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Abstract

We describe the design and implementation of CoDD,
a system for cooperative data dissemination in a
serverless environment. CoDD allows a set of loosely-
coupled, distributed peer nodes to receive subsets of
a data stream, by describing interests using subscrip-
tion queries. CoDD maintains statistical information
on the characteristics of data and queries, and uses it
to organize nodes in a hierarchical, data-aware topol-
ogy. Data is disseminated using overlays which are
created to try to minimize the excess data flowing
through the system, while maintaining low latency
and satisfying fanout constraints. CoDD is designed
to allow nodes to determine individual degrees of con-
tribution to the system, and to adapt gracefully to
temporal changes in the data distribution using an
adaptive reorganization component. We present the
results of our experimental evaluation of CoDD.

1 Introduction

In data dissemination systems, data is delivered from
a set of producers to a large set of subscribers. Do-
mains for such systems include stock tickers, news
feeds and multimedia delivery. Most existing sys-
tems implement such functionality by maintaining a
centralized server node. This node maintains state
information and implements protocols to allow sub-
scribers to express their interests and receive data
that corresponds to this interest.

These systems achieve the necessary scalability
by adding more centralized infrastructure, a pro-
cess that is often expensive and time-consuming.
Moreover, this incremental provisioning of server ma-
chines makes this architecture ill-suited for flash data
streams, which are transient and unpredictable. Ex-
amples of such data streams could include data from
sensors near an environmental disaster that needs to
be disseminated for relief efforts and disaster man-

agement to nearby nodes. Such systems make it dif-
ficult to pre-provision server nodes, and requires the
dissemination to scale organically with the set of sub-
scribers.

This paper describes CoDD, a system for cooper-
atively disseminating data in a completely decentral-
ized environment. We do not assume an existing in-
frastructure of server nodes, or any centralized repos-
itory of state. We also assume autonomy of partici-
pants. Thus each node can enter and leave the sys-
tem independently, arbitrarily and often frequently.
CoDD allows a producer node to generate a stream of
data that needs to be disseminated to the set of par-
ticipating consumers. Each consumer node describes
an interest in a subset of the data stream, using a
subscription query that describes the structure and
content of the subset of data this node is interested
in. Nodes cooperate to forward data to peer nodes,
by contributing resources for receiving, filtering and
transmitting data. Each node has varying computa-
tional and network resources, and we wish to incor-
porate these constraints into the design to make it
feasible for low-power nodes to participate in CoDD.

There are several challenges to enabling such sys-
tems. A naive solution to this problem would be to
multicast the data stream to each of the consumer
nodes, with end nodes filtering the data that satisfies
their requirements. However, this approach would en-
tail a significant communication overhead, especially
for participants with low-selectivity queries. The lack
of centralized control and knowledge about temporal
behavior of the participant sets and document dis-
tributions makes it difficult to pre-compute globally-
optimal configurations. A further challenge is to ef-
fectively maintain node-specific constraints, such as
limited bandwidth and network resources. The sys-
tem should also perform well independently of vary-
ing data types and query languages, and scale grace-
fully with high rates of node joins and leaves.
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Figure 1: An Example System

Example 1 Consider the stock-ticker system sug-
gested by Figure 1(a), with documents coming in as
a stream to the root node, labeled 0. We assume
the dissemination protocol dynamically creates a tree
overlay structure, with the source at the root and
data flowing down the tree. The data consists of a
stream of XML documents, each of which contains
some stock quote information. For example, Fig-
ure 1(b) depicts two documents describing stock in-
formation about Microsoft and IBM on the NASDAQ
and NYSE stock exchanges respectively. Each node
subscribes to a subset of the data using an XPath sub-
scription query [24]. For example, Node 2 has a sub-
scription query /stock/NASDAQ, which matches all
quotes for the NASDAQ exchange. Similarly, Node 1
requires all documents containing NYSE quotes. The
root node, which is the parent node of 1 and 2, will
filter documents needed by each of its children before
sending them downstream. Node 4 requires all quotes
for Microsoft on the NASDAQ, and Node 5 requires
all quotes that have increased by more than 10% on
the NASDAQ. Note that each of these queries is con-
tained in the query of node 2. Therefore, adding 4
and 5 as children of 2 entails no overhead in terms of
the documents sent down that subtree.

A natural constraint in building such a network is
a restriction on the number of children each node has.
We refer to this restriction as the Fanout constraint.
It bounds the amount of network and computational
overhead incurred at each node. (Since nodes in a
P2P network are typically not dedicated servers but
also support a number of other functions, such con-
straints are quite practical and are commonly found

in deployed P2P systems.) Let us assume the fanout
constraint in this example to be 2. (We pick a low
value for illustration purposes; typical values would
lie in the range 4-10.)

Consider the addition of Node 3 later on to the sys-
tem. Node 3 requires all documents with quotes that
have shown an increase of 20% or more, irrespective
of the stock exchange. Since there are no contain-
ment relations for Node 3 with any of the existing
nodes, its addition entails some spurious data being
added on the network. Furthermore, lack of knowl-
edge of future document distributions and node joins
and leaves makes it very difficult to predict the opti-
mal place to add the new node. For example, adding
it as a child of node 1 would entail node 1 receiving
some documents not required by it, but which need to
be sent down to node 3 (eg. documents from the NAS-
DAQ with high increases). Further complexities arise
in the system if some node is unwilling to accept new
children because of the fanout constraint, in which
case the system needs to construct the best-possible
configuration. Similarly, if the document distribution
becomes very skewed at some point later, the amount
of spurious data may exceed previous estimates, and
the system would benefit from a reorganization of the
topology. [

CoDD dynamically organizes participating nodes
into a hierarchical tree structure topology for the pur-
poses of data dissemination. Data is generated as a
stream of documents at the producer node, and flows
down the tree. Each node filters incoming data, and
transmits only the subset required by its descendants
in the tree. The primary metric we aim to optimize



on is the normalized spurious data, which is the frac-
tion of documents received by a node that does not
satisfy its subscription query. The topology construc-
tion protocols are the proactive component of CoDD,
because they optimize on the metrics by trying to
predict the future distribution of data.

CoDD also contains a reactive reorganization pro-
tocol. This component periodically reacts to changes
in the distribution of the data stream by trying to
reorganize the overlay topology. It allows the sys-
tem to perform online optimizations, with no a-priori
temporal information about data distributions.

There is a large body of work on data dissem-
ination services. Several selective data dissemina-
tion services for distributed systems have been pro-
posed [25]. More recently, systems such as Siena [4]
and Rebeca [15] have been proposed for enabling fast
publish-subscribe systems. These systems assume
a pre-existing centralized infrastructure of server
nodes, and thus maintain centralized repositories
of state. Other related work deals with aggregat-
ing subscription queries [7], maintaining index struc-
tures for efficient filtering [8], combining common-
subexpressions to process multiple queries [22] and
developing continuous query systems [9] to enable dis-
semination. CoDD differs from these systems in that
it is designed to be dynamically created using a set
of loosely-coupled nodes, while maintaining the de-
sirable properties of these systems such as bounded
state, efficient filtering and a form of multiple query
optimization to aggregate similar queries. We de-
scribe related work in more detail in Section 6.

To the best of our knowledge, CoDD is the first
selective data dissemination service for a serverless
environment. By avoiding the need to setup expen-
sive centralized servers and dedicated infrastructure,
we ensure the CoDD is easily deployable, and incre-
mentally upgradeable. The system works by assum-
ing cooperating peer nodes, and is designed to ac-
commodate per-node contribution constraints. The
CoDD protocols define policies rather than mecha-
nisms, and are therefore independent of the actual
data and query semantics.

The main contributions of this paper may be sum-
marized as follows:

e We motivate and develop the problem of selec-
tive dissemination of streaming data in a dy-
namic, resource-constrained, server-less environ-
ment.

e We present protocols for such dissemination.
The low overhead of our protocols permits them
to be used in scenarios in which the set of hosts,

the network characteristics, the subscriptions,
and the data characteristics change frequently.

e We describe the results of our performance eval-
uation of CoDD on synthetic and real data sets,
with policies for efficient deployment in a real
world system

The remainder of the paper is organized as follows.
Section 2 describes some design choices and assump-
tions made by CoDD. Section 3 describes the proto-
cols for adding and removing nodes from the system.
Section 4 describes the overlay reorganization proto-
cols, which allows CoDD to react to changes in data
distribution. Section 5 provides a detailed experi-
mental evaluation of the system to demonstrate its
effectiveness. We describe related work in Section 6
and conclude in Section 7.

2 CoDD System Design

CoDD contains protocols to dynamically build and
maintain an overlay of nodes for data dissemination.
The system maintains a hierarchical tree structure of
the nodes, with the producer node at the root. The
producer produces a stream of documents, and these
flow down the tree to the subscriber nodes. Each
node maintains an aggregate filter query for each its
children, which describes the set of documents needed
by all its descendants along that subtree. Aggregat-
ing downstream filter queries reduces the amount of
routing state at each node, and bounds the computa-
tional overhead incurred while filtering. On receiving
a document, a node propagates the document to a
child only if the document satisfies that child’s ag-
gregate filter query.

The fanout of a node is the maximum number of
children it is willing to accept in the CoDD overlay.
This limit allows each node to restrict the computa-
tional and network overhead it incurs by bounding
the number of filter queries that it needs to evaluate
and the number of network connections it needs to
maintain.

When a new node joins the network, it is desirable
to attach it at a point that produces a small impact
on the amount of excess data that must flow through
the network. Adding a new node to any point in
the network potentially results in excess data flowing
along the path from the root to the node. For each
ancestor of the new node, this data corresponds to the
documents required by the new node that do not sat-
isfy the subscription query of the ancestor. Comput-
ing this value requires knowledge of the documents



Definition

The list of children for node n

The parent of n in the overlay

The set of ancestors of n in the over-
lay (including itself)

Term

n.children
n.parent
n.ancestors

SubTree(n) The topology subtree rooted at n

n.query The subscription query for n

n.query(D) The subset d € D that satisfies
n.query

n.filter The aggregate filter query for n

n.level The depth of the node n in the over-

lay tree

Figure 2: Terminology Used

published in the system in the future, and CoDD at-
tempts to estimate this overlap using structures de-
scribing information about previously available doc-
uments.

We note that the desired maximization of over-
lap refers to an extensional overlap of data items
seen in the past, not to an intensional overlap of
queries. Although the latter certainly influences the
former (e.g., query containment would ensure high
overlap), the relationship may be weak in practice.
For example, queries that are not very closely re-
lated logically (e.g., //computer [model = "iMac"]
and //computer[color = "tangerine"] may have
100% overlap extensionally because of unknown de-
pendencies (hypothetically, the only tangerine com-
puters are iMacs)). Consequently, our protocols fa-
vor extensional techniques over intensional ones (al-
though they use both). Figure 2 describes some of
the terminology used in the description.

3 Overlay Construction

3.1 The System Join Protocol

The System Join Protocol defines a distributed pro-
cedure for a new node to attach itself to the CoDD
system. It tries to produce topologies that mini-
mize both excess data while maintaining low net-
work latency. The protocol is outlined in Fig-
ure 3. In our descriptions, use use the nota-
tion “send_syncmsg” to denote synchronous mes-
sage passing, and “send_async.msg” to denote asyn-
chronous communication. The protocol uses a dis-
tributed greedy strategy to determine the insertion
point for new nodes. An incoming node, m, ob-
tains a seed set S of existing nodes using an out-of-
band mechanism. Our implementation uses a spe-
cial system_agent node for this purpose. Typically,

the seed set S would consist of the ROOT node, but
can consist of any arbitrary set to avoid a single
point of congestion. For example, in a wireless net-
work, it could be a random node in communica-
tion range of the new node. We define the function
max_overlap node(Query q, Node n) as the node
p € n.children that the protocol determines will incur
the least overhead upon accepting a node with query
q as a child. Further, we denote this node p as the
maximal-overlap child of n with respect to the query
q.

The algorithm proceeds with the node m sending
a TYPE_ADD message to each node s € S. Each such
node s then propagates this message recursively to
its maximal-overlap children with respect to m.query.
The algorithm terminates when the message reaches
a node whose fanout constraint is not satisfied, and
the new node is attached as a child of this node. Ties
in the overlap are resolved by the node m. This allows
the new node to choose from a set of possible points of
entrance to the system, allowing it to make decisions
based on network proximity or load balance.

By terminating the protocol when the first node
that can accept new children is found, the proto-
col favors the construction of short trees, resulting
in low latency. The early termination also results in
low overheads: the number of messages exchanged is
bounded by h X s, where h is the maximum depth
of the tree, and s is the (constant) size of the seed
set. This design may, of course, lead to suboptimal
decisions as far as query overlap is concerned. The
alternative, of examining potential attachment points
more exhaustively, would incur additional overheads.
We quantify the effects of this design in Section 5.

3.1.1 Maintaining query overlaps

CoDD approaches the problem of determining max-
imal query overlaps using two types of schemes, a
statistics-based approach and a structural-match ap-
proach.

The statistics-based approach tries to maintain
statistics at each node, based on the set of documents
seen so far, to allow it to estimate the selectivity of
a given query. We currently use bitmaps and simple
summary structures at each node to maintain com-
plete information of the documents that have passed
through it. Note that this component can be di-
rectly replaced with any existing selectivity estima-
tion scheme to improve recall or space efficiency.

We describe the implementation of such a scheme
for a data model consisting of XML documents and
XPath subscription queries. Each node maintains a
node-labeled data summary tree with bitmaps at each



// protocol for joining
proc join_codd() {
seed_set s = send_sync_msg(system_agent,
TYPE_GETSEEDSET) ;
list candidates = {};
forall (node n in s) {
send_async_msg(n, TYPE_ADD, this);
}

// wait for timeout, or all nodes to respond
wait(candidates.length = s.size, TIMEOUT);
if (candidates.length == 0) return FAIL;

node p = min_cost_candidate(candidates);
if (send_async_msg(n,TYPE_ADDCHILD,
this) < 0) {
return FAIL;
}

// wait to receive data

Figure 3: CoDD Join Protocol

node. The bitmap at each node represents the set of
documents having a node at that particular position
in their XML data tree, and with the same label.
This structure can be efficiently updated using new
documents by a single pass on the XML tree of the
new document. Lookups to check for the set of doc-
uments that match a given query can also be easily
performed by simulating the twig pattern represent-
ing the given query on this structure, and checking to
see which documents contain an instance of this twig
query. For each node in the XML tree that simulates
a query node, we consider the bitmap at that node.
The logical ‘AND’ of each of these bitmaps yields ex-
actly the set of documents that would have matched
a given XPath tree query.

However this approach fails early in the evolution
of the system, if the statistics have not been seeded
sufficiently. In that case, our system uses a structural
match on the two queries and uses that to estimate
the cardinality of the common documents matched by
these. For example, if our query language is XPath,
our structural match algorithm compares the tree
structures and values described by two queries, in
order to do an intensional estimate of the overlap
between the two values. While this approach might
yield results with higher error rates, CoDD compen-
sates in the reorganization phase, as described in Sec-
tion 4. For the sake of brevity, we omit a more de-
tailed discussion of these techniques.

// message handler for join protocol
async proc message_handler(type t, args a) {
switch (t) {
case TYPE_ADD:
// handle a request to add
if (spare capacity available)
send_async_msg(a.sender,
TYPE_ADDRESULT, this);
return;
node n = max_overlap_node(a.query, this);
send_async_msg(n, TYPE_ADD, a);
break;
case TYPE_ADDRESULT:
// received a response to add request
// add the response to list of candidates
candidates.add(a.node);
break;
case TYPE_ADDCHILD:
// add this node as a child
this.children.add(a.sender, a.query);
if (this.parent != null)
send_async_msg(this.parent,
TYPE_ADD_QUERY, a.query);
break;
case TYPE_ADD_QUERY:
// update aggregate filter query
this.query.add(a.query);
// and update of parent as well
if (this.parent != null)
send_async_msg(this.parent,
TYPE_ADD_QUERY, a.query);
break;

Figure 4: Message Handlers for Join Protocol

3.1.2 Protocol Analysis

A CoDD topology can be modeled as a random split
tree, as described in [13]. These trees have a capacity
constraint on each node that corresponds exactly to
our fanout constraint. We model the selectivities of
the queries, and therefore the probability of the "
child of a node N being chosen while propagating a
TYPE_ADD message, by a probability p;. Thus, each
node has associated with it a probability vector V =
(p1,Dp2,-..ps), where f is the fanout (or capacity)
constraint.

With these assumptions, and using the universal
limit laws for random trees [13], we have the following
result.

Lemma 1 Let D,, be the depth of the system with n
participating nodes. Then, if we incrementally con-



struct the topology according to the join protocol as
described above, with no changes, the following is true
in probability

D, 1
log(n) TH (1)

where H 1is the entropy of the probability distribu-
tion, defined by

(2)

/
H=— pilog(p;)
=1

This result indicates that the join protocol as de-
scribed above, is expected to form trees where the
depth of the tree is logarithmic in the number of
nodes, with high probability. It is important to main-
tain this property, since it implies a low expected la-
tency seen at consumer nodes.

Similarly we can bound the overhead of node addi-
tions, by counting the number of messages that need
to be exchanged in the system during an execution
of the distributed join protocol. Each such execution
results in h; X s messages being exchanged, where h;
is the depth in the CoDD tree of the seed node, and
s is the (constant) size of the seed set. Thus, the
control overhead of adding a new node to the system
increases logarithmically with the size of the system.

We provide further experimental evidence of these
analytical results in Section 5.

3.2 The System Leave Protocol

The system allows a node to leave the network after it
has received the data it needs. The leave protocol for
a node n reorganizes the subtree rooted at n locally.
It proceeds by promoting the child node of n with the
maximal overlap with n one level higher. We denote
this node as n*. The protocol allows the restructuring
to proceed with the minimal addition to the total
data flowing on SubTree(n). The protocol then adds
each of the existing child nodes of n except for n*
according to the Join Protocol described above, with
seed set {n*}. Finally, it adds each of the children
of n* similarly to the subtree rooted at n*. Thus,
the only set of nodes affected by n leaving are the
descendant nodes of n. The algorithm is described in
more detail in Figure 5.

4 Reorganization Protocols

The tree reorganization protocol is the reactive com-
ponent of the system. It is initiated by nodes when

proc leave_codd() {
if (is_leaf(this)) {
send_async_msg(this.parent, TYPE_LEAVE, this);
return;

}

node n = max_overlap_node(this.query, this);
send_async_msg(n, TYPE_NEWPARENT, this.parent);

forall (node c¢ in n.this.children) {
send_async_msg(c, TYPE_NEWPARENT, n);
}
}

Figure 5: CoDD Leave Protocol

they observe a rise in the number of spurious doc-
uments received by them, and results in the system
possibly moving a subtree rooted at that node to an-
other part of the network. The protocol associates
a cost with the reorganization, and accepts one only
when the observed gain to the system outweighs the
cost of the move.

CoDD maintains a timeout parameter for each
node, which defines a constraint on the amount of
time that must pass between successive reorganiza-
tion requests for any given node. A request for re-
organization can be made periodically after a con-
figurable time-limit has passed, or can be done on
demand when the node detects an increase in the
amount of spurious data it is receiving. Thus, the
protocol allows the system to react to increases in the
data overhead, while the timeout restriction prevents
nodes from unfairly initiating these requests very of-
ten.

The protocol proceeds with the node, n, sending
a TYPE_REORGANIZE message to the root node of the
system. The root node checks to see that the request-
ing node is allowed to request for a reorganization,
and that the time since its last such request exceeds
the timeout parameter. The node then proceeds ac-
cording to Figure 7. It maintains a current best node,
and then traverses the tree in a breadth-first manner.
The protocol prunes paths on the tree when it deter-
mines that they do not contain candidates that would
provide a better solution node than the current best
node. The algorithm terminates by returning a new
parent for the node that needs to be reorganized.

We define the overhead associated with a node p
with respect to the node n as the amount of spurious
data that would be added to the system if we were to
add n as a child of p. The overhead can be computed
easily by each node, which maintains a set of the



// message handler for leave protocol
async proc message_handler(type t, args a) {
switch (t) {

case TYPE_LEAVE:

// remove child
this.children.remove(a.node);
send_async_msg(this,

TYPE_REMOVE_QUERY, a);
break;

case TYPE_REMOVE_QUERY:

// remove query from filter
this.query.remove(a.query) ;
if (this.parent != null)

send_async_msg(this.parent,
TYPE_REMOVE_QUERY, a);
break;

case TYPE_NEWPARENT:

// add node to new parent
send_async_msg(a, TYPE_ADDCHILD, this);

break;

Figure 6: Message Handlers for Leave Protocol

document ID’s it has received up to this point. By
comparing this set with the set of documents received
by the reorganizing node, the benefit associated with
this move can be estimated. The protocol prunes
search paths on the tree by estimating the overhead
of examining the children of a current node, and using
this estimate to stop the search along paths that are
known to entail higher overheads than the current
topology.

The protocol maintains a queue of prospective can-
didate nodes that might contain possible solutions.
If the node currently examined has a free child slot,
it is processed by comparing its overhead with that
of the current best node. If the fanout constraint for
the node is already satisfied, then the protocol tries
to estimate if a child of this node could contain a bet-
ter solution than the current one. If so, the protocol
adds each child of this node to the prospective candi-
date queue. Otherwise, this subtree is pruned from
the search space.

In practice, this protocol is initiated by a node n
when it discovers it is receiving spurious data beyond
a particular threshold. To minimize the data it is
receiving, the node n determines which of its children
has the least overlap with itself. This can easily be
determined by using the set of documents received at
both the nodes. The node n then requests that this
child be reorganized in the network tree, which lowers
the overhead on n and potentially its ancestors.

proc reorganize() {
best_parent_overhead = MAX_VALUE;
queue prospective = {ROOT};
best_parent = NULL;
repeat {
node c¢ = prospective.dequeue();
(curr_overhead, c.children) =
send_sync_msg(c, TYPE_GETOVERHEAD, this);
if (c has spare capacity) {
if (curr_overhead < best_parent_overhead) {
best_parent = c;
best_parent_overhead = curr_overhead;
}
}
else if (2%curr_overhead <
best_parent_overhead) {
forall (node p in c.children)
prospective.enqueue(p) ;
}
} until (prospective.length > 0);

if (best_parent == NULL) {
// unable to get better parent
return FAIL;

}

send_async_msg(best_parent,
TYPE_ADDCHILD, this);
}

// message handler for reorganize protocol
sync proc message_handler(type t, args a) {
switch (t) {
case TYPE_GETOVERHEAD:
// return overhead for reorganize
overhead = compute_overhead(this, a.node);
return (overhead, this.children);

Figure 7: CoDD Reorganization Protocol

Finally, note that the reorganization protocol
works in a distributed manner. Therefore, the ac-
tual system works by sending appropriate control
messages between nodes and recursively sending the
processing down the tree. We examine the cost and
benefits of reorganization, and explore a number of
optimizations to improve these, in Section 5.

5 Experimental Evaluation

5.1 Experimental Setup

The current implementation of CoDD consists of a
set of Java classes, which can be deployed in a dis-



tributed setting. We have also developed a simulator
for nodes, which allows us to test a large number of
configurations locally. We conducted our experiments
using the Sun Java SDK version 1.4.1_01 running on a
PC-class machine with a 1.6 GHz Pentium IV proces-
sor and 256 MB of main memory, running the Redhat
9 distribution of GNU/Linux (kernel 2.4.22).

Each node is simulated by a Java object. We sim-
ulate network data transfers using standard interpro-
cess communication mechanisms, such as local pipes
for the simulator and sockets for the distributed de-
ployment of CoDD. Each node runs an instance of
a query engine corresponding to the data and query
language in use. This engine evaluates each child’s fil-
ter query on each data item, and enqueues the item
to be sent to each of the children whose filter query
it satisfies.

The primary metric we study is the network com-
munication overhead. We define this overhead as
the fraction of documents received by each node in
the system that do not satisfy its subscription query.
While CoDD tries to construct topologies that min-
imize this overhead, the protocols also try to ensure
that the overlay topology gives good network per-
formance. For example, we want the topology to
have low depths to minimize the latency seen by in-
dividual clients. We also look at how reorganization
effects the performance of the system, and the over-
head seen at individual nodes across time for a variety
of data and parameter sets. Further, we describe a set
of optimizations to reduce the overhead of reorgani-
zation, while delivering close to original performance
gains.

We run experiments using two kinds of datasets.
The first kind of datasets represent an abstraction of
the mapping between data and subscriptions. More
precisely, we generate a stream of document ID’s and
a stream of node ID’s. We do not make assumptions
about the content of each document, or the subscrip-
tion query language. Instead, we generate subscrip-
tion queries by mapping document ID’s to node ID’s,
where each such relationship indicates an instance of
a document satisfying the query for the corresponding
node. We capture correlations in subscription queries
by grouping nodes into overlapping “interest-classes,”
which denote sets of nodes that are interested in a
similar subset of documents. For the purposes of our
experiments, we assign nodes to one or more of k
category buckets, with each bucket representing an
interest class. We use k = 20 by default. Subscrip-
tion queries are modeled by mapping each data item
to every member of a fixed number of these classes.
We model changes in data distribution by perform-

n number of nodes

d number of documents

s selectivity of documents

cf frequency of document distribution change
f fanout limit

r documents before reorganization

rthresh | The threshold of the reorganization

Figure 8: Experimental Parameters

ing a random shuffle operation on the buckets, at a
rate described by the change-frequency parameter cf.
Every shuffle operation consists of splitting ¢ buckets
into two sub-buckets, and then merging uniformly
randomly chosen pairs to form new mappings. We
use ¢ = k/5 by default. Figure 8 describes these pa-
rameters in more detail. Unless described otherwise,
the default synthetic dataset we used had a selectivity
of 0.2, with 400 nodes, and 10000 documents being
published in the system. The document distribution
was made to change every 200 documents, and the
default fanout was 6.

In the second set of experiments, we generate
XML documents corresponding to several well-known
DTD’s, and wuse synthetically generated XPath
queries to capture the subscription interests of nodes.
We describe this data set in more detail in subsec-
tion 5.4.

We denote the CoDD system with reorganization
enabled as CoDD-R, and the system without the re-
organization component as CoDD-NR.

5.2 Depth of nodes in the overlay

The depth of a node in the overlay network built by
CoDD affects properties such as the latency of data
delivery. We performed a set of experiments on the
synthetic data sets, with and without reorganization
enabled, and measured the depth of the nodes in the
CoDD system. Figure 9 depicts the distribution of
the weighted average depth of nodes. The weighted
average depth of a node is its depth averaged over
time, weighted by the number of documents it re-
ceives at each depth. Reorganization is seen to im-
prove the depth of the nodes in the system signifi-
cantly, by adapting the topology to take advantage
of the dynamic document distribution. Moreover, we
see in Figure 10 that the depth of the topology in-
creases slowly with an increasing size of the node set,
indicating that CoDD-R scales well with a large num-
ber of participants. This growth is seen to closely
follow the log z curve, as expected from our analyti-
cal analysis earlier. However, without reorganization,
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this depth is seen to increase linearly. Thus reorgani-
zation is seen to dramatically increase the ability of
CoDD to scale to large participant sets.

5.3 Evaluation of System Overhead

In Figure 11, we measure the overhead with a chang-
ing document distribution for the default synthetic
dataset. We perform this experiment with a fanout
of 6, and observe the overhead of the interior CoDD
nodes with and without reorganization. Reorganiza-
tion is seen to significantly improve the overhead ob-
served by the nodes, and the average overhead of the
system decreases by over 50% as a result of initiating
reorganization. This trend indicates that the reorga-
nization component allows CoDD adapts gracefully
to changing document distributions.

Effect of Reorganization (n=400,d=10000)
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Figure 12: Overhead of Siena versus CoDD

5.3.1 Comparison with existing systems

Siena[4] is an event-based publish-subscribe system
used to selectively disseminate data to a large set of
subscribers. Siena assumes a centralized infrastruc-
ture of servers, and associates clients with individual
servers. Servers communicate with each other de-
pending on the requirements of the clients serviced
by each server. For purposes of comparison, we try
to emulate a serverless environment using Siena as
follows. The network is built incrementally, with
a fraction of randomly selected nodes designated as
servers. These nodes are used to build a balanced
tree of servers, and clients connect to a randomly se-
lected server in this network. There are f clients per
server, where f models the fanout constraint in the
corresponding CoDD environment.
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In Figure 12, we show a comparison between Siena
and CoDD using the default synthetic dataset. The
CoDD system generates topologies that are data-
aware and thus outperforms the Siena environment
in terms of the metric of data overhead. This experi-
ment is also biased in favor of the Siena environment,
since the overhead of the Siena system is only due to
the few designated server nodes. Thus, the tail of the
distribution for Siena is much shorter. However, these
interior server nodes incur a high overhead. CoDD is
able perform significantly better than Siena without
having to resort to any centralized computation or
high communication overheads.

In Figure 13, we refer to the overhead in the system
with a changing fanout. We compare the performance
of CoDD with a centralized Siena topology, modified
as described above to perform in a server-less envi-
ronment. The CoDD system is seen to perform sig-
nificantly better with an increasing fanout, with the
tradeoff being a higher processing and network cost
per node as we increase the fanout. The Siena system,
on the other hand, has a performance that remains
poor with increasing fanout, and the overhead seen
in the system is also significantly worse. It is inter-
esting to note that the Siena system performs worse
at higher fanouts, because the interior nodes in the
tree have a higher number of children, which would
in general have very little overlap with the parent.

We also measure the overhead of the system, by
varying the fanout and reorganization level in CoDD
for different node set sizes. The results in Figure 14
indicate that the amount of overhead in the system is
significantly lowered with the reorganization. Also, it
can be seen that with reorganization, the overhead in-
creases at a much lower rate with the number of nodes
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in the system, allowing the system to scale better.

5.4 CoDD on XML datasets

We performed another set of experiments with XML
datasets, using XPath as a query language. Datasets
were generated using real-life, publicly available
DTD’s. The first dataset is from the News Indus-
try Text Format (NITF) DTD!, which is supported
by most of the world’s major news agencies. The
NITF DTD (version 2.5) contains 123 elements and
513 attributes. We also used two other DTD’s to gen-
erate datasets to compare the performance of CoDD
for different data workloads. They are the Protein Se-
quence Database (PSD) DTD?, and the CIML DTD?.
The characteristics of these datasets are further de-
scribed in Figure 15.

DTD | Max Depth | Avg Depth | Elements
NITF | 9.07 5.83 107.28
PSD 6.77 4.37 238.82
CIML | 4.44 3.32 22.22

Figure 15: XML Document Data Used

We generated our test data sets of XML documents
using IBM’s XML Generator tool*. The tool gener-
ates random instances of valid XML documents, con-
forming to a given input DTD.

L Available at http://www.nitf.org

2Available at the Georgetown Protein Information Re-
source, http://pir.georgetown.edu

3The Customer Identity/Name and Address Markup Lan-
guage, http://xml.coverpages.com/ciml.html

“http://www.alphaworks.ibm.com/tech/xmlgenerator
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To generate a workload of XPath queries to be used
as subscription queries for each of the nodes, we de-
veloped an XPath query generator. The query gen-
erator takes as input a DTD file, describing the set
of documents that we need to generate queries on. It
also uses a set of parameters describing characteris-
tics of the XPath queries needed. These parameters
include p,, which describes the probability of an ele-
ment having a wildcard (x) tag, p., which is the prob-
ability of a node having more than one child (that is,
a twig branch forms at that node), and py, which is
the probability of generating a closure axis. Our cur-
rent workload uses values of 0.2, 0.3 and 0.2 for these
parameters, respectively.

The XPath queries generated above had a selec-
tivity of 0.28, 0.15 and 0.31 for the NITF, PSD and
CIML datasets respectively.

We measure the normalized overhead for the sys-
tem in Figure 16. The reorganization was triggered
every 200 documents, and we measured the overhead
in the system with and without reorganization. In
Figure 16, we see that with reorganization, the sys-
tem is able to run at overheads of less than 10% at
low fanouts.

5.5 Effects of Reorganization

In this section, we describe several experiments, run
on both the abstract and XML data sets, that de-
scribe the benefits and costs of reorganization in a
CoDD system.

In Figure 17, we describe an experiment to show
the temporal behavior of the overhead of the system,
and how it behaves as and when we perform a reor-
ganization. We ran this experiment on the default
synthetic dataset, and show the average overhead in
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the system varying with time. Time is measured in
discrete events, which increments every time a docu-
ment is published, or a reorganization event occurs.
We measure the average overhead of all the nodes in
the system that have positive overhead (we only mea-
sure non-leaf nodes). The impulses indicate reorgani-
zation events. The average overhead of the system is
seen to decay appreciably toward the end of the curve,
indicating the system converging to a low overhead
configuration. Further, when we compare this sys-
tem against the overhead seen at interior nodes in a
Siena-like configuration, the overhead of the CoDD
system is seen to be significantly lower. Siena does
not capture data-specific properties in the topology
construction, and thus the overhead stays fairly con-
stant over the duration of the experiment.

We also analyzed the data from the previous exper-
iment to measure the effects of reorganization events



on the overhead of the node that asks for a reorga-
nization. In Figure 18, we quantify the effect of the
reorganization by measuring the ratio of the over-
head after the reorganization (and before the next
one) with the overhead before the organization. The
former is computed for the documents received af-
ter the node has moved to a new position. Thus,
if the reorganization was to be successful this ratio
should be as low as possible. The graph indicates
an interesting property. Namely, this ratio fluctu-
ates significantly initially. However, the latter 60%
of the reorganizations are quite successful, because
the statistics maintained by the system improve over
time, allowing it to make more informed decisions.
There are still some nodes that do not perform well
after the reorganization. However, the effect of that
is usually pretty low (ratio < 1.5).

The previous experiments have shown that fre-
quent reorganization leads to several desirable prop-
erties. However, there is an inherent cost associated
with reorganization. First, reorganization has a con-
trol communication overhead associated with it. Sec-
ondly, the node being relocated has to setup and
break overlay connections, change filter queries for
its ascendants, and possibly receive duplicate docu-
ments during the move to ensure no loss of informa-
tion. Thirdly, statistics on document distributions
for nodes that participate in reorganization change
on addition of new children, which affects the compo-
nents of the system that depend on statistics for good
performance. We conducted a set of experiments to
describe a number of optimizations and parameters
that can be used to decrease this overhead, and in-
crease the benefit of the reorganizations.

5.5.1 Reorganization Frequency

In the first experiment, we varied the frequency of re-
organization. Recall that the frequency is determined
by the timeout parameter described earlier, which de-
scribes the number of documents each node must re-
ceive before it can request a change in network topol-
ogy. The results of running the experiment with 1000
nodes, on 10000 documents using the XML/NITF
dataset, is shown in Figure 19. For the purposes of
these experiments, we considered discrete time incre-
mented every time a new node joins the system. We
measure the current overhead of the system over win-
dows of 10 time units, to determine how the system
evolves over time. In Figure 19, we ran this exper-
iment with a varying reorganization frequency. We
can observe that the system performs comparably for
reorganization timeouts ranging from 20-200. The
overhead increases if we go to a much slower timeout
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Figure 19: Effect of reorganization frequency

rate (500/1000 document timeouts). This plot indi-
cates that the benefit achieved from running CoDD
with faster reconfigurations diminishes rapidly. In
particular, we can see that the performance of the
system with reorganizations every 200 documents is
close to that with much faster reconfigurations, but
at a much reduced reorganization overhead.

5.5.2 Top-c Limited Reorganization

We conducted several experiments to measure the ef-
fect of limited reorganization, using the same dataset
as the previous experiment. Limited reorganization
associates a cutoff parameter, ¢, with the reorgani-
zation protocol. For every batch of reorganization
requests, CoDD with limited reorganization only al-
lows the top-c requests, as ordered by the overhead at
the node requesting to be moved. This optimization
allows the system to adapt to high reorganization re-
quest rates by answering requests from high-overhead
nodes only. In Figure 20, we can see that running
the reorganization with reasonably low cutoffs (10-
20) can yield performance close to that of the system
which grants all eligible requests. Limited reorgani-
zation thus gives the system designer a parameter to
bound the amount of overhead associated with each
reorganization.

5.5.3 Reorganization Thresholds

A reorganization threshold is the minimum overhead
a node must incur for it to request a reorganiza-
tion. The tradeoff associated with choosing an op-
timal threshold value is the gain of more aggressive
reorganizations versus the cost associated with the
topology reconfigurations. In figure 21, we look at the
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average number of node moves that occur in the sys-
tem with varying selectivities and thresholds, using
the default synthetic data set. We see that in general
a higher threshold value does result in fewer moves
occurring. This decrease occurs more at a higher se-
lectivity. This trend indicates that with high selectiv-
ities, we incur a higher overhead as a result of using
lower thresholds: using higher threshold values is ad-
vantageous in these situations because it is seen to
lower overheads appreciably. However at lower se-
lectivities, we can afford to work with medium to
low threshold values, since the performance gain from
them is better and the overhead is not appreciably
worse.
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5.5.4 Delta Thresholds

In Figures 23, 24 and 22, we investigate a new op-
timization to reduce the cost of reorganization. A
delta-threshold is a system parameter used by CoDD
to determine the utility of a reorganization. It de-
fines the fraction by which a reorganization should
decrease overhead for it to be worth it for the node
to move. We investigate three parameters values, 20,
10 and 0, corresponding to the improvement result-
ing in a decrease in immediate overhead of 20%, 10%
and 0%, using the default synthetic data set. There-
fore, the protocol denies all reorganizations that have
a perceived benefit of reorganization less than the
delta-threshold. As we see in Figures 22, the num-
ber of reorganizations decreases significantly with a
higher delta threshold. Further, Figure 23 indicates
that the performance seen by individual nodes due
to reorganization, described in terms of the overhead
ratio, is not significantly worse with a higher delta-
threshold. However, the performance of the overall
system in terms of overhead does not deteriorate sig-
nificantly, as can be seen in Figure 24. This optimiza-
tion gives us a parameter for decreasing the cost of
reorganization, and indicates that we can tune the re-
organization to occur only with an appreciable gain
associated with it. The delta-threshold parameter
can be set by the system designer depending on the
selectivity of the system and the cost of reorganiza-
tion moves.
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6 Related Work

As noted in Section 1, work on data dissemina-
tion typically focuses on a well-controlled environ-
ment (centralized or distributed). The goal of the
Query-Merging(QM) problem is to reduce the cost
of answering a set of subscription queries by merging
different sets of queries together. For a given cost
model, the QM problem takes as input a set @, and
outputs a set M, where each element of M is a set of
original queries to be merged, and cost(M) is mini-
mized. Previous work has shown QM to be NP-Hard
in the general case (|Q] > 2) [10]. This work also
quantifies the effect of merging for various cost mod-
els, and presents a set of heuristics for approximating
the QM problem. CoDD concentrates on construct-
ing and maintaining the underlying data-distribution
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infrastructure, and on effectively distributing com-
munication and computation overhead in a decentral-
ized environment. CoDD does not try to optimally
group queries or evaluate heuristics to compute glob-
ally optimal solutions. Instead, it relies on adaptive
reorganization techniques to push the system toward
a low-cost solution.

Siena [4] is a closely related event-based publish-
subscribe system. Clients in Siena subscribe to mes-
sages by registering subscription queries, and these
messages are routed using cooperating brokers that
share subscription information. The primary data
model used Siena represents events as a set of typed
attributes, and queries which describe constraints
over a subset of these attributes. Subscriptions are
aggregated using internal data structures that de-
scribe a partial order on the covering relationships
of these queries, and can be efficiently traversed to
match incoming notifications. The brokers comprise
a centralized infrastructure that the protocol main-
tains, and scalability is achieved by adding more bro-
kers to the system. Siena also describes a number
of topologies for connecting these servers: note how-
ever that individual clients are unaware of the de-
tails of the server cloud topology. Rebeca [15] and
Gryphon [16] are other systems, developed in both
academic and industrial environments, that imple-
ment various dissemination techniques using similar
architectures. CoDD distinguishes itself from these
systems by proposing protocols that are decentral-
ized, and work with loosely-coupled subscriber nodes
without centralized servers. Further, CoDD allows
nodes to self-manage their level of cooperation using
reorganization and capacity constraints, thereby en-
abling low-power nodes to participate in the system.
Finally, the extensional overlap used by CoDD allows
it to work with more complex data models and query
languages, without changing any of internal details of
the protocols.

The dynamic and self-organizing environment of
sensor networks [18, 26, 12] is similar to the environ-
ment addressed by CoDD. However, the main empha-
sis in sensor networks is on acquiring relevant data
from sensors using aggregation at upstream nodes.
Minimizing power consumption is the primary met-
ric while designing such systems. An aggregation ser-
vice, such as TAG [20], provides low-level primitives
to allow a system to compute aggregates over data
flowing through the system, while discarding irrel-
evant data and compacting related data into more
compact records where possible. TAG describes a
SQL-like declarative query language for this purpose,
and includes various optimizations, like synchronized



communication epochs during data collection to re-
duce power consumptions. Acquisitional query pro-
cessors [19] focus on locating and estimating the cost
of acquiring data. Instead of a-priori assuming an
existence of data, they provide language constructs
for defining the rate of sampling data, and specify-
ing event-based and lifetime-based queries over con-
tinuous data streams. These techniques are tailored
towards minimizing power-expensive operations such
as frequent communication and data sampling. In
contrast, CoDD concentrates on disseminating data
to interested subscribers. Thus, it is in a sense the
dual of the acquisitional nature of sensor networks.
CoDD is not restricted by strict power consumption
requirements, and assumes a connected underlying
network with no restriction on frequency of trans-
mission, allowing it to concentrate on creating data
and query-specific topologies.

An interesting common aspect is the process used
to disseminate queries to sensors. Semantic Rout-
ing Trees [18] allow the dissemination tree to exploit
knowledge of data semantics and send queries only
to sensors with relevant data. Each node maintains
unidimensional index intervals for each attribute A
of the data for each of its children, which represents
the range of values for A available at that child. This
information is used to route queries that depend on
attribute A only to children that are known to have
relevant data. For example, when a query ¢ arrives
at a node with a constraint on attribute A, the SRT
can be used to forward it only to those nodes whose
index overlaps the range of A in ¢. CoDD uses a simi-
lar idea to construct overlay topologies, using instead
extensional commonalities in data streams. Instead
of using attributes of the data, we rely on statistics
about the number of documents matched to obtain an
estimate of the relevance of a query at a particular
node. This technique allows CoDD to work well with
arbitrary data and query sets, and in the absence of
complete knowledge of data syntax and semantics.

There have been several optimization techniques
proposed to enhance the performance of push-based
dissemination systems. These include techniques for
pushing popular data to servers close to the con-
sumers [3], and data structures and caching policies
for fast publish-subscribe [14]. In addition, adaptive
approaches integrating push and pull-based systems
have also been proposed. Pull-based algorithms have
low overheads because they do not require state to
be maintained at servers. However, they do not offer
high fidelity in the presence of rapidly changing data
or strict coherency requirements, because the clients
request for data at a rate that is oblivious to the char-
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acteristics of the data stream. For example, knowl-
edge about unpredictable data rates is available only
at the server, and this information is useful in decid-
ing the rate of requesting information. While push
based algorithms offer a solution to some of these
problems, they can incur significant computational
and state-space overhead because of the extra state
needed at the server end. Moreover, the centralized
storage of such state makes them less resilient to fail-
ures. Adaptive push-pull systems [11] allow clients to
indicate their requirements in terms of data fidelity
and coherency, which can be used by the system to
tune the delivery mechanism used on a per-client ba-
sis. CoDD concentrates on creating and maintain-
ing an underlying infrastructure to efficiently man-
age this dissemination. It does not make assump-
tions about the data delivery mechanism used, and
the topologies created by CoDD can be extended rel-
atively easily to use the optimization techniques de-
scribed above in the presence of specific client require-
ments.

The decentralized services provided by CoDD have
several characteristics that are similar in nature to
the resource discovery problem in pervasive com-
puting environments. For example, the VIA sys-
tem [5] allows domains to organize into clusters cor-
responding to the resources available at each do-
main. Resource descriptions are described using a
list of attribute-value pairs called a metadata tag,
and queries are specified using a set of constraints
on a subset of these attributes. These clusters
are constructed by a process called generalization,
which aggregates queries by creating a set of upper-
bound queries by replacing some attribute value con-
straints by “wildcard” constraints. These upper-
bound queries are then used to discover commonal-
ities in metadata information and build a topology
corresponding to these commonalities in a bottom-up
fashion. VIA™ [6] extends these techniques to allow
queries to be generalized based on an impedance pa-
rameter. The query impedance is the average number
of times a data attribute does not match a query at-
tribute, and describes the relevant importance of that
attribute in contributing to query matches. The ex-
tensional method for grouping nodes used by CoDD
may be viewed as a generalization of this idea. The
emphasis in CoDD is low-overhead protocols for dy-
namic environments that emphasize node autonomy.
In VIA, groups of nodes are managed by an adminis-
trative domain controller. It would be interesting to
explore combinations of these methods.

INS/Twine [2] adopts a peer-to-peer approach to
solving the problem of resource discovery. Each



resource is published in an underlying distributed
hash table (DHT) such as Chord [23] by transform-
ing resource descriptions into a set of numeric keys.
Queries to locate resources are routed to the node
in the DHT responsible for the resource, using tech-
niques that enable queries with partially specified at-
tribute sets, and allow for an even data distribution
throughout the network. The use of a structured dis-
tributed hash table restricts the system from build-
ing topologies that take the data distribution into
account. Instead, topologies are governed completely
by the hash function and the key structures used.
Moreover, the maintenance of this structure in an en-
vironment with a high rate of change in the node sets
can often be an expensive operation. For example,
most DHT’s have an O(log(n)) bound on the cost of
node leaves. This overhead is often compounded by
graceless node leaves, where a node leaves the system
without properly informing its ancestors and transfer-
ring relevant state. This overhead can be significant
in a typical peer-to-peer like system, where the me-
dian up-time for nodes is as low as 60 minutes [21].
In contrast, CoDD creates data-aware tree structures
that work towards minimizing the overhead of excess
data. Unlike in a DHT, the structure of the topology
is not governed by data-oblivious parameters like a
universal hash function. This flexibility and lack of
strict structure allows CoDD protocols to react well
to high node turnover rates.

The NiagaraCQ system is designed to effi-
ciently support a large number of subscription
queries expressed in XML-QL over distributed XML
datasets [9]. It groups queries based on their signa-
tures. Essentially, queries that have similar query
structure by different constants are grouped and
share the results of the subqueries representing the
overlap among the queries. Our system complements
some of the ideas proposed for the NiagaraCQ sys-
tem, by providing a mechanism for distributing the
computation and dissemination overhead over a large
set of peer-nodes. While NiagaraCQ works with
change-based and timer-based events to indicate new
data, our model assumes a source stream of data
available at the root.

Recent work in the context of managing stream-
ing data handles several issues that are closely re-
lated to the CoDD system. The Fjords architec-
ture [17] has been developed for managing multi-
ple queries over the numerous data streams gener-
ated from sensors. Fjords presents a set of operators
that can be used to form query execution plans with
data being pushed from sensors in conjunction with
data pulled from traditional sources like disks. In
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contrast to CoDD, the emphasis in Fjords is main-
taining a high throughput for queries even when the
data rate is unpredictable. The Aurora system is an-
other stream processing system that manages sen-
sor data [1]. Aurora provides operators for sup-
porting monitoring applications, which include prim-
itives for operations such as sample, filter and aggre-
gate streaming data, and a query model to evaluate
queries on this data. The system provides various
query optimization techniques that aim at adaptively
modifying query execution plans, and a cost model
for evaluating these plans. CoDD primarily aims at
evaluating filter queries on data streams, and on ef-
fectively disseminating this data to interested con-
sumers. It would be interesting to incorporate some
of the ideas from the above systems into our pro-
tocols to perform more complex operations on these
data streams, and we leave that for future work.

7 Conclusions

We presented CoDD, a collection of robust and effi-
cient protocols for data dissemination in a serverless
environment. Specifically, we presented a system for
disseminating arbitrary documents when preferences
are expressed using an appropriate query language.
Our protocols do not assume a centralized informa-
tion repository, and instead rely on minimizing the
communication overhead of making distributed de-
cisions. They are also designed to work well with
autonomous nodes frequently joining and leaving the
network. The reactive component of these protocols
is designed to adapt to changing characteristics of the
data stream. We also presented an empirical evalu-
ation of CoDD based on our implemented testbed.
Our experiments show that CoDD scales to 1000s of
nodes, with data overheads of 5-10%.

In continuing work, we are using our testbed to
perform a more detailed experimental study of the
sensitivity of our protocols to parameters such as fan
out, skew, and drift, and to test our implementation
on a live network. We are also working on extend-
ing our methods to data queries (not just filters) and
on exploiting commonalities between multiple data
streams in a decentralized network.
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