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Long ranged intermolecular interactions have significant influence on the struc-

ture of the liquid and present serious challenges for computer simulations. In par-

ticular, the long ranged tail of Coulomb interaction usually needs to be calculated

using Ewald summation or related techniques in computer simulation, which can be

too time consuming to be carried out for large systems. Local Molecular Field(LMF)

theory has been developed to simplify long-ranged Coulomb and Van der Waals in-

teractions for nonuniform liquids by approximating these long ranged interactions

as effective static single-particle fields. Despite the success LMF theory made in de-

scribing the structure of nonuniform liquids, it is not appropriate to use LMF theory

to describe the structure of uniform liquid mixtures, since the dynamically moving



unbalanced forces produced in mixture can not be captured by the framework of

LMF theory. In this thesis, we propose a new framework which approximates the

unbalanced forces produced in a mixture as effective intermolecular interactions.

This new framework can simplify the long ranged intermolecular interactions and

produce a mimic system with short ranged solvent-solvent interactions, which is

much easier to simulate or analyze. Based on this framework and other techniques

introduced in this thesis, we have constructed a “ Short Solvent Model”, which has

noticeable advantages compared to the explicit solvent model and implicit solvent

model. This framework has also been used to simplify the interactions of phase-

separating mixtures. The impact of using this framework on the diffusion dynamics

of the solutes has also been discussed. Possible application of this framework and

the Short Solvent Model to biopolymers folding problems is briefly discussed.
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Chapter 1

Introduction and Overview

In 1873, van der Waals proposed the famous van der Waals(vdW) equation in

his thesis [1]. The vdW equation,

P =
NkBT

V −Nb − a
N2

V 2
, (1.1)

generalized the equation of state for ideal gas by taking the pair interactions be-

tween molecules into account. Remarkably, van der Waals separated the pair in-

teraction into the short ranged harshly repulsive interaction and the long ranged

slowly varying attractive interaction. According to the modern interpretation of

vdW equation [2,3], the short ranged repulsive interactions determine the excluded

volume of the molecule, described by the b parameter in the van der Waals equation

of state, while the average effect of the long ranged attractive interactions merely

contributed an uniform external field exerting no net force, whose strength was de-

termined by the a parameter in the van der Waals equation. The vdW equation

successfully predicted the liquid-vapor coexistence and even the existence of the crit-

ical point. Moreover, the philosophy of separating the interactions and regarding

the long ranged interactions as an uniform field has a deep influence for the liquid

theory afterwards, and it is called the vdW picture nowadays.

When studying the structure of simple liquids, Widom [2] pointed out that
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the vdW picture should be especially accurate when the thermodynamic state of

the liquid is near the triple point, where the fluid particles are densely packed.

Widom made two observations to support his argument. First of all, in a dense

liquid, the excluded volume of the particles mainly determines how they are packed.

Secondly, the force cancellation argument, which claims that the attractive forces

exerted on a particle come from all directions and thus tend to cancel with each

other, should work better in the densely packed limit. Widom’s argument was

further exploited and tested by the Weeks-Chandler-Andersen(WCA) theory [3],

which quantitatively confirmed that the short ranged harshly repulsive interaction

alone is able to determine to a very good approximation the bulk structure of a

simple liquid. Moreover, Widom’s argument and WCA theory can also be very

accurately generalized to deal with Coulomb interactions. It has been shown that

with the Coulomb interaction appropriately separated into a rapidly varying short

ranged part and a slowly varying long ranged part, the short ranged part itself is

able to very accurately determine the structure of the liquid, and this has been

verified for complex fluids such as liquid water and liquid acetonitrile [4, 5]. Some

details will be given later in this thesis.

Although the slowly varying long ranged forces nearly cancel in typical uniform

bulk configurations, they could produce a net unbalanced force in the nonuniform

state. For example, LJ particles near a hard wall are subject to attractive forces from

other particles in the bulk direction, which will form a net “drying” force pulling
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these interfacial particles away from the wall. Therefore, at nonuniform state, the

attractive force can no longer be neglected in the way proposed by WCA theory.

This motivated the development of Local Molecular Field(LMF) theory [6–9], which

quantitatively figured out that the unbalanced force produced in the nonuniform

state can be replaced by a nonuniform effective single-particle external field. For

example, in the LMF treatment, the drying force near the hard wall is envisioned as

arising from a static effective external field associated with a “renormalized” wall,

as illustrated in Figure 1.1. LMF theory has been used to describe the structure

of nonuniform LJ fluid and water in many applications, which gives results with

excellent accuracy [10–13]. The details about LMF theory can be found in Chapter

2.

Despite the success LMF theory made in describing the structure of nonuni-

form liquid, for uniform liquid it would seem to say the same thing as what vdW

picture and WCA theory said, which is that the long ranged interactions have no

effect on the structure of uniform liquids and can be replaced by a uniform external

field.

However, for uniform liquid mixtures the long ranged interactions do have

important influence on the structure. For example, it is well known that the vdW

attractions could greatly affect the hydration of water molecules around the apolar

solutes and the hydrophobic association of these solutes [14, 15]. In fact, even for

uniform mixtures, unbalanced forces will be produced by long ranged interactions
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Figure 1.1: The left panel shows Lennard-Jones particles near a hard

wall. The LJ particles near the wall feel attractions from other parti-

cles, denoted by the green arrow, which pull the particles away from

the wall. The right panel shows harshly repulsive WCA particles near a

“renormalized” wall. The renormalized wall potential not only includes

the hard wall potential, but also includes a “drying” potential deter-

mined by LMF theory, which pushes the WCA particles away from the

wall. The average force exerted on the particles as determined by LMF

equations in the two panels is the same.
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between different species. Consider the famous example of two mobile hard sphere

solutes in water [14]. Here water molecules near the hard sphere solutes will always

feel a net drying force produced by the water-water vdW attractions pulling water

molecules away from the hard sphere solute, and most noticeably this drying force

will move with the solutes as the solutes diffuse around. The dynamic nature of the

unbalanced forces produced in mixture makes it impossible to describe them as static

external fields. One trick to partially avoid this difficulty is to fix one of the solutes in

space, and many previous applications of LMF theory [4,16,17] have used this idea.

By doing this the uniform system is transformed into a nonuniform system. The

unbalanced force associated with the fixed solute is also fixed along with it and can be

described by an effective static external field using LMF theory. This solute has thus

become a “wall-particle”, like the hard wall we mentioned before. An illustration

of the fixing technique is shown in Figure 1.2. Although by using this technique

we can correctly describe the unbalanced force around the fixed solute using LMF

theory, the unbalanced force around all the other mobile solutes still can not be

correctly captured. This asymmetric treatment of mobile solute components shows

one significant limitation of the current implementation of LMF theory, which is that

within its framework the unbalanced forces have to be approximated as effective

static external fields. However, for uniform mixtures, based on the observation

that the unbalanced forces always move with particles, it is more appropriate to

approximate these unbalanced forces as arising from renormalized or effective pair
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interactions between particles. Based on this philosophy, we propose a new theory

to describe the unbalanced force produced by long ranged interactions in uniform

mixtures, and the rest of this thesis is focused on demonstrating this new theory.

Full	Target	System LMF	Mimic	System

Figure 1.2: Asymmetric treatment of mobile solutes in the current

version of LMF theory. The left panel shows an uniform LJ mixture

with two mobile components. The large sphere is the solute and the small

sphere is the solvent. In the right panel, one of the solutes is fixed at

origin. The unbalanced forces around the fixed solute are approximated

as an effective external field by LMF theory. All the other solutes and

all the solvent particles are taken as WCA cores, denoted by the red

sphere.

The new theory we want to propose can be formulated as a mathematical

framework to manipulate the slowly varying long ranged pair interactions without

significantly changing the structure of the mixture. These manipulations can poten-

tially simplify the interactions between particles and provide insight about how the
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long ranged interactions affect the structure of mixture. As an example to demon-

strate our theory, let us consider a mixture composed of single-atom molecules.

Suppose the interactions between these species are labeled as uMM′(r), which can

be separated into short and long ranged parts

uMM′(r) = u0,MM′(r) + u1,MM′(r). (1.2)

We want to change the long tails of the uMM′(r) in the following way

uMM′(r) = u0,MM′(r) + u1,MM′(r) =⇒ uR,MM′(r) = u0,MM′(r) + uR1,MM′(r) (1.3)

but keep the structure, or more precisely the radial distribution function of the

mixture gMM′(r) essentially unchanged.

This new set of interactions {uR,MM′(r)} defines a new system, which we will

call “mimic system” since it mimics the structure of the original or “target” system.

At first glance, it might seem that we do not have any choice but to make

uR,MM′(r) = uMM′(r) (1.4)

in order to keep the structure unchanged. However, we have shown that when

there is a dominant solvent species, denoted as A, in the mixture, we can choose

the long ranged interaction uR1,AA(r) freely with almost no effect on the radial

distribution function gAA(r), since the force cancellation argument can be applied

to the dominant solvent species. The other long ranged interactions in the mimic

system, including the solute-solvent and solute-solute long ranged interactions, are
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effective interactions which should be obtained by matching the unbalanced forces

produced in the target and mimic system, similar to what is done in the current

LMF theory. The detailed procedures are shown in Chapter 3.

The extra freedom in choosing uR1,AA(r) makes it possible for us to find ma-

nipulations which could simplify the interactions to make both theoretical analysis

and computer simulation easier. The simplest and often most useful choice is a

truncated solvent model where uR1,AA(r) is chosen to be 0. This can prove especially

useful for solvents like water with long ranged Coulomb interactions, where standard

treatments require costly Ewald sums [18]. A detailed discussion is given in Chapter

3.

By taking advantage of the slowly varying nature of the long ranged solute-

solvent interactions, we have designed a method which can quantitatively determine

the contribution from the solute-solvent long ranged interactions to the solute-solute

PMFs. This method has been used to study the association of apolar solutes in

water, which gives results that could clarify how the solute-solvent vdW attractions

affect the hydrophobic associations [14,15,19], as discussed in Chapter 4.

By combining the method developed in Chapter 3 and 4, we are able to con-

struct a “Short Solvent Model”. In this Short Solvent Model, the solvent-solvent

and solute-solvent Coulomb interactions are truncated, and the only long ranged

interactions are between the solutes. Since solutes are usually the dilute species

in most bio-environments, this model should be much faster to simulate than the
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explicit solvent model. Also, since this model preserves local hydrogen bond struc-

tures, it should be much more accurate than an implicit solvent model [20] where

dielectric screening is taken into account by models related to dielectric continuum

theory.

For mixtures without a dominant species, such as a binary 50-50 mixture, we

could not manipulate interactions as described above any more. Moreover, due to

the more complicated coupling between structure and interactions, we believe that

we can not make any changes to the interactions if we want to keep all pair corre-

lation functions of the finite-density mixture essentially unchanged. However, if we

just try to keep the structure of certain parts or components instead of the whole

system unchanged, we are granted freedom to manipulate the long tails of interac-

tions, and this extra degree of freedom makes it possible for us to find manipulations

which could simply the analysis. This idea has been tested by applying it to model

systems which have LJ-type interactions. Depending on the thermodynamic state

and the interactions chosen, the model system may separate into several distinct

phases. Using our framework, we could simplify the interactions of the model sys-

tem and construct a mimic system exhibiting the same phase separating behavior.

Remarkably, the mimic system has the same capillary wave fluctuations at phase

boundaries as the target system, which is a feature not captured by LMF- or Density

Functional Theory- based approaches [21,22]. The details can be found in Chapter

6.
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Our manipulation of interactions is designed to preserve the structure of the

mixture. The influence of the manipulation on the dynamics of the liquid is also ex-

plored, and analytically we have shown that the short time behavior of the diffusion

dynamics of the solutes is to a good approximation unaffected by our manipula-

tion of interactions. Computer simulations are conducted to verify our argument.

Detailed discussions can be found in Chapter 7.

Conclusions and possible applications of our theory to biopolymer folding prob-

lems are briefly discussed in Chapter 8.
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Chapter 2

Local Molecular Field Theory

2.1 Motivation

The motivation of LMF theory comes from applying WCA theory to a nonuni-

form Lennard-Jones(LJ) liquid. For uniform LJ liquid, WCA theory has shown that

it is beneficial to separate the LJ interaction into a short ranged, repulsive WCA

interaction and a long ranged, attractive tail [3]. More precisely,

u(r) = 4ε{(σ
r

)12 − (
σ

r
)6} (2.1)

is separated into

u0(r) =


u(r) + ε if r < r0

0 otherwise

(2.2)

and

u1(r) =


−ε if r < r0

u(r) otherwise

, (2.3)

where r0 = 21/6σ is the position of the minimum of the LJ potential. As shown in

Figure 2.1 the corresponding WCA liquid is a very good approximation to the bulk

structure of LJ liquid. The reason WCA theory works well is because long ranged

attractive forces exerted on the particles come from all directions and thus cancel

11
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u1(r)/ε

(a)

Long ranged forces cancel in uniform environments
Local structure from strong short-ranged interactions in LJ fluid

w(r) = u0(r) + u1(r)w u0

SPC/E
water

Strong
Coupling
reference

(b)

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
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(r
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(c)

Figure 2.1: (a) Separate the LJ potential into short ranged harshly

repulsive WCA interaction and long ranged attraction tail. (b) An illus-

tration of the force cancellation argument. As one can see the attractive

forces exerted on a particle cancel with each other. (c) Comparison

of the radial distribution function for the LJ fluid and corresponding

WCA fuild. The thermodynamic state of the fluid is ρσ3 = 0.65 and

kBT/ε = 1.0.

with each other, as illustrated in Figure 2.1. Thus the repulsive core itself is enough

to determine the structure of the liquid. However, for LJ liquids in nonuniform

environments, net unbalanced forces could be produced by these attractive forces.

For example, for LJ fluid confined by hard walls, the particles near the wall will

be pulled toward the bulk by the long ranged attractive forces from other particles,

thus forming a vapor-like interface near the wall. The corresponding WCA fluid

does not have this property. LMF theory tries to solve this problem by introducing

an effective external field to account for the unbalanced force produced by long

ranged interactions. More precisely, for a nonuniform system with pair potential

u(r) = u0(r)+u1(r) and external field φ(r), LMF tries to map this target system to

12



a mimic system with the repulsive core interaction u0(r) and a renormalized external

field φR(r). An illustration of this LMF mapping is

{ u(r)

φ(r)

}
=⇒

{ u0(r)

φR(r)

}
. (2.4)

The renormalized potential φR(r ) is chosen such that the nonuniform singlet density

of the target system matches that of the “mimic” system,

ρ(r; [φ]) = ρR(r; [φR]) . (2.5)

2.2 Exact Starting Point of LMF Theory

To find out the appropriate φR(r), our philosophy is to match the average

forces exerted on the particles in the target and mimic system [11, 23]. We start

from the Yvon-Born-Green hierarchy of equations [24] for both systems, which are

kBT∇ ln ρ(r; [φ]) = −∇φ(r)−
∫
dr′ρ(r′|r; [φ])∇u(|r − r′|) (2.6)

and

kBT∇ ln ρR(r; [φR]) = −∇φR(r)−
∫
dr′ρR(r′|r; [φR])∇u0(|r − r′|) (2.7)

respectively. ρ(r′|r; [φ]) is the density at r′ given a particle is fixed at r. −kBT∇ ln ρ(r; [φ])

can be interpreted as the average force felt by the particle at position r. The right

hand side of both equations shows the sources of forces, which include the external

field and the mutual interaction of particles.
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We want to choose φR(r) such that the singlet density is the same in the target

and mimic system. Assuming the existence of such a φR(r), we can subtract both

equations and get the following formally exact equation

∇φR(r) = ∇φ(r) +

∫
dr′ρR(r′; [φR])∇u1(|r − r′|)

+

∫
dr′(ρ(r′|r; [φ])− ρR(r′|r; [φR]))∇u0(|r − r′|)

+

∫
dr′(ρ(r′|r; [φ])− ρ(r′; [φ]))∇u1(|r − r′|) .

(2.8)

2.3 Approximations to Yield the LMF Equation

Eq.(2.8) is still an exact equation, but it shows the terms to be approximated

explicitly. LMF theory claims that the line 2 and 3 in Eq.(2.8) should be approxi-

mately 0. The validity of these approximations is explained as follows.

Line 2 probes the difference between the conditional density in the full and

mimic system over the range of the short ranged potential u0(r). We claim this

difference to be approximately 0. Since a good choice of u0(r) provides an accurate

description of nearest neighbor interactions, combined with the fact that the singlet

density is captured by construction in the mimic system, the conditional density

should also be approximately captured in the mimic system.

The integrand of line 3 involves the difference between the conditional density

and singlet density. This difference is not zero in general, but we are saved by the

fact that it is integrated with the gradient of the long tail. Since u0(r) is chosen to

encompass the repulsive core interactions, we will have ∇u1(|r−r′′|) ≈ 0 inside the

14



“hard core distance”, which is exactly the range where the conditional density and

the singlet density differ the most. Thus it is reasonable to expect the integrand in

line 3 to be approximately 0.

These approximations yield the LMF equation

φR(r) = φ(r) +

∫
dr′ρR(r′; [φR])u1(|r − r′|) + C . (2.9)

C is an integral constant, which can be chosen such that φR(r) → 0 when r → ∞

and will give us

φR(r) = φ(r) +

∫
dr′
(
ρR(r′; [φR])− ρb

)
u1(|r − r′|) . (2.10)

ρb is the bulk density of the fluid.

2.4 Strategies for Closing the Self-Consistent LMF Loop

As shown in Eq.(2.10), one needs the knowledge about ρR(r′; [φR]) to deter-

mine φR(r). However, one also needs the knowledge about φR(r) to determine

ρR(r′; [φR]). This means that Eq.(2.10) is a self consistent equation. To solve

Eq.(2.10) one apparently needs to start from an initial guess and solve Eq.(2.10)

iteratively. However, Hu and Weeks applied linear response method to do the iter-

ation, which could greatly accelerate the whole process. The details can be found

in [12].

The accuracy of Eq.(2.10) has been tested in many places. For example,

Ref [12]compares the density of LJ fluid around a hard sphere cavity and the density
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of the WCA fluid subject to the LMF external field defined in Eq.(2.10). The

nonuniform density of these two systems shows excellent agreement. More examples

can be found in [12].

2.5 Separate Coulomb Interaction and Apply LMF Theory

In previous sections we have discussed how to truncate LJ interactions and

use LMF theory to account for the unbalanced forces coming from the truncated

long tails. For more complex molecules, the mutual interaction usually includes

not only LJ interaction, but also Coulomb interactions. Well known examples are

the classical water models such as SPC/E [25] and TIP/5P [26]. Analogous to the

separation of LJ interactions, previous research [4] has shown that it is useful to

separate the Coulomb potential into short ranged and long ranged parts

v(r) =
1

r
=

erfc(r/σ)

r
+

erf(r/σ)

r
≡ v0(r) + v1(r) , (2.11)

where erf(r) and erfc(r) = 1−erf(r) are the error and complementary error functions.

The parameter σ is usually chosen on the order of the nearest neighbor distance

between charges. Fig 2.2 shows the separation schematically. v1(r) can be viewed

as the potential generated by a unit Gaussian charge distribution with width σ

v1(r) =
1

σ3π3/2

∫
dr′

e−(r
′/σ)2

|r − r′| . (2.12)
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Similarly, v0(r) can be viewed as a unit point charge shielded by a negative unit

Gaussian charge distribution

v0(r) =

∫
dr′
[
δ(r′)− e−(r

′/σ)2

σ3π3/2

] 1

|r − r′| . (2.13)

Short water models based on this Gaussian truncation scheme have been developed.

0.0 0.5 1.0 1.5 2.0

r (nm)

0

2

4
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8

10

σ = 0.5nm

v(r)

v0(r)

v1(r)

Figure 2.2: Separate the Coulomb interaction v(r) = 1
r

into short

ranged part v0(r) = erfc(r/σ)
r

and long ranged part v1(r) = erf(r/σ)
r

. σ is

chosen to be 0.5nm in this case.

The Gaussian Truncated (GT) water model [11] has Gaussian truncated electrostatic

interaction and full LJ interaction between water molecules. The Gaussian Trun-

cated Repulsive Core (GTRC) water model [27] has Gaussian truncated electrostatic
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interaction and WCA interaction between water molecules. Previous research [11,27]

has shown that both GT and GTRC water model can give a good description of

the bulk properties of water, because that long ranged forces tend to cancel in uni-

form systems. The comparison of the the radial distribution function of these short

water models with the full SPC/E water model is shown in Fig 2.3. In nonuniform

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

r (nm)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

gOO

gHH

gOH

Full

GT

GTRC

Figure 2.3: Comparison of the radial distribution function of SPC/E,

GT and GTRC water. gOO(r) represents the RDF between Oxygen sites.

gOH(r) represents the RDF between Oxygen and Hydrogen site. gHH(r)

represents the RDF between Hydrogen sites. The Gaussian truncation

parameter σ is chosen to be 0.5nm in this case.

systems, the long ranged tail of the Coulomb interaction could produce unbalanced
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forces. For example, Ref [11] shows the Gaussian smoothed charge density, which is

a useful quantity to characterize the dielectric properties of liquids, of SPC/E water

and GT water confined between two hard walls. The SPC/E water model and the

corresponding GT water model has obviously different Gaussian smoothed charge

density, which indicates that the long ranged tail of the Coulomb interaction is vital

for the dielectric properties of nonuniform liquid.

The effect of the long ranged tail of Coulomb interaction could also be taken

into account by LMF theory. For a system interacting with Coulomb interaction v(r)

and external electric field V(r), LMF theory tries to map it to a system interacting

with short ranged Coulomb interaction v0(r) and renormalized external electric field

VR(r). VR(r) has the following expression

VR(r) = V(r) +

∫
dr′ρqR(r′; [VR])v1(|r − r′|) , (2.14)

where ρqR(r′; [VR]) is the charge density of water, completely analogous to the un-

charged LMF equation Eq.(2.10). Ref [11] also shows the Gaussian smoothed charge

density of GT water confined between hard wall while simultaneously subject to the

LMF electric field VR(r), which agrees excellently with the Gaussian smoothed

charge density of SPC/E water. More examples which verifies the accuracy of

Eq.(2.14) can be found in [10,27,28].
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2.6 Conclusions

In this chapter, we have reviewed the framework and several applications of

LMF theory. As shown by previous researches, LMF theory can accurately describe

the structure of nonuniform liquids.
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Chapter 3

Manipulating the Intermolecular Interactions of Dilute Solutions

Long ranged intermolecular interactions could have significant influence on the

structure of the mixture and present serious challenges for computer simulations.

It is well known that the water-water vdW attraction contributes significantly to

the hydrophobic interactions between large apolar solutes [14, 15], and that the

long ranged tail of Coulomb interaction is important for the screening of charges in

water [11]. Due to the importance of long ranged component of intermolecular in-

teractions, they need to be taken into account in computer simulation if one desires

accurate numerical results. In particular, the long ranged tail of Coulomb inter-

action, which decays slowly as 1
r
, is usually calculated using Ewald summation or

related techniques in computer simulation [18,29,30]. The Ewald-related techniques

are time consuming to be carried out for large systems and usually requires certain

symmetry of the simulation box.

To simplify the calculation of the long ranged tails and improve the speed of

simulation, in this chapter we will describe a framework which allow us to simplify

the long ranged interactions but still keep the structure of the mixture unaffected

by the simplification. Using our framework, we can construct a “mimic” system,

which has the same short ranged components of intermolecular interactions as the
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target system, but has simplified long ranged tails. The simplified long ranged in-

teractions are chosen such that the radial distribution functions between all the

species are unchanged in the mimic system. This framework can be used to manip-

ulate and simplify vdW interactions, Coulomb interactions and other long ranged

slowly-varying interactions.

In this chapter, we first describe the details of our framework in Chapter 3.1

and then use this framework to simplify the vdW attractions (Chapter 3.2) and

Coulomb interactions (Chapter 3.3) for dilute solutions.

3.1 Framework and Derivation

This section contains two subsections. In Chapter 3.1.1, I will illustrate the

framework of our theory by studying the LJ-type dilute binary solutions, and then

further generalize the framework to work with more general multi-species dilute

solutions composed of multi-sites particles. In Chapter 3.1.2 I will show the detailed

derivations for the results obtained in Chapter 3.1.1.

3.1.1 Framework

In last chapter, we have shown that LMF theory can be applied successfully to

nonuniform liquids. However, within the framework of LMF theory, the unbalanced

forces produced by long ranged interactions can only be approximated as static

effective single-particle fields. This makes it inappropriate to use LMF theory to
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describe the dynamically moving unbalanced forces produced in uniform mixtures.

In this section, we propose a new theory, which approximates the unbalanced forces

produced by slowly varying long ranged interactions in uniform mixtures as effective

pair interactions.

Our new theory can be formulated as a mathematical framework to manipu-

late the long ranged interactions without changing the structure of the mixture. The

manipulations can potentially simplify the interactions between particles and pro-

vide insight about how the long ranged interactions affect the structure of mixture.

As an example to demonstrate our theory, let us consider a mixture composed of

two different types of single-atom molecules, denoted as A and B. The interactions

are labeled as uMM′(r), where M,M′ ∈ {A,B}. uMM′(r) can be separated into short

and long ranged part

uMM′(r) = u0,MM′(r) + u1,MM′(r). (3.1)

We want to change the long tails of the uMM′(r) in the following way
uAA(r) = u0,AA(r) + u1,AA(r)

uAB(r) = u0,AB(r) + u1,AB(r)

uBB(r) = u0,BB(r) + u1,BB(r)


=⇒


uR,AA(r) = u0,AA(r) + uR1,AA(r)

uR,AB(r) = u0,AB(r) + uR1,AB(r)

uR,BB(r) = u0,BB(r) + uR1,BB(r)


(3.2)

where the long ranged tail is changed from u1 to uR1 but the short part u0 is kept

the same. This new set of interactions {uR,AA(r), uR,AB(r), uR,BB(r)} defines a new

system, which we will call “mimic” system following the tradition of LMF theory.
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Our new framework is designed to find accurate choices of uR1,MM′(r) which will keep

the structure of the mimic system close to the structure of the original or “target”

system.

The similarity of the structure of the target and mimic system can be mathe-

matically characterized by the similarity of the radial distribution functions. In our

framework {uR1,AA(r), uR1,AB(r), uR1,BB(r)} are chosen to match the radial distribu-

tion functions of the target and mimic system

gAA(r) ≈ gR,AA(r)

gBB(r) ≈ gR,BB(r)

gAB(r) ≈ gR,AB(r) ,

(3.3)

where gMM′(r) denotes the radial distribution function of the target system while

gR,MM′(r) denotes the radial distribution function of the mimic system. The match-

ing of radial distribution function can also be equivalently expressed as the matching

of the potential of mean force

ωMM′(r) = ωR,MM′(r) (3.4)

where ωMM′(r) = −kBT∇gMM′(r) represents the potential of mean force between M

and M′, or equivalently expressed as the matching of the pair correlation function

ρM|M′(r|0) = ρR,M|M′(r|0) (3.5)

where ρM|M′(r|0) = ρb,MgMM′(r) is the conditional density of M at distance r given

that a M′ particle fixed at the origin. ρb,M is the bulk density of M.
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As discussed in Appendix A, there is one-to-one mapping between pair inter-

actions and radial distribution functions. Therefore, it seems that uR1,MM′(r) has

to be very close to u1,MM′(r) in order for Eq.(3.3) to be true. But in the special

limit where B is dilutely solvated in A, gR,AA(r) is not sensitive to the choice of

uR1,AA(r), since the force cancelation argument still works for the densely packed

solvent particles. Therefore

gAA(r) ≈ gR,AA(r) (3.6)

for all the choices of uR1,AA(r) as long as it is slowly varying. This extra freedom

of choosing uR1,AA(r) makes it possible for us to find out meaningful choices for

{uR1,AA(r), uR1,AB(r), uR1,BB(r)}, as shown below.

Although we have the freedom to choose uR1,AA(r) as long as it is slowly

varying, we do not have the freedom in choosing uR1,AB(r) and uR1,BB(r). They

have to be chosen such that

gR,AB(r) ≈ gAB(r)

gR,BB(r) ≈ gBB(r) .

(3.7)

Finding out uR1,AB(r) and uR1,BB(r) which will satisfy Eq.(3.7) is the core part of

our theory. Physically speaking uR1,AB(r) and uR1,BB(r) are chosen by matching the

unbalanced forces produced in the target and mimic system. The matching of the

forces can be mathematically formulated by making use of the YBG hierarchy of

equations, similar to what has been done in LMF theory. The detailed procedures
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will be described in Chapter 3.1.2 and I will just list the conclusion here.

uR1,AB(r) = u1,AB(r)−
∫
dr′(ρR,A|B(r′|0)− ρb,A)(uR1,AA(|r − r′|)− u1,AA(|r − r′|))

uR1,BB(r) = u1,BB(r)−
∫
dr′(ρR,A|B(r′|0)− ρb,A)(uR1,AB(|r − r′|)− u1,AB(|r − r′|))

(3.8)

It is worth noticing that the choice of uR1,AB(r) and uR1,BB(r) are coupled with the

choice of uR1,AA(r), which is not surprising since the choice of uR1,AA(r) will affect

the unbalanced forces produced in the mimic system.

To summarize briefly, to keep the structure of the example dilute solution

unchanged, we can choose uR1,AA(r) freely, but uR1,AB(r) and uR1,BB(r), which are

dependent on the choice of uR1,AA(r), has to be determined by Eq.(3.8).

The benefits of being able to manipulate these interactions is that we can create

a mimic system which is easier to analyze or simulate than the original system. For

example, we can choose uR1,AA(r) to be 0. In that case the mimic system will not

have long ranged interactions between the solvents, therefore both the computer

simulation and the theoretical analysis of this mimic system will be much easier.

In Section 3.2 and 3.3 we will focus on this special kind of mimic system and test

our theory by using it to deal with vdW attractions and the long tail of Coulomb

interactions.

Eq.(3.8) is only targeting binary dilute solutions composed of single-site molecules.

Similar equations can be drawn for dilute solutions composed of multiple types of

molecules, and these molecules can be rigid molecules composed of several sites.
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The solvent in this solution, which is the dominant species, is still denoted by A.

The solute species, which are dilutely solvated, are denoted by B, C, D and so on.

The sites in a molecule are represented by Greek letters such as ξ, α and η. ξM

represents site ξ of molecule specie M, where M = {A,B,C, · · · }. The intermolecu-

lar interactions between site ξM and αM′ are denoted by uξMαM′(r), which can be

separated into short ranged and long ranged part as follows

uξMαM′(r) = u0,ξMαM′(r) + u1,ξMαM′(r). (3.9)

We want to manipulate the long tails of the intermolecular interactions as we did

previously

uξMαM′(r) = u0,ξMαM′(r)+u1,ξMαM′(r) =⇒ uR,ξMαM′(r) = u0,ξMαM′(r)+uR1,ξMαM′(r) .

(3.10)

uR1,ξMαM′(r) is chosen such that the site-site correlation function is unchanged under

the manipulation

gR,ξMαM′(r) ≈ gξMαM′(r) . (3.11)

Since A is the dominant species, we can still choose the long tail of A-A intermolec-

ular interaction uR1,ξAαA(r) freely. The other long tails, or more precisely the long

tails of solvent-solute and solute-solute interactions, can be determined by

uR1,ξAαM(r)

=u1,ξAαM(r)−
∑
ηA

∫
dr′(ρR,ηA|αM(r′|0)− ρb,ηA)(uR1,ηAξA(|r − r′|)− u1,ηAξA(|r − r′|))

(3.12)
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and

uR1,ξM′αM(r)

=u1,ξM′αM(r)−
∑
ηA

∫
dr′(ρR,ηA|αM(r′|0)− ρb,ηA)(uR1,ηAξM′(|r − r′|)− u1,ηAξM′(|r − r′|)) .

(3.13)

In both equations above, M,M′ = {B,C,D, · · · }. ρR,ηA|αM(r|0) is the density of site

ηA at distance r given a αM site is placed at the origin in the mimic system.
∑

ηA

sums over all the sites of specie A. We will not show how to derive Eq.(3.12) and

(3.13) here. The procedures are similar to what will be shown in Chapter 3.1.2,

while the only complication here is that we now have intramolecular interactions.

However, the intramolecular interactions are unchanged in the mimic system and

would not contribute to uR1,ξAαM(r) and uR1,ξM′αM(r).

It is worth noticing that sometimes we just want to keep certain parts of

the structure unchanged under the manipulation. For example, in many cases, the

solute-solute radial distribution function is the only thing we are interested in. In

that case, we only need to preserve solute-solute RDF in the mimic system. This

does give us extra freedom in manipulating the interactions, and this scenario will

further explored in Chapter 4 and 6.

3.1.2 Derivation

In this section I will derive Eq.(3.8). The procedure is very much similar to

the derivation of the LMF equation (See Eq.(2.10)). Let us derive the expression
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for uR1,AB(r) first. The exact YBG equations for ρA|B(r|0) and ρR,A|B(r|0) are

−kBT∇ ln ρA|B(r|0) = ∇uAB(r) +

∫
dr′ρA|AB(r′|r,0)∇uAA(|r − r′|) (3.14)

and

−kBT∇ ln ρR,A|B(r|0) = ∇uR,AB(r) +

∫
dr′ρR,A|AB(r′|r,0)∇uR,AA(|r − r′|) (3.15)

uR1,AB(r) is chosen such that ρA|B(r|0) = ρR,A|B(r|0). Subtract both equations and

we get exactly

∇uR1,AB(r) = ∇u1,AB(r)

+

∫
dr′ρR,A|B(r′|0)∇(u1,AA(|r − r′|)− uR1,AA(|r − r′|))

+

∫
dr′(ρA|AB(r′|r,0)− ρA|B(r′|0))∇u1,AA(|r − r′|)

−
∫
dr′(ρR,A|AB(r′|r,0)− ρR,A|B(r′|0))∇uR1,AA(|r − r′|)

+

∫
dr′(ρA|AB(r′|r,0)− ρR,A|AB(r′|r,0))∇u0,AA(|r − r′|) .

(3.16)

Eq.(3.16) is still an exact equation, but it shows the terms to be approximated

explicitly. We claim that line 3, 4 and 5 of Eq.(3.16) should be approximately 0. By

making these approximations, three-body correlation functions ρA|AB(r′|r,0) and

ρR,A|AB(r′|r,0), which are really hard to get numerically or analytically, do not

appear any more. The validity of these approximations is shown in the following

part.

Line 3 and 4 of Eq.(3.16) involves the difference between the three-body corre-

lation functions and pair correlation functions. This difference is not zero in general,
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but we are saved by the fact that it is integrated with the gradient of the long tail.

We can choose∇uR1,AA(|r−r′|) and∇u1,AA(|r−r′|) to be approximately zero inside

the effective hard core distance, which is exactly the range where the conditional

density and the singlet density differ the most. Thus it is reasonable to expect the

integrand in line 3 and 4 to be approximately 0.

Line 5 probes the difference between the three-body correlation function in

the target and mimic system via convolution with ∇u0,AA(r). We claim this line to

be approximately 0 based on the the following arguments.

• The integrand in line 5 is quickly forced to zero at larger |r − r′| by the

vanishing gradient of the short ranged u0,AA(r). Since both the target and

mimic system have the same strong short range core forces with appropriately

chosen u0(r)s, which should mainly determine the short-ranged part of the

correlation functions, it seems plausible that with proper choice of u0(r)s, line

5 can be neglected.

• The pair correlation functions are designed to be the same in the full and mimic

system. The close resemblance of the pair correlation functions in dense full

and mimic systems is an indication that the three-body correlation functions

are also close in the full and mimic system, since three-body correlation func-

tions are functions of pair correlation functions as shown in Appendix A.

30



After the approximations, Eq.(3.16) become

∇uR1,AB(r) = ∇u1,AB(r) +

∫
dr′ρR,A|B(r′|0)∇(u1,AA(|r − r′|)− uR1,AA(|r − r′|)) .

(3.17)

After integrating over the gradient and fixing the integration constant such that

uR1,AB(r) is 0 at infinity, we can get

uR1,AB(r) = u1,AB(r) +

∫
dr′(ρR,A|B(r′|0)− ρb,A)(u1,AA(|r− r′|)− uR1,AA(|r− r′|)) .

(3.18)

The derivations to get uR1,BB(r) is similar. The YBG equation for ρB|B(r|0)

and ρR,B|B(r|0) are

−kBT∇ ln ρB|B(r|0) = ∇uBB(r) +

∫
dr′ρA|BB(r′|r,0)∇uAB(|r − r′|) (3.19)

and

−kBT∇ ln ρR,B|B(r|0) = ∇uR,BB(r) +

∫
dr′ρR,A|BB(r′|r,0)∇uR,AB(|r − r′|) (3.20)

respectively. uR1,BB(r) is chosen such that ρB|B(r|0) = ρR,B|B(r|0). Subtract both

equations and rearrangement. We get

∇uR1,BB(r) = ∇u1,BB(r)

+

∫
dr′ρR,A|B(r′|0)∇(u1,AB(|r − r′|)− uR1,AB(|r − r′|))

+

∫
dr′(ρA|BB(r′|r,0)− ρA|B(r′|0))∇u1,AB(|r − r′|)

−
∫
dr′(ρR,A|BB(r′|r,0)− ρR,A|B(r′|0))∇uR1,AB(|r − r′|)

+

∫
dr′(ρA|BB(r′|r,0)− ρR,A|BB(r′|r,0))∇u0,AB(|r − r′|) .

(3.21)
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Now we can make approximations similar to what we did before. Notice that in

order for Line 4 of Eq.(3.21) to vanish, uR1,AB(r) needs to be slowly varying inside

the effective hard core distance. uR1,AB(r) is determined by Eq.(3.18), which will be

slowly varying inside the core when u1,AA(r) − uR1,AA(r) is slowly varying enough.

When u1,AA(r)− uR1,AA(r) is not slowly varying enough, uR1,AB(r) could vary sub-

stantially inside the hard core distance, and this has been practically verified when

u1,AA(r) − uR1,AA(r) corresponds to the vdW attraction. However, in that case we

have the freedom to force uR1,AB(r) to be slowly varying inside the hard core without

affecting the structure, since uR1,AB(r)� u0,AB(r) inside the hard core distance. In

this way we obtain a core corrected version of Eq.(3.21)

uR1,AB(r)

=
{ u1,AB(r)−

∫
dr′(ρR,A|B(r′|0)− ρb,A)(uR1,AA(|r − r′|)− u1,AA(|r − r′|)) r ≥ dAB

uR1,AB(dAB) r < dAB

,

(3.22)

which certainly will make Line 4 of Eq.(3.21) vanish. dAB denotes the effective hard

core distance. For r < dAB, u0,AB(r)� kBT . Notice that any physically reasonable

choice for dAB(r) will give essentially the same results.

After making the approximations, we have

∇uR1,BB(r) = ∇u1,BB(r) +

∫
dr′ρR,A|B(r′|0)∇(u1,AB(|r − r′|)− uR1,AB(|r − r′|)) .

(3.23)
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After integrating over the gradient and fixing the integration constant, we can get

uR1,BB(r) = u1,BB(r) +

∫
dr′(ρR,A|B(r′|0)− ρb,A)(u1,AB(|r − r′|)− uR1,AB(|r − r′|)) .

(3.24)

which is just what is shown in Eq.(3.8).

3.2 Manipulating the Van der Waals Attractions for Apolar Solutes

in Water

The vdW attractions could have important influences on the association of

apolar solutes in water, and the solute-solute, solute-water and water-water vdW

attractions influence the PMF between solutes through different mechanisms [15].

The solute-solute attraction adds directly to the PMF between solutes when the

solutes are dilutely solvated. The effects of the solute-water and water-water at-

traction on the solute-solute PMF are more subtle. Qualitatively speaking, the

water-water attraction produces a drying force on the interfacial water molecules,

which effectively increases the energy of the interfacial water and thus favors the

association of the solutes. The solute-water attraction produces an attractive force

on the interfacial water molecules, which lowers the energy of interfacial water and

thus favors the dissociation of the solutes. Many theories have been devoted to pro-

vide a quantitative description for the effects of the solute-water and water-water

vdW attractions [14,31–33], however, most of these theories are numerically not very

accurate. To tackle this problem, in this section we use the framework described
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in Chapter 3.1 to map the solution of apolar solutes and water to a mimic system

which has the water-water vdW attraction truncated but still possesses the same

structure as the original target system. Thus, we are saved with the necessity to

theoretically describe the effects of the water-water vdW attractions by studying the

mimic system as an alternative. We also described a new and surprisingly accurate

theory dealing with the effects of the solute-water attractions, which will be shown

in Chapter 4.

Let us first discuss the mathematical labels needed. We will use A to label

the water molecules and B to label the apolar solutes. The water-solute and solute-

solute interaction are denoted as uAB(r) and uBB(r) respectively. The water-water

interaction are composed of Coulomb part and vdW part. In this section we will

only focus the vdW part, denoted by uAA(r), and the Coulomb part will not be

manipulated or changed in the mimic system. The Coulomb interaction is able to

be manipulate using our framework, as will be shown in Chapter 3.3. In practice

we have found that the long ranged tail of Coulomb interactions have almost no

influence on the association of apolar solutes. Therefore for conceptual simplicity

we do not manipulate the Coulomb interaction here. {uAA(r), uAB(r), uBB(r)} can

all be separated into the repulsive core interaction u0,MM′(r) and the long ranged

attractive interaction u1,MM′(r).

For the mimic system to be constructed, we will choose the water-water inter-

action to be just the repulsive-core interaction, or in other words, uR1,AA(r) = 0. By
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truncating the water-water attraction, the mimic Hamiltonian is simplified. Based

on our discussions in Chapter 3.1.2, uR1,AB(r) and uR1,BB(r) have the following ex-

pressions

uR1,AB(r) =
{ u1,AB(r) +

∫
dr′(ρR,A|B(r′|0)− ρb,A)u1,AA(|r − r′|) for r ≥ dAB

uR1,AB(dAB) for r < dAB

,

(3.25)

and

uR1,BB(r) = u1,BB(r)−
∫
dr′(ρR,A|B(r′|0)− ρb,A)(uR1,AB(|r − r′|)− u1,AB(|r − r′|)) .

(3.26)

Notice that we forced uR1,AB(r) to be constant inside the effective hard core distance

dAB. The reason of doing this can be found in Section 3.1.2.

Fig 3.1 and 3.2 qualitatively shows the physical meaning of Eq.(3.25) and

Eq.(3.26) respectively. The integral term in Eq.(3.25) and Eq.(3.26) can be inter-

preted as the effective interactions used to compensate the truncation of water-water

attraction u1,AA(r). As shown in Figure 3.1, the water molecules near the surface of

the solute feel vdW attractions from other water molecules, which forms a “drying”

force pulling the interfacial water towards the bulk direction. This “drying force”

corresponds to the integral term in Eq.(3.25). This drying force along with the

solute-water vdW attraction are incooperated into uR1,AB(r). As illustrated in Fig

3.1, uR1,AB(r) should be less attractive than u1,AB(r). As shown in Figure 3.2, when

two solutes are close to each other, the water molecules in between the two solutes
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have different structure compared to the water molecules outside, so the forces ex-

erted on the solutes coming from these water molecules are different from inside

and outside, thus producing an unbalanced force along the solute-solute direction.

The difference of this unbalanced force between the target and mimic system cor-

respond to the integral term in Eq.(3.26), which along with the direct solute-solute

vdw attraction are incooperated into uR1,BB(r). Since uR1,AB(r) is less attractive

than u1,AB(r), uR1,BB(r) also needs to be less attractive than u1,BB(r) such that the

total force on the solute are the same in the full and mimic system, as illustrated in

Figure 3.2.

In the following subsections we will manipulate the vdW attractions for the

fullerene-water solution (Chapter 3.2.1), Argon-water solution (Chapter 3.2.2) and

Hard Sphere-water solution (Chapter 3.2.3) using the method prescribed here.

3.2.1 C60 in water

We first test our theory by studying fullerenes in solution with water. We

used a coarse grained model for fullerene [34, 35], with the fullerene-water and the

fullerene-fullerene interaction defined as

uAB(r) =4NεAB
σ2
AB

rη

{
1

20

[( σAB

η − r
)10
−
( σAB

η + r

)10]

− 1

8

[( σAB

η − r
)4
−
( σAB

η + r

)4]} (3.27)
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Figure 3.1: In this figure A stands for solvent. B stands for solute. The

left panel corresponds to the target system. The right panel corresponds

to the mimic system. In the target system, a solvent particle feels vdw

attractive forces from the solute and the surrounding solvent, denoted by

f1,AB(r) = −∇u1,AB(r) and f1,AA(r) = −∇u1,AA(r) respectively. These

forces are incooperated into fR1,AB(r) = −∇uR1,AB(r), as shown in the

right panel. Physically speaking the total force exerted on the solvent

particles are the same in both system. But notice that the force matching

happens in the sense of an ensemble average, while this figure only shows

one typical configuration.
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Figure 3.2: In this figure A stands for solvent. B stands for solute. The

left panel corresponds to the target system. The right panel corresponds

to the mimic system. The left panel shows the vdW attractive forces

acted on the solute particle, including the solute-solvent vdW attrac-

tive force f1,AB(r) = −∇u1,AB(r) and the solute-solute attractive force

f1,BB(r) = −∇u1,BB(r). The right panel shows the long ranged part

of the solute-solvent and solute-solute interaction acted on the solute,

denoted by fR1,AB(r) = −∇uR1,AB(r) and fR1,BB(r) = −∇uR1,BB(r) re-

spectively. The total force acted on the solute coming from these long

ranged interactions should be basically the same in both system. As il-

lustrated in this figure, the uR1,BB(r) should less attractive than u1,BB(r).
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and

uBB(r) =− α
[ 1

s(s− 1)3
+

1

s(s+ 1)3
− 2

s4

]
+ ζ
[ 1

s(s− 1)9
+

1

s(s+ 1)9
− 2

s10

] (3.28)

where A stands for water, B stands for fullerene, N = 60, σAB = 3.19 Å, εAB =

0.392 kJ/mol, α = 4.4775 kJ/mol, ζ = 0.0081 kJ/mol and η = 0.355 Å. Both uAB(r)

and uBB(r) can be separated into short ranged repulsive interaction and long ranged

attractive interaction, as illustrated in Figure 3.3. The water-water interaction is

defined by the SPC/E water model, which contains both Coulomb interactions and

LJ interactions.

In the corresponding mimic system, the vdW attraction between water is trun-

cated and the fullerene-water, fullerene-fullerene interaction, which are shown in

Figure 3.3, are obtained according to Eq.(3.25) and Eq.(3.26) respectively. The

comparison of the structure of the target and mimic system is shown in Figure

3.4. The structure of the target and mimic system closely resembles each other,

which justifies the approximations made in our derivation. To gain better insight

about how much the vdW attractions alters the structure of the solution, Figure 3.4

also shows the structure of a “repulsive-core” system, where the vdW attractions

between all the species are truncated.
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Figure 3.3: B stands for the fullerene. A stands for the water. In

(a), u0,BB(r) is the short ranged repulsive component of the fullerene-

fullerene interaction. u1,BB(r) is the long range attractive component

of the fullerene-fullerene interaction. uBB(r) = u0,BB(r) + u1,BB(r) is

the fullerene-fullerene interaction in the target system. uR1,BB(r) is the

long ranged component of the fullerene-fullerene interaction in the mimic

system. In (b), u0,AB(r) is the short ranged repulsive component of the

fullerene-water interaction. u1,AB(r) is the long range attractive com-

ponent of the fullerene-water interaction. uAB(r) = u0,AB(r) + u1,AB(r)

is the fullerene-water interaction in the target system. uR1,AB(r) is the

long ranged component of the fullerene-water interaction in the mimic

system.
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Figure 3.4: (a) compares the fullerene-fullerene PMF of the target,

mimic and repulsive-core system, represented by ωBB(r), ωR,BB(r) and

ω0,BB(r) respectively. (b) compares the fullerene-water RDF of the tar-

get, mimic and repulsive-core system, represented by gAB(r), gR,AB(r)

and g0,AB(r) respectively. All the data is obtained at T = 300K and

P = 1atm by computer simulation.
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3.2.2 Argon in Water, Pratt-Chandler Theory and Inverse Temper-

ature Behavior

We further test our theory by studying Argon particles dissolved in water. This

system has been studied by many people and still being actively studied [36–38].

The most well-know theory studying Argon associations is the Pratt-Chandler the-

ory [36], which used integral equations to determine the association between Argon

particles in water. However, it is now believed that the Pratt-Chandler theory has

neglected the contribution of solute-water and solute-solute vdW attractions [14].

Or in other words, the Pratt-Chandler theory was targeting “repulsive-core” solutes.

By manipulating the vdW interactions following the procedures shown before,

we can quantitatively show that the vdW attractions do not contribute strongly

to the hydrophobic association of Argon. According to Ref [15], the hydrophobic

interaction between Argon comes from the two different effects. First is the vdW

attractions, as we already discussed. The second physical reason behind the Argon

association is that the orientational fluctuation of water molecules near the Argon is

restricted, which thus favors the association of Argon in order to reduce the number

of interfacial water molecules and increase the entropy of the whole system. By

showing that the vdW attraction does not contribute strongly, we have verified

that the hydrophobic association of Argon should be due to the restraint of the

orientational fluctuation of interfacial water, which is a purely entropic effect.

The interaction between Argon-Argon and Argon-water are modeled as LJ
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interactions. The water-water interaction is still defined by the SPC/E water model.

Again, we use B to denote the solute Argon and A to denote the solvent water. In

the mimic system, the water-water vdW attraction is truncated, or in other words,

uR1,AA(r) = 0. uR1,AB(r) and uR1,BB(r) are determined based on Eq.(3.25) and

Eq.(3.26). Figure 3.5 shows uR1,AB(r) and uR1,BB(r) obtained at T = 300K and

P = 1atm. According to Figure 3.5 both uR1,AB(r) and uR1,BB(r) are very small
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Figure 3.5: In this figure, B stands for Argon, A stands for water. In

figure (a), uR1,BB(r) is the long ranged part of the Argon-Argon inter-

action in the mimic system. u1,BB(r) is the long ranged attractive part

of Argon-Argon interaction in the target system. u0,BB(r) is the short

ranged repulsive part of Argon-Argon interaction in the target system.

In figure (b), uR1,AB(r) is the long ranged part of the Argon-water inter-

action in the mimic system. u1,AB(r) is the long ranged attractive part

of Argon-Water interaction in the target system. u0,AB(r) is the short

ranged repulsive part of Argon-Water interaction in the target system.

compared to u1,AB(r) and u1,BB(r) outside the repulsive core. Also, given that

kBT = 2.5kJ/mole for T = 300K, uR1,AB(r) and uR1,BB(r) are negligible compared
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to kBT , which means that

uR,AB(r) ≈u0,AB(r)

uR,BB(r) ≈u0,BB(r)

(3.29)

in this mimic system. Therefore the interactions in the mimic system obtained

are very close to the repulsive-core system, showing the accuracy of the LJ force

cancellation picture in this case. This explains the similarity of the structure between

the target system and the repulsive-core system, as shown in Figure 3.6.
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Figure 3.6: In Figure (a), gBB(r) is the Argon-Argon RDF of the target

system. gR,BB(r) is the Argon-Argon RDF of the mimic system. g0,BB(r)

is the Argon-Argon RDF of the repulsive-core system where the vdW

attractions between all the species are turned off. In Figure (b), gAB(r)

is the Argon-water RDF of the target system. gR,AB(r) is the Argon-

water RDF of the mimic system. g0,AB(r) is the Argon-water RDF of

the repulsive-core system.

Our conclusion that the Argon association should be an entropic effect also

explains the inverse temperature behavior. It is found out that in a certain tem-
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perature range the association strength between Argons grows stronger when the

temperature increases [38], which is demonstrated in Figure 3.7a. There has been

speculations that the inverse temperature behavior comes from the solute-water

vdW attractions [39]. But our work already shows that the vdW attractions do not

affect the hydrophobic association of Argon. Thus, the inverse temperature behavior

should be an entropic effect. This is further verified by examining the temperature

dependence of Argon-Argon association in the repulsive-core system, where the vdW

attractions between all the species are truncated. As shown in Figure 3.7b, we find

out that the same inverse temperature behavior exists in the repulsive core system,

which confirms that the inverse temperature behavior is an entropic effect. A qual-

itative explanation for this inverse temperature behavior can be given here. When

the temperature increases, the fluctuation, especially the orientational fluctuation,

of bulk water molecules are also increased. However, the structure of the interfacial

water molecules is restricted by the geometry of the solute, thus being less sensitive

to the temperature increase. Therefore, when temperature increases, the entropy

difference between the bulk water and interfacial water molecules becomes higher,

which as a result induces stronger hydrophobic association.

3.2.3 Hard-Sphere-Like Solutes in Water

In previous sections we have studied the fullerene-water and Argon-water so-

lutions. In both cases, there is no obvious “drying” around an isolated solute. As
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Figure 3.7: Figure (a) shows the inverse temperature behavior of the

Argon-Argon RDF gBB(r). Figure (b) shows the inverse temperature

behavior of the Argon-Argon RDF in the repulsive core system, denoted

by g0,BB(r). All the data are obtained at P = 1atm.

we mentioned at beginning of Chapter 3.2, the drying behavior results from the

breaking of the hydrogen bonding network near the solute and from the unbalanced

force produced by the water-water vdW attractions. For Argon and fullerene in

water, the water-water attraction is balanced by the solute-water attraction, as we

have shown in Figure 3.3 and 3.5, thus even the repulsive-core system has almost

correct solute-water RDF as shown in Figure 3.4 and 3.6. To test the accuracy and

find the limits of our theory, it is beneficial to find systems where vdW attractions

have a significant influence on the structure. In this section, we try to study harshly

repulsive hard-sphere-like solutes. By “hard-sphere-like” we mean that both the

solute-water and solute-solute interaction are harshly repulsive interactions like the

WCA core potential of the LJ fluid. We try to study these hard-sphere-like solutes
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instead of real hard spheres because it is hard to use the discontinuous hard sphere

potential in standard MD simulation packages. These hard-sphere-like solutes are

used as a computationally useful alternative exhibiting the same physics.

Noticeably there exist many theories discussing the hydrophobic hydration and

association of hard spheres in water, which makes the hard sphere solvation problem

even more interesting. The most famous one is the Lum-Weeks-Chandler theory [14],

which uses Gaussian Fluctuation Theory to take into account the repulsive-core con-

tribution to the hydrophobicity and uses mean field theory to take into account the

water-water attraction contribution. The Lum-Weeks-Chandler theory qualitatively

works really well and is able to predict the “length scale transition behavior” of hy-

drophobic hydration, which means that the drying of water happens only when the

hard sphere solute is large enough(about 1nm diameter). This length scale transition

is related to the breaking of hydrogen bonds and was first suggested by Stillinger [40]

and we are also going to show it using simulation data later.

In the target system, the hard-sphere-like solute is denoted by B and the wa-

ter is denoted by A. The solute-water and solute-solute interaction in the target

system is denoted by u0,AB(r) and u0,BB(r), which are short ranged harshly re-

pulsive interaction. The water-water interaction in the target system still follows

the interaction of SPC/E water, and the LJ part is denoted by uAA(r). We ma-

nipulate these interaction and construct the mimic system, which has interaction

{uR,AA(r), uR,AB(r), uR,BB(r)}. The water-water attraction is chosen to be truncated
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in the mimic system, namely uR1,AA(r) = 0. uR1,AB(r) and uR1,BB(r) are determined

following Eq.(3.25) and Eq.(3.25). In this particular situation, uR1,AB(r) can be ef-

fectively interpreted as the unbalanced potential produced by the water-water vdW

attraction, which is a repulsive potential pushing water away from the solute. The

uR1,BB(r) will also be a repulsive potential, whose main role is to balance the ad-

ditional solute-solute effective attraction produced by uR1,AB(r). One can better

understand this point by looking at Figure 3.1 and 3.2.

Our first model for the hard-sphere-like solute is the repulsive core of Argon.

The diameter of the core is 0.34 nm, which is below the transition length and hence

there is no obvious drying near the solute, as shown in Figure 3.9b. The interactions

in the target and mimic system are shown in Figure 3.8. uR1,AB(r) and uR1,BB(r)

are repulsive as expected. The solute-water and solute-solute RDF of the target

and mimic system are shown in Figure 3.9, as one can see the RDFs in the mimic

system closely match the RDFs in the target system, which verifies the accuracy of

our theory. The RDFs in the repulsive-core system, where vdW attractions between

all the species are truncated, are also shown in Figure 3.9. The solute-solute RDF

in the repulsive-core system is obviously different, which shows that the water-water

attractions have an obvious influence on the hydrophobic association. However, the

solute-water RDF in the repulsive core system is quite close to the solute-water

RDF in the target and mimic system, because the water-water vdW attraction is

not strong enough to break the hydrogen bonds and pull the water molecules away
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from the solute.
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Figure 3.8: In this figure, B stands for the repulsive core of Argon,

A stands for water. In figure (a), uR1,BB(r) is the long ranged part of

the solute-solute interaction in the mimic system. u0,BB(r) is the short

ranged repulsive core solute-solute interaction. In figure (b), uR1,AB(r) is

the long ranged part of the solute-water interaction in the mimic system.

u0,AB(r) is the short ranged repulsive core solute-water interaction.

Our second model for the hard-sphere-like solute is the repulsive core of fullerene.

The coarse grained model of fullerene is already defined in Chapter 3.2.1. The di-

ameter of the core is about 1 nm, which is just about the transition length and we

do see obvious drying near the solute, as shown in Figure 3.11b. So this is a really

good case to test the limit of our theory. The interactions in the target and mimic

system are shown in Figure 3.10. uR1,AB(r) and uR1,BB(r) are strongly repulsive in

this case. The solute-water RDF and solute-solute PMF of the target and mimic

system are shown in Figure 3.11, as one can see the RDF and PMF in the mimic
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Figure 3.9: In this figure, B stands for the repulsive core of Argon, A

stands for water. Figure (a) shows the solute-solute RDF in the target,

mimic and repulsive-core system, represented by gBB(r), gR,BB(r) and

g0,BB(r) respectively. Figure (b) shows the solute-water RDF in the

target, mimic and repulsive-core system, represented by gAB(r), gR,AB(r)

and g0,AB(r) respectively.
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system basically match the corresponding ones in the target system, although the

matching of the solute-solute PMF is not as good as what we have seen in before,

which is not surprising considering the huge drying needed to be taken care of. The

RDFs in the repulsive-core system, where vdW attractions between all the species

are truncated, are also shown in Figure 3.11. One feature of the target system

which is correctly captured in the mimic system is the “evaporation phenomena”.

As shown in Figure 3.11a, the solute-solute PMF in the repulsive-core system has

a local minimum at about r = 1.2nm, which corresponds to the configuration that

one water molecule is placed in between the two fullerenes. However, this minimum

does not exist in the PMF of the target and mimic system, since the drying force is

too strong and a vacuum layer is formed between the fullerenes. An illustration of

the evaporation behavior is shown in Figure 3.12. As one can see, even in this case

where obvious drying happens, our theory still works pretty well, which proves that

the approximations we made are physically valid.

3.3 Manipulating the Coulomb Interactions

Calculating the Coulomb interactions in computer simulations using Ewald

summation or related techniques can be really time consuming when the size of the

system becomes large. To speed up the simulation speed, we use the framework

shown in Chapter 3.1 to simplify the Coulomb interactions. In the mimic system

constructed by us, the “effective range” of the interactions, defined as the range
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Figure 3.10: In this figure, B stands for the repulsive core of Fullerene,

A stands for water. In figure (a), uR1,BB(r) is the long ranged part of

the solute-solute interaction in the mimic system. u0,BB(r) is the short

ranged repulsive core solute-solute interaction. In figure (b), uR1,AB(r) is

the long ranged part of the solute-water interaction in the mimic system.

u0,AB(r) is the short ranged repulsive core solute-water interaction.
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Figure 3.11: In this figure, B stands for the repulsive core of Fullerene,

A stands for water. Figure (a) shows the solute-solute RDF in the target,

mimic and repulsive-core system, represented by uBB(r), uR,BB(r) and

u0,BB(r) respectively. Figure (b) shows the solute-water RDF in the

target, mimic and repulsive-core system, represented by uAB(r), uR,AB(r)

and u0,AB(r) respectively.
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Figure 3.12: This figure illustrates the evaporation phenomena be-

tween two repulsive-core fullerenes. The top panel illustrates the evap-

oration phenomena. As one can see a vacuum region forms between

the two solutes. As a comparison, the bottom panel illustrates the case

where water molecules fill in between the solutes. This figure is taken

from Ref [17] with permission.
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within which the strength of the interactions are larger or comparable to kT , are

significantly shorter, as will be shown later.

The model system we are going to study is dilute solution with single-site ions

as solutes. We will use A to denote the solvent and Greek letters ξ, α to denote the

ion solutes. Coulomb interactions, no matter between ion-solvent, solvent-solvent

or ion-ion, always have the same form 1
r
, which can be separated into short ranged

v0(r) and long ranged part v1(r) as discussed in Chapter 2.5. We can manipulate

the long ranged tail of Coulomb interactions using our framework. In the mimic

system constructed by us, the manipulated Coulomb potential, which are denoted

as vR,MM′(r) = v0(r) +vR1,MM′(r), can have different long tails between species. The

mapping of the interactions is summarized as follows
vAA(r) = v0(r) + v1(r)

vξA(r) = v0(r) + v1(r)

vξα(r) = v0(r) + v1(r)


=⇒


vR,AA(r) = v0(r) + vR1,AA(r)

vξA(r) = v0(r) + vR1,ξA(r)

vξα(r) = v0(r) + vR1,ξα(r)


. (3.30)

vR1,AA(r) can be chosen freely without affecting gR,AA(r). vR1,ξA(r) and vR1,αξ(r)

are chosen according to the following formula

vR1,ξA(r) = v1(r)−
1

qξ

∫
dr′ρqR,A|ξ(r

′|0)(vR1,AA(|r − r′|)− v1(|r − r′|)) (3.31)

and

vR1,ξα(r) = v1(r)−
1

qα

∫
dr′ρqR,A|α(r′|0)(vR1,ξA(|r − r′|)− v1(|r − r′|)) (3.32)

respectively. qξ stands for the charge of ion ξ. ρqA|ξ(r|0) stands for the charge density
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of solvent A around the ion ξ. These two equations can be derived based on Eq.(3.12)

and (3.13), and the straightforward derivations will not be shown here.

A particularly useful choice of vR1,AA(r) is to make it equal zero, which means

that the Coulomb interaction between solvent molecules are truncated. In this case,

vR1,ξA(r) obtained using Eq.(3.31) asymptoticly goes to 1
εr

, and vR1,ξα(r) obtained

using Eq.(3.32) asymptotically goes to 2
εr
− 1

ε2r
when r is large. ε is the dielectric

constant of the solvent. Therefore, in the mimic system, the ion-solvent and ion-ion

Coulomb interaction still have long ranged tails, but screened by ε.

The presence of the long tails in the mimic system is not surprising considering

the fact that the screening of the ion charges has to be preserved in the mimic

system. Thanks to the screening, the long tails in the mimic system have much

shorter effective range when the solvent has high dielectric constant, which could

lower the computational cost. More importantly, the long tails are only within ion-

solvent and ion-ion, which means that the computational cost for calculating these

long tails using Ewald summation will be O(NBNA +N2
B), where NB is the number

of the solvated ions. This computational cost is much smaller compared to the cost

of using Ewald summation O((NB +NA)2) or the cost of using Particle Mesh Ewald

method O((NB +NA) log (NB +NA)) in the target system, when the concentration

of the ions is low.

In Chapter 5, we will show that we can further simplify the mimic system to

a new system where the only long ranged tails are between the ions. For that new
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system, the computational cost for calculating the long tails will be O(N2
B), which

is even much smaller compared to the computational cost for the mimic system

constructed here.

3.4 Conclusions

In this chapter, we have presented the framework to manipulate and simplify

the intermolecular interactions of liquid mixtures. This framework has been used

to simplify the vdW attractions in neutral solutes-water solutions, which provides

a convenient way to quantitatively understand the contribution from water-water

attractions to the hydrophobic hydration and association of solutes. This framework

has also been used to simplify the Coulomb interactions in ion-water solutions. The

mimic system constructed has truncated Coulomb interaction between solvents and

is much easier and faster to simulate, and potentially this mimic system can be used

in bio-simulations and greatly increase the simulation efficiency.
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Chapter 4

Effects of the Long Ranged Component of Solute-Solvent

Interactions On the Association of Solutes

The PMF between solutes can be greatly altered by the long ranged component

of the solute-solvent interactions. This is due to the fact that the solute-solute PMF

is closely related to the solvation free energies of solutes, which are very sensitive to

the long ranged solute-solvent interactions such as the vdW attraction and Coulomb

interaction [15,41]. More precisely, the PMF between solutes can be interpreted as

the difference of solvation free energy for a pair of solutes separated infinitely far

away and a pair separated at distance r. The contribution from the solute-solvent

long ranged interactions to the solvation free energy of the solute pair generally

depends on the separation of the pair, thus contributing an effective term to the

solute-solute PMF. Several theories have been developed focusing on how the solute-

water vdW attraction affects the association of the solutes [31–33], but the numerical

predictions of these theories are generally speaking not very accurate. To tackle this

problem, in this chapter, we develop a method to quantitatively describe the effects

of the long ranged component of solute-solvent interactions on the PMF between

solutes. This method only makes use of the slowly varying nature of the long

ranged solute-solvent interaction and therefore can be used to deal with both vdW
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and Coulomb interactions.

The contribution from the long ranged solute-solvent interaction to the solute-

solute PMF is quantitatively defined as the difference of the PMF between two full

solutes and the PMF between two “reference” solutes. For the reference solutes, the

solute-water interactions are truncated and the solute-solute interaction is still the

full interaction. Notice that our choice of the interaction between reference solutes

is difference from the conventional way of choosing the interaction between reference

solutes as the truncated interaction [31]. With our choice one can better concentrate

on the contribution of the long ranged solute-solvent interaction to the solute-solute

PMF.

As an example to illustrate our definition, for the situation shown in Figure

4.1, the contribution of the B-A long ranged interaction u1,AB(r) to the B-B PMF

is defined as

∆ωBB(r) = ωBB(r)− ωB0B0(r) . (4.1)

We can represent ∆ωBB(r) as the difference of the reversible work to turn on

u1,AB(r) for a B-B pair with separation r and with separation ∞, which can be

mathematically formulated as

∆ωBB(r) = ∆Ωr −∆Ω∞ , (4.2)

where the meaning of ∆Ωr and ∆Ω∞ are illustrated in Figure 4.2. By making use of

the slowly-varying nature of u1,AB(r) we can make physical plausible approximations
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Figure 4.1: The left panel shows full B solutes dissolved in solvent

A, with pair interactions {uAA(r), uAB(r), uBB(r)}. The A-B interaction

can be separated into short and long ranged part as uAB(r) = u0,AB(r)+

u1,AB(r). The B-B PMF is denoted as ωBB(r). The right panel shows

reference solutes B0 dissolved in A. The A − B0 interaction is just the

short ranged part u0,AB(r). The B0 − B0 interaction is still the full

interaction uBB(r). The B0 − B0 PMF is denoted as ωB0B0(r).

to ∆Ωr and ∆Ω∞ and obtain the following estimation for ∆ωBB(r)

∆ωBB(r) =

∫
dr′
{
δρA|B(r′|0) + δρA|B0(r

′|0)
}
u1,AB(|r′ − r|) , (4.3)

where ρA|B(r|0) represents the density of solvent A given that a full solute B fixed

at the origin, ρA|B0(r|0) represents the density of solvent A given that a reference

solute B0 fixed at the origin, and δρA|B(r|0) and δρA|B0(r|0) are defined as

δρA|B(r|0) = ρA|B(r|0)− ρb,A

δρA|B0(r|0) = ρA|B0(r|0)− ρb,A
(4.4)

where ρb,A is the bulk density. The derivation needed to get Eq.(4.3) can be found

in Chapter 4.1.

It is easy to show that for the PMF between solutes of different species, denoted

as B and C, the contribution from B-A long ranged interaction u1,AB(r) and C-A
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Figure 4.2: This figure shows the relationship of the solute-solute PMF

and the reversible work of turning on the solute-solvent long ranged

interaction. ∆Ωr is the grand free energy difference between the top left

and bottom left panel, which can be interpreted as the reversible work

of turning on long ranged solute-solvent interaction u1,AB(r) given the

two solutes are separated at distance r. Similarly, ∆Ω∞ is the grand

free energy difference between the top right and bottom right panel,

which can be interpreted as the reversible work of turning on long ranged

solute-solvent interaction u1,AB(r) given the two solutes are separated at

distance ∞. According to this figure, we have ωBB(r) − ωB0B0(r) =

∆Ωr −∆Ω∞.
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long ranged interaction u1,AC(r) are approximately

∆ωBC(r) =
1

2

∫
dr′
{
δρA|B(r′|0) + δρA|B0(r

′|0)
}
u1,AB(|r′ − r|)

+
1

2

∫
dr′
{
δρA|C(r′|0) + δρA|C0(r

′|0)
}
u1,AC(|r′ − r|) .

(4.5)

The derivations to get Eq.(4.5) are similar to the derivations to get Eq.(4.3) and

would not be repeated here. Moreover, both Eq.(4.3) and (4.5) are targeting LJ-

type interactions, but they can be easily generalized to deal with the Coulomb-

type interactions. For example, the contribution from the long ranged ion-solvent

Coulomb interaction v1(r) to the PMF between a ion pair ξ−α can be easily shown

to be

∆ωξα(r) =
1

2

∫
dr′
{
ρqA|ξ(r

′|0) + ρqA|ξ0(r
′|0)
}
qαv1(|r′ − r|)

+
1

2

∫
dr′
{
ρqA|α(r′|0) + ρqA|α0

(r′|0)
}
qξv1(|r′ − r|) ,

(4.6)

where ρqA|ξ(r
′|0) is the charge density of solvent A around the full ion ξ, ρqA|ξ0(r

′|0)

is the charge density of solvent A around the reference ion ξ0, and qξ is the charge

carried by ion ξ.

4.1 Derivations

In this section we will derive Eq.(4.3) and verify it by study the association of

Argon in water.

First let us define some notations. We use Bλ represents a partially coupled

solute, as illustrated in Figure 4.3a. Its interaction with solvent A and the other Bλ
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Figure 4.3: Figure (a) illustrates the interactions related to the par-

tially coupled solute Bλ. Figure (b) shows coordinates necessary for the

derivation of Equation.(4.3).

is given by

uABλ(r) = u0,AB(r) + λu1,AB(r) (4.7)

and

uBλBλ(r) = u0,BB(r) + u1,BB(r) = uBB(r) . (4.8)

Notice that we choose Bλ − Bλ interaction to be the full interaction, and reasons

for making this choice have been stated before (See our choice for the interaction

between reference solutes).

Ωr
λ is the grand free energy of the total system when Bλ solutes are at distance

r apart as in Figure 4.3b.

In Figure 4.3b solutes Bλ are labeled as a and b. Define ra = r, r′a = r′ and
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r′b = r′ − r as in Figure 4.3b. The potential of mean force between Bλ satisfies

ωBλBλ(r) = Ωr
λ − Ω∞λ (4.9)

We have the following exact result using Figure 4.3b notation

∂
[
Ωr
λ − Ω∞λ

]
∂λ

=

∫
dr′δρA|BλBλ(r′|0, r)

{
u1,AB(r′a) + u1,AB(r′b)

}
− lim

r→∞

∫
dr′δρA|BλBλ(r′|0, r)

{
u1,AB(r′a) + u1,AB(r′b)

} (4.10)

where

δρA|BλBλ = ρA|BλBλ − ρb,A . (4.11)

Eq.(4.10) can be further exactly simplified to

∂
[
Ωr
λ − Ω∞λ

]
∂λ

=

∫
dr′a
{
δρA|BλBλ(r′a|0, r)− δρA|Bλ(r′a|0)

}
u1,AB(r′a)

+

∫
dr′b
{
δρA|BλBλ(r′b|0, r)− δρA|Bλ(r′b|0)

}
u1,AB(r′b) (4.12)

=2

∫
dr′
{
δρA|BλBλ(r′|0, r)− δρA|Bλ(r′|0)

}
u1,AB(r′) (4.13)

Now use the linear approximation for perturbed densities

δρA|BλBλ(r′|0, r) ≈ δρA|Bλ(r′|0) + δρA|Bλ(|r′ − r||0) (4.14)

in Eq.(4.13). Eq.(4.13) then becomes

∂
[
Ωr
λ − Ω∞λ

]
∂λ

= 2

∫
dr′δρA|Bλ(|r′ − r||0)u1,AB(r′) + u1,BB(r)

= 2

∫
dr′δρA|Bλ(r′|0)u1,AB(|r′ − r|) + u1,BB(r) ,

(4.15)

which no longer depends on the 3-body correlation functions.
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This linear approximation for the density itself in Eq.(4.14) may not be very

accurate in the molecular scale, but since the conditional densities are convoluted

with long ranged interaction u1,AB(|r′ − r|) in Eq.(4.13), the error of this approxi-

mation will be reduced by the convolution. This is verified by computer simulations

when the solute B is Argon. The result is shown in the Figure 4.4. As one can see

the linear approximation does not affect the value of the integral in the last line of

Eq.(4.13) when the two Argon cores do not overlap.

Now use the Gaussian approximation [41]

δρA|Bλ = δρA|B0 + λ
{
δρA|B − δρA|B0

}
(4.16)

and integrate Eq.(4.15) over λ = (0, 1). We get

(Ωr − Ωr
0)− (Ω∞ − Ω∞0 ) =

∫
dr′
{
δρA|B(r′|0) + δρA|B0(r

′|0)
}
u1,AB(|r′ − r|) (4.17)

Thus the contribution from u1,AB(r) to the B −B PMF is

∆ωBB(r) =ωBB(r)− ωB0B0(r)

=(Ωr − Ωr
0)− (Ω∞ − Ω∞0 )

=

∫
dr′
{
δρA|B(r′|0) + δρA|B0(r

′|0)
}
u1,AB(|r′ − r|) ,

(4.18)

which is just Eq.(4.3).

The accuracy of Eq.(4.3) is verified by studying the effect of the Argon-water

vdW attraction on the Argon-Argon PMF. Figure 4.5 compares the ∆ωBB(r) ob-

tained by Eq.(4.3) and by computer simulation when the solute B is Argon. As one

can see Eq.(4.3) gives reasonabley accurate results in this case.
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Figure 4.4: In this figure, the curve composed of the red circles corre-

sponds to
∫
dr′
{
δρA|BB(r′|0, r) − δρA|B(r′|0)

}
u1,AB(r′). The solid black

curve corresponds to
∫
dr′δρA|B(r′|0)u1,AB(|r′ − r|). The radial distri-

bution function between two full Argon particles, denoted by gBB(r) is

shown as the blue dotted curve, which is put there to illustrate the length

scale of the system. As one can see after 0.3nm the difference between the

red-circle curve and black solid curve is less than 0.2 kJ/mole (∼0.08kT

), which is almost negligible. Both curve goes to 0 after about 0.8nm,

after which gBB(r) goes to 1 too. The results are obtained at T = 300K

and P = 1atm.
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Figure 4.5: In this figure, we compares the β∆ωBB(r) obtained

through computer simulation and Eq.(4.3). The computer simulation re-

sults(black curve) are obtained by using WHAM method to get ωBB(r)

and ωB0B0(r) separately and then taking the difference. The data is

obtained at T = 300K and P = 1atm.
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4.2 Conclusions

In this chapter, we have developed a method to quantitatively estimate the

effects of long ranged solute-solvent interactions on the solute-solute PMF. This

method can be used to calculate the effects of both the vdW attraction and the

long ranged Coulomb interaction. Pairing with analytical theories about the cavity-

cavity PMF in water, this theory could provide analytical formulas for the PMF

between real apolar solutes in aqueous solutions.
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Chapter 5

A Short Solvent Model

Solvent molecules usually need to be treated explicitly in computer simulation

when one desires accurate description of bioprocesses like folding of biopolymers,

protein-ligand binding, etc. In most bio-environments, the concentration of the

solutes is much lower than the solvent, which means that a large fraction of com-

putational resources are spent on the solvents. Moreover, the Coulomb interactions

between charged molecules need to be taken into account using Ewald summation

or related techniques [18, 29, 30], which can become really expensive to be carried

out when the size of the system is large. Currently even the fastest implementation

of the Ewald-related techniques scales nonlinearly with the size of the system [30].

Also, the long ranged nature of Coulomb interactions shows up in these Ewald algo-

rithms and makes these algorithms less scalable on the massive parallel computing

hardwares [42].

People have developed implicit solvent model [20] to tackle these problems. In

the implicit solvent model, the solvent degrees of freedom are integrated out and

their effects to the structure of the solutes are taken into account as effective inter-

actions between the solutes. These effective interactions are many-body interactions

and hard to get exactly. Therefore many approximate ways have been developed
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to get the effective solute-solute interactions [43–47]. Famous examples include the

Generalized Born model [45] for dielectric effects and the “solvent-exposed surface

area model” [44] for nonpolar effects. In many cases one can get qualitatively good

results using these approximate methods [48]. However, in many other cases using

these approximate methods can give qualitatively incorrect results [49], especially

for those cases when the short ranged bonding between the solvent and solute sig-

nificantly affects the structure of the solutes [50].

To avoid the problems of the implicit solvent model and but still gain substan-

tial computational speed-up compared to the explicit solvent model, in this chapter

we propose a truncated or “Short Solvent Model”(SSM). In the SSM, the solvent

molecules are presented explicitly in the simulation box, but the long ranged solvent-

solvent and solute-solvent interactions are truncated. For example, in the case of the

water solvent, the water-water Coulomb interaction and solute-water Coulomb in-

teraction will be truncated in the SSM, and the purpose of doing this is to avoid the

necessity of calculating the long tails of these interactions but still make sure that

the water-water and solute-water hydrogen bonding are correctly described by the

SSM. The effects of truncating the solvent-solvent and solute-solvent interactions

on the structure of the solutes are compensated by introducing effective interactions

between the solutes. The idea of introducing effective interactions between solutes

is similar to what has been done in the implicit solvent model. However, since we

only integrate out the slowly-varying long ranged component of the solvent-solvent
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and solute-solvent interactions, the effective solute-solute interactions obtained in

the SSM will be pairwise to a very good approximation as described below. An illus-

tration of the explicit solvent model, implicit solvent model and the SSM is shown

in Figure 5.1. Since the solutes are the dilute species in most bio-simulations, the

computational cost to calculate these long ranged solute-solute interactions is neg-

ligible and therefore we achieve major speed up by using the SSM comparing to the

explicit solvent model. The SSM is also different from the mimic system constructed

in Chapter 3. For that mimic system, the solute-solvent interaction could still have

non-vanishing long ranged tails (see Chapter 3.3), but in the SSM, the only long

ranged interactions are between the solutes. Therefore, the SSM is easier and faster

to simulate compared to that mimic system.

In the following sections, we will describe the procedures to get the effective

solute-solute interactions for the SSM and verify the accuracy of this model by

studying the association of Sodium and Chloride ion in water.

5.1 Effective Solute-Solute Interactions For the SSM

For the SSM, the solute-solute effective interactions are chosen such that the

solute-solute PMFs are the same as the corresponding ones of the explicit solvent

model or the “target system” using our language. Physically speaking these effective

interactions are the contribution from the long ranged solvent-solvent and solute-

solvent interactions to the solute-solute PMF. We will show that these solute-solute
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Figure 5.1: This figure compares the explicit solvent model, the implicit

solvent model and the SSM. The middle panel, which corresponds to the

explicit solvent model, shows a binary solution with full Coulomb inter-

actions between all the species. The left panels shows the corresponding

implicit solvent model. In the implicit solvent model, the solvent de-

grees of freedom are integrated out and effective interactions, which are

many-body interactions in principle, are introduced between the solutes.

The right panel shows the SSM, which has Gaussian Truncated Coulomb

interactions v0(r) between solvent-solvent and solute-solvent, and long

ranged effective interactions between solutes only. The effective solute-

solute interactions for the SSM are pairwise to a good approximation.
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effective interactions can be obtained by a combination of the techniques used in

Chapter 3 and 4.

To get the effective solute-solute interactions in the SSM, one needs to rec-

ognize the connection between the mimic system constructed in Chapter 3 and the

SSM. In Chapter 3 we have shown that we can simplify the long ranged intermolec-

ular interactions of the target system to get a mimic system which has the same

structure as the target system. The mimic system has short ranged solvent-solvent

interactions, same as the SSM. But the mimic system has long ranged effective inter-

actions both between solute-solvent and between solute-solute, while the SSM only

has long ranged effective interactions between solutes. The additional long ranged

effective solute-solvent interactions presented in the mimic system contribute a sig-

nificant part to the solute-solute PMF and their contributions can be estimated

quantitatively using the method developed in Chapter 4. With these additional

solute-solvent long tails truncated in the SSM, additional solute-solute interactions

should be introduced in the SSM to compensate for this truncation. More precisely,

the effective solute-solute interaction in the SSM should equal to the effective solute-

solute interaction in the mimic system plus the contribution from the long ranged

solute-solvent interactions in the mimic system to the solute-solute PMF.

Let us consider the dilute ion-water solution as an example to illustrate the

argument above. Figure 5.2 is also plotted to help understanding. For this dilute

solution, the ions are denoted as Greek letters ξ, α etc and the solvents are denoted
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as A. We first simplify this target solution to a mimic system, denoted as R. For this

mimic system R, the Coulomb interaction between solvents is Gaussian truncated,

which means

vR,AA(r) = v0(r) , (5.1)

and the effective ion-ion and ion-solvent Coulomb interaction are chosen based on

discussions in Chapter 3.3, which have the following expression

vR,ξA(r) = v0(r) + v1(r) +
1

qξ

∫
dr′ρqR,A|ξ(r

′|0)v1(|r − r′|)

vR,ξα(r) = v0(r) + v1(r)−
1

qα

∫
dr′ρqR,A|α(r′|0)(vR1,ξA(|r − r′|)− v1(|r − r′|)) ,

(5.2)

where ρqR,A|ξ(r
′|0) is the conditional charge density of solvent A around ion ξ in the

mimic system R. Both vR,ξA(r) and vR,ξα(r) can be separated into short and long

ranged parts

vR,ξA(r) = v0(r) + vR1,ξA(r)

vR,ξα(r) = v0(r) + vR1,ξα(r) .

(5.3)

It can be shown that

vR,ξA(r) ∼ 1

εr

vR,ξα(r) ∼ 2

εr
− 1

ε2r

(5.4)

when r is large. To get Eq.(5.4), we assume that the screening charge around an ion

is localized and has a total charge of −(1 − 1
ε
)qξ, where qξ is the charge of the ion

and ε is the dielectric constant of the solvent. To put it more precisely, we assume
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that

ρqR,A|ξ(r
′|0) = 0 when r′ > λξ∫ |r′|<λξ
dr′ρqR,A|ξ(r

′|0) = −(1− 1

ε
)qξ .

(5.5)

This assumption is exact when the solvent is a linear dielectric medium [51,52]. In

practice, by calculating the ensemble averaged water charge within a hypothetical

sphere around an ion (using the widely accepted charge-based cutoff scheme [53]),

we have found Eq.(5.5) to be very accurate, which is possibly due to the fact the

singular ion charge is shielded by a harshly repulsive core and would not cause

nonlinear dielectric response of the solvent [51]. Given Eq.(5.5), one can show that

in the far field regime the electric field generated by ρqR,A|ξ(r
′|0) is the same as the

field generated by a point charge −(1− 1
ε
)qξ, and this argument can be proved as

∫
dr′ρqR,A|ξ(r

′|0)v1(|r − r′|) =

∫ |r′|<λξ
dr′ρqR,A|ξ(r

′|0)v1(|r − r′|)

≈
∫ |r′|<λξ

dr′ρqR,A|ξ(r
′|0)v1(r) when r →∞

= −(1− 1

ε
)qξv1(r) when r →∞ .

(5.6)

Using this argument one can easily get

vR,ξA(r) = v0(r) + v1(r) +
1

qξ

∫
dr′ρqR,A|ξ(r

′|0)v1(|r − r′|)

≈ v1(r)− (1− 1

ε
)v1(r) when r →∞

≈ 1

εr
when r →∞ .

(5.7)
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Using similar arguments one can get that

vR,ξα(r) = v0(r) + v1(r)−
1

qα

∫
dr′ρqR,A|α(r′|0)(vR1,ξA(|r − r′|)− v1(|r − r′|))

≈ v1(r) + (1− 1

ε
)(vR1,ξA(r)− v1(r)) when r →∞

≈ 1

r
+ (1− 1

ε
)(

1

εr
− 1

r
) when r →∞

≈ 2

εr
− 1

ε2r
when r →∞ .

(5.8)

The effective Coulomb interaction between ion ξ − α in the SSM is chosen to

be the summation of the ξ−α interaction in the mimic system and the contribution

from the long ranged ion-solvent interactions to the ξ − α PMF. More precisely, if

we use R̃ to denote the SSM, the effective ξ − α Coulomb interaction in the SSM

vR̃,ξα(r) should be

vR̃,ξα(r) = vR,ξα(r) +
1

qξqα
∆ωR,ξα(r) , (5.9)

where ∆ωR,ξα(r) is the contribution from vR1,ξA(r) and vR1,αA(r) to the ξ−α PMF.

According to the discussions in Chapter 4, ∆ωR,ξα(r) should have the following

expression

∆ωξα(r) =
1

2

∫
dr′
{
ρqR,A|ξ(r

′|0) + ρq0,A|ξ(r
′|0)
}
qαvR1,αA(|r′ − r|)

+
1

2

∫
dr′
{
ρqR,A|α(r′|0) + ρq0,A|α(r′|0)

}
qξvR1,ξA(|r′ − r|) ,

(5.10)

where ρqR,A|ξ(r
′|0) is the conditional charge density of solvent A around ion ξ in the

mimic system, and ρq0,A|ξ(r
′|0) is the conditional charge density in the SSM, which

is also the conditional charge density of the “Strong Coupling” system where all the

Coulomb interactions are Gaussian Truncated.
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Figure 5.2: This figure illustrates the two-step process to get the effec-

tive ion-ion Coulomb interactions of the SSM. The target system is first

simplified to the mimic system, in which the solvent-solvent Coulomb

interactions is truncated and effective long ranged ion-solvent and ion-

ion interactions are introduced. Compared to the mimic system, the

ion-solvent Coulomb interactions are truncated in the SSM. We can

therefore introduce additional effective interactions between solutes to

compensate this truncation, which along with vR,ξα(r) gives the effective

ion-ion interaction vR̃,ξα(r) in the SSM.
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The ion-ion PMF produced by vR̃,ξα(r) has the correct asymptotic behavior.

In the SSM, the ion-solvent and solvent-solvent Coulomb interactions are Gaussian

Truncated, which means that the ion charges are not screened at all in the SSM, or

more precisely ∫
dr′ρq0,A|ξ(r

′|0) = 0 . (5.11)

Based on Eq.(5.4), (5.5) and (5.11) one can get the asymptotic behavior of ∆ωξα(r):

∆ωξα(r) =
1

2

∫
dr′
{
ρqR,A|ξ(r

′|0) + ρq0,A|ξ(r
′|0)
}
qαvR1,αA(|r′ − r|)

+
1

2

∫
dr′
{
ρqR,A|α(r′|0) + ρq0,A|α(r′|0)

}
qξvR1,ξA(|r′ − r|)

≈− 1

2
(1− 1

ε
)qξqαvR1,αA(r)− 1

2
(1− 1

ε
)qαqξvR1,ξA(r) when r →∞

≈− qξqα(1− 1

ε
)

1

εr
when r →∞ ,

(5.12)

and to get this we have used again the fact that the conditional charge density

distribution around the ion can be viewed as a point charge in the far field regime.

Using Eq.(5.4) and Eq.(5.12) we can easily get

vR̃,ξα(r) = vR,ξα(r) +
1

qξqα
∆ωR,ξα(r)

≈ 2

εr
− 1

ε2r
+

1

qξqα

(
− qξqα(1− 1

ε
)

1

εr

)
when r →∞

=
(2

ε
− 1

ε2
− (1− 1

ε
)
1

ε

)1

r
when r →∞

=
1

εr
when r →∞ .

(5.13)

Since vR̃,ξα(r) is the only long ranged interaction in the Short Solvent Model, it

determines the asymptotic behavior of the ion-ion PMF when the whole system is
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not near the critical point. More precisely

ωR̃,ξα(r) ∼ qξqαvR̃,ξα(r) ∼ qξqα
εr

(5.14)

when r goes to∞. This result agrees with the prediction of the dielectric continuum

theory.

The ion-ion interactions in the SSM still have non-vanishing long ranged tails

as discussed above, but the ion-solvent and solvent-solvent interaction in the SSM

are truncated. This means that only the ion-ion interactions needs to be calculated

using Ewald sum when doing computer simulations and the computational cost will

be O(N2
B), where NB is the number of ions in the simulation box. This cost is much

smaller compared to the cost of using Ewald sum O((NB+NA)2) or the cost of using

Particle Mesh Ewald method O((NB + NA) log (NB +NA)) in the target system,

which means that using the SSM could substantially reduce the computational cost.

5.2 Na-Cl PMF in water

In this section, we try to numerically verify the accuracy of Eq.(5.9) by study-

ing the PMF between Na and Cl in water. In the target system a pair of Na+−Cl−

is dissolved in a water box with dimension 2.98 nm × 2.98 nm × 2.98 nm. Periodic

boundary conditions are used for this simulation box. In the corresponding SSM,

the ion-water and water-water Coulomb interaction are Gaussian Truncated, and

the effective ion-ion Coulomb interactions are determined based on Eq.(5.9).

In the SSM, the Na and Cl ion will feel forces from other Na and Cl ions in the
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periodic images. Therefore, for the SSM the total energy of ion-ion interactions still

need to be calculated by Ewald summation. However, since the only long ranged

interactions are between the ions, the Ewald sum for this SSM only involves the

ions in the box and is much easier to calculate compared to the Ewald sum in the

target system. φEwald
R̃,NaCl

(r) is used to denote the total energy of ion-ion interactions

in the SSM as a function of the displacement between the Na and Cl ion, and it is

defined as

φEwald
R̃,NaCl

(r) =
1

2

′∑
m

∑
ξ

∑
α

qξqαvR̃,ξα
(
|rξ − (rα + m)|

)
, (5.15)

which sums over the ion-ion interactions coming from the origin box and the periodic

images. r is the relative displacement between Na and Cl in the origin box. m =

(i, j, k)L represents the center of the periodic boxes, where L is the length of the

edge of the box. ξ, α ∈ {Na+,Cl−}. The prime in
∑′

m means that the summation

omits the ξ = α term when m = (0, 0, 0). vR̃,ξα(r) is the effective ξ − α Coulomb

interaction in the SSM obtained using Eq.(5.9). This summation is conditionally

convergent and calculated using Ewald summation with tin-foil boundary conditions.

The meaning of this summation is illustrated in Figure 5.3.

φEwald
R̃,NaCl

(r) is in general not a spherically symmetric potential due to the shape

of the simulation box. For simplicity, we focus on the situation when Na and Cl

are restricted on the z-axis, or in other words r = (0, 0, r). With this restriction

we use φEwald
R̃,NaCl

(r) as a short-hand notation for φEwald
R̃,NaCl

(r = (0, 0, r)) in the following

context.
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Figure 5.3: φEwald
R̃,NaCl

(r) is a summation of both the Na-Cl interaction

in the origin box(blue arrow) and the interactions coming from all the

periodic images(red arrow). In the origin box, Na is placed at 0, Cl is

placed at r = (0, 0, r). To make this figure looks clear, we did not show

all the red arrows which are included in φEwald
R̃,NaCl

(r).
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φEwald
R̃1,NaCl

(r), which is the long ranged part of φEwald
R̃,NaCl

(r) and defined as

φEwald
R̃1,NaCl

(r) := φEwald
R̃,NaCl

(r)− qNaqClv0(r) , (5.16)

relates Na-Cl PMF in the SSM and the Gaussian Truncated Strong Coupling system

by

ωR̃,NaCl(r) = ω0,NaCl(r) + φEwald
R̃1,NaCl

(r) , (5.17)

where ω0,NaCl(r) is the Na-Cl PMF in the Gaussian Truncated Strong Coupling

system.

φEwald
R̃,NaCl

(r) depends on the size of the simulation box. In the limiting situation

when the size of the simulation box is infinite, φEwald
R̃,NaCl

(r) only contains the direct

interaction energy between the Na-Cl pair in the origin box, or more precisely,

φEwald
R̃,NaCl

(r) = qNaqClvR̃,NaCl(r) when L→∞. (5.18)

To quantitatively show the dependence of φEwald
R̃,NaCl

(r) on L , we compare φEwald
R̃,NaCl

(r) at

L = 2.98nm, which is our choice of L for the real simulation, and at L =∞ (Figure

5.4). The L-dependence of φEwald
R̃,NaCl

(r) is determined by the contribution from the

periodic images. Noticeably, at L = 2.98 nm the gradient of φEwald
R̃,NaCl

(r) goes to 0 at

the edge of the box (Figure 5.4), which is a constraint imposed by the symmetry of

the periodic sum in Eq.(5.15).

The Na-Cl PMF (or equivalently RDF) is expected to be the same in the

target system and in the SSM, which is proved to be true by computer simulation

as shown in Figure 5.5. The Na-Cl RDF of the target system and the SSM agree
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Figure 5.4: This figure compares φEwald
R̃1,NaCl

(r), which is the long ranged

part of φEwald
R̃,NaCl

(r) and defined by Eq.(5.16), at L = 2.98nm and at

L =∞. Notice that only the long ranged part of φEwald
R̃,NaCl

(r) is compared

in this figure since the short ranged part has no L-dependence. Both

potential are shifted to 0 at 2.98/2 = 1.49nm to better show their differ-

ence. For the curve corresponding to L = 2.98nm, its gradient goes to 0

at the half length of the box(1.49nm), which is a constraint imposed by

the symmetry of the periodic sum in Eq.(5.15). As a comparison, for the

curve corresponding to L =∞, it decays as qNaqCl

εr
according to Eq.(5.18)

and will only have zero gradient at r =∞.
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really well, which verifies the accuracy of our theory.
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Figure 5.5: This figure compares the Na-Cl RDF of the target sys-

tem(black curve) and the SSM(red curve). The Na-Cl RDF for the

“Strong Coupling” system(green curve), where Coulomb interactions be-

tween all the species are truncated, is also shown for comparison. The

data is obtained at P = 1atm and T = 300K.

5.3 Conclusions

In this chapter, we have constructed the Short Solvent Model. The SSM can

give an accurate description for the association of Na+−Cl− in water. While Ewald

summation still needs to be conducted for the SSM, only the ion-ion interactions
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need to be calculated using Ewald sum. With the number of long ranged interac-

tions dramatically reduced compared to the explicit solvent model, SSM eliminates

the biggest computational bottleneck of simulating large-size systems and therefore

could be practically useful for bio-simulations.
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Chapter 6

Finite Density Solutions

6.1 Simplifying The Interactions For Phase-Separating and Well-

Mixed Solutions

In this chapter we will explore how to manipulate the interactions for finite

density solutions. One situation which may occur in finite density solutions is the

demixing of different components. When the solution separates into different phases

it is challenging to find a single set of manipulated interactions which could preserve

the structure of every phase. In this chapter we try to get insight into the well-mixed

and phase-separating finite density solutions by studying binary LJ-like mixtures

with specially chosen long ranged tails. We will start with the phase separating

solutions first.

The phase separated solution studied here is modeled as binary LJ mixture.

Let us use A and B to denote the two species. The interactions are denoted as

{uAA(r), uAB(r), uBB(r)}, with the following definition

uAA(r) = u0(r) + u1(r)

uAB(r) = u0(r)− u1(r)

uBB(r) = u0(r) + u1(r) .

(6.1)
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u0(r) is the WCA interaction. u1(r) is the attractive tail of the LJ interaction.

According to the definition, A and B have the same repulsive core u0. The A − A

and B − B interaction has long ranged attractive interaction between them, while

A − B has long ranged repulsive interaction between them. According to these

interactions, A likes to stay next to A and B likes to stay next to B. Therefore, it

is clear that this mixture will phase separate into a A rich phase and B rich phase

below a critical demixing temperature TC . An illustration of the phase diagram for

this mixture is shown in Figure 6.1a. Our simulation results show that T ∗C = kBTC/ε

should be about 10 at a state with total density ρ∗ = ρσ3 = 0.62. Figure 6.1b shows

a typical equilibrium configuration of this system in a MD simulation with periodic

boundary conditions at temperature T ∗ = 4, where strong AB phase separation is

evident. Due to the symmetry of the interactions between A and B, as shown in

Eq.(6.1), the A-rich and B-rich phase occupies the same volume in the simulation

box when the mole fraction of B, denoted by χB, is 0.5, as shown in Figure 6.1b.

We want to construct a mimic system with the same repulsive cores and ap-

propriately manipulated long range interactions such that it can capture the phase

separation behavior. If we want the structure of the mimic system to be exactly the

same as the target system, we would have no choice but to make the interactions

of the mimic system the same as those of the target system. However, in this case

we want to simplify the interactions and still preserve certain particular structural

properties which we are interested in, and in this way we can get the freedom to
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make meaningful manipulations to the interactions.

(a) (b)

Figure 6.1: Figure (a) is an illustration of the phase diagram for the

phase separating mixture mentioned in the main context. χB is the mole

fraction of species B. Notice that the phase boundary is symmetric about

χB = 1
2
, which is due to the symmetry of interactions. Figure (b) shows

a snapshot of the phase separating mixture at χB = 1
2
. The state point

is ρ∗ = 0.62 and T ∗ = 4 in LJ units. Notice that ρ∗ is the total number

density of the two species.

The interactions in the mimic system are denoted as {uR,AA(r), uR,AB(r), uR,BB(r)}.

We choose

uR1,AA(r) = uR1,BB(r) = 0 , (6.2)

which preserves the A − B symmetry in the mimic system. With A − A and B −

B interaction truncated, uR1,AB(r) in the only effective long ranged in the mimic
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system, and is the only interaction able to separate the two phases. Notice that

uR1,AB(r) should in principle depend on the mole fraction χB. However, in practice

we found that uR1,AB(r) is not sensitive to χB and is only a function of temperature

and pressure. Based on this we can very simply determine uR1,AB(r) in the limit of

χB goes to zero. The dilute limit has been discussed a lot in the previous chapters

and we can take advantage of the results obtained before.

For this special system, we want to choose uR1,AB(r) such that

gR,BB(r) ≈ gBB(r) (6.3)

when B is dilutely solvated in A. We choose to keep the B−B correlation function

unchanged since it is eventually the clustering of the B particles that drives the phase

separating we want to produce. In practice we find to a very good approximation

that phase separation occurs only when the average number of nearest neighbors as

determined from the first peak of B − B correlation function exceeds unity (when

two B particles can cluster, on average it seems likely that other B particles can

follow and cause phase separation).

uR1,AB(r) determined from Eq.(6.3) satisfies the following equation, as will be

explained in Figure 6.2 and the discussion below following Eq.(6.6)

∫
dr′
(
δρA|B(r′|0)+δρ0,A|B(r′|0)

)(
uR1,AB(|r′−r|−uI1,AB(|r′−r|)

)
= uI1,BB(r) for r > d,

(6.4)
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where

uI1,AB(r) =
{ u1,AB(r) +

∫
dr′(ρA|B(r′|0)− ρb,A)u1,AA(|r − r′|) for r ≥ d

uI1,AB(d) for r < d

, (6.5)

and

uI1,BB(r) = u1,BB(r)−
∫
dr′(ρA|B(r′|0)−ρb,A)(uI1,AB(|r−r′|)−u1,AB(|r−r′|)) . (6.6)

d is the effective hard sphere distance determined by u0,LJ(r). ρA|B(r′|0) is the A−B

conditional density in the target system. ρ0,A|B(r′|0) is the A−B conditional density

in the repulsive-core system where long ranged interactions between all the species

are truncated.

Eq.(6.4) is an integral equation that can be used to determine uR1,AB(r). To

derive it we have used a two-step manipulation which is slightly different than the

two-step manipulation used in Figure 5.2. The two-step manipulation is illustrated

in Figure 6.2. Notice that Eq.(6.4) only needs to be satisfied for r > d and this gives

us freedom to choose uR1,AB(r) inside the core. Again, we choose uR1,AB(r) to be

constant inside the core such that the approximations we made are more accurate.

Figure 6.3a shows uR1,AB(r) obtained by Eq.(6.4). As expected, uR1,AB(r) is

more repulsive than the repulsive A − B interaction u1,AB(r) in the target system,

since it needs to be stronger to generate essentially the same phase-separation be-

havior.

Figure 6.3 shows a snapshot of a typical configuration of a simulation of this

mimic system when the mole fraction of B is 0.5, and we indeed get very similar
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Figure 6.2: The figure illustrates the two-step manipulation which

gives us uR1,AB(r) for the phase separating mixture. The first step is

the manipulation defined in Chapter 3.2, which gives us an intermediate

mimic system I. The second step is to truncate uI,BB(r) and choose

uR,AB(r) to compensate the truncation.

phase separation behavior as the target system in Figure 6.1b. In particular we see

very similar capillary wave fluctuations at the phase boundaries though these were

not targeted when we choose uR1,AB(r). This shows an important advantage of our

new framework compared to the original LMF theory. In previous work on interfaces

using LMF theory, phase separation was driven by a static renormalized external

field that suppresses capillary wave fluctuations [21]. Moreover standard mean field

densities functional treatments of interfaces also suppress these fluctuations and

this was thought to be an inherent limitation of mean field ideas as applied to

interfaces [22].

The exact same procedure can be used to describe correlation functions in the
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(a) (b)

Figure 6.3: Figure (a) shows the uR1,AB(r) in the mimic system of the

phase separating mixture. u1,AB(r) = −u1(r) is shown as a comparison.

Figure(b) shows a snapshot of the mimic system with χB = 1
2
.

opposite “Coulomb-like” mixture, where the interactions are defined as

uAA(r) = u0(r)− u1(r)

uAB(r) = u0(r) + u1(r)

uBB(r) = u0(r)− u1(r) .

(6.7)

As one can see, in this Coulomb-like mixture, A likes to stay next to B. This

is a typical example of a mixture that mixes completely at all mole fractions but

can still exhibit strong A − B ordering. This ordering is completely missed in the

repulsive-core system.

In the mimic system constructed, again uR1,AA(r) and uR1,BB(r) are chosen to

be 0. uR1,AB(r) is the only long ranged interactions in the mimic system and is used

to produce the A− B ordering in the mimic system. uR1,AB(r) is chosen according
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to Eq.(6.4). The comparison of the radial distribution functions of the target and

mimic system is shown in Figure 6.4. As one can see the structure of the mimic

system closely matches the target system. Moreover, the successful application

of our framework for both the phase separating and well mixed mixture indicates

that this framework can be applied to general mixtures, whose phase separation

behavior is not known in advance. This could make our framework more useful in

practice, though clearly more work will have to be done to fully understand the full

implications of these preliminary results.
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Figure 6.4: This figure compares the RDFs of the Coulomb-like mix-

ture, the corresponding mimic system and the repulsive-core system.

Figure (a) shows the A−A RDF in the target, mimic and repulsive-core

system, denoted by gAA(r), gR,AA(r) and g0,AA(r) respectively. Figure(b)

shows the A − B RDF in the target, mimic and repulsive-core system,

denoted by gAB(r), gR,AB(r) and g0,AB(r) respectively. The state point

is ρ∗ = 0.83 and T ∗ = 1 in LJ units. ρ∗ is the total number density of

the two species. Notice that the B−B RDF is not shown since it is the

same as the A− A RDF due to the symmetry of interactions.
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6.2 Conclusions

In this chapter we have designed a way to simplify the intermolecular inter-

actions for a special type of phase-separating and well-mixed mixtures. The mimic

system constructed by us is able to preserve the structural feature of the target

mixture. Remarkably, for the phase separating mixture, the mimic system has the

same surface tension and capillary wave fluctuations as the target system, which

is due to the fact that the phase separation is still driven by pair interactions in

the mimic system. With simplified interactions, analytical estimation of the surface

tension might be easier in the mimic system. Future work is needed to make the

framework described in this chapter applicable to general mixtures.
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Chapter 7

Diffusion Dynamics of Solutes in the Target and Mimic System

7.1 Mathematical Framework for Describing the Diffusion Dynamics

In previous chapters we have discussed how to manipulate the long ranged

intermolecular interactions without changing the structure of the liquid mixture. In

this chapter we will explore how these manipulations affect the diffusion dynamics

of the solutes. The diffusion dynamics of solutes has been a central topic in physical

chemistry for a long time, and the simplest theory for it is the Stokes-Einstein

relationship

D =
kT

cπηa
, (7.1)

where c = 4 for slip boundary conditions and c = 6 for stick boundary conditions.

HereD is the diffusion constant of the solute, η is the viscosity of the neat solvent and

a is the radius of the solute. A few remarkable implications of the Stokes-Einstein

relationship are

1. The diffusion constant is inversely proportional to the size of the solute.

2. The diffusion constant is inversely proportional to the viscosity of the solvent.

3. The diffusion constant is independent of the mass of the solute and solvent.
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The Stokes-Einstein relationship is based on continuum hydrodynamic theory, and

the contribution of intermolecular interactions is taken into account very implicitly

and crudely. In the Stokes-Einstein relationship, the viscosity η is determined by

the solvent-solvent interaction, while the radius a and the boundary condition c are

determined by solute-solvent interaction. Since the intermolecular interactions are

not accurately taken into account, Stokes-Einstein relationship often contradicts

experimental facts. A famous example is the diffusion of ions in water [54]. It

has been shown that the size dependence of the ion diffusivity violates the Stokes-

Einstein relationship. For example, a lithium cation is found to diffuse slower than a

potassium cation in water. This behavior is believed to be caused by the electrostatic

interactions between ions and water.

The diffusion dynamics can quite sensitively depend on the intermolecular in-

teractions, and many efforts have been made to understand how these interactions

can affect the dynamics of a solute. For example, Yamaguchi and his coworkers [55]

have studied the effect of attractive solute-solvent and solvent-solvent interactions in

LJ solutions. They found that the solute-solvent attractive interaction tend to de-

crease the diffusion constant of the solute. The solvent-solvent attractive interaction

hardly affects the diffusion constant of the solute, but it does alter the shape of the

dynamic friction kernel. Wolynes has studied the effects of ion-solvent interactions

on the diffusivity of the ion in polar solvent [56]. By partitioning the ion-solvent

interactions into harsh short ranged and soft long ranged interactions and consider-
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ing their contributions separately, he was able to explain the continuum dielectric

friction picture [57] and “solventberg” [58] picture as limiting cases of his theory.

To exactly describe the dynamics of the solutes, one needs the Generalized

Langevin Equation [59]. For a spherical solute immersed inside a bulk fluid, the

Generalized Langevin Equation has the following form

m
dv

dt
= −

∫ t

0

dτζ(t− τ)v(τ) + R(t) , (7.2)

where m and v are the mass and velocity of the solute, respectively. ζ(t) is called

the dynamic friction kernel, memory function or friction kernel in different contexts.

R(t) is the random force.

According to Eq.(7.2), the total force on the solute can be divided into two

parts. −
∫ t
0
dτζ(t− τ)v(τ) corresponds to the systematic part, which can be viewed

as coming from the “friction” between the moving solute and the solvent. R(t)

corresponds to the random part, which comes from the random collisions between

the solute and solvent particles. Given that the systematic part and the random part

both arise microscopically from the solute-solvent interactions, it is not surprising

that they are related to each other. Their relationship is shown in the fluctuation-

dissipation theorem

ζ(t) =
1

3kT
〈R(t) ·R(0)〉 , (7.3)

which can be proved with Mori-Zwanzig theory [59].

The friction kernel ζ(t) plays a crucial role in the Generalized Langevin Equa-

tion. It is related to the velocity auto correlation function(VCF) of the solute Cv(t)
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by

d

dt
Cv = −

∫ t

0

dτζ(t− τ)Cv(τ) . (7.4)

With Cv(t) known one can determine ζ(t) using Eq.(7.4), and vice versa. Moreover,

the diffusion constant of the solute D can be determined by the friction kernel and

velocity auto correlation function with

D =
kT∫∞

0
ζ(t)dt

. (7.5)

and

D =
kT

m

∫ ∞
0

Cv(t)dt . (7.6)

respectively. In this section velocity auto correlation function Cv(t) is used to char-

acterize the diffusion dynamics of the solutes, and we will analyze how the manip-

ulations of the interactions affects the behavior of Cv(t).

7.2 Short Time Behavior of Diffusion Dynamics

We first analyze the short time behavior the velocity auto correlation function

Cv(t) of solute B in solvent A by making a Taylor expansion

Cv(t) =
mB

3kT
〈v(0) · v(t)〉

=
mB

kT
〈vx(0) · vx(t)〉

=
mB

kT

( 〈
vx(0)2

〉
+

1

2
〈vx(0)v̈x(0)〉 t2 +

1

24

〈
vx(0)v(4)x (0)

〉
t4 . . .

)
=

mB

kT

( 〈
vx(0)2

〉
− 1

2
〈v̇x(0)v̇x(0)〉 t2 +

1

24
〈v̈x(0)v̈x(0)〉 t4 . . .

)
. (7.7)
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mB is the mass of solute B. v represents the velocity of the solute. To get the second

line of Eq.(7.7), we have used the fact that the system is spherically symmetric.

To get the third line of Eq.(7.7), we have used the fact that 〈vx(0)vx(t)〉 has the

time reversal symmetry, which guarantees that there is no odd terms in the time

expansion. To get the fourth line of Eq.(7.7), we have used the fact that for any

two observable Q and P , we have
〈
Q(0)P̈ (t)

〉
= −

〈
Q̇(0)Ṗ (t)

〉
. A proof of this

relationship involves the fact that the Liouville operation L is anti-self-adjoint. A

detailed proof can be found in [60].

The zeroth order term mB

kT
〈vx(0)2〉 is simply 1. The coefficient of the first order

term mB

2kT
〈v̇x(0)2〉 can be written as

mB

2kT

〈
v̇x(0)2

〉
=

1

2kT

〈
Fx(0)2

〉
=

1

2kT

〈∑
i

∑
j

∂uAB(|ri − r|)
∂x

∂uAB(|rj − r|)
∂x

〉

=
1

2

〈∑
i

∂2uAB(|ri − r|)
∂x2

〉

=
1

2

ρb,A
3mB

∫
dr∇2uAB(r)gAB(r) ,

(7.8)

where uAB(r) is the solute-solvent interaction, the summation of i and j is over all

the solvent particles, Fx =
∑

i
∂uAB(|ri−r|)

∂x
is the total force on the solute projected

to the x-direction, r is the coordinate of the solute, ri is the coordinate of the solvent

particle, the partial derivative ∂
∂x

is with respect to the x coordinate of the solute,

ρb,A is the bulk density of solvent A. To get the forth line we have used the Yvon

theorem [61] .
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The coefficient of the second order term is called the Einstein frequency Ω2
0,

which is defined as

Ω2
0 =

mB

kT

〈
v̇x(0)2

〉
=

ρb,A
3mB

∫
dr∇2uAB(r)gAB(r) .

(7.9)

By comparing the Einstein frequency Ω2
0 between the target and mimic system, we

can get insight about how the short time behavior of the velocity autocorrelation

function is affected by the manipulation of interactions. In the mimic system, the

Einstein frequency Ω2
R,0 is

Ω2
R,0 =

ρb,A
3mB

∫
dr∇2uR,AB(r)gR,AB(r) , (7.10)

where uR,AB(r) is the solute-solvent interaction in the mimic system, gR,AB(r) is the

solute-solvent RDF in the mimic system. Take the difference of Eq.(7.9) and (7.11)

and we can get

Ω2
0 − Ω2

R,0 =
ρb,A
3mB

∫
dr∇2(u1,AB(r)− uR1,AB(r))gR,AB(r) , (7.11)

where we have used the fact that gR,AB(r) ≈ gAB(r). The difference of the Einstein

frequency involves the second derivative of u1,AB(r) − uR1,AB(r), which can be ex-

pected to be small since both u1,AB(r) and uR1,AB(r) are slowly varying. Therefore

the short time behavior of the velocity correlation function should be similar for the

mimic and target system.

The long time behavior of the velocity autocorrelation function are related to

many-body correlation functions [56]. Although the pair correlation functions of
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the target and mimic system are similar and the many-body correlation functions

are determined by pair correlation functions as discussed in Appendix A, the many-

body correlation functions, especially those involving the collective behavior of many

particles, could be sensitive to the small differences in the pair correlations functions

and can thus be quite different for the target and mimic system. Therefore, there

is no guarantee that the long time behavior of the velocity autocorrelation function

of the mimic and target system are similar.

To verify our arguments, we computed the velocity autocorrelation function of

fullerenes in the target, mimic and repulsive-core system defined in Chapter 3.2.1,

and the results are summarized in Figure 7.1. As one can see, the velocity correlation

function in the target and mimic system are close to each other. Remember that for

this fullerene-water solution we made manipulations to the VdW attractions, which

are not slowly varying enough, and this may explain the small discrepancies of the

velocity correlation function in the target and mimic system. The velocity corre-

lation function in the repulsive-core system is also close to the velocity correlation

function in the target system, which is reasonable since the fullerene-water RDF of

the repulsive-core system is not too much different from the corresponding ones in

the mimic and target system, as shown in Figure 3.4b. Moreover, one can see that

the VCF in the mimic system is closer to the VCF in the target system than the

VCF in the repulsive-core system, which is due to the fact that the solute-solvent

RDF of the mimic system is closer to the target system.
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Figure 7.1: This figure shows the velocity autocorrelation function

of fullerene in the target, mimic and repulsive-core system defined in

Chapter 3.2.1. CFl
v (t) represents the velocity autocorrelation function

of fullerene in the target system. CFl
R,v(t) represents the velocity auto-

correlation function of fullerene in the mimic system. CFl
0,v(t) represents

the velocity autocorrelation function of fullerene in the repulsive-core

system. As one can see, both CFl
R,v(t) and CFl

0,v(t) are close to CFl
v (t), de-

spite that CFl
R,v(t) is closer. The data is obtained at NVE ensemble.The

average temperature and pressure for this ensemble is T = 300K and

P = 1atm.
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To further verify our arguments, we also computed the VCF of the solute in

the target, mimic and repulsive-core system when the target system is repulsive

core of fullerenes in solution with water, as defined in Chapter 3.2.3. The results are

shown Figure 7.2. The VCF in the target and mimic system agrees reasonably well.

The discrepancies may due to the fact that VdW attraction is not slowly varying

enough, and also due to the fact that the solute-water RDF of the target and mimic

system do not match perfectly, as shown in Figure 3.9b. Also, since the solute-water

RDF of the repulsive-core system is obviously different compared to the target and

mimic system, its VCF is not so close to the solute VCF in the target and mimic

system, as shown in Figure 7.2.

We also computed the VCF of Na+ and Cl− in the target system, mimic

system R defined in Chapter 3.3 and Gaussian-Truncated system where the Coulomb

interaction between all the species are truncated , and the results are shown in Figure

7.3. The VCF in all the three systems are basically the same with each other, which

indicates that the long ranged Coulomb tail v1(r) would not affect the diffusion of

charged ions, and it is worth further testing whether this fact is generally true for

other types of solvents and ions.

7.3 Conclusions

In this chapter, we have analytically shown and verified by simulation that the

short time behavior of the diffusion dynamics of the solutes can be well preserved in
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Figure 7.2: This figure shows the velocity autocorrelation function of

the solute in the target, mimic and repulsive-core system when the target

system is repulsive core of fullerenes in solution with water, as defined in

Chapter 3.2.3. Fl0 is used to define the repulsive core of fullerene. CFl0
v (t)

represents the velocity autocorrelation function of solute in the target

system. CFl0
R,v(t) represents the velocity autocorrelation function of solute

in the mimic system. CFl0
0,v (t) represents the velocity autocorrelation

function of solute in the repulsive-core system. As one can see, both

CFl0
R,v(t) is close to CFl0

v (t). CFl
0,v(t) is away from the other two. The data

is obtained at NVE ensemble.The average temperature and pressure for

this ensemble is T = 300K and P = 1atm.
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Figure 7.3: This figure shows the velocity autocorrelation function of

Na+ and Cl− in the target system, mimic system R defined in Chapter

3.3 and Gaussian Truncated system. CNa
v (t) and CCl

v (t) represent the

velocity autocorrelation function of Na+ and Cl− in the target system.

CNa
R,v(t) and CCl

R,v(t) represent the velocity autocorrelation function of Na+

and Cl− in the mimic system R. CNa
0,v(t) and CCl

0,v(t) represent the veloc-

ity autocorrelation function of Na+ and Cl− in the Gaussian Truncated

system. The data is obtained at NVE ensemble. The average tempera-

ture and pressure for this ensemble is T = 300K and P = 1atm. Notice

that in the mimic system, the solute-water interaction has non-vanishing

long tails. For the simulation purpose here we just made a cutoff for that

solute-water interaction with large enough cutoff distance such that the

neglected long tail have no effects on the VCF of the solutes.
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the mimic system. Surprisingly, we found out that the diffusion dynamics of Sodium

and Chloride ion in water is not affected by the long ranged Coulomb interactions,

and it is worthwhile to test whether this is generally true for other type of charged

solutes.
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Chapter 8

Conclusions and Future work

In this thesis we demonstrated a framework to manipulate the long ranged

interactions of liquid mixtures while keeping the structure of the whole system or

certain parts essentially unchanged. Within this framework, the unbalanced forces

produced by the long ranged interactions are approximated as effective pair interac-

tions between molecules. As a comparison, within the framework of LMF theory the

unbalanced forces are usually taken as static effective single-particle fields. There-

fore, the new framework can be viewed as a natural generalization of LMF theory

by allowing the unbalanced forces to be approximated as more general renormalized

pair interactions in the mimic system Hamiltonian.

We have used this framework to manipulate the VdW and Coulomb interac-

tions in dilute solutions. The structure of the mimic systems constructed with the

manipulated interactions closely resemble the structure of the target systems, which

proves the accuracy of our theory. By manipulating the VdW attractions, we have

shown that the inverse temperature behavior of the Argon-Argon hydrophobic inter-

actions is totally an entropic phenomena. Moreover, by manipulating the Coulomb

interactions, we have constructed a mimic system with truncated solvent-solvent

Coulomb interactions, as shown in Chapter 3.
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We have developed a method which tells us how solute-water VdW attraction

affects the hydrophobic interactions between apolar solutes, as shown in Chapter 4.

A Short Solvent Model, which has long ranged interactions only between solutes, is

developed and used to study Na-Cl association in water, as shown in Chapter 5.

We also simplified the interactions of a phase separating mixture and con-

structed a mimic system which also exhibits the same phase separation behavior

and even has the same capillary wave fluctuations at phase boundaries. The manip-

ulations we developed for the phase separating mixture are proved to be a general

technique which can apply to well-mixed mixtures, as shown in Chapter 6.

The influence of manipulating interactions on the diffusion dynamics has been

explored, with the conclusion that the short-time behavior of the diffusion dynamics

is approximately unaffected by the manipulations, as shown in Chapter 7.

In the future we will try to apply the manipulations developed in Chapter

3.3 and the Short Solvent Model developed in Chapter 5 to mixtures containing

biomolecules. In the past chapters we have always been focusing on the mixtures

composed of rigid small molecules. As we will show in this chapter, some of the ideas

and insights gained from dealing with the rigid molecules may help us understand

mixtures containing large flexible molecules, like biopolymers and polyelectrolytes

in solution with water and mobile co-ions and counter ions. Figure 8.1 schematically

depicts a model polyelectrolyte, consisting of nonpolar hydrophobic (H) monomers

or beads and charged hydrophilic (P) beads connected by covalent polymer bonds,
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in solution with water (W), and charged counter ions (C). (No co-ions are shown

in the configuration.) Simulations of such a system incur substantial overhead from

conventional Ewald sum and related methods to treat the long ranged Coulomb

interactions.
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Figure 8.1: In this figure, the left panel schematically shows a polymer

consisting of nonpolar hydrophobic (H) beads and charged hydrophilic

(P) beads connected by covalent polymer bonds, in solution with water

(W), and charged counter ions (C). In the right panel, the covalent bonds

connecting the monomers are broken, leaving us a solution containing

only small rigid molecules. The system in the right panel is called the

broken-bond system in this thesis.

To find out the appropriate mimic system as shown in Chapter 3.3 and the

Short Solvent Model as shown in Chapter 5 which could preserve the structure of the

polymers, it is beneficial to consider a situation where the covalent bonds connecting

the monomers are broken, leaving us a solution containing only small rigid solutes.

An illustration of this “breaking bond transformation” is shown in Figure 8.1. In the
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following context we will call the solution with free mobile monomers the “broken-

bond system”. We will assume the broken-bond system still shares the same long

ranged intermolecular interactions as the original system, which are denoted as

uMM′(r) = u0,MM′(r) + u1,MM′(r) , (8.1)

M and M′ represents the various types of molecules in the solution, such as the

monomers, solvent molecules, co-ions, counter ions, etc.

The broken-bond system contains only rigid molecular monomers, and we

already know how to manipulate the intermolecular interactions of this system fol-

lowing the discussions in Chapter 3. Suppose that for the broken-bond system we

found a new set of interactions

uR,MM′(r) = u0,MM′(r) + uR1,MM′(r) (8.2)

which could preserve its structure, then the structure of the original system can also

be preserved if switched to this new set of interactions {uR,MM′(r)}, based on the

discussions in Appendix B. This special connection of the intermolecular interactions

in the original and broken-bond system may provide us a convenient way to find

out appropriate simplifications of interactions which could preserve the structure of

the solution containing polymers. The validity of this argument is to be tested in

the future.

Another future development is to further explore the influence of manipulating

the long ranged interactions on dynamics. In Chapter 7 we already discussed the
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influence on the diffusion dynamics of the single-site solutes in water. When we

are studying the diffusion dynamics, the system is still at equilibrium state. In the

future we plan to examine the influence of using the effective interactions when the

system is undergoing nonequilibirum processes. Some early work shows that the

dynamics of the mimic system is different from the dynamics of the target system

when undergoing nonequilibirum processes. To be more precise, suppose H is the

Hamiltonian of the target system and HR is the Hamiltonian of the mimic system

with effective interactions. Suppose at t = 0 the two systems are the same initial

condition in the ensemble sense, which means that they have the same probability

distribution function

f(Γ) = fR(Γ) (8.3)

at t = 0. Γ is a point in phase space. f(Γ) is the probability distribution function

of the target system. fR(Γ) is the probability distribution function of the mimic

system. Early work shows that even if these two systems are subject to the same

external perturbations or “protocols”, they still might have different “ensemble of

trajectories”, in the trajectory space, which means that

f(Γ, t) 6= fR(Γ, t) . (8.4)

f(Γ, t) is the probability distribution function of the target system at time t. fR(Γ, t)

is the corresponding one in the mimic system.

Early work of a current member of Weeks group–Teddy Baker, shows that one

might need an additional time dependent field φR(r, t) added to the mimic system to
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make sure the mimic system has the same trajectories as the target system. Since it

is technically complicated to implement a time-dependent field in MD simulations,

we have generalized the linear response theory such that it could be applied to a

nonequilibrium reference systems. By making use of the generalized linear response

theory, we might be able take in to account the time-dependent field φR(r, t) as a

perturbation to the mimic system. The details about the generalized linear response

theory are shown in Appendix C. Collaborating with Teddy Baker, we will further

pursue this idea in the future.
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Appendix A

The correspondence between the interactions and correlation

functions for mixtures

If we know the temperature, volume, number of particles and the interactions

between the particles, we are able to uniquely determine the thermodynamic state

of a system. All the other thermodynamics observables, including pair correlation

functions, 3-body correlation functions etc, can be determined based on these in-

formation. An inverse question is that if we know the spatial correlation functions

between particles instead of the interactions between particles, can we still uniquely

determine the thermodynamics state of a system? In a paper by Zwicker and Lovett,

it is shown that this argument is true for a pure system. It is proved in that paper

that one can use T , V , N , ρ(1)(r) and ρ(2)(r, r′) to uniquely specify the state of a

system. To prove this, Lovett has used the fact that the free energy is a convex func-

tion of the interactions φ(r) and u(r, r′). I have found this idea of using convexity

to be generalizable to mixtures and will show it in the following part.

I will demonstrate the idea using binary mixtures. I will also assume that

the mixture is uniform, which means no external fields. However, notice that the

conclusions obtained in the following part can be easily generalized to mixtures with

many species and nonuniform cases.
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Let’s consider a uniform binary mixture consisting of specie A and specie B

with pairwise intermolecular interactions. The Hamiltonian for this mixture is

H =

NA∑
i=1

NB∑
j=1

uAB(ri, rj) +

NA−1∑
i=1

NA∑
j=i+1

uAA(ri, rj) +

NB−1∑
i=1

NB∑
j=i+1

uBB(ri, rj) . (A.1)

uAB is the pair interaction between A and B. Similarly, uAA is the pair interaction

between A and A. uBB is the pair interaction between B and B.

In many thermodynamics textbooks, the Helmholtz free energy is considered

to be a function of temperature T , volume V and number of particles N . However,

it is in fact also a functional of the interactions u, if we allow the interactions to

vary. For example, for this binary mixture mentioned above, the Helmholtz free

energy is

A = A(T, V,NA, NB, uAB, uAA, uBB) = −kT ln

∫
e−βHdτ , (A.2)

where H is defined in Eq (A.1).

We can take the partial derivative of A with respect to T , V , NA and NB

respectively and get

∂A

∂T
= −S

∂A

∂V
= −P

∂A

∂NA

= µA

∂A

∂NB

= µB ,

(A.3)

which are classic textbook results.
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We can also take functional derivatives ofA with respect to uAB(r, r′), uAA(r, r′)

and uBB(r, r′). It can be shown that we get the following results

δA

δuAB(r, r′)
= ρ

(2)
AB(r, r′)

δA

δuAA(r, r′)
=

1

2
ρ
(2)
AA(r, r′)

δA

δuBB(r, r′)
=

1

2
ρ
(2)
BB(r, r′)

(A.4)

The procedures for doing these functional derivatives are long but not hard. A ped-

agogical description can be found in Ref [62]. ρ
(2)
AB(r, r′) is the probability density of

finding one A particle at position r and another B particle at position r′. Similarly,

ρ
(2)
AA(r, r′) is the probability density of finding one A particle at position r and an-

other A particle at position r′. ρ
(2)
BB(r, r′) is the probability density of finding one

B particle at position r and another B particle at position r′. They are directly

related to radial distribution functions when the pair interactions are spherically

symmetric, which are shown as follows

ρ
(2)
AB(r, r′) =

NA

V

NB

V
gAB(|r − r′|)

ρ
(2)
AA(r, r′) =

NA

V

NA

V
gAA(|r − r′|)

ρ
(2)
BB(r, r′) =

NB

V

NB

V
gBB(|r − r′|) .

(A.5)

It is known that A(T, V,NA, NB, uAB, uAA, uBB) is a convex function of T , V ,

NA and NB. The convexity guarantees us that we can do the Legendre transform

with respect to T , V , NA and NB and get new free energies, which can also specify

the state of a system just as the Helmholtz free energy A does but use different
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variables as arguments. For example, we can define a new free energy as

G(T, P,NA, NB, uAB, uAA, uBB) = A+ PV , (A.6)

which is just the Gibbs free energy of this system. As you can see it uses pressure P

instead of volume V as its argument. However, we are still able to recover V from

G with the following relationship

V =
∂G

∂P
. (A.7)

This shows that G does contain same amount of information as A.

In the following part, we are going to show that A(T, V,NA, NB, uAB, uAA, uBB)

is a convex functional of uAB(r, r′), uAA(r, r′) and uBB(r, r′). To prove this con-

vexity, we need to use the following theorem, which is found in the paper by Lovett.

Theorem A.0.1 (Zwicker and Lovett) Let A(T, V,N,H) denote the Helmholtz free

energy of a system with Hamiltonian H at state {T, V,N}. We have the following

inequality

A(T, V,N,H + ∆H) ≤ A(T, V,N,H) + 〈∆H〉 . (A.8)

∆H is a perturbation over the Hamiltonian H. 〈∆H〉 is defined as

〈∆H〉 =

∫
dτ∆He−βH∫
dτe−βH

, (A.9)

which is the ensemble average of ∆H in the ensemble defined at {T, V,N,H}.

The proof for this theorem is as follows.
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Proof Let’s begin the proof by defining Ã(T, V,N,H, f) as

Ã(T, V,N,H, f) =

∫
dτf(H + kBT ln f) . (A.10)

As you can see, Ã(T, V,N,H, f) is a functional of f , which maps any normalized

distribution function f(r1, · · · , rN ,p1, · · · ,pN) to a real number.

Ã(T, V,N,H, f) is related to the Helmholtz free energy A(T, V,N,H) by the

following relationship

Ã(T, V,N,H, f)− A(T, V,N,H) = kBT

∫
dτf ln

f

feq
, (A.11)

where

feq(r1, · · · , rN ,p1, · · · ,pN) = eβ(A−H(r1,··· ,rN ,p1,··· ,pN )) (A.12)

is the equilibrium distribution function. To prove Eq (A.11) one just needs to

substitute the definition of feq in and do some algebraic manipulations. The right

hand side of Eq (A.11) is usually called the relative entropy.

Based on Eq (A.11) and using the fact that f and feq are normalized, we can

further get

Ã(T, V,N,H, f)− A(T, V,N,H) = kBT

∫
dτ(f ln

f

feq
− f + feq)

= kBT

∫
dτfeq(

f

feq
ln

f

feq
− f

feq
+ 1)

= kBT 〈x lnx− x+ 1〉 ,

(A.13)

where x = f
feq

. For x ≥ 0, x lnx − x + 1 ≥ 0 and equality obtains only at x = 1.

Thus

Ã(T, V,N,H, f) ≥ A(T, V,N,H) (A.14)
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with equality realized only be f = feq.

If two distinct Hamiltonians H and H̄ = H + ∆H have equilibrium distribu-

tions feq and f̄eq,

A(T, V,N,H) =

∫
dτfeq(H + kBT ln feq)

=

∫
dτfeq(H − H̄) +

∫
dτfeq(H̄ + kBT ln feq)

= −〈∆H〉+ Ã(T, V,N, H̄, feq)

≥ −〈∆H〉+ A(T, V,N, H̄) .

(A.15)

Now, we have proved that

A(T, V,N,H + ∆H) ≤ A(T, V,N,H) + 〈∆H〉 . (A.16)

Theorem A.0.1 focuses on case when the system has only one species. However,

if one goes through the proof, one can easily see that Theorem A.0.1 is also applicable

to mixtures. For example, for binary mixture, we can get

A(T, V,NA, NB, H + ∆H) ≤ A(T, V,NA, NB, H) + 〈∆H〉 . (A.17)

Now come back to the question about the convexity ofA(T, V,NA, NB, uAB, uAA, uBB)

over of uAB(r, r′), uAA(r, r′) and uBB(r, r′). Suppose we change

uAB(r, r′)→ uAB(r, r′) + ∆uAB(r, r′)

uAA(r, r′)→ uAA(r, r′) + ∆uAA(r, r′)

uBB(r, r′)→ uBB(r, r′) + ∆uBB(r, r′) .

(A.18)
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The Hamiltonian of the system will change from H to H + ∆H correspondingly.

According to Eq (A.17) we have

A(T, V,NA, NB, uAB + ∆uAB, uAA + ∆uAA, uBB + ∆uBB)

≤A(T, V,NA, NB, uAB, uAA, uBB) + 〈∆H〉

=A(T, V,NA, NB, uAB, uAA, uBB) +

∫
drdr′ρ

(2)
AB(r, r′)∆uAB(r, r′)

+
1

2

∫
drdr′ρ

(2)
AA(r, r′)∆uAA(r, r′) +

1

2

∫
drdr′ρ

(2)
BB(r, r′)∆uBB(r, r′) .

(A.19)

From Eq (A.19), one can see that A(T, V,NA, NB, uAB, uAA, uBB) is a convex

functional of uAB(r, r′), uAA(r, r′) and uBB(r, r′). Based on the convexity we can

do Legendre transforms of A to get new free energies. For example, one can do the

following Legendre transform

B(T, V,NA, NB, ρ
(2)
AB, ρ

(2)
AA, ρ

(2)
BB)

=A−
∫
drdr′ρ

(2)
AB(r, r′)uAB(r, r′)

− 1

2

∫
drdr′ρ

(2)
AA(r, r′)uAA(r, r′)− 1

2

∫
drdr′ρ

(2)
BB(r, r′)uBB(r, r′) .

(A.20)

The new defined free energy B is a function of T, V,NA, NB and a functional of

ρ
(2)
AB, ρ

(2)
AA, ρ

(2)
BB. This tells us that we can use the pair correlation functions to specify

the state of mixture. The pair interactions are still recoverable from B according to

δB

δρ
(2)
AB(r, r′)

= uAB(r, r′)

δB

δ 1
2
ρ
(2)
AA(r, r′)

= uAA(r, r′)

δB

δ 1
2
ρ
(2)
BB(r, r′)

= uBB(r, r′) .

(A.21)
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The unique existence of B guarantees that there exists and only exists one set of

pair interactions {uAB, uAA, uBB} corresponding to the pair correlation functions

{ρ(2)AB, ρ
(2)
AA, ρ

(2)
BB}.

We can construct another free energy C as follows

C(T, V,NA, NB, ρ
(2)
AB, uAA, ρ

(2)
BB)

=A−
∫
drdr′ρ

(2)
AB(r, r′)uAB(r, r′)− 1

2

∫
drdr′ρ

(2)
BB(r, r′)uBB(r, r′) .

(A.22)

As you can see, C uses both pair correlation functions and pair interactions as its

arguments. Although it may seem strange, C is still a valid free energy which could

completely specify the state of a system. More importantly, C is very closely related

to our framework of manipulating the long ranged interactions.

In our framework, we want to construct a mimic system, whose solvent-

solvent interaction uR,AA(r) has freely a chosen long tail, while the solute-solute

interaction uR,BB(r) and solute-solvent interaction uR,AB(r) are are chosen such

that gR,AB(r) = gAB(r) and gR,BB(r) = gBB(r). In other words, we are using

{uR,AA(r), gAB(r), gBB(r)} to specify the mimic system, and these three arguments

are the same arguments used by free energy C. uR,AB(r) and uR,BB(r) can be ob-

tained directly from C

δC

δρ
(2)
AB(r, r′)

=
δC

δNA

V
NB

V
gAB(r, r′)

= uR,AB(|r − r′|)

δC

δ 1
2
ρ
(2)
BB(r, r′)

=
δC

δ 1
2
NB

V
NB

V
gBB(r, r′)

= uR,BB(|r − r′|) .
(A.23)

The unique existence of C guarantees the unique existence of uR,AB(r) and uR,BB(r).

Although in principle uR,AB(r) and uR,BB(r) can be obtained from C, it is
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really hard to get the explicit form of C. So we still need the formulas described in

Chapter 3 to get uR,AB(r) and uR,BB(r) approximately.
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Appendix B

Deriving the interactions in the mimic system from a free energy

perspective

Based on the previous work of Remsing, Liu and Weeks [23], I have been able

to rederive the results shown in Chapter 3 from the free energy perspective. We will

focus on the manipulation of Coulomb interactions in this appendix but the method

developed in this appendix can be generalized to manipulate other slowly varying

long ranged interactions.

Let us consider a system where N solutes, labeled as 1, 2, 3, · · · , i, · · · , N , are

in solution with solvent A. We want to manipulate the long ranged tail of the

Coulomb interactions between these species in the following way.
vAA(r) = v0(r) + v1(r)

viA(r) = v0(r) + v1(r)

vij(r) = v0(r) + v1(r)


=⇒


vR,AA(r) = v0(r) + vR1,AA(r)

vR,iA(r) = v0(r) + vR1,iA(r)

vR,ij(r) = v0(r) + vR1,ij(r)


(B.1)

The new set of Coulomb interaction {vR,AA(r), vR,iA(r), vR,ij(r)}, which defines the

mimic system, should be chosen such that the structure of the mimic system is the

same as the target system. Since A is the dominant species, we could manipulate

vR1,AA(r) freely without affect the A−A radial distribution function. vR1,iA(r) and

vR1,ij(r) are chosen to match the following two conditions.
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• Condition 1:

ρqA(r|{r1 · · · rN}) ≈ ρqR,A(r|{r1 · · · rN}) (B.2)

• Condition 2:

ω(r1, r2 · · · rN) ≈ ωR(r1, r2 · · · rN) (B.3)

Condition 1 means that the charge density generated by solvent A given the so-

lutes are fixed in configuration R = {r1 · · · rN} should be the same in the target

and mimic system. Condition 2 means that the N-solutes potential of mean force

should be the same in the target and mimic system. Notice that we are demand-

ing the match of many-body correlation functions in Condition 1 and 2, which is a

much stronger requirement than just matching the pair correlation function. The

implications of this stronger requirement is discussed at the end of this appendix.

Let us consider how to satisfy Condition 1 first. According to LMF theory, to

satisfy Condition 1 we need an external LMF field

φR(r) =
N∑
i=1

qiv0(|r − ri|) + φR1(r)

=
N∑
i=1

qiv0(|r − ri|) +
N∑
i=1

qiv1(|r − ri|)

+

∫
dr′ρqR|A(r′|{r1 · · · rN})

(
v1(|r − r′|)− vR1,AA(|r − r′|)

)
(B.4)

This external field acts on the solvent particles. The solutes are fixed in configuration

R = {r1 · · · rN}, which is viewed as external perturbation in the framework of LMF

theory. qi is the charge of solute i.
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In our mimic system, there is no external fields, but we have manipulated

interactions. We want to choose the manipulated solute-solvent Coulomb interac-

tions vR,iA(r) such that they will produce the LMF field shown in Eq.(B.4). More

precisely, we want
N∑
i=1

qivR,iA(|r − ri|) = φR(r) . (B.5)

To solve the equation above, we need to make the following linear approximation of

charge densities

ρqA(r|{r1 · · · rN}) ≈
N∑
i=1

ρqA|i(|r − ri|) , (B.6)

where ρqA|i(|r − ri|) is the charge density of A when a single ion i is solvated. This

approximation may not be very accurate in the molecular scale, but in our deriva-

tion the charge density of the solvent is always convoluted with the slowly varying

long ranged potential, which smoothes the charge density over the molecular scale.

Therefore the possible error in using this approximation will be greatly reduced by

the convolution.

Based on this approximation Eq.(B.5) can be rewritten as

N∑
i=1

qivR,iA(|r−ri|) =
N∑
i=1

(
qiv(|r−ri|)+

∫
dr′ρqA|i(|r′−ri|)

(
v1(|r−r′|)−vR1,AA(|r−r′|)

))
(B.7)

which further gives

vR,iA(r) = v(r)− 1

qi

∫
dr′ρqA|i(|r′ − r|)

(
vR1,AA(|r − r′|)− v1(|r − r′|)

)
. (B.8)

As you can see by matching Condition 1 we have derived the expression for vR1,iA(r).

124



The result is the same as what we obtained by making use of YBG hierarchy, as

shown in Eq.(3.31).

Now let us consider how to match Condition 2. First of all, I will define the

free energy difference between the target and mimic system given the solutes fixed

at R = {r1 · · · rN} as ΩR, which is illustrated by the Figure B.1.

∞
ω(!3, … , !5)

Ω% Ω.

0 0 0

0

0

0

1 2

0 0 0 0 0

0 0 0 0 08

0 0 0

0

0

0

1 2

8

1 2 8∞.	.	.∞

∞

0 0 0 0 0

0 0 0 0 0

1 2 8∞.	.	.∞
9%(!3, … , !5)

Figure B.1: In this figure the top left panel represents the target sys-

tem with the solutes fixed at configuration R = {r1 · · · rN}. The top

right panel represents the target system with the solutes separated in-

finitely far away. The bottom left panel represents the mimic system

with the solutes fixed at configuration R = {r1 · · · rN}. The bottome

right panel represents the mimic system with the solutes separated in-

finitely far away. ΩR is the free energy difference between the top left

and bottom left panel. Similarly, Ω∞ is the free energy difference be-

tween the top right and bottom right panel. ω(r1 · · · rN) is the free

energy difference between top left and top right panel, which can also be

interpreted as the N-solutes potential of mean force of the target system.

Similarly, ωR(r1 · · · rN) is the N-solutes potential of mean force of the

mimic system.

125



Also, let us define the free energy difference between the bulk A fluid inter-

acting with v(r) and the bulk A fluid interacting with vR,AA(r) as Ωref , which is

illustrated in Figure B.2. Based on the Ref [23], we have the following expression

0 0 0

0

0

0

0 0

0

0 0 0

0

0

0

0 0

0

Ω-:;

Figure B.2: The left panel shows the bulk A fluid interacting with

vR,AA(r). The right panel shows the bulk A fluid interacting with v(r).

Their free energy difference is Ωref . The bulk A fluid shown in this figure

has the same bulk density and temperature as the A solvent in the dilute

solution shown in Figure B.1.

ΩR − Ωref =− 1

2

∫
drρqA(r|{r1 · · · rN})

N∑
i=1

qi
(
vR,iA(|r − ri| − v(|r − ri|)

)
−
∑
i<j

qiqj
(
vR,ij(|rj − ri| − v(|rj − ri|)

)
,

(B.9)

which can be simplified using the linear approximation shown in Eq.(B.6), which

will give us

ΩR − Ωref =− 1

2

N∑
i=1

N∑
j=1

∫
drρqA|j(|r − rj|)qi

(
vR,iA(|r − ri| − v(|r − ri|)

)
−
∑
i<j

qiqj
(
vR,ij(|rj − ri| − v(|rj − ri|)

)
.

(B.10)

Now consider the special case where the solute particles are infinitely far apart.

In this case, the free energy difference between the target and mimic system is defined
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as Ω∞, which is illustrated in Figure B.1.

It is easy to show that

Ω∞ − Ωref = −1

2

N∑
i=1

∫
drdr′ρqA|i(|r − ri|)qi

(
vR,iA(|r − ri| − v(|r − ri|)

)
, (B.11)

which is basically Eq.(B.10) without the coupling terms between different i and j,

since they are infinitely far away.

Based on Eq.(B.10) and Eq.(B.11), we are able to match Condition 2. From

Figure B.1 it is easy to see that

ω(r1 · · · rN)− ωR(r1 · · · rN) = ΩR − Ω∞ = (ΩR − Ωref )− (Ω∞ − Ωref )

= −
∑
i<j

∫
drρqA|j(|r − rj|)qi

(
vR,iA(|r − ri| − v(|r − ri|)

−
∑
i<j

qiqj
(
vR,ij(|rj − ri| − v(|rj − ri|)

)
.

(B.12)

Condition 2 requires that ω(r1, r2 · · · rN) ≈ ωR(r1, r2 · · · rN), which would be sat-

isfied if

vR,ij(r) = v(r)− 1

qj

∫
dr′ρqA|j(r

′)
(
vR,iA(|r − r′| − v(|r − r′|)

)
. (B.13)

This is the same as what we obtained from YBG hierarchy, as shown in Eq.(3.32).

Now we have found the vR,iA(r) and vR,ij(r) which satisfy Condition 1 and 2.

This mimic system R can also be simplified to the Short Sovlent Model, following

steps shown in Chapter 5. It can be shown that t vR̃,ij(r) have the same expression

as what is obtained in Chapter 5. The derivations are basically the same as the

derivations made previously and therefore will not be repeated here.
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Condition 1 and 2 means that the probability for any configuration of the N

solutes to occur is the same in the target and mimic system. Now consider a case

when the N solutes are covalently bonded to form a polymer. The configurational

space of the polymer will be just a subspace of the configurational space of the N

free mobile solutes. Since we have found potentials which will preserve the structure

of the N solutes over the whole configurational space, these potentials will certainly

also preserve the structure of the polymer formed by the N solutes. This implies

that when we are trying to find appropriate manipulation of interactions for poly-

mers, we can dissect the polymer into single-site beads or monomers, and the same

interactions which will preserve the structure of monomers will also preserve the

structure of polymer. Notice that this implication is much stronger than what is

implied by the “YBG hierarchy derivation” shown in Chapter 3. This is due to the

fact that we have used the linear approximation of the charge density(Eq.(B.6)),

which is not used by “YBG hierarchy derivation”. Using this additional approxi-

mation does enable us to make a stronger conclusion, but it may also bring extra

error. Therefore, this stronger conclusion may not be as accurate as expected in

some scenarios.
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Appendix C

Linear response theory for nonequilibrium reference systems

The linear response theory, which tells us how a system responds to an ex-

ternal perturbation, has been proved to be a very useful tool in understanding the

statistics of liquids. The importance of linear response theory for liquid simulation

is that all the statistical quantities of the perturbed system can be obtained from

the correlation functions of the reference system. Thus the simulation for the per-

turbed system can be avoid, and only the simulation for the reference system is

necessary. Based on this nice simplification, it has been used in many scenarios. For

example, the famous Green-Kubo formula, which is derived by making use of linear

response theory, can give us various transport coefficients of liquids. However, one

requirement for the linear response theory is that the reference system has to be in

an equilibrium state. This requirement restricts the application of linear response

theory, because in some cases one needs to perturb a nonequilibrium system. Var-

ious efforts have been made to generalize linear response theory so that it can be

used with the nonequilibrium reference system. Evans [63] has successfully gener-

alized linear response theory to systems which are in steady state. However, how

to generalize linear response theory so that it can be applied to a system that is

in general nonequilibrium state is still a problem. In this appendix I will explore
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this problem and try to apply linear response theory to nonequilibrium reference

systems which satisfy the local equilibrium assumption.

C.1 Review of Linear Response Theory

In this section, I will give a review of the original linear response theory. The

linear response theory is based on the famous Liouville equation

∂f(Γ)

∂t
= Lf(Γ) , (C.1)

where L is the Liouville operator, Γ is a point in phase space, f(Γ) is the proba-

bility distribution function in phase space. For a system that follows Hamiltonian

dynamics, L = {H, }, where H is the Hamiltonian of the system. If a Langevin

thermostat is applied to the system, L = {H, }+ Ldiffuse. You can see that along

with the Hamiltonian term there is an additional diffusion term in the Liouville

operator for the Langevin thermostat.

To understand the linear response theory, assume that we have a reference

system which is in equilibrium and its distribution function is f0(Γ), where Γ denotes

a point in phase space. If we turn on a perturbation at t = 0, the system will be

driven away from the equilibrium. The distribution function of the system under

perturbation will become f(Γ, t) ≈ f0(Γ) + f1(Γ, t), where f1(Γ, t) represents the

leading order effect of the perturbation. Basically, what linear response theory does

is that it tells us how to express f1(Γ, t) in terms of f0(Γ). Let us use H0 to denote

the Hamiltonian of the reference system and use H1 to denote the perturbation
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Hamiltonian. When H1 is much smaller than H0, linear response theory gives the

following result

f1(Γ, t) =

∫ t

0

dse(t−s)L0{H1, f0} . (C.2)

If the perturbation is an external field, denoted as φ(r, t), we will have H1 =∑n
i=1 φ(ri, t), where ri is the coordinate of particle i. In that case, we will have

{H1, f0} = (β
n∑
i=1

F ext(ri, t) · vi)f0 := P (Γ, t)f0 , (C.3)

where I have made the definition that P (Γ, t) = β
∑n

i=1 F ext(ri, t) · vi.

If we consider the ensemble average of an observable A(Γ) , we can get

< A >t =

∫
dΓf(Γ, t)A(Γ)

= < A >ref +

∫
dΓf1(Γ, t)A(Γ)

= < A >ref +

∫ t

0

ds < PsAt >ref . (C.4)

I did not give the complete derivation above since the derivation needed here is a

special case of the more general derivation shown below. Notice that the perturba-

tion part of < A >t can be obtained by integrating the time correlation function

< PsAt >ref , where the subscripts indicate that the time correlation function is for

the reference system.

After all, we reached the conclusion that the ensemble average of an observable

in the perturbed system can be obtained from the corresponding time correlation

function in the reference system.
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C.2 Nonequilibrium Reference System And Local Equilibrium

As I mentioned before, the classic linear response theory only applies when the

reference system is in equilibrium. However, what will happen when the reference

system is not in equilibrium? For example, suppose that we have a reference system

which is not in equilibrium at t = 0, whose distribution function f0(Γ, t = 0) 6=

feq(Γ). After t = 0 the system will gradually relax to the equilibrium state. Now

suppose that we put a perturbation to this system during this relaxation process.

How will the relaxing system respond to the perturbation? Do we have some theory

similar to linear response theory? This is the question I want to answer in this

appendix.

The nonequilibrium processes are generally very complicated. However, the

local equilibrium hypothesis can help us understand it. The local equilibrium hy-

pothesis states that for a system in the local equilibrium state, the movements of

particles are equilibrated locally, due to the collisions between the neighbor particles.

The local equilibrium state can be described by local variables. For example, a pure

liquid in local equilibrium state can be described by density field ρ(r, t), velocity

field v(r, t), temperature field T (r, t) and so on. Based on the local equilibrium

hypothesis, people have brought out many macroscopic theories, like the Fick’s law,

Fourier’s law, ect, to describe the evolution of these fields. These macroscopic the-

ories are quite successful, but have ignored the fluctuations of the system. For this

work, these local fields will be obtained by the ensemble average. For example, if
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you want to get the velocity field for a pure fluid at a given time, you need to do

the following ensemble average.

v(r, t) =
<
∑

i viδ(r − ri) >t

<
∑

i δ(r − ri) >t

, (C.5)

and if you want the temperature field, you need

T (r, t) =
m

3k

<
∑

i(vi − v(r, t))2δ(r − ri) >t

<
∑

i δ(r − ri) >t

, (C.6)

from where you can see the meaning of the temperature field is actually the variance

field of the Maxwell distribution.

The local equilibrium hypothesis can help us a lot when we try to develop the

linear response theory for the nonequilibrium refernce system. Based on the discus-

sions above, we know that the state of a local equilibrium liquid can be described

by local variables. Based on this, I want to make the following statement.

For a simple pure liquid, its distribution function at local equilibrium will have

the following form

f(r1, ..., rn,v1, ...,vn, t) =
n∏
i=1

e
− m

2kT (ri,t) (vi−v(ri,t))2g(r1, ..., rn, t) . (C.7)

Its physical meaning is that the velocity distribution for each particle satisfies

Maxwell distribution locally. The width and the mean of the Maxwell distribution

are determined by the temperature field and velocity field respectively.

For complex fluids, like glasses, polymers and colloids, the local equilibrium

hypothesis may not be true [64]. So in this appendix, we will only focus on the

simple pure liquid, which is good enough to illustrate our idea.
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C.3 Linear response theory for nonequilibrium reference system

In this section, I derive the linear response theory for reference systems which

are undergoing nonequilibrium processes.

First of all, suppose that we have a reference system, which is undergoing a

nonequilibrium process. The nonequilibrium process starts at t = 0. To simplify our

discussions, the reference system is assumed to be a simple pure liquid. To develop

our “generalized” linear response theory, we need to make the assumption that the

nonequilibrium reference system is always in local equilibrium, which is to say that

the distribution function of the reference system f0(Γ, t) satisfies

f0(r1, ..., rn,v1, ...,vn, t) =
n∏
i=1

e
− m

2kT (ri,t) (vi−v(ri,t))2g(r1, ..., rn, t), t > 0 . (C.8)

Of course this is an approximation. The reference fluid needs some relaxation time

τle to relax to the local equilibrium state. So the equation above should only be

true for t > τle. However, the time scale of the macroscopic dynamics of the fluid is

usually larger than τle. So Eq. (C.8) will be a good approximation if one is interested

in the macroscopic dynamics of the liquid.

Now, suppose that we put a perturbation on this nonequilibrium reference

system at t = 0. The perturbation is assumed to be an external potential φext(r, t).

The system with the external potential turned on is called the perturbed system.

Its distribution function is denoted by f(Γ, t), which coincides with f0(Γ, 0) at t = 0

f(Γ, 0) = f0(Γ, 0) . (C.9)
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The Liouville operator for the perturbed system is L = L0 + L1, where L0 is

the Liouville operator for the reference system and L1 is the Liouville operator of

the perturbed part

L1 = {H1, } . (C.10)

H1 =
∑n

i=1 φext(ri, t) is the perturbation Hamiltonian.

When the perturbation is small, we can expand the distribution function of

the perturbed system

f(Γ, t) ≈ f0(Γ, t) + f1(Γ, t) , (C.11)

where f0(Γ, t) is the distribution function for the relaxing reference system and

f1(Γ, t) is the leading order effect of the response to the perturbation.

The Liouville equation for the perturbed system is

∂f

∂t
= Lf . (C.12)

If we put f = f0 + f1 and L = L0 + L1 into it and rearrange the terms by their

orders, we can get

∂f0
∂t

= L0f0

∂f1
∂t

= L0f1 + L1f0 . (C.13)

By solving the second equation we can get the expression of f1

f1(Γ, t) =

∫ t

0

ds T [e
∫ t
s dτL0(τ)]L1f0(Γ, s)

=

∫ t

0

ds T [e
∫ t
s dτL0(τ)]{H1(Γ, s), f0(Γ, s)} . (C.14)

135



Notice that {H1, f0} is evaluated at position Γ and time s. T [...] means time ordered

product since we assume that L0 can vary with time.

Eq. (C.14) is our basis for the following derivation. Assume that the local

equilibrium hypothesis is always true for the relaxing reference system, which means

that f0 satisfies

f0(r1, ..., rn,v1, ...,vn, t) =
n∏
i=1

e
− m

2kT (ri,t) (vi−v(ri,t))2g(r1, ..., rn, t) . (C.15)

With the help of Eq.(C.15) we are able to evaluate {H1, f0}

{H1(Γ, s), f0(Γ, s)} =
n∑
i=1

∂φext(ri, s)

∂ri
· ∂f0(Γ, s)

∂vi

=
n∑
i=1

1

kT (ri, s)
F ext(ri, s) · (vi − v(ri, s))f0(Γ, s) .(C.16)

Let’s define P (Γ, s) as

P (Γ, s) =
n∑
i=1

1

kT (ri, s)
F ext(ri, s) · (vi − v(ri, s)) . (C.17)

Thus, we have

{H1(Γ, s), f0(Γ, s)} = P (Γ, s)f0(Γ, s) . (C.18)

Thus, f1 can be further simplified

f1(Γ, t) =

∫ t

0

ds T [e
∫ t
s dτL0(τ)]P (Γ, s)f0(Γ, s)

=

∫ t

0

ds

∫
dΓ′ T [e

∫ t
s dτL0(τ)]δ(Γ− Γ′)P (Γ′, s)f0(Γ

′, s)

=

∫ t

0

ds

∫
dΓ′P (Γ′, s)f0(Γ

′, s)T [e
∫ t
s dτL0(τ)]δ(Γ− Γ′)

=

∫ t

0

ds

∫
dΓ′P (Γ′, s)f0(Γ

′, s)K0(Γ, t|Γ′, s) , (C.19)
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whereK0(Γ, t|Γ′, s) = T [e
∫ t
s dτL0(τ)]δ(Γ−Γ′) is the propagator of the reference system.

Now if we consider the ensemble average of observable A(Γ) at time t for the

perturbed system, we can get

< A >t =

∫
dΓf(Γ, t)A(Γ)

= < A >ref,t +

∫
dΓf1(Γ, t)A(Γ)

= < A >ref,t +

∫ t

0

dsdΓdΓ′A(Γ)K0(Γ, t|Γ′, s)P (Γ′, s)f0(Γ
′, s)

= < A >ref,t +

∫ t

0

ds < PsAt >ref , (C.20)

Thus, for the nonequilibrium reference system, we obtained a similar expres-

sion as for the equilibrium reference system (see Section 1). The perturbation part

of < A >t can still be expressed as an integral of the time correlation function of

the reference system. The only difference is the definition of the observable P (Γ, s).

For the equilibrium reference system

P (Γ, s) =
1

kT

n∑
i=1

F ext(ri, s) · vi , (C.21)

and for the nonequilibrium reference system

P (Γ, s) =
n∑
i=1

1

kT (ri, s)
F ext(ri, s) · (vi − v(ri, s)) . (C.22)

You can see that the nonequilibrium formula will become the equilibrium formula

when T (r, s) = T0 and v(r, s) = 0. So what we get for the nonequilibrium reference

system is a natural generalization of the equilibrium case.

As I mentioned before, the classic linear response theory tells us how an equi-

librium reference system responds to a perturbation. Similarly, the generalized
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linear response theory tells us how a nonequilibrium reference system responds to

a perturbation. So the meaning of the generalized linear response theory is that it

gives us more flexibility in choosing the reference systems. This can be useful when

we want to put a strong perturbation on the equilibrium reference system. When

the perturbation is strong, the classic linear response theory will fail. However, if

we use a nonequilibrium reference system which is close enough to the perturbed

system, the generalized linear response theory may be able to predict the properties

of the perturbed system.

C.4 Simulation Result

In this section I am going to verify the generalized linear response theory by

computer simulation. The system I studied is WCA pure fluid, which is the most

simple model of simple liquid. A large WCA core is fixed inside the WCA fluid. As

we know, if we change the WCA fluid surrounding the large core into a LJ fluid,

there will be drying effect around the surface of the large core, which is due to

the attractions between LJ particles. This effect can be taken account in by LMF

theory. LMF theory proposes that one can put an effective field around the large

core to represent the drying effect. Meanwhile the surrounding fluid keeps as the

WCA fluid. The effective drying potential can be calculated by LMF theory. Now,

to verify the generalized linear response formula, suppose that the drying potential

φdry(r) is turned on at t = 0. The system will be driven from the non-drying state
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to the drying state. To get the properties of this drying process, we could take the

non-drying state as our reference system and apply the classic linear response theory

formula. However, because the drying potential is too big, the classic linear response

theory wouldn’t work very well. A better choice is to take a “half-drying” process as

our reference. By “half-drying” I mean to turn on a portion of the drying potential.

The “half-drying” process is closer to the drying process. So we can take it as our

reference of perturbation. The other portion of the drying potential is taken account

in by the generalized linear response formula, as described in previous sections.

Here are the parameters for the simulation and the results. The simulation

temperature and density for the WCA fluid is ρ∗ = 0.72 and T ∗ = 0.92. The

diameter of the large WCA core is fixed in the origin, which is twice as large as

the surrounding WCA fluid. The drying potential φdry(r) is shown in Figure (C.1)

. The relaxing reference system is constructed by turning on the external potential

φext = 0.7φdry(r), which is a large portion of the drying potential. The initial state

for the reference system is the non-drying state. The other portion of the the drying

potential is taken as the perturbation and is taken account it by the generalized

linear response theory we developed. The direct simulation of the perturbed system

is also done, so that we can compare it with the results obtained from generalized

linear response theory.

In Figure C.2 , the density of the WCA fluid around the large core during the

nonequilibrium process is plotted. From Figure C.2, we can see that the generalized
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Figure C.1: This figure shows the drying potential obtained by LMF

theory which drives the WCA particles away from the large WCA core.
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linear response theory is able to correct the density of the reference system to the

density of the perturbed system.

C.5 Conclusion

In this chapter, we developed the generalized linear response theory, which is

the perturbation theory for the nonequilibrium reference system. Our new formula

relies on the local equilibrium hypothesis. Computer simulation results have been

given to verify the generalized linear response theory. The limitation of the general-

ized linear response theory is the same as the classic linear response theory, which is

that the reference system has be be close enough to the perturbed system. Further

developments involve how to develop the linear response theory to complex fluids

and stronger perturbations.
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Figure C.2: This figure shows the density distribution around the large

core at different times. “REF” represents the relaxing reference system.

“FULL” represents the perturbed system. “LRT” represents the results

obtained by generalized linear response theory. At t = 0 the three curves

coincide because they have the same initial condition. “LRT” basically

matches “FULL” in these graphs, which means that the generalized lin-

ear response theory is able to predict the perturbed system.
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