HOW MANY SOLUTIONS DOES A SAT INSTANCE HAVE?

Pushkin R. Pari, Lin Yuan, and Gang Qu

Electrical and Computer Engineering Department and Institute for Advanced Computer Studies
University of Maryland, College Park, MD 20742 USA

ABSTRACT

Our goal is to investigate the solution space of a given Boolean
Satisfiability (SAT) instance. In particular, we are interested in de-
termining the size of the solution space — the number of truth as-
signments that make the SAT instance true — and finding all such
truth assignments, if possible. This apparently hard problem has
both theoretical and practical values. We propose an exact algo-
rithm based on exhaustive search that Solves the instance Once
and Finds All Solutions (SOFAS) and several sampling techniques
that estimate the size of the solution space. SOFAS works better
for SAT instances of small size with a 5X-100X speed-up over the
brute force search algorithm. The sampling techniques estimate
the solution space reasonably well for standard SAT benchmarks.

1. INTRODUCTION

The Boolean satisfiability (SAT) problem seeks to decide, for a
given formula, whether there is a truth assignment for its variables
that makes the formula true. As the first computational task shown
to be NP-hard, SAT plays the central role in theoretical computer
science and finds numerous applications in various fields. Due to
its discrete nature, SAT appears in many contexts in the field of
VLSI CAD, such as automatic pattern generation, logic verifica-
tion, timing analysis, delay fault testing, and channel routing[4].

Over the years, many SAT solvers have been developed based
either on local search (e.g. GSAT, POSIT, SATO, Satz, WalkSAT,
and Rel_SAT) or on backtrack search (e.g. GRASP, Chaff, and
Zchaff). Links to these solvers can be found at the on-line SAT
library [3]. Most of them focus on finding one truth assignment
or proving that no such assignment exist. Although some solvers
(e.g., GSATI[S]) do provide the option of finding multiple solu-
tions, there is little discussion to the best of our knowledge, on
how to obtain all the solutions to a given SAT instance or to de-
termine the size of the solution space. Satometer [1] is the only
similar work that estimates the percentage of the search space ac-
tually explored by a backtrack SAT solver. Nevertheless, these are
important (and of course hard) problems that not only have theo-
retical value to unveil the structure of the SAT problem, but also
can find real life applications, particularly in multiple objective op-
timization problems. For example, many VLSI CAD applications
(such as logic optimization and channel routing) have their SAT
formulation and knowing all the solutions gives designer freedom
to optimize other design objectives simultaneously.

Naturally, there are two different approaches to finding all the
solutions. One is by conducting a brute force search, which evalu-
ates all the possible truth assignments for the variables. This guar-
antees that all solutions will be found, but the exponential growth
of the solution space makes this method impractical. Another
method is to repeatedly run a SAT solver until it fails to report
any new solutions. The advantage of this approach is that it can

0-7803-8251-X/04/$17.00 ©2004 IEEE

V-209

find multiple solutions quickly. However, it may miss some solu-
tions particularly, stochastic local search based solvers like GSAT
and WalkSAT report unsatisfiable if no solutions are found within
a given time.

We propose SOFAS (Solve Once and Find All Solutions) to
exhaustively search for all the solutions. SOFAS reports all the
solutions, unlike most solvers which tries to find one truth assign-
ment. The basic idea is to scan the SAT instance clause by clause
and prune the search space by deleting non-solutions. SOFAS
speeds up the solution-pruning process significantly by renaming
the variables, reordering the clauses, and carefully managing the
solution candidates. The current version of SOFAS can only han-
dle problems of moderate size, but it correctly finds all the solu-
tions and is 5X-100X faster than the pure brute force search. We
believe that its performance can be greatly enhanced by adding
features such as the Davis Putnam procedure [2] and recursive
learning [6, 7].

Enumerating all solutions eventually becomes an insurmount-
able task as the number of variables increases. Therefore, we pro-
pose a couple of sampling techniques to help the process by esti-
mating the size of the solution space. The first method randomly
assign values to a set of variables and then tries to determine the
size of solution subspace with these variables fixed. The second
method runs strategically different SAT solvers to find multiple
solutions to the same instance and then compares these solutions
to estimate the whole solution space.

We describe SOFAS in Section 2 and discuss the sampling
techniques in Section 3. Section 4 reports our preliminary results
and Section 5 concludes the paper.

2. SOFAS: SOLVE ONCE AND FIND ALL SOLUTIONS

Figure 1 gives the pseudo code of SOFAS. It reads the clauses one
at a time, in a pre-determined order, and eliminates the variable
assignment(s) that cannot satisfy this clause. When all the clauses
are checked, the remaining assignment(s) are all solutions to the
given SAT instance.

Figure 2 depicts the key steps of SOFAS by an example of the
following 5-variable SAT formula: F = (z1 + x4 +s5) (x5 + T4+
x5) (w2 + o4 + x5) (x4 + o5 + 24) (73 + T + 5). We represent
the solution space by a binary tree where the 2" leaves, denoted
by numbers 0,1,2,---,2" — 1 from left to right, correspond to
all the possible assignments. At each non-leaf node, we pick an
unassigned variable x; and associate its left subtree with the all
assignments with x; = 0 and the right subtree with all assignments
with ; = 1. For example, the shaded node at the 4th level in
Figure 2(a) represents {z1 = 0,2 = 1,3 = 1 } while variables
x4 and x5 remain unassigned.

We view each clause as a constraint that eliminates the assign-
ments that fail to satisfy this clause. For instance, any assignment
with {z2 = 1,23 = 1,24 = 0} will make clause (z5 + =5 + 4),
and hence the formula F, FALSE. Such assignments correspond to

ISCAS 2004

016 8 24 4 201228 2 18 10 26 6 22 14 30 117 925 5211329 3 19 1127 7 2315 31

016 8 24 4 201228 2 18 10 26 6 22 14 30 117 9 255 211329 319 11 27 7 2315 31

Fig. 2. Illustration of efficiency of SOFAS in finding all solutions to a small SAT instance. From left to right: (a) structure of the tree, (b)
16 original cuts, (c) 9 cuts after variable renaming, (d) 7 cuts after clause reordering.

Input: a formula F over n Boolean variables {x1,x2," -+, n}.
Output: all the variable assignments that make F evaluate TRUE.
Algorithm: Solve Once and Find All Solutions
/* Phase I: renaming the variables */
1. compute the weighted occurrence of every variable x;;
2. fork=mn,---,1
3. rename the variable with the least weighted occurrence to y,;
4. update the weighted occurrence of every remaining variable x;;
/* Phase II: reordering the clauses */
5. sort the clauses by the largest indices of their variables in
ascending order;
/* Phase III: cut the non-solutions */
6. mark all clauses unchecked;
7. let the solution space to be all the possible assignments;
8. while the solution space is non-empty and there are
unchecked clauses;
9. cut all assignments that cannot satisfy the top ranked
unchecked clause;
/* Phase IV: report result */
10. if the current solution space is empty
11. report F unsatisfiable;
12. else
13. report the solution space: all truth assignments to F;

Fig. 1. Pseudo code of SOFAS.

the two shaded subtrees in Figure 2(b), which will be pruned. A
cut is the prune of a subtree and the clause (4 + x5 + x4) results
in two cuts. For the above formula F, checking the five clauses in
the order given in the definition of F results in 16 cuts as shown
in Figure 2(b). Notice that there are 4 cuts associated with the last
clause (w3 + x4 + x5), however, two of them have already been
pruned by the first clause (z1 + 24 +x5). The 16 remaining leaves
stand for all the truth assignment to F.

Fact: Finding all truth assignments to a SAT formula is equiva-
lent to eliminating all those that violate one or more clauses or to
pruning the corresponding leaves from the binary decision tree.

SOFAS is based on this observation. It seeks to minimize the
total number of cuts by renaming variables and reordering clause
as one can see from the following lemmas.

Lemma 2.1 A clause with k variables in an n-variable formula
makes 2"~ truth assignments non-solutions. Furthermore, in the

binary decision tree, these non-solutions correspond to 2 % sub-
trees each of size 2" %, where i), is the largest index of the k
variables.

In line 1, we define a clause with k literals to contribute 2=k
to the weighted occurrence of each of its variables. If a variable
with a weighted occurrence w is renamed to have the highest index
n, then all the clauses that have this variable will result in 2" - w
cuts based on Lemma 2.1. In light of this, we rename the variable
with the smallest weighted occurrence to have the highest available
index (line 3) and repeat this untill all the variables are renamed.
This renaming procedure results in the following variable name
convertion for our example formula F: {y1 = x5,y2 = ©4,y3 =
T3,Yya = T2,y5 = x1}. We can then rewrite F as (y1 + y5 +
y5) (Y1 +y2 +y3) (Y1 +ya +ya) (y2 + y3 + ya) (Y1 + ¥ + y3).
There will be only 9 cuts as depicted in Figure 2(c).

Some leaves of the binary tree may be pruned more than once
when we consider the clauses one by one. For example, the leaves
2 and 10 in Figure 2(c) have been cut twice: first by the first clause
(y1 + y2 + v5), then indirectly by the last clause (y1 + y5 + ys3).

Lemma 2.2 For two clauses C and C’, let zj, and z/ (k' < k)
be the variable with the largest index and T" and 7" be any subtree
pruned by C and C’ respectively. If k > k/, then TN T’ = ¢ or
TcT;ifk=kK,thenTNT =¢orT =1T".

Lemma 2.2 suggests that if we check clause C’ and make the
corresponding cuts before we consider C, then no subtrees will be
pruned twice. Phase II of the SOFAS algorithm (line 5 in Figure
1) enforces this by sorting the clauses by their largest indexed vari-
ables in ascending order. As a result, we need only 7 cuts for the
rearranged formula F = (y1 +y2 +v5)(y1 + 5 +ys) (y1 + vy +
ya)(y2 +y3 + y4)(y1 + y2 + y5) as shown in Figure 2(d).

After renaming variables and reordering clauses, SOFAS reads
the clauses one at a time. For each clause, a set of non-overlapping
intervals of the same length will be generated based on Lemma
2.3, to represent the non-solution subtrees. The union of all such
intervals gives all the non-solutions and thus defines the solution
space.

Lemma 2.3 For a k-literal clause with x;, as the highest indexed
variable, the non-solution leaves can be represented by the union

V-210

of intervals [S+ A, S+A+1—1], where | = 2"~ is the length of
the interval, A is a clause-dependent constant, and S takes 2k —k
different values depending on the k literals in the clause.

In SOFAS we developed an efficient algorithm that (i) identi-
fies a group of intervals that have already covered and skips them
and (ii) merges consecutive intervals to keep the number of inter-
vals minimal at all times. Details of this algorithm are omitted due
to space limitation.

3. SOLUTION SPACE ESTIMATION BY SAMPLING

As the size of the SAT instance increases, both the search space
and the potential solution space grow exponentially. Consequently
any attempt in finding all the solutions will require an exponen-
tial run time. In this section, we present two efficient sampling
techniques for the estimation of the size of the solution space.

3.1. Sampling over Smaller SAT Instances

This technique takes samples of solution space, by reducing the
original SAT instance, which have a much smaller search space.
It is based on the assumption that the average solution space size
over a large number of smaller SAT instances generated from the
original formula reflects the size of the original solution space.

In step 1, we create an unbiased estimation by eliminating all
variables that have the same values over the entire solution space.
We then create a smaller SAT formula in steps 2 and 3. If a se-
lected variable z is assigned value ‘1’, for example, we delete all
the clauses with literal = and remove z’ from all the remaining
clauses. Note that this gives us a formula with k fewer variables
and a much smaller solution space (1/ 2% of the original one). We
then determine the solution space in step 4 where an unsatisfiable
instance is considered to have zero solution. The repetition of steps
3 and 4 in steps 5 and 6 will help us to get a better estimation in
step 7. Note that we do not assume a random distribution of the
solution space. Instead, we take a large number of samples to esti-
mate the average size of each solution subspace.

1. apply the Davis Putnam procedure [2] to determine the
values of those variables that must have a constant value in
all solutions. Let C be the list of ¢ such variables.

2. randomly select k variables other than the c variables in C.

. assign random values to these c variables

4. update the SAT formula and determine the number of
solutions by solving for all solutions.

5. repeat steps 3 and 4 ¢ times with different random
assignments to the same set of k variables. Let
{n1,nz, ...,n:} be the number of solutions in these ¢ trials
and T' = ny + - - - 4+ n; be the total number of solutions.

6. repeat steps 3-5 K times and obtain the total number of
solutions for each trial {11, 7%, ..., Tk }.

7. estimate the number of solutions for the original SAT
L4To+ 4Tk | ok
Kt

w

formula to be

Fig. 3. Sampling over SAT instances of smaller size.

3.2. Sampling by (Strategically) Different Solvers

This is a variation of the following classical sampling technique:
take 10 balls randomly from a blackbox, mark them and put them
back into the box. Then take again 10 balls randomly, if 5 of them

have been marked, then we estimate that there are around 20 balls
in the box because half of the redrawn samples repeat. This relies
on the fact that the sample drawing is conducted randomly.

However, when we apply a solver to a SAT instance, we have
no guarantee that the solver will give us a random satisfying solu-
tion. When we repetitively solve the same problem with the same
solver, it is not clear whether we will get the same solution or a
different solution; and if different, whether the two solutions cor-
relate with each other. In fact, many solvers have the tendency to
find the same solution when solved repetitively.

To overcome these problems, we start with two solvers, Si
and Sz, preferably strategically different solvers. We apply each
solver to find a certain number of distinct solutions. To ensure that
the solvers find different solutions each time, we append a new
clause to the formula once a new solution is found. For example,
if we have a solution 1 = 0,22 = 1, and 3 = 0 to a formula
F, we then add the clause z1 + x5 + 3 to F. Solving this new
augmented instance guarantees us a new solution. Suppose that
we have obtained k; and k> solutions by S1 and S» respectively,
where k solutions are reported by both solvers. We are able to
estimate that the original instance has % solutions.

This sampling technique solves the original SAT instance. How-
ever, it only looks for a certain number of solutions rather than
finding all of the solutions. We argue that the run time to find
a limited number of sample solutions will be much less than the
time it takes to enumerate all the solutions. Our experiments also
validate this argument. Finally, we mention that the two proposed
methods — sampling over smaller SAT instances and sampling over
different solvers — are orthogonal, and they can be combined for
better run time efficiency.

4. EXPERIMENTAL RESULTS

We implement SOFAS and a naive brute force search algorithm
using the same data structure (for a fair comparison of their per-
formance) and compared them on a set of uniform randomly gen-
erated 3-SAT formulas with 15 to 30 variables and a constant 4.3
clause-variable ratio. In the naive brute force search algorithm,
we exhaustively check for all the possible truth assignment one
by one. An assignment becomes a solution if and only if all the
clauses are satisfied. Otherwise, we move on to check the next
truth assignment. SOFAS is 5X-100X times faster than this brute
force search. We then compare the speed for various solvers, in-
cluding SOFAS, Posit, Sato, and Satz, to find all the solutions for
3-SAT benchmarks. The 3-SAT instances include random formu-
las with 15, 20, and 25 variables as well as standard DIMACS and
satlib benchmark instances [8, 3]. For solvers we find all the so-
lutions by solving for one solution and then enforcing the solver
to find a new solution until it fails to find one. Due to space con-
straints, we only mention that for these small- and medium-sized
3-SAT benchmarks, SOFAS is compatible with Posit, Sato, and
Satz, particularly when there are many solutions. Furthermore,
SOFAS always give the correct number of solutions, while other
solvers cannot guarantee to find all the solutions occasionally.

We now evaluate the accuracy of the two solution space esti-
mation methods. The SAT problems are the unforced uniform ran-
dom 3SAT benchmarks from [3]. For space consideration, here we
only report our results on two sets of benchmarks: 500 instances
with 50 variables and 218 clauses, and 100 instances with 75 vari-
ables and 325 clauses. They are all satisfiable instances with the
number of solutions ranging from one to a few thousand, which

V-211

we obtain from repetitively running Zchaff.

10000

1000

100 -

1 10 100 1000 10000

Fig. 4. Accuracy of sampling method I on 500 50-variable 3SAT
instances. X axis: actual number of solution; Y axis: estimated
number of solutions.

Figures 4 and 5 demonstrate the accuracy of the first sam-
pling technique by plotting the actual and estimated number of
solutions. The values of k,t and K are set to be 5, 10 and 10 re-
spectively. That is, we randomly choose 10 sets of 5 variables and
assign 10 different assignments for each set. We solve all the cor-
responding smaller sized SAT problems for all solutions by Zchaff
and then estimate the number of solutions for the original prob-
lem by the formula given in Figure 3. The 45-degree line indicates
the situation when the estimation meets exactly the actual num-
ber. Points above and below this line are the overestimated and
underestimated cases respectively. Both figures show that our es-
timation is fairly close to the actual number of solutions. In fact,
for the 500 50-variable benchmarks, the average error, measured
by % Zl estimation—actual number, is Ol'lly 0.2% with most of

actu_al number X
the error comes from instances that have less than 20 solutions.

100000 -

10000 -

1000 +

100 -

1 10 100 1000 10000 100000

Fig. 5. Accuracy of sampling method I on 100 75-variable 3SAT
instances. X axis: actual number of solution; Y axis: estimated
number of solutions.

For the second method, we use Zchaff and Satz as the two
strategically different solvers to obtain 100 and 250 (when appli-
cable) solutions independently for each instance. We then compare
these reported solutions and use the number of solutions found by
both solvers to estimate the solution space of the original problem
as we have discussed earlier. Figure 6 reports the result on 200
50-variable instances with at least 100 solutions. Although this
method is faster than the previous sampling technique, one can see
that it tends to underestimate the size of the solution space, partic-
ularly for those with large number of solutions. The reason is that
the solutions, found by both solvers and those in the entire solu-
tion space, normally form groups rather than being randomly dis-
tributed. Therefore, instead of finding individual solutions that are

in common, the two solvers usually report groups that have many
solutions in common. This misleads us to underestimation. We
expect to improve the accuracy by investigating on how to force
solvers to find solutions that are far away to each other.

10000 1

1000 -

100

100 1000 10000

Fig. 6. Accuracy of sampling method II on 200 50-variable 3SAT
instances. X axis: actual number of solution; Y axis: estimated
number of solutions.

5. CONCLUSION

We present two different approaches to determine the solution space
of a given SAT instance. The first one is an exact and effective al-
gorithm based on pruning non-solutions targeting small to medium
sized SAT problems. The second approach consists of two sam-
pling techniques to estimate the size of the (large) solution space.
We test these two estimation techniques on the SATLIB bench-
mark instances. The results show that they are fairly accurate.
With these techniques, one can better understand the solution dis-
tribution and eventually the nature of the SAT problem. It also
becomes possible to find better solutions for applications that re-
quire the knowledge of the entire solution space.

6. REFERENCES

[1] EA. Aloul, B.D. Sierawski, and K.A. Sakallah. “Satometer:
How Much Have We Searched?” 39th ACM/IEEE Design
Automation Conference, pp. 737-742, June 2002.

[2] M. Davis and H. Putnam. “A Computing Procedure for
Quantification Theory”, Journal of the Association for Com-
puting Machinery, Vol. 7, No. 3, pp. 201-215, July 1960.

[3] H.H. Hoos and T. Stuzle. SATLIB: An Online Resource for
Research on SAT. In SAT 2000 (ed. L.P. Gent, H.V. Maaren,
and T. Walsh, pp. 283-292, 10S Press, 2000.

[4] J.P. Marques-Silva and K.A. Sakallah. “Boolean Satisfiabil-
ity in Electronic Design Automation,” 37th ACM/IEEE De-
sign Automation Conference, pp. 675-680, June 2000.

[5]1 B. Selman, H.A. Kautz, and B. Cohen. “Noise strategies for

improving local search”, Proceedings of the 12th National
Conference on Artificial Intelligence, AAAI’94, pp. 337-343,
1994.

[6] J. P. M. Silva and K. A. Sakallah. “GRASP—A New Search
Algorithm for Satisfiability”, Proceedings of the Interna-
tional Conference on Computer-Aided Design, 1996.

[7]1 L. Zhang, C.F. Madigan, M.H. Moskewicz, and S. Malik.
“Efficient Conflict Driven Learning in a Boolean Satisfiabil-
ity Solver”, IEEE/ACM International Conference on Com-
puter Aided Design, pp. 279-285, November 2001.

[8] http://dimacs.rutgers.edu/

V-212

	footer1:

