percent increase in travel demand which
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creates excessive travel time and cost for the simulated agents and stimulates them

to start the multidimensional behavior adjustments. 90,000 agents are generated in

this microsimulation of extended morning peak hours (5:00 am 10:00 am). Agents’

characteristics are synthesized based on Transportation Planning Board (TPB) Bal-

timore Metropolitan Council (BMC) Household Travel Survey (2007/2008) data.

In the simulation, agents travel from origin to destination, accumulate ex-

perience, make behavioral adjustment on one or multiple dimensions, dynamically

update beliefs, and eventually satisfy on their decisions. The uniqueness of the

model brings attention to each agent for whom the interplay of search gain and

search cost is dynamically modeled in order to determine the behavioral dimension

wherein the search and decision process occurs. Fig. 4.3 illustrates the evolving

gain/cost ratio for a particular agent.
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Figure 4.3: The evolving gain/cost ratios of multidimensional travel behavior

On simulation day 1, the agent initially believes that all dimensions are re-

warding (with gain/cost ratios all above one) while the most profitable dimension
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is the mode dimension. She/he then employs search rules and decision rules to

identify and examine one alternative mode. While the subsequent search reveals

further information, this agent’s knowledge and subjective beliefs on the mode di-

mension evolve significantly. And on the second day, the departure time dimen-

sion emerges to be the one with the highest gain/cost ratio. A search for alterna-

tive departure time is therefore performed. Iterating this process, the agent forms

a time-dependent search path about choosing behavioral adjustment dimensions:

mode-departure time-route-mode. On the fifth day, the gain/cost ratios of all di-

mensions drop down below 1, which indicates that this agent subjectively believes

that no more searches are necessary. The agent is thus satisfied and stays dormant

afterwards. Once a new turbulence emerges in the transport system, such as new

policies and booming travel demand, the agent may be influenced in the way that

the gain/cost ratios in certain dimensions grow. And the agent may seek further

changes.

The convergence of the multidimensional behavior is illustrated in Fig. 4.4a.

Overall, the model predicts active and reasonable agent behavior along the three

behavioral dimensions. The convergence processes are smooth. With the innate

bounded rationality and satisficing behavior, agents reach steady state and stop

search within 25 search iterations. If each agent travels five days a week and all

agents start search at the same time, it would take five weeks for the traffic to

stabilize and equilibrate on the network. This is an interesting finding that on one

hand, it allows us to model the gradual behavior adaptation to exogenous policies

(e.g. pricing policy in Stockholm gradually nudge drivers to change behavior, [23]).
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On the other hand, it suggests potential applicability of the proposed theory in large-

scale planning models and simulation since it embeds multidimensional behavioral

response while maintaining a reasonable converging speed.

In response to the assumed demand increase, changing route and changing

departure time are the most significant ways of behavioral adaptation. The initially

high route searching frequency cools down rapidly since agents can hardly identify

any better alternative routes under the assumed overall demand increase. Agents

quickly learn the fact and update the subjective beliefs, which results in a decreasing

search gain in the route dimension. Then agents turn to search alternative modes

and departure times instead. Thus we can observe in the simulation an increasing

number of agents searching for alternative departure times in the second and third

simulation days. A few agents search for alternative modes. Agents’ mode searching

and switching behavior is illustrated in Fig. 4.4b. Agents’ departure time changes

are illustrated in Fig. 4.4c.

By aggregating the individual behavior into travel patterns, we can observe

that the multidimensional learning and adaptation leads to a slight percentage de-

crease of auto drivers (Auto D in Fig. 4.4b). Those agents switch to auto passengers

(Auto P) or transit users. The aggregate mode share of auto drivers drops from

63.4% to 58.3%. After 6 simulation days, the mode share tends to be stabilized

even though from the microscopic level, there still exist some 3,000 travelers chang-

ing their travel modes. The active departure time changes lead to a significant peak

spreading effect. The assumed demand increase results in more severe congestion

and travel time unreliability especially during peak hours. The excessive travel time,

70



cost, and schedule delays make the departure time adjustments necessary in order

for the agents to gain an acceptable payoff through search. The model predicts that

the dominating behavioral responses to the stimulus are route changes and depar-

ture time changes, which is in line with existing research (e.g. [6]). Meanwhile, the

model predicts the behavioral dynamics and adaptive process, which advances our

current understanding about multidimensional travel behavior adjustments.
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(d) Agents’ Payoff Dynamics

Figure 4.4: A Demonstration of the Agent-Based Model of Multidimensional Be-
havior

Travelers in the multidimensional agent-based model are not perfectly “ra-

tional” in that they do not maximize their utility (or payoff). Instead, they are

restrained by information acquisition cost, decision cost, computational limitation,
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time budget, and deadlines. They are not perfectly rational also in the way that

they follow different intuitive and heuristic behavioral rules. Fig. 4.4d demonstrates

that through multidimensional learning and adaptation, agents search and improve

their relative searching payoff. This term is defined as the ratio of the cumulative

actual search gain and the cumulative subjective search gain (i.e. subjectively be-

lieved maximum payoff from the search) for all the searchers. Judging by the curves,

the departure time dimension turns out to be the most profitable dimension. Once

searching in this dimension, agents are able to retrieve the highest relative search-

ing payoff. However, this learning and adaptation does not ensure them to make

decisions that result in maximum payoff. This example demonstrates the bounded

rationality of the agents in search and changing their behavior.

4.2 Dynamic Travel Mode Search and Switching

In this subsection, individual dynamic mode choice behavior is conceptualized

as a cyclic process of repetitively making mode search and switching decisions, as

displayed in Fig. 4.5.

72



 

Yes 

No No 

Yes 

Mode Sw itching 

Alternative Mode 

Habitual mode 

time period t+1 

Mode Searching 

Travel conditions 

time period t+1 

Mode Sw itching 

Alternative Mode 

Habitual mode 

time period t 

Mode Searching 

Travel conditions 

time period t 

Figure 4.5: Travel mode search and switching as a dynamic procedural model

The framework represents a sequential decision of mode searching and switch-

ing. To decide the travel mode for a specific trip type, the starting point of the

procedure for a given time period t is the existing habitual behavior and its as-

sociated travel conditions such as travel time and travel costs. Travelers may be

satisfied with their habitual mode as long as the travel conditions remain at a cer-

tain level. Once the level-of-service changes, travelers may have the incentive to

search for an alternative mode depending how significant the LOS change is. This

stimulus can be attributed to policy changes and/or congestion level changes. For

instance, consider the situation when road pricing policy has been implemented on

a commuting corridor. The increased toll charges may effectively trigger a number

of auto drivers to consider alternative modes to reduce the cost. In this case, auto

drivers who initially have an innate preference towards their habitual modes now

may identify transit or carpool as their alternative. After an alternative mode has

been determined, travelers make a switching decision between the habitual mode

and the newly identified alternative. This decision may be based on comparison
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after some trial-and-error experience or externally collected information about the

alternative. The selected mode will be the habitual mode for the next time period

when a similar sequence of processes takes place.

Within this theoretical framework, the dissertation focuses on the empirical

evidence about the first behavior stage: mode searching dynamics. This dynamic

context is formulated based on hidden Markov model. Travelers’ innate mode pref-

erences have been conceptualized as different hidden states. The transitions between

states are formulated as a function of the LOS variables of travelers’ current habit-

ual modes. This model can be easily linked with a mode switching model (discrete

choice or rule-based). However, this is subject to be finished in the full dissertation.

4.2.1 Search Rules

Hidden Markov Model is a doubly embedded stochastic process with an un-

derlying stochastic process that is not observable, but can only be inferred through

another set of stochastic processes that produce the sequence of observations. It has

been applied successfully to, e.g., speech recognition, biological sequences analysis,

and many others [124, 97]. The objective of this paper is to develop an individual-

level dynamic model that explicitly parameterizes the processes that travelers search

and identify their alternative modes. In many situations, observed decisions on al-

ternatives are preceded by unobserved states representing innate preferences, satis-

factory levels, etc. For instance, when choosing an alternative mode, the states may

represent individuals’ hidden preference on one or several modes. Fig. 4.6 illustrates
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a graphical representation of the model.
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Figure 4.6: A Hidden Markov model of travel mode search dynamics [145]

As displayed in Fig. 4.6, two major components are highlighted in this model:

• Hidden states and transitions. Starting from an initial state distribution πis =

Pr(Hi,t=1 = s) (i.e. at time 1, the probability that traveler i is in state

s), a sequence of Markovian transitions Qi,t−1→t is employed to express the

likelihood that the LOS experiences of the habitual mode in the previous

period were strong enough to transition the traveler to another hidden state.

• State-dependent mode searching decision. Given the hidden state that a trav-

eler i is in, the probability that she/he will identify mode m as the alternative

in the mode searching stage at time t is determined by Pr(Yit = m|Hit). Yit

is the mode searching decision made by traveler i at time t.
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4.2.1.1 Model observed search sequences

We assume that given individual i’s true state Hit in period t, the observed

process of searching and identifying mode alternatives: Yit are conditionally indepen-

dent of the hidden state of other time period. Thus, we assume that the likelihood

function of state-dependent searching of the alternative modes follows multinomial

logit form:

Pr(Yit = m|Hit = h) =
exp(Zit

′βh,m)∑
j exp(Zit

′βh,j)
;h = 1, ..., H (4.11)

where Zit is the vector of covariates measured at period t for individual i, βh,m

is the corresponding regression coefficients for selecting mode m in hidden state h.

The transitions between hidden states have been modeled as a Markov process.

The transition matrix is defined as:

Pi,t−1→t =



p
(1,1)
it p

(1,2)
it · · · p

(1,H)
it

p
(2,1)
it p

(2,2)
it · · · p

(2,H)
it

...
...

. . .
...

p
(H,1)
it p

(H,2)
it · · · p

(H,H)
it


In this formulation, Pi,t−1→t is the Markov chain transition matrix expressing,

in probabilistic manner, the likelihood that the traveler switches hidden state which

is assumed to represent hidden modal preferences. p
(h1,h2)
it denotes the transition

probability from hidden state h1 to hidden state h2 for individual i in period t. Unlike

most homogeneous Hidden Markov model, in this model, we allow the transition
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probabilities to be dependent on time-varying variables (e.g. higher auto travel cost

for a habitual car lover could switch her/him to prefer transit instead). Therefore

the transition probability expresses how strong the effects of habitual modal LOS

in the previous period are to transition the traveler to another preference state.

This assumption is found behaviorally and empirically grounded in our empirical

application. Thus, we introduce the following parameterizations into the transition

specification:

p
(h1,h2)
it =

exp(Zit
′λ(h1,h2))

1 + exp(Zit
′λ(h1,h2))

(4.12)

λ(h1,h2) is the corresponding regression coefficients for the transition probabil-

ity p
(h1,h2)
it . This formulation defines a heterogeneous Markov Chain since it allows

the transition probabilities of the hidden states to depend on the set of observed

covariates (including travel time, cost, and socio-demographical variables).

Another main component of the model is the individuals’ initial hidden state.

The initial state distribution is commonly defined as the stationary distribution of

the transition matrix for a hidden Markov model with time homogeneous transition

matrix [88]. Smith and Vounatsou [126] have specified non-informative uniform

priors for initial state distribution. In this paper, because the transition matrix has

been specified as a function of time-varying covariates, we calculate the stationary

distribution of the transition matrix by solving the equation:

πi1 = πi1P̄i (4.13)
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Where P̄i is the transition matrix with the estimated coefficients λ(h1,h2). The

stationary distribution πi1 satisfies
∑

h Pr(Hi1 = h) = 1. Variables are set to their

mean value across individuals and time periods. The transition matrix is aperiodic

and irreducible due to the strictly positive transition probabilities as defined in

Equation 4.12. Thus the initial state distribution is guaranteed to exist and be

unique [97].

An individual’s decision probabilities are correlated through the common un-

derlying path of the hidden states, because of the Markovian properties of the model.

Therefore, the joint likelihood function is given as:

L(β,λ, Hit) = Pr(Yi1 = yi1, · · · ,YiN = yiN)

=
∑
Hi1

∑
Hi2

· · ·
∑
HiN

[Pr(Hi1)
N∏
t=2

Pr(Hit|Hit−1)]

·
N∏
t=1

Pr(Yit = yit|Hit)

(4.14)

Where N denotes the total number of periods in the observations. Hi1 denotes the

initial hidden state of the individual i. Its distribution is solved using Equation 4.13.

The last term on the right hand side of Equation 4.14 represents the state dependent

mode searching probabilities. Therefore, the likelihood can be interpreted as that

the joint likelihood of a sequence of observations of searching alternative modes is

given by the sum over all possible routes that this person could take over periods

from an initial state to an end period when she/he is satisfied and stops searching.
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4.2.1.2 Estimation Procedure

Parameters of the transition matrix and state-dependent searching are esti-

mated using the joint likelihood function in Equation 4.14. Estimation and max-

imization of the likelihood is not easy especially when the transition matrix is

covariate-dependent. Here we employ Bayesian estimation and Markov Chain Monte

Carlo (MCMC) simulation to sample the parameter distributions. This method fol-

lows Bayesian statistical inference. This paper assumes prior distributions for the

regression coefficients β and λ(h1,h2). The Bayesian inference is based on the poste-

rior distribution:

Pr(β, λ,Hit|Y) = L(β, λ,Hit)Pr(β, λ,Hit) (4.15)

This formulation’s left-hand side represents the posterior distribution of the

coefficients. The right-hand side is a multiplication of the joint likelihood function

and the prior distribution. To estimate the coefficients, this posterior distribution

needs to be sequentially drawn. However, the equation does not have a closed

form. In Bayesian theory, if it is possible to express each of the coefficients to

be estimated as conditioned on the others, then we can eventually reach the true

joint distribution by cycling through these conditional statements [56]. Thus we

use MCMC simulation to sample the posterior. For this paper, standard MCMC

technique (i.e. Gibbs sampler) is coded using R and WinBUGS package. Starting

from initial values [β[0],λ[0]] (the superscript denotes the step), at the jth step, the
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estimation method draws values from the following conditional distributions:

β[j] ∼ π(β|β[j−1],λ[j−1]) (4.16)

λ[j] ∼ π(λ|β[j],λ[j−1]) (4.17)

π(β,λ) denotes the limiting distribution of interest where β and λ are the

vectors of coefficients whose posterior distribution we want to describe. j is incre-

mented and repeated until convergence. By doing this, a Markov chain that cycles

through these conditional statements Equations 4.16 and 4.17 moving forward and

then around the true limiting distribution has been constructed. Once convergence

is reached, a sufficient number of samples should be drawn to represent all areas of

the target posterior. Gibbs sampling requires a full set of conditional distributions

which is often not the case in hierarchical conditional relationships. The Metropolis-

Hastings algorithm can be explored in future research when the model is enhanced

with Bayesian hierarchical structure.

4.2.2 Empirical Application

4.2.2.1 Data description

The data used to estimate the model are collected by the authors via a memory

recall survey. As a pilot study, a total number of 146 students from the University

of Maryland were recruited for participation in the data collection.

During the survey, each respondent was asked to fill a questionnaire regard-
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ing socio-economic and demographic characteristics, typical travel patterns, and, in

particular, the travel modes that have been considered and used for her/his com-

muting travel. In the survey, a series of memory-recall questions were employed to

gather the information of the travel modes that the respondents have tried in their

commuting trips. Each respondent was asked to recall the order of alternative travel

modes they had considered and actually tried, as well as the travel times and travel

costs corresponding to those travel modes. In particular, for each respondent, the

first travel mode was collected from a question: “please recall the situation when

you just arrived at University of Maryland and planned for your school trip, what

was the first travel mode that you used?” After the answer, the associated level

of service information was also gathered. Assuming that the respondent kept ex-

periencing this first reported travel mode, she/he was then asked whether she/he

had considered any alternative mode after using the original travel mode. If the

answer is yes, she/he was then asked to recall the alternative mode that she/he

had searched along with the level of service information. This recall process ceased

when the respondent stated that he/she did not consider changing travel mode any

further. In this sense, the memory-recall survey has collected process data regarding

the mode searching behavior, as well as time series information on travel time and

cost about all the searched travel modes. One may argue that the recall process is

subjective and may be biased. The paper summarizes the survey descriptive statis-

tics for the mode-specific level-of-service variables in Table 4.2. They are compared

with the school trip data collected from Washington D.C. Transportation Planning

Board (TPB)/Baltimore Metropolitan Council (BMC) household travel survey. The
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descriptive statistics of the memory-recall survey data reasonably conform to the

representative sample.

Table 4.2: Travel Mode Memory-Recall Survey Descriptive Statistics for Level-of-
Service Variables and Comparison with BMC/TPB HTS Survey

Memory-Recall Survey BMC/TPB HTS Survey

Modes Variables Mean (Std. Dev.) Mean (Std. Dev.)

Auto Travel cost ($) 4.30 (8.92) N/A
Travel time (min.) 32.72 (19.26) 28.17 (18.28)

Carpool Travel cost ($) 1.13 (1.92) N/A
Travel time (min.) 29.83 (27.16) 24.92 (17.92)

Transit Travel cost ($) 2.12 (1.90) N/A
Travel time (min.) 44.38 (21.62) 51.81 (22.81)

Walk/Bike Travel time (min.) 27.67 (18.10) 22.22 (10.83)

The distribution of the number of alternative modes searched by respondents

is illustrated in Fig. 4.7a. About one third of the respondents only had one travel

mode for their commuting trips. Around a half of the respondents had searched

two different modes. About 16% of the respondents had considered more than two

travel modes. As reported in Fig. 4.7b, the aggregate mode share is 35% auto, 9%

carpool, 33% transit, and 22% walk/bike.

4.2.2.2 Estimating the number of hidden states

The models are estimated using a Bayesian estimation procedure wherein

MCMC Gibbs sampling method has been employed and coded in R. The first 70,000

iterations have been used as a “burn-in” period. The last 10,000 iterations have been

used to estimate the conditional posterior distributions. Gelman and Rubin method

[51] has been adopted for convergence assessment. For each parameter, three parallel
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Figure 4.7: Descriptive statistics for mode searching and aggregate mode share

chains are updated in the estimation process. Within variance and between variance

across these three chains are compared. The result indicates that convergence has

been reached.

Determining the number of hidden states is the first task in estimating the

HMM model. Various model selection criteria for Bayesian model goodness of fit

have been compared, including log-likelihood, the Bayesian information criterion

(BIC), the deviance information criterion (DIC), and the cross-validation hit ratio.

BIC and DIC both measure the goodness of fit and penalize for the number of

parameters and sample size, respectively. As shown in Table 4.3, the best fitting

model is the model with two hidden states based on all performance measures. The

two-state estimation maximizes the log-likelihood statistic, minimizes BIC and DIC,

and shows a most accurate cross-validation result. The superiority of the 2-state

model over the single-state one indicates that the underlying behavioral changes

over time are significant.
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Table 4.3: Performance Measures for Choosing the Number of Hidden States

# of Log- Cross-Validation
States likelihood BIC DIC Hit Ratio

1 -316.1 804.0 630.3 75.6%
2 -198.0 752.7 400.5 81.3%
3 -207.8 1,019.1 411.9 79.5%

4.2.2.3 Estimating the initial states and transition

Table 4.4 reports the estimated posterior means and posterior standard devia-

tions of the transition matrix coefficients. Dynamic covariate effects are estimated.

The interpretation of the states can be derived from the intrinsic propensity to

search either auto or carpool/transit (the intercepts of the state-dependent search-

ing). State-1 travelers are thus label as car lovers and state-2 travelers are labeled

carpool/transit lovers in the following text. Overall, the model suggests that level-

of-service variables (travel time and travel cost) have significant effects on transition.

Longer travel time for the habitual mode at time period t1 has a diminishing effect

on the likelihood of transition at time t. A high travel cost, on the opposite, is a

central incentive for individuals to switch hidden states. These two findings provide

essential insights on travelers’ mode searching attitude. An a-priori long travel time

for the habitual mode may indicate that traveling with alternative modes must be

equally time consuming. Therefore, changing the attitudes towards difference alter-

native modes is less likely. However, an excessive travel cost works the other way

around.

The socio-demographic variables further indicate that female travelers, trav-

elers with driver’s license, and lower-income individuals are more likely to change
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hidden modal preference. These variables are interacted with LOS variables [98] to

reflect different effects of LOS on different population segments.

Table 4.4: Estimation Results for the Hidden Markov Transition Matrix

Variables Interaction with Estimates Std. Err.

Transition from car-loving to transit-loving

Travel time (min.) - -0.72 0.02
License Travel time 0.98 0.13
Gender Travel time -0.28 0.03
Travel cost ($) - 1.51 0.38
High income Travel cost -2.75 0.54

Transition from transit-loving to car-loving

Travel time (min.) - -0.49 0.11
License Travel time 0.39 0.11
Gender Travel time -0.09 0.04
Travel cost ($) - 4.20 0.58
High income Travel cost -0.23 0.75

4.2.2.4 State-dependent search

Table 4.5 reports the posterior means and posterior standard deviations of

the HMM. Insignificant socio-demographic variables are excluded. The intercepts

indicate an intrinsic propensity to search different modes. The parameters that

capture the effect of level of service experiences indicate that, in general, longer

travel time for the habitual mode encourages travelers to search faster travel modes

and excessive travel cost encourages travelers to search lower-cost travel modes.

Significant effects of socio-demographic variables are found in car-loving state.

The model also indicates fairly strong mode search inertia effects. Individual are

highly likely to stay with a mode they have previous used especially for carpoolers
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Table 4.5: Estimation Results for the Hidden Markov Model

Variables State 1 State 1 State 2 State 2
Estimates Std. Err. Estimates Std. Err.

Intercept (Search auto) 0.393 0.153 -2.794 1.968
Intercept (Search carpool) -1.868 1.741 2.950 1.738
Intercept (Search transit) -3.735 1.777 2.576 2.160
Travel time (search auto) 0.028 0.011 1.375 0.079
Travel time (search carpool) 0.113 0.020 1.253 0.080
Travel time (search transit) 0.055 0.011 1.228 0.081
Cost (search auto) -0.043 0.142 -0.957 0.373
Cost (search carpool) -5.742 1.082 -0.712 0.375
Cost (search transit) 0.086 0.155 -0.788 0.407
License (search auto) 1.318 0.120 - -
License (search carpool) 1.473 0.124 - -
License (search transit) 1.057 0.479 - -
Gender (search auto) 1.222 0.380 - -
Gender (search carpool) 1.865 0.747 - -
Gender (search transit) 1.101 0.388 - -
High income (search auto) 1.394 0.437 - -
High income (search transit) 0.947 0.424 - -
CM1 is auto (search auto) 1.508 1.708 5.648 1.922
CM is auto (search carpool) -3.551 2.206 -1.410 1.909
CM is auto (search transit) -0.447 1.894 -4.115 2.102
CM is carpool (search auto) 0.863 1.885 0.478 2.125
CM is carpool (search carpool) 8.363 1.920 1.743 1.975
CM is carpool (search transit) -3.012 2.386 -0.769 1.884
CM is transit (search auto) -1.825 1.651 -5.325 2.370
CM is transit (search carpool) 0.182 1.630 -0.334 2.061
CM is transit (search transit) 1.156 1.785 4.22 1.651
CM is walk/bike (search auto) -5.650 1.670 -3.662 2.428
CM is walk/bike (search carpool) -10.110 1.940 1.488 2.199
CM is walk/bike (search transit) -1.350 1.750 1.318 2.198

and walk/bike users in hidden state 1.
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4.2.3 Demonstration

4.2.3.1 Individual dynamics

One of the interesting features of our model is the ability to investigate the

individual-level effects of dynamic covariates on the transitions between the hidden

states. It allows modelers to predict not only the outcome but also the timing

of modal preference changes and searching choice changes. This unique feature

is ensured by the heterogeneous transition matrix specified in our model. As a

demonstration, let us consider a female traveler with driver’s license and an initial

low household income. Let us further assume that her habitual travel mode at

time t − 1 is auto with 10 minutes travel time and 1 dollar travel costs. Then the

baseline transition matrix for this individual is shown as the left matrix in Table

4.6. The middle matrix in Table 5 examines the scenario when this individual’s

income level increases. The auto-loving state becomes stickier since the likelihood

of leaving this state drops drastically from 0.79 to 0.19. The third matrix in Table

4.6 represents the scenario when the auto travel cost increases by 1 dollar. In this

case, the individual is more likely to switch to the carpool/transit-loving state.

Using the heterogeneous transition matrix, the paper further demonstrates the

model’s capability in capturing individual-level hidden state dynamics. Consider a

licensed and high-income male traveler who originally is in carpool/transit-loving

state and actually uses transit. For simplicity, let us assume that during each time

period, auto travel cost remains at 1.5 dollars and that transit and auto travel

times are the same (this individual does not have this information because he is
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Table 4.6: The Posterior Transition Matrices Demonstrating Individual Dynamics

Baseline Income + Cost +

t t t

Auto- Transit- Auto- Transit- Auto- Transit-
t− 1 Lover Lover Lover Lover

Auto-
Lover 0.21 0.79 0.81 0.19 0.06 0.94
Transit-
Lover 0.91 0.09 0.89 0.11 0.99 0.01

using transit only right now). This example considers the impacts of travel time

increase and travel cost increase on both modes separately. The model setup and

the analytical results are shown in Fig. 4.8a. The red curve denotes the baseline

scenario, showing that the individual gradually exhibits a slight tendency towards

car-loving. When the transit fare increases to the same level as auto cost, the

asymptotic propensity for this individual to be in car-loving state greatly increases

to about 70% as shown by the blue curve. The green curve shows that when the

travel time grows to an unpleasant level while travel cost stays the same, this traveler

at the beginning is very likely to change attitude. After experiencing the same level

of congestion (as we assumed), this individual gradually switch back to transit-lover

state as transit has a more reasonable travel cost.

Given other conditions equal, a female individual’s behavior is predicted differ-

ently as shown in Fig. 4.8b. She hesitates and wanders between the two states even

if the transit fare increases. And if the congestion gets more severe, she becomes

conservative and stays being a transit-lover. This outcome suggests that excessive

travel time discourages female travelers to switch hidden states (in particular, a too
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Figure 4.8: Numerical examples of heterogeneous HMM and individual dynamics

long commute trip by auto could be especially unpleasant for female drivers). Table

4.5 and Figure 4.8 highlight the capability of the model in capturing short-term

and long-term individual dynamics and predicting heterogeneous travel behavior
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over time. It demonstrates that with the observed mode searching and switching

sequences, one could dynamically segment the individuals or simulated agents in

a typical agent-based/activity-based model into different habitual preference sta-

tus. Future research could look at incorporation of unobserved heterogeneity in

transition probability functions by specifying a hierarchical Bayesian structure [56].

Researchers could explore even further to consider some dynamic covariates as de-

cision variables (e.g. getting a drivers’ license and purchasing a vehicle).

4.2.3.2 System dynamics

The substantive policy implications can also be obtained from the estimated

HMM model regarding the effect of changes in level-of-service on travelers’ mode

searching behavior. By altering the level-of-service variables during the peak period,

most transportation management strategies, such as congestion pricing and parking

pricing, tend to effect a change in mode choice [16] especially to discourage drive-

alone mode. The agent-based simulation will be applied to analyze system-level

travel modal changes. This model will be demonstrated as application-ready and

capable tool for predicting dynamic behavior. A more rigorous demonstration on

the dynamic effects can be done once the mode search dynamics are integrated with

a mode switching model and a multimodal simulation model.
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4.3 Departure Time Search and Switch

4.3.1 Search Rules

Once an individual decides to start searching for alternatives (i.e. subjective

search gain becomes larger than perceived search cost due to either new spatial

knowledge or external stimuli such as increase level of congestion and/or schedule

delay associated with the current departure time choice), the individual employs a

set of rules to search alternative departure times, which need to be empirically de-

rived for the positive modeling approach. The search for alternative departure times

is obviously not random due to scheduling constraints and anchoring effects. For

example, an individual, whose current departure time is 7:30 a.m. with a preferred

arrival time at 8:00 a.m., may adjust the departure time when congestion worsens.

It is more likely that this individual will first experiment with alternative departure

times closer to 7:30 a.m. (anchoring effect). In addition, it is less likely that this

individual will consider departure times later than 7:30 a.m. due to scheduling con-

straints. To consider these factors, we define departure time alternatives that anchor

at the current departure time, e.g., 0−15 min earlier, 0−15 min later, 15− 30 min

earlier, 15−30 min later, and so on. Schedule delay considerations are incorporated

into the explanatory variables in the search rules.

If-then rules are selected to represent departure time search heuristics for sev-

eral reasons because they are shown to be capable of replicating various types of

human heuristics and decision-making processes in previous expert systems and

knowledge extraction research, and because the execution of if-then rules at the
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model implementation stage requires minimum computational resources which is

important especially for large-scale departure time and peak spreading models in-

volving millions of independent decision-makers.

Part 2 of the survey data on search processes are used to derive search rules.

The variables used in the search rule induction model include: arrival schedule delay

early (ASDE ), arrival schedule delay late (ASDL), travel time (TT ), and free flow

travel time (TT* ). Equations 4.18, 4.19, and 4.20 define the arrival schedule delay

variables (i.e. ASDE, ASDL, and Delay), which is consistent with the definition in

previous research. PAT denotes the preferred arrival time, AT the actual arrival

time, Delay the difference between actual travel time (TT ) and free flow travel time

(TT* ).

ASDE = max(0, PAT − AT ) (4.18)

ASDL = max(0, AT − PAT ) (4.19)

Delay = (TT − TT ∗)/TT ∗ (4.20)

Various machine learning algorithms [140] are able to derive if-then rules from

behavior process survey data. We have tested four proven algorithms including

C4.5 [111], PRISM [30], PART [47], and RIPPER [35], and selected PART based on

predictive accuracy of the derived search rules on a validation dataset. The complete

departure time rule sets are presented below:

Search 60+ min earlier, if

[ASDL > 70] Rule 1
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Search 30-60 min earlier, if

[45 < ASDL ≤ 70] Rule 2

Search 0-30 min earlier, if

[0 < ASDL ≤ 30 AND Delay > 0] Rule 3

Search 0-30 min later, if

[ASDL > 30 AND Delay > 50%] Rule 4

OR [ASDL ≤ 10 AND ASDE ≤ 40 AND Delay ≤ 50% AND TT ≤ 65] Rule 5

Search 30-60 min later, if

[ASDL = 0] Rule 6

Search 60+ min later, if

[ASDE > 75] Rule 7

OR [ASDE > 45 AND Delay > 10%] Rule 8

Otherwise, search 0-30 min earlier. Rule 9

Rule 1 states that individuals will consider shifting their departure times earlier

by more than 60 if their experienced arrival schedule delay late is over 70 minutes.

All other rules can be similarly interpreted. These rules collectively replicate the

heuristics individuals use to identify alternative departure times based on their cur-

rent experiences and knowledge. As spatial knowledge is updated during the search

process, the same rule set can generate different alternatives for the same individual.

This set of rules is in a full disjunctive normal form [140], a form of closed-

world assumption. In the rule set, each of its variables appears exactly once in

every clause. In another word, in each round of searching, any particular searcher

can only be classified into one class and follow one of those derived search rules at
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a time. Therefore, in the set, rules cannot conflict and there is no ambiguity in rule

interpretation.

4.3.2 Decision Rules under Uncertainty

Once an individual found a new departure time alternative, the individual after

experimenting with the new alternative will either change or not change departure

time. This adjustment decision-making process can be modeled with a set of decision

rules. The dataset employed here is collected from a stated-preference departure

time survey, where seven different scenarios with various travel time duration and

toll cost specifications are given to each respondent. The empirically derived decision

rule set consists of 13 rules, presented below. RIPPER is chosen for its superior

predictive performance on validation dataset, and the clear physical meaning of the

derived behavioral rules.

The travel time uncertainty (RANGE) is specified here as the 95% confidence

interval of the travel time duration. Other explanatory variables in the decision rules

include: travel time (TIME), arrival schedule delay early (ASDE), arrival schedule

delay late (ASDL), monetary cost (COST), household income (INCOME), gender

(GENDER).The variable flex is a dummy variable that is equal to one if the trip

maker’s preferred arrival schedule is flexible, and 0 otherwise. denotes percentage

changes of the alternative departure time attributes from the attributes of current

departure time choice.

Switch to the alternative departure time, if
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[∆RANGE ≤ −16.7% AND ∆TIME ≤ −15.4%] Rule 1

[∆TIME ≤ −25% AND ∆RANGE ≥ 0%] Rule 2

[∆RANGE ≥ 0% AND ∆COST ≤ −35.2% AND flex = 1] Rule 3

[∆RANGE ≤ 0% AND −8.3% ≤ ∆COST ≤ −35.2% AND INCOME <

$150K AND ∆TIME ≤ 10%] Rule 4

[∆RANGE ≤ 0% AND ∆COST ≤ −8.3% AND ∆ASDL ≤ 35% AND

INCOME < $150K] Rule 5

[−16.7% ≤ ∆RANGE ≤ 0% AND INCOME ≤ $50K] Rule 6

[∆ASDL ≤ −38% AND ∆RANGE ≥ 0% AND ∆TIME ≥ 17%] Rule 7

[−66.7% ≤ ∆RANGE ≤ 16.7% AND −4.2% ≤ ∆COST ≤ −35.2%] Rule 8

[INCOME ≤ $50K AND flex = 1 AND −22.7%∆TIME ≤ 16.6% AND

∆COST ≤ 20%] Rule 9

[INCOME ≤ $50K AND GENDER = female AND ∆RANGE ≤ −70%]

Rule 10

[INCOME ≤ $100K AND GENDER = female AND ∆TIME ≤ 8.3%

AND ∆RANGE ≤ −44.4%] Rule 11

[−21% ≤ ∆TIME ≤ −10% AND ∆ASDL ≥ 33% AND ∆RANGE ≤ −40%]

Rule 12

Otherwise, continue to use the current departure time. Rule 13

There apparently exist perception thresholds in travel time uncertainty. In

general, the rules imply individuals are more likely to change departure times as

long as the travel time uncertainty is lower. This risk aversion behavior is especially

significant for certain travelers, such as those who are with lower income (Rule 6)
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and whose gender is female (Rule 9 and 11). While strongly risk-loving behavior

(i.e. choose the riskier alternative given all other things equal) is not directly cap-

tured in the rule set, some travelers are implicitly risk-neutral or risk-loving and are

willing to try more risky departure time alternatives as long as they are better off in

other attribute(s). As shown by the Rule 2, 3, and 7, for instance, the travelers tend

to sacrifice the travel time reliability for the improved travel condition, i.e. shorter

expected travel time, lower travel cost, and less arrival schedule delay, respectively.

These different attitudes toward risk and travel time uncertainty are thereby sim-

ulated in the agent-based system. Drivers’ heterogeneity towards pricing is also

explicitly modeled (Rule 3 and 10). Rule 8 further suggests that drivers are willing

to pay up to an extra 10% of the original travel cost for a more reliable alternative.

These sensitivities potentially allow the model to analyze time-varying/dynamic

pricing, flexible work hours, and other peak spreading incentives. While the follow-

ing section presents a numerical example with natural peak spreading incentives,

we leave the simulation of various pricing scenarios and peak spreading effects for

future research.

4.3.3 Model Validation

Validating the rule sets is an important process proving the model’s credibility.

A within-sample validation is conducted for each of the model developed. In particu-

lar, ten-fold cross-validation has been employed in the validation, which is typically

seen in most practical limited-data situations [81]. Future research may explore

96



how innovative data collection and advanced survey methods, such as web-based in-

teractive games, simulation-based group dynamics, GPS surveys, and smart-phone

applications, can support and improve the validation.

In the ten-fold cross-validation, the original data sample is first randomly

partitioned into ten sub-groups. One sub-group is retained as the test set. The rest

nine sub-groups are used as the training set. Then the estimation and validation

process is repeated ten times so that each data sample is used exactly once for

validation. The aggregate cross-validation accuracy for the search scope modeling

is 93.3%, while six search scopes have been specified in the rules set. And the

validation of the decision rules can get 96.5% correctly classified instances.

4.3.4 Agent-Based Simulation

4.3.4.1 Baseline scenario

The computational feasibility to combine departure time model with various

macro-, meso- and microscopic network traffic models for peak spreading analysis

has been demonstrated in the author’ Master Thesis and other published papers

[141, 153, 146]. In this section, I enhance the numerical test with supply- and

demand-side uncertainty and demonstrate how the travelers’ actual departure time

decision-making process under various uncertainty scenarios. Since a large number

of uncertainty scenarios are specified and at this moment only the departure time

changes are considered in the model, a one-link highway commuting corridor with

one OD pair and two lanes is selected here as the test example for simplicity. Other
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setups of the numerical example are listed as follows:

• Link capacity is 1,600 vehicles per lane per hour.

• Link length is 33 miles, with two lanes.

• The base-case scenario is characterized by an initial demand in 15-minute

intervals from 4 a.m. to 11 a.m. A total number of 21,648 trips per day are

simulated in each iteration.

• The testing policy assumes a uniform 10% increase in OD demand across all

time intervals, which is expected to cause significant increase in congestion

(especially during the peak hours of the study period) and subsequently ad-

justment of departure times for certain commuters.

• Commuters’ arrival times in the base case are assumed to be their preferred

arrival times.

4.3.4.2 Demand and supply-side uncertainty scenarios

In order to examine how travelers’ make departure time decisions under uncer-

tainty, a number of demand-side uncertainty scenarios and a number of supply-side

uncertainty scenarios are defined and simulated in this paper. In each run of the

simulation, each traveler learns, makes departure time search, and adapts behavior

under certain demand-side and/or supply-side uncertainty.

On the demand side, the uncertainty is introduced by randomness of the total

travel demand from day to day. For instance, consider the case when a student
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commutes to campus on a daily base. She/he may encounter higher congestion

caused by day-to-day demand fluctuation such as special events, graduation, etc.

The coefficient of variation (CV, defined as the demand standard deviation divided

by the mean travel demand) can be used to measure the demand-side fluctuation.

In this study, 50 demand-side uncertainty scenarios are specified. The CV value

varies from 0 to 0.3 in a uniform step size.

On the supply side, the uncertainty is defined by lane failure rate. It is defined

as the probability that one lane loses the capacity due to certain events such as work

zone and traffic incidents, etc. Since we only define one link in the numerical example

for simplicity, the occasion that all the lanes on the same link fail at the same time

is neglected. 50 supply-side uncertainty scenarios are specified. The lane failure rate

varies from 0 to 0.0002 in a uniform step size.

Thus, a total number of 2,500 combinations of demand- and supply-side un-

certainty scenarios is produced and tested in this agent-based simulation setup. 100

random seeds are selected in order to varying the simulation results. And in each

uncertainty scenario, 100 iterations (simulated days) at maximum are conducted to

allow system-level performance measures to converge to their true values for that

particular scenario.

Fig. 4.9 verifies that as simulated by the numerical example, travelers actually

experience worse travel time reliability as the level of uncertainty increases. The re-

liability is measured by the coefficient of experienced travel time variation (i.e. the

standard deviation of the experienced travel time divided by the mean travel time).

As shown in Figure 4.9, the reliability is approximately monotone with respect to
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both the supply-side and the demand-side uncertainty. A reasonable interpretation

is that individuals are making one-dimensional departure time decisions. More dra-

matic reliability variation can be introduced by simultaneously considering together

the routing and changing departure time in a more sophisticated and realistic road

network.
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Figure 4.9: Experienced travel time reliability (measured by coefficient of travel
time variation)

Departure time search and switching behavior under uncertainty is illustrated

in Fig. 4.10. Overall, it agrees with the hypothesis that more travelers search for

alternatives in response to non-recurrent congestion due to increasing uncertainty

(contour color turns darker from the bottom-left to the upper-right). At the highest

uncertainty level, about 16% of the travelers have searched for alternatives. In-
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terestingly, we can observe that when both the supply-side and the demand-side

uncertainty reach peak (the upper-right corner in Figs. 4.10a and 4.10b, the av-

erage percentage of travelers who have searched/changed departure time drops to

the level of moderate uncertainty scenarios. This is because when the uncertainty

level is too high, a small amount of travelers keeps searching and changing due to

their extremely high subjective search gain. While most scenarios under low and

normal uncertainty level take some 30 simulated days to converge, under the high-

uncertainty scenario it takes significantly more iterations (about 90 iterations) for

the travelers to satisfy and for the model to converge given the uncertain situation.

Thus, the average percentage of travelers who have changed their behavior decreases

in this occasion.

Fig. 4.11 plots the ratio of travelers who have chosen more reliable departure

alternatives among all travelers who have searched. This ratio is defined as the

total number of travelers who have switched to or stayed in the less risky departure

times (i.e. of lower coefficient of experienced travel time variation) divided by the

total number of travelers who have searched for departure time alternatives. As

aforementioned, we observe a general trend of increased departure time searching

and changing propensities with increased system uncertainty (see Fig. 4.10). Here

we further explore travelers’ decision under uncertainty by calculating the percentage

of travelers who have chosen the less risky departure time alternatives when they

are making the switching decision. As depicted in Fig. 4.11, when the uncertainty

level is relatively low, about 60% to 65% of the travelers are able to choose more

certain alternatives. As the uncertainty grows to a certain level, as highlighted
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Figure 4.10: Daily departure time search and switching behavior under uncertainty

by the dash line, travelers become less successful in decreasing their experienced

uncertainty and this percentage of choosing lower risk decreases to about 50%. In

other word, travelers are almost indifferent between choosing riskier alternatives and
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choosing more reliable alternatives when uncertainty level grows to a certain level.

When the system becomes even more unreliable, travelers’ decisions are strongly

against more risky alternatives. Under the highest level of uncertainty scenario,

about 75% travelers in the system prefers alternatives associated with lower travel

time uncertainty.
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Figure 4.11: The percentage of travelers who choose the less risky departure time

Another interesting comparison when studying departure time searching and

switching behavior is between searching/switching to earlier time alternatives or

searching/switching to later time alternative. The ratio of travelers who searched for

earlier departure times (calculated as the total number of people who have employed

search rules to investigate earlier departure alternatives divided by the total number

of people who have searched for alternatives) is presented in Fig. 4.12a. Similarly,
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the ratio of travelers who switched to earlier departure times is calculated as the total

number of travelers who have decided to choose the earlier departure alternatives

divided by the total number of travelers who have decided to change their departure

time). And this ratio is presented in Fig. 4.12b.

As the system becomes more congested due to the demand growth, travelers

generally arrive at their destinations later than their preferred schedule (ASDL ¿

0) and this dissatisfaction encourages them to search (often biased towards earlier

alternatives). Interestingly, the numerical result suggests significant behavioral het-

erogeneity in this regard. Travelers are interested in earlier alternatives only when

the system-level uncertainty is relatively lower. As depicted by the dark grey zone

in the bottom-left corner of Fig. 4.12a and 4.12b, about 55% to 60% of the trav-

elers try earlier departure times when the supply- and demand-side uncertainty is

low. And under these circumstances, about 65% eventually decide to depart earlier

among those who have decided to change departure times.

Again, we observe a ribbon area in Fig. 4.12a and 4.12b, showing that when the

uncertainty increases to a certain level, the ratio of searching for earlier alternatives

and the ratio of switching to earlier alternatives drop drastically to below 40% and

below 55%, respectively. In other word, travelers in general are more likely to look

into later departure times under these uncertainty scenarios, even when they have

experienced schedule delay under the policy scenario that the total demand grows by

10%. This uncertainty zone is very consistent with the bounded dash line shown in

Fig. 4.12, which together indicates that travelers are somewhat indifferent between

earlier departures and later departures, and between lower risk and higher risk.
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Figure 4.12: The ratio of travelers who searched/switched to earlier alternatives

4.4 En-Route Diversion with Information Provision

4.4.1 Training Data from Driving Simulator Experiment

The data for developing the en-route diversion classifier is collected from a

driving simulator experiment designed by Human Performance Laboratory at the105



University of Massachusetts Amherst (see [130] for more details about the data).

63 effective subjects were recruited in this driving simulator survey. Subjects were

shown three types of route maps in the tests, shown in Fig. 4.13. Each type

of the maps appeared six times with different assigned travel times. Some social

demographic information (i.e. gender, age, and years holding a driver’s license) has

also been collected.

Map A:     Map B:    Map C: 
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Figure 4.13: Three types of maps in the driving simulator experiment

In Fig. 4.13, each map contains one routine route with deterministic travel

time tb and one risky diverting route using (m,n) to denote a random travel time

with two ordered outcomes m or n (m < n), each with probability 50%. The risky

diverting branch gets more complicated in topology from Map A through C. Map A

contains one simple-risk diversion, with a possible low travel time tL and high travel

time tH . In Map B, a bifurcation is added to the diverting route, where the safe

detour has a deterministic travel time tH . The risky route has a low travel time tL

and a prohibitively long delay tM , which could be due to an incident. At Node i, a

subject will receive real-time information on the realized travel time on the diverting

route. Map C adds another bifurcation to the diverting route, upstream of the one

in Map B, with two possible outcomes tb and tM . Again, real-time information is
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available at Node i1 and i2 on the realized travel time. Similarly the information

at either node could help drivers avoid the extremely high travel time tM on the

diverting route. A driver, while driving, takes into account the real-time traffic

information to some extent in making en-route diversion choice at the Divert Point.

4.4.2 A Logit Model

A binary logit model is first specified and estimated. There are two alternatives

denoted by: + (i.e. not-divert) or - (i.e. divert). In this model, expected travel time

(Time) and travel time unreliability (UNR) are employed as two major explanatory

variables. UNR Thus, individual n’s systematic utility function of choosing the

routine route (i.e. not divert) is formulated as:

Vn(+) = β0 + β1 · Timen (4.21)

The utility of choosing the alternative route (i.e. divert) is formulated as:

Vn(−) = β1 · Timen + β2 · UNRn + β3 ·Gendern + β4 · Riskn (4.22)

The utilities are applied within the logit form to yield the probability of a

given diversion observation that individual n chooses alternative C.

Pn(C) =
exp(Vn(C))∑

Cn={+,−} exp(Vn(Cn))
(4.23)
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The explanatory variables are defined as:

• Time: the expected travel time. Time = tb in “not divert” alternative and

Time = tL+tH
2

in “divert” alternative.

• UNR is specified as the 95% confidence interval of the random travel time

duration.

• Gender : a dummy variable which equals one if the subject is male, zero oth-

erwise.

• Risk : a dummy variable which equals one for Scenario Map B and C, zero

otherwise.

Risk is a dummy variable reflecting the complexity (or risk) of the alternative

route. Consider the situation when the diverting route involves bifurcation and

possible huge delay tM (the situation in Map B and C shown in Fig. 4.13). Even

if theoretically the drivers can make the correct and strategic en-route decision to

avoid the huge delay penalty tM with the guidance of the real-time information at

the information point i (or i1 and i2 in Map C), drivers are less likely to divert

considering the little reaction time in making this decision. Choosing this type of

alternative route is considered as a diversion of high risk.

The logit model estimates are presented in Table 4.7. The estimated coeffi-

cients of the variables are all significant and with the correct signs. The negative

alternative specific constant β0 indicates that under the driving simulation scenar-

ios, the likelihood of diversion from the routine route has been positively affected
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by certain factors, e.g. the provision of travel time information. Travel time and

travel time unreliability negatively affect drivers’ choice. Male drivers were more

likely to divert from their routine routes. This finding conforms to previous en-route

diversion research [94, 90, 3, 74]. The model estimates also showed that when the al-

ternative route consists of more complex network topology and therefore represents

higher risk, the drivers were less likely to divert.

Table 4.7: A Binary Logit Model for En-Route Diversion

Variables Coefficients Estimates Std. Err. T-test

Const. (not divert) β0 -0.358 0.189 -1.90
Time (min.) β1 -0.119 0.009 -13.72
UNR (min.) β2 -0.041 0.008 -5.09

Alt.=diverting

Gender β3 0.433 0.103 4.20
Risk β4 -1.22 0.107 -11.43

# obs. 2095
Initial Log Likelihood -1452.2
Log Likelihood -1130.3
ρ2 0.222

In this paper, evaluating the predicted response v.s. the actual responses

was used to compare between models. A within-sample ten-fold cross-validation is

conducted for validating the en-route diversion model. This validation technique is

typically seen in most practical limited-data situations [81]. The aggregate cross-

validation accuracy for the binary logit model is 91.3%.
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4.4.3 A Naive Bayesian Classifier

This paper then proposes a naive Bayesian classifier (see Fig. 4.14) to model

the en-route diversion behavior based on the same dataset. In Fig. 4.14, nodes

represent a tuple of stochastic attributes (F1, F2, · · · , Fn) and a behavioral classifi-

cation variable denoted by C. There are two behavioral classes denoted by: + (i.e.

the not-diverting class) or - (i.e. the diverting class). The directed arcs represent

conditional dependencies between variables.

 

Figure 4.14: the Naive Bayes model structure

Variables Fi used in this model include expected travel time (Time), travel

time unreliability (UNR), gender (Gender), and diverting risk (Risk). ∆ denotes

percentage changes of the alternative route’s attributes from the attributes of the

routine route.

For each training observation F, the naive Bayesian classifier is a function

that assigns a class label to it. This method learns the conditional probability of

each variable Fi given the class C. According to Bayes’ Rule, the probability of the
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example Fa = (F1, F2, · · · , Fn) being class + is:

p(+|F) =
p(+)p(F|+)

p(F)
(4.24)

For a training observation, naive Bayes classifier assumes conditional indepen-

dence of every other attribute, given the value of the classification variable:

p(F|+) = p(F1, F2, · · · , Fn|+)

=
n∏

i=1

p(Fi|+)

(4.25)

Thus, the equation 4.26 shows the functional form of naive Bayesian classifier.

The empirical observation is classified as + if and only if fnb(F) ≥ 1.

fnb(F) =
p(+)

p(−)

n∏
i=1

p(Fi|+)

p(Fi|−)
(4.26)

The estimated naive Bayes classifier model using the full training dataset is

presented in Table 4.8.

In the model, ∆Time and ∆UNR are estimated as normal distributed random

variables. Their conditional prior probabilities are thus calculated as:

p(x|C) =
1

σx,C
√

2π
exp(−x− µx,C)2

2σ2
x,C

) (4.27)

Where C represents the classification; µx,C denotes the estimated mean of x

given class C; and σx,C denotes the estimated standard error of x given class C.
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Table 4.8: Conditional Prior Probability Estimates for the Naive Bayes Classifier

Class and Variables Mean Standard
Class Prior Deviation

Gender = male p(male|+) = 0.403 N/A
Gender = female p(female|+) = 0.597 N/A

Class: + Risk = low p(low|+) = 0.504 N/A
p(+) = 0.53 Risk = high p(high|+) = 0.496 N/A

∆Time 0.022 0.262
∆UNR 0.452 0.242

Gender = male p(male|−) = 0.532 N/A
Gender = female p(female|−) = 0.468 N/A

Class: - Risk = low p(low|−) = 0.548 N/A
p(−) = 0.47 Risk = high p(high|−) = 0.452 N/A

∆Time -0.163 0.066
∆UNR 0.304 0.270

The estimates have similar model interpretation as the binary logit estimates.

Conditioned on the behavioral class -, the probability estimates of ∆Time (i.e.

mean value of -0.163 and standard deviation of 0.066) suggests that lower expected

travel time is one major incentive that motivates drivers to divert. On the other

hand, the probability estimates of ∆Time conditioned on behavioral class + has

mean value that is close to zero and has larger standard deviation, which indicates

that not-diverting class is almost indifferent to expected travel time. The conditional

probability estimate of ∆UNR for the diverting class has positive mean value, which

indicates that drivers take risk to some extent when making en-route diversion deci-

sion. When travel time unreliability increases to a high level, drivers are more likely

to stay with their routine route as p(∆UNR|+) has higher mean than p(∆UNR|−).

The estimates on discrete variables (i.e. Gender and Risk) are also consistent with

the estimates of binary logit model, suggesting that drivers that are male and/or in
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lower-risk diversion situations are more likely to divert to the alternative routes.

With these prior probability estimates, the model predicts diversion proba-

bility for each empirical observation. For instance, consider the case that a male

driver is in low-risk diversion scenario with ∆Time= −10% (i.e. alternative route

improves expected travel time by 10%) and ∆UNR= −10% (i.e. alternative route

improves travel time unreliability by 10%). By employing Equation 4.24, the model

predicts that his diversion probability is 92.53%.

A within-sample ten-fold cross-validation is conducted for validating this model.

The aggregate cross-validation accuracy is 97.7%, which is slightly better than the

binary logit model. When applied to predict diversion behavior, the predictive per-

formance could differ dramatically from the actual observation. For planning and

operational application purposes, this model needs to be further calibrated, as more

field data becomes readily available. This issue is further discussed and studied in

the next section of the paper.

4.5 Calibration Methods

The survey-based data collection is often criticized to be biased [83]. The dis-

crepancy between survey respondents’ stated behavior and their actual behavior can

be significant. Taking driving simulator experiment as an example, certain features

of the simulation experiment may reinforce the subjects’ perception of the simulator

as artificial, although realism is clearly a goal when designing the scenarios. Sec-

ondly, drivers’ knowledge and behavioral propensity differ on a case-specific basis
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and the transferability of the models may be an issue when the planning and oper-

ational application of the model to a specific region is of interest. Taking en-route

diversion as an example, more drivers will choose to divert in the cases where a

number of parallel routes can serve effectively as alternative routes than in those

cases with only one or two not-so-good alternative routes. Collectively, these facts

emphasize the need of a stand-alone calibration process in order to map the models

(designed using stated behavioral data) to field observations.

I here in this section compare actual en-route diversion behavior from field

observation with our model’s prediction. Even though our rule-based diversion

model can explain the driving simulator data pretty well (over 90 percent accuracy

of cross-validation), it performs poorly if employed to predict actual behavior in two

real-world diversion scenarios. Therefore, to supplement the driving simulator data,

real-world field observations on an often-congested commuting corridor are collected

as the testing dataset, in order to re-calibrate the en-route diversion model. Then,

a Bayesian calibration is performed to transform the naive Bayes classifier scores

into more accurate probability estimates on local observations.

4.5.1 The Discrepancy between Stated Behavior and Actual Behav-

ior

As shown in Fig. 4.15, I-95 and I-895 are two alternative routes that pass

through the tunnels under the Baltimore Harbor and eventually rejoin at east Bal-

timore. They split approximately five miles prior to Baltimore City. The DMS
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device has been installed prior to the split and is often used for displaying actual

travel time, delay, and diversion messages regarding these two alternative routes

[62]. A number of Bluetooth sensors are deployed along these two routes to detect

the actual travel time as well as the en-route diversion behavior [62], as shown in

Fig. 4.15.

While enormous traffic-related ground truth information was collected during

the two-week Bluetooth sampling period, two real-world en-route diversion scenarios

were observed and extracted for the analysis. Scenario 1 is shown in Fig. 4.15a. In

this case, the DMS device posted travel time messages about the congestion on I-95

and suggested drivers to divert to I-895. Scenario 2 is shown in Fig 3b, where the

DMS device reported major delays on I-895 and diverted drivers to the I-95/I-695

corridor. The date, duration, and traffic diversion rate of these two scenarios are

reported in Table 4.9.

Table 4.9: En-Route Diversion Percentage between I-95 and I-895

Scenario 1 Scenario 2 Base Case

DMS Divert to I-895 Divert to I-95 Free-flow
and travel time and travel time travel time

Date and 3/31: (16:50–17:16) 4/2: N/A
(Time Periods) 4/6: (9:48–10.04) (7:31–7:46)

(10:07–10:21) (9:32–12:23)
(16:05–16:21 ) (12:32–18:23)

Avg. I-95 % 78.5 93.9 88.7
Avg. I-895 % 21.5 6.1 11.3
Std. Dev. 12.03 7.54 6.04

During the time periods when diversion messages were posted, the diversion

behavior is significant. For instance, in Scenario 1, approximately 10% of I-95 users
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(a) Scenario 1: simple-risk diversion

 

(b) Scenario 2: high-risk diversion

Figure 4.15: I-95/I-895 En-route diversion scenarios and bluetooth sensor locations

decided to switch to the I-895 corridor. A total number of 39191 Bluetooth devices

have been detected during this two-week study period. Then the data has been

processed as follows.

By matching the Bluetooth Machine ID, 1186 Bluetooth devices that have

been observed during the time periods of Scenario 1 and 2 were also recorded at
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least twice in other time periods. Thus the testing dataset consists of 1186 effec-

tive Bluetooth samples, with the routine route information and the actual en-route

diversion decisions during Scenario 1 and 2 successfully observed. The expected

travel time and travel time reliability associated withe the routine route and the

alternative route have been derived using the exact time information recorded by

the Bluetooth detectors at the time when the devices passed by.

When trying to apply the en-route diversion behavioral model to this field data,

information on variables Genderand Risk was also needed for model prediction.

Gender has been generated by using Monte Carlo simulation. For variable Risk,

Scenario 1 represented the low-risk diversion case defined in the driving simulator

experiment (Map A in Fig. 4.13). Scenario 2, wherein the downstream of the

alternative route has a further bifurcation (i.e. I-695), represented the high-risk

diversion case.

4.5.2 A Bayesian Approach to Calibrating the Naive Bayesian Clas-

sifier

Then the Naive Bayes model has been applied to the Bluetooth samples. The

model assigned each testing example a score between 0 and 1 that can be interpreted,

in principle, as a class membership probability estimate. However, it is well known

that these scores are not well-calibrated [140]. In this subsection, the paper demon-

strated the relatively low predicting capability of the model on the field data and

proposed a Bayesian calibration approach which significantly improved the accuracy
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of the prediction. Various quantitative performance measures are summarized in the

next subsection.

In Fig. 4.16 we show the receiver operating characteristic (ROC) estimated

for the en-route diversion testing dataset. ROC curve is typically employed for

evaluating data mining schemes [140]. The true positive (i.e. the predicted class

and the actual class are the diverting class +) rate is plotted on the vertical axis

against the false positive (i.e. the predicted class is − but the actual class is +) rate

on the horizontal axis. The perfect classification would yield a point in the upper

left corner, representing 100% accuracy. The diagonal line represents a completely

random guess. If the classifier is well-calibrated, the ROC curve should be above

the diagonal line. The figure demonstrates the effect of overoptimistic probability

estimation. The model’s prediction is too optimistic, predicting very high diversion

probabilities and thus yields a high false positive rate. In actuality, the diversion

percentage is much lower than the estimated value. As depicted in Table 4.9, the

reported average I-95/I-895 percentages suggest that roughly 1 out of 9 vehicles

decide to use the diverting route in Scenario 1 and roughly half of the vehicles

decide to divert in Scenario 2.

The Bayesian approach to calibrating the naive Bayes classifier is illustrated

in Fig. 4.17.

To differentiate from the training observations F, testing data points are de-

noted as E. The en-route diversion classifier produces a prediction about an em-

pirical data point E in the testing dataset. Also, it gives some confidence score

s(E), indicating the strength of its decision that the empirical observation belongs
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Figure 4.16: ROC curve for the naive Bayes en-route diversion classifier.

to the “not divert” class. The log-odds (equation 4.28) of the classifier’s estimate

are usually defined as s(E) for recalibrating a typical data mining classifier. This

measurement is useful because it scales the outputs from [0, 1] to a space [−∞,+∞]

where Gaussian and other distributions are applicable.

s(E) = log
p(+|E)

p(−|E)
(4.28)

The confidence scores (i.e. the log-odds) and predicted diverting probabilities

may not necessarily match the empirically observed probabilities. For recalibrating

the classifier, a certain posterior function performing a mapping of the score s to

the probability p(+|s(E)) is needed, in order to obtain a better predicting accuracy.
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Figure 4.17: A Bayesian approach to calibrating the naive Bayes classifier.

Here the paper breaks down the problem to the two specific classes. An estimator

for each of the class-conditional densities (i.e. p(s|+) and p(s|−)) is produced for

the diversion class and the not-divert class. Then, Bayes’ Rule and the class priors

are used to obtain the estimate for p(+|s(E)):

p(+|s) =
p(+)p(s|+)∑

C={+,−} p(C)· (s|C)
(4.29)

For the calibration function of the class-conditional densities, a Gaussian and

a generalized extreme value (GEV) are fit to each of the class-conditional densities

using the usual maximum likelihood estimates. The fits of these two functions rep-

resent a qualitative comparison between using symmetric distributions and using
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asymmetric distributions to approximate the class-conditional densities. Fig. 4.18

shows the calibration function fits produced by these methods, versus the actual

testing data. The actual testing data behaviors are illustrated as nonparametric

fixed-width kernels. Quantitative performance measures of these calibration func-

tions are offered in the next subsection.
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Figure 4.18: Estimated class conditional score densities versus the actual densities
of the testing dataset.

In general, the calibration results agree with the empirical observation. The

average value for the naive Bayes log-odds is approximately -0.5, which is consistent

with the low diversion rates empirically perceived from the testing dataset. In other

words, the optimistic prediction estimated by the en-route diversion model is well

captured and recalibrated by this Bayesian calibration process. For the diversion

class (-), the test data curve plotted in Fig. 4.18 skews towards the left side, as
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the en-route diversion model gives these observations higher probability estimates

to divert. This is the opposite for the not-divert class (+).

4.5.3 Performance Measures

The calibration function maps the estimated probabilities (i.e. log-odd scores)

to the actually observed diversion rates. Now the evaluation of the calibration results

is of concern. There are at least two types of performance measures that have been

typically used in data mining to assess the quality of the probability estimates: i.e.

log-loss [59] and squared error [25, 39]. While actually meaning an overall improved

prediction quality, a better score according to these rules, sometimes has been loosely

termed improving “calibration” [14].

The actual classification for an empirical observation E (with class C(E) ∈

{+,−}) in the testing dataset is observed. Let δ denote the Kronecker delta function

which equals 1 if the two arguments are equal to each other and 0 otherwise. The

log-loss and the squared error (Error2) are defined in Equations 4.30 and 4.31,

respectively.

log loss = δ(C(E),+) log p(+|E)

+ δ(C(E),−) log p(−|E)

(4.30)

Error2 = δ(C(E),+)(1− p(+|E))2

+ δ(C(E),−)(1− p(−|E))2
(4.31)

This paper first reports the average log-loss and mean squared error (MSE )
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for the performance measure of the calibration. The results are given in Table

4.10. Both calibration functions result in significant improvement for the model’s

prediction accuracy, as the average log-loss statistic has been improved from -1.9909

to -0.9750 and -0.4792 respectively. The MSE has been reduced from 0.2855 to

0.0921 and 0.0767 respectively. Overall, asymmetric distributions (for instance,

GEV in this case) tend to be empirically preferable and outperform symmetric

distributions in terms of prediction accuracy. After the calibration, the receiver

operating characteristic curves for Gaussian and GEV functions are plotted again

in Fig. 4.19 to visualize the enhanced calibration results. Area under the curve

(AUC) statistics are summarized in Table 4.10 for a direct interpretation of the

ROC curves.

Table 4.10: Results for Calibrating Naive Bayes Model

Performance Measures Naive Bayes Gaussian GEV

Total Log-loss -2361.3 -1156.4 -568.34
Avg. Log-loss -1.9909 -0.9750 0.4792
Total Squared Error 338.66 109.34 90.947
Mean Squared Error 0.2855 0.0921 0.0767
Predicting Accuracy 0.5877 0.9039 0.9182
Area Under Curve 0.3514 0.6442 0.6449

This section has developed and demonstrated a Bayesian approach which can

be employed to calibrate the naive Bayes probability estimates predicted by the naive

Bayes en-route diversion model. This approach is a consistent and theoretically

sound parametric method to transform the predicted diversion probabilities to the

actually observed probabilities. This approach is very flexible and thus can be

easily transfered to other study areas to analyze diversion-related operations and
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Figure 4.19: ROC curves for the Bayesian calibration.

management strategies, such as ATIS, DMS, the provision of real-time information,

etc. It has the practical value that researchers and practitioners may potentially

apply the en-route diversion model to other regions based on recalibration using

locally collected field observations.

4.6 Summary

This chapter introduces a theoretical framework to modeling multidimensional

travel behavior based on artificially intelligent agents, search theory, and bounded

rationality. For decades, despite the number of heuristic explanations for different

results, the fact that “almost no mathematical theory exists which explains the re-

sults of the simulations” [38] remains as one of the large drawbacks of agent-based
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computational process approach. This is partly the side effect of its special feature

that “no analytical functions are required”. Among the rapidly growing litera-

ture devoted to the departure from rational behavior assumptions, this theoretical

framework makes effort to embed a sound theoretical foundation for computational

process approach and agent-based microsimulations. The theoretical contribution

is three-fold:

• A pertinent new theory of choices with experimental observations and estima-

tions to demonstrate agents with systematic deviations from the rationality

paradigm. Modeling components including knowledge, limited memory, learn-

ing, and subjective beliefs are proposed and empirically estimated to construct

adaptive agents with limited capabilities to remember, learn, evolve, and gain

higher payoffs. All agent-based models are based on empirical observations

collected via various data collection efforts.

• Modeling procedural and multidimensional agent-based decision-making. In-

dividuals choose departure time, mode, and/or route for their travel. Individ-

uals also choose how and when to make those choices. A behaviorally sound

modeling framework should focus on modeling the procedural decision-making

processes. This study seeks answers to questions that largely remain unan-

swered including but not limited to: (1) when do individuals start seeking

behavior changes? (2) How do they initially change behavior? (3) How do

they switch behavior adjustment dimensions? (4) When do they stop making

changes?
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• The transformation from the static user equilibrium to a dynamic behavioral

equilibrium. Traditional solution concepts are based on an implicit assump-

tion that agents have complete information and are aware of the prevailing

user equilibrium. However, a more realistic behavioral assumption is that in-

dividuals have to make inferences. These inferences can be their subjectively

believed search gain (or perceived distributions of travel time and travel cost),

the multidimensional alternatives they subjectively identify, and the heuristics

they employ to evaluate alternatives. It is the process of making inferences

that occupies each individual in making a decision. With search start/stop

criteria explicitly specified, this process should eventually lead to a steady

state that is structurally different to user equilibrium.

The estimation of the proposed agent-based models usually needs additional

behavior process data. Whether or not the increased data needs can be justified by

improved model realism and model performance in applications can be a subject

for further examination. This chapter empirically estimates the models using data

collected from a stated adaptation survey, a similar but different survey structure

compared to stated preference experiments. This survey method effectively captures

adaptations in response to changing attributes or context and can record behavior

process if implemented in an iterative manner (see e.g. [73]). The observed behavior

process actually is a search path possessed by each respondent. This historical

information can be applied to further calibrate the knowledge model or the search

cost models. Another future research direction may explore how advanced data
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collection technologies such as GPS-surveys, smartphone applications, and social

network data can improve the affordability and quality of behavior process data

and further support the proposed modeling framework.

The numerical example presented in the paper highlights the capabilities of

the proposed theory and models in estimating rich behavioral dynamics, such as

multidimensional behavioral responses, day-to-day evolution of travel patterns, and

individual-level learning, search, and decision-making processes. The computational

efficiency of the proposed models needs further exploration through real-world im-

plementations using agent-based simulation techniques. It is believed that the flex-

ible framework, computational efficiency, and more realistic assumptions can make

the proposed modeling tool extremely suitable for integrated large-scale multimodal

planning/operations studies which typically have to cope with millions of agents.

This work is primarily exploratory in its conceptualization of a descriptive theory,

estimation of quantitative models, and demonstration in an agent-based microsim-

ulation. In an era of big-data access, multi-core processors, and cloud computing,

the ambition of transportation demand modelers has never been greater. The hope

is that the preliminary findings in this chapter could raise interest in the behavioral

foundation of multidimensional travel behavior as well as in microsimulating people’s

complex travel patterns in the time-space continuum. Extensive examination of the

proposed tool on a larger and more representative survey sample and for real-world

studies is necessary before we can conclude that the tool is fully practice-ready.
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Chapter 5

Integrating Agent-Based Models with DTA and Applications

As demonstrated in Chapter 4, rule-based models and artificially intelligent

agents can improve the behavioral realism by mimicking travelers’ actual behav-

ior. At the same time, these models can potentially make disaggregated models

more computationally efficient. In order to demonstrate the capability, this chapter

presents an integration plan of agent-based models and dynamic traffic assignment

(DTA) models. The proposed integration is then applied in various real-world appli-

cations. Applications in planning, operations, and optimization are developed and

analyzed.

5.1 Integration of Agent-Based Models and DTA

A transportation system typically has two major components: the transporta-

tion network and its users (potentially, decision-makers can also be considered).

Agent-based models have the capability of mimicking and simulating travel behav-

ior changes of each user in the system. Once integrated with a traffic simulator, the

system can thus be complete given that all traffic conditions in the transportation

network can be simulated by the simulator. This motivates the proposed integration

of agent-based models and DTA simulator, as illustrated by the following flowchart

(Fig. 5.1). The traffic simulator used in the dissertation is the DTALite model
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(i.e. an open-source Light-weight Dynamic Traffic Assignment and Simulation En-

gine, https://code.google.com/p/nexta/). Therefore the integrated model is named

AgBM-DTALite for short.
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Figure 5.1: The Integration of Agent Based Models and DTALite Traffic Simulation
Engine (AgBM-DTALite)

Travelers arrange their daily or recreational itinerary based on knowledge and

various information sources: previous experience, social network, mass media, real-

time traffic data sources (e.g. Google and INRIX), etc. Exogenous changes may

result in different adjustment to the travel itinerary. AgBM models the travel be-

havior with the full consideration of information, learning, knowledge and searching,

as elaborated in Chapter 4. Here the emphasis is given to the integration and, in

particular, the information exchange between AgBM and DTALite. DTA models
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are capable of simulating traffic in greater detail and producing various time-varying

traffic information. A successful integration can provide fairly useful analysis tool

to predict travel behavior in higher fidelity and accuracy and to evaluate various ex-

ogenous changes. The changes include relatively shorter-term real-time information

provision via advanced traffic information system (ATIS), as well as more longer-

term vehicular technology advances (e.g. ride-sharing, connected/autonomous vehi-

cles). In the proposed AgBM-DTALite, two levels of integration are developed:

• Between-Day Integration. On Day t, agents are able to acquire information

from Day t − 1 and accumulate knowledge about the transportation system.

For instance, when an autonomous vehicle is introduced to a household in

a future year, members of the household will respond and rearrange their

trips. Seniors and juveniles who previously rely on non-auto modes now may

consider riding the vehicle. Working adults may need to readjust departure

time to accommodate foreseeable increasing vehicle usage. These changes

to each agent are modeled and outcomes are fed into DTALite to simulate

dynamic traffic conditions, based on which agents will adapt their behaviors

again on the Day t+ 1.

• Within-Day Integration. In the same day t, information is conveyed between

AgBM and DTALite. Real-time information on congestion and different non-

recurrent incidents has been made available to a certain percentage of agents,

which reflects the fact that ATIS subscribers and Google/INRIX users have

the access to timely estimates of traffic congestion. This type of information
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exchange would trigger dynamic behavior adaptation. En-route diversion is a

likely reaction and is incorporated in this integration. Future study may also

internalize dynamic modal shifts (park-and-ride options along major freeways,

ride-sharing, etc.).

The proposed integration is tested in a real-world case study using a mid-size

transportation network. The study area is the White Flint region in the Mont-

gomery County, Maryland. Mixed land development and transit-oriented develop-

ment are on-going in White Flint, reshaping a dense and multi-functional urban

region. Multiple bus lines and the Metro of Washington D.C. also serve the area.

The transportation network is illustrated in Fig. 5.2. 24 traffic analysis zones, 55

roadway links, and 136 nodes are included in this network. A total number of 40,140

traveling agents are generated to represent travel demand pattern in the morning

peak hours in a typical work day.

Figure 5.2: AgBM-DTALite Study Area: White Flint
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If running a typical DTA using this network and demand files, the dynamic user

equilibrium cannot be achieved within 50 iterations. In fact, the larger size the net-

work, the much greater number of iterations it requires to reach DTA convergence.

Based on the proposed AgBM, another equilibrium, Behavioral User Equilibrium

(BUE), has been defined in this research as the situation where all agents stop mak-

ing behavioral adjustments. Initially, travelers will follow their travel option that

yields the lowest generalized cost. Congestion during the a.m. peak hours results

in the discrepancy between the expected and realized travel conditions. And thus

over 70% of travelers decide to search, learn and adapt to the network by adjust-

ing modes, departure times, and/or routes. Among these travelers, more than half

are searching routes. As time goes by, agents reach satisfaction either because a

more promising travel alternative has been identified or because of the decreasing

expectation on travel condition after excessive searching. Therefore, the number of

searchers decreases, as shown in Fig. 5.3a. After ten iterations, only a very small

amount of users are still actively searching for alternatives. The integrated model

reaches convergence after twenty simulation iterations. Defined by the bounded ra-

tionality, BUE convergence is guaranteed regardless the size of the network and the

scale of the study.
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Figure 5.3: The Convergence and Computational Properties of the Integrated
AgBM-DTALite Model

Other than the behavioral foundation and the convergence property, another

merit of the proposed AgBM-DTALite lies in its superior computational efficiency

when compared to typical disaggregated travel demand models. Two unique charac-

teristics of the integrated model ensure the promising computational performance:

• Without the time-consuming log-sum calculation, learning, searching and de-

cision rules can be executed within relatively shorter CPU time.

• BUE changes the way of defining relative gaps and thereby reduces the number

of simulation iterations.

Importantly, the second characteristic does not differ with respect to the size or the

scale of the system. Unlike DTA models that have exponentially increasing number

of alternative paths w.r.t. network size, AgBM-DTALite assumes agents neither
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have the capability nor are willing to consider every alternative. BUE only relies

on each individual’s travel experience and information gathered to determine the

starting and stopping of each search. Thus, it is believed that AgBM-DTALite can

maintain its computing performance even if applied to a very large-scale transporta-

tion analysis. In Fig. 5.3b, the computing CPU time of AgBM-DTALite and that

of discrete-choice-DTA travel demand models are compared. Twenty scenarios with

varying number of simulation agents are analyzed on a PC with 2.33GHz CPU and

16 GB RAM. Again, the White-Flint project is employed as the study area. The

network is kept the same while the number of agents vary from 10% to 200% of the

total demand. The results corroborate that the simulation time remains manageable

when the number of agents increases from 0 to 200%.

5.2 Corridor Active Management and Behavior

5.2.1 Implementation Framework

The framework of modeling agents’ en-route diversion behavior under infor-

mation provision is illustrated in Fig. 5.4.
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Figure 5.4: Structure of agent-based en-route diversion model [142]

Routinely, travelers form a relatively stable travel pattern and route choice,

especially for their daily commute travels. A user equilibrium condition well rep-

resents this situation. When en-route traffic conditions change at time period t

due to, for instance, recurrent/non-recurrent congestion, incidents, and work zones,

stimuli for the agents to make en-route behavior changes, as well as the stimuli for

the operations strategy makers to encourage diversion, becomes more significant.

Various ATIS strategies can be employed here to provide real-time traffic informa-

tion. DMS is the one typically seen in Maryland and is thus chosen here for a

demonstration purpose. The real-time information is updated dynamically. The

travel conditions at time t for both the congested route and the diverting route will

be displayed on the DMS platform during the period t + 1. While the response to

DMS can be modeled by a myriad of methods, we employ an innovative Bayesian

approach to empirically model and re-calibrate the agents’ en-route diversion by

using behavior data collected from the driving simulator and field observations col-
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lected by Bluetooth sensors deployed at two real-world diversion scenarios. This

agent-based model predicts the diversion decision for each individual simulated in

the model. Then the agent behavior is aggregated and fed back into the network

traffic simulator to obtain the traffic conditions for the next time period. The use

of simulation modeling allows examination of the agents’ en-route diversion under

real or simulated ATIS scenarios. The process will be operational according to a

predefined DMS functioning duration. In future work, the functioning duration of

DMS can be optimized through a simulation-based optimization approach.

Agents’ en-route diversion behavior is modeled from these two aspects: (1)

the Naive Bayes model is employed to represent behavioral rules; (2) The Bayesian

calibration is employed to re-calibrate the model based on local observations.

5.2.2 Calibrating the Behavioral Rules Using Field Observations

Agents’ behavioral rules are represented by the Naive Bayes model developed

in [143]. This method is based on the more general Bayes’ Rule and data min-

ing techniques, which is believed to embed more reasonable behavioral foundation

without assuming random utility maximization. Employing stated preference data

collected from carefully designed driving simulator scenarios, drivers’ diversion deci-

sion has been denoted as two agent classes, being the divert class and the not-divert

class. A tuple of stochastic attributes (F1, F2, · · · , Fn) affects the classification

variable denoted by C, including travel time (Time) and travel time unreliability

(UNR) of the normal route and the diverting route, travelers’ gender (Gender), and
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diverting risk (Risk). UNR is specified as the 95% confidence interval of the travel

time duration. Risk is a dummy variable reflecting the complexity (or risk) of the

diverting route. If the diverting route involves bifurcation and possible huge delay,

even if theoretically the drivers can make the correct en-route decision to avoid the

delay penalty with the guidance of the real-time information at the DMS, drivers

are less likely to divert. This type of diverting routes is considered as a diversion of

high risk.

For each training observation F , the naive Bayesian classifier is a function

that assigns a class label to it. This method learns the conditional probability of

each variable Fi given the class C. According to Bayes’ Rule, the probability of the

example F = (F1, F2, · · · , Fn) being not-diverting class (denoted by +) is:

p(+|F) =
p(+)p(F|+)

p(F)
(5.1)

For a training observation, naive Bayes classifier assumes conditional indepen-

dence of every other attributes given the value of the classification variable. Equation

5.2 shows the functional form of naive Bayes classifier. The empirical observation is

classified as + if and only if fnb(F) ≥ 1.

fnb(F) =
p(+)p(F|+)

p(−)p(F|−)
=
p(+)

p(−)

n∏
i=1

p(Fi|+)

p(Fi|−)
(5.2)

The estimated naive Bayes model using the SP data as the full training dataset

is revisited here in Table 5.1. These conditional priors p(Fi|C) can be used to

calculate the classifier (Equation 5.2) and thus constitute the agent behavioral rules.
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Table 5.1: En-Route Diversion Model’s Conditional Prior Probability Estimates

Class Model: Not Divert Divert

Variables Conditional Mean Conditional Mean
Priors (Std. Dev.) Priors (Std. Dev.)

Class Prior p(+) 0.53 p(−) 0.47
Gender = male p(male|+) 0.403 p(male|−) 0.532
Gender = female p(female|+) 0.597 p(female|−) 0.468
Risk = low p(low|+) 0.504 p(low|−) 0.548
Risk = high p(high|+) 0.496 p(high|−) 0.452
∆Time p(∆Time|+) 0.022 (0.262) p(∆Time|−) -0.163 (0.066)
∆UNR p(∆UNR|+) 0.452 (0.242) p(∆UNR|−) 0.304 (0.270)

In the model, ∆ denotes percentage changes of the alternative route’s at-

tributes from the attributes of the routine route. The high class prior for divert

class (almost as high as the class prior for not divert class) indicates that the like-

lihood of diversion from the routine route has been positively affected by certain

factors, e.g. the provision of travel time information. Conditioned on the divert

class, the probability estimates of ∆Time suggests that lower expected travel time

is one major incentive that shifts individuals off their routine routes. On the other

hand, the probability estimates of ∆Time conditioned on not-divert class has mean

value that is close to zero and has a relatively larger standard deviation. It in-

dicates that not-divert class is almost indifferent to expected travel time. While

generally being risk averse (i.e. positive and higher value for p(∆UNR|+)), indi-

viduals take risk to some extent when making en-route diversion (p(∆UNR|−) has

positive mean). The estimates on discrete variables (i.e. Gender and Risk) suggest

that male drivers and drivers in lower-risk diversion situations are more likely to

divert. These empirical findings conform to previous research [94, 74].
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From the estimated class priors (0.53 for not-divert class v.s. 0.47 for divert

class), one can draw the conclusion that individuals (in the driving simulator, of

course) are almost indifferent between their routine route and the alternative one,

given other conditions equal. However, this may be greatly different in real-world

cases [83]. Drivers may react differently when actually provided with real-time

information. Drivers may have a greater preference towards their routines due to the

inertia. Before applying the agent-based model to evaluate any real-world cases, a

recalibration process is necessary. A separate field observation data source collected

from Bluetooth detectors deployed in a real-world DMS scenario in Maryland is

employed here as calibration evidences. Fig. 5.5 illustrates the scenario. Bluetooth

detectors are deployed to penetrate vehicles in routine traffic flow and re-routing flow

(denoted as the red arrows) during normal traffic conditions as well as the periods

whence an incident occurs. If an incident is identified, DMS in the upstream will

be functioning and displaying dynamic information about travel times and travel

time ranges for the routine route and the alternative route. The Bluetooth detectors

actively collect data for two weeks and thus can penetrate sufficient vehicles that

are repeatedly using the routes. And the vehicles captured during incidents are

identified as the real-world agents who are making diversion choices. Let us denote

the vector of these data points as E.
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Figure 5.5: Mesoscopic traffic simulation network

The recalibration process employed here is developed by [143]. It offers a

mapping from the real-world behavioral data to a set of more accurate behavioral

rules. By directly applying the uncalibrated Naive Bayes model to E, one can predict

divert probabilities ranging on [0, 1]. If we translate the probabilities using log-odds:

s(E) = log(p(+|E)) − log(p(−|E)), this measurement can range on a space [−∞,

+∞]. Thus, we can model the probability density function (PDF) of the prediction

score s(E) (conditioned on the actually observed class) as a function of the log-odd

score. This PDF p(s|class = {+,−}) is then applied as the recalibration function

and plugged into Equation 5.4 using Bayes’ Rule and the class priors.

p(+|s) =
p(+)p(s|+)∑

C={+,−} p(C) · p(s|C)
(5.3)
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More details of this Bayesian calibration method is given in [143]. Applying

this method to analyze the actual observations E, we can correct the dramatically

higher diversion propensity predicted by the uncalibrated model and match the pre-

dictions to the low diversion rate. In Fig. 5.6a we show the reliability diagram

estimated for the en-route diversion calibration dataset. The x-axis shows the pre-

dicted probability of the naive Bayesian classifier for the divert class. The y-axis

shows the empirically observed relative frequency of the divert class. If the classifier

is well-calibrated, all points should coincide with the diagonal line, which indicates

that the predicted diverting probability are equal to the empirical probability. The

model’s prediction is too optimistic, predicting diversion probabilities that are too

close to 1. In actuality, the diversion percentage is much lower than the estimated

value. After performing the calibration, the reliability diagram is illustrated in Fig.

5.6b. The Bayesian calibration successfully readjusts the model prediction to match

the low diversion rate observed by the Bluetooth detectors. As shown in Fig. 5.6b,

most of the predicted probabilities are in line with the observed relative frequencies.
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(a) Reliability diagram for the uncalibrated

Naive Bayes en-route diversion model

(b) Reliability diagram for the calibrated

Naive Bayes en-route diversion model

Figure 5.6: Reliability diagrams for the behavioral model calibration

This section has revisited the Naive Bayes model of en-route diversion and

its Bayesian calibration approach. This set of models is then applied to predict

agent behavior based on empirical observations collected from real-world Bluetooth

sensors. The behavioral model departs from the utility-based models in the way

that it employs Naive Bayes rules to predict behavior. The calibration approach

is a practical and powerful tool to take the advantage of any types of real-world

diversion data. Data sources that are as aggregate as diversion rates or as mi-

croscopic as individual-level Bluetooth/GPS/Smartphone data can provide useful

prior information for this approach to produce more accurate posterior probabili-

ties. This approach is a consistent and theoretically sound parametric method to

model agents’ en-route diversion behavior. It is flexible and thus can be easily trans-

fered to other study areas to analyze diversion-related operations and management

strategies, such as ATIS, DMS, the provision of real-time information, etc. It has
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the practical value that researchers and practitioners may potentially apply the en-

route diversion model to other regions based on recalibration using locally collected

field observations. This unique advantage is demonstrated in this paper through the

construction of an integrated agent-based simulation model. The traffic simulator,

network performance measures, and the integrated modeling outcomes are presented

in the following sections.

5.2.3 Simulation Model and Network Performance

5.2.3.1 Mesoscopic traffic simulation model

To test the effectiveness of applying agents’ en-route diversion model to im-

prove transportation system performance, a case study of an assumed incident sce-

nario during extended a.m. peak hours in Maryland and D.C. metropolitan area

has been conducted. A mesoscopic traffic simulation model DynusT for the regional

network is developed as the evaluation tool of system performance. The network

includes around 2000 links, 500 nodes, over 300 signalized intersections, 201 TAZ,

three major freeway corridors, and one tolling highway (denoted as the light blue

corridor in Fig. 5.7). DynusT is a simulation based DTA model, which takes ac-

count of the dynamic interaction between network supply and user demand. As

one of the latest DTA, DynusT is chosen as the simulator for the current study.

It simulates individual vehicle’s movement based on a mesoscopic traffic simulation

model, Anisotropic Mesoscopic Simulation (AMS), which reveals its agent-based

nature [33]. Moreover, as DynusT is capable of simulating each individual vehicle,
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it is suitable to be integrated with agent-based behavior model to evaluate system

performance more comprehensively.

The baseline scenario represents the original demand pattern and user equi-

librium (UE) condition, which is calibrated using D.C. regional demand model’s

extended morning peak (5:00 a.m. to 10:00 a.m.) origin-destination (OD) demand

as the base matrices and over 60 traffic count stations as calibration evidence. The

calibration is documented in [153].

The incident (denoted as the red triangle in Fig. 5.7) is assumed to occur

at 5:30 a.m. and last until 6:30 a.m. on a major commuting corridor, I-95 South

Bound (SB), between Washington D.C. and Baltimore. In the incident scenario,

simulated agents are not provided real-time information. In the diversion scenario,

four DMS devices (denoted by the four blue rectangles along the freeway corridor

in Fig. 5.7) deployed on the upstream links are assumed to be responsive to the

incident. Incident message, travel time and travel time range on I-95, and the

corresponding travel condition on the alternative corridor (US-29) are displayed to

agents. The DMS devices are assumed to be active between 5:30 a.m. and 7:30 a.m.

(one hour after the clearance of the incident). Real-time information is updated in

each time period based on time-varying link travel time retrieved from the AMS

model [33]. AMS is a vehicle-based mesoscopic traffic simulation approach that

explicitly considers the anisotropic property of traffic flow into the vehicle state

update at each simulation period. In Section 5, the incident scenario without real-

time information provision and the incident scenario considering en-route diversion

under ATIS are quantitatively compared using various performance measures. In
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particular, MFD, defined in Section 4.2, is employed to investigate the before-and-

after performance of the I-95 SB corridor links.
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Figure 5.7: Mesoscopic traffic simulation network

5.2.3.2 Network performance: macroscopic fundamental diagram (MFD)

To implement the macroscopic traffic analysis on the corridor level, we may

investigate the relationship of the accumulation of vehicles in a network with the

exit outflows, and the equivalent relationship of the network-wide weighted average

density and flow rate.

We have:

Nt =
∑
a∈A

ka,tlaλa (5.4)
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where Nt is the time varying number of vehicles in a network denoted by A, each

individual link is a ∈ A; ka,t denotes the traffic density of link a at time t; la and λa

denote the length and the number of lanes of link a.

Kt =
Nt

L
=

∑
a∈A ka,tlaλa∑

a∈A laλa
(5.5)

where Kt is the space mean density (vehicle per mile per lane) at time t, L is the

total length (lane-miles) of the network. Analogously, we have Eq. 5.6.

Qt =

∑
a∈A qa,tlaλa∑
a∈A laλa

(5.6)

where Qt is the space mean flow rate (vehicle per hour per lane) of the network, qa,t is

the traffic flow rate of link a at time t. Both empirical observations [52] and dynamic

traffic assignment experiments on a real large-scale urban network [92] concluded

that Qt was robust linear with the trip completion rate that was the sum of finished

and exiting trips for the whole network. The network-wide weighted average speed

is given by:

Vt =

∑
a∈A va,tka,tlaλa∑

a∈A ka,tlaλa
(5.7)

where the weighted quantity is the number of vehicles on an arbitrary link a at time

t.

According to the traffic variables relationship in the MFD, as well as Equations

(5.4–5.7), the network average speed is estimated by:
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Vt =
Qt

Kt

(5.8)

The spatial standard deviation of densities in the network is formulated by:

σt =

√∑
a∈A laλa(ka,t −Kt)2∑

a∈A laλa
(5.9)

5.2.4 Integrated Agent-Based Simulation and Results

5.2.4.1 Agent-based en-route diversion response

In this section, the empirically estimated and calibrated en-route diversion

model is integrated with DynusT network model and MFD post-processing analysis.

Agents commuting into the D.C. area via I-95 corridor are diverted at the four active

DMS points deployed along that corridor. During each time period, the travel

conditions of the previous time period on the incident route and the alternative

route are provided to the simulated agents for them to make an en-route diversion

decision.

Agents’ diversion behavior response to the assumed incident and DMS scenario

is predicted using the behavior model. The complete agent decisions are aggregated

and the diversion percentage at each diverting point is dynamically provided to the

DynusT model wherein the diversion scenario is simulated. In order to reflect the

dynamic nature of this operational applications while retaining the simulation in

a manageable computational time, the time period length is set to be 10 minutes.

Fig. 5.8a, 5.8b, 5.8c, and 5.8d illustrate, by DMS points, the integration results of
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the time-varying travel time (the bar charts) and travel time range (error bars) on

the normal route and the diverting route, as well as the agents’ aggregated diversion

percentage for each time period and each DMS points. The DMS devices are active

between 5:30 a.m. and 7:30 a.m. to provide real-time information. The results

indicate that the integrated model well captures the agents’ behavior response dy-

namically and at different upstream diverting points. During the incident duration,

significant diversion is predicted to happen, especially at DMS 1 and DMS 3. Over

20% agents divert between 5:50 a.m. and 6 a.m. in response to the higher congestion

on the normal route (I-95 SB). The aggregate diversion percentage is highly fluc-

tuating, as the road traffic evolves dynamically and a higher diversion percentage

during one period is likely to improve the traffic condition on the normal route and

thereby results in a relatively lower diversion percentage for the next time period.

It is worth noting that the travel time reliability also plays an important role in

en-route diversion, since DMS typically displays travel time range. If the diverting

route’s travel time is more uncertain, risk-averse agents are less likely to divert and

the integrated model yields a lower diversion percentage.

On the network level, the proposed model predicts that over all simulated

agents, the average travel time per trip increases from 16.30 minutes in the base-

case scenario to 17.83 minutes (8.1% increase) in the incident scenario, since agents

traveling southbound on I-95 during the incident duration will encounter severe

congestion. The provision of real-time information and en-route diversion can effec-

tively mitigate the network-wide average travel time to 17.07 minutes. More detailed

performance measures for the I-95 SB corridor, including time-space diagrams and

148



5:30 AM 6 AM 6:30 AM 7 AM 7:30 AM

0

5

10

15

20

25

30

T
ra

ve
l T

im
e 

(m
in

)

Time

 

 
5:30 AM 6 AM 6:30 AM 7 AM 7:30 AM

0

5

10

15

20

25

30

D
iv

er
si

on
 P

er
ce

nt
ag

e 
(%

)

Normal Route Travel Time
Diverting Route Travel Time
Basecase Diversion Percentage
Divert Diversion Percentage

(a) Agent diversion at DMS 1 (the northmost)
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(b) Agent diversion at DMS 2
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(c) Agent diversion at DMS 3
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(d) Agent diversion at DMS 4

Figure 5.8: Travel time and travel time variance for normal route and diverting route
and the agents’ diversion percentages for the Basecase and the Divert Scenarios

macroscopic fundamental diagrams, are presented in the next subsection.

5.2.5 Network performance results

Fig. 5.9 shows the average speeds across all lanes of I-95 SB for each 1-minute

interval in the time-space plot. The warmer shades indicate lower speeds and more

congested traffic flows, while the cooler shades represent higher speeds and free-flow
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Figure 5.9: Comparison of time-space diagrams of I-95 SB

states.
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Fig. 5.9a shows the southbound traffic flow evolutions on a 13.6-mile highway

segment wherein the four DMS are implemented (see the detailed layout in Fig. 5.5

and 5.7). The period analyzed is the morning peak hours under the baseline scenario.

The segment of mileposts 8.0 mile through 9.5 mile formed a traffic bottleneck that

triggered a heavy congestion at around 7 a.m.. The traffic jam propagated upstream

to the location of 5.0 mile. Till 9:15 a.m., the downstream queues began to dissipate

and subsequently regained the free flow speed. It is worthy to point out that a local

congestion state was formed at the location of 7.5 mile and continued to the end

the simulation time. This was caused by an increasing on-ramp demands merging

into the I-95 SB mainline. Fig. 5.9b shows the mainline heavy congestion caused

by the downstream incident that lasted from 5:30 a.m. through 8:30 a.m.. In the

scenario without any en-route information provision, the serious incident occurring

in the 8.0–9.5-mile bottleneck reduced the highway capacity by 50% and induced

a spill-over congestion propagating to the most upstream of the study highway

segment. Distinguishing with the baseline scenario, the incident induced jam queue

propagated backwards in a faster speed indicated by the larger slope during 6 a.m.

through 6:45 a.m. from the mileposts 8.0 mile to 3.5 mile. It was also found that

the speeds suddenly dropped from the approximate free-flow speed of 55 mph to

the oscillating speed between 5 mph and 20 mph at the beginning of the incident

occurrence. Though the congestion dissipated at around 9:30 a.m. in the bottleneck,

a two-mile length of congested queue was still present at the end of the simulation,

i.e. 10 a.m. The spatial impact length of the incident was larger than 9.5 miles in

the study corridor, and the duration of congested states was as long as 4 hours.
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Fig. 5.9c shows the effect of the en-route diversion scenario on the congestion

mitigation, which reduced the incident-induced delays. Both the spatial and tem-

poral impacts of the incident were significantly decreased by the en-route diversion

and information provision. Compared with Fig. 5.9b, the spatial impact length of

the incident was 6.0 miles in the study corridor, and the duration of congested states

was 3 hours. In addition, drivers’ diversion behaviors also smoothed the transition

from the free-flow state to the congested state for the segment of 3.5 mile through

8.0 mile. The speed breakdowns were relieved and the jam propagation was slowed

down, e.g. the propagating time period was from 7 AM to 8 AM which is longer

than 45 min shown in Fig. 5.9b.

Numerous studies in the literature have verified the existence of MFD using

both field measurements and simulated traffic data [52, 53, 54, 119, 120]. In a

freeway network, if traffic is distributed heterogeneously, characteristics with regard

to the hysteresis and capacity drop phenomena could be observed. In this study,

we plot the 1-minute interval space mean flow rate versus the space mean density

and the space mean speed vs. the space mean density for the corridor I-95 SB that

includes 35 links in the simulation model, as presented in Fig. 5.10a and Fig. 5.10c,

respectively.

It can be seen that the MFDs of three scenarios exhibit smooth curves when

the weighed density is low, which satisfies homogeneity conditions. It is observed

from Fig. 5.10a that a sudden transition point exists in the incident scenario when

the weighted average density reaches 40 veh/mile/lane. Compared with the base-

line scenario and the en-route diversion information provision scenario, the weighted
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average flow rate of the incident scenario decreases approximate 100 veh/hour/lane

given the same weighted average densities in the range of 40–85 veh/mile/lane be-

fore the corridor reaches its capacity of 450 veh/hour/lane. In the free-flow regime

of the MFD, the diversion scenario clearly prevents the network flow rate from a

sudden declining due to the incident. In the congested regime of the MFD, scat-

tering features can be observed for the three scenarios because the spatial density

heterogeneity increases. No consistent well-defined relationship appears to exist due

to the hysteresis phenomena, which indicate that the weighted average flow rate is

higher during the travel demand loading period compared to the recovery period.

Though the hysteresis loops do not follow a consistent pattern for different scenarios,

we can still observe that the weighted densities are successfully reduced when the

en-route information is available after the incident. More importantly, the MFDs of

the baseline and diversion scenarios are more likely to exhibit a consistent pattern,

maintaining the similar critical weighted average density which, however, does not

clearly exist in the incident scenario. More detailed MFDs for different time periods

is shown in Fig. 5.10b.

Alternatively, we can plot the vehicle accumulation (the number of vehicles in

the corridor at each time step) vs. outputs (the hourly rate of exiting flows from

the corridor, including all off-ramp flows and the mainline flow of the end link in the

corridor) using 1-minute interval statistics. Fig. 5.10c analogously shows that the

baseline and diversion scenarios exhibit a consistent MFD pattern, the slight differ-

ence exists in the scattering regime where the diversion scenario performs a little

higher weighted density when the corridor is in the most congested state. However,
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the incident MFD does not show an obvious two-regime feature as the existing flow

rate declines after the vehicle accumulation exceeds 3,000. Its maximum weighted

average density is much larger than other two scenarios.

Fig. 5.10d shows the speed-based MFDs. The corridor-wide average speeds

are consistent and closely predicted. The en-route diversion prevents the weighted

average speed from decreasing below 40 mph, while the incident scenario suffers

a weighted average speed as low as 35 mph (the corresponding maximum density

reaches 190 veh/mile/lane). The information provision and en-route diversion ben-

efits to maintain a higher level-of-service and lower density of the whole corridor

after the incident.
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Figure 5.10: Macroscopic Fundamental Diagrams of three scenarios
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5.2.6 Summary

The objective of this paper has been to study the en-route diversion responses

of agents under real-time information and to quantitatively analyze their impact on

the network performance. In order to achieve this objective, a naive Bayes classifier

is developed for this binary en-route diversion decision (i.e. switch to the diverting

route or stay on the normal route). Stated preference data collected from driving

simulator scenarios have been employed in the model estimation. Bluetooth-based

field observations have been employed in the model re-calibration. This behavior

model is then integrated with network model and simulation analysis. A real-world

large-scale mesoscopic traffic simulation model coupled with simulation-based dy-

namic traffic assignment has been developed to simulate dynamic traffic conditions

and reveal interesting traffic dynamics.

The first contribution of this paper lies in the originality and completeness of

the proposed modeling framework. The demonstrated naive Bayes classifier serves

as an effective alternative to the typical discrete choice models. This computational

process model predicts agent behavior probabilities, which is highly efficient when

millions of agents are simulated in the system. The model’s operational applica-

tion also represents a first attempt to link agents’ en-route diversion behavior with

large-scale network model. The proposed framework is comprehensive. It models

the agent behavior, calibrates the model, simulate network conditions, dynamically

applies the behavior model, deploys the diversion strategy in the simulation, and

obtains various performance measures.
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This paper also remains as a first research effort that uses MFD measurements

to quantitatively evaluate the integration of information provision and en-route di-

version in an assumed corridor incident scenario. The MFD of the studied corridor

has confirmed that agents’ en-route diversion has an impact on network throughput,

average flow, average speed, and average density. Most importantly, the MFDs of

the baseline and diversion scenarios exhibit a consistent pattern, maintaining the

similar critical weighted average density. Compared to the incident (without real-

time information and diversion) scenario, the diversion scenario shows fewer drops

and recoveries in the average flow. This is an important finding. Without real-time

information provision, an incident has the potential to make the network much more

vulnerable and suffering from severe breakdown. En-route diversion, though in a

low level of diversion percentage, can help avoid the breakdown and maintain a

consistent traffic pattern to the corridor’s normal traffic pattern.

As demonstrated in this paper, the agents’ en-route diversion model is easy to

be estimated and applied in computational processes and agent-based simulation.

The model is transferable by applying calibration functions to available ground truth

data. The proposed framework is operational and can be applied in operations

analysis (e.g. to evaluate ATIS strategies) and demand models (e.g. to indicate

more realistic en-route diversion behaviors). This approach meets the imperative

needs in modeling en-route diversion and real-time information provision in demand

modeling and operational applications, especially when most commuting corridors

in contemporary metropolitan areas get increasingly congested and ATIS, such as

DMS, becomes readily available.
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5.3 Integrated Corridor Planning and Operational Optimization

This dissertation propose to develop a new surrogate approach for system op-

timization based on the proposed behaviorally-rich agent-based simulation models

and mathematical optimization principles. It incorporates a Bayesian stochastic

Kriging metamodel to optimize integrated Active Traffic Management (ATM) for

corridors utilizing a simulation-based dynamic traffic assignment model. The new

approach’s merits include to (I) jointly optimize decisions that traditionally cannot

be considered separately due to limitation of theory and tools, by producing a con-

tinuously updating sequence of approximations to the stochastic objective function

as surrogates for optimization; (II) account for model uncertainties and their in-

duced heteroscedasticity errors given different design strategies. As an application

illustration of a freeway work zone, we jointly optimize high-occupancy/toll (HOT)

rates [26] and freeway diversion rates [32] under the congestion warning information

via dynamic message signs (DMS), to achieve minimization of the network-wide

average trip travel time.

The study freeway/arterial corridor is along a 15.50-mile freeway segment of

I-270. The left lane on each side is used as a high-occupancy vehicle (HOV) lane in

the northbound direction between 15:30 and 18:30 and in the southbound direction

between 6:00 AM and 9:00 AM. The network includes 61 traffic analysis zones,

435 nodes and 766 links; see Fig. 5.11. Three modals of dynamic OD matrices, i.e.

single-occupancy vehicles (SOV), HOV and trucks, were estimated based on demand

data from the regional planning model [153]. Field collections of urban street signal
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timing are also included in the network.

The optimization problem is

min
x∈R3

E[f(x)] = E[f(x1, x2, x3)] (5.10)

s.t. xmin ≤ x ≤ xmax (5.11)

where f(x) represents the unknown true average trip travel time given an input x,

x1 is the HOT toll rate, x2 is the diversion rate of the DMS next to the work zone,

x3 is the diversion rate of the DMS at the off-ramp to MD 187. The box constraints

are xmin = [0, 0, 0]T and xmax = [US$ 5.00, 100%, 100%]T.

We use 6-month (January 1 through June 30, 2013) empirical loop/microwave

data of 35 fixed detector stations [29] at a time interval of 15 minutes. Fig. 5.12a

compares the calibrated traffic flow model with default settings. Fig.5.12b shows

the simulation matches well with historical measurements.

We simulate the PM peak from 14:00 to 19:00, and search for the optimal

solution of joint HOT toll rate and freeway diversion rates utilizing the proposed

Bayesian stochastic Kriging approach. To further compare the baseline and the opti-

mal case, we run the simulations for 5 replications, respectively. Predictive distribu-

tions of the baseline [∞, 0, 0]T and the optimal solution x̂∗ = [US$ 1.42, 100%, 0]T

belong to NBaseline

(
12.32, 0.082

)
and NOptima

(
12.01, 0.032

)
, respectively. The SOV

is allowed to use the HOT lane by paying US$ 1.42 in the optima case, while SOV

is restricted in the baseline. The mean optimal objective function is 11.97 min that
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is close to the predictive mean value. Table 5.2 compares the baseline and optima

in terms of locally impacted vehicles and the system-wide performance. Vehicles

that passed through the work-zone links in the normal scenario without work zones

were extracted as the locally impacted vehicles, i.e. approximately 12.42% of all de-

mands. We can see that the integrated optimization reduces the average travel time

of work-zone impacted vehicles by 4.79%. More corridor-level statistics show that

these impacts may look small but such system-wide improvement can be achieved

with better demand and traffic management in one single work zone.

Table 5.2: Comparison of the baseline and optima for PM peak simulation results.

Scope Statistics Baseline Optima Improvement

Locally impacted vehicles Average trip time of 26.11 24.86 4.79%a

(40,763 vehicles, 12.42%) impact vehicles (min)

Complete trips 302,475 302,918 0.15%
System-wide impacts Avg overall trip time (min) 12.32 11.97 2.84%b

(328,314 vehicles, 100%) Avg trip distance (mile) 4.94 4.95 -0.20%
Avg travel speed (mph) 24.07 24.82 3.12%

aIndicating 12.74 thousand dollars saved for 5-hour PM peak given VOT = US$ 15/hour
bIndicating 26.51 thousand dollars saved for 5-hour PM peak given VOT = US$ 15/hour

Fig. 5.13 illustrates the average trip travel time and throughput in every 5

minutes for vehicles that complete trips. The network average travel time of the

optimal case is smaller than the baseline. The optimal HOT rate together with

DMS implementations successfully help alleviate network congestion.

Surrogate models can intelligently mimic simulation based objective function

evaluations and reduce computational times. It is a perfect fit to our agent-based

model and simulation in order for optimization and policy decision-making support.

This chapter proposes to evaluate the transportation system performance under inte-
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Figure 5.13: System-wide comparison of baseline and optima.

grated applications of travel demand management and traffic control measures with

simulation. The major methodological contribution is that the heteroscedasiticity

of stochastic simulation outputs is taken into account by developing the Bayesian

stochastic Kriging metamodel. A synthetic network is built in DynusT and used

to test the performance of the proposed Bayesian stochastic Kriging model, which

outperforms the other three models in estimating mean values and standard errors

for heteroscedastic data. The model will be applied for joint optimization of the
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HOT toll rate and freeway diversion rates in a work zone scenario of a real-world

corridor.

5.4 Summary

This chapter aims at applying the proposed behavioral model and agent-based

simulation to address different planning, policy, operations, and decision-making

needs. An operational application applies en-route diversion model to evaluate a

real-world dynamic message sign scenario. Other applications, such as employ-

ing departure time model to analyze peak spreading effect, employing mode choice

model to analyze multimodal corridor management, are still on-going. This chapter

also proposes to use simulation-based optimization technique to optimize certain

planning/operational decisions based on the agent-based simulation results. It is

believed that this integrated optimization and agent-based simulation will produce

behaviorally realistic optima for decision-makers to justify a policy conclusion.
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Chapter 6

Conclusion

Starting from von Neumann’s seminal work on self-reproducing automata in

the 1960s, modern agent-based models have drawn increasing attention in research

and practice. Agent-based modeling (AgBM) system has the potential to lead to

transformational changes and truly revolutionary advances in transportation engi-

neering and especially multimodal surface transportation in the United States. This

dissertation addresses this emerging research need by developing a theoretical frame-

work for agent-based driver and traveler behavioral modeling and analysis, which

benefits from a wide spectrum of travel/activity data and innovate current practice

in traffic operations, management, and transportation planning.

6.1 Contributions

Dissatisfaction with classical theory and legacy models is not new. Being one

of the major assumptions of the classical theory, the perfect rationality assumption

governs the literature for many years. The author reviewed previous research efforts

on travel behavior models and their applications aimed at replace or revise the

basic model of rationality and utility maximization with alternative decision models.

However, it is difficult to pinpoint any work not based on fully rational behavior

that “yields results as rich, deep, and interesting as those achieved by standard
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models assuming full rationality” (Rubinstein 1998). Primarily aimed at advancing

the embedded behavioral theory for travelers’ decision-making processes, this study

theorizes the multi-dimensional behavior with the following three main objectives:

A pertinent new theory of choices with experimental observations and

estimations to demonstrate agents with systematic deviations from the rationality

paradigm. Modeling components including knowledge, limited memory, learning,

and subjective beliefs are proposed and empirically estimated to construct adaptive

agents with limited capabilities to remember, learn, evolve, and gain higher payoffs.

All agent-based models are based on empirical observations collected via various

different data collection efforts.

Modeling procedural agent-based decision-making. Individuals choose

departure time, mode, and/or route for their travel. Individuals also choose how

and when to make those choices. A behavioral sound modeling framework should

focus on modeling procedural decision-making processes. This study seeks answers

to questions that largely remain unanswered including but not limited to: (1) When

do individuals start seeking behavior changes? (2) How do they initially change

behavior? (3) How do they switch behavior adjustment dimensions? (4) When do

they stop making changes?

The transformation from the static user equilibrium to a dynamic behav-

ioral equilibrium. Current solution concepts are based on an implicit assumption

that agents are aware of the prevailing user equilibrium. However, a more realistic

behavioral assumption is that individuals have to make inferences. These inferences

can either be their subjectively perceived distributions of travel time and travel cost
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or be the multidimensional alternatives they subjectively identified. In other word,

individuals determine their choice set and the attributes of each alternative rather

subjectively. It is the process of making inferences that occupies each individual in

making a decision.

The theorization of multidimensional knowledge updating, search model, and

behavior process becomes a unified and coherent approach that models the activity

and travel decision-making with a consistent behavioral foundation and increased

rigor. For each behavioral adjustment dimension, this study proposes single di-

mensional AgBM models with the goal to address the important gap in modeling

capability to support existing models and practices. Four standalone versions of

single-dimensional AgBM have been presented in this study, including a departure

time searching and switching AgBM, a pre-trip routing AgBM, a dynamic mode

searching and switching AgBM, and an en-route diversion AgBM. These models

can be applied directly as a supplement to existing travel demand and planning

models especially when these models need additional capabilities in modeling any

of those four agent behavioral dimensions.

The departure time model dynamically models the departure time decision-

making under uncertainty. This study attempts to gain insights into travelers’

behavior variation in uncertain and dynamic environments. The implementation

of the quantitative models indicates its capability to simulate travelers’ day-to-day

departure time adjustment. The travel time reliability plays a crucial role in the

individuals’ decision-making processes as well as for the system to converge. The

agent-based simulation confirms that more travelers search for alternative departure
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times in response to non-recurrent congestion caused by increasing uncertainty. And

under extremely high uncertainty level, travelers need more iterations (simulated

days) to exhibit satisficing behavior. Another interesting result obtained in this

study is that travelers exhibit risk-neutral and slightly risk-loving behavior when

the system-level uncertainty increases to a moderate level and become extreme risk

averters when the uncertainty reaches a very high level. When the uncertainty

level is extremely low and extremely high, the majority of users choose a particular

departure time with lower variability in travel time. When the uncertainty level

is moderate, an increasing number of travelers choose the alternative with lower

expected travel time but higher variability in travel time.

The study conceptualizes individual travel mode choice as a hidden Markov

model with individual latent modal preference. This method is believed to embed

more reasonable behavioral foundation without assuming random utility maximiza-

tion. While longitudinal mode choice process data is often lacking, this research

develops an easy-to-implement memory-recall survey to observe behavioral deci-

sion processes and empirically estimate the model. The model empirically suggests

an interesting two-state transition in travelers’ hidden modal preference, with the

two states interpreted as car-loving and carpool/transit loving respectively. LOS

variables of the habitual modes are the dominating factors in reversing individual

attitudes, according to the time-varying covariates in the transition matrix. This

study remains as a first research effort that uses process data to empirically model

dynamic behavior. The study also opens the opportunity to explore which policies

are most effective in encouraging more transit/carpool lovers and shifting more pri-
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vate vehicles off the road. At a first glance at the demonstration section, reducing

transit fares seem to work soundly. A careful policy analysis in the future is nec-

essary to reach a rigorous conclusion in this regard. Future work can also focus on

the theoretical part, e.g. taking into account the individual unobserved heterogene-

ity in the HMM model. Random-effect parameters can be incorporated into the

transition matrix and estimated with a hierarchical Bayesian structure, allowing for

unobserved heterogeneity in the stickiness to different states. Another promising

direction can explore practical applications of this model. The authors see a po-

tential integration of the HMM and a one-day traffic simulation model to simulate

day-to-day behavior changes. Interesting results on multimodal behavior responses

can be captured.

The study models en-route diversion using naive Bayes rules which serve as

an effective alternative to the typical discrete choice models. This computational

process model predicts agent behavior probabilities, which is highly efficient when

millions of agents are simulated in the system. The model’s operations applica-

tion also represents a first attempt to link agents’ en-route diversion behavior with

large-scale network model. The proposed framework is comprehensive. It models

the agent en-route diversion behavior, calibrates the model, simulates network con-

ditions, dynamically applies the behavior model, deploys the diversion strategy in

the simulation, and obtains various performance measures. The study also remains

as a first research effort that uses MFD measurements to quantitatively evaluate

the effect of information provision and en-route diversion in an assumed operations

scenario. The MFD of the studied corridor has confirmed that agents’ en-route
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diversion has an impact on network throughput, average flow, and average speed.

Most importantly, the MFDs of the baseline and diversion scenarios exhibit a con-

sistent pattern, maintaining the similar critical weighted average density. Compared

to the incident (without real-time information and diversion) scenario, the diversion

scenario shows less drops and recovery in the average flow. This is an important

finding. Without real-time information provision, an incident has the potential to

make the network much more vulnerable and suffering from severe breakdown. En-

route diversion, though in a low level of diversion percentage, can help avoid the

breakdown and maintain a consistent traffic pattern to the corridor’s normal traffic

pattern.

6.2 Future Research Directions

As an on-going work, the author continues to test application potential of

the proposed agent-based models in various applications in transportation planning

and traffic operations. It is believed that with the proposed calibration method, the

model transferability is no longer an issue. After being calibrated and validated with

locally collected data, it can be applied to either replace existing models in current

practice, or to inform and enrich existing models as a complementary module. This

study discusses these possibilities in the context of transportation planning and

traffic operations with greater details. The flexibility of agent-based models allows

researchers and practitioners to benefit from this innovative modeling framework by

developing and implementing agent-based models for certain dimensions of travel
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decisions whenever the current data availability allows.

A full-fledged, multidimensional agent-based model obviously requires a large

amount of behavioral data. To address this data challenge, the research team de-

signed, tested, and is conducting a Smartphone-based travel survey in the Mary-

land/Northern Virginia/Washington D.C. area. It collects the individual travel and

activity patterns over an extended time period with high resolution. The survey

is conducted to collect respondents’ travel behavior before-and-after the operation

of Washington D.C.’s Silver-Line Metro. The Smartphone survey is supplemented

by online travel diary and stated preference surveys to capture attitudinal and in-

dividual preference information that is crucial for modeling. The multidimensional

agent-based behavior model developed in Section 4 is based on the preliminary data

collected from a pilot study. More data collected from this survey will be applied

to further develop the multi-dimensional agent-based driving and travel behavior

models and calibrate more advanced modeling components.

The numerical examples presented in the dissertation highlight the capabilities

of the proposed theory and models in estimating rich behavioral dynamics, such as

multidimensional behavioral responses, day-to-day evolution of travel patterns, and

individual-level learning, search, and decision-making processes. The computational

efficiency of the proposed models needs further exploration through real-world im-

plementations using agent-based simulation techniques. It is believed that the flex-

ible framework, computational efficiency, and more realistic assumptions can make

the proposed modeling tool extremely suitable for integrated large-scale multimodal

planning/operations studies which typically have to cope with millions of agents.
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This work is primarily exploratory in its conceptualization of a descriptive theory,

estimation of quantitative models, and demonstration in an agent-based microsim-

ulation. In an era of big-data access, multi-core processors, and cloud computing,

the ambition of transportation demand modelers has never been greater. The hope

is that the preliminary findings in this dissertation could raise interest in the behav-

ioral foundation of multidimensional travel behavior as well as in microsimulating

people’s complex travel patterns in the time-space continuum. Extensive examina-

tion of the proposed tool on a larger and more representative survey sample and for

real-world studies is necessary before we can conclude that the tool is fully practice-

ready.

6.3 Summary

To summarize, this dissertation aims at developing multidimensional and stan-

dalone single-dimensional agent-based models (AgBM) through theoretical model-

ing, data collection, empirical testing, recalibration/validation, and real-world ap-

plications. I demonstrate and hold the belief that AgBM approach is a promising

approach with more realistic behavioral assumptions departing from traditionally

assumed perfect rationality, dynamic representations of multidimensional behavioral

changes, and highly flexible structure for applications. We hope this research would

inform future researchers in the field of AgBM and inspire fruitful research work

towards such a vision.

Regarding the future research directions, as various agent-based models for
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different sub-systems are built and improved, I plan to integrate these models into

one mega model that includes all major players of transportation systems: indi-

vidual travelers, commercial transporter, transit operator, infrastructure provider,

and regulator. We may also include other components such as agent-based land use

model, regional economic model, and even international trade and immigration mod-

els to simulate the interaction between a wide-range of systems. It is also possible

to gradually replace one or a few of the modules of an existing planning model with

agent-based models in order to introduce AgBM capabilities that are particularly

needed. On modeling agent behavior, previous studies have demonstrated that the

communication field does not necessarily overlap with the physical world. Although

people may interact with their neighbors more frequently, they can communicate

with physically remote agents through communication network. This is especially

important as new social media emerges. As information flow is largely invisible,

how to truly capture its generation and spreading will remain a big challenge for

modelers.
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