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ABSTRACT

An n-leaf pipelined balanced binary tree is used for 
arbitration of order and movement of data from n input 
ports to one output port. A novel arbitrate-and-move
primitive circuit for every node of the tree, which is based on 
a concept of reduced synchrony that benefits from attractive 
features of both asynchronous and synchronous designs, is 
presented. The design objective of the pipelined binary tree 
is to provide a key building block in a high-throughput 
mesh-of-trees interconnection network for Explicit Multi 
Threading (XMT) architecture, a recently introduced 
parallel computation framework. The proposed reduced 
synchrony circuit was compared with asynchronous and 
synchronous designs of arbitrate-and-move primitives. 
Simulations with 0.18 m technology show that compared to 
an asynchronous design, the proposed reduced synchrony 
implementation achieves a higher throughput, up to 2 Giga-
Requests per second on an 8-leaf binary tree. Our circuit 
also consumes less power than the synchronous design, and 
requires less silicon area than both the synchronous and 
asynchronous designs. 

1. INTRODUCTION 

In spite of the continuing fast increase in the number of 
transistors that can fit on a single chip (the Billion-transistor
chip era), the speed of computer processors has entered a state 
of diminishing returns in offering growth beyond clock speed. 
This is happening as scientific and commercial workloads keep 
expanding at a fast rate. 

The outreach of parallel computing has not met some 
expectations because of parallel computer systems’ 
programmability shortcomings. The Parallel Random Access 
Model (PRAM) has been developed by numerous algorithm 
researchers during the 1980s and 1990s, as the key to coping 
with the programmability challenge. However, it had not been 
possible to build parallel machines using multi-chip 
multiprocessors, the only multiprocessors buildable in the 1990s, 
to support PRAM. The Explicit Multi-Threading (XMT) project 
([16], [8]) at the University of Maryland is based on the insight 
that it is becoming possible to build a parallel processor, which 
can be programmed with a PRAM-like language on a single chip 
as silicon capacity continues to increase.  

The performance of XMT depends on communication 
between processor clusters and memory modules. A memory 
subsystem has been proposed at the logic and physical level for 
the XMT architecture ([9]). It uses a mesh of pipelined balanced 
binary trees to implement a crossbar type interconnection 
network. At each node of each binary tree, data buffers and 
arbiter circuits will be used. Due to the large number of such 
arbitration circuits in the system, their throughput, speed and 

power consumption will have significant impact on the memory 
subsystem’s performance. The goal of this paper is to describe a 
fast and power-efficient implementation of the arbitration circuit 
at circuitry level. Before elaborating on the difference between 
our approach and the state-of-the-art arbiters, we mention that 
our arbiter circuit is not limited to XMT architecture. It can be 
used to help implementing other on-chip high throughput and 
low power interconnection networks. 

Research on state-of-the-art arbiter circuits were motivated 
by applications, where the performance of crossbar switches and 
bus-based networks is directly related to the latency of 
arbitration (e.g. [4], [10], [13] and [18]). These works focused on 
n-to-1 arbitration, where a request vector (‘1’ means a request) 
of n-bits is given, and an n-bit grant vector is generated with 
only one granting signal among n bits.  

In cases of crossbar network applications ([4], [13] and [18]), 
the grant vector is used to configure the switches to connect 
input ports to output ports. Communication (moving data from 
input to output port) follows switch configuration. In case of bus 
network applications ([10]), the grant signal decides which 
source owns the bus in the next cycle to transmit data. In all of 
the above approaches, arbitration among n elements precedes the 
data movement. In contrast, we combine arbitration and data 
movement. We move the data one level up in the binary tree, 
towards the root (output port), as soon as we arbitrate between 
two neighboring requests. Arbitration and movement repeat at 
each stage until the data reaches the root. Each stage of the 
pipeline has the latency of a single (2-to-1) arbitrate-and-move
primitive, which promises great increase in throughput. 

The latency of traditional arbiter circuits is measured from 
the instant the request vector is modified to the instant when the 
grant vector is updated. N-bit arbiter circuits in each of [10], 
[13] and [18], were built in a tree structure, using 2-input or 4-
input primitives. Critical delay path, which influences latency 
directly, extends from leaves to the root ([10]) and in some 
cases, from leaves to the root and then back to leaves ([13], 
[18]). [4] proposes a two-level design to reduce latency, which 
may work well for high number of inputs (n>2), however for 2-
input arbiters a single level of logic gates would be sufficient. 
The arbiters, proposed in [4] and [13] are based on priority
encoder circuits. Priority encoders are simpler and faster, 
compared to circuits in [10] and [18]; however, they require 
support of extra circuits to provide fairness among requesting 
inputs. The above n-to-one arbiter circuits are not as useful for 
our purpose of implementing the pipelined binary tree. Their 
underlying complex algorithms are optimized for n>2 inputs 
implying higher latencies for the primitives, and therefore lower 
performance when pipelining is used. 

The rest of the paper is organized as follows. We state the 
problem and describe our approach in Section 2. The arbiter 
circuits are presented in Section 3 and simulation results are 
reported in Section 4. Section 5 concludes the paper with a 
discussion of our current and ongoing work. 

For an extended version of this paper, see the XMT home 
page http://www.umiacs.umd.edu/users/vishkin/XMT/.



2. PROBLEM STATEMENT 

Given is a balanced binary tree with n leaves (as described in
Section 1), where n is a power of 2. At each time unit, up to one
request is generated at each leaf, which does not already possess
a request. The goal is to have the requests reach the root by
advancing one step every time unit. Only one request can reside 
at each node of the tree at any point of time. Once a request exits
a leaf, a new request can enter. In the XMT architecture, the root
and each leaf in the tree correspond to a processor cluster and/or 
memory module. To create the full interconnection network
between n processor clusters and n memory modules, the tree 
will be replicated at least n times.

A single request reaches the root in no less than log2 n time
units. In case of contention, a step may take more than one time
unit, and the request reaches the root in at most n + log2 n – 1 
time units. However, the rate of request arrivals at the root will
be one per time unit, once the first request reaches the root until
all the original requests arrive. This rate determines the overall
throughput of the binary tree based interconnection network. 
Our main objective is to design a fast circuit, dubbed node
circuit, for each binary tree node to set the shortest time unit and
thus increase the interconnection network’s throughput.

The leaves generate requests independently. Therefore, when 
two or more leaves generate requests at the same time they will
eventually compete to pass to the same node in the binary tree.
Arbitration becomes necessary and an arbiter is required at each 
node because the competition may occur at any node. The rules
for arbitrating and moving a request from child to parent are: 
1. Each data generated at a leaf must reach the root. 
2. Data generated from the same leaf reach the root in the same

order as they are generated. 
3. At the time of decision, the parent node will

a. send a non-request signal to its own parent if none of its 
children has a request to pass forward;

b. generate a request to its own parent if only one of its
children has a request to pass forward, and pass that 
request;

c. generate a request to its own parent if both its children
have a request to pass forward, and perform the
arbitration such that one request is passed at a time and 
the other request will be passed next.

From these requirements, we see that each node needs to
generate signals and sends to its parent, and will receive and 
process signals from its children. This means that the input and
output of a node are of the same type and therefore it becomes 
possible to build the complete binary tree with identical nodes.
This will further increase the scalability of the design. In the rest
of the paper, we focus on the design and implementation of a 
single node. Note that each node also needs to create a signal for
the data multiplexer in the mesh of interconnection network. 
Data path can be implemented as described in [1] and [9].
High throughput is the main objective of our design. It is limited 
by two constraints: (1) request signals must be received and 
converted to digital logic values before any arbitration can be 
made; (2) request signals must be kept at the same state until a
proper acknowledgement is received. Propagation delay
increases and hence throughput decreases as the number of fan-
out increases ([11]). Although buffers can be used to reduce 
delay, they are not effective for small fan-out circuits, such as
ours, where the gates typically have fan-out of less than 4.
Transistor resizing is another common technique to improve 
delay at the expense of increased area. Cascaded application of
this technique would cause the node circuits at the leaves to have 
the largest transistors. Due to the large number of leaves, we
limited transistor resizing to within a node circuit. 

3. CIRCUITS 

Traditionally, arbitrate-and-move circuits in an interconnection 
network can be implemented asynchronously or synchronously.

In this section, we first summarize a fully asynchronous design 
based on the concept of Micropipelines [15]. We then study the
fully synchronous design, which we will not elaborate because it
is inferior to other options.  We then introduce the reduced
synchrony (RS) circuits and present two implementations with 
static CMOS gates (RS-Static) and dynamic TSPC [17] gates 
(RS-Dynamic) respectively. The novelty of the reduced 
synchrony circuit lies in the fact that only the root node is 
connected to external clock and all nodes will selectively
propagate the clock pulse to their children to eliminate idle clock
switching.

3.1. Asynchronous Arbitrate-and-Move Circuit 

Single-input-single-output pipelines built by this approach
operate at the speed of a single C-gate ([12], [14]). Arbiter and
Call blocks ([15]) are required along with the pipeline segment,
to build the node circuit (Figure 1). We implemented Arbiter and
Call blocks as described in [6] and [5] respectively. The former
generates two mutually exclusive grant signals, which, in turn, 
are converted to a single request by the latter. Due to space 
constraints, the reader is referred to [6] for the detailed operation 
of the arbiter circuit. Careful observation shows that a second 
request will be served at least 11-gate delays after the first one. 

We ran a simulation of a ring oscillator ([11]) circuit to
figure out the minimum gate delay for our design technology.
50ps propagation delay of an inverter suggests that our node 
circuit cannot operate at a rate faster than 550ps between 
consecutive requests. Detailed simulations show that the delay is
much higher than 550ps, due to high fan-out of the gates. 
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Figure 1: Asynchronous Arbitrate-and-Move Node

3.2. Synchronous Arbitrate-and-Move Circuit 

In the synchronous implementation, the nodes will receive the
clock signal in addition to sending and receiving request and 
acknowledgement signals. An acknowledgement signal is 
required to make the node accept new data or stall, similar to the
control structures in instruction pipelines of current processors
([2], p. A-35). As the clock pulse arrives, if there is no stall 
signal received from the parent, the node can process the 
requests, and pass one of them. Otherwise, if the parent has sent 
a stall signal, the current state is preserved, and the stall signal is
passed to the children, so that they keep their state as well. 

The period of the clock needs to be adjusted according to the
worst-case propagation delay of the stall signal from the root to 
the leaves, since if a node stalls, all other nodes in its subtree 
have to stall as well, in order not to overwrite other requests. In 
the worst case the stall signal propagates from the root to all 
leaves increasing the cycle time by O(log n) gate delays.

3.3. Reduced Synchrony Arbitrate-and-Move Circuits

The reduced synchrony circuits proposed below share some 
properties with the synchronous and asynchronous approaches 
above, yet they do not fit exactly into any of them. We unified 
acknowledgement signal and clock pulse as a new design 
approach, to simplify the implementation and conserve power.



These circuits are not connected to a global clock directly.
An external fast-clock signal is connected to the root circuit
only. The children receive clock pulses from their parents, only
when needed. There is synchrony between a parent and its 
immediate children, but there is no global synchrony  as  in a 
fully synchronous circuit. Hence, we use the term, reduced
synchrony.

We initially designed such a circuit using static CMOS 
gates. Further observations suggested that a design with dynamic
gates could yield better performance in terms of speed and 
power.
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Figure 2: RS-Static Arbitrate-and-Move Node 

3.3.1. Static Gate Implementation (RS-Static)
The node is connected to its children as shown in Figure 2. It
operates as follows: 

If no requests come from the children, no request signal is 
sent to the parent, and both children receive a clock pulse.
If a single request comes from a child, it passes, and the 
clock pulse is passed to both of the children.
If two requests come, one passes first and then the other. 
Only the child with passing request receives a clock pulse.

The implementation can be seen in Figure 3. The critical delay,
which determines the clock period of this circuit, is the amount 
of time between the generation of the clock pulse at the parent
node and the update of the request signal at the child node. The 
former consists of a 2-input nand gate and two inverters, and the 
latter consists of a D-latch, implemented as a transmission gate
and 2 inverters. Since some of these gates have a fan-out of 3 or
4, we cannot achieve the delay of a gate of the reference ring 
oscillator as described for the asynchronous circuit in Section 
3.1.

Figure 3: Schematic of RS-Static Arbitrate-and-Move Node

Circuit

3.3.2. Dynamic Gate Implementation (RS-Dynamic)
The high-level node structure is the same as in Figure 2 except
that the clock signals to the children are unified to clk-out signal. 
Dynamic logic gates from True Single Phase Clocking (TSPC) 
family ([17]) are used for this implementation (Figure 4). Each 
gate executes a simple logic function and latches the result for
one clock period. This allows the parent node to modify signals
of its children. The high-level algorithm is as follows: 

If no requests come from the children, no request signal is 
sent to the parent, and both children receive a clock pulse.
If a single request comes from a child, it passes, and the
clock pulse is passed to both of the children. 

If two requests come, the one from Child 0 passes, then the 
parent kills that request. The clock signal is not passed to 
the children. (At the next cycle, the request at Child 1 
remains but Child 0 does not generate a new request) 

If both children send a request at a given cycle, the request 
of child 1 passes as the only remaining request at the next cycle.
Therefore, arbitration is fair, despite of the built-in priority of 
Child 0. (Figure 5) 

The critical delay path is similar to that of RS-Static, 
however fewer gates are used: Clock pulse is generated through 
two half gates (dynamic gates) and a buffer. Request is 
generated through one dynamic gate. 

Figure 4: Schematic of RS-Dynamic Arbitrate-and-Move 
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4. SIMULATION RESULTS 

In this section, we describe our simulation setup for the study of 
the proposed circuits and report our preliminary results. We used 
Cadence tools (SPECTRE simulator) for all simulations and 
delay and power measurements. SPICE parameters for 0.18µm 
technology are obtained from [7]. A 1.8V source is used. 

We simulated a single node of the asynchronous arbitrate-
and-move circuit with minimum sized transistors, and an 8-leaf-
7-node binary tree for both RS-Static and RS-Dynamic circuits. 
RS–Dynamic (Figure 4) is optimized using Cadence Analog 
Circuit Optimizer. RS-Static (Figure 3) is optimized only
manually, because our preliminary estimations did not suggest 
that it is promising in outperforming RS–Dynamic. For the same 
reason and due to space constraint, we will not elaborate on the 
synchronous arbiter circuit. 

As reference, we built a 7-stage ring oscillator using
inverters with a Wp/Wn ratio of 13/6 at the same technology.
Each inverter showed a 49ps propagation delay (50% of the 
input to 50% of the output) of full voltage swing) and a 73ps rise 
time (10% to 90% of full voltage swing). We thus targeted a rise
time of 80ps for the clock pulse when we simulate the arbitrate-
and-move circuits.

Table 1 reports the performance, measured by speed, area, 
and power, of different circuit implementations for a test design
explained above. The root node of RS circuits is connected to a 
clock generator with various clock periods for our simulation. 
Speed is measured as the fastest clock (or equivalently, the
shortest clock period) that the circuit can keep pace with for the 
RS circuits, and the time interval between the request and done 
signals for the asynchronous circuit. Area is measured as the 



total transistor area (width x length) and the number of 
transistors required per node circuit. Power consumption of each 
circuit is measured as the average power consumed by the global 
power source on the same request pattern. 

The shortest clock period for the RS-static circuit to work 
correctly is 800ps, while the RS-dynamic circuit operates 
correctly at a clock period as fast as 500ps. (The critical delay 
path of RS-dynamic circuit is even shorter, but we observed that 
the clock signal may not be able to complete full voltage swing 
occasionally). The asynchronous circuit completes one 
arbitration cycle in 2.5ns. No other requests can be processed 
during this time. The synchronous circuit was not measured as it 
is clearly dominated by the proposed reduced synchrony circuits. 

Node Circuit Speed
Transistor 

Area
No. of 

transistors 
Power 

consumption
RS-Dynamic 500 ps 28.4 m2 34 16.4 mW 

RS-Static 800 ps 38.4 m2 72 8.8 mW 
Asynchronous 2.5 ns  35 m2 188 N/A
Synchronous N/A N/A ~90 (est.) N/A

Table 1: Performance comparison of the four different 

arbitrate-and-move circuit implementations. 

5. DISCUSSION 

All circuits described above contain state holding elements. In 
the asynchronous one, these elements may go into a metastable 
state as the node receives two request signals concurrently. Extra 
circuitry, which reduces the speed of the circuit, is required to 
prevent this from happening. In the synchronous circuit, the 
inputs of the state holding elements have to be ready within the 
same clock period and a stalling condition at the root may delay 
inputs at the leaf circuits. Both of these properties cause 
degradation of throughput in an overall system.  
Power consumption is proportional to switching frequency, and 
load capacitance. Although we have not implemented the 
synchronous arbiter circuit, we expect that it will consume more 
power because of the clock network (clock generator and the 
clock tree) and the fact that all clocked gates will operate at the 
highest frequency. On the other hand, in the RS circuits, a node 
sends clock pulse to its children only when it is ready for a new 
request. Therefore the inner nodes will not always receive the 
fastest clock signal. In the case when the interconnect tree is 
fully loaded with requests, there will be only one single branch 
driven by the clock, from the root towards the leaves, and the 
remaining part of the tree will not consume any power. Table 1 
shows that RS–Static is slower but consumes less power 
compared to the RS-Dynamic circuit. A more realistic result 
could be observed if we would let the input pattern change over 
time, as will be the case in the XMT implementation. Future 
research on XMT will need to examine load characteristic on the 
interconnection network. 

In sum, we conclude that the dynamic gate implementation 
of reduced synchrony circuit best suits our design objectives, 
while the static gate implementation is also useful when 
compared with traditional asynchronous or synchronous designs. 
As for future work, we first mention that opportunities for less 
power consumption still exist; for example, an extra circuit to 
avoid unnecessary precharging of the dynamic gates. Also, note 
that the total silicon area of the circuit should also include 
diffusion areas, overhead areas, pins and metal wires among 
others. At the current stage of this project, we are unable to 
determine these values without the silicon layout. However, we 
expect that the circuit with larger transistor area will have larger 
total silicon area. Finally, we mention that, when we compare 
area and power consumption with the synchronous design, any 
clock driver required by the synchronous arbiter must also be 
included for a fair comparison, because the clock circuit of the 
reduced synchrony arbiter circuits is built into the nodes. 

6. CONCLUSION 

We reviewed asynchronous and synchronous arbiter circuits, 
and proposed reduced synchrony arbiter circuits. Simulations 
show that a binary tree shaped arbitration network can be 
implemented by our circuit in a fast (2 Giga-Requests/second at 
0.18µm) and power effective way. The modularity of our 
approach, where the input characteristics of the primitive circuit 
match its output characteristics, provides design scalability.  

We believe that future work on XMT could greatly benefit 
from the throughput provided by this circuit. Furthermore the 
proposed an arbitration scheme may prove useful in areas where 
performance is held back due to high latency of present 
arbitration and scheduling schemes, such as issue-logic of wide-
issue superscalar processors [3]. 
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