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Dynamic reconfiguration of the logical topology of a network is generally used

to adjust the shape of the network to adhere to changes in traffic. In this thesis

the logical topology reconfiguration problem for a WDM network is combined with

the multi-path routing of traffic throughout the network. Changes to the logical

topology are made using branch exchanges to minimize the disruption to the net-

work traffic. A Multi-timescale Markov Decision Process (MMDP) model is used to

capture the different frequencies of changes to the network topology (slow timescale)

and the routing of traffic (fast timescale). Heuristic policies are developed for the

slow and fast time scales and rollout is used to improve the performance of the

heuristic. To measure the performance of the heuristic and rollout policies, the

Model Reference Adaptive Search (MRAS) method is used to find reference topolo-

gies that are close to optimal for a given static traffic demand matrix. To implement

the MRAS method a random graph generation algorithm is needed. To address this

need, a very efficient random graph generation algorithm is developed that competes

with existing algorithms in the literature.
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Associate Professor Subramanian Raghavan



c© Copyright by
Pedram J. Fard

2007



Dedication

To my mother, Tahereh,

and the memory of my father, Iraj,

my first and most important teachers.

ii



Acknowledgments

I wish to thank my advisor, Professor Steven Marcus, for guiding my research

with great vision and patience. He helped me keep my focus through years of full-

time work and part-time research. I am grateful to have had the opportunity to

work with him and learn in the process.

Thanks to Professors Shayman and La for the guidance they provided during

the weekly group meetings.

Thanks to Professor Nick Wormald for lengthy and very helpful discussions

we had via email about the literature in the graph enumeration and random graph

generation.

Finally, I wish to thank my wife Behnaz for her hard work that helped my

focus on my studies, and my children Armita and Arman for allowing me to work

on my research in the evenings and during the weekends. Daddy is back!

iii



Table of Contents

List of Figures vi

List of Abbreviations viii

List of Notations ix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Our network model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Survey of the topology reconfiguration literature . . . . . . . . . . . . 7
1.4 The Model Reference Adaptive Search algorithm . . . . . . . . . . . . 9
1.5 Survey of the graph theory literature . . . . . . . . . . . . . . . . . . 12
1.6 Contributions to the literature . . . . . . . . . . . . . . . . . . . . . . 15
1.7 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Staging the problem as an MMDP 18
2.1 Terminology and Assumptions . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Model definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 MMDP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Slow Time Scale . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 Fast Time Scale . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.3 Cost functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.4 Description of the problem . . . . . . . . . . . . . . . . . . . . 36
2.3.5 Initialization Function . . . . . . . . . . . . . . . . . . . . . . 37
2.3.6 Traffic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Finding the solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.1 Constant Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.2 Dynamic Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.4.3 Alternative policies at fast and slow time scales . . . . . . . . 51
2.4.4 Heuristic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 52
2.4.5 Slow time scale heuristic . . . . . . . . . . . . . . . . . . . . . 54

2.4.5.1 Heuristic policy . . . . . . . . . . . . . . . . . . . . . 56
2.4.5.2 Rollout policy . . . . . . . . . . . . . . . . . . . . . . 56
2.4.5.3 Reducing the size of the action space in the slow time

scale . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3 Finding a Reference Solution 61
3.1 Counting the topologies . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2 Random graphs with uniform distribution . . . . . . . . . . . . . . . 76
3.3 A variation of the random topology generation algorithm . . . . . . . 81
3.4 Model Reference Adaptive Search Algorithm . . . . . . . . . . . . . . 85

iv



4 Numerical results 96
4.1 Random Graph Generator . . . . . . . . . . . . . . . . . . . . . . . . 96
4.2 Performance of the topology optimization algorithms . . . . . . . . . 100

4.2.1 Fixed Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.2.1.1 Fast time scale policy evaluation using MRAS results 101
4.2.1.2 Evaluating the MRAS solution . . . . . . . . . . . . 103
4.2.1.3 Comparing heuristic and rollout algorithms . . . . . 104

4.2.2 Dynamic Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.2.3 Real traffic data . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5 Concluding remarks 110
5.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Bibliography 115

v



List of Figures

2.1 A sample topology for a 10 node network with a 3 interface limit for
each node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 A sample topology with LSPs displayed for one S-D pair. . . . . . . . 20

2.3 A sample branch exchange: lightpaths 2-9 and 3-8 are torn down and
lightpaths 2-3 and 8-9 are set up for this branch exchange. . . . . . . 21

2.4 Two types of branch exchange resulting from tear down of a pair of
lightpaths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Graphical illustration of time evolution in the MMDP. . . . . . . . . 28

2.6 Sum of the first and second terms in Equation 2.36 plotted against
(mp − ρp). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.7 Approximation of the fast time scale cost by a piecewise linear function 51

2.8 Fast time scale heuristic algorithm assigns reservations to every LSP
of every S-D pair based on the traffic demand. . . . . . . . . . . . . . 55

2.9 Slow time scale heuristic algorithm finds the best next step BE based
looking only one step ahead . . . . . . . . . . . . . . . . . . . . . . . 57

2.10 Algorithm to reduce the size of the admissible BE set . . . . . . . . 60

3.1 Initial condition for the induction . . . . . . . . . . . . . . . . . . . . 72

3.2 Algorithm to calculate the value of a network partition . . . . . . . . 73

3.3 Calculation of number of possible topologies in a 4 node network with
2 interfaces available at each node. . . . . . . . . . . . . . . . . . . . 75

3.4 A compact partition tree and calculation of number of possible topolo-
gies in a 6 node network with 3 interfaces available at each node. . . . 76

3.5 Random topology generation algorithm (uniform distribution) . . . . 78

3.6 Random topology generation with bias . . . . . . . . . . . . . . . . . 83

3.7 Algorithm MRAS0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.8 Algorithm MRAS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

vi



3.9 Algorithm MRAS1 for the topology optimization problem . . . . . . 95

4.1 Runtime for generating 100000 random graphs. . . . . . . . . . . . . 97

4.2 Runtime for generating 100000 random graphs. . . . . . . . . . . . . 98

4.3 Number of database entries needed for the partition tree. . . . . . . . 99

4.4 Graphical comparison of the performance of heuristic and rollout poli-
cies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.5 Graphical comparison of the performance of heuristic and rollout poli-
cies for restricted admissible action set. . . . . . . . . . . . . . . . . . 107

4.6 Graphical comparison of the performance of heuristic and rollout poli-
cies for the case with real data. . . . . . . . . . . . . . . . . . . . . . 109

4.7 Graphical comparison of the performance of heuristic and rollout poli-
cies for the case with real data and restricted admissible action set. . 109

vii



List of Abbreviations

BE Branch Exchange
CE Cross Entropy, or Certainty Equivalence
GTST Generalized Traveling Salesperson problem
LSP Label Switched Path
LSR Label Switch Router
MRAS Model Reference Adaptive Search
MMDP Multi-time scale Markov Decision process
MPLS Multi-Protocol Label Switching
OEO Optical-Electronic-Optical
OLP Optical lightpath
OXC Optical Cross Connect
S-D Source-Destination
TSP Traveling Salesperson problem
WDM Wavelength Division Multiplexing

viii



List of Parameters

(i− j) S-D pair with end nodes i and j
(p) S-D pair with ID p
[i− j] lightpath connecting nodes i and j
[p] lightpaht with ID p
α Cost coefficient for a branch exchange
ϕig,p The ith LSP of S-D pair (p), given topology g

ρig,p The reservation made for LSP ϕig,p
θ Traffic vector
Θ Set of all possible traffic vectors
δf Initialization function for the fast time scale
δs Initialization function for the slow time scale
γ Discount factor
A Action space at the fast time scale
a Action at the fast time scale
B(g) Set of admissible branch exchanges for topology g
b The action at the slow time scale, or a branch exchange
C Capacity of a lightpath
c Cross parameter that identifies the two types of branch exchange
d degree of each node
Dp Dropped traffic of node pair p
g A topology
G State space at the slow time scale
Gd
N Set of all valid topologies with N nodes and d interfaces per node

L A lightpath
L(g) set of all available LSPs given topology g
N Number of nodes in a network
P Number of S-D pairs in a network
Q Number of lightpaths in a topology
S Number of LSPs considered for each S-D pair
T Number of fast time scale steps in a slow time scale step
uq Utilization of lightpath q
Yt Deterministic part of traffic vector at time t
Zt Random part of traffic vector at time t

ix



Chapter 1

Introduction

Optimizing the topology of a network has long been a difficult problem to solve.

In its most simplified form, the problem reduces to searching graphs with certain

properties for one that optimizes a predefined cost function. This is an NP-complete

problem (see [13]) and when the number of nodes in the network becomes large,

searching this space becomes prohibitive. This problem has applications in many

areas of science and technology, including but not limited to various communication

networks. More recently, topology/graph search algorithms have been used for social

and biological networks.

The preliminary research that culminated in this thesis started from a topology

optimization problem for a wavelength division multiplexing (WDM) network with

dynamic traffic, very similar to the one studied in [43]. One obstacle we faced in

representing our results was that we did not have any reference to compare our

solutions to. We were able to resolve this issue by implementing the MRAS method

([20]), which is used to find near optimal solutions for static optimization problems.

In order to apply the MRAS method to our topology optimization problem,

we needed a random topology generation algorithm. Hence we developed a random

topology/graph generation algorithm which turned out to be one of the most efficient

compared to similar methods that are in use today.
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The rest of this chapter is organized as follows: In Sections 1.1 to 1.3, the

WDM network topology design problem is introduced and the MMDP model used

in this thesis is compared to other papers in the literature. In Section 1.4 the MRAS

method is introduced as the chosen method in this thesis to generate reference

solutions for the static topology optimization problem. In Section 1.5 a survey of

the random graph generation algorithms in the literature is given. In Section 1.6

the contributions of this thesis to the literature are pointed out. In the conclusion

of this chapter we give an outline of the rest of this thesis.

1.1 Motivation

There are two distinct IP/WDM networking architectures: IP over reconfig-

urable WDM and IP over switched WDM. Under the IP over reconfigurable WDM

architecture, the WDM lightpath topology is reconfigurable in response to traffic

changes and/or network planning. In the IP over switched WDM architecture, opti-

cal headers or labels are attached and transmitted with the payload, and processed

at each network switch.

Most papers in the literature concentrate on either WDM reconfigurability or a

fixed WDM network with multi-path routing using Multi-Protocol Label Switching

(MPLS). In this thesis we consider a combination of network engineering where the

WDM reconfigurations are used along with the label switching (MPLS) to route the

traffic. The optical topology reconfigurations occur at a much slower pace than the

label switching decisions that are made to route the traffic entering the network.
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An MMDP is a hierarchically structured sequential decision making process,

where decisions in each level of the M -level hierarchy are made in different time

scales. This hierarchy, which is deduced from the natural structure of the model, is

used to reduce the size of the action space at each level. Instead of searching the

action space of all M levels at every step, we only search the action space of one

level of the structure at each decision time.

A usual approach to multi-level structured problems is that a slow time-scale

subsystem abstracts the details of a fast time-scale dynamics by “average” behavior

and then solves its own optimization problem (e.g., pp. 314-344 of [10]). This

approach makes sense especially when the hierarchy in the system is structured in

a pyramid sense. Our model is based on the same concept and the main difference

is that our model is in discrete time and has some added complexities to mimic the

specific nature of the networking model.

In this model, the state space and the action space of each level in the hierarchy

are non-overlapping with those of the other levels and the hierarchy is structured

in a pyramid sense such that a decision made at level m (slower time scale) will

affect the evolutionary decision making process of the lower level m+ 1 (faster time

scale); however, the lower level decisions do not affect the higher level’s transition

dynamics. The performance produced by the lower level’s decisions will affect the

higher level’s decisions. A hierarchical objective function is defined such that the

finite-horizon cost of following a non-stationary policy at the level m + 1 over a

decision epoch of the level m, plus an immediate cost at the level m, is the single

step cost for the level m decision making process.
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Optimality of a network topology in the presence of static traffic is easy to

define and even though it becomes an NP hard problem to solve, comparing two

topologies is straightforward given the cost function. When the traffic in the network

is dynamic the concept of optimization becomes much more difficult to define. While

we could find the optimum topology for the instantaneous traffic at any time, it is

not possible to try to do a complete topology reconfiguration for every instance of

the traffic demand.

The use of MDPs aims at finding policies that would transition through se-

quences of states and lead to better performance rather than finding the absolute

best state for static conditions. The cost function is affected by the current state of

the network (including the current topology and current traffic in the network) and

an action set that is defined based on the state and the policy that selects the ac-

tions. The action set could be custom made to fit the behavior of a specific network

if special properties exist for the network.

1.2 Our network model

We use an MPLS (Multi-Protocol Label Switching) over WDM (Wavelength

Division Multiplexing) infrastructure. Each node consists of an optical cross connect

(OXC) and a label switched router (LSR). This model extends to the case where

some nodes only include OXCs with no LSR.

The lightpaths (optical channels) set up between the nodes form the logical

topology of the network. In the logical topology, a lightpath is shown as a direct
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connection between the two end nodes no matter how many OXCs the optical signal

goes through to reach the destination node. Each node has a limited number of

interfaces that are capable of electronic to optical and optical to electronic (OEO)

conversion and traffic grooming. Each interface can handle one channel, and each

channel is associated with one wavelength.

In order to reduce the disruption of traffic due to reconfiguration we consider

branch exchanges (BEs) only. A branch exchange is a small change in the config-

uration, where two lightpaths are removed to free up interfaces that are used to

set up two different lightpaths. We assume that there are as many wavelengths as

necessary and if an interface is available a lightpath can be set up. In other words,

the number of interfaces is the limiting factor, not the number of wavelengths. This

work could be extended to the case where either the number of wavelengths or the

number of interfaces is the limiting factor. Additional restrictions on the availabil-

ity of wavelengths, or optical impairments will put additional restrictions on the

possible BEs that can be carried out at a given topology. These restrictions can

be reduced by optimizing the wavelength assignments in the physical network. We

do not discuss this problem in this thesis but there are numerous papers in the

literature in wavelength assignment optimization, for example refer to [4], [32], [65],

[73].

Our goal is to accommodate the traffic demand between all Source-Destination

(S-D) pairs while minimizing a cost function that is designed to minimize the uti-

lization of the lightpaths and the dropped traffic. There are two problems that are

considered simultaneously in this thesis. The first problem is finding the best distri-
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bution of traffic among multiple paths available for each pair of nodes (multi-path

routing problem). The second problem is concerned with finding the best transition

through the topology space (using BEs), given the starting topology. Readjusting

the distribution of the traffic among different paths is done more frequently than

changing the logical topology, since it is less disruptive to the network traffic. For

this reason the first problem is called the fast time scale problem and the second

problem is the slow time scale problem. Using the MMDP model these two problems

are solved simultaneously.

We study both static traffic and dynamic traffic. In the static traffic case we

can compare the performance of our algorithm to other methods that attempt to

find the optimal topology for a given traffic pattern. In the dynamic traffic case the

optimal topology changes from step to step because the traffic changes with time.

In this case it may not be possible to reconfigure the entire network to the optimal

topology for the traffic pattern at each time step. This is because it may take several

BEs to transition from the topology that is optimal for the traffic at a time step to

the topology that is optimal for the traffic at the following step. Instead, we have

to find a transition through several topologies that copes well with the transition in

the network traffic. It becomes very difficult to even define an optimal transition,

let alone solving such a problem. We use a Markov Decision Process (MDP) model

to find a topology transition from an initial topology using the available BEs.

The MDP model employed in this thesis uses the current traffic measurements

and the time-of-day patterns to predict the traffic demand in the near future and the

future costs. Future look-ahead is needed mainly because we restrict the actions to
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BEs. Since only one BE is allowed in each time step, to minimize disruption to the

ongoing traffic, the action taken at time n not only determines the topology at time

n, but also defines the possible topologies at n+ 1. This implies that a sequence of

BEs selected by an algorithm may temporarily choose a logical topology that is not

desirable for the current traffic demand as a transient topology in order to reach a

good logical topology for the predicted demand.

A Multi-time Scale Markov Decision Process (MMDP) model [18] seems to

provide a natural framework for this problem since we can distinguish several dif-

ferent types of actions that are taken with different frequencies. At the slow time

scale we allow logical topology reconfigurations of the optical network, while at the

fast time scale we allow the Label Switched Path (LSP) reconfigurations that hap-

pen more frequently than logical topology reconfigurations. It is possible to include

more time scales to include physical topology changes at a slower time scale or online

distribution of packets among different LSPs for a Source-Destination (S-D) pair at

a faster time scale.

1.3 Survey of the topology reconfiguration literature

Topology reconfiguration in optical networks has been studied under different

assumptions. In [66], [46], and [40], a total reconfiguration of the network is stud-

ied. A disadvantage of this approach is that a total reconfiguration causes traffic

disruption during the transition period. In contrast, in the present work, we use

small steps (BEs) to mitigate the adverse effects of a total topology reconfiguration.
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In [38] the shortest path, i.e., the least number of BEs, to go from one topology to

another is calculated. This is only useful if the target topology is known and there

is no traffic disruption or cost considerations.

In [43] BEs are used for reconfiguration of the logical topology. They make

the same assumption of no wavelength limitations as we do. However, there are

two main differences between their approach and ours: In their approach, since no

prediction of the traffic pattern is involved, the resulting policy is reactive as opposed

to the proactive policy proposed here. Their dynamic traffic pattern seems to make

a linear transition from one pattern to another, whereas in our traffic pattern we do

not make any such assumption.

The problem of designing the logical topology for a known traffic pattern has

been studied in [47], [54], and [37]. However, the exact traffic pattern is not known

beforehand in practice. We define a traffic model that has two parts. The first part

is deterministic and reflects the time-of-day variations in the traffic demand. This

could be the average behavior of the network over many days. The second part is

random and reflects the uncertainty of our prior knowledge of traffic, which is the

day-to-day variation of traffic.

The algorithm given in [26] assumes that there are wavelengths and interfaces

available so that it is possible to set up new lightpaths when needed and remove

lightpaths when they are significantly under-utilized. In their approach they do

not consider congestion in the network and assume they can insert a new lightpath

whenever the network gets close to congestion. This approach works well when

the network is not congested. However, if we assume we may eventually run out
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of resources and the network becomes congested, this scheme does not work very

well. If other related lightpaths are not lightly utilized (which is the case during

congestion) the algorithm is unable to make any adjustments to the topology to

reduce the congestion in the network.

Due to the complexity of the topology optimization problem ([13] shows it is

NP-complete), there are a number of papers that use heuristic algorithms to control

the reaction of the network to changes in traffic (e.g., [26], [61], [6], [5], [46]). In

Chapter 2 we define a heuristic algorithm that with a greedy approach finds the

BE that gives the best cost in the next step. This heuristic algorithm improves

the topology until it reaches a topology that is locally optimal. We apply a rollout

algorithm to this heuristic to improve the performance. In [10], rollout algorithms

are defined as an approximation to the Dynamic Programming methodology that

results in a near-optimal solution. Rollout algorithms have been used in various

optimization problems to find near optimal solutions to complex problems(see [12],

[72], [64]).

1.4 The Model Reference Adaptive Search algorithm

Finding a reference optimal solution to the problem has been a challenge in this

thesis. In this section we introduce an algorithm that finds near optimal topologies

for a given cost function.

The Model Reference Adaptive Search (MRAS, see [29], [20]) algorithm is a

variation of Cross Entropy (CE) method ([22], [60]) that finds ε-optimal solutions
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to static optimization problems. MRAS finds very good solutions to the traveling

salesperson problem (TSP), and the similarities between TSP and the topology

generation problem pointed us towards MRAS.

In the TSP a salesman is to travel through N cities going to each city only

once and ending in the same city that he started from. There is a cost associated

with traveling between each pair of cities. The objective of the TSP is to find the

path for the traveling salesman that minimizes the total cost. This is equivalent to

finding a minimum-cost 2-regular connected graph or a ring network with the cities

as vertices of such a graph and the road between them as the edges.

MRAS finds solutions to this problem using a recursive method that in each

iteration performs two steps. First it generates a sample population of random

paths for the salesman according to a given probability distribution and calculates

the cost for each path. Then the cost of each path is used to update the probability

distribution used in the first step. The probability distribution is updated such

that it gives higher probability to selecting sample paths that had better costs.

Under very weak conditions this probability distribution converges almost surely to

a degenerate probability distribution that generates the MRAS solution.

Our static topology optimization problem is similar to the TSP, in that it

optimizes a graph, however we optimize a more general graph than in the TSP.

This similarity prompted us to consider MRAS to generate a reference solution for

our problem. In order to do that we need to define a probability distribution for

graphs of given size and characteristics, and then generate random graphs according

to the probability distribution. It should be noted the static topology optimization

10



problem is not the same as the generalized TSP (GTSP) problem introduced in [44].

In GTSP the objective of the salesperson is to visit clusters of cities, rather than

each city.

Random graph generation is a rich topic in graph theory. According to Bol-

lobás in [16] there are two basic models for generating random graphs. The first

model generates graphs with uniform distribution, and the second model that is

more interesting to us starts with N vertices and selects edges between vertices in-

dependently of the other edges with probability p. This model allows us to define a

probability distribution for each edge but has a major problem. Generating a graph

with given characteristics using this method is a hit and miss process.

For our topology optimization problem, we are interested in generating graphs

with a given number of nodes and a given degree sequence (the sequence of numbers

corresponding to the number of interfaces of each node) for those nodes. For example

if we want to generate a topology with N nodes and all nodes having a degree of

3, this is equivalent to generating a 3-regular connected graph. Using the above

basic model, the probability of generating a graph that is 3-regular is very low. As

a result we have to generate many random graphs until one of them is 3-regular.

There are numerous papers in the random graph literature that improve the

performance of this basic algorithm by increasing the probability of generating a

graph with given degree sequence (see Section 1.5). However the probability of

generating a graph not matching the given degree sequence is not eliminated. Most

of the random graph generation algorithms are based on a counting algorithm that

counts the total number of graphs with given properties.
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In this thesis we introduce a new algorithm that generates random graphs with

a given degree sequence. This algorithm generates a graph with the given degree

sequence in every iteration with certainty. This improves the speed of the graph

generation algorithm. This is critical for the speed of the MRAS algorithm since in

each iteration of the algorithm we need to generate a large random sample of such

graphs.

In order to implement the MRAS method we use the MMDP cost function

to evaluate each topology and use our random graph generation algorithm to gen-

erate the sample population based on a probability distribution. The algorithm

starts from an initial probability distribution, which is chosen to be the uniform

distribution, and in each iteration finds a probability distribution that favors the

topologies with better cost function. The objective of the algorithm is to reach a

degenerate probability distribution (that generates the same topology with proba-

bility one). The topology corresponding to the degenerate probability distribution

is the solution found by MRAS algorithm.

1.5 Survey of the graph theory literature

Enumeration of graphs has been studied for more than a century. In [27],

Gropp gives evidence of work dating back to more than 100 years ago regarding

enumeration of graphs. In their doctoral theses, Read (in [48]) and Wormald (in

[67]) introduce a number of counting algorithms and formulae including recursive

formulae for counting labeled cubic graphs and labeled connected cubic graphs.
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They developed recurrence relations for these graphs and also a differential equation

that is satisfied by the generating function of these graphs. There is a book ([28])

and there are numerous other papers in the literature for counting different kinds

of graphs and graphs with special properties, see for example, [49], [50], [51], [53],

[69], [68].

In [52], the authors introduce an algorithm that can count a 10-node graph

with a given degree sequence. In this algorithm they sort the degree sequence of the

nodes in the graph and start from the highest degree to assign neighbors to each

node. Our counting algorithm given in Section 3.1 is very similar to this algorithm

except that we sort the nodes in the opposite order and start from the lowest degree

node. In this way, we show how to enumerate the number of connected graphs

resulting from the given degree sequence.

The theory of random graphs was founded by Erdős and Rényi in [24]. As de-

scribed in [16], there are two basic models in random graph theory, namely G(N,M)

and G{N,P (edge) = p}. The former starts with N nodes and selects M edges at

random from all available edges. The latter starts with N nodes and assumes each

possible edge is chosen with probability p independently of the selection of all the

other edges. It is very easy to generate random graphs using these two models but

the graphs generated using these two models do not have the same degree sequence,

hence they are not relevant to the type of graphs that we intend to construct in this

thesis.

Random d-regular graphs (each node of the graph having d interfaces, see [15])

were first generated implicitly in enumeration papers by Bollobas [14], Bender and
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Canfield [9], and Wormald [67]. In [70], Wormald gave a sequential algorithm that

would generate random graphs. Random d-regular graphs are often generated using

a pairing model that starts with Nd points (Nd even) in N groups. It then chooses

a random pairing of these points. Finally, an edge between nodes i and j is created

if there is a pair that has points in groups i and j. In its very basic form, this

model generates a large number of duplicate pairings that correspond to multiple

edges between the same nodes. As a result, we have to obtain several pairings before

one of them results in a valid graph and hence this is a very slow algorithm (run

time of O(Nde(d2−1)/4) per graph). In [62], there are references to several versions

of this algorithm that give polynomial expected running time under very specific

conditions. Such algorithms are often very hard to implement and much harder

to analyze. In [34] and [62], the authors achieve a faster run time of O(Nd2), by

generating an approximately uniform distribution for regular graphs of N nodes and

degree d. Wormald has an extensive survey of the random graph literature in [71].

Recently, a new method was introduced in [8], that can extend the algorithm in [62]

to graphs with general degree sequence.

The algorithm introduced in Section 3.3 of this thesis takes a straightforward

approach to generating topologies. In our algorithm, we select one node, i, at a

time and select the connect subset of node i (i.e., the set of nodes which connect to

it) in one shot. Given the starting degree sequence, there are a limited number of

subsequences that a partially connected graph may have. We determine beforehand

the number of possible graphs that could be built with all possible partial degree

sequences, and we keep this information in a database. When building a random
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graph, we know each selection of the connect subset of node i results in a residual

degree sequence. Using the database, we lookup the number of possible graphs for

each branch in our decision tree, we assign a weight to that branch. We select each

branch with a probability proportional to its weight. We will show in Chapter 3

that our algorithm can generate graphs with runtime of O(Nd log(d)).

In summary, the advantages of this algorithm are as follows. It has a very

fast running time of O(Nd log(d)), which is faster than all algorithms in the lit-

erature. Our algorithm generates samples that are exactly uniformly distributed

(no approximation) and it generates one graph with each iteration with certainty.

Furthermore, this algorithm lends itself to generating random graphs with a distri-

bution that is a projection of a parameterized family of distributions. The latter

property of this algorithm makes it suitable to be used for the MRAS method to find

ε-optimal solutions to static topology optimization problems. Finally, our algorithm

can be applied to a general degree sequence and is not limited to graphs with certain

properties. The drawback of the algorithm is that for large networks the size of the

database can grow large. In our simulations we generated graphs of up to 40 nodes.

1.6 Contributions to the literature

There are three different fields that this thesis has contributed to. These fields

are random graph theory, static optimization, and topology optimization in optical

networks. Here is a summary of these contributions.

• A very fast algorithm for generating random graphs with uniform distribution
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with prescribed degree sequence. The algorithm introduced in this thesis is

faster than any algorithm available in the literature. This algorithm in its most

precise variation can generate samples with uniform distribution for graphs of

moderate size.

• The traveling salesman problem (TSP) has been used to evaluate many op-

timization algorithms, including the CE and MRAS methods. The TSP is

equivalent to optimizing a ring or a 2-regular graph for a given cost function.

The random graph generation algorithm introduced in this thesis is extended

to a variation that allows us to generate sample graphs that are concentrated

on graphs with better cost. This variation of the random graph generation

algorithm enables us to extend the MRAS and CE methods to more general

graphs.

• We apply the MMDP method to the problem of topology optimization and

apply the appropriate approximations to make it feasible to be used in real

time network optimization for moderate sized networks.

• We use rollout to improve the performance of a greedy heuristic algorithm

that uses branch exchanges in a WDM network.

1.7 Outline of Thesis

In Chapter 2, the details of the MMDP model and its application to the

problem of reconfiguration of network topology is presented. A heuristic is defined
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for each time scale and specifics of a rollout policy that improves the heuristic

algorithm is given.

The objective of Chapter 3 is to define a reference solution that can be used to

measure the goodness of solutions found by algorithms of the heuristic and rollout

algorithms. The Model Reference Adaptive Search (MRAS) algorithm that is used

to generate ε-optimal solutions to static optimization problems is used to generate

the reference solution. In the absence of a tractable way to find the optimal solution

for large networks the MRAS solution is very useful. Since MRAS is a generic

algorithm, this dissertation provides the building blocks needed to implement this

algorithm for the network topology design problem.

In Chapter 4, the numerical results for various simulations supporting the

theoretical work in Chapters 2 and 3 is given.
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Chapter 2

Staging the problem as an MMDP

In this chapter the two problems of multi-path routing and the topology op-

timization are respectively fit into fast and slow time scales of an Multi-timescale

Markov Decision Process (MMDP). Heuristic algorithms have been provided for

both fast and slow time scales as well as an exact solution for the fast time scale

and an improved policy (using rollout) for the slow time scale.

2.1 Terminology and Assumptions

Consider N nodes in the MPLS/WDM network. Each node uses its interfaces

and the underlying physical network to connect to other nodes using lightpaths.

Each node is assumed to be an integrated node, which includes an optical cross

connect and is capable of optical to electronic conversion. Each lightpath connects

the two end nodes with optical-only signals. Source-destination (S-D) pairs that

are not connected directly with a lightpath go through two or more lightpaths with

OEO (optical-electronic-optical) conversion in between.

In this thesis we investigate the problem of designing the logical topology and

are not concerned with the problem of optical routing and wavelength assignment

in the physical (optical) infrastructure. Each node is allowed to set up lightpaths

to d other nodes, where d is the number of available interfaces at each node. There
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Figure 2.1: A sample topology for a 10 node network with a 3 interface limit for

each node.

may be several paths (LSPs) connecting the nodes of an S-D pair. The paths could

share the load of traffic demand for that S-D pair.

Reconfiguration of the logical topology is allowed only through BEs that are

defined on two lightpaths. A BE is formed by swapping one of the two end nodes

of a lightpath with one of the end nodes of another lightpath. Hence, each pair of

lightpaths has two potential BEs. We assume the lightpaths are bidirectional and

the source and destination of a lightpath are interchangeable. The interfaces include

one transmitter and one receiver, and the traffic is assumed to be symmetric.

We make some assumptions about the number of interfaces available at each

node and how we can form a valid topology by connecting the nodes to each other.

Our definitions in the next section are based on these assumptions, which are specific

to this problem but can be extended to more general types of network.
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Figure 2.2: A sample topology with LSPs displayed for one S-D pair.

We use Label Switched Paths (LSP) to route the traffic from one end node to

another. An LSP is a sequence of lightpaths that connects the end nodes of an S-D

pair. To limit the search for the LSPs we always search for a fixed number of LSPs

with least number of hops. In this study we search for best (least hops) 3 LSPs

for each S-D pair unless otherwise stated. Figure 2.1 shows a sample topology of a

10-node network and Figure 2.2 shows three LSPs set up between nodes 9 and 3.

Figure 2.3 shows the tear down of two lightpaths and set up of two lightpaths

that results in a branch exchange.

2.2 Model definition

We start this section by some definitions that set up the notation throughout

the thesis.

Definition 2.1 Consider two nodes i and j (where i < j) of an N node network.
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Figure 2.3: A sample branch exchange: lightpaths 2-9 and 3-8 are torn down and

lightpaths 2-3 and 8-9 are set up for this branch exchange.

The S-D pair corresponding to these two nodes is denoted by (i− j). A unique ID

p is defined for each S-D pair. Alternatively, we refer to an S-D pair using its ID,

(p).

Definition 2.2 A lightpath is set up between the end nodes of an S-D pair and

forms a direct connection in the logical topology between the nodes of the correspond-

ing S-D pair. A lightpath L, connecting nodes i and j is denoted by [i−j]. A unique

ID, p, is defined for each lightpath, which is equal to the ID of the corresponding

S-D pair. Alternatively, we refer to a lightpath using its ID, [p]. Each lightpath has

a defined capacity denoted by C.

If two nodes are not directly connected but there is a path that connects

them, they are said to be indirectly connected. We also refer to fully connected

nodes as the nodes that have used all their interfaces to set up lightpaths to other
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S-D S-D pair ID S-D S-D pair ID S-D S-D pair ID S-D S-D pair ID

(0-1) 0 (2-3) 17 (4-5) 30 (6-7) 39

· · · · · · · · · · · · · · · · · · (6-8) 40

(0-9) 8 (2-9) 23 (4-9) 34 (6-9) 41

(1-2) 9 (3-4) 24 (5-6) 35 (7-8) 42

· · · · · · · · · · · · · · · · · · (7-9) 43

(1-9) 16 (3-9) 29 (5-9) 38 (8-9) 44

Table 2.1: S-D pairs and their corresponding Lightpath IDs.

nodes. We also refer to fully connected network, that is a network in which all

the nodes are fully connected. A partially connected network is a network with at

least one partially connected node. We should also make a distinction between a

fully connected network and a valid topology. A fully connected network is also a

topology if all the nodes in the network are either directly or indirectly connected.

Lightpaths are assumed to be bidirectional, so there is no difference between

lightpaths [i − j] and [j − i], but to have a unique representation for a lightpath

we restrict the lightpath representation [i− j] to have i < j. We use the same rule

for the representation of S-D pairs. Each network with N nodes has P =

(
N

2

)

S-D pairs. Table 2.1 shows S-D pair and S-D pair IDs for each S-D pair for the

sample 10-node network of figure 2.1. Therefore, the range of lightpath IDs for each

network is 0 ≤ p ≤ P − 1.
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As mentioned before, any set of lightpaths between the nodes of the network

creates a logical topology but we do not consider all such logical topologies to be

valid.

Definition 2.3 Consider a network with N nodes, where each node has d available

interfaces that are used to connect to other nodes of the network. A valid logical

topology g for this network is defined to be a set of lightpaths, which meet the

following criteria.

1. There should be at most one lightpath connecting a S-D pair, using one inter-

face from each of the two end nodes.

2. There should be no node with any free interfaces.

3. There should be no disjoint subnetworks.

Furthermore, we define set Gd
N to be the set of all valid logical topologies with

N nodes and d interfaces per node.

Note that by the definitions of the S-D pair and lightpath, it is implied that

there can be no lightpath between a node and itself.

Given the number of nodes, N ≥ 3, and the number of available interfaces for

each node, d (2 ≤ d ≤ N − 1 and N · d even), there are Q = N · d/2 lightpaths in

each valid topology.

Definition 2.4 Consider a network with N nodes and P =

(
N

2

)
S-D pairs. For

each valid logical topology for this network a unique Identification number or
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ID is defined by a P -digit binary number, where the p-th most significant digit of

this number is chosen to be 1 if the lightpath with ID of p is present in this logical

topology. Otherwise, the p-th digit is set to 0.

Definition 2.5 A branch exchange is a triplet (L1, L2, c), where L1 = [i1 − j1]

and L2 = [i2−j2] are lightpaths that will be torn down to form two new and different

lightpaths L3 and L4, and c is a binary variable that differentiates between the two

possible ways that L3 and L4 can be formed: c = 1 indicates that the resulting

lightpaths are [i1 − j2] and [i2 − j1]. c = 0 indicates that the resulting lightpaths are

[i1 − i2] and [j1 − j2]. Branch exchange b = (L1, L2, c) is admissible for logical

topology g ∈ Gd
N if and only if

1. L1, L2 ∈ g, and

2. (g − {L1, L2}) ∪ {L3, L4} ∈ Gd
N .

In other words, the two lightpaths that are going to be removed should belong

to the current topology g, and the resulting topology should be a valid one. Note

that by the definition of a valid topology, and by item 2 above, it is implied that L3

and L4 should not belong to g. Because otherwise the resulting topology will have

two lightpaths between a S-D pair.

Figure 2.4 displays the difference between the two types of branch exchanges

that stem from the same two lightpaths. c = 1 corresponds to the type of branch

exchange that looks like a cross.
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Figure 2.4: Two types of branch exchange resulting from tear down of a pair of

lightpaths.

Definition 2.6 Given a logical topology g, S-D pair (p) = (j−k), a Label Switched

Path or LSP ϕp represents a set of lightpaths that belong to the logical topology g

and form a path between nodes j and k.

It is possible to have multiple paths between an S-D pair. Assuming that

there are Np such paths, ϕip, i = 0, · · · , Np − 1 represents the ith LSP. A unique

identification number for this LSP is defined by a P -digit binary number that

has a 1 in the p-th position if [p] ∈ ϕip. Given a logical topology g and a S-D pair

(p), index i of ϕip starts from 1 and is assigned to LSPs in the increasing order of

their identification number.

Assumption 2.1 The lightpaths forming an LSP must satisfy the following condi-

tions.
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1. There should be one and only one lightpath in ϕip that has j as one of its end

nodes.

2. There should be one and only one lightpath in ϕip that has k as one of its end

nodes.

3. Consider any node e1 such that [e1 − e2] ∈ ϕip or [e2 − e1] ∈ ϕip, if e1 6= j

and e1 6= k, then there should be one and only one other lightpath [e1 − e3] or

[e3 − e1] ∈ ϕip, e3 6= e2.

The conditions given above ensure each LSP to connect two nodes without

creating a loop (i.e., visiting a node more than once along the way), or going through

a lightpath more than once. Clearly, there is OEO conversion between the lightpaths

along a multi-hop LSP. The smallest number of lightpaths in an LSP is 1, which is

possible for S-D pairs that have direct connection to each other by a lightpath.

Property 2.1 Given a logical topology g, there are N · d/2 lightpaths. Since each

LSP is a subset of lightpaths and the number of subsets of lightpaths are finite, there

are a finite number of LSPs available for each S-D pair.

Definition 2.7 Each LSP, ϕip is associated with a number, ρip, called a reserva-

tion. This number signifies the amount of traffic that can be routed through that

LSP.

Note that the reservations are made for each LSP before the actual traffic

assigned to the LSP is known. Any traffic that is attempted to be routed through

an LSP in excess of the reservation is dropped.
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Definition 2.8 Consider a logical topology g and the corresponding LSPs. A traffic

assignment is defined to be the set of reservations for every LSP for that logical

topology with the following constraints.

1. The reservation for each LSP is a non-negative number.

2. The sum of reservations for the LSPs going through the same lightpath should

not exceed the capacity of that lightpath.

We follow the sample network given in Figure 2.1 throughout the study so the

definitions are easier to follow. In this network N = 10 (number of nodes), and

d = 3 (number of interfaces per node). The nodes are numbered from 0 to 9. There

are 45 S-D pairs in this network that are numbered from 0 to 44. Out of the 45

S-D pairs, N ·d
2

= 15 of them are connected directly by a lightpath. Table 2.1 defines

the relation between the lightpath IDs and the corresponding S-D pairs. The LSPs

shown in Figure 2.2 for S-D pair (29) = (3− 9) of the topology g1 are referred to as

ϕ1
g1,29 = {2, 8} with ID of 260 (= 0 · · · 0100000100), ϕ2

g1,29 = {28, 22, 23} with ID of

281018368, and ϕ3
g1,29 = {25, 38} with ID of 274911461376.

2.3 MMDP Model

Consider a two time scale MDP model as follows. There are two time scales

associated with two levels of decision making. At the higher level (slow time scale),

decisions about logical topology reconfiguration are made. The frequency of these

decisions is on the order of once every few minutes. Each slow time scale step,

denoted by n, consists of T fast time scale steps. At the fast time scale, reservations
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Figure 2.5: Graphical illustration of time evolution in the MMDP.

for the LSPs and/or the set of LSPs can be changed. Each fast time scale step is

denoted by t. Figure 2.5 displays the time evolution process for the two time scale

MDP model.

2.3.1 Slow Time Scale

The slow time scale MDP has a finite state space G, which is defined to be

the set of all possible logical topologies (given the number of nodes, N , and the

number of interfaces of each node, d). The action for the slow time scale is limited

to either a BE or the null action, which means keeping the topology intact. The

action space for the slow time scale is also finite and is denoted by B(g), where B(g)

is the set with the null action (denoted by ∅) and all admissible BEs (as defined in

Definition 2.5) given the current logical topology g ∈ G.

At the end of each slow time scale step n ∈ {0, 1, 2, · · ·} an action (BE) bn ∈
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B(gn) is taken and the state (topology) gn ∈ G transitions to gn+1 ∈ G according

to probability P s(gn+1|gn, bn). This transition is always deterministic (transition

probability is either 0 or 1), as we know how each BE changes the logical topology.

The state and action taken at a slow time scale step n determine the fast time scale

MDP for the duration of slow time scale step n+ 1.

2.3.2 Fast Time Scale

In this thesis we adopt a fluid traffic model that assumes no constraint between

the routing of traffic from one time step to the next. This means that routing of

traffic at each time step can be done independently of how the traffic was routed

in the previous step. Therefore the only dynamics in the fast time scale is in the

traffic, which follows the underlying random process for the traffic and is not affected

by the actions taken at the slow or fast time scales, i.e., the state of the fast time

scale depends on the state of the traffic demand only. The traffic assignments are

determined by the action at the fast time scale.

For an N node network, the state space for the fast time scale, Θ, is defined to

be the set of all vectors of size P =

(
N

2

)
with nonnegative elements. The element

θp of vector θ ∈ Θ corresponds to the traffic demand for S-D pair (p) = (i− j).

Given a logical topology g, L(g) is defined to be the set of all available LSPs

for all S-D pairs. In this thesis we limit the number of LSPs that we use for each

S-D pair. We allow a maximum of S LSPs that have the least number of hops. If

the number of hops for a number of LSPs are equal, we let the LSP identification
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number break the tie; the LSPs with lower IDs are selected over LSPs with higher

IDs (this is just for uniqueness purposes). The resulting set of LSPs available for

routing traffic is denoted by LS(g), which consists of P · S LSPs, S LSPs for each

of the P S-D pairs.

Note that even though we allow for S LSPs, we may not be able to find S

LSPs for every S-D pair. For example in a ring network, we can find a maximum

of 2 LSPs for each S-D pair. Therefore, if we select S = 3 for a ring network the

maximum number of LSPs we can find for each S-D pair is less than S. In general for

networks with more than 2 interfaces per node, there is no such definitive number

for the number of available LSPs per S-D pair. In a case where the number of

LSPs available for each S-D pair is less than S, we define dummy LSPs to make the

total number of LSPs for each S-D pair equal to S. This is only to facilitate the

representation of the parameters we define later.

The action space at the fast time scale is defined to be A, the set of all 1×P ·S

vectors. Element at,r of vector at ∈ A is defined as follows:

at,r = ρsp(t+ 1)

where, r = (p− 1) ∗ S + s. Alternatively, s = r mod S and s = r ÷ S.

In the above equation ρsp(t+ 1) represents the amount of reservation made for

the sth LSP of the p-th S-D pair for the fast time scale step t + 1. Note that the

action at time t corresponds to the reservations for time t + 1. The reservation for

a dummy LSP is set to zero.

After the action is taken at the end of slow time scale step n− 1, the fast time
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scale MDP is set for the duration of t = nT, · · · , (n + 1)T − 1. For this duration

the logical topology, gn remains the same and therefore, the set of LSPs, LS(gn),

remains constant. Immediately after bn−1 is taken at the slow time scale, action

anT−1 is taken at the fast time scale with the knowledge of the action just taken at

the slow time scale.

The state space only depends on the traffic vector and making a decision

involves selecting the reservations for all LSPs given the current state of the slow

time scale and the previous state of the fast time scale.

The transition probability for the state at the fast time scale step t (here

assumed to be between slow time scale steps n and n+ 1) has the following form:

P f (θt+1|θt, gn, bn, at) = P f
(
θt+1|θt

)
(2.1)

where gn and bn are the state and action of the slow time scale MDP at time n.

Obviously, the traffic pattern at time t+ 1 does not depend on the state and action

at the slow time scale and the action at the fast time scale.

The action at taken at time t most likely depends on θt+1 or our estimate of

it through fast time scale policy. This relationship is defined in the policy selected

by the decision maker.

We will use the term “decision rule” when referring to infinite horizon and

the term“policy” when referring to finite horizon. The problem of optimizing the

fast time scale cost for the duration of one slow time scale is, by definition, a finite

horizon problem with horizon of T . The slow time scale problem can be viewed as
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either a finite horizon problem or an infinite horizon one depending on the type of

traffic model.

When the slow time scale problem is infinite horizon, we define a sequence

of T policies for the fast time scale. This sequence acts as a decision rule for the

fast time scale in each slow time scale step. In other words, define a fast time scale

decision rule ωf = {πfn} , n = 0, 1, · · · as a sequence of T -horizon non-stationary

policies such that for all n, πfn = {ηfnT , · · · , ηf(n+1)T−1} is a sequence of functions

where for all k ≥ 0, ηftk : G × B × Θ → A. We say that a fast time scale decision

rule is stationary with respect to the slow time scale n if πfn = πfn′ for all n, n′. We

will denote the set of all possible decision rules with respect to the slow time scale

as Ωf , and use Πf as the set of all possible such T -horizon policies.

The total expected cost achieved by the fast time scale T -horizon non-stationary

policy πfn will act as a single-step reward for the slow time scale MDP (see Equa-

tion 2.7). We define a slow time scale decision rule ωs as a sequence of functions

πsn : G × Θ → B. We say that a slow time scale decision rule is stationary with

respect to n if πsn = πsn′ for all n, n′. However in our problem we cannot restrict

ourselves to the stationary decision rules for the slow time scale because the deci-

sions made in the slow time scale take into account the future predictions of the

traffic, which are based on the past average behavior of the network traffic. Such

predictions are time varying and depend on n. We use Ωs as the set of all possible

decision rules. When the slow time scale problem is finite horizon, ωf = {πfn} and

functions ωs = {πsn} are called policies instead of decision rules.
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2.3.3 Cost functions

The cost function at the fast time scale step t is the sum of two terms. The

first term is the sum of squared utilization for each of the lightpaths for fast time

step t. The second term is a linear function of the loss (or the amount of traffic

that is dropped) at time step t. To summarize, we can write the fast time scale cost

function as:

Rf (gn, bn, θt, at) = Rf (gn, θt, at) = β
∑
q

u2
q(θt, at, gn) +

∑
p

Dp(θt, at, gn) (2.2)

where utilization uq denotes the sum of reservations made for all LSPs passing

through lightpath [q], and Dp represents the part of traffic for S-D pair (p) that

is dropped if the sum of reservations made on LSPs of that S-D pair is less than

the traffic demand. The coefficient β signifies the tradeoff between having high

utilizations on the lightpaths and dropped traffic. We select β so low that one unit

of dropped traffic is penalized more than any penalty for higher utilization (this

selection will be described in Chapter 4.

In the presence of deterministic traffic, we can make the reservations for the

exact value of traffic demand. If the network cannot accommodate all the traffic

demand, part of the demand will be dropped. When the traffic is not deterministic

we do not know the exact value of the demand at time t1, when we select the action

(at time t0) for either slow or fast time scales. Therefore, the actions we take at

the slow and fast time scales, factor in the estimate of the traffic demand at the

corresponding time step and we calculate an estimate of the dropped traffic based
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on the actions taken. The estimate of the cost function is calculated based on the

reservations and the estimate of the dropped traffic. This calculation is given in

Section 2.4.2. When we reach time t1 we can assume that the traffic demand for

time t1 is known and use that to calculate the reservations and dropped traffic, but

realistically the exact value of traffic demand for time step t1 becomes known at the

end of this step but we need the reservations to distribute the traffic during t1 time

step. Hence, to calculate the real value of the cost function at the end of time step

t1 (when the real value of demand is known), we compare the reservation to the

demand. If the reservation for every S-D pair is larger than the demand, there is

no dropped traffic and the utilization of each lightpath (used in the cost function)

is the sum of reservations made on that lightpath. Otherwise, the dropped traffic is

the demand in excess of the reservation.

Parameters uq and Dp can be expressed in terms of the reservations for each

LSP as follows:

Dp = (θp − ρp)+ = (θp − (
∑

i

ρip))
+ (2.3)

where ρp is the sum of the reservations ρip for LSPs ϕip corresponding to S-D pair

(p), and θp is the actual traffic demand for that S-D pair. In the above equation

(x)+ := max(0, x). Also,

uq =
∑

∀i,p3[q]∈ϕip
ρip (2.4)

where the sum is taken over all LSPs going through the lightpath q.
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Note that the sum of all reservations made on a lightpath cannot exceed the ca-

pacity C, of the lightpath, defined in Definition 2.2, and hence we have the following

constraint:

∑

∀i,p3[q]∈ϕip
ρip ≤ C, ∀q (2.5)

The structure of the fast time scale cost function is such that when the network

is not congested we can select the reservations high enough (with respect to the traffic

demand) to make sure there are no packet drops, in which case the second term of

the cost in Equation (2.2) becomes zero. In such a scenario the utilization part

of the cost function will balance the traffic distribution among the lightpaths, and

optimizing this cost function becomes a quadratic programming problem. When the

network becomes congested the second part of the cost function becomes dominant

due to the fact that β was selected to be very low. In this case the cost function

has both quadratic and piecewise linear terms.

The single step cost function at the slow time scale step n is the sum of two

terms. The first term comes from the sum of the costs for all fast time scale steps in

that slow time scale step. The second term is a penalty assessed for each slow time

scale action that is not null. Since each branch exchange causes disruption in the

traffic, this term is designed to avoid unnecessary branch exchanges. Specifically,

Rs(θ◦, gn, bn, πf ) = Eθ◦

{(n+1)T−1∑

t=nT

Rf
(
θt, π

f (θt−1, gn)
)}

+ αI(bn 6= ∅)

=
(n+1)T−1∑

t=nT

Eθ◦

{
Rf
(
θt, π

f (θt−1, gn)
)}

+ αI(bn 6= ∅) (2.6)
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where θ◦ represents the state of the fast time scale at the last fast time scale step

in slow time scale step n− 1 , Eθ◦ represents conditional expectation given θ◦, πf is

the policy for the fast time scale, I(·) represents the indicator function, resulting in

1 when the argument holds true and 0 otherwise, and ∅ represents the null action.

The expectation can move inside the sum because the sum is finite. The single step

cost functions for the fast and slow time scales are used below to define the overall

cost function for the MMDP model.

2.3.4 Description of the problem

In this section a receding horizon model (see [19]) is adopted to set up the

overall objective function. This model is used to approximate the infinite horizon

case with a finite horizon case for each step and then after solving the problem for

one step, the horizon is extended to H steps again. The solution to the receding

horizon problem is optimal if our optimality equation only considered H steps with

no terminal cost. At step n of the slow time scale, the goal is to minimize the

following objective function, use the action for the first step and then resolve the

problem for the next step with the horizon extended to H again:

Jω
s,ωf

n,H (g◦, θ◦) := Eg◦,θ◦

{
H−1∑

k=0

γkR
s
(
θ(n+k)T , gn+k, ω

s(θ(n+k)T , gn+k), ω
f )
)}

(2.7)

where γn is the discount factor for slow time scale step n, g◦ is the initial topology

that we start from, and θ◦ is the last known traffic pattern before the start of slow

time scale step n = 0.
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Given the initial states g◦ and θ◦ for the two levels, the receding horizon value

function for this problem is given below; the objective is to obtain a pair of non-

stationary policies {π̃fn,k, k = 0, · · · , H−1} = ω̃fn ∈ Ω̃f and {π̃sn,k, k = 0, · · · , H−1} =

ω̃sn ∈ Ω̃s that achieves the minimum in Equation (2.8). Ω̃f and Ω̃s are the sets of

H-horizon policies for the fast and slow time scales.

V ∗n (g◦, θ◦) := min
ωs∈Ωs

min
ωf∈Ωf

Eg◦,θ◦

{
H−1∑

k=0

γkR
s(θ(n+k)T , gn+k, π̃

s
n,k(θ(n+k)T , gn+k), π̃

f
n,k)

}

(2.8)

Note that the receding horizon decision rules for the fast and slow time scales

are respectively ωf = {πfn} = {π̃fn,0} and ωs = {πsn} = {π̃sn,0}.

2.3.5 Initialization Function

As part of the definition of MMDPs (see [18]), there is an initialization function

defined that gives the conditional probability of being in state θ′ at fast time scale

step nT , given the state of the fast time scale θ at fast time scale step nT − 1.

δf [gn, bn, θ](θ
′) = P{θnT = θ′ | θnT−1 = θ} (2.9)

= δf [θ](θ′) (2.10)

Given the fluid model used here, this conditional probability does not depend on

state of the slow time scale and the action at either the slow or fast time scale.
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Similarly, we define the initialization function for the slow time scale as follows:

δs[g, ωs](g′) = P{gn+1 = g′ | gn = g, ωs} (2.11)

where, ωs implicitly may depend on the traffic pattern. If we select ωs to not

depend on traffic pattern or if we make the traffic deterministic, then the conditional

probability above becomes an indicator function, i.e., if the branch exchange selected

by ωs transitions g to g′ the conditional probability equals 1, and 0 otherwise.

2.3.6 Traffic Model

In this thesis our traffic model consists of two parts: a deterministic part

that captures the time-of-day changes in the traffic demand for each S-D pair in

the network and a random part that represents the daily variations in the traffic.

Element θp of the traffic vector represents the amount of traffic demand for S-D pair

(p). θp is defined as follows:

θpt = Y p
t + Zp

t

where Y p
t is the deterministic part of traffic, and Zp

t is the random part of the traffic

for S-D pair (p). The elements of the traffic matrix change at the fast time scale.

These elements represent the amount of traffic flow for each S-D pair. At each fast

time scale step t1, we know Zt1−1 and Yt,∀t ≥ t1 − 1. Based on this information

action at1 is taken. At the slow time scale step n1 the decision is made based on

Zn1T−1 and Yt,∀t ≥ n1T − 1. Once the decision at the slow time scale is made,

we know the logical topology and the LSPs. At the fast time scale, the decision
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is made to determine corresponding reservation for each LSP. At the realization of

each fast time scale step, the real traffic flow becomes known, at which point we

can determine whether the reservations we have for each S-D pair are enough to

accommodate the real traffic flow or not. If the reservation is less than the real

flow, the excess traffic will be dropped. Otherwise, there is no dropped traffic. If

the reservation is more than the traffic flow, the cost of the reservation is incurred

even though we may not use all the reservation. This is justified by the argument

in Section 2.3.3.

We consider two types of traffic in this thesis, constant and dynamic traffic. In

the constant traffic case, the random part of the traffic is zero and the deterministic

part is constant. In the dynamic traffic model we know the deterministic part of

traffic and try to estimate the traffic using the statistical properties of our traffic

demand.

2.4 Finding the solution

In this section we use properties of the traffic model and the decision processes

at the slow and fast time scales to simplify the optimality equation and find the

solution to it.

We now expand Equation 2.8:

V ∗n (g, θ) = min
ω̃s∈Ω̃s

min
ω̃f∈Ω̃f

Eg,θ
{H−1∑

k=0

γk{αI(π̃sn,k 6= ∅)
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+
(n+k+1)T−1∑

t=(n+k)T

Rf (θt, η
f
t , gn+k)}

}
(2.12)

= min
ω̃s

min
ω̃f

Eθ
{H−1∑

k=0

γk
∑

gk

k−1∏

l=0

δs[gl, ω̃s](gl+1)
{
αI(gl 6= gl+1)

+
(n+k+1)T−1∑

t=(n+k)T

Rf (θt, η
f
t , g

k)
}}

(2.13)

where δs is as defined in Section 2.3.5.

We consider two types of traffic, constant traffic and dynamic traffic. For

constant traffic the model becomes deterministic and the optimality equation above

simplifies to an ordinary search. For the dynamic traffic case solving the above

equation is very hard and is not feasible for a real-time decision maker. To make

this optimization a feasible problem to solve during a real-time decision making

process, we consider one more approximation. We use the certainty equivalence

approximation (see [10]), where the expectation with respect to θ is removed, and

each term depending on θ is replaced by its expected value. After applying certainty

equivalence (CE), Equation (2.13) is simplified to Equation 2.14, which is applicable

to both constant traffic case and dynamic traffic case with CE.

V ∗n (g, θ) = min
ω̃s

{H−1∑

k=0

γk
∑

gk

k−1∏

l=0

δs[gl, ω̄s](gl+1)
{
αI(gl 6= gl+1)

+ min
ω̃f

(n+k+1)T−1∑

t=(n+k)T

Rf (θ̄t, η̄
f
t , g

k)
}}

(2.14)

where θ̄t is the expected value of traffic vector at time t, given the traffic vector θ

at time n, and ω̄s and η̄ft are the policies for the slow and fast time scales, given the

deterministic traffic vector θ̄t,∀t > nT .
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By the argument given at the end of Section 2.3.5, the expression

∑
gk
∏k−1
l=0 δ

s[gl, ω̄s](gl+1) is going to be 1 only for one sequence of BEs and zero for all

other sequences of BEs. Therefore, solving Equation 2.14 is equivalent to searching

for a sequence of BEs that results in the best cost given the initial conditions and

the average behavior of the traffic.

By the fluid model assumption, the action ηft−1 at the fast time scale step t−1

does not affect the state θt of the fast time scale step t or the state gn of the slow time

scale. Therefore, the minimization over policy ωf can be broken into minimizations

over individual actions ηft :

V ∗n (g, θ) = min
ω̃s

{H−1∑

k=0

γk
∑

gk

k−1∏

l=0

δs[gl, ω̄s](gl+1)
{
αI(gl 6= gl+1)

+
(n+k+1)T−1∑

t=(n+k)T

min
η̄ft

Rf (θ̄t, η̄
f
t , g

k)
}}

(2.15)

The interpretation of Equation 2.15 is that the fast time scale T -horizon policy

πfn is reduced to T individual optimizations for the fast time scale steps, i.e., πfn =

{ηfnT , · · · , ηf(n+1)T−1}.

Also, observe that there are many topologies that are reachable from the initial

topology g using a sequence of H branch exchanges. For each topology at the end

of such a sequence, we can calculate the corresponding expected cost at the time

step we arrive at that topology with the estimate of traffic for that time step. Now

the problem at the slow time scale becomes a search problem among all sequences

reachable from the initial topology for a sequence that has the lowest cost.

In the next two sections we show how to calculate the expected value of the
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fast time scale cost function, given the topology g.

2.4.1 Constant Traffic

In this section we assume that the traffic is deterministic and fixed. The

objective here is to find a sequence of branch exchanges that leads us to the optimal

topology for the given traffic. Constant traffic combined with the stationary policy

for the fast time scale and the fact that the topology remains constant during a

slow time scale step indicates that the cost for each fast time scale step in one slow

time scale step is the same. Therefore, for the constant traffic case we select T = 1.

Since the traffic demand is deterministic, all expected values in Equation 2.15 can

be replaced by their deterministic values.

Given the action at the fast time scale, there is a constant cost associated with

every topology. Therefore the topology optimization problem is reduced to a search

in the space of all topologies to find the one with the best cost. This can be done

by a brute force search if the topology space for the given size of the network is

small enough that such a search is feasible. In Chapter 3 we will see how the MRAS

method can be used to find close to optimal solutions, and in Sections 2.4.5.1 and

2.4.5.2 more algorithms are proposed for this search.

In the case of constant traffic we are only interested in the end result (the

topology and cost associated with it) as opposed to a discounted cost structure that

is used mainly for the dynamic traffic case. Therefore, we select the discount factor

to be zero for every step of the slow time scale except for the last step (final cost).
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Next we will show how to find the optimum traffic distribution at the fast time

scale given the traffic and topology.

Consider an N node network with d interfaces per node. There are Q = Nd
2

lightpaths and P =

(
N

2

)
S-D pairs in the network. Suppose for each S-D pair

in the network we allow S LSPs. Then there are a maximum of P · S LSPs in the

network. With the constant traffic assumption the traffic vector θ is a constant 1×P

vector. The reservation made on the sth LSP of the p-th S-D pair is a fraction (λps)

of the traffic demand (θp) for that S-D pair. The traffic distribution among LSPs of

all S-D pairs is summarized in ΛP×PS, which is a block diagonal matrix with 1× S

vectors along its diagonal:

Λ =




λ11 λ12 . . . λ1S

λ21 λ22 . . . λ2S

O

O
. . .

λP1 λP2 . . . λPS




(2.16)

We summarize the relationship between the LSPs in the network and the

lightpaths that each LSP goes through, in a P ·S ×Q matrix Ψ, where element ψrq

is defined as

ψrq =





1 if [q] ∈ ϕsp, r = (p− 1)S + s;

0 otherwise.

(2.17)
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Now we can write the utilization vector that holds the utilization for all light-

paths, in terms of traffic vector as follows:

U1×Q = θ1×P · ΛP×P ·S ·ΨP ·S×Q

= Λ̃ · θ̃ ·Ψ (2.18)

where,

Λ̃ =

[
λ11 λ12 . . . λ1S λ21 λ22 . . . λ2S . . . λP1 λP2 . . . λPS

]
(2.19)

and

θ̃ =




θ1

. . .

θ1 O

θ2

. . .

θ2

. . .

O

θP

. . .

θP




(2.20)
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The block diagonal property of matrix Λ makes it easy to see how the first

line of Equation (2.18) could be rewritten in the second line. Let λ̃r denote the rth

element of vector Λ̃. We can see that λps, the sth LSP of the p-th S-D pair, is equal

to λ̃r, where r = (p− 1)S + s.

Given a logical topology we can find the corresponding S LSPs for each S-D

pair, which is equivalent to having matrix Ψ. With the constant traffic assumption

in this section, the only parameters in Equation (2.18) that are not determined are

elements λ̃r of vector Λ̃, which correspond to the reservations for each LSP in the

network.

Now the first term in fast time scale cost function from Equation (2.2) becomes:

∑
q

u2
q = U · U ′ (2.21)

= Λ̃ · θ̃ ·Ψ ·Ψ′θ̃′ · Λ̃′ (2.22)

= Λ̃ ·Υ · Λ̃′ (2.23)

where

Υ = θ̃ ·Ψ ·Ψ′θ̃′ (2.24)

and superscript ′ is the transpose operator.

The second part of the fast time scale cost function in Equation (2.2) is the

sum of traffic losses for all S-D pairs. The lost traffic for S-D pair (p) is calculated

as:

θp(1−
∑
s

λps) (2.25)
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Note that in the constant traffic case the reservations are made for the exact

value of the traffic demand, since this value is known a priori. As a result

∑
s

λps ≤ 1,∀p (2.26)

Now we rewrite the second term on the right-hand side of Equation (2.2) as

follows:

∑
p

Dp =
∑
p

θp +
∑
p

∑
s

θpλps (2.27)

= θ · eP − θ · Λ · ePS (2.28)

= θ · eP − Λ̃ · θ̃ · ePS (2.29)

where eP and ePS are respectively vectors of sizes 1 × P and 1 × PS with all 1

elements.

The optimization problem at the fast time scale for the constant traffic case

and a given topology now looks like:

J∗f = min
Λ̃
{Λ̃ ·Υ · Λ̃′ − Λ̃ · θ̃ · ePS + θ · eP} (2.30)

subject to

(Λ̃θ̃Ψ)q ≤ C, ∀q

where (Λ̃θ̃Ψ)q represents the qth element of vector Λ̃θ̃Ψ, which is equivalent to uq.

The above optimization is in the form of a quadratic programming problem and

can be solved easily using the ILOG’s CPLEX software (see [31]) with the condition

that the objective function coefficient matrix ( Υ ) is positive semi-definite. By

definition, ΥPS × PS is positive semi-definite if

∀x ∈ <PS, x′Υx ≥ 0. (2.31)
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By Equation (2.24), Υ is positive semi-definite because

xΥx′ = xθ̃ ·Ψ ·Ψ′θ̃′x′

= (xθ̃Ψ) · (xθ̃Ψ)′ ≥ 0 (2.32)

The solution to this optimization problem is Λ̃∗, which is the optimal distri-

bution of traffic among the LSPs for each S-D pair, given the topology.

2.4.2 Dynamic Traffic

In this section we assume the random part of traffic for each S-D pair (p),

Zp(t), is modeled by a Brownian motion (See [55]). We further assume that the

Brownian motions for different S-D pairs are independent. This means that if we

know the traffic at time t0, i.e., we know the random part of traffic in addition to

the deterministic part, then the estimate of the random part of traffic at a time

t > t0 is approximated by a Gaussian distribution, with a mean equal to the sum of

observed random part at time t0 and the deterministic part at time t, and a variance

proportional to t− t0:

mt = θ(t0)− θd(t0) + θd(t) (2.33)

σ2
t = σ̃2 · (t− t0) (2.34)

where mt is the mean of traffic demand at time t, θ(t0) is the observed traffic at

time t0, θd(t0) is the deterministic part of traffic at time t0, σ2
t is the variance of the

random part of traffic at time t, and σ̃2 is a variance factor that is a characteristic

of the underlying Brownian motion.
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Here we explain how to calculate the expected value of the fast time scale cost

function at time t given the topology at time n0 and traffic pattern at time t0.

In this case, since we do not know the exact traffic demand, we may have

to select reservations for the LSPs of a S-D pair higher than the estimate of the

demand for that S-D pair to incur less cost due to loss in case the actual traffic

demand was larger than our estimate. Therefore, Constraint (2.26) is not enforced

and we use the reservations vector (ρ(t) = [ρ1 · · · ρPS]) in our cost function instead

of the distribution vector multiplied by traffic demand (Λ̃θ̃):

Jf (t) = E{ρ(t) ·Ψ ·Ψ′ρ(t)′ +
P∑

p=1

(
θpt −

S∑

s=1

ρps(t)
)+

|gt = g0, θt0 = θ0}

= ρ(t) ·Ψ ·Ψ′ρ(t)′ + Eg0,θ0{
P∑

p=1

(θpt − ρp(t))+}

= ρ(t) ·Ψ ·Ψ′ρ(t)′ +
P∑

p=1

Eg0,θ0{(θpt − ρp(t))+} (2.35)

where ρp(t) represents the sum of all reservations on all S LSPs for the S-D pair (p),

and Ψ is determined by the given topology g0. The first term in Equation (2.35)

takes into account the reservations made on every lightpath, which is the sum of

the reservations made on the LSPs going through each lightpath. In other words,

the reservations made on each LSP is multiplied by the number of lightpaths it goes

through. The second term in this equation gives the expected value of the dropped

traffic throughout the network.

Now we focus on the expectation in the second term of Equation (2.35), which

is the expectation of the cost due to dropped traffic. We can expand it in an attempt

to simplify the equation. To make it more readable, we omit the reference to time
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t.

Eg0,θ0{ (θp − ρp)+} =
∫ ∞
ρp

(θp − ρp)e
−(

θp−mp
σp

)2/2

σp
√

2π
dθp (2.36)

=
∫ ∞
ρp−m
σp

(σpx+mp − ρp) e
−x2/2

σp
√

2π
σp dx (2.37)

=
σp√
2π

∫ ∞
ρp−m
σp

xe−x
2/2 dx+

mp − ρp√
2π

∫ ∞
ρp−m
σp

e−x
2/2 dx(2.38)

=
σp√
2π

[
−e−x2/2

]∞
ρp−m
σp

+ (mp − ρp)Q(
ρp −mp

σp
) (2.39)

=
σp√
2π
e
−(ρp−mp)2

2σ2
p + (mp − ρp)Q(

ρp −mp

σp
) (2.40)

where, x = θp−mp
σp

and Q(·) represents the Q-function (complimentary cumulative

distribution function) for the Gaussian random variables (See [39]).

Figure 2.6 shows a plot of the two terms in the right-hand side of Equa-

tion (2.40) and their sum. The first term is a Gaussian distribution curve and the

second term is a Q-function multiplied by (mp − ρp). From the properties of the

Gaussian distribution we know that the Gaussian bell curve is very close to zero

when the variable is more than 2σ different from the mean and the Q-function is

close to zero when the argument is more than 2 (corresponding to the reservations

being much more than the average traffic) and close to 1 when the argument is

less than -2 (i.e., average traffic being more than reservations). This translates into

having a zero estimate for the cost of dropped traffic when the reservation is more

than the estimate of the traffic demand by more than 2σp and having an estimate

of (mp− ρp) when the reservation is less than the estimate of the traffic demand by

more than 2σp.
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Figure 2.6: Sum of the first and second terms in Equation 2.36 plotted against

(mp − ρp).

The right-hand side of Equation (2.40) could be approximated by a piecewise

linear function, which is zero when the argument is less than -2 and is a line with

slope of 1 when the argument is more than 2. Figure 2.7 displays the plot for the

right-hand side of the Equation (2.40) and its approximation. This piecewise linear

function can be used to approximate the expected cost of the dropped traffic for

every S-D pair with reservation ρp and Gaussian traffic demand with mean mp and

standard deviation σp.

The overall cost function for the fast time scale could be formulated into a

quadratic programming with piecewise linear terms, which is solvable using CPLEX

software. Therefore, given the topology and the deterministic part of the traffic and

the random part of traffic for time t0, we can find the optimum set of reservations,
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Figure 2.7: Approximation of the fast time scale cost by a piecewise linear function

i.e., the action at the fast time scale. This becomes the optimal policy for the fast

time scale.

The slow time scale optimization is reduced to a search among all sequences

of branch exchanges of length H, that starts from an initial topology g for the

sequence that incurs the least cost. This search could be very time consuming for

large networks and large H. Next we will discuss alternatives to this brute force

search.

2.4.3 Alternative policies at fast and slow time scales

In the last section we showed how we can find the optimal set of reservations

made at the fast time scale to optimize the cost for the fast time scale. The slow time

scale problem becomes a search algorithm among all topologies reachable from the
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initial state using branch exchanges to find the optimal path through the topology

space that incurs the least cost.

The full search in the topology space and the optimization problem in the fast

time scale, when combined together, are very time consuming. To be able to control

the network in real time, we introduce two heuristic algorithms. One for the fast

time scale as an alternative to the fast time scale optimal policy and one for the

slow time scale.

2.4.4 Heuristic Algorithm

We describe a heuristic algorithm which is used to assign reservations to each

LSP. The reservations made using this algorithm are for obvious reasons not as good

as the optimal solution but the heuristic algorithm is useful when run time of the

algorithm is critical. In this algorithm we first need a measure to sort the LSPs

for each S-D pair and another measure to sort the S-D pairs in the order in which

bandwidth is assigned to them. This determines the order in which the reservations

are made for the LSPs of every S-D pair.

The rate of cost accumulation for each LSP is defined to be the increase in

the total cost if we make reservation for one additional unit of traffic on that LSP.

For example when we start fresh with no reservation made, this rate depends on the

number of hops for each LSP. If we make a reservation for an LSP with 2 hops, the

cost increases twice more than if we make the same reservation for an LSP with one

hop, because in the former case the reservation is accounted for in two lightpaths,
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whereas in the latter case it adds to the cost in only one lightpath. But as we make

reservations using this heuristic, there will be LSPs that go through lightpaths with

no more residual capacity. We cannot make further reservations on those LSPs. For

such LSPs we count the deficit in the capacity towards the dropped traffic.

For example let us compare two LSPs for the same S-D pair. The first LSP goes

through 2 lightpaths and the second LSP goes through 3 lightpaths. Therefore, when

there is no congestion in the network, or more generally when none of the associated

lightpaths are at full capacity, the rate of cost accumulation for each LSP is equal

to the number of lightpaths they go through. Now, assume that the second LSP

goes through a lightpath that is at full capacity. Then the rate of cost accumulation

for that LSP becomes the rate at which we penalize the dropped traffic in our cost

function, i.e. 1
β
, where β is the tradeoff coefficient in Equation (2.2). The LSPs for

an S-D pair are sorted in increasing order of the rate of cost accumulation, i.e., we

prefer to make reservations on the LSP that incurs less cost first.

We define a delta function (∆(·)) over the set of S-D pairs, which returns

the difference between the rate of cost accumulation for the first two LSPs for the

S-D pair in its argument. The S-D pairs with higher ∆(·) will get higher priority

in receiving their reservations. The reason behind this is that for S-D pairs with

low value of ∆(·) it will make little difference to which LSP the traffic is assigned,

therefore the assignment of traffic to LSPs of those S-D pairs is done later in the

process. On the other hand, for S-D pairs with high ∆(·) it is important to assign the

traffic to the first LSP rather than second. Hence, such S-D pairs get higher priority

to make sure their first LSPs will get the traffic assignment before the lightpaths
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get close to full capacity.

The steps to this heuristic algorithm are listed in Figure 2.8. All time de-

pendent variables are considered at a given fast time scale step t. This algorithm

is run with a fixed traffic vector (m), in the case with dynamic traffic this is the

mean of the traffic estimated through the past statistics of the network and σp is the

standard deviation for pair p. In the case with constant traffic, m is the constant

traffic and σp = 0,∀p.

Note that in the case of constant traffic the reservations are made for the exact

amount of traffic demand. But in the dynamic traffic case, since the exact demand

is not known, we would like the reservations to be higher than the mean, m, by

about 2σ. In this case we first make reservations for m and then if there is any more

bandwidth left, additional reservations are made up to m+ 2σ.

2.4.5 Slow time scale heuristic

Finding the optimal solution at the fast time scale is subject to a full search of

the topologies in the state space of the slow time scale. This full search is feasible for

small networks. In Chapter 3 we discuss how a full search can be done methodically

to find the best topology. But as the size of the network grows larger (10 nodes or

more) it becomes inefficient and impractical to do a full search of the state space.

We define two policies for the slow time scale. The first one is a (greedy)

heuristic policy that looks into the immediate cost (one step ahead). The second

policy uses the first policy and makes policy improvement using online simulations
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Fast Time Scale Heuristic

Input: g ∈ G, ϕsgn,p, mp, σp, ∀p, s

Assumptions: Number of S-D pairs: P , number of LSPs per S-D pair: S

Initialization: Create a table with P rows and S columns. Set the unassigned

traffic δp = mp, p = 0, · · · , P . Assign S-D pairs to the rows of the table and

place the LSPs for each S-D pair in the columns of the corresponding row.

Reset reservations ρsp ← 0, p = 0, · · · , P, s = 0, · · · , S. Set b← 0.

1- Sort available LSPs for each S-D pair. Set a ← 0

2- Sort S-D pairs based on their ∆(·) measure. Set row pointer c← 1.

3- For S-D pair p in row c, calculate the maximum reservation available on

the LSP in the first column, ν, given the reservations already made on

the lightpaths the LSP goes through. If ν = 0 or δp = 0 no reservation

is possible, go to step 5.

4- Add to the reservation of LSP in the first column in row c:

ρsp ← ρsp + min{ν, δp}, where subscript p represents S-D pair

(p) that is currently in row c, and superscript s represents LSP s that

is currently in the first column. Set δp ← δp−min{ν, δp}. Set a ← 1.

5- c← c+ 1. If c ≤M go to step 3. Otherwise continue to step 6.

6- If a = 0 continue to step 7. Otherwise go back to step 1.

7- If b = 1 stop. Otherwise, set b← 1, and set δp ← δp + 2σp, ∀p, and go

to step 1.

Output: ρsp, p = 0, · · · , P, s = 0, · · ·S.

Figure 2.8: Fast time scale heuristic algorithm assigns reservations to every LSP of

every S-D pair based on the traffic demand.

55



to determine which one of the possible BEs is more likely to yield a lower cost during

the next few slow time scale steps. This is called a rollout policy.

2.4.5.1 Heuristic policy

First we provide a sketch of the algorithm. We consider every action in the set

of admissible BEs (including the null action). For each of these BEs we calculate an

estimate of the traffic distribution among LSPs resulting from the new topology and

our estimate of the traffic matrix. Based on this estimate we then find the rate of cost

accumulation during the next slow time scale step and use that figure to compare

different BEs, and the BE that results in the lowest rate of cost accumulation is

selected. Note that the heuristic algorithm for the slow time scale can use either of

the two policies available for the fast time scale. The details of this algorithm are

shown in Figure 2.9.

2.4.5.2 Rollout policy

The rollout policy applies a policy improvement method (called rollout) to the

above heuristic policy in order to obtain a better policy [10]. At each decision time

n (slow time scale), we make a decision analysis of all alternative actions, bkn. Each

action corresponds to one of the admissible BEs. We are trying to minimize the

cost, Jn = E{Rs
n(bn) + Jn+1}, where Rs

n(bn) is the step cost for slow time scale step

n given action bn for that step. Since we do not know the exact value of the future

costs Jn+1, we estimate it using online simulations.
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Slow Time Scale Heuristic

Input: gn ∈ G, estimate of the traffic demand θ̃p(t), p = 0, · · · , P,∀t ≥ nT ,

list admissible branch exchanges B(gn).

Assumption: Number of LSPs per S-D pair: S

Loop until Stopping Rule is satisfied:

• For each bm in the set B(gn) perform:

1. Find the resulting topology, gm, after application of bm.

2. Find S LSPs with least number of hops for each S-D pair.

3. Run fast time scale policy to find the reservations for all LSPs

at every fast time scale step within slow time scale step (n + 1).

The reservations aim to cover the estimate of the traffic demand

θ̃p(t). This will result in ρsp(t), s = 0, · · · , S, p = 0, · · · , P, t =

(n+ 1)T, · · · , (n+ 2)T − 1.

4. Given the traffic reservation for all S-D pairs, calculate the fast

time scale costs, Rf (t), t = (n+1)T, · · · , (n+2)T −1, using Equa-

tion 2.2, then calculate the slow time scale cost for (n+ 1), using

Equation 2.7.

• Find the BE that results in the lowest E{Rs(n+ 1)}.

Output: b∗.

Figure 2.9: Slow time scale heuristic algorithm finds the best next step BE based

looking only one step ahead
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Thus, assuming that a given action is taken we let the system proceed from

the state where it is after that action and use the heuristic policy to make all the

subsequent decisions for h steps, where h is defined to be the horizon. We should

point out here that rollout algorithm as defined here is a single step rollout. But

horizon helps determine how good a cost we can achieve (over a longer period of

time than one step), if we pick each one of the branch exchanges. Our progression

through one topology may not be immediately obvious by looking at the cost of that

topology. It is the consequent topologies that are reachable through one topology

that defines its value. We calculate the estimated discounted cost during these h

steps. This cost is used as a measure of goodness for the original BE. Rollout policy

picks the BE from the set of admissible BEs which results in the best multi-step

cost.

2.4.5.3 Reducing the size of the action space in the slow time scale

In this section we describe a method that is used to reduce the size of the set

of admissible branch exchanges. This is an attempt to give a direction to the search

and eliminate the branch exchanges that may seem undesirable choices as the first

step towards a local optimum.

By eliminating the unreasonable BEs we reduce the search time for our algo-

rithm. If such BEs are indeed undesirable the result of our search would still find the

same solution we would find with the full search of the available BEs. Figure 2.10

shows the algorithm. Here we define B(g) to be the set of all admissible BEs, and
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B1(g) is the resulting reduced set of admissible BEs.

There are two thresholds defined and used in this algorithm. These two thresh-

olds, γl and γh, are positive real numbers less than 1 (with γl significantly less than

γh).

The idea behind this algorithm is to include BEs that result in lightpaths that

would help create direct (single hop) paths for S-D pairs that are contributing to

the congestion in at least one lightpath. A lightpath is considered congested in

this algorithm if the sum of reservations for that lightpath is more than γhUmax.

With this definition, at least one lightpath (the one with maximum utilization) is

considered congested with any given distribution of traffic.

A caveat here is that we might eliminate some BEs from the admissible set

that would have led to topologies with worse costs but would have provided a path to

another topology with a better cost. In the Chapter 4 we discuss this issue further.
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Reducing the Size of Action Space

Input: gn ∈ G, reservations ρp((n + 1)T − 1), p = 0, · · · , P , list admissible

branch exchanges B(gn), γl, γh.

1. Find the lightpath with maximum sum of reservations on it. Denote

the sum of reservations for this lightpath by Umax.

2. Form set H such that it includes all S-D pairs that have a considerable

bandwidth (more than γlUmax) on one of the congested lightpaths.

We consider a lightpath congested if the sum of reservations on that

lightpath is more than γhUmax.

3. From B(g) add the null BE to B1(g).

4. Move to the next BE in B(g).

5. If one of the two lightpaths resulting from this BE corresponds to a

pair in H add this BE to B1(g) otherwise discard this BE.

6. Go to step 4.

Output: B1(g).

Figure 2.10: Algorithm to reduce the size of the admissible BE set
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Chapter 3

Finding a Reference Solution

In the previous chapters we have described a model and policies that find

suboptimal solutions. But, so far we have no reference as to how good a solution

each policy provides. In the presence of fixed traffic it is easy to compare topologies

and determine which topology is better than another one based on our cost function.

Finding an optimal solution for the fixed traffic problem involves a search among all

topologies. This optimal solution provides the reference solution that we are looking

for. However the number of possible topologies grows exponentially as the number

of nodes in the network grows.

The purpose of this chapter is to provide a reference solution using the Model

Reference Adaptive Search (MRAS) algorithm [29]. The MRAS algorithm finds

solutions to the static optimization problems that are often very close to optimal.

The MRAS algorithm starts with an initial probability distribution that is used

to generate a sample space. The cost associated with each member of the sample

space is used to bias the probability distribution towards generating more samples

with better costs. In each iteration of MRAS a new probability distribution is

found that favors samples with better costs. MRAS culminates in a degenerate

probability distribution that generates that same topology with probability 1. The

corresponding topology is the solution of the MRAS algorithm.
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In order to implement the MRAS algorithm for our problem, we need an

algorithm to generate topologies based on a probability distribution. A topology

as defined in Definition 2.3, is equivalent to a connected labeled graph as defined

in graph theory. If we further assume that all nodes have the same number, d,

of interfaces, the equivalent graph becomes a d-regular connected labeled graph.

Generating random topologies is equivalent to generating random connected labeled

graphs. In the first section of this chapter we give some definitions related to the

graph theory and we give an algorithm that counts the number of labeled graphs

with a given degree sequence (or the number of topologies in our problem). This

counting algorithm gives us some perspective as to how big the topology space is

and how fast the number grows with the number of nodes. In addition, it provides

a basis for the random graph generation (topology generation) algorithm that we

will use in the MRAS method.

The examples we give throughout this chapter are regular graphs (all nodes

having the same number of interfaces) because this makes the exposition much easier

to follow. But the results are valid for non-regular graphs as well.

3.1 Counting the topologies

The set Gd
N defined in Definition 2.3, can be described in graph-theoretic

terminology as the set of d-regular connected labeled graphs of N vertices, which

is the set of all labeled graphs with N vertices, each having a degree of d. For

example, G2
N (set of 2-regular connected labeled graphs of N nodes) is the set of
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all N -node rings. The lowest number of nodes for a ring is 3, since we do not allow

more than one lightpath set up between two nodes. The number of possible N -node

rings grows exponentially with N (to be exact, it is (N − 1)!/2).

In this section we adopt a counting algorithm that is identical to the counting

algorithm given in [52] with a minor difference. The algorithm given in [52] counts

the number of labeled graphs (connected or not). Our minor modification to this

algorithm allows us to count the number of connected labeled graphs. This algorithm

is used to count the number of possible topologies (connected labeled graphs) given

the number of nodes and each node’s number of interfaces (degree). We start with

a number of definitions that set up the stage for the counting algorithm.

Definition 3.1 The degree sequence of an N-node network (or graph) is defined

to be a sequence of N numbers, where each number in the sequence represents the

degree of one of the nodes of the network. It is required for the digits to be sorted in

ascending order from left to right.

Note that sorting the digits assures each degree sequence has a unique repre-

sentation.

Definition 3.2 A partition for a network is defined to be the ordered set of non-

negative integers m1, · · · ,mN−1, where mi is the number of nodes having degree i.

The following notation is used for such partition:

(1m12m23m3 · · ·)
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Definition 3.3 A degree sequence or the corresponding partition is said to be graph-

ical if there exists at least one graph that matches the degree sequence.

Definition 3.4 An empty node is one with no connections to other nodes.

Definition 3.5 An empty graph is one with all empty nodes.

Definition 3.6 A node with d interfaces is said to be partially connected if it is

connected to d1 < d other nodes.

Definition 3.7 The remaining degree of a partially connected node is d− d1.

Definition 3.8 A partially connected network or partially connected graph

is one with at least one node that is partially connected.

Definition 3.9 The residual degree sequence of a partially connected network

is the sequence of the partial degrees of its nodes sorted in ascending order. The

partition corresponding to the residual degree sequence is called the residual parti-

tion.

For a residual degree sequence we may drop the leading zeros. This will not

cause any confusion as long as the number of nodes in the network is known. For

example the degree sequence 000002 can be written as 2. For any size network, the

following statements are true. Residual degree sequence 2 is not graphical because

one node cannot connect to itself. Residual degree sequence 22 is not a graphical

sequence because two nodes cannot connect to each other twice. But the residual

degree sequence 112 is graphical because we can connect the node with degree 2 to

each of the nodes with degree 1, and the result is a connected graph.
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Note that an all-zero residual sequence corresponds to a fully connected net-

work. We should also note that by fully connected network we do not mean a

mesh network, where all nodes have direct connections to all the other nodes in the

network.

Definition 3.10 A subnetwork (or subgraph) g1 of an N2-node network (or

graph) g2 has N1 nodes, N1 ≤ N2, where the nodes of g1 form a subset of the nodes

of g2 and the edges of g1 are a subset of the edges of g2.

Definition 3.11 The residual partition p2 of network g2 is called a subpartition

of the residual partition p1 of network g1 if there exists a set of vertices in g2 that

if removed, the residual partition p2 becomes equal to p1. Equivalently, we say p2 is

reachable from p1.

Given the above definitions, we can easily see that an all zero residual partition

is reachable only from a graphical partition. Equivalently, the all-zero partition is a

subpartition of only the graphical partitions.

The objective of the counting algorithm is to find the number of ways a set of

nodes can connect to each other, which results in a connected graph matching the

given degree sequence. The starting point of the algorithm is a degree sequence for

N nodes in the network and N disconnected nodes, each having degree matching

one of the numbers in the given degree sequence. In each step of this algorithm

we select a node, called a pivot, and connect all of its remaining interfaces to

other nodes with non-zero residual degree and eliminate that node from the residual

degree sequence, as its residual degree becomes zero. As a result, we are left with
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a subpartition of the residual partition of the previous step. We repeat this process

for each of the nodes having a non-zero remaining degree until either all nodes have

been eliminated (resulting in a graph) or we reach a degree sequence that is not

graphical.

For example, 333333 is a degree sequence representing all networks that have

6 nodes and 3 interfaces available at each node. The corresponding partition is 36.

We can eliminate the first node by connecting it to three other nodes, resulting in a

residual degree sequence of 022233. We may or may not display the leading zeros.

The corresponding partition is 2332.

The purpose of defining partitions and sub-partitions is that, given a partially

connected network, we are interested in counting the ways the rest of the free in-

terfaces in the network could be connected to each other to form a fully connected

network.

Definition 3.12 The value of a given degree sequence or the corresponding par-

tition is defined to be the number of distinct graphs with that degree sequence or

partition.

By convention we give a value of 1 to an all-zero partition, and a value of zero

to all non-graphical partitions. Function V (·) is defined on the set of all partitions

and gives the value of its argument.

Definition 3.13 A node elimination step is the process of selecting the nodes to

which each and every free interface of the pivot node should connect.
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At the end of a node elimination step the pivot digit becomes zero and joins the

fully connected part of the network. At this point the pivot node can be eliminated

from the residual degree sequence. If there are any more nodes that as a result, have

a zero residual degree, those nodes also join the set of fully connected nodes.

The number of ways we can select the points that connect to the free interfaces

of the pivot node is very similar to the formula given in [52]. Let the residual

partition of the graph be α = (1m12m2 · · ·∆m∆), where ∆ denotes the maximum

degree of the remaining sub-partition. Let our pivot point, P , be of degree δ. Now

let ki, i = 1, 2, · · · ,∆ be the number of points of degree i to which P is connected.

By eliminating the pivot node we reach a graph with the following partition:

β = (1m1−k12m2−k2 · · · δmδ−kδ · · ·∆m∆−k∆).

There are

M(α; k1, k2, · · ·) =
[ ∆∏

i=1,i6=δ

(
mi

ki

)]
·
(
mδ − 1

kδ

)
(3.1)

ways of choosing which specific nodes will connect to the free interfaces of P . Note

that mδ−1 appears instead of mδ because P itself is not allowed to connect to itself.

To avoid counting of fully connected networks that are not considered valid

topologies, we define an invalid partition.

Definition 3.14 Define an invalid sub-partition to be one that is composed of

a non-zero number of fully connected nodes and a non-zero number of empty nodes

and no partially connected nodes.
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As an example of an invalid sub-partition, consider the sub-partition 00003333

for an 8-node 3-regular graph. This sub-partition fits the definition of an invalid

sub-partition. Such a sub-partition is illegal because there are two sets of nodes in

invalid sub-partitions: nodes that are already connected to each other and do not

have any other free interfaces, and empty nodes. This means that at best we could

make two disjoint connected graphs from this kind of sub-partition, which is not

allowed (see Definition 2.3).

Definition 3.15 A partition tree is defined to be a rooted tree that has a network

partition or a degree sequence as its root, and the children of each node are sub-

partitions that are reachable from that node by node elimination steps. The leaves

of a the partition tree are either all-zero subpartition or a subpartition with value of

zero.

In order to build a partition tree, we start from a network partition and re-

cursively find the children for each subpartition by performing a node elimination

step on it. When all the leaves of the tree have a value of either 0 or 1, the partition

tree is complete. In the next section we use this partition tree to generate random

graphs. It is crucial for the random graph generation algorithm to save the partition

tree in memory. Since the tree grows exponentially with the number of nodes in the

graph, it would be hard to keep the tree in its original form. However, the nodes in

a partition tree tend to repeat several times. This property is crucial in reducing the

amount of memory needed to save a partition tree. We build a compact partition

tree the same way as the partition tree, except when we calculate the children of a
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partition p (say p1, p2, · · ·), we check whether each sub-partition pi already exists in

the tree or not. If a partition pi does not already exist in the tree, we create a new

node with that sub-partition. Otherwise, we merely add a link from partition p to

the existing partition pi in the tree. With this method we significantly reduce the

amount of memory needed to save a partition tree in memory. We give statistics

about the amount of memory needed to save a partition tree in Chapter 4. With

application of this compacting procedure the resulting partition tree is no longer

an actual tree. However, we still call it a partition tree because it has the same

information. Figure 3.4 show an example of such compact partition tree.
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Theorem 3.1 Given any starting partition, if the pivot node is selected to be a

partially connected node (except for the initial step), and if the all-zero subpartition is

reached by traversing the partition tree without going through an invalid subpartition,

the resulting topology is valid.

Proof: The mathematical induction is used to prove this theorem. The initial

partition is the sub-partition right after the first node elimination step. This sub-

partition consists of a zero, representing the previous pivot node that has no more

free interfaces, and a set of nodes that have at least one free interface remaining.

Otherwise, an invalid sub-partition is reached. The pivot node is selected from the

set of partially connected nodes. This is depicted in Figure 3.1. This initial sub-

partition has one fully connected node. The following notable properties hold for

the initial sub-partition:

1. The nodes with free interfaces have direct connections only to the fully con-

nected nodes.

2. The pivot node has connections only to the fully connected nodes (no connec-

tions to the nodes with free interfaces).

3. Every node in the set of connected nodes (initially consisting only one node)

has a direct or indirect connection to every other node in this set, i.e. there is

no disjoint subnetwork in it.

4. There are no two nodes in the set of connected nodes that are connected with

more than one lightpath.
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The set of 4 properties above are posed as the induction hypothesis for the

nth step of the algorithm. We prove that if the hypothesis holds for step n, it is

also going to hold for step n+ 1.

Note that for the case of a 3-regular graph, any pivot in the intermediate steps

cannot be a 3 because by definition a pivot node has all zeros to its left and is less

than or equal to any digits to its right. In other words, if a pivot node is 3 all

digits to its left are zeros and all digits to its left are 3’s, which would make the

sub-partition an invalid one.

Now we start from a sub-partition with the 4 properties above and show that

a node elimination step does not change these properties.

Property 1 holds because we always set up connections between the pivot node

and the set of nodes with free connections, and the pivot node joins the set of fully

connected nodes at the end of each node elimination step.

Property 2 holds because the pivot node is always selected from the set of

nodes with free interfaces.

Property 3 holds because if the sub-partition is a valid one the pivot node is

a partially connected node, i.e., it has connections to the fully connected network.

Any other node that joins the fully connected network in the same step as the pivot

node has connections to the pivot node for that elimination step.

Property 4 holds because we never assign two connections between the pivot

node and any other node in the set of nodes with free connections.

Hence, if the series of node elimination steps ends in an all-zero sub-partition

properties 3 and 4 hold for that network and therefore, by definition of valid topolo-

71



Pivot Node


Set of

connected


nodes


Set of nodes

with free


interfaces


Figure 3.1: Initial condition for the induction

gies the resulting topology is valid 2

Figure 3.2 describes the algorithm that finds the value of a partition. To add

clarity to this algorithm, define a partition tree in which the root is the starting

partition, the nodes of the tree are sub-partitions reachable from the root by node

elimination steps, and the leaves of the tree are all-zero, non-graphical or invalid

sub-partitions.

Note that when we start the algorithm the tree is not complete, and in the

intermediate steps the leaves of the tree are just sub-partitions reachable from the

root. But as we complete the algorithm the resulting tree has leaves that are either

all-zero, non-graphical or invalid. The value calculated in this algorithm by defini-

tion represents the number of possible topologies for that network partition given

the constraints that were used to build the tree.

Figure 3.3 shows an example with N = 4 and d = 2 (a 4 node ring). We start

from network partition 2222, showing there are 4 nodes each having 2 free interfaces.

Now we count the number of ways we can connect the first node, with two free

interfaces, to the remaining nodes (a node elimination step), which is

(
3

2

)
= 3.

This number is displayed over the arrow pointing to the resulting network sub-

72



Find the value of a network partition

Input: Network partition pr.

1- create the partition tree with pr as its root.

2- On each arrow in the tree connecting a parent, p, to its ith child, ci,

note the number of ways, µi, the corresponding transition could take

place using Equation 3.1.

3- To each all-zero sub-partition assign a value of 1 and to each invalid

or non-graphical sub-partition assign a value of zero. A value of 1

represents one valid topology and 0 represents no valid topology.

4- Calculate the value V (p) of each node p, with l children, from the

value V (ci), i = 1, · · · , l of its children, as follows: V (p) =
∑
i µi.V (ci),

i = 1, · · · , l.

5- Stop when the value of the root of the tree is calculated.

Output: V (pr)

Figure 3.2: Algorithm to calculate the value of a network partition
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partition. As indicated in Definition 3.11, we always sort the digits so that all the

zeros are on the left and all d’s are on the right. One consequence of this sorting

is that we connect the nodes with fewer free interfaces first. It turns out that for

ring networks the resulting tree has one main branch and all side branches result in

invalid states. As a result, the formula for ring networks simplifies to (N − 1)!/2.

The example depicted in Figure 3.4 shows the details of this algorithm for a

network with N = 6 and d = 3. We see that for this network there are some valid

branches in the tree. We can also see that, as we go through different branches,

some sub-partitions repeat. In such cases we can calculate the value for one of

them and use the same figure for the others. For simplicity, we have combined

such nodes into one. For example, state 000123 has no possible combinations that

result in a valid topology. Thus, we can assign value of 0 to this state without

having to do the calculations every time. Non-graphical sub-partitions that could

arise in our calculations for networks of up to 10 nodes are all sub-partitions ending

in 02, 013, 022, 033, 0123, 0233, 01133, 01333. Note that the list above is for

networks with the constraint of 3 interfaces per node. As the size of the network gets

bigger some invalid sub-partitions also arise in the corresponding trees. Examples of

such invalid sub-partitions are 0000333333, and 0000003333 for a 10-node network.

Keeping track of such invalid sub-partitions is very easy for d-regular graphs and is

automatic when we sort the degree sequence in ascending order, because by taking

the lowest degree as pivot we guarantee that if the sub-partition is not invalid, the

pivot is not an empty node. In [52] the authors take the pivot node to be one with

the highest degree; they do not care about the connectedness of the graph.
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Figure 3.3: Calculation of number of possible topologies in a 4 node network with

2 interfaces available at each node.

For non-regular graphs, we keep track of the non-empty, non-zero nodes by

placing a ∗ next to each one and we have to select the pivot from these nodes. With

this minor modification, we are able to count the connected graphs with any degree

sequence.

As an example of how we calculated the number of ways we could go from

one sub-partition to its children in the tree consider sub-partition 022233 in Figure

3.4. We expect to connect the node represented by the leftmost nonzero digit in the

sub-partition that has two interfaces to other nodes to its right. The first option is

to connect both of the interfaces to nodes that have two free interfaces remaining.

In this case there is only one possible way, because there are only two such nodes

available and we have two free interfaces. The second option is to connect both

interfaces to nodes that have three free interfaces. In this case also there is only one

possible way, because there are two interfaces to be connected and there are two

nodes remaining with three free interfaces. The third option is to connect one of

the interfaces to a node with two free interfaces and the other interface to a node

with three free interfaces. In this case there are

(
2

1

)
.

(
2

1

)
= 4 possibilities.

Using this algorithm we can calculate the number of possible topologies for

6-, 8-, and 10-node networks. In Table 3.1 we compare this number to that of ring
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Figure 3.4: A compact partition tree and calculation of number of possible topologies

in a 6 node network with 3 interfaces available at each node.

Number of nodes 2 interfaces per node 3 interfaces per node

4 3 1

6 60 70

8 2520 19320

10 181440 11166120

Table 3.1: Number of possible topologies, 2- vs. 3-interface constraint for each node

networks. The values of the partitions found in calculation of the smaller networks

could be used recursively in calculating the values of the partitions for the larger

networks. By saving these values in a reference table the computation time for the

larger networks will be reduced.

3.2 Random graphs with uniform distribution

In this section we define an algorithm that can generate random topologies

with uniform distribution with a given degree sequence. First we build the compact
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partition tree for the given degree sequence. Then for generating a random graph,

we start from the root of the partition tree and randomly pick a path from the root

of the tree to an all-zero child. Each such path corresponds to a graph with the

given degree sequence.

Definition 3.16 The connect subset of a node is the subset of nodes that have a

lightpath to this node. It is represented by the corresponding d node numbers sorted

in ascending order from left to right.

For example if node 0 is connected to nodes 3, 5 and 9, the corresponding

connect subset for it would be {3, 5, 9} or in short 359. In each iteration of the

algorithm described in Figure 3.5, the connect subset of one of the partially con-

nected nodes is selected and as a result, at least one node is added to the set of fully

connected nodes.

Theorem 3.2 The algorithm in Figure 3.5 has the following properties:

A. It chooses each possible graph with the given degree sequence uniformly at

random.

B. It generate a valid graph with every run with probability 1.

C. It has a runtime on the order of O(Nd log(d)) for d-regular graphs.

Proof:

A. This part of this theorem is straightforward, since at every decision point the

algorithm picks a branch with a probability proportional to the number of

possible graphs that could stem from that branch.
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Uniform generation of random topologies

Input: P0 = P , network partition

Initialization: Create a compact partition tree with the network partition as its root. Set

j ← 0. Set the current partition p to be the root of the partition tree.

1- Randomly pick a node m from the pivot candidates, i.e., nodes with the lowest number

of free interfaces.

2- Pick branch i stemming from p (leading to child ci of p), with probability proportional

to µiV (ci).

3- Out of the µi ways child ci can be reached, pick one at random and find the correspond-

ing connect subset for the pivot node.

4- If ci is the all-zero partition stop, otherwise set p ← ci and go to Step 2.

Output: Random graph picked uniformly at random from the set of all possible graphs with

the given degree sequence.

Figure 3.5: Random topology generation algorithm (uniform distribution)
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B. Since the branches of the partition tree that end in invalid or non-graphical

partitions have a value of zero, those branches are picked with a probability

of zero.

C. Each iteration of the algorithm includes Steps 2, and 3. Step 2 is a weighted

selection of one of the branches. For child j of the current node (which has k

children), the cumulative weight
∑j

i=0
µiV (ci)∑k

i=0
µiV (ci)

is calculated when the partition

tree is built. A random number 0 ≤ r ≤ 1 is generated. A binary search

is performed to find the smallest j for which the cumulative weight is larger

than r. This binary search has a runtime of O(log(k)). To find the worst

case k, consider that the pivot node is at most d, and there are at most d

digits in the partition for the current node. Assuming that the power of each

digit in the partition corresponding to the current node is larger than d, the

worst case scenario results in dd branches. Therefore, the runtime of this

step is at most d log(d). In Step 3, at most d interfaces of the pivot will be

connected to d nodes matching the selection made in Step 2. There are at

most N − 1 iterations. Therefore, the worst case complexity of this algorithm

is O(Nd log(d))2

Note that worst case scenario for Step 2 only happens when N is in the order of

d2. Therefore, for small N a runtime of O(Nd) is expected. In Chapter 4, numerical

results for the runtime of this algorithm are provided.

It should be noted that the initialization for the algorithm has a runtime that

grows as a polynomial in the number of nodes in the graph. But once the partition
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tree is complete, the speed of the algorithm is faster than any other algorithm in

the literature (see Section 1.5). In Chapter 4 we give the runtime of the simulations

we ran for this algorithm.

The very fast runtime of this algorithm is due to property B. The main reason

for a higher runtime for pairing algorithms is that they cannot guarantee that at the

end of each attempt they have a valid graph. The best algorithm available in the

literature (see [8]) is based on the pairing model and has a runtime of O(md 1
ε2

log 1
δ
)

to obtain a distribution within 1+ε of the uniform distribution and failure probability

of less than δ; i.e., such algorithms have a large runtime to generate close to uniform

distributions and low failure probability.

Our algorithm has the following advantages compared to the algorithm given

in [8]:

• After the initialization, our algorithm is extremely fast and generates random

topologies on the order of O(Nd log(d)), where N is the number of nodes in

the network and d is the average degree of each node.

• There is no trial and error, and the graph reached at the end of the algorithm

is valid and connected with certainty.

• The distribution generated by our algorithm is exactly uniform.

• Our algorithm can be used to generate general random graphs with any degree

sequence. There are no restrictions on the type or degree sequence of the graph.
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The only drawback of our algorithm is that there is a precalculation necessary

for it to set up the database for each possible degree sequence that could appear in

the corresponding partition tree. This database gets quite large for networks with a

large number of nodes and especially larger if the maximum degree of the nodes in

the network is large. In Chapter 4 we give some numerical results as to how large

a database we need as the number of nodes in the network grows. It turns out that

using this algorithm it is practical to generate random graphs with up to 200 nodes

for 3-regular graphs, 50 nodes for 6-regular graphs, and 30 nodes for 12-regular

graphs, and so on.

3.3 A variation of the random topology generation algorithm

In this section we introduce a variation of the random topology generation

algorithm that uses a matrix P to create bias towards topologies with better cost.

We assume we have an N -node network and each node has d interfaces. Define a

probability matrix, P , with N rows and

(
N

d

)
columns. Each column represents one

possible connect subset for each node. Going back to the 10-node network example

if d = 3, and N = 10, there are 120 columns that start with connect subset 012,

and end with 789.

Each row Pm of matrix P gives a probability distribution for selecting a con-

nect subset for node m. Matrix P is updated after each iteration of the algorithm to

show the valid connect subsets for each node with positive probability. Therefore,

P must meet the following consistency checks:
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• Every row of P must sum up to 1.

• The elements of the matrix P where the row number is one of the members of

the connect subset are set to zero.

• For a partially connected topology, each nonzero element in row m of the

matrix P must correspond to a connect subset that includes nodes that node

m is already connected to.

It should be noted that there is a degenerate probability matrix corresponding

to every given topology. To find this degenerate matrix, we start with a zero matrix

with the size of P . Then we go through each row, m, of this matrix and place a

1 in the column which corresponds to the node combination that is connected to

the node m in the topology. As we will explain in the next section, the purpose of

the MRAS iteration is to reach one such degenerate matrix that corresponds to the

solution topology.

Now we define an algorithm that starts from a probability distribution matrix

P , and generates a random topology. The algorithm in Figure 3.6 is used to generate

such a random topology. During each iteration the probability matrix P is modified.

The subsequent matrix is represented by Pj, where j is the iteration step of the

algorithm.

Now we examine the topology generation algorithm more closely. In step 5

we eliminate all entries in the probability matrix that result in an invalid topology.

First, in step (5.A) we make sure that for the nodes that have been already con-

nected, the corresponding row has all zeros except a 1 that represents the connect
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Random topology generation with bias

Input: P0 = P , network partition

Initialization: Create a tree with the network partition as its root. Set j ← 0.

1- Randomly pick a node m from the pivot candidates, i.e., nodes with the lowest number

of free interfaces.

2- Use the probability mass function in row m to pick the connect subset (abc) to node m.

3- Connect node m to all nodes in the connect subset picked in step 2 and determine the

resulting sub-partition.

4- If the new sub-partition is all-zero, Stop. Otherwise continue to step 5.

5- Update Pj to find Pj+1 using the following steps:

[A-] In row m set entry corresponding to connect subset abc to 1 and set every

other entry to zero.

[B-] In rows a, b, and c, set every entry corresponding to connect subsets that do

not include m to zero.

[C-] In rows other than a, b, c, and m, set every entry corresponding to a connect

subset that includes m to zero.

[D-] In every row, including a, b, and c set every entry corresponding to a connect

subset that results in an invalid sub-partition to zero.

[E-] Normalize the rows of the resulting matrix.

6- Go back to step 1.

Output: A random topology consistent with the network partition and biased by matrix P .

Figure 3.6: Random topology generation with bias
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subset connected to that node. Then in step (5.B) we make sure that the connect

subsets that have a chance to be selected in the future include node m that is al-

ready connected to a, b, and c. In step (5.C) we make sure that no other node is

going to connect to m, since m does not have any remaining interfaces. Finally, in

step (5.D) we make sure that no invalid sub-partition has a chance to be selected in

the future steps. The resulting P matrix ensures that we generate a valid topology

at every attempt.

Property 3.1 The distribution of the connect subsets for each node in sample

topologies generated using this algorithm does not generally match the rows of matrix

P .

The reason for this phenomenon is that the conditional probability of picking

a connect subset for a node depends on the order in which we pick our pivot nodes.

If we fixed our first pivot node to be node m, the distribution of the connect subsets

for node m would match row m of matric P . However this same statement does not

hold for nodes other than m, because of how we update rows of matrix P in step 5

of the algorithm.

One special case (exception to above property) is when we have a symmetric

degree sequence and matrix P has uniform distribution in every row. In this special

case due to the symmetric nature of the problem biases given to each topology due

to the picking order averages out over different picking orders.

Despite Property 3.1, the algorithm above is very useful in implementing the

MRAS method for our problem. We randomize the picking order to reduce the

84



amount of bias given to topologies due to the picking order. Therefore, the resulting

sample of topologies generated using this algorithm is in some neighborhood of the

intended distribution. As we progress through stages of the MRAS method and the

distributions in matrix P become more concentrated, the effects of Property 3.1 are

reduced and eventually disappear.

3.4 Model Reference Adaptive Search Algorithm

The MRAS algorithm(see [29]) is a generic model based approach to combi-

natorial and continuous optimization problems, where a solution space is created

using a probability model that is updated in every step of the algorithm to improve

the probability of getting a sample solution with better cost. In this method a se-

quence of parameterized probability distributions is defined, and in each iteration

of the algorithm the parameters of the probability distributions are updated such

that the sample solutions generated by using the probability distributions are more

concentrated on solutions with better cost function. The MRAS method is similar

to another algorithm called the Cross Entropy (CE) method ([22], [60]) that uses

a similar sequence of parameterized probability distributions. However the MRAS

method guarantees convergence to a solution with very mild assumptions.

Both the MRAS and CE methods involve an iterative procedure where each

iteration can be broken down into two phases:

• Generate random sample solutions based on a parameterized probability dis-

tribution.
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• Update the parameters of the probability distribution based on the costs as-

sociated with the samples generated in the first phase, in order to bias the

future generation of the samples towards solutions with better cost.

To be able to use this algorithm, we first need to find a way to generate

valid topologies based on a probability distribution function. This is done using

the random topology generation algorithm explained in the previous section. Then

in each iteration we update the probability distribution matrix that generates the

topologies in such a way that the topologies that return lower costs are more likely

to be generated in the subsequent iterations. The iteration will end in a degenerate

probability matrix that would generate the same topology every time. That topology

is the solution found by MRAS.

In [20] the theory behind MRAS algorithm is given for a maximization prob-

lem. Here we apply this approach for a minimization problem. Consider the opti-

mization problem below:

x∗ = arg min
x∈χ J(x) (3.2)

where χ is a non-empty set and J : χ → < is a deterministic function that is

bounded from above, i.e., ∃M < ∞ such that J(x) < M,∀x ∈ χ. We assume that

Equation 3.2 has a unique global optimal solution.

We define a parameterized family of distributions {f(·, θ), θ ∈ Θ} on the solu-

tion space, where Θ is the parameter space. At the kth iteration of the algorithm

we use the distribution function f(·, θk) to generate candidate solutions. The per-
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formance of these sample solutions is used to find the parameter θk+1 ∈ Θ for the

next iteration according to a parameter updating rule. If this rule is selected ap-

propriately, future iterations of the method generate distribution functions that are

more concentrated on better solutions. We continue the iterations until we reach a

stopping criterion.

The parameter updating in MRAS uses another sequence of distributions

{gk(.)}, called the reference distributions. At each iteration of the MRAS method

the new parameters θk+1 are calculated by minimizing the Kullback-Leibler (KL)

divergence D(gk, f(·, θk)) of the reference distribution and the parameterized distri-

bution:

D(gk, f(·, θk)) := Egk

[
ln

gk(X)

f(X, θ)

]
=
∑
x∈χ

ln
gk(x)

f(x, θ)
gk(x), (3.3)

where Egk [·] is the expectation with respect to gk(·). The parameterized distribution

f(·, θk+1) can be viewed as an approximation of the reference distribution gk(·). Our

selection of the reference distribution is mainly responsible for the performance of

the algorithm.

The reference distribution selected in MRAS is constructed using the following

scheme. An initial probability mass function (p.m.f.) g0(x) > 0,∀x ∈ χ is selected

on the solution space χ. At each iteration k ≥ 1, a new p.m.f. is calculated by

tilting the old p.m.f. gk−1(x) with the cost function J(x).

gk(x) =
H(J(x))gk−1(x)∑
x∈χH(J(x))gk−1(x)

,∀x ∈ χ, (3.4)
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where H : < → <+ is a strictly decreasing function. Equation 3.4 assigns more

weight to the solutions with lower cost. As a result, each iteration of this updating

scheme improves the expected performance. i.e.,

Egk [H(J(X))] =
Egk−1

[H(J(X))2]

Egk−1
[H(J(X))]

≥ Egk−1
[H(J(X))] (3.5)

or

Egk [J(X)] ≤ Egk−1
[J(X)] (3.6)

It is also possible to show that {gk(·), k = 0, 1, · · ·} converges to a distribution

that concentrates only on the optimal solution, for an arbitrary initial reference

distribution, g0(·). Therefore, limk→∞Egk [H(J(X))] = H(J(x∗)).

In Figure 3.7, we give the MRAS0 algorithm, also known as idealized version

of MRAS, as stated in [20]. Pθk is the probability taken with respect to distribution

f(·, θk), i.e.,

Pθk(J(X) ≥ q) =
∑
χ

I{J(X) ≥ q}f(x, θk). (3.10)

This version of the algorithm assumes that objective function J(·) is deter-

ministic and the expectations on the solution space can be evaluated exactly.

It can be shown ([20]) that the solution found by MRAS0, is in fact the optimal

solution. However the idealized version of MRAS is not very useful as it can be

applied only to problems with small solution spaces, where it is more efficient to

find the optimal solution directly.

In the case of our topology space this is feasible for small networks, where we

can calculate the expectations for all possible topologies with the given number of
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MRAS0 algorithm

Input: ρ ∈ (0, 1], ε ≥ 0, strictly decreasing function H : < → <+, family of

distributions {f(·, θ)}, with θ0 such that f(x, θ0) > 0∀x ∈ χ.

Initialization: Set iteration count k = 0.

Loop until the stopping criterion is satisfied:

1- Calculate the (1− ρ)-quantile:

qk = sup
l
{l : Pθk(J(X) ≤ l) ≥ ρ}. (3.7)

2- Update elite threshold:

q̄k =





qk if k = 0 or qk ≥ q̄k−1 + ε;

q̄k−1 otherwise.
(3.8)

3- Update parameter vector:

θk+1 = arg min
θ∈Θ

Eθk

[
[H(J(X))]k

f(X, θk)
I{J(X) ≤ q̄k} ln f(X, θk)

]
(3.9)

4- k ← k + 1

Output: θk

Figure 3.7: Algorithm MRAS0
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nodes and degree sequence. For example we can apply the MRAS0 algorithm, also

known as idealized MRAS, to a network of 6 nodes, each having 3 free interfaces.

But in such small networks we can directly find the best topology by just comparing

the costs for each topology (there are 70 combinations for a 6 node network).

Figure 3.8 shows the MRAS1 algorithm as given in [20], also known as the

Monte Carlo version of MRAS. This version of the algorithm is the stochastic coun-

terpart of MRAS0, in which only a limited number of samples are used in each

iteration and expected values in the algorithm are replaced by their corresponding

sample averages. For instance, the parameter updating rule is replaced with

θ̃k+1 = arg max
θ∈Θ

1

N

N∑

i=1

[H(J(Xi))]
k

f(Xi, θ̃k)
I{H(J(Xi)) ≤ q̃k+1} ln f(Xi, θ), (3.11)

where Xis are i.i.d. random samples generated using f(x, θ̃k), θ̃k is the estimated

parameter vector computed at the previous iteration, and q̃k+1 is a threshold deter-

mined by the sample (1− ρ)-quantile of H(J(X1)), · · · , H(J(XN)).

The theoretical convergence of the algorithm is no longer guaranteed, and

neither is the convergence to the optimal point. For example, the set {x : J(x) <

q̃k+1} turns out to be empty if the sample solutions generated at the current iteration

are much worse than the samples of the last iteration. Or if the optimal solution to

the problem is never generated in any of the random sample sets, it may never be

discovered. The former problem is resolved by adaptively increasing the sample size

N , and adaptively decreasing parameter ρ. The latter problem may not be resolved

completely, so the MRAS1 algorithm may terminate in a suboptimal solution. But

in practice the solutions found by this algorithm are very close to, if not the optimal
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solution.

We now turn our attention to the specific problem of static topology optimiza-

tion, where we want to find the best topology given a constant traffic pattern. As

defined before, χ is the set of all topologies and cost function J(·) is defined on this

set and the constant traffic pattern is embedded in the cost function. The objective

is to find the topology that minimizes the cost function.

min
x∈χ J(x) (3.14)

In order to implement the MRAS algorithm for our topology optimization

problem, we need to be able to generate random topologies according to a parame-

terized probability distribution, and then be able to evaluate the sample topologies

and update the parameters of the distribution. We start by a probability matrix

P constructed in Section 3.3 and we show how to generate random topologies in a

way that the updating formula is easily determined. For the sake of easier notation,

we assume that the random topology we are trying to build has N nodes and each

node has exactly d interfaces (regular connected labeled graph)., matrix P has an

N × Nc dimensions, where Nc =

(
N

d

)
. The TSP problem becomes a special case

of this problem with d = 2. Even though we have a more general form of TSP, our

optimization problem is not the same as a generalized TSP as explained in [44], and

[63].

We first assume that our connections are unidirectional and in order to create

a bidirectional connection between nodes i and j, we need to set up two connections,

one from i to j and one from j to i. We select the connections from node i = 0, · · · , N
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MRAS1 algorithm

Input: ρ ∈ (0, 1], and initial sample size N0 > 1, ε ≥ 0, α > 1, a mixing coefficient

λ ∈ (0, 1], strictly decreasing function H : < → <+, family of distributions {f(·, θ)},

with θ0 such that f(x, θ0) > 0∀x ∈ χ.

Initialization: Set iteration count k = 0 and θ̃0 = θ0.

Loop until the stopping criterion is satisfied:

1- Generate Nk i.i.d. samples Xk
1 , · · · , Xk

Nk
according to f̃(·, θ̃) := (1 − λ)f(·, θ̃k) +

λf(·, θ0).

2- Calculate the (1− ρ)-quantile:

q̃k+1(ρk, Nk) := H(d(1−ρk)Nke), (3.12)

where dae is the smallest integer greater than a and H(i) is the ith order statistic

of the sequence {H(J(Xk
i )), i = 1, · · · , Nk}.

3- if k = 0 or q̃k+1(ρk, Nk) ≥ q̃k + ε
2 , then

[3a.] Set q̃k+1 ← q̃k+1(ρk, Nk), ρk+1 ← ρk, Nk+1 ← Nk.

else, find the largest ρ̄ ∈ (0, ρk) such that q̃k+1(ρ̄, Nk) ≥ q̃k + ε
2 .

[3b.] If such a ρ̄ exists, then set q̃k+1 ← q̃k+1(ρ̄, Nk), ρk+1 ← ρ̄, Nk+1 ← Nk.

[3c.] else (if no such ρ̄ exists), set q̃k+1 ← q̃k, ρk+1 ← ρk, Nk+1 ← dαNke.

endif

4- Update parameter vector:

θ̃k+1 = arg max
θ∈Θ

1
Nk

Nk∑

i=1

[H(J(Xk
i ))]k

f̃(Xk
i , θ̃k)

I{H(J(Xk
i )) ≥ q̃k+1} ln f(Xk

i , θk) (3.13)

4- k ← k + 1

Figure 3.8: Algorithm MRAS1
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to other nodes based on the probability distribution represented by row Pi. We

denote the set of all graphs that can be constructed in this fashion χ̃. Note that if

for every connection i → j, we happen to have a connection j → i, the resulting

graph meets our definition of a topology. We can construct all possible topologies

using this method, i.e. χ ⊂ χ̃.

We define a new cost function J̃(·) on χ̃ as follows:

J̄(x̃) =





J(x) if x ∈ χ;

∞ otherwise.

(3.15)

Then obviously Equation 3.14 is equivalent to

min
x∈χ̃

J̃(x). (3.16)

Now we define a probability distribution function f(·, P ), parameterized by

the matrix P :

f(·, x) =
N∏

i=1

Nc∑

j=1

pijI{x ∈ χ̃ij}, (3.17)

where χ̃ij represents all graphs in which node i is connected to the connect subset

corresponding to column j of the matrix P . The updating rules for this modified

problem follow from applying Lagrange multipliers to Equation 3.11. Parameter θ

is replaced with probability matrix P , and imposing the constraint that each row of

matrix P sums up to 1. Pk+1 is the solution to the following optimization problem.

max
P

min
u

[
1

Nk

Nk∑

n=1

[H(J(Xn))]k

f(Xn, Pk)
I{H(J(Xn)) ≤ q̃k+1} ln f(Xn, P ) +

N∑

i=1

ui

( Nc∑

j=1

pij − 1
)]
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where, Nk is the number of sample topologies generated using Pk in stage k of

MRAS1, and u = (u1, · · · , uN) is the vector of Lagrange multipliers. Differentiating

the expression within square brackets above with respect to pij, yields, for all j =

1, · · · , Nc,

1
Nk

∑Nk
n=1

[H(J(Xn))]k

f(Xn,Pk)
I{H(J(Xn)) ≤ q̃k+1}I{Xn ∈ χ̃ij}

pij
+ ui = 0. (3.18)

Summing over all j = 1, · · · , Nc,

1

Nk

Nk∑

n=1

[H(J(Xn))]k

f(Xn, Pk)
I{H(J(Xn)) ≤ q̃k+1} = −ui (3.19)

because
∑
j I{Xn ∈ χ̃ij} = 1, since node i has to be connected to one and only

one of the possible connect subsets. Therefore, combining Equations 3.18 and 3.19,

gives

pij =

∑Nk
n=1

[H(J(Xn))]k

f(Xn,Pk)
I{H(J(Xn)) ≤ q̃k+1}I{Xn ∈ χ̃ij}

∑Nk
n=1

[H(J(Xn))]k

f(Xn,Pk)
I{H(J(Xn)) ≤ q̃k+1}

(3.20)

Theoretically, we can carry out the sample generation and parameter updating

this way. However, we will not do so, since the majority of graphs generated using

the above method have a cost of∞ and are not valid topologies. Instead, we use the

topology generation algorithm of Section 3.3, to speed up the process of topology

generation. Since we now generate only valid topologies, we can replace χ̃ with χ

in Equation 3.20.

Figure 3.9 shows the details of the MRAS algorithm for the problem of finding

the best topology for a given traffic matrix. The solutions found by this algorithm

are compared to our MMDP solutions in the next chapter.
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MRAS1 algorithm for topology optimization

Input: Traffic matrix, ρ ∈ (0, 1], and initial sample size N0 > 1, ε ≥ 0, α > 1, a mixing

coefficient λ ∈ (0, 1], strictly decreasing function H : < → <+, family of distributions

{f(·, P )}, with P0 being the uniform distribution.

Initialization: Set iteration count k = 0 and P̃0 = P0.

Loop until the stopping criterion is satisfied:

1- Generate Nk i.i.d. samples Xk
1 , · · · , Xk

Nk
using the topology generation algorithm

according to P̃ := (1− λ)Pk + λP0.

2- Using the given traffic matrix calculate the cost for each of the sample topologies.

2- Calculate the (1− ρ)-quantile:

q̃k+1(ρk, Nk) := H(d(1−ρk)Nke), (3.21)

where dae is the smallest integer greater than a and H(i) is the ith order statistic

of the sequence {H(J(Xk
i )), i = 1, · · · , Nk}.

3- if k = 0 or q̃k+1(ρk, Nk) ≥ q̃k + ε
2 , then

[3a.] Set q̃k+1 ← q̃k+1(ρk, Nk), ρk+1 ← ρk, Nk+1 ← Nk.

else, find the largest ρ̄ ∈ (0, ρk) such that q̃k+1(ρ̄, Nk) ≥ q̃k + ε
2 .

[3b.] If such a ρ̄ exists, then set q̃k+1 ← q̃k+1(ρ̄, Nk), ρk+1 ← ρ̄, Nk+1 ← Nk.

[3c.] else (if no such ρ̄ exists), set q̃k+1 ← q̃k, ρk+1 ← ρk, Nk+1 ← dαNke.

endif

4- Update parameter vector:

pij =

∑Nk
n=1

[H(J(Xn))]k

f(Xn,Pk) I{H(J(Xn)) ≤ q̃k+1}I{Xn ∈ χij}
∑Nk
n=1

[H(J(Xn))]k

f(Xn,Pk) I{H(J(Xn)) ≤ q̃k+1}
(3.22)

4- k ← k + 1

Figure 3.9: Algorithm MRAS1 for the topology optimization problem
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Chapter 4

Numerical results

This chapter is divided into two sections. In section 4.1 the performance of

the random graph generation algorithm is demonstrated for networks with various

sizes. In section 4.2 the performance of the logical topology optimization algorithms

are evaluated for both the static and dynamic traffic cases.

4.1 Random Graph Generator

The random graph generation algorithm was implemented and the runtime

of the algorithm for graphs of various sizes was measured. The simulations were

limited to regular graphs, mainly because it is much easier to summarize the results

for regular graphs than for graphs with irregular degree sequences. Figure 4.1 shows

the runtime of the uniform graph generator algorithm, generating 100000 graphs

in every instance, for graphs with up to 50 nodes. The runtime is calculated for

different regularity of the graph (d).

To explain the behavior seen in Figure 4.1, we need to refer back to the al-

gorithm in Figure 3.5. As was explained in the proof of Theorem 3.2, there are N

iterations of the algorithm and Steps 2 and 3 of the algorithm have complexity of

d log(d) and d respectively. However, d log(d) becomes visible only when N gets

large. For small N , the number of branches at each node of the partition tree is
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Figure 4.1: Runtime for generating 100000 random graphs.

very small and the runtime of Step 2 becomes negligible. Therefore, for small N ,

we expect a runtime of O(Nd), and as N gets larger we expect the runtime to be

O(Nd). This explains why the runtime of the algorithm does not increase linearly

with N , when d >= 5. For d = 3, 4 the term log(d) is very small and therefore, the

runtime of the Steps 2 and 3 become very close to each other. As a result for small

d the runtime grows almost linearly.

Figure 4.2 shows the runtime of the algorithm versus the regularity of the

graphs (d). Here also, the nonlinear growth of Nd log(d) is more pronounced for

larger N .
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Figure 4.2: Runtime for generating 100000 random graphs.
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Figure 4.3: Number of database entries needed for the partition tree.

Figure 4.3 shows the number of nodes in the partition tree on a log scale,

versus the number of nodes in the graph. This is directly related to the amount

of memory needed to save the partition tree. The graph shows the partition tree

seems to have a polynomial growth, and the degree of the polynomial increases as

the regularity (d) of the graph increases.
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4.2 Performance of the topology optimization algorithms

In this section we examine different algorithms and the effect of design pa-

rameters on the performance of the network using simulation results. We divide

the simulation results into two subsections. Section 4.2.1 goes into detail about the

simulations with fixed traffic. Section 4.2.2 examines important design problems

when there is dynamic traffic involved.

The following parameters have been used for all the simulations throughout

this section; unless stated otherwise, the network is selected to have 10 nodes and

each node has 3 interfaces. Each interface is assumed to have a capacity of 36000.

In the fast time scale cost function (Equation 2.2) β is selected to be 1× 10−5.

In the dynamic case we consider two types of traffic. The first type is generated

randomly and the second type is real data taken from the Abilene network (see [1])

traffic during a 5-week period as explained in Section 4.2.3. The dynamic traffic

patterns are also scaled to create periods of congestion in the network.

4.2.1 Fixed Traffic

Fixed traffic patterns are generated by first picking a real number between 0

and 1 for each S-D pair, where this number represents the ratio of the traffic demand

of each S-D pair to a reference demand. Then by selecting the reference demand

we can scale the traffic pattern to one with various congestion levels in the network.

There are three traffic levels that are considered here. In the light traffic case there

is no topology change required to be able to accommodate all the traffic. In this
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case the changes made to the topology seek to improve the utilization of the the

network. In the moderate traffic case, we scale the network traffic such that if we

take no actions during the simulation, we might lose some traffic. However, we can

easily get to a topology that incurs no loss of traffic. In the heavy traffic case we

have a very congested network, and without a few topology changes we are going to

incur a lot of traffic loss. 100 sample traffic patterns were generated for each of the

light, moderate, and heavy traffic cases. These samples were used throughout this

section as input to our simulations.

4.2.1.1 Fast time scale policy evaluation using MRAS results

The fast time scale policy is evaluated in this section. There are three policies

that are used.

• The optimal solution to the fast time scale problem, that is found by solving

the quadratic programming problem of routing traffic through different LSPs

available for each S-D pair;

• The heuristic of Figure 2.8;

• The single LSP case, where each S-D pair is restricted to a single LSP.

The single LSP case, in effect, eliminates the fast time scale, since there is no

decision to be made about how to distribute the traffic among LSPs of each S-D

pair. This is equivalent to the shortest path routing of each S-D pair, since in this

case the LSP with the least number of hops is selected for each S-D pair.

101



Traffic type Optimal Heuristic Ratio to Opt Single LSP Ratio to Opt

Heavy 55565.8 58258.9 1.048 60570.0 1.090

Moderate 39227.6 41513.4 1.058 42601.9 1.086

Light 25960.7 27461.1 1.058 28298.7 1.090

Table 4.1: Comparing the fast time scale heuristic to the optimal and single LSP

solutions.

The MRAS method was used to search for the best topology for each of the

sample traffic patterns. The solutions in this section are going to be used as reference

solutions for the following sections where slow time scale policies are evaluated.

Table 4.1 compares the fast time scale heuristic to the best and worst case scenarios,

i.e., the optimal case and the single LSP case. The tabulated results show that the

single LSP case is about 8.8% worse than the optimal solution and the fast time

scale heuristic is about 5.5% worse than the optimal solution.

Obviously, the single LSP case does not involve any calculations. Quadratic

programming problem takes about 3 times longer than the heuristic algorithm. If

there is some computing power to run the heuristic algorithm, we can do some load

balancing to improve the congestion in the network. If there is more time to solve

a quadratic programming problem at the fast time scale, we take full advantage of

the load balancing at the fast time scale.

102



Samples per Average Deviation Average Matched the

iteration from optimal cost ranking optimal solution

20 5.15% 28.8 0

50 1.59% 4.7 30%

Table 4.2: Comparing the MRAS solution to the optimal solution.

4.2.1.2 Evaluating the MRAS solution

In this section the performance of the MRAS solution is evaluated compared

to the optimal topology. It is not tractable to do this comparison for networks of

10 or more nodes, as the number of possible topologies becomes extremely large.

Therefore, in this section we consider a network of 8 nodes only. For an 8 node

network with each node having a degree of 3, there are 19320 possible topologies. A

full search of these topologies results in the optimal topology. The number of samples

generated in each iteration of the MRAS is a parameter that affects the accuracy of

the final solution. Obviously, the larger the sample size at each iteration, the better

the result is going to be. Simulations were performed using two different values of

20 and 50 samples per iteration for 50 different traffic patterns. Table 4.2 shows

the average ranking of the MRAS solution. Note that the ranking in this case is a

number between 1 and 19320.

For the 10 node network we use the number of samples to be 1000.
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4.2.1.3 Comparing heuristic and rollout algorithms

In this section the performance of the heuristic and rollout algorithms are

compared to each other and to the MRAS solutions. The traffic samples used in

this experiment are the same samples referenced at the beginning of Section 4.2.1

and the initial topologies are selected at random. The greedy heuristic algorithm for

the slow time scale performed extremely well compared to both rollout and MRAS.

This can be seen from the summary of results in Table 4.3. The elements of this

table are determined as follows: For each instance of the traffic pattern the best and

worst topologies were found using the MRAS method. The average cost of those

topologies over all 300 instances of the traffic pattern makes up the average min and

max. The heuristic and rollout algorithms were executed for the same instances and

the corresponding cost of the solutions found by the each policy was averaged to

make the remaining elements of the average row. Then we normalized the average

row such that the min and max are set to 0 and 100 respectively. We can see that the

heuristic and rollout policies generate solutions that are only 0.55% and 0.12% off

of the minimum cost. It should be noted that rollout policy, in some cases, returned

solutions that had a better cost than the MRAS solutions. In those cases the rollout

solution replaced the MRAS solution such that the min value given in the table 4.3

is the actual minimum found by either of the methods. This was mainly done to

avoid negative numbers in the normalized row.

Figure 4.4 is composed of 10 different graphs corresponding to 10 sample traffic

patterns. Each graph for the heuristic and rollout shows the progression of the
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Min Max Heuristic Rollout

Average 42224.7 151179.5 42826.0 42358.9

Normalized average 0 100 0.5585 0.1197

Table 4.3: Comparing performance of heuristic and rollout.

heuristic and rollout algorithms from the cost of the initial topology until they

reach a local minimum. We have allowed 10 steps for each run of the heuristic or

rollout to find the corresponding end point. For each of those simulations the initial

topology is the same for heuristic and rollout. For that reason the heuristic and

rollout graphs start from the same random starting point (at step 0,10, 20 ,...). No

action policy is one in which no action is taken. As a result for the no action policy

the initial topology does not change and neither does the corresponding cost (for

constant traffic case). The graph for no action is also provided for reference.

The excellent performance of the heuristic algorithm prompted further inves-

tigation of the situation. Our simulations showed that given any initial topology

for a 10 node network, there are approximately 60 admissible branch exchanges.

Consider the initial topology to be the worst topology for the given traffic pattern.

In that case all 60 BEs result in a better topology. As the heuristic algorithm makes

the decision for each step and selects a new topology, a smaller fraction of the 60

BEs for the new topology results in a better topology. The heuristic algorithm stops

when it reaches a local minimum, which is equivalent to a topology for which all

admissible branch exchanges result in a topology with worse cost.
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Figure 4.4: Graphical comparison of the performance of heuristic and rollout poli-

cies.

In the next experiment we use the method described in Section 2.4.5.3 with

parameters γl = 0.05 and γh = 0.80, to reduce the number of admissible branch

exchanges for any given topology. As a result, the direction of the search for the

heuristic and rollout algorithms becomes more limited and there is a bigger chance

that we run out of BEs that lead to topologies with better cost. This is illustrated

in Figure 4.5, for the same traffic patterns of Figure 4.4. Clearly, the heuristic

algorithm for the more restrictive set of BEs is more improved by the rollout than

in the previous case. This is an indication that in cases where external restrictions

are placed on the set of admissible branch exchanges (such as wavelength assignment

constraints or optical impairments pointed out in Section 1.2), the rollout policy is

more useful than in the case with no restrictions on BEs.
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Figure 4.5: Graphical comparison of the performance of heuristic and rollout policies

for restricted admissible action set.

4.2.2 Dynamic Traffic

This section summarizes the results for the case of dynamic traffic. In the

presence of dynamic traffic the notion of an optimum solution becomes more elusive.

This is mainly because the solution that is composed of the optimum solutions for

each step cannot be the optimum solution for the overall problem, since with the

limitation of one Branch Exchange per step we cannot reach from one topology

to another topology if they are more than one BE away from each other and the

transitional costs of going from one topology to another become important. In the

absence of the MRAS solutions, the performance of the heuristic and rollout policies

can only be compared with each other.
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4.2.3 Real traffic data

In part of this study we use real data collected from the Abilene network. we

have collected 5 weeks of network traffic from this network. We averaged 4 weeks of

data to represent the weekly behavior of the network and used the 5th week as the

input to our simulation. The 4-week average is used to represent the deterministic

part of the traffic, and the random part of traffic is the difference between the value

of the 5th week of data and the value of the 4-week average for the same time of

week. The sum of the two results in the amount of traffic in the 5th week of data.

Figure 4.6 compares the performance of the heuristic and rollout algorithms

for the case in which all BEs are considered. As expected, the performance of the

two policies are so close that the two graphs are not distinguishable. The no action

policy shows the cost if the topology of the network was fixed at the initial topology.

Figure 4.7 shows the same graph for the case of a reduced action set. In the latter

case the improvement of the rollout over the heuristic is much more obvious than in

the first case.
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Figure 4.6: Graphical comparison of the performance of heuristic and rollout policies

for the case with real data.
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Figure 4.7: Graphical comparison of the performance of heuristic and rollout policies

for the case with real data and restricted admissible action set.
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Chapter 5

Concluding remarks

The goal of this thesis has been to develop a framework that will consider

multi-path routing and logical topology reconfiguration simultaneously and will find

a network configuration (topology and routing) that is suitable for the traffic behav-

ior (static or dynamic) of the network. There are several parameters that shape the

network design problem and determine whether the approach in this thesis is effec-

tive or not. The important parameters include but are not limited to the following

list:

1. Traffic demand

2. Size of the network

3. Type of action available for network reconfiguration (e.g., BE)

4. Number of topologies reachable from the current topology using the admissible

action set

5. Amount of available resources

6. Type of the cost function

The most important factor in determining how to approach the network design

problem is the type of traffic. When the changes in the traffic are infrequent and
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predictable using the past behavior, a predictive approach such as the MMDP model

is useful. On the other hand, if the traffic is frequently changing and the changes

are unpredictable, a more reactionary model such as a heuristic is recommended. If

the traffic is static, then the calculations for optimizing the network configuration

can be performed offline and there is no need for allowing dynamic changes to the

network.

The size of the network plays a major role in determining the strategy for

reconfiguring the network. For very large networks, most probably a very localized

approach is more useful than trying to optimize the entire network at once. However,

if the very large network under discussion has a traffic demand that has minor

changes compared to the size of the traffic for the entire network, then a conceivable

approach is to define a core network that has a constant configuration, and allow a

small portion of the nodes or their interfaces to be dynamically configurable. With

this approach, the core of the network is responsible for serving the traffic demand

that is always there and the dynamic part of the network will be adjusted to fit the

minor changes in the traffic.

Another very important factor is the type of actions available to the decision

maker. In this thesis the actions were limited to branch exchanges. It is possible to

allow single deletion or setup of a lightpath as the primary actions. It is also possible

to allow more than one BE at a time, which increases the search space dramatically.

However, decreasing the slow time scale step will have similar effect.

The size of the search space at every slow time scale step determines whether it

is practical to use a rollout algorithm or not. Use of rollout becomes computationally
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intractable if the size of the search space is too large. We also saw that when the

the number of available BEs is large, rollout is not as useful as in the case when

there is a limited number of BEs available.

The next item in the list is the type of cost function, which determines whether

an exact solution is possible or an approximate solution is the best that can be

expected. In this thesis we adopted a quadratic function and were able to find an

exact solution for the fast time scale problem. A cost function with more nonlinearity

will make it harder to find an exact solution.

Finally, one of the key assumptions here is that the capacity of the network

infrastructure is in the same order of magnitude as the peak traffic demand. If the

capacity of the network is orders of magnitude higher than the traffic demand, then

the type of cost function defined in this thesis is not the right cost function and the

assumption that all interfaces of a node are used may not make sense.

The main objective of the thesis was to find a solution to the multi-path routing

and topology optimization problem for WDM networks. This was accomplished by

applying the MMDP model to this problem. Heuristics were defined for the fast and

slow time scale problem, an exact solution was found for the fast time scale problem,

and for the slow time scale problem rollout was used to improve the heuristic.

For the static problem the MRAS method was used to find a reference solution

that is very close to optimal. The implementation of the MRAS algorithm for this

problem is a contribution to the field of static optimization, and the random topology

generation algorithms presented in this thesis are contributions to the graph theory

literature.
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Two random topology generation algorithms were introduced. One generates

a uniform distribution and the other allows a probability matrix to bias the distri-

bution. The uniform random topology generator has a precalculation step to build

a partition tree that helps speed up the random topology generation. A compact

partition tree is introduced that uses the repetition of the same degree sequences in

the tree to reduce the amount of memory needed to save this tree. The compact

partition tree allows building and saving such a tree for networks (graphs) of moder-

ate size (200 nodes for 3-regular graphs, 50 nodes for 6-regular graphs, 30 nodes for

10-regular graphs, and so on). Once this precalculation is complete, fast generation

of random graphs with the specified degree sequence is possible. The runtime of

this algorithm is of O(Nd log(d)), and every run of this algorithm generates a valid

graph with probability 1. Compared to pairing model methods in the literature,

this is a marked improvement.

The topology search using the slow time scale heuristic and rollout leads to

solutions very close to MRAS solutions. Our results show that the greedy heuristic

is a very effective tool for finding topologies very close to optimal in the static traffic

case. In the case where all the branch exchanges are available, even though rollout

improves the heuristic it does so with a very small margin. But with the restricted

action space, the heuristic performs much worse and rollout improves the heuristic

by a large margin and makes the result close to optimal.
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5.1 Future work

There are a few directions for future work to be pursued.

1. The size of the database needed for the partition tree limits the use of the

uniform random graph generator to graphs with up to 200 nodes (for 3-regular

graphs, but much less for graphs with larger regularity or irregular graphs).

It is conceivable that our algorithm can be combined with one of the existing

algorithms (pairing model) to extend the use of this algorithm to larger graph

sizes.

2. The biased random graph generator given in Section 3.3 does not generate a

sample that matches the distributions in matrix P . Generating a sample that

matches the rows of matrix P remains a challenge.

3. Extending the MMDP solutions derived in this thesis to other practical net-

work models is another interesting topic for future work.
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