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ABSTRACT

In applications of game tree searching, the most widely used back-up rule is the
minimax rule. Research has shown that minimax does not perform well in some
games—and this has led to interest in alternatives to minimax, such as the product
rule.

This paper describes studies on a wide variety of games, including P-games, G-
games, three—hole kalah, othello, and Ballard’s incremental game. The results of these
studies are as follows:

1. The product rule outperforms minimax in three—hole kalah. This is a remarkable
result, since it is the first widely known game in which product has been found to
be better than minimax.

The relative performance of minimax and product is related to a parameter called
the rate of heuristic flaw (rhf). Thus, rhf has potential use as a predictor of when
one should use product as an alternative to minimax.

)

Paper type: Science
Primary topic: Automated Reasoning
Sub-topiec: Search

Address all correspondence to:
Dana S. Nau
Computer Science Dept.
University of Maryland
College Park, MD 20742
(301) 454-7932
dsn@mimsy.umd.edu

! This work has been éupported in part by a Systems Research Center fellowship.

2 This work has been supported in part by the following sources: an NSF Presidential Young Investiga-
tor Award to Dana Nau, NSF NSFD CDR-85-00108 to the University of Maryland Systems Research
Center, IBM Research, and General Motors Research Laboratories.



1. INTRODUCTION
The discovery of pathological games [6,4] has sparked interest in the possibility

that various alternatives to the minimax back-up rule might be better than minimax.

Pearl.[9,10] has suggested that one should consider a back—up rule called the product

rule. Nau, Purdom, and Tzeng [8] did some experiments and found that in a class of

board splitting games, product almost always performed better than minimax and that
the product rule avoided pathology.

In earlier experiments on the game of kalah, Slagle and Dixon [12] found that a
back-up procedure called “M & N performed significantly better than minimax.
However, the M & N rule closely resembles minimax. Until recently, poor performance
of minimax relative to back—up rules significantly different from minimax has not been
observed in more éommonly known games.

Underlying the above issues is a more fundamental question: Why does minimax .
perform well in many games, but poorly in some others? This paper investigates a
possible answer to this question. We have obtained following results:

(1) For a wide variety of games, a parameter called the rate of heuriétic flaw appears
to be a good predictor of how well minimax performs against the product rule.
These games include three-hole kalah, othello, P-games, G—games, and possibly
others. This suggests that rhf may serve not only as a guideliﬂe for whether it
will be worthwhile to consider alternatives to minimax, but also as a way to relate
other characteristics of game trees to the performance of minimax and other
back-up rules.

(2) In studies of three-hole kalah, the product rule generally performed better than
minimax. This is the first widely known game in which product has been found
to be better than minimax—and it suggests the possibility of exploiting non-

minimax back-up rules to achieve better performance in other games.

2. DEFINITIONS

By a game, we mean a two person, zero sum, perfect information game having a

finite game tree. All of the games studied in this paper (othello, kalah, P—games, G-



games, and Ballard’s incremental game) satisfy this restriction.
Let G be a two player, zero sum, perfect information game, whose players are
called maz and min. To keep the discussion simple, we assume that G has no ties, but

this restriction could easily be removed. If n is a board position in G, let u(.) be the

utility function defined as

1 if nis a forced win node
u(n) = 0 if nis a forced loss node.

Since evaluation functions are intended to estimate the utility values of nodes in a
game, we consider an evaluation function to be a function from the set of all possible
positions in G into the closed interval [0,1]. If e is an evaluation function and n is a
node of G, then the higher the value e(n), the better n looks according to e. We
assume that every evaluation function produces perfect results on terminal game posi-
tions. In other words, if n is a terminal node of G, then e(n) = u(n).

If m is a node of G, then the depth d minimax value of m is

e(m) if depth(m)=d or m is a terminal node
M(m,d) = { min{M(n): n is a child of m> if min has the move at m
max{M(n): n is a child of m} if max has the move at m,

and the depth d product value of m is

e(m) if depth(m)==d or m is a terminal node
P(m,d) = {1 II{M(n): n is a child of m} if min has the move at m
1-II{1-M(n): n is a child of m} if max has the move at m.

Let G be a game tree, and let m and n be any two nodes chosen at random from

a uniform distribution over the nodes at depth d of G. Let better (m,n) (and
worse (m,n)) be whichever of m and n looks better (or worse, respectively) according to
e. Thus if e(m) > e(n), then better (m,n) = m and worsee(m,n) = n. If e(m) = e(n),

we still assign values to better (m,n) and worse(m,n), but the assignment is at ran-

dom, with the following two possibilities each having probability 0.5:



(1) better (m,n) = m and worse (m,n) = n
(2) better (m,n) = n and worse (m,n) = m.
Since e may make errors, exhaustive search of the game tree may reveal that

better (m,n) is worse than worse_(m,n), i.e., that
€ . e
u(better (m,n)) < u(worse (m,n)).

In this case, the evaluation function has failed to give a correct opinion about m and
n. An event like this is called a heuristic flaw at depth d. The rate of heuristic flaw

at depth d, denoted by rhf(d), is defined to be the quantity

Prlu(better (m,n)) < u(worse_(m,n})].

3. THEORETICAL CONSIDERATIONS

3.1. When Rhf is Low

Consider a minimax game tree search terminating at depth d of a game tree. If
rhf(d) is small, it is intuitively apparent that this search should perform quite well.
The question is whether it will perform better than some other back—up rule.

For simplicity, assume that the game tree is Einary. Assume further that it is
max’s move at some node ¢, and let m and n be thé children of ¢. Let d be the depth
of m and n. Then |
(1) Prlu(c)=1] = Pr{u(better(m,n))=1 or u(worse (m,n))=1]

= Pr{u(better (m,n))=1] + Pr[u(worse (m,n)) > u(better (m,n))]
N Prlu(better (m,n))=1] + rhf(d).

The smallest possible value for rhf(d) is zero. If rhf(d) is close to zero, then from

(1) we have |

Prlu(c)=1] ® Pr[u(better (m,n))=1].

which says that the utility value of ¢ is closely approximated by the utility value of its
best child. But according to the minimax rule, the minimax value of ¢ is the minimax

value of the best child. This suggests that in this case one might prefer the minimax

back-up rule to other back—up rules.



More specifically, let us compare the minimax rule to the product rule, in the
extreme case where rhf(d)=0. In this case, whenever m and n are two nodes at depth

d of G,

Prlu(better (m,n)) < u(worse (m,n))] = 0.

Therefore, since there are only a finite number of nodes at depth d, there is a value
k€(0,1) such that for every node m at depth d,

u(m) = 1 if and only if e(m) 2 k.
By mathematical induction, it follows that forced win nodes will always receive
minimax values larger than forced loss nodes, so a player using a minimax search will
play perfectly.

But if the search is a product rule search rather than a minimax search, then the
search will not always result in perfect play. For example, suppose d=2 and k==0.5,
and consider the tree shown in Figure 1. Node nl is a forced loss node because it is a
max node whose children are forced loss nodes, and node n2 is a forced win node
because it is a max node having a forced win child. However, P(n1,1) > P(n2,1), so a
player using the product rule would make an incorrect choice of move at node n.

The above comparison suggest that when rhf is smalli, the minimax rule should

perform better than the product rule.

3.2. When Rhf is Large

Let m and n be any two nodes at depth d. In general, rhf can take on any value

between O and 1. But if e is a reasonable evaluation function, and if better (m,n) is a
forced loss, then it should make it more likely that worse (m,n) is also a forced loss.
Thus. we assume that

Prlu(worse (m,n))=1 | u(better (m,n))=0] < Pr{u(worse (m,n))=1].
Thus since u(.) must be either 0 or 1,

rhf = Pr{u(worse (m,n))=1 & u(better (m,n))==0]
< Priu(better (m,n))=0] Pr[u(worse (m,n))=1].



Suppose rhf is large, i.e.,

rhf ® Pr[u(better (m,n))=0] Prlu(worse (m,n))=1].

Then from (1),
Prlu(c)=1] ® Prfu(better (m,n))=1]
' + Prlu(better (m,n))=0] Pr[u(worse (m,n))=1].
Thus, if e(better (m,n)) and e(wors:ae(m,n)) are good approximations of
Prlu(better (m,n))=1] and Pr{u(worse_(m,n))=1}, then

Prlu(c)=1] ® e(better (m,n)) + (1 — e(better (m,n})) e(worse (m,n))
= 1 - (1 - e(better (m,n))) (1 - e(worse_(m,n))),
which is precisely the formula for the product rule given in Section 2. This suggests
that when rhf is large, the product rule might be preferable.

More specifically, consider an evaluation function e which returns correct values
on terminal nodes, but on nonterminal nodes returns values that are completely unin-
dicative of the true value of a node. This would happen if e always returned the same
value (say, 0.5), or if e returned independent identically distributed random values. If
e is used in games where the branching factor is not constant, the product rule will
tend to choose nodes where one has a wider choice of moves than one's opponent.
From this, it can be shown that the product rule will do slightly betterfhan the
minimax rule in a wide variety of games.

The above arguments are by no means conclusive, but they suggest that in a
number of games, the minimax rule might perform worse than the product rule when

rhf is large.

4. EMPIRICAL CONSIDERATIONS

The arguments given in Section 3 suggest that minimax should do better against
product when rhf is low than it does when rhf is high. To test this conjecture, we
have examined the following games: C-games, Ballard’s incremental game, othello,

P-games, and kalah. The results of this examination are discussed below.



4.1. G-Games

A G-game is a board-splitting game which was constructed to reveal the relation-
ship between pathology and game graph structure [7]. For G-games it is easy to com-
pute a perfect evaluation of each node, but in [7], two less—than—perfect evaluation

functions e, and e, were used to compare the performance of minimax and product.

The product rule did better than minimax when e, was used, and product did worse

1

than minimax when e, Was used.

For our purposes, the significance of this study is this: it can be proven that for

every depth d, rhf(d) is higher using e, than it is using e,. Thus, on G-games, product

performs better against minimax when using the evaluation function having the higher

rhf. This matches our conjecture.

4.2. Ballard’s Experiments

Ballard [2] used a class of incremental games with uniform branching factor to
study the behavior of minimax and non-minimax back-up rules. One of the non-
minimax back-up rules was a weighted combination of the computational schemes
used in the minimax and product rules. Among other results, he claimed that ‘‘lower-
ing the accuracy of either max’s or min’s static evaluations, or both, serves to increase
the amount of improvement produced by a non-minimax strategy.” Since low accu-
racy is directly related to a high rhf, this would seem to support our conjecture. But
since Ballard did not test the product rule itself, we cannot make a conclusive state-

ment.

4.3. Othello
Teague [13] did experiments on the game of othello, using both a “weak evalua-

b

tion" and a “strong evaluation.” The weak evaluation was simply a piece count, while
the strong one incorporated more knowledge about the nature of the game. According
to Teague’s study, minimax performed better than produet 89.897 of the time with the

strong evaluation, but only 63.1% of the time with the weak evaluation.

It would be difficult to measure the rhf values for othello, because of the immense



computational overhead of determining whether or not playing positions in othello are
forced wins. However, since rhf is a measure of the probability that an evaluation
function assigns forced win nodes higher values than forced loss nodes, it seems clear
that the stronger an evaluation function is, the lower its rhf value should be. Thus,

Teague’s results suggest that our conjecture is true for the game of othello.

4.4. P-Games

A P-game 1s a board-splitting game.whose game tree is a complete binary tree
with random independent assignments of “win’” and ‘‘loss” to the terminal nodes. P-
games have been shown to be pathological when using a rather obvious evaluation
function el for the games [5]—and in this case, the minimax rule performs more
poorly than the product rule [8]. However, pathology in P-games disappears when a
stronger evaluation function is used [1].

It can be proven that the stronger evaluation function (which we will call e2) has
a lower rhf than el. Both evaluation functions return values between 0 and 1, and the
only difference between el and e2 is that €2 can detect certain kinds of forced wins
and forced losses (in which case it returns 1 or 0, respectively).

Let m and n be any two nodes. If e2(better,(m,n)) = 0, then it must also be
that e2(worse ,(m,n)) = 0. But it can be shown that e2(x) = 0 only if x is a forced
loss. Thus u(worse_,(n, m))=0, so there is no heuristic flaw. It can also be shown that
e2(x) = 1 onmly if x is a forced win. Thus if e2(better (m,n)) = 1, then
u(better _,(m,n))=1, so there is no heuristic flaw.

Analogous arguments hold for the cases where e2(worse (m,n)) = 0 or
e2(worse,(m,n)) = 1.

The cases described above are the only possible cases where e2 returns a different
value from el. No heuristic flaw occurs for €2 in any of these cases, but heuristic flaws
do occur for el in many of these cases. Thus, the rhf for e2 is less than the rhf for el.

We tested the performance of minimax against the product rule using el and e2,



in binary P-games of depths 9, 10, and 11, at all possible search depths.® For each
combination of game depth and search depth, we examined 3200 pairs of games. The
study showed that for most (but not all) search depths, minimax performed better
against product when the stronger evaluation function was used (for example, the fol-
lowing table shows the results for P-games of depth 11). Thus, this result supports

our conjecture.

9% wins for % wins for
Search  minimax minimax
depth using el using e2
2 51.0% 52.1%
3 52.5% 51.8%
4 49.9% 50.3%
5 50.7% 49.3%
6 46.2% 48.1%
7 46.7% 48.4%
8 44.9% 48.6%
9 47.2% 50.0%

4.5. Kalah
Slagle [11] states that ‘“‘Kalah is a moderately complex game, perhaps on a par

1

with checkers.” A detailed description of the game of kalah can be found in [11].

If a smaller-than-normal kalah playing board is used, the game tree is small
enough that one can search all the way to the end of the game tree. This allows one
to determine whether a node is a forced win or forced loss—and thus rhf can be
estimated by measuring the number of heuristic flaws that occur in a random sample
of games. By playing minimax against product in this same sample of games, informa-
tion can be gathered about the performance of minimax against product as a function
of rhf. To get a smaller-than-normal playing board, we used three-hole kalah (i.e., a
playing board with three bottom holes instead of the usual six), with each hole con-

taining at most six stones.

One obvious evaluation function for kalah is the ‘‘kalah advantage™ used by

% As is usual in studies of P-games, we used a probability of win for each terminal node of £=0.382
5.
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Slagle [11]. We let e, be the evaluation function which uses a linear scaling to map

the kalah advantage into the interval {0,1]. * Evaluation functions more accurate than
e, can be obtained by using the product value P(m,2) based on e,. Weighted averages

of e,(m) and P(m,2) can be used to get evaluation functions with different rhf values:
ey (m) = w e,(m) + (1-w) P(m,2),

for w between O and 1. We measured the value of rhf, and compared the performance
of minimax against product, using the following values for w: 0, 0.5, 0.95, and 1.
Using a method for generating random games similar to the method used by Sla-
gle, we generated 1000 initial game boards for three-hole kalah. As discussed above,
we used these boards both to measure rhf, and to compare the performance of
minimax and product. Because of computational limitations, we only measured rhf at
depth 4, and only played minimax against product using a search depth of 2. The

results are summarized in the following table.

w rhf(4) % games won % games won
by product by minimax

1 0.135 63.4% 36.6%

0.95 0.1115 55.5% 44.5%

0 0.08 53.6% 46.4%

0.5  0.0765 51.2% 48.8%

Three observations can be made about these results:

(1) Product performs better with all four evaluation functions used. This suggests
that product might be of practical value in kalah and other games.

(2) For the evaluation functions tested, the lowest rhf was obtained with w = 0.5.
This suggests that a judicious combination of direct evaluation with tree search

might do better than either individually. This idea needs to be investigated more

fully.

*In a preliminary study reported in {3}, we played minimax against the product rule in three-hole kalah
and two modifications of kalah, using €,. This study used a somewhat different definition of rhf than
the one used here. The evaluation function had a different rhf value in each of the three games, and
minimax did better in the game in which rhf was the lowest. This result motivated the more extensive
studies reported in the current paper.
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(3) The performance of product against minimax increases as rhf increases. This
matches our conjecture about the relation between rhf and the performance of

minimax and product.

5. P-GAMES WITH VARYING RHF

Section 4 shows that in a variety of games, minimax performs better against pro-
duct when rhf is low than it does when rhf is high. But Section 4 does not give much
idea of the specific relationship between I'ilf and performance of minimax versus pro-
duct.

To address this problem, we did a Monte Carlo study of the performance of
minimax against product on binary P-games, using an evaluation function whose rhf
could be varied easily. For each node n, let r(n) be a random value, uniformly distri-
buted over the interval [0,1]. The evaluation function e" is a weighted average of u

and r:
e¥(n) = w u(n) + (1—w) r(n).

When the weight w == 0, " is a completely random evaluation. Whe v w = 1, e¥ pro-
vides perfect evaluations. Furthermore, w has a straightforward relation to rhf: for

all d,

1—w

—ow |
[1 “W](L—g)g if0<w<0.5
rhi(d) = if 0.5 < w < 1.
For 0 < w < 0.5, this relationship is approximately linear, as shown in Figure 2.
[Furthermore, for w 2 0.5, rhf = 0 (i.e., the evaluation function gives perfect perfor-
mance with the minimax back-up rule).
In the Monte Carlo study, w was varied between 0 and 0.5 in steps of 0.01. For

each value of w, minimax was played against product in 8000 pairs of binary P-games
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of depth 6, with each player searching to depth 2.° The results of this study are shown
in Figure 3, which graphs the fraction of games won by minimax against product, as a
function of rhf. Figure 3 shows that minimax does significantly better than product

when' rhf is small, and product does significantly better than minimax when rhf is

large.® Thus, in a general sense, Figure 3 supports our conjecture about rhf. But Fig-
ure 3 also demonstrates that the relationship between rhf and the performance of

minimax against product is not always monotone, and may be rather complex.

6. CONCLUSIONS AND SPECULATIONS
The studies in this paper point out relationships between various characteristics of

games and the performance of back—up rules in these games. They also suggest the

possibility of improving the existing evaluamtion functions and back-up rules. The
results are summarized below:

(1) Theoretical considerations suggest that for evaluation functions with low rhf
values, minimax should perform better against product than it does when rhf is
high. Our investigations on a variety of games, including G-games, Ballard’s
game, othello, P-games, and kalah, confirm this conjecture.

(2) The product rule plays better than minimax in the game of kalah with three bot-
tom holes. This is a remarkable result, since it is the first widely known game in
which product has been found to be better than minimax.

Previous investigations have proposed two hypotheses for why minimax might
perform better in some games than in others: dependence/independence of siblings [5]
and detection/non-detection of traps [10]. At first glance, these. two hypotheses would
appear to have little to do with each other. However, since sibling dependence gen-
erally makes rhf lower and early trap detection always makes rhf lower; these two
characteristics have more to do with each other than has previously been realized.

One could argue that for most real games it may be computationally intractable

5 j.e., 8000 randomly chosen initial playing boards, with each player having a chance to move first.

8 Furthermore, the poor performance of minimax when rhf is large corroborates previous studies which
showed that product did better than minimax in P-games using a different evaluation function {8l.
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to measure rhf, since one would have to search the entire game tree. But since rhf is
closely related to the strength of an evaluation function, one can generally make intui-
tive comparisons of rhf for various evaluation functions without searching the entire
game tree. This becomes evident upon examination of the various evaluation func-
tions discussed earlier in this paper.

There are several problems with the definition and use of rhf. Since it is a single
number, rhf is not necessarily an adequate representation for the behavior we are try-
ing to study. Furthermore, since the definition of rhf is tailored to the properties of
minimax, it is not necessarily the best predictor of the performance of the product
rule. As a result of this, the relationship between rhf and the performance of minimax
versus product can be rather complex (as was shown in Section 5). Further study
might lead to better ways of predicting the performance of minimax, product, and

other back-up rules.
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