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Abstract. It was recently shown that, in the solution of smooth constrained optimization
problems by sequential quadratic programming (SQP), the Maratos effect can be prevented
by means of a certain nonmonotone (more precisely, four-step monotone) line search. Using
a well known transformation, this scheme can be readily extended to the case of minimax
problems. It turns out however that, due to the structure of these problems, one can use a
simpler scheme. Such a scheme is proposed and analyzed in this paper. It is also shown that
a three-step monotone (rather than four-step monotone) line search, with a relaxed decrease
requirement, can be used without losing the theoretical convergence properties. Numerical
experiments indicate a significant advantage of the proposed line search over the (monotone)

Armijo search.

Key words. Minimax problems, SQP direction, Maratos effect, Superlinear convergence.

1This research was supported in part by NSF’s Engineering Research Centers Program No. NSFD-CDR-
88-03012, by NSF grant No. DMC-88-15996 and by a grant from the Westinghouse Corporation.

2To whom the correspondence should be addressed.






1. Introduction. Consider the “minimax” problem
(P) minimize f(z) st. z€R"

where

f(z) = max  fi(z)
with f; :IR" = R, i =1, -, p, smooth.

Several authors have proposed, among other approaches (e.g., [1-3]), extensions of the
popular sequential quadratic programming (SQP) scheme (originally proposed for the so-
lution of smooth constrained problems) to the minimax framework (e.g., [4-9]). Global
convergence 1s usually insured by means of a line search, forcing a decrease of f at each it-
eration. Typically, under mild assumptions, these algorithms exhibit a local superlinear (or
two-step superlinear) rate of convergence provided the step size is not truncated by the line
search when a solution is approached. Unfortunately, it is known that in general the full step
does not yield a decrease of f and thus the line search may prevent superlinear convergence
to take place (Maratos-like effect). As pointed out by Womersley and Fletcher [9] and by
Conn and Li [3], the watchdog technique [10] and the bending technique [11,12], proposed for
circumventing the Maratos effect in the context of smooth constrained optimization, can be
easily extended to the minimax framework. Both approaches however have drawbacks. The
watchdog technique may result in repeated backtracking in early iterations and the bending
technique requires an additional evaluation of f at each iteration.

A few years ago, in the context of Newton’s method for smooth unconstrained optimiza-
tion, Grippo, Lampariello and Lucidi [13] proposed a “nonmonotone” line search according
to which the objective function is not forced to decrease at every iteration but merely every
M iterations, where M is a freely selected positive integer. They showed that with such
a line search global convergence is still guaranteed, and they pointed out that, as the full
Newton step can then be taken earlier, convergence may often be sped up. Their numerical

tests were indeed very promising. Recently, it was shown that making use of a suitable

extension of this scheme to smooth constrained optimization, in the framework of SQP with
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penalty function-based line search, has the additional advantage of automatically allowing a
full step to be taken locally and thus avoiding the Maratos effect [14].

Many of the schemes that have been proposed for the solution of minimax problems can
be viewed as follows. First (P) is replaced by the equivalent smooth constrained problem in
(;EO’ xl’ ce ,:En) € ]R’n+1,

(P) minimize z°

subject to fi(z) <a2® i=1,---,p,
and application of a constrained optimization algorithm to this problem is considered. The
resulting iteration is then refined to exploit the structure of the problem. In particular, in
the case of sequential quadratic programming, refinements include (i) line search on f rather
than on a penalty function, (ii) constraints made tight at the end of each iteration, and (iii)
estimation of a Hessian of size n x n instead of (n + 1) x (n +1). The question thus arises
here of whether similar refinements on the nonmonotone line search scheme of [14] are viable.
Specifically, (i) does a nonmonotone line search in the “max” function f still enforce global
convergence? (ii) does such a line search prevent the Maratos effect? It turns out that not
only the answer to both questions are positive, but moreover, in the minimax context, one
can enforce three-step monotonicity (whereas in the general smooth constrained case, four-
step monotonicity is all that can be ensured if the Maratos effect is to be avoided). Finally,
apparently even more than in the smooth constrained case, nonmonotone line search in
the minimax case leads to significantly improved results on numerical tests. In this paper, a
nonmonotone line search based algorithm is described and analyzed; extension to constrained
minimax problems is outlined; numerical experiments are discussed.

The balance of the paper is organized as follows. The algorithm is presented in Section 2.
Global and local convergence are analyzed in Section 3. Numerical results are presented in
Section 4. Section 5 discusses alternative line search rules and Section 6 is devoted to final

remarks.

2. The Algorithm. Our algorithm can be viewed as dealing with (P) in the same spirit



as in [4,5] and [16]. Specifically, at iteration k, an SQP direction dj is first computed as
the solution of the quadratic problem QP(zy, Hy) defined for z, € R" and H, € R™"
symmetric positive definite by

1
min 5((1, de> + f’(wk, d)

deR™

where
fl(zg,d) = igf}?fp{fi(ka) + (Vfi(zr), d)} — (=), (1)

a first order approximation to f(zy + d) — f(zx) at @4 in direction d. It is well known that,

under suitable assumptions, the iteration obtained by setting
Tpy1 = 2k + di (2)

converges superlinearly to a locally optimal solution. It turns out, as will be shown below

(Theorem 3.8), that close to a solution, this iteration satisfies
f(@r41) < fap-2) — a{dy, Hidy) (3)

where « is any prescribed positive number. This suggests that no Maratos effect would arise
if global convergence was enforced by means of a line search criterion requiring that the

stepsize ty satisfy

Jlai + trdy) < max fwx-e) — ati(ds, Hidy) (4)

where the “max” insures that a positive step will always be accepted ((4) is less stringent
than an Armijo type criterion). As f is not required to decrease at each iteration, such line
search is referred to as a nonmonotone line search. It is known to induce global convergence
when f is smooth [13]; we show below (Theorem 3.3) that it still does here. In view of
(3), the nonmonotone line search criterion would accept the full step of one provided the
“undamped” iteration (2) has been used for the last two iterations. To this end, following
[14,15], we propose to initialize this procedure, whenever t;, = 1 does not satisfy (4), by

performing an arc search based on a correction dj, so that a stepsize t;. is determined to



satisfy
@+ tedi + i) < max f(zr-e) = atildy, Hids) (5)

di will be chosen in such a way as to guarantee that (i) ¢ = 1 is accepted in (5) for k large

enough, where a € (0,1); and (ii) di + di converges to dj in order to preserve the properties

of the quasi-Newton direction. Such d; can be chosen, for instance, as the solution d of the

quadratic program @7’(9:;0, dr, Hy) given by

1 . - ~ ~
d{ﬂ}i}n §<(dk + d), Hk(dk + d)> + f’(:l?k + dy, Tk, d) (6)
E 7

if HJH < ||dk||, and zero otherwise. In (6),
F'(@r + diy i, d) = max {filwr + di) + (V fi(w), d)} — flax + di).

It is shown below (Proposition 3.4) that d; obtained from (6) is always suitable for k large
enough.
Algorithm NLS.

Parameters. a € (0,3), 3 € (0,1).
Data. zg € R", Hy = Hg > 0.
Step 0. Initialization. Set k =0, and x_y = 2_1 = xg.

Step 1. Computation of search direction and stepsize.
i. Compute di, by solving the quadratic program @ P(zy, Hy). If ||d|| = 0, stop.
i, If
Jlzp + di) < Jnax fxr—e) — afdy, Hydy), (7)
set ¢ = 1, d; = 0 and go to Step 2.

ii. Compute di by solving the quadratic program QP(zx,d, Hy). If HJ;CH > ||di|], set
dy = 0.



iv. Compute t;, the first number ¢ in the sequence {1, 3, 3%, -} satisfying
f(ka + tdk + tzcik) S eI:I%)alX2{f($k_g)} — &t(dk, dek> (8)

Step 2. Updates.

Set
Tpp1 = Tp + tedi + tzCZk-
Compute a new symmetric positive definite approximation Hjyy to the Hessian of the

Lagrangian. Increase k by 1. Go back to Step I.

a

Remark 2.1. Without Step I i, the algorithm is a simple combination of Han’s method
(except that t;, is determined differently) and a second order correction to obtain superlinear

convergence.

3. Convergence analysis. Given z € R", the set of active functions at z is defined by

The following standard assumptions are made throughout the analysis.
A1l. The functions f;, ¢ = 1,---,p, are continuously differentiable.

A2. For any x5 € R", the set 2 = {z € R": f(z) < f(zo)} is compact.
A3. There exist 1,09 > 0 such that

orllz||? < (=, Hyz) < oqlj2®, Vz € R, Vk.
For problem (P), the Lagrangian is defined by

L(z,A) = z_: Aifi(z).

A point 2z* € X is stationary for (P) (see, e.g., [5,7]) if there exist A7 > 0,2 =1,---,p, such
that ,
VL(a' A7) =0 & A7 =
=1

(9)
AP =0 Vi st filz®) < f(2%).



It is clear that any local solution of (P) is stationary. The first order necessary conditions of
optimality for @ P(xy, [}.) can be expressed as follows. If dj. solves QP(xk, Hy), there exist
Aki 2> 0,0 =1,--+,p, such that

H.d; + Va,L(.Z‘k, /\k) =0 & Zp: /\k,i =1
=1

(10)
Ak =0Ve st fi(ze) + (Vfilzr), di) < igf}_?fp{fi(xk) +(Vfi(zr),dr)} -

Due to the equivalence of (P) and the smooth constrained optimization problem (P’), some

of the proofs are fairly standard and are either given in the Appendix or altogether left out.

3.1. Global convergence. In view of A1, A2 and A3, Q P(zx, Hy) and Q?(xk,dk,Hk)
have unique and bounded (as k goes to oo) solutions dj and dy respectively. The following
lemma shows that dj is a direction of descent for f(z) at zj (see, e.g., [3]).

Lemma 3.1. The directional derivative D f(zy,dr) of f(z) at zx along dj, satisfies
D f(zy, dy) < —{dy, Hedi)  VE,

and dj, is zero if and only if x; is a stationary point. a

In view of A3, of the continuity of f(z), and of the boundedness of dy, it follows from
Lemma 3.1 that the line search is well defined. Therefore, unless the algorithm stops at
Step 1 i at a stationary point, it constructs an infinite sequence {z;}. In the sequel, we
assume the latter.

The following property, which holds even though monotone line search is not enforced,
is a key to global convergence. Although the underlying ideas of the proof are analogous
to those used by Grippo et al. in the smooth unconstrained case [13], the details of the
extension to the present situation are nontrivial.

Lemma 3.2. The sequence {z;} is bounded and the sequences {¢xdi} and {zg41 — 21}
both converge to zero.

Proof. Clearly f(xx) < f(o) for all k. Thus the boundedness of {x;} follows from A2.

Now, for k given, let (k) be an index such that

flaew) = L)I:HOE}I)::Z flzr—e) = max  f(ax)).

t=k—2,k—1,k
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We first show that, for some f* € R,
For this, note that, in view of the definition of {(k),

[y =, max  f(zr)

< ;
<, max f(ze)

= max{f(zyk)), f(@r+1)}

= flaegw)
since, in view of the construction of zxy; in the algorithm, f(zr41) < f(@ek)). Thus F(zory)
is nonincreasing. Since z; € Q for all k, (11) then follows from Al and A2.

Second we show that, for any integer j, the following implications hold:
f(acg(k)_j) — f* as k— o0 = t((k)_(j+1)dg(k)_(]’+1) —0 as k— o0 (12)

and
f(zopy—j) = [ as k— 00 = @yp)-; — Teky—(i+1) — 0 as k — oco. (13)

(Throughout the remainder of this proof, k is taken large enough for the indexes to make

sense.) Indeed from the construction of zi41 and in view of A3, we have

f(zery-5)

VAN

F(@aey- 1)) — Qtegey-Ga1) (e -1y Hery- G+ dey—(i+1)
< f(@eery-G+1)) — aoitar—Gn 1 ey -G+ 1

In view of (11), the left hand side of (12) implies

;7<= Jim aosbgy - lldaw-n I

Thus

timy -G+ [ degry-+n]|> = 0 as k — oo.

Since #4 is bounded, (12) follows. Since ||di|| < ||dx|l and |t} < 1 Vk,

lewy—7 — eyl < 2tegny-n 1 decry -G |l

8



and (13) also follows.

Third we show by induction on j that, if j is any nonnegative integer,
f(xowy-;) = [ as  k — oo. (14)
In view of (11), (14) holds for j = 0. Suppose it holds for some j. Then, from (13),
Tok)—; — Tek)-(G+1) — 0 as k — oo.
Since {x}} is bounded, continuity of f and the induction hypothesis imply
fzeapy-g+1)) = f* as  k— o0

and this completes the proof of (14).
The proof of the lemma can now be readily completed. Indeed, (12), (13) and (14) imply

that, for any nonnegative integer j,
tog) 4 der—41) = 0 as k — oo (15)
To(k)—j — Teky-G+1) — 0 as  k — oo, (16)
From the fact (see definition of ¢(k)) that, for all k,
k) —1<(k—-1)<{(k-1)+2

and
F(k) <k,

it follows that
lk—1)<lk)<k<Llk-1)+3

and thus the three subsequences (15) (resp. (16)) corresponding to 7 = 0,1,2 cover the

entire sequence {tydy} (resp. {41 — xx}), so that

tudy -0 as Lk — o0



Tpe1 — 2 — 0 as &k — oo.

O

Theorem 3.3. lLet z* be an accumulation point of the sequence generated by the
algorithm and {z;}rex be any subsequence converging to «*. Then, z* is a stationary point
of (P) and the sequence {dj }rex converges to zero. 0

3.2. Superlinear convergence. Assumption Al is replaced by
A1’. The functions f;, ¢ = 1,---,p, are three times continuously differentiable.

Let z* be an accumulation point of {z;} and let AY,2 = 1,---,p, be the corresponding
multipliers. The following assumptions are used in the analysis of local convergence.
A4. At z*, any scalars \;,i € I(z*), satisfying

Y AVfi(z")=0 & > Ai=0
i€l(c*) i€l(z”)

must all be zero.

A5. The second order sufficiency conditions with strict complementary slackness are satisfied

at 2%, l.e., A\F > 0Vie I(z*) and
(h, V2 L(z",A")h) >0 Vhe S*, h+#0,
with
S* = {h: (h,Vfi(2*) = (h,V[j(z*)) Vi,j€ I(z)}.

Proposition 3.4. (i) The entire sequence {x} converges to z* and the entire se-
quence {di} converges to zero; (7¢) the multiplier vector Ay associated with the solution

dr of QP(dy, Hy) converges to A* and, for & large enough,

{7: M >0} =I(2"); (17)

(ii5)
ldill = OCl|de1*)- (18)
m)

10



Now, without loss of generality, assume that I(z*) = {1,---,m} for some m and define,
for any j € I(z*), fi(z) = [fi(z) = f;(x) : Vi € I(z*)\{F}]".
A6. H, approximates the Hessian of the Lagrangian at z* in the sense that
| Pe{Hi — VI, L(z*, \) } Pedi]|
[l

where the matrices P are defined by

— 0 as k— oo, (19)

P.=1— Ry(R{Ry) 'R}

with Ry, = %fé(xk) (in view of A4, RT R, is invertible for k large enough).
Remark 3.1. Note that elementary column operations on R do not affect P,. Thus, P is
unchanged if Ry is replaced by %Jz(xk) for any j € I(z*).

Assumption A6 has been observed to often hold, e.g., under some conditions, when H
is updated using Powell’s modification of the BFGS formula (see [17]). In the presence of
the strong properties stated in Proposition 3.4, it ensures that the iteration is close enough
to the Newton iteration that a full step is eventually accepted by the line search.

Proposition 3.5. For & large enough, t; = 1. a

Next, because the correction dj is small (see (18)), A6 implies two-step superlinear con-
vergence in the present context, as it does when the unperturbed SQP iteration is used (see,
e.g., [18,19]).

Theorem 3.6. Under the stated assumptions, the convergence rate is two-step super-

linear, i.e.,

fim Er2 =27l
kmoo ||z — 2| '
Moreover,
[2ke1 = @ill = O(llax — 27[)) & |l@psr — 27| = Ojzx — =7]))-

O

Finally, and most importantly, as mentioned in the introduction, two-step superlinear

convergence implies that, for & large enough,
flzr +di) < flar—z) — a{dr, Hidg)

11



and thus Step 1 iii of the algorithm is eventually bypassed. (In [14] and [15] in the context of
smooth constrained minimization, with a stricter descent requirement, a related inequality
was shown to hold in four steps, i.e., with k — 3 instead of £ — 2.) The proof of this results
involves the following lemma which is a simple extension of a result shown in [10] in the case
of smooth constrained optimization problems.

Lemma 3.7. There exists ¢; > 0 such that, for all  close to z*,

f(@) = f(2¥) > |z — 2*|%.

O

Theorem 3.8. For k large enough, x4 +d}, is always accepted and Step I iii (computation

of dy) is not performed.

Proof. As suggested above, we show that, for k large enough,
Jilwr +di) < f(wpe2) — a{dy, Hydy) Vi=1,---,p. (20)
In view of the continuity of f and of Proposition 3.4(7), it follows that, for k large enough,
flzy +dy) = max, filwr +dy). (21)

Therefore, it suffices to prove (20) for all ¢ € I(z*). Let i,5 € I(z*). Expanding fi(zx + di)

around z* gives, in view of A1’ and (9),

fi(l'k +dy) = fZ(T*) + <Vfi($*),:l?k +d;, — 1*> + O(”:L'k +di — CE*Hz) (22)
= filz") = > MN(Vflz") = Vfi(z"),zr + dy — z7)
Lel(z™)
FO(foi+ ds — =P, (23)

Since fi(z*) = fi(z*), (22) implies
Filwk 4+ di) = filzr + di) = (Vfi(e™) = Vfi(2"), 2 + di — &) + O(||lzx + di — 27[|7) . (24)
On the other hand, expanding fi(zy + di) around xj gives
Filae 4 di) = filar) + (Y fuza), di) + O([|di]|*)

12
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which implies, in view of (10) and A1’,
filaw + di) = filan + dic) = O([|de|*) V4,5 € I(27). (25)
By substituting (25) and (24) in (23), we obtain
filzr +di) = fi(2*) + O(|de ) + O(||lxx + di — =*||*) Vie I(z*).
Therefore, in view of (21), A3, Lemma 3.7 and Theorem 3.6, the above expression implies

flas+di) = f(2") + O(|di|l*) + O(llzx + di — 27|%)
= f(&") — a{dy, Hydi) + O(||di||*) + O([|ax + di — 27|1*)
< flaw-z) — o{de, Hidy) — erf|aia — 2| + O(||di]|*) + O(llwy + di — 2*||*)
= flar-2) — &{dp, Hidy) = erf|ap-s — 27|° + o[22 — 27|1%). (26)

Therefore (20) holds. O

4. Numerical experiments. As can been seen easily, the presence of linear constraints
does not increase the complexity of the algorithm and a set of linearly constrained mini-
max problems has been included in our test. An efficient implementation of the algorithm
described in this paper has been incorporated into a more general code (FSQP Version 2.1
[20]). In this implementation, & = 0.1, 8 = 0.5, and Hj is updated by means of the BFGS
formula with Powell’s modification [17], with Hy = [ the identity matrix.

Results obtained on selected minimax problems are summarized in Table 1. All compu-
tations were performed on a SUN 4/SPARC station 1. Gradients were computed by finite
differences (for the ith component, the perturbation parameter was 2 x 1078 max{L, |z%|}).
Problems BARD, DAVD2, F&R, HETTICH, and WATS are from [21]; CB2, CB3, R-S,
WONG and COLV are from [22, Examples 5.1-5]; MADI to MADS8 are from [23, Examples
1-8]. Some of these test problems allow one to freely select the number of variables; prob-
lems WATS-6 and WATS-20 correspond to 6 and 20 variables, respectively, and MADS-10,
MADS-30 and MADS-50 to 10, 30 and 50 variables respectively. Problems BARI) down

13



to WONG are unconstrained and MAD1 down to MADS are linearly constrained minimax
problems. In Table 1, the performance of Algorithm NLS is compared with that of the same
algorithm with an Armijo type line search (ALS)® and with that of algorithms proposed in
[3] (CL) and [23] (MS). To make such comparison meaningful, we attempted to best ap-
proximate the stopping rule used in each of the references. Thus (z) for problems BARD
down to WONG, execution was terminated when ||d|| was smaller than the corresponding
value of € in the EPS column, and (72) for problems MAD1 down to MADS8-50, execution
was terminated when ||di|| was smaller than ||zj|| times the corresponding value of € in the
EPS column. As pointed out by Madsen and Schjar-Jacobsen, all their problems cited here
except MAD-2 satisfy Haar’s condition.

The following observations can be made. First, NLS performs much better than ALS in
terms of the number of function evaluations. Second, it compares well with other algorithms.
WATS-20 is peculiar since from iteration 20 on, the 14 significant digits printed out by FSQP
do not change. On the MAD problems for which the Haar condition holds, the performance
of NLS appears to be comparable to that of the algorithm of [23].

5. Alternative line search rules. Clearly all the theoretical results would hold if line
search (8) were replaced by monotone line search. Yet, in conjunction of (7) which is essential,
it is natural to use the former. (Note that Grippo et al. used it merely to perform larger
steps.) It is easy to check that if £ = 0,1, 2 were replaced by ¢ = 0,---, M for some arbitrary
positive integer M > 2, Lemma 3.2 would still be true and global convergence would still be
guaranteed; M > 2 is needed for Theorem 3.8 to hold. (M = 0 corresponds to a monotone
line search as used in [4-7]; as discussed in the introduction, Theorem 3.8 would not hold in
this case.)

A line search requiring a decrease by an amount proportional to —(dy, Hydy) was first

used in [5] for minimax problems and Han argued there that a larger step would be allowed

3FSQP gives the user the option to choose either NLS or ALS with bending (i.e., replace £ = 0,1,2 by
¢ =0).

14



than if f'(z,dr) defined by (1) were used. There is no known theoretical advantage however
when a monotone line search is used. In our context, if f'(zx,dx) were used in the line search
(see [15]), a similar analysis could be carried out with the difference that M has to be at

least 3 instead of 2 in order for Theorem 3.8 to hold.

6. Concluding remarks. We have described and analyzed an SQP based algorithm for
unconstrained nonlinear minimax problems with nonmonotone line search. It is proved that
the Maratos-like effect can be avoided while auxiliary function evaluations are performed
only during early iterations. Extension to the linearly constrained case presents no difficulty,
but an assumption of linear independence of gradients of active constraints has to be imposed
on the analysis of global convergence to ensure that multipliers associated with constraints
are bounded. For nonlinearly constrained minimax problems, either the algorithm given
in [14] could be invoked with suitable modifications concerning our max function f(z) if
feasibility of successive iterates is not required, or the algorithm in [15] could be invoked,
as has already been suggested there, if feasibility is required at each iteration starting, from
an initial feasible point (nonlinear equality constraints are not allowed). The analyses of
such algorithms can be easily carried out by combining the results in this paper and results
in [14] or results in [15]. In fact, Algorithm NLS has been combined with that in [15] and
has been successfully implemented in FSQP [24] to solve nonlinearly constrained minimax
problems. Table 2 contains some numerical results. These problems are obtained from
problems 43, 84, 113 and 117 in [25] by removing certain constraints and including instead
additional objectives of the form f;(z) = f(z) + a;g;(x) where the ;s are positive scalars
and g;(z) < 0. Specifically, P43M is constructed from problem 43 by taking out the first
two constraints and including two corresponding objectives with «; = 15 for both; P84M
similarly corresponds to problem 84 without constraints 5 and 6 but with two corresponding
additional objectives, with «; = 20 for both; for P113M the first three linear constraints
from problem 113 are turned into objectives, with a; = 10 for all three; for P117M, the

first two nonlinear constraints are turned into objectives, again with a; = 10 for both. NNL
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denotes the number of nonlinear constraints. NG denotes the number of individual constraint
evaluations. All other notations are the same as in Table 1. It is apparent that nonmonotone
line search significantly decreases the number of evaluations of both objective functions and

constraints.

Appendix. Proofs of Theorem 3.3, Proposition 3.4 and Proposition 3.5.

Proof of Theorem 3.3. We first show that {d;} converges to zero on K. Proceeding by
contradiction, we suppose there exists an infinite subset K’ C K such that infxcg [|di]| > 0,
ie,, 3d > 0 s.t. ||di|| > d,k € K'. We show that there exists £ > 0 independent of k£ such
that line search (7) or (8) is always satisfied for some ¢ > t for all k¥ € K’. Expanding f; at

Ty gives
fi(mr + tdy + £2di) = filwg) + (V filar), tdy, + t2di) + o(tdy, + t2dy) .

?

Thus, in view of (10) and the boundedness of d; and d, we have, for t € [0,1]andi=1,---,p

filey +tdi +12dy) = filer) + 1V fi(wr), di) + o(t)

< filen) + ¢ max (i) + (VAo ded} = fiwn) | +oft)
= (L=0)fi(zr) + té:l Ak, fi(zx) + té Mei(V fi(zk), di) + oft)
= (1 t)fi(xs) +té e filew) — t{dy, Hydy) + o(t)

< flxx) = t{dy, Hedy) + of2)

< flzr) — at{de, Hrdi) — t(1 — a){dy,, Hpdi) + o(t).
In view of A3 and the contradiction assumption, it follows that
filme + tdy + £2dy) < fan) — at{dy, Hydi) — t(1 — a)ord® + oft) .
Therefore, since o < 1, there exist ¢; > 0 independent of &k such that, for all ¢ € [0,%,],
filzp + tdg + 2dy) < far) — at{dy, Hydy), i=1,---,p.

If we choose t = ,nlqin t;, then, for all & € K’ at which a stepsize t; is obtained via a
=1,
line search, t; > t. Therefore, {txdi} is uniformly bounded from below on K’ by td, a

contradiction to Lemma 3.2. Thus, {d;} converges to zero on K.
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Now, since {A} is in the compact set

¥4
A:{/\GIRPZ)W:l & /\120 Vz:]”p}’

=1
there exist K’ C K and A* € A such that {\;} converges to A* on K’. Taking the limit

on K’ in (10), in view of A3, it follows that {zx,dk, Ax} converges on K’ to (z*,0,*) and
(2=, A*) satisfies (9). Therefore, z* is stationary. O
Proof of Proposition 3.4. The argument for (¢) and (i7) is standard and thus is left out.
For (ii1), it can be shown in view of (i) and (i7) and the stated assumptions that, for k large
enough, it holds that
{i: hei >0} = I(z") (A.1)
with (dx, A¢) the solution of QP (s, dy, Hy).
In view of (17) and (10), the unique solution (di, \¢) of QP(zx, Hy) is also the unique

solution of the linear system in (d, \)
Hid + > )\,-sz-(:ck) =0
i€l{x*)

S A=1, AN=0VigI(a¥) (A.2)

t€l(z*)
fz(lk) + (sz(rk),cb = f](l'k) + <Vf](lk),d>, \V/l,] S ](.Z'*) .

Similarly, (cik, ;\k) is also the unique solution of the linear system in (d, :\)

i€l(z*)

S ohi=1, AN=0VidI(x") (A.3)

i€l(z*)
Jilwe + di) + (Vfilax), d) = filar + de) + (Vfi(zx),d), Vi,j € I(z*).
By expanding fi(z) + di),1 € I(2*), to second order around zj, (A.3) is equivalent to the

linear system

Hy(dy, + d) + D> NV filas) =0

iel(z*)
et ' . (A4)
fi(me) + (Vfily), di + d) + O||di||?) = fi(ze) + (V fi(xr), di + d) + O(||de|?),
Vi, 5 € I(z*).

17



The only difference between (A.2) and (A.4) viewed as systems of equations in unknown

(d,\) and (dx + d, \) respectively is a perturbation of order O(||di|?). In view of A4, claim

(422) then follows from the implicit function theorem. a
The following lemma is used to facilitate the proof of Proposition 3.5.

Lemma A.1. The SQP direction dy admits the following decomposition
di. = Pedy, + dj, (A.5)
where d, = Rp(R} Rp)~' fi(xr). Also, there exists c; > 0 such that, for k large enough,
1fi(e)ll > ealldill, G =1.---.m. (A.6)

Furthermore, there exists ¢; > 0 such that, for k large enough and for all j, € I(z) such
that fj, (zx) = fla),

(Fi(zr), M) < —csl|di| (A.7)

where Ay = [A; @ Vi € T(2*)\{ji}]7, with components in the same order as those of f;, (z).

Proof. In view of Proposition 3.4(7¢), dy that solves QP(zy, Hy) satisfies, for k large

enough, the following set of linear equations (since I(z*) = {1,---,m})

fi(ze) + (V filzr), di) = filze) + (V filze),di), i=2,--,m

which implies
deh = fl(*rk) .

Since, from the definition of P in A6, we have
Pidy, = di — Ri(RI Ry) ™' RY dy.

(A.5) follows. Since, from assumptions Al, A2 and A6, Ry, and (RT Ry)~! are bounded for
large k, in view of Remark 3.1, (A.6) follows directly from the definition of dj.
Now for any ji € I(z*) such that f; (zi) = f(xt), fj.(2x) < 0. Also Proposition 3.4(i7)

implies there exists A > 0 such that, for & large enough,

min Ag; > A.
Jel(z™)

18



Therefore, in view of (A.6), we have

{fix (26)s Ak) —Allfi (i)l

< —Aoldl

IA

and (A.7) follows. o
Proof of Proposition 3.5. Throughout the proof, the phrase “for k large enough” is
implicit. We show that

Flae +di + di) < f(ax) — aldy, Hedy), (A.8)
which clearly implies the claim. In view of (A.1), it follows that
Fil@n + di) +(V filwe) di) = filax + di) + (Vfi(en) di) Vi € 1(27).
This implies, in view of A1’ and (18), that
filer + di + di) = filma + di + di) + O(|de|P) Wi, j € I(a*),
which in turn implies
Flay+di+dy) = filmx+ di + di) + O(|di’) Vi€ I(a7).

Multiplying both sides of this equation by the corresponding A; and summing up over all
t € I(z*) yields
fler +dp +di) = ST Aifiler +di 4 di) + O(||di|?)
i€I(z*)
= L(xi + di + di, i) + O([|di|°) .
Expanding L around zy gives

. ~ 1
f(ze 4+ di + di) = L{ag, M)+ (Ve L(xp, M), di + dk>+;<dk1 V2 L(@k, e )di) +O(|de|)?) -

Since, for any j € I(z*),

Lz, M) = 30 Aeafiae) = fila) + Y. Ma{fi(ae) = filze))

i€l{x*) wel(x*)

= filaw) + (fil=e), Ax)
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and, in view of (10) and (183),

(VxL(a:k, /\k), dk + (Zk) = “‘(qu dek> + O(HdkHB) s

the above expression becomes

. _ - 1
Pk + di + de) = Fi, (22 + T (@), M) = (i Hydi)+ 5, Vo L@ M) de) +O (il
with ji such that f;, (zx) = f(zx). It follows that, in view of Lemma A.1,

1) —ealldl | - M. Hedi) + (dn, {V2,Lmr, Ae) = Hi Yy + O(l|dx]l”)
vr) — aldi, Hedy) — cs||dill — (5 — @) {dx, Hydx)
+ Udi, P{V2, Lze, M) — Hi} Pedi) + o(lldi ) + O(lldi|l*)-

flax +dp +di) < £(
f(

Therefore, (A.8) follows in view of (19) and Assumption A3, since a € (0, %) and ¢z > 0. O
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PROB CODE NOBJ NMF ITER OBIJMAX KKT EPS
BARD CL 15 10 * * *  50E-05
ALS 15 8 .508163265E—-01 .63E-10 .50E-05
NLS 7 7 .508168686E—01 .42E-05 .50E-05
CB2 CL 3 11 * * *  50E-05
ALS 11 6 .195222453E+01  .10E-06 .50E-05
NLS 6 6 .195222453E4+01 .82E-06 .50E-05
CRB3 CL 3 6 * * ¥ 50E-05
ALS 5 3 .200000000E+4+01 .75E-06 .50E-05
NLS 5 ) .200000000E+01 .94E-09 .50E-05
COLV CL 6 49 * * *  50E-05
ALS 21 21 .323486790E4-02  .29E-05 .50E-05
NLS 17 17 .323486790E+02 .14E-05 .50E-05
DAVD2 CL 20 20 * * *  50E-05
ALS 20 10 .115706440E+4-03 .59E-06 .50E-05
NLS 11 10 .115706440E4+03  .93E-06 .50E-05
F&R CL 2 11 * * *  50E-05
ALS 17 9 494895210E+01 .24E-06 .50E-05
NLS 10 10 .494895210E4-01 .21E-06 .50E-05
HETTICH CL 5 11 * * *  50E-05
ALS 19 10 .245935695E—-02 .28E-05 .50E-05
NLS 11 10 .245939485E—-02 .19E-05 .50E-05
R-S CL 4 12 * ¥ ¥ 50E-05
ALS 22 9 .440000000E4+02 .13E-05 .50E-05
NLS 16 10 .440000000E+02 .99E-07 .50E-05
WATS-6 CL 31 24 * * ¥ 50E-05
ALS 23 12 127170954E~01  .14E-05  .50E-05
NLS 14 13 127170913E-01  .31E-08 .50E-05
WATS-20 CL 31 22 * * * . 50E-05
ALS 106 42 .138908355E—-07 .35E-06 .50E-05
NLS 45 43 .141191856E-07 .17E-06 .50E-05
WONG CL 5 * ¥ 50E-05
ALS 67 20 .680630057E+03 .12E-05 .50E-05
NLS 49 26 .680630057E+03 .42E-05 .50E-05
MAD1 MS 3 * 8 * * 10E-11
ALS 9 5 .389659516E+00 .35E-16 .10E-11
NLS 6 6 .389659516E4-00 .89E-10 .10E-11
MAD2 MS 3 * * * *  10E-11
ALS 21 11 .330357143E4+00 .13E-10 .10E-11
NLS 19 18 330357143E4+00 81E-10 .10E-11
MAD4 MS 3 * 8 * ¥ 10E-11
ALS 11 6 .448910786E4+-00 .90E-16 .10E-11
NLS 8 8 .448910786E+4-00 .90E-16 .10E-11
MADS5 MS 3 * 8 * ¥ 10E-11
ALS 13 7 .100000000E4+01 .16E-16 .10E-11
NLS 8 8 .100000000E+01 .35E-13 .10E-11
MADG6 MS 163 8 ¥ 113105  E+400 ¥ 10E-11
ALS 11 6 .113104635E4+00 .20E-10 .10E-11
NLS 8 8 113104727E+4+00  .72E-15 .10E-11
MADS&-10 MS 18 18 * * ¥ 10E-11
ALS 19 10 381173963E4-00 .99E-12  .10E-11
NLS 14 14 381173963E4+00 .22E-15 .10E-11
MADS8-30 MS 58 17 * * ¥ 10E-11
ALS 30 15 547620496 E+00 .21E-15 .10E-11
NLS 20 18 .047620496E+00 .21E-10 .10E-11
MADS-50 MS 98 18 * * ¥ 10E-11
ALS 39 20 b79276202E400 .20E-15  .10E-11
NLS 21 21 b79276202E+00 .22E-13  .10E-11
NOBJ: number of objective functions.
NMEF: number of evaluations of the max function.
ITER: number of iterations.

OBJMAX: (absolute) max value of the objective functions.

KKT:

norm of KKT vector (the gradient of the Lagrangian) at the final iterate.

Table 1



PROB CODE NOBJ NNL NMF NG ITER OBJMAX KKT EPS
P43M  FSQP-ALS 3 1 27 36 14 —.440000000E+02 .30E-06 .50E-05
FSQP-NLS 20 25 16 —.440000000E+02 .39E-05 .50E-05
P84M  FSQP-ALS 3 4 28 4 —.528033513E+07 .0 .50E-05
FSQP-NLS 3 12 3 —.528033513E+07 .37E-03 .50E-05
P113M FSQP-ALS 4 5 25 142 13 .243062091E+402 .31E-05 .50E-05
FSQP-NLS 21 115 15 .243062091E4+02 .31E-05 .50E-05
P117™™ FSQP-ALS 3 3 48 124 21 .323486790E+02 .46E-05 .50E-05
FSQP-NLS 19 54 17 .323486790E+02 .26E-04 .50E-05

Table 2



