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Abstract

Title of Dissertation: OPTIMAL DECOUPLING CONTROL

Gil Yudilevitch, Doctor of Philosophy, 1994

Dissertation directed by: Professor William S. Levine

Department of Electrical Engineering

A new approach to optimal decoupling for multi-input multi-output (MIMO),
linear, time-invariant control systems, is presented. This general optimal decoupling
method is based on the minimization of componentwise performance indices. These
indices can be obtained from alternative componentwise mathematical representations
of the original system. Furthermore, using these representations, optimal decoupling
problems can be written in terms of ordinary optimal control problems. Then one
can use classical optimal control techniques such as LQR or H, to obtain the ideal
solutions to the optimal decoupling problems.

However these techniques can not be used to obtain practical closed-loop solu-
tions. In this dissertation, fixed structure control techniques are used to derive the
optimal and sub-optimal state feedback control law. For this purpose, a globally con-
vergent numerical algorithm is derived. In addition some other global sub-optimal
solutions are studied. This approach is used in the design of an attitude flight control

of the UH-60A helicopter in hover.
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Chapter 1

Introduction

1.1 Strict decoupling

Over the last three decades the problem of achieving decoupling, or noninteraction, in
MIMO control systems has been widely studied. In 1963, Morgan [53] was the first
to mathematically formulate the decoupling problem using the state space representa-
tion. Although his assumptions were very restrictive and although he got only partial
solutions, his work was very important because it was the trigger for the on-going
theoretical research on this subject. This research has played an important role in the

development of MIMO control design techniques.

It is not surprising that Morgan’s work, as well as some other previous work on
the decoupling problem, was motivated by the needs of flight control designers [57].
The highly coupled nature of aircraft dynamics and the high performance require-
ments, together with the lack of a good MIMO design procedure made this research
essential. Practically, although they only had SISO design techniques, flight control
designers used some intuitive methods to reduce the aircraft coupling level. Usually,
they interpreted the coupling effects as additional disturbance inputs. Thus, they
could consider the MIMO system as a set of decoupled SISO systems with unmeasur-
able disturbances. In fact, this idea is also used in some of today’s practical MIMO

control designs, e.g., in helicopter flight control design [63]. Using this approach, the



design usually resulted in high feedback gains. In many practical cases this technique
gave satisfactory results. However, in many other cases the remaining closed-loop
coupling level was too high. For example, by using this approach in flight control
design [63], the inherently high cross-coupling between pitch and roll can be reduced
substantially to help the pilot control the aircraft. However, using the same approach
for auto-pilot design (no pilot in the closed-loop), the remaining coupling is too high
to meet the auto-pilot design requirements. In order to achieve more cross-coupling
reduction, cross-feed techniques have often been used, e.g., [8]. These techniques can
be used where the system has isolated coupled pairs (e.g., pitch/roll, roll/pitch pair

in the flight control system), but they are not suitable for a general coupled system.

Some of these practical techniques have been adopted by control designers in
other fields such as: motion control [47], chemical processes [22], etc. However these
solutions were not generic and could not guarantee strict decoupling. Moreover in
general, they had weak mathematical foundation. The next step was naturally to
generalize these solutions using the available SISO design techniques. Therefore, fre-
quency domain approaches were used extensively in the attempt to diagonalize the
closed-loop transfer-function matrix (e.g., [18], [10]). In retrospect, these approaches
are more appropriate than the state space one, because of the I/O nature of the decou-
pling problem. Recently, a number of important results were obtained using modern
MIMO frequency domain methods (e.g., [13]). However, in the 60’s, because of the
lack of modern mathematical tools such as coprime factorization, these designs were

very complicated. They often ended with high order [33] or noncausal [39] controllers.

Morgan’s state space formulation was a good alternative to these methods be-
cause it allowed the application of well known state space techniques such as state
and output feedback, pole placement, etc. Much research has been done on the strict
decoupling problem using the state space representation. Many papers have been pub-
lished on this subject such as: [14] and [21] on algebraic methods, [77] and [12], on
geometrical approaches, etc. This research has been also expanded to nonlinear sys-

tems, time-varying systems, digital systems, and some other cases (see [54] for a list of



references). Recently the research on decoupling has been returned to the, more nat-
ural, I/O (frequency) domain. Research using various techniques such as polynomial

coprime factorizations [75], and RH coprime factorizations [13] has been published.

1.2 Optimal decoupling

Although, the strict decoupling problem has been successfully solved, the results are

not always useful, for the following reasons:

e In most cases strict decoupling is not required. Actually, all practical control

designs have to tolerate a certain level of coupling (e.g., [30]).

o For all of the strict decoupling design methods a perfect knowledge of the plant is
assumed. In most cases, this information is not available. Using strict decoupling

with only approximate models may lead to poor decoupling performance.

e Using strict decoupling, the control effort is not taken into account. That is,
strict decoupling may require very large control inputs. Therefore the theoretical

strict decoupling solution may not be implementable (e.g., actuator limitation).

e Using strict decoupling, the closed-loop transfer function is diagonalized regard-
less of the exogenous inputs to the system. For some cases this may be considered
as an advantage. However, in several cases we would like to use a priori knowl-
edge about the exogenous input, to improve our design (e.g., the set point of

process control system which changes only by steps).

e Generally, for strict decoupling some assumptions on the given plant are needed.
In [13] the invertibility of the plant transfer function is assumed for the design
of a high order controller. In case of low order control {(e.g., constant gain),
stronger assumptions may be required (e.g., [21]). These assumptions may not

always hold.



Usually these are problems for which optimal control techniques offer solutions.
The main difficulty is to define a scalar measure for the coupling level of the system
which can be used for optimization. Many measures have been proposed and used in
order to reduce the coupling level of the system (e.g., [7,19,38,74]). Some of them have
also been used for optimization (e.g., [3,29,78]). Using conventional cost functions
such as in [78] leads to weak results. On the other hand using cost functions which
contain also the “coupling cost ” may lead to numerical solutions which either depend

on the exogenous inputs [29], or require high control signals [3].

1.3 Objective and contributions

The main goal of this dissertation is to reduce the optimal decoupling problem to an
ordinary optimal control problem which can be solved using standard techniques such

as LQR, Heo, etc. The contributions of this dissertation can be summarized as follows:

¢ New linear operators which transform the original system into either “duplicated
system” or “simultaneous control” forms, are defined. Using these forms and a
quadratic componentwise scalar coupling cost function, the optimal decoupling

control (ODC) problem can be reformulated as an optimal control problem.

e Using the above formulation the general ideal optimal decoupling problem is

solved. This solution can be used as:

- a high order optimal control law for stable plants in open and closed loop

configurations.
- a low order LMS sub-optimal closed-loop control law for any plant.

- the lower bound for the minimum componentwise coupling cost of any other

design technique.

e Necessary conditions for optimality for constant state feedback control are de-

rived.



e A new numerical algorithm solving the sub-optimal decoupling control (SODC)
problem for constant state feedback control with random initial state is derived.
This algorithm is globally convergent to a set of stationary points of the compo-

nentwise cost function.

e The above solutions are applied to a very challenging decoupling problem: at-
titude control of the UH-60A helicopter in hover. Using these techniques the
roll-to-pitch coupling is reduced with very little change in the other response

components.

The contributions of this dissertation to the optimal decoupling theory are shown

in the dashed box of Figure 1.1.

1.4 Organization

This dissertation is organized into seven chapters. Chapter 2 contains a comprehen-
sive survey of previous optimal decoupling techniques. In Chapter 3, the optimal
decoupling problem is formulated using componentwise performance indices and some

special linear operators. Using this formulation the general ideal solution and its

applications are given.

In Chapter 4, a constant state feedback control law is assumed. For this case the
necessary conditions for optimality are derived using fixed structure control techniques.
It is also shown that the optimal solution to this problem depends on the initial state.
In Chapter 5, some sub-optimal solutions are presented. The main result is obtained
by randomizing the initial state such that the sub-optimal solution no longer depends
on the initial state. In order to solve this fixed structure control (or parametric LQ)
problem, a numerical algorithm is developed. In general this problem is not convex.
Therefore this sub-optimal solution may not be global. Some alternative global sub-

optimal solutions are also presented in this chapter.

One application of these results is given in Chapter 6. In this example the
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optimal and sub-optimal decoupling techniques presented in this thesis are applied
to the design of an attitude control for the UH-60A helicopter in hover. Finally, in

Chapter 7, conclusions are given, and some topics for future research are discussed.

Throughout this thesis, unless otherwise written, the term “system” refers to
a linear time-invariant continuous-time causal system. Also when the context makes
the meaning clear, we will drop the time domain variable ¢ or the frequency domain
variables s or jw. For example the time signal z(t) is simply written as z, and the

transfer function G(s) becomes G.






Chapter 2

Literature survey on optimal decoupling

control

2.1 Introduction

Many papers on (strict) decoupling control have been published, and many more on
optimal control, but very few deal with optimal decoupling control. The optimal
decoupling techniques which have been developed since the late 60’s can be divided

into the following four groups:

Optimal model-following.

Pure optimal decoupling.

Strict decoupling with optimal performance.

Componentwise optimization.

In 1968 Yore [78] was the first to use the term “Optimal Decoupling Control”
(ODC). His early work is best classified as an optimal model-following technique. It is
considered to be the first work on this problem. Model-following is only one example
of optimal control techniques in which a very low level of coupling is achieved. In fact

in almost any type of high gain MIMO control, including decentralized control, partial



decoupling is achieved. Intuitively this can be explained by breaking the mxm MIMO
system into m independent SISO systems (loops) where the coupling elements are
treated, in each loop, as a disturbance input. In this case “partial decoupling” is
equivalent to “disturbance rejection” which is a common property of a high gain closed-
loop. In modern terms, as we will see later in this survey, these optimal techniques
are not considered as ODC. However, because in later works similar ideas have been

used, these optimal model-following techniques are included in this survey.

In order to solve the optimal decoupling (or minimum coupling) problem one
must define a scalar measure of coupling which will then be used as the performance
criterion. Such a performance measure was suggested in 1976 by Aplevich [3], and later
was used to solve the ODC problem by Hutcheson [35]. This performance measure
is completely different from all other performance measures which have been used to
solve the ODC problem because it is a rational'one and because it has a geometric
interpretation. Because this performance measure does not contain any other design

requirement, it is refered here as a pure optimal decoupling technique.

Using strict decoupling control, there is usually a free parameter which can be
used to improve the performance of the decoupled closed-loop system. In some works,
e.g., [14], [13], this design degree-of-freedom is used to place the closed-loop poles. In
1972 Hetrakul and Fortmann [28] suggested replacing the pole placement technique,
used by Falb and Wolovich [14], to specify the free parameter in their constant gain
control, with LQR optimization. Later in 1986 Chen and Kung [9] expanded this idea
for LQG systems using #H, optimization. These works are presented here under the

title of strict decoupling with optimal performance techniques.

In 1975 Hirzinger [29] suggested solving the ODC problem by assigning different
weights to the “coupling” components of the system output, as well as to the “main”
output components and the control effort. In his work and later in Sirisena’s and Choi’s
work [58] a dynamic compensator is included to achieve a priori partial (or strict)

decoupling. In a later paper by Qi-Jun et al. [56] the “pre-decoupling” controller is

10



removed. In a recent work [70] Van-Diggelen and Glover used Hadamard weighting
to achieve coupling reduction. In this group of works the output components or the
entries of the closed-loop transfer function matrix are weighted separately. Therefore

they are called componentwise optimization techniques.

2.2 Optimal model-following techniques

The idea of using model-following techniques has been used frequently in the attempts
to solve the optimal decoupling problem. Yore [78] slightly modified the standard ex-
plicit model-following (EMF') technique in order to achieve better decoupling. However
his result is not the solution to the common ODC problem as it has been formulated in
later works. Although Yore did not find the complete solution, his work is considered

the first serious attempt to formulate and to solve the ODC problem.

Consider a linear time-invariant square system with the following minimal

state-space realization
2 = Ax 4+ Bu
(2.1)
y = Cz
where A € R™", B € R™™ and C € R™*". Let r be an m-vector exogenous
piecewise continuous input applied to (2.1). The desired response of (2.1) to r is given

as the response y,, of the following controllable decoupled state-space realization

Em = AmTm + Bpr (2.2)

Ym = CnTm
to r where A, € R"*" is asymptotically stable, B,, € R""*™, C,, € R™X"m,

Define e = y — y,, as shown in Figure 2.1, then the optimization problem is to

find a controller which minimizes
o0
J= / (e Qe +u" Ru)dt (2.3)
0

where () and R are symmetric positive-definite error and control weighting matrices,

respectively. The solution to this problem, for r = 0, is obtained by augmenting the

11
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4

Plant

A 4

Figure 2.1: The model-following error.

system state with the model state Z =< ‘

Tm

). Then the problem is reformulated as
a standard LQR problem with

m —
J= / (&TQz + u” Ru)dt (2.4)
0
= _| ¢Tec -cTQcCm
where Q) —-l _eTac  6Tgem ], and

I = AT + Bu

— (2.5)
e = Oz

with A =[ A OA }, B =[ B ] and C = [C — Cp]. The optimal control is then
0 Am 0

w = —K% = Hpom — Hz where K = [H — Hy] is given by K = R"\B' P and P
is the unique positive-semidefinite solution of the following algebraic Riccati equation
(ARE)

A'P+PA-PBR'BP+Q=0. (2.6)

Yore realized that this solution is not good enough for decoupling because it
does not take the input r into account. He also realized that Q in (2.3) or Q in (2.4)

does not contain any explicit “coupling cost”.

Remark 2.1 Indeed Q in (2.3) does not include weights for the coupling components

of e. The diagonal entries of Q, qi; are the weights of the quadratic terms €2, and the

12



" 4]
— 0
] e

T2 €2

sin(wt) a;sin(wt + ¢)
() 0 azcos(wt + ¢) /0 ¥

Figure 2.2: Example of a coupled nonlinear system (a) with uncorrelated outputs, and

a coupled linear system (b) having outputs with zero correlation measure.

off-diagonal entries g;; are the weights of the correlation terms e;ej, where neither e?
nor e;e; measure coupling. Note that a system output can be coupled but not correlated.
For example consider the 2 x 2 systems of Figure 2.2 where, as a response to r1(t) # 0,
the errors ey (t) # 0, ex(t) # 0, but either ey (t)ea(t) =0V ¢ >0, or [7° e1(t)ea(t)dt =
0.

In order to improve decoupling Yore suggested using the input signal in addition

to the model state, as shown in Figure 2.3, with the following control law
u=Gmr+ Hpzym — Hz (2.7)

where K = [H — Hp,] is the standard LQR solution. The additional design parameter
Gm is obtained by minimizing J(K, Gy,) of (2.3). The particular minimization can be
made for a specific input (assuming a known r), or for other requirements (e.g., zero

steady-state error). However, he did not find a way to include the explicit “coupling

cost” in the design procedure.

13
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Figure 2.3: ODC using Yore’s modified EMF solution.

A similar method was used by Kreindler and Rothschild [42]. They proposed to
use the implicit model-following (IMF) approach. In this approach the desired model is
used to derive the optimal control but it is not available for the control implementation.

This approach allows the use of a constant feedforward gain, as shown in Figure 2.4.

The input reference is known and has the following state-space representation

T = Arzy (2 8)
r = Crz,

where A, € R™ %™ is asymptotically stable and C, € R™*"". Augmenting the model

state (2.2) with the input state (2.8), gives the following autonomous model

z = Apz
" (2.9)

Ym = Cmz

where 2z =< Fm ), A, =l ;4'" BmCr ] and C,, = [Cy, 0].
Zr r
Let :Tc=< ¥ ), then
Iy
z = AZ + Bu

(2.10)

14
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Figure 2.4: Constant gain IMF control. The explicit model is not actually imple-

mented.

withz-——l 4 OA ],_Bz[ oB l and C = [C 0]. The IMF error is defined as
0 r

e=C I —CnAnZ. (2.11)

Now e does not depend (explicitly) on z,,, but it does depend on the desired

model parameters A,, and Cy,. Using the same cost function as before, J in (2.3),

gives
w —
J = / (z"Qz + 2u' ST + u' Ru)dt (2.12)
0
where @ =| T'9F T7@4 | ids= [ATQr ATQA], with ' = CA — CinAm, A =
ATQr ATQA

—CpBnCr and A = CB. The optimal control which minimizes this J is
u=—-Kz=Gz, — Hz (2.13)

where K = [H - G] = R~YB"P and P is the unique positive-semidefinite solution of
the following ARE
ATP+PA—-PBR'BP+(Q=0 (2.14)
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where Q =Q-STR'S and A=4A-BRS.

In both of these approaches, the “decoupling” results from the choice of a de-
coupled model. To the extent that the controllers achieve good model following the
closed-loop systems are decoupled. These approaches have the disadvantages that they
are indirect and give no indication as to whether a different model would produce much

better decoupling.

2.3 Pure optimal decoupling technique

Matrix and vector coupling measures have been frequently used as design tools in
decoupling control design. One example is Bristol’s measure, the Relative Gain Array
(RGA) [7]

RGA =[] = [titj;) € R™™ (2.15)
where #;; and t}j are the iji2 entries of the system steady-state transfer function gain
matrix T(0) and its inverse T~1(0), respectively. This matrix measure can be used as
a pairwise design criterion for cross-feed decoupling techniques [4]. However, the RGA
and other related nonscalar coupling indices such as the relative dynamic array (RDA)
[74], the average relative gain array (ARGA) [19], the direct gain matrix (DGM) [38],
etc. (see also [11] and [48]), are not useful for comparison and optimization. In
the following we present an ODC design based on a special scalar coupling measure
proposed by Aplevich [3]. This measure is derived here only for asymptotically stable
systems (a slightly less general case than that developed by Aplevich). We present

here the time-domain version, using a state-space representation.

Let H™*™ be the space of all mxm matrix valued Lebesgue integrable functions.

Let F(t), T(t) € H™*™, then the inner product of F(t) and T(t) is defined by

com m

FO.70) = [ e {FTOTO}d= [ S fi0umd (@10

i=1j=1
and the generalized angle between F'(t) and T'(¢) is defined by

(F(1),T(t))
IE@HIT @)

cosf = (2.17)
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where ||[F(t)|| = (F(t), F(£))"/%.

Let F(t) € H™ ™ let § C H™*™ be a subspace of H™*™, and let F°(t) denote

the orthogonal projection of F(t) onto S, then

FS@t)esS (a)
F5(t) is unique (b) (2.18)
(F(t) - F3(2), ()>=o VSeS (c)
HF(t) FS@)| < IF() - $@)) vSeS (d)

ie., ”F(t) - FS (t)“ is the minimum “distance” between F(t) and the subspace S.

Define D C H™*™ as the diagonal subspace of H™*™
D ={D(t) = [di;(t)] € H™™ | d;;(t) =0, Vt >0, Vi # 4, 4,5 =1,2,...,m}. (2.19)

Then FP (t) = | i? (t)] is the orthogonal projection of F(t) onto the diagonal

subspace D with

0 1#3 — (2.18-a
@) = 7 i,7=1,2,...,m ( ) (2.20)
fi 1=j +— (2.18-¢).
Let F(t) = CeAtB € H™ ™ be an impulse response function of the system (2.1),
with A asymptotically stable. Then a natural coupling measure for this system is the

generalized angle between F(t) and FP(t). In fact it is better to use, and easier to

compute, the following positive measure

2 o _ o [(reFP@) 17

uiF) = sin9 = l-cs®™ =1 [uF(t)nnF (t)u]
(2.21)

P i) R (O 24O D 99 D MG

IF@®)I* IF@ON Dimt 2l A5 OI
where ||f;;(t)]|° = [5° fi;(t)2dt = [$°(CietB;)2dt, with C; = it row of C, and B; =

4§ column of B.

Since A is asymptotically stable we can write

I1£i; (O = B P.B; = C;Q,Cf (2.22)
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Figure 2.5: Pure ODC using constant output-feedback.

where P; and @); are the unique positive semi-definite solutions to the Lyapunov equa-

tions
ATP, + PA + C/C; =0
i ' P (2.23)
AQ;  + QjAT + BjB]T = 0.
Using the definition for the norm of F(t) we obtain
IF@OI" = X X017 = X X BjRB; = Y Bf (Y P)B;
i=1j=1 i=1j5=1 j=1 i=1 (2 24)
m .
= > BJ/PB; = u(BTPB)
J=1

and similarly ||F(¢)||? = tr (CQC’T), where P = rzn: P, and Q = § Qj-
i=1 i=1

Aplevich also derived a simple expression for b%u(F (c)) where « is any scalar
parameter of the state-space matrices, e.g., let {A — BK, B,C} be the closed-loop
state-space matrices and let a = k;; be the ij entry of the constant gain controller

matrix K.

Three years later, in 1979, Hutcheson [35] used this measure to solve the ODC

problem. He suggested using the constant output-feedback control of Figure 2.5
u=Gr—Hy (2.25)

where

G=-[C(A-BHC)'B]™! (2.26)
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thereby insuring that the closed-loop system has a zero steady-state tracking error
(e=y—r).

The closed-loop state-space matrices depend only on H (G is also a function of
H). However since now G is a function of the closed-loop matrix Ay = A — BHC, we

can not use Aplevich’s simple expression for % u(F(a)).

Remark 2.2 Apparently we can free G as a design parameter. However since u(F)
does not contain any requirement on the “main” tracking error (e; as a response to
i), the steady-state tracking error may not be zero. Alternatively we can find the
ODC assuming u = —Hy, then use (2.26) to achieve zero steady-state tracking error.
This may lead to a much simpler derivative expression, but it will not give the optimal

solution (i.e., it gives a zero steady-state tracking error, but a bigger coupling “angle”).

Skipping mathematical details [35], the derivative expression for the control

given by (2.25) and (2.26) is

ou(F)  2|FPO|° [T T 3 2
[B7P(QCT - B)] -

TN (0.CT — B.el
0H —  IFOI* , [B ;Pz(QzC Biej)| (2.:27)

1j=i

where B = BG, and e; is an m-vector such that e;(j) = {O#i.

The gradient expression (2.27) can be used in a function minimization algorithm,

such as the conjugate gradient algorithm, to solve the ODC problem.

Aplevich’s measure p(F) has nice mathematical, geometrical, and practical
properties which make it attractive to be used as a minimization target. However

using p(F') we do not take into account some important design requirements such as:

(1) Bounds on the control inputs.
(#4) System “main” output performance (see Remark 2.2).

(¢1i) Assigning different weights to the coupling components.

To meet requirement (i), F(t) of (2.21) has to be changed to include the con-

trol u in the modified system output. This may require the definition of a modified

19



performance measure. Alternatively we can use constrained optimization to enforce
bounds on u. In order to control the system “main” output (ii), we can try to use con-
stant weighting matrices W; and W, to scale F'(¢) (i.e., F'(t) = W,F(t)W;). However
requirement (4i7) which is very important for decoupling design, can not be achieved

using u(F’) since F'(t) can not be componentwise scaled [69)].

2.4 Strict decoupling with optimal performance

This approach is based on a very common idea used in various modern control tech-
niques. Namely, characterizing a family of controllers, for a given plant, such that
for any controller of this family, the closed-loop system has a certain property (e.g.,
stability). Then, if there is a free parameter in this characterization, it can be used
to improve the closed-loop system performance (e.g., pole placement). This idea was
used by Hetrakul and Fortmann [28], where the value of the free parameter is derived
by optimization.
Consider the system (2.1), and define

[ can ]

CzAd2
Oy4 = _ (2.28)

where Cj is the jt row of C, and

min{i | C;A*B # 0} if C;A*B # 0 for some i
dj = {61 C;A'B # 0} 7 .¢ i=0,1,...,n—1. (2.29)
n—1 if C;A'B =0 for all 4

Let
u=Gv— Hyz (2.30)

where G = (0O4B)~!, Hy = GO4A, and v is a new control input.

Theorem 2.1 System (2.1) is strictly decoupled using (2.80) if and only if O4B is

nonsingular.
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Proof: [14], [21].
O

Moreover, there exists a similarity transformation £ = Tz that puts the closed-

loop system into the canonically decoupled (CD) form [21]

£ = A% + Bwo

- (2.31)
y = C%

T ~ - ~
where & = (2] ] - &, 8%11) , & € R, S7!n; = n, and 4, B and C are
partitioned as follows:

[ 4, 0 o 0 |
0 121\2 0 0
A=T[A-B(04B)'044]T! =
0 0 A, 0
| A5 A5 - A A |
[ 5, 0 0 |
0 by 0
N (2.32)
B =TB(04B)™ ! =
0 0 bm
| B B - B |
and
¢ 0 0 0
0 @ 0 0
G=0T"= 2
0 0 * Em 0
Thus the subsystems with state vectors 1, 22,...,Zn are uncoupled from one

another and the states %41 are all unobservable.

The class of all decoupling control laws can now be characterized using (2.30)
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Figure 2.6: Strict decoupling with LQ optimal performance using state-feedback and

constant feedforward.

and the new control input v [21]
v=r—K32. (2.33)
Theorem 2.2 Consider the system (2.1), with Oy4B nonsingular, and u as defined in

(2.80). Let A,B and C be as in (2.82), and T be such that £ = Tz satisfies (2.31).

Then the closed-loop system is strictly decoupled if and only if

ki 0 0 0

~ |0 k& 0 0
K = (2.34)

0 0 km 0

Proof: [21].
(]
Therefore the control law of Figure 2.6

u=Gr— Hgx (2.35)

with Hg = G(O4A + K T), strictly decouples the closed-loop system for any K of the
form (2.34). Moreover, suppose gfn 11 is asymptotically stable. If K is chosen such
that /Tj - i)jl}j for all j = 1,2,...,m are asymptotically stable then the closed-loop

system is asymptotically stable.
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Remark 2.3 The structure of Figure 2.6 has been widely used in strict-decoupling
theory. The choice of state-feedback is clear (quaranteed stability under controllability
assumptions). The use of the actual input (instead of its state as is used for optimal

tracking) allows the achievement of strict decoupling, [14] and [21].

Hetrakul and Fortmann tried to find a way to select a feedback control law v
that both decouples the closed-loop system and minimizes a quadratic cost functional
of the form

w —~ ~
J= / (2" Q% 4+ v' Rv)dt (2.36)
0
where Q and R are symmetric, positive-semidefinite and positive-definite matrices,
respectively.

In general this problem may have no solution. Suppose that for a particular
choice of Q and R a strictly decoupling, optimal solution K does exist. Then using
the return difference inequality [1], it is easy to show ([28], Theorem 1), that there

exists

~

J= / (#7Q% + v Rv)dt (2.37)
0

with B = diag(p1,p2,...,0m) and @ = block diag(Q1,Da,...,Qm,0), which lead
to precisely the same control law K. Moreover, using inverse problem results [1], all
strictly decoupling optimal solutions K of the form (2.34) may be generated by the

proper choice of such diagonal R and block-diagonal Q.

In this case we can write
=~ B oo ~
T=Y [T @] Qs+ et (2.38)
j=1
In other words, we can obtain K from the optimal feedback control laws
vj = ki&;, 7=1,2,...,m (2.39)

for the m individual uncoupled subsystems.

This approach is based on the algebraic methods for strict decoupling control.

Thus the system has to satisfy some conditions (i.e., OyB invertible). Moreover,
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suppose O4B is invertible, then the desired cost function is not of the form (2.36)

because the original cost
[e o]
J= / (z7Qz + u" Ru)dt. (2.40)
0

implies that the corresponding cost function given by the CD state % is

~

m - ~~ -
j= / @702 + v Ru — 237 Sv)dt (2.41)
0
where, using (2.30) and the similarity transformation T
Q=T"T(Q+Hy RH)T™', R=G"RG and § = T~ TH] RG.

It is clear that J in (2.41) does not necessarily satisfy the conditions given in (2.37).

Moreover even if we start from (2.37) with a proper choice of Q and R, such
that K does exist, then the corresponding cost function given by the original state z
is

J= / (z"Qz +u' Ru+ 2z Su)dt (2.42)
0

where Q = TTQT + H] G-'RGH,, R=GTRG! and § = H{ G-TRG.

Hetrakul and Fortmann did not solve the general design problem, namely how
to choose (Q and R such that the closed-loop system is both strictly decoupled and
optimal. This problem was solved later, in 1986, by Chen and Kung [9]. In fact they
solved a slightly more general problem, using the Wiener-Hopf approach (frequency
domain technique). They also assumed that in addition to the reference input r the
system has two more external inputs, disturbance and noise, which are omitted here
for simplicity.

Consider the system

y(s) = P(s)u(s) (2.43)

where P(s) = [p;;(s)] € R™*™(s) is a real-rational, invertible matrix (RP*4(s) is the

set of all p x g real-rational matrices in s € C).
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Figure 2.7: Strict decoupling with #, optimal performance using one DOF controller.

Remark 2.4 Theoretically, a proper inverse P~1(s) ezists if and only if P(s) has full
rank (m) for all but a finite number of s € C (including s = o). Then a strictly proper
P(s) leads to an improper inverse. Thus apparently this is a very restrictive assump-
tion and this method can not be used in most cases. However using different strict
decoupling parameterization techniques, a “filtered inverse” [79] can be used to create
a proper filter that approzimates the inverse [13]. This filter, which maintains the
strict decoupling property of the closed-loop system, may not maintain the optimality

property.

Define the tracking error as

e(s) = r(s) —y(s) (2.44)

where r(s) is an external random input with power spectral density ¥,(s). Chen
and Kung used the closed-loop structure of Figure 2.7 with a one degree-of-freedom
controller

u(s) = C(s)e(s) (2.45)
where C(s) € C™*™ is a real-rational matrix.

Define the sensitivity function of the closed-loop system (2.43)-(2.45) as
S(s) =[I+ P(s)C(s)]! (2.46)

and the transfer function, or the complementary sensitivity function, of the closed-loop

system as

T(s) = I — 8(s). (2.47)
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Then the closed-loop equations are

e(s) = S(s)r(s)
u(s) = P7Ys)T(s)r(s) (2.48)
y(s) = T(s)r(s).

Consider the following cost function

J= E{ /j°° [e*(s)Q(s)e(s)+u*(s)R(s)u(s)]ds} (2.49)

T 2m Wojeo
where z*(s) denotes the complex conjugate transpose of z(s) (z*(s) = z(3) T where 3
is the complex conjugate of s), and Q(s) and R(s) are Hermitian positive-semidefinite
and positive-definite matrices, respectively (A(jw) is Hermitian & A*(jw) = A(jw)
for all w € R, A(jw) is positive-(semi)definite < z*A(jw)z > (>) 0 for all z # 0 and

for all w € R). The cost functional J of (2.49) can be expressed as follows

J= %jtr { /_J :o[Q(s)Ee(s) + R(s)Eu(s)]ds} (2.50)
where 3.(s) = S(s)%,(5)S*(s) and Zy(s) = P(s)"'T(s)Z.(s)T*(s)P~*(s) (where
P™*(s) = [P*(s)] )

We consider the problem of designing an optimal controller C(s) by specifying
adequate cost weighting matrices Q(s) and R(s) such that the closed-loop transfer

matrix is strictly decoupled.

Definition 2.1 S(s) and T(s) are said to be realizable if the closed-loop system is
asymptotically stable for some choice of C(s).

Lemma 2.1 Let P(s) = Dy(s) 1 Ny(s) = N,(s)D,(s)™}, where the pairs Ny(s), D;(s)
and N,(s), D,(s) are any left and right coprime polynomial factorization of P(s),
respectively. Then S(s) and T'(s) are realizable if and only if

S(s) = X(s)Du(s)

and (2.51)

T(s) = N ()Y (s)

for some stable rational matrices X (s) and Y (s).
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Proof: [9].

Suppose S(s) and T'(s) are strictly decoupled (diagonal), i.e.,

S(s) = diag(s1(s), s2(s), ..., sm(s))
and (2.52)

T(s) = diag(t1(s), t2(s), ..., tm(s)).

s1(s)du s1(s)dim
S(s)Di(s)~ =
$m(8)dm1 3m (8)drmm
and (2.53)
t1(s)h11 tm(8)A1m
N, (s)71T(s) =
t1(s)fim1 tm (8)Pomm
Define "
§i(s) = [[(s —mip)™, i=1,2,...,m (2.54)
j=1

where k; is the number of distinct RHP poles p;; in the it row of Di(s)™!, and l;j is
the greatest multiplicity with which each pole p;; appears in any element in the &2
row of D;(s)~!. Similarly, let

2]

771(5) = H(S - Zij)mu7 J=12,...,m (255)

i=1
where n; is the number of distinct RHP poles Z;; in the j2 column of N,(s)~!, and

m;; is the greatest multiplicity with which each pole Z;; appears in any element in the

§% column of N, (s)~1.

Definition 2.2 S(s) and T'(s) are said to be diagonally realizable if they are realizable
and diagonal of the form (2.52).

27



Lemma 2.2 S(s) and T(s) are diagonally realizable if and only if they are diagonal,
and for j =1,2,...,m

1. sj(s) is analytic in Re(s) > 0.
2. The numerator of s,(s) must contain §;(s).

3. The numerator of t;(s) must contain n;(s).
4. sj(s) #0.

Proof: The proof follows directly from Lemma 2.1 and (2.53).
|

From Lemma 2.2 we conclude that any RHP pole-zero cancellation in P(s)C(s)
can be avoided. Lemma 2.2 gives also a full characterization of the class of all strictly
decoupling controllers, because if S(s) and T'(s) are diagonally realizable then we can

obtain C(s), by C(s) = P(s)"'T(s)S(s)~! (see Remark 2.4).

Remark 2.5 From Lemma 2.2, we see that if there exists a polynomial pair (6;(s),n;(s))
that is not coprime, then it is impossible to strictly decouple the system. This may be

avoided by using RH coprime factorization techniques with a two degree-of-freedom

control law [13].

Now that we have a full characterization of the strictly decoupling controllers,
we can discuss the LQG optimization problem. Let the weighting matrices Q(s) and

R(s) of (2.49) be of the following form

Q(s) diag(g1(s), g2(s), ---,qm(s))

(2.56)
R(s) = R;(s)Ri(s), Ri(s) is invertible
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with Ry (s) = Ri(s) = [#i], where the j22 column of Ry!(s) satisfies the following

7 j(s)
Fj-1 j(s)
f141,(s)
Fm 5(8) B
p11(s) o+ prj-a(s) i) -0 prm(s) 12910
= iy | P Pi-11m(s) py-1;(s)
" Py+11(8) Pj+1m(s) Pj+15(s)
| Pm 1(3) pmj—-l(s) pmj+1(5) Pm m(s) i pmj(s)
( i j(s)
_ . Pi—1,(s) . .,
= —Tjj(s) y BI=12,00.,m, 1 £ 7.
Bj+1(s)
Pm j(3)
(2.57)
Lemma 2.3 If P(s) is invertible, and R1(s) is defined in (2.57), then
P(s)Ry(s)™! = diag(py(s), Pa(s), - .., Bm(s))
where
Pi(s) = 74i(s) [ ii(s) — Zpij(s)ﬁji(S)] = fiu(s)li(s), i=1,2,...,m.
i=1
Proof: [9].
ad

The only free parameters in R;(s) are the 7;(s) which have to be chosen under
the constraint that p;(s) should contain 7;(s) in its numerator and 6;(s) in its denom-
inator. From Lemma 2.3, using R;(s) in (2.57) allows us to diagonalize the plant.

Therefore if we choose C(s) to be

C(s) = Ri(s)"1C(s) (2.58)

29



then C(s) can be derived as a decentralized controller. Moreover substituting Q(s)

and R(s) of (2.56) into the cost function (2.50), we get

m
J=2Ji

- Ay J:O ora(9)lgi(s)si(s)s7(s) + ﬁ.(s)f,,()tz(s)t:(s)]ds (2.59)
i=17 I ) ;
= ) [ 06)Be6) + Dua ol

where o, (s) are the diagonal entries of ,(s). That is, the original cost function J in
(2.49) is “decoupled” into m separated cost functions J;, where each of them depends
only on s;(s) (recall that ¢;(s) = 1 — s;(s)).

In the last step we use the Wiener-Hopf technique to specify each s;(s) inde-

pendently, as stated in the following theorem

Theorem 2.3 If 3;(s) minimizes the cost function J; in (2.49), then

7, (3:(5)21 ()
ki + Conono ),

w;(8)or,, (8)

8i(s) =
where z;(s) = 0;(s)ni(s), the spectral factorization w;(s) is given by

wils)u}(5) = ()1 5 [qz-(s> + m]
and {A(s)}, is the part associated with all the finite poles in Re(s) < 0 of the par-
tial fraction expansion of the matriz A(s). The remaining design parameter k;(s) is
uniquely determined such that the diagonal realization constraint of Lemma 2.2 is sat-

isfied and such that J; is finite (i.e., the relative order of the two terms in J; in (2.59),
as |s| — oo is at least —2 [80]).

Proof: [9].
a

Theoretically speaking this approach of simultaneous design for strict decou-

pling and optimal performance is the best we can do. However, strict decoupling
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design (when it is applicable) is based on a certain algebraic method in which a per-
fect knowledge of the system model is assumed. Therefore this design may be too
sensitive, in the sense of destroying the strict decoupling, to any plant and controller
perturbations. Moreover in this approach the control weight R is completely specified
by the need to achieve strict decoupling (first its off diagonal entries are specified in
(2.57), then the diagonal entries are chosen to satisfy the diagonal realizability re-
quirement). Therefore we can not really put bounds on the control inputs as may be
required. Another disadvantage of the Chen and Kung approach is that the resultant

controller may be of high order (see numerical example in [9]).

The above disadvantages in addition to the plant invertibility requirement (see
Remark 2.4), reduce the utility of this method. Using a better characterization of the

strictly decoupling controllers may lead to better and more practical results.

2.5 Componentwise optimization techniques

The strict decoupling problem has been completely solved using modern coprime fac-
torization techniques {13]. However using this method, the order of the resultant
controller is at least the order of the plant. High order controllers are also obtained
using classical strict decoupling techniques, such as [14] and [21]. The question, what
is the minimal required size of a controller for strict decoupling, has been studied and
algebraic criteria have been developed (e.g., the rank criterion [21]). On the other
hand, in real life, the controller order can sometimes be constrained. In this case
we would like to solve the following problem, given a controller order (or even more
generally, a controller structure), find the controller of this order (structure) which

minimizes the coupling level of the system.

The first to solve such a problem was Hirzinger [29]. His work is best known
for introducing the concept of virtual model-following (VMF). This is an alternative
concept to the IMF used by Kreindler and Rothschild [42]. However, although he did

not introduce it explicitly, his use of componentwise optimization is a more important
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Figure 2.8: ODC using Hirzinger’s VMF solution.

contribution to the theory of optimal decoupling.
Consider the system of Figure 2.8, with the following control law
u=Gyo—Hzx.— Hz (2.60)

where the plant state space equations are given by (2.1), r is an exogenous input and

z. is the state of the dynamic controller given by

G = AT + Bor + By (2.61)
where A, € R"*™, B, € R"*™ and B, € R"*X",
Remark 2.6 Equations (2.60) and (2.61) with B, = 0 define the standard “state

feedback + dynamic precompensator” control structure (e.g., model-following [78]).

The motivation to use By # 0 is given in Remark 2.8 below.

The minimal order, strict decoupling problem can be characterized as follows.
If the system can be strictly decoupled, then there exists a minimal order n} such that

the closed-loop system (2.1), (2.60) and (2.61) has a transfer function of the form

T(s) = diag(t1(s), t2(5), .., tm(s)) = diag (Z:g; Zif;? Z:Eg) (2.62)

where d;(s) and n;(s) are coprime polynomials of degree §; and 7;, respectively, j =
1,2,...,m. The minimal order n; as well as the numbers d; and 7; are not known a

priori (i.e., they depend on the plant parameters).
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Using the strict decoupling control structure, the optimal decoupling problem
can be defined as follows. Let (2.60), (2.61) be a compensator of a certain order n.. Let
{i(s) be the desired decoupled output, i.e., §(s) = T(s)r(s), where T(s) is the desired
diagonal transfer function defined similarly to T'(s) in (2.62). Define the following cost

function
J=Y U (2.63)

where each of the individual costs J; is given by

o0 m
Ji= / l(yi — §i)%qii + Y yiqi; +u' Ryu| dt (2.64)
0 vy
J#i
where for all 4,7 = 1,2,...,m, R; are positive definite matrices, and ¢;; > 0. Note

that 4 is the input index, i.e., each of these costs arises from a test signal r; applied
at the 2 exogenous input when all the other inputs are zero. Choose the n.-order

controller parameters A;, B, G., H¢, By, and H, such that J in (2.63) is minimal.

Remark 2.7 As we will see later, it is preferable to use a double subindex to indicate
the componentwise outputs y; (y; is not the itk output, but it is the output vector arising
from 1;). The need of double subindices becomes essential when we consider arbitrary

ezogenous inputs instead of “test signals”.

Let us represent the ideal transfer functions £;(s) by state-space models of order

2
i.‘,' = Zi:i‘i-i-l;i’r‘i (2.65)
Ui = G
and the ideal transfer function f(s) by the m-augmented model
i = Ai+Br
_ (2.66)
j = O%
where A = block diag(4;, A,, ..., Apm), B = block diag(by, by, ..., by) and
C = block diag(é;, €2, ..., ém). The design is done in three steps:
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Step 1: Steady-state analysis

To obtain finite J; for all i = 1,2,...,m, we require
Ysi — gs; =0 (2.67)

where y;,, and §;, are the steady-state output, and ideal steady-state output caused
by the & exogenous input r; when all the other inputs are zero, respectively. Using

simple steady-state analysis, let #;, = 0, then

0 A B Zs, ;
Ys; cC 0 Us;

where z5,, and wug, are the steady-state, state and control caused by the 7 input r;

when all the other inputs are zero, respectively. If S is invertible then, from (2.67) and

(2.68), ( T ) =81 ( 0

Us; Ys,

for static decoupling [76]).

) (note that nonsingularity of S is a classical requirement

Using steady-state analysis (&5, = 0 and Z.s, = 0) for (2.60) and (2.61), we can

also write
zs, = Xgrg, (a)
Tesi = Al ©) (2.69)
us; = Gers; —Hxg, — Heze,  (c)
0 = Bers, + Byzs, — Aces, (d)

where X; and X, are constant matrices. By assumption r; is known and so is rs,.

Moreover r,, has the following form
Ts; = Q€4 (2.70)

where o; € R and e; is an m-vector such that e;(j) = Lj=i Substituting (2.70) into
0 j#4
(2.69-a) yields

X, = T P2 Tsm | (2.71)
a1 Q2 Qi

Finally using (2.68) and (2.69) we have two new algebraic equations

BG. = BH.X. —(A—-BH)X, (a)
B, - _AcXcs - Ba:Xs (b)

(2.72)
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with one additional unknown X.,. This unknown as well as H, H., B, and A, are

the optimization unknowns, where G, and B, are obtained from (2.72).
Step 2: Virtual model-following

First we make the following state augmentation. Let £ = ( ’ ) and 4 =
Ze
_( Hz + Hex, >, then
Bz + Acze
&= A& + Bii+ Byr (2.73)

where A = block diag(4, 0), B, = block diag(B, I) and B, = | 2% |. The

c

closed-loop system (2.1), (2.60) and (2.61) can now be written as (2.73) with

— H H,
t=—-Ki=— z. (2.74)
B, A,
Remark 2.8 Using the augmented state equation (2.73), the choice of the control

structure given by (2.60) and (2.61) becomes clear. Otherwise using ordinary control

with By = 0 implies that K is partly specified. Thus it can not be a free optimization

parameter.
Let z = ( gf ), then
T
I= AT + F §27' (275)
where A = block dlag(A A l f ] and By = ? . Using the VMF ap-
proach only part of the augmented state (the “virtual” state) is available for feedback,

& =[I 0]z = CZ then
a=-KCxz. (2.76)

Step 3: Computation of the optimal parameters

Summarizing the results of the previous two steps, we want to minimize the

following cost function

m m oo _ ~
J= Z Ji=Y /0 (z7Q,z + 0" Ria)dt (2.77)

35



where @; and R; are given by the coefficients in (2.64) and the parameters of the state

space equation of the augmented state T

Z = AZ+ Bid

_ (2.78)
—-KCz.

>
i

This problem can be solved numerically to find a local minimum. Hirzinger
suggested using the conjugate gradient method, where the gradient of J, with respect
to the optimization unknowns, can be easily derived. Because the solution is not global
(i.e., it depends on the initial state), we have first to specify the initial augmented

state Zo,., which depends on the test signal r and the desired output ¢, so that Zg, =

T,.T 0T ~T T\T
(xoixcoio xOIO) .

Remark 2.9 Hirzinger assumed only two possible input types, step and impulse. How-
ever this method can be easily expanded to include any input which is an output of a

linear generator of the form

o= Ao (2.79)
r = Cpz,

where z,(0) = z,9, by augmenting T with the input state ,.

The initial state of the plant zq is given, Z; is specified by the desired output,
and the initial state of the compensator z,y becomes a part of the optimal solution.
Note that for any input, 2,0 depends on some optimization unknowns (e.g., for step

inputs z.9 depends on X), thus it can not be arbitrary chosen.

Hirzinger [29] presented an alternative solution to the minimal order compen-
sator decoupling problem, which until then had been solved (strictly) using algebraic
methods. Instead of using the strict decoupling rank criterion [21], he suggested use
of a measure based on the cost function (2.63). Then starting with a low order com-
pensator (say n. = 0), we can iteratively compute the optimal n.-order compensator.
In each iteration this measure is compared to a given criterion, if it is bigger, then the

compensator order n. is increased by 1.
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Figure 2.9: ODC using output-feedback and dynamic precompensator.

A slightly different approach was presented two years later by Sirisena and
Choi [58]. Actually they solved the following problem. Given a system which can be
strictly decoupled by state feedback, find the minimum order compensator such that
this system is strictly decoupled by output feedback. Theoretically, this problem is
quite different from Hirzinger’s, however from the optimal decoupling point of view

they are very similar.

Instead of state-feedback, Sirisena and Choi used the output-feedback control

of Figure 2.9, where

u = Ger—-—Hazx,—H
[ cv e y (2_80)
. = Acxc+ Ber + Byy.
Here G, is pre-specified as
G. = (04B)71Gy (2.81)
where Oy is defined in (2.28), O4B is invertible and Gy = diag(go1, go2, ---, Gom)

is chosen to satisfy the steady-state requirement. They also characterized the strict
decoupling output gain matrix H in a similar way to the characterization of the state
feedback in (2.35), H = Hg = (O4B)~!(P + K), where P depends only on the plant

and K is the new optimization unknown.

They also used a componentwise cost function to be minimized, of the form

3

J= f: lim E{y;;(t)?} (2.82)

i—
Jj=1 *®

il
S

i
i
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where ;;(t) is the i output of the system when the system inputs are given by

ri =1, E{ri@ri(r)}=6{t—-r7

S fri®ri(r)} = 8¢ - 7) 253
0 j#1i.

Remark 2.10 Using Parseval’s theorem, it is easy to show that the cost function J

in (2.82) and (2.83), is exactly the numerator of Aplevich’s coupling measure p(F)

(2.21). Thus this approach can be considered also to be a “pure optimal decoupling”

one.

The remainder of their work is the same as in Hirzinger’s [29]. Using Sirisena’s
and Choi’s approach there is a good chance to get very high control amplitudes because
of the lack of a control term in the cost function J. Hirzinger simply solved this problem
by adding weighted quadratic control terms to the cost function. Moreover his cost

function also included the cost of the “main diagonal performance” (i.e., y;).

In [56], Qi-Jun et al. tried to eliminate the need for numerical optimization,
and to obtain alternative suboptimal solutions based on standard LQR results. A
common way to derive a sub-optimal solution is to make additional assumption(s)
such that under these assumption(s) the solution is optimal. Qi-Jun et al. [56] made
a very strong and wrong assumption (see Remark 2.11 below) which made their so-
lution very simple. However their work is still important, because they used a more
general controller structure without any pre-decoupling assumption, which leads to a

“standard” componentwise LQR formulation.

The controller, described in their paper, is a digital one, model-following based,
and in addition it includes some extra states for integration to improve overall per-
formance [56]. Moreover they used an incremental cost function which leads to a
relatively complicated control law. However using the proper augmentation and omit-
ting the disturbance input, (the analog equivalent of) their problem can be formulated

as follows. Find the optimal control law of the form

u=Gr— Hz. (2.84)
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which minimizes the following componentwise cost function

m
J=YJ (2.85)
j=1

where each J; arises by applying the exogenous input 7, only (all other exogenous

inputs are zero) is given by
o0
Jj= / (z7 Qjz + u' Rju)dt (2.86)
0

where for all j = 1,2,...,m, @; > 0and R; > 0and z is the augmented state.

Qi-Jun et al. used a standard LQ tracking result, that the optimal complete
state feedback gain is independent of the initial conditions. Under this assumption
the overall cost function can be obtained by simply combining all the J; of (2.86)

m m [ee] o0
J= Jz_:l Ji= > /0 (¢ Q;z + uT Rju)dt = /0 (@"Qc+uTRu)dt  (2.87)

where Q@ = 377, Qj, and R = 372, R;.

Remark 2.11 This standard LQ result is true only for a standard cost function, but
not for the cost function of the form (2.85). Because of the summation in (2.85), the
optimal solution for this cost function depends on the initial conditions even if we are

using complete state feedback. For a detailed discussion of this issue see Section 4.3.3.

Under the (wrong) assumption that the optimal (feedback) control does not
depend on the initial state (exogenous input), the optimal H can be easily derived
using a standard ARE solution. The other part of the optimal control law G can be
obtained by finding its 72 column G j, where for any j = 1,2,...,m, G; is the optimal
SISO gain which minimizes J;(H,G;) for a given input ;.

In the last and most recent work in this category [70], Van-Diggelen and Glover
suggested to use Hadamard (or element-by-element) weighting to achieve robust de-

coupling.
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Figure 2.10: Standard block diagram for the Hadamard weighted control problems.

Remark 2.12 The use of “robust decoupling” in the title of [70] is a little misleading.
To be more precise, using only the proposed Hadamard weighted design procedure Van-
Diggelen and Glover showed that it is possible to get a trade-off between robust stability
and optimal decoupling. In order to achieve robust decoupling (performance) more
work is required. In fact they showed ([70], Section 6.4) that the robustness of the
coupling response (as well as the main response) is improved substantially by using a

w-synthesis method.

The design procedure presented in [70] is based on their solution to the, so
called, “Hadamard weighted Hoo-Frobenius” problem presented in [69,70,71,72]. In
the following, we will show how they reduced this problem to a standard H, control
problem.

Consider the system described by the block diagram of Figure 2.10 where P =
[ P P

P21 P
from w to z be given by the following linear fractional transformation (LFT)

, 2 € RPY) y € RP?2, w € R™ and u € IR™2. Let the transfer function
Y

Tow = Fi(P,K) = Py + PioK (I — PpK) ™' Py (2.88)

Let K denote the set of all internally-stabilizing controllers for the system of
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Figure 2.10. Then the Hadamard weighted H-Frobenius problem is: find all K € K
such that
W o Fi(P,K)lloor <y

where W is the (frequency dependend) weighting matrix, o denotes the Hadamard
product (let A = [a;;] € R"*™(s) and B = [b;;] € R™ ™(s), then Ao B = [a;;b;;] €

R"*™(s)), and the H-Frobenius norm is defined as
4G lloor = sup [|4(jw)l|r = sup (bx {A* (jw) A(jw) /2. (2.89)

In order to reduce the Hadamard weighted problem to a standard ., problem,
Van-Diggelen and Glover used the vec operator (see definition below). The vec oper-
ator is not an isometry on Hy, with the Ho, norm, but it is an isometry on H, with
the Hoo-Frobenius norm. Therefore they used the Hoo-Frobenius norm instead of the

standard H,, norm.

Remark 2.13 Because ||®| o < ||®||looF, using this technique to achieve robust stability

for a given v [70], may lead to a conservative design.

Remark 2.14 Considering only the optimal decoupling requirement (for Lo inputs)
and using the formulation given in Chapter 3, the Hoo-ODC problem can be written
as a Hadamard weighted Hoo-Frobenius problem (see Section 8.6). That is, the Heo-

Frobenius norm is indeed the right norm to use for Hoo-ODC problems.

First we start with the following standard Youla parameterization (2.5) [23].
Let NM~! = M~!N be aright (r.c.f) and left coprime factorization (l.c.f) of Py, and
let UOVE)_1 = 170_1(70 be a r.c.f and l.c.f of Ky € K. Then all K € K are given by

~ -1
K=Ko+V'Q(I+V;INQ) V™! (2.90)
where Q € RH, and F;(P, K) can be written as

F(P,K)=R+UQV (2.91)
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where R = Pj; + P12U0MP21, U=PsMand V = MPZ[.

To proceed we need to define the following operators:

Definition 2.3 Given a vector a € R™(s) (R™(s) is the set of all m real-rational

vectors in s € C) we define

a1

. _ a2 mxm
diag(a) = ' ER (s).

am

Definition 2.4 Given a matriz A € R"™™(s) we define
A
A2 nm
vec{A} = _ € R"(s)
Am
where Aj is the j2& column of A.
Definition 2.5 The Kronecker product of A = [a;;] € R™™(s) and B € RP*I(s) is

denoted A ® B and is given by

auB almB

amB - aymB

The above operators have some useful properties

vec{Ao B} = diag(vec{A})vec{B} (a)

2.92
vec{AXB} = (BT ® A) vec{X} (b) .

The following equalities show the equivalence of the Hadamard weighted Hoo-
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Frobenius problem to the standard H., control problem.

|W o Fi(P, K)||looF Kek
= [[Wo(R+UQV)|leor Q € RHoo
= |lvec{W o (R+UQV)}low Q€ RHoo
W (r+ (VT ®U)q) llo

where W = diag(vec{W}), r = vec{R} and ¢ = vec{Q} € RH. The first equality

(2.93)

follows from the Yola parametrization (2.91). The second holds because vec is an
isometry on Ho with the #H.-Frobenius norm, and because a vector has only one
singular value so its o, norm and H.o-Frobenius norm are equal. The third equality

follows from the properties (2.92).

In the sequal, Van-Diggelen and Glover [71] showed that under the standard
assumptions on P and some mild assumptions on W there exists a new generalized

plant P and a non-singular matrix W such that

F(P,Wq)=W (r + (VT ® U) q) .
Now the Hadamard weighted Hoo-Frobenius problem can be given as the fol-

lowing standard H, problem: find all ¢ € RH o such that
IF1(P, Wg)lleo < 7. (2.94)

The necessary and sufficient conditions for the existence of a solution to the
suboptimal H.-Frobenius problem (2.94) are given in [71] Theorem 4.1, and the con-
ditions for the optimal #.-Frobenius problem (where < in (2.94) is replaced by <)
are given in [71] Theorem 5.1. Van-Diggelen and Glover also solved the Hadamard
weighted 73 problem (note that the vec operator is an isometry on #, with the 5

norm).

In their later paper [70], Van-Diggelen and Glover combined the above tech-
nique with a loop shaping design method in order to achieve both robust stability

and coupling reduction. In fact if we do not care about robustness we can use their

technique to obtain the Hy-ODC (see Section 3.6).
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Using the vec operator to reduce the problem to a standard H,, problem in-
creases substantially the order of the resultant controller as shown in the following

example. Suppose T has the following n® order state space realization

A\ B def -1 pXm
T = X C(sI— A)"'B + D € RP*™(s).
C|D

Then the SIMO system vec{T} has the following mn# order state space realization

A B
A B I,®A ‘ vec{B
vec{T} = | = {5} € R™(s).
c D, In®C | vec{D}
C | Dn

In fact Van-Diggelen and Glover used a similarity transformation to obtain an
equivalent (but more convenient) state space realization. Given the original problem
dimensions (p; +p2) X (m; +my), the new generalized plant P of (2.94) has an order of
(p2 + ma)n. Recall that using standard Ho, solutions (without model reduction), the
resultant controller k (the controller assotiated with r + (VT ®U ) q) has the same
order as the generalized plant P. Moreover going back from k to K this order is
generally not reduced. That is, if we assume an m x m n* order plant the resultant
Hadamard weighted Hoo-Frobenius controller will be of order 2mn. This is a major

disadvantage of this method.
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Chapter 3

The general optimal decoupling control (ODC)

problem

3.1 Introduction

In this chapter we study the general ODC problem. The term “general” is used
because we consider the general closed-loop configuration used for decoupling (i.e.,
tracking system), and we do not make any assumptions about the exogenous reference
input. In the next chapters we assume that the exogenous input is deterministic and
known, and a state-feedback control law is used. Then the ODC problem will be
stated as an LQR type problem. Using the formulation given in this chapter with
other assumptions, other ODC problems can also be stated. For example, see the Hoo

(H2) ODC problem in Section 3.6.

Trying to solve the ODC problem, we first need a good performance index which
can quantitatively measure the coupling level of the system. In this chapter such a
measure is defined. Moreover an “imaginary” system, which generates the outputs
required to compute this measure, is also defined. This system and its relationships

with the original system are the bases for all the new results presented in this thesis.
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H(s) ¢

Figure 3.1: Tracking system with two degree of freedom controller.

3.2 Componentwise performance index

Consider the tracking system shown in Figure 3.1. The plant is a linear, time-
invariant, finite-dimensional system represented by the real-rational, strictly-proper
transfer function matrix P(s). The plant has an m-vector control input u, and an

m-vector output y. The control law for the closed-loop system is given by
u(s) = G(s)r(s) — H(s)y(s) (3.1)

where r is an m-vector exogenous piecewise continuous reference input, and G(s) and

H(s) are a two degree of freedom controller. The tracking error is defined by

e(s) = y(s) —r(s). (3-2)

Let W,(s) and W,(s) be the error and control weighting matrices, respectively.

Then we define
ze(s) = We(s)e(s) (3.3)

and

zu(8) = Wy (s)u(s) (3.4)

as the weighted error and the weighted control, respectively. The performance index
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for the optimal tracking problem can be written as

2
2e

J(2e,2y) = (3.5)

z
“ole

where ||-||, denotes the standard £; norm. Clearly by minimizing J(z., z,) over G(s)
and H(s) we obtain the optimal tracking controller. Finally we can write the following

closed-loop relations

yls) = T()r(s)i  T(s) = [I+P(s)H(s)] ™ P(s)G(s)
e(s) = Tes)r(s); Te(s) = T(s)-1 (36)
u(s) = Tu(s)r(s); Tu(s) = G(s)— H(s)T(s).

Suppose now that all the inputs in (3.6) except the j& one, rj, are zero. Let g;

denote the corresponding error
e; = (Elj egj - Emj)T. (3.7)

This componentwise error contains the main error €;;, and the coupling components
€j, © # J, i = 1,2,...,m. Repeating this test for each input j = 1,2,...,m, we can

use all the coupling components to indicate the coupling level of the system.

Definition 3.1 The system (3.6) is said to be coupled if for some r; # 0, there exists
some 1 # j such that ; # 0.

Definition 3.2 The system (8.6) is said to be decoupled if for all r; # 0 and for all

Moreover, €;; can be used to measure quantitatively the coupling level of a
system. Practically, this idea has been widely used to indicate pairwise coupling levels,
or to compare between two or more coupling components of the same or different
designs (see [7]). However, in order to use this idea for optimization purposes, we have
to define a scalar function which measures the overall system coupling level (i.e., takes

into account all the coupling components).
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Remark 3.1 The motivation to use “test” inputs is now clear and indeed test inputs
(mostly steps) have been used in several works (e.g., [29]). However the theoretical
componentwise errors €; are well defined, for any arbitrary input r. Moreover, using

superposition, the actual system tracking error can be expressed in terms of these €;’s.

In optimal decoupling design we would like to give higher priority to the coupled
part of the tracking error than to the main tracking error. This can be done simply by
weighting differently the tracking error components €;; (i.e., high weight for &;; i # j
and small weight for e;). Let we, ; be the componentwise weight of €;;, then the

weighted componentwise error Z,; is defined as
Ze,; (s) = We; (S)Eij(s)' (3.8)

Let us define the following m?2-vector

e=(e]e - &) =(E1 81 - Em1 €128 - Em2 *** Elm Eam *** Emm)
(3.9)
(7 and @ are defined similarly) with its diagonal weighting matrix
W, = blockdiag(We,, We,,..., We,) (3.10)
where
We; = diag(we,;, Weyj - - -y Weyy;)- (3.11)
Then the m2-vector weighted componentwise error is defined as
Ze(s) = We(s)e(s). (3.12)

Replacing z, in (3.5) by Z. of (3.12), we obtain the optimal decoupling perfor-

mance index 0

Ze
Ji(Zer 20) = . (3.13)

Similarly to the optimal tracking problem, we can minimize Jy4(Z, 2,,) over H(s) and

G(s) to obtain the optimal decoupling controller. However, using an output feedback
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control low, the optimal control law depends on j. Therefore we can not use the
original closed-loop form (3.6) to obtain the optimal solution. In order to understand

this problem better, we first study the following duplicated system representation.

3.3 Duplicated system representation

The duplicated system is an (m +m?) x m system which, as a response to r, generates
the componentwise system outputs §, @ and €, as well as the original outputs y, u
and e. In order to define the duplicated system let us first define the following linear

operators:

e The fragmentation operator, F : R™(s) — R (s)
Let 7 € R™(s). Then the elements of 7 = F(r) € R™ (s) are defined as

r; fi=m+1l)j-m,j5j=12,....,m
o T ( ) J (3.14)
0 otherwise.

The fragmentation operator has the following matrix representation 7 = Vr

where V € R™ *™ with elements

1 fi=(m+1)j—m, j=12,...,m
Vi = ( )j—m, j (3.15)
0 otherwise

or equivalently
V=WV V)"

where V; = [v;,,] € R™*™

(3.16)
1 k=l=y
and v, =
0 otherwise.
The sub-matrices Vj, j=1,2,...,m form an orthogonal basis for the sub-space

consisting of all the diagonal matrices in IR™*™, with the following properties

m
1. S V=1
J=1
. . oo ath
mXn . — j m X n zero matrix except its j== 3 17
2. VAeC VJA A row which is the 72 row of A4 ( )
. . . th
nXm 8 — j n X m zero matrix except its y3==
3. VAeC AV7 A column which is the 722 column of A
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e The superposition operator, S, : R™*(s) — R™(s)

Let Z = (Z{ Z5 -+ %) where Z; € R*(s)V i =1,2,...,m and & € R™(s)
m

then z = S,(Z) € R"(s) is defined as: z = 5 F;. The superposition operator
=1

has the following matrix representation: x = U, T where

Un ==

InIy - In] e RV™n (3.18)
m times

where I, is the n dimensional identity matrix.

If m = n then, by convention, S, — S, U, — U and I, — I. In this case

Z€R™ (s), z =Uz € R™(s) with

U=

IT-- I] e R™™, (3.19)

m times

e The duplication operator, D, : RP*4(s) — R™P*™(s)

The range space of the linear operator Dy, (-) is denoted by RPX4(s) C R™P*m4(s),
Let M € RP*4(s) then M = D, (M) € RP*9(s) is defined as

M
— M
M =blockdiag | M, M, ---, M | = (3.20)
—’_’ *.
m times
M
or
1 = 1,2,..., P
— M;; fk=i+rmandl=j+rm 3= L2...,4
My = r o= 01,..., m =1 (3.21)
0 otherwise E o= 1,2,...,mp
] = 1,2,..., mq.

Thus ﬁqu(s) is a subspace contains matrices with special Repeated Block Diag-
onal (RBD) structure. Let A, B € RP*9(s), C € R7%"(s), and let D € R"*"(s)

be invertible, then

B

o)

A¥YB =

1 +B € RPXI(s) c RmMPxma(s)

2 111’? = AC e RoT(s) c Rmaxmr(g) (3.22)
3. AT = AT € RIP(s) C RmMIxmp(s)

4. D1 — D1 ¢ Rxn(g) ¢ Rmnxmn(g),
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Some useful properties of these operators:

e S(-) is a left inverse of F(-), i.e., r = S(F(r)), or

Uv =1

o Let M € RP*Y(s) and M = D, (M) € RP*4(s) then

UpM =MU,= (MM ---M
N———
m times
and if p = ¢ = m then
UM = MU
and
UMV = M.

o Let M = block diag(M; M, --- M,,), then

m
UMV =Y M;V; = [M} M -

J=1

where MJJ is the ji& column of M;.

My

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

Consider the tracking system shown in Figure 3.2, where P(s), G(s) and H(s)

are the m-duplication of P(s), G(s) and H(s), respectively.

The duplicated system closed-loop equations are:

gs) = T)is)  Ts) = [[+P)AE)] Ps)C(s)
e(s) = Tlo)i(s); Tels) = T(s)-T
us) = Tu(s)i(s)y  Tuls) = Gls)— H(s)T(s)

(3.28)

where 7(s) = Vr(s), y(s) = Ug(s) and e(s) = Ue(s). The componentwise control is

given by
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Figure 3.2: The duplicated system representation.

with

G = [G@T(s) - Th(e)]

= blockdiag(G1(s), Ga(s), ..., Gm(s)) € R™**xm
i.e, Gj(s) is a zero matrix except its 5% column which is the j& column of G(s).

Using the property (3.25) of U, the actual control is then

u(s) = Uul(s)
= UG(s)¥(s) — UH(s)y(s) (3.30)
= G(s)UF(s) — H(s)U#(s)
= G(s)r(s) — H(s)y(s)-

This system has exactly the same I/O properties as (3.6), and in addition it
generates the desired componentwise outputs. We can now formulate and solve the
following ODC problem using the duplicated system set-up and the cost function in
(3.13).

omin_ Jg(Ze, 20) (3.31)
H(s),G(s)eSmxm

where §™X™  R™MX™(4) is the set of all RBD controllers which stabilize P(s) (ie.,

T'(s) of (3.28) is stable). However then, the solution to (3.31) is singular as we next

show.
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To see this, recall from (3.13)

— 2 S _ 2
JoZerz) = | ¢ _ || Wels)e(s)
Zu |, Wu(s)u(s) ,
(3.32)
2 — 2
_ || Wels)e(s) _ || Welo)zls)
Wu(s)U(s) Wo(s)as) |,

where Wy(s) = Wy (s)U = Wi(s) lu I} = |Wu(s) Wu(s) -+~ Wau(s)|. There-

m times m times
fore J4(Ze, 2,) has quadratic terms of the form %(s)* R(s)u(s) where

Wu(s)*Wy(s) -+ Wyu(s)*Wy(s)

Wy (s Wyu(s) -+ Wyu(s)*Wy(s)

is a singular matrix. This implies that the optimal control u (u(s) = G{(s)r(s) —

H(s)y(s)) may have some unbounded components @;.

Therefore we slightly modify (3.13) by replacing W with W, which is defined
similarly to W, of (3.10) and (3.11), i.e., W, is a diagonal, nonsingular matrix. Hence
2z in (3.13) is replaced by the weighted componentwise control z,(s) = Wy(s)a(s).
The modified componentwise performance index is now given by

2

Jd(zeafu) = . (3.34)

Remark 3.2 The components of W, are artificial (generally they have no physical
meaning). However, by the right choice we can practically ensure that the control
signal u is bounded (recall that because u is a sum of @;’s, bounded u implies bounded
u). Notice that even in ordinary optimal design the choice of the control weighting
matriz 1s not determined uniquely by the physical limitations, and in most cases the

designer can use it as a design degree of freedom.
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The general optimal decoupling problem is now given by

omin_ Jy(Ze, Zu) (3.35)
H(s),G(s)e8mxm

Suppose such H(s) and G(s) exist, then the corresponding H (s) and G(s) are

the optimal solution for the original system (3.6).

The optimization problem (3.35) has a structural constraint, namely the solution
matrices are restricted to have a special RBD structure. For numerical optimization
reasons we prefer to have an unconstrained problem. In fact (3.35) can be reformulated
as an unconstrained optimization problem using the simultaneous control representa-

tion.

3.4 Simultaneous control representation

For the modified problem (3.35) we can alternatively consider the m tracking systems
shown in Figure 3.3. Although all the systems have the same input r, each one has a
different fragmentation sub-matrix V; defined in (3.16). Therefore, we have m different
SIMO systems, where the j& system generates the componentwise output 7; and the

componentwise error &;. The j% componentwise control law is now given by

uj(s) = G(s)7j(s) — H(s)F;(s) = G(s)Vjr(s) — H(s)F;(s) = Gj(s)r(s) — H(s)7;(s)
(3.36)

where H(s), G(s) € R™*™(s) have no structural constraints.

Furthermore, using the partitioned error weighting matrix Wej (3.11) and sim-
ilarly the partitioned control weighting matrix Wuj, we can define the following

weighted componentwise outputs

2ej(s) = Wej(s)éj(s)

o i=1,2,...,m. (3.37)
Zy; (s) = W, (s)u;(s)
If we define the j2 performance index as
2
Ee .
de (Ze;>Zu,) = ! j=12,...,m. (3.38)
EuJ .
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Figure 3.3: The simultaneous control representation.
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Then (3.34) can be rewritten as

2 2
m m ze
Ji(ZerZu) = = Z Ja, (Ze, 1 Zu,) = U7 - (3.39)
2
Remark 3.3 The original cost function for optimal decoupling (8.13) can not be writ-
ten, using the simultaneous control representation, as a summation of m independent
terms. Then, even for a diagonal control weighting matriz W, there should be cross-

terms in (3.39). Therefore we consider the simultaneous control representation only

for the modified ODC problem (3.35).

Using the equivalent cost function (3.39) we can replace the structural constraint
of (3.35) with the simultaneity requirement, i.e., H(s) and G(s) have to minimize the

sum of m different performance indices

m
H(S),Gr(rgrelsfnxm ; Ja; (Zej Zu;) (3.40)
where S™*™ C R™*™(s) is the set of all the controllers which stabilize P(s) (i.e.
T(s) of (3.6) is stable). Now the implementation of the optimal solution is even more
direct, namely if there exist H(s) and G(s) which minimize (3.40), they are the optimal

solution for the original system.
Remark 3.4 From (3.36)

a;(s) = G(s)F;(s) — H(s)Fj(s) = Gj(s)r(s) — H(s)y;(s).

Therefore the minimization is done over the columns of G(s), or over H(s), Gi(s),
G2(s), ..., Gm(s). Apparently G;(s) has a structural constraint, i.e., all its columns
except the j&& one are zeros (3.29). However, using SIMO systems, the optimal aj(s)

always has this structure.

Remark 3.5 Similar formulations, using different approaches for the optimal LQ de-

coupling problem, were obtained in previous works [29], [58] and [56].
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3.5 The ideal solution and its applications

We have already shown that using componentwise performance indices such as (3.34)
the optimal decoupling problem can be formulated as a constrained optimization prob-
lem (3.35). Suppose we now remove this structural constraint. Then (3.35) can be
written as the following optimization problem
_ _min Ji(Ze, Zu) (3.41)
H(s),G(s)esm?xm?
where S™*xm* < RM?Xm?(g) s the set of all the controllers which stabilize P(s),
i.e., H(s) and G(s) have no structural constraint. The equivalent problem using the
simultaneous control representation is to find the m optimal solutions for
ﬁ,(s),@r,-rtisl)lesmxm Ja;(Zej Zu,) 5=1,2,...,m (3.42)
where S™*™ C R™*™(s) is the set of all the controllers which stabilize P(s).

Let Jy denote the minimum cost for the optimal solution to (3.35) and let Jy

denote the minimum cost for the optimal solution to (3.41), then
Jy > Jy (3.43)

That is, Jj is the best solution we can obtain. Moreover, because the structural
constraint has been removed, the solution to (3.41) is a standard one. Of course this
solution is only an ¢deal one because the optimal control law depends on the unavailable
output y

a(s) = G(s)7(s) — H(s)ij(s). (3.44)

The closed-loop equations for the ideal solution are

gs) = Ty Ts) = [T+P()HE)] P(s)G(s)
e(s) = T(s)F(s); Te(s) = T(s)-T (3.45)
w(s) = T Tul) = Gls) - H)T()
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From (3.45) we conclude that H(s) and G(s) are block diagonal matrices .
However they do not satisfy the RBD structural constraint as did H(s) and G(s) in
(3.28). In fact the blocks of H(s) and G(s) are H ;(s) and G;(s) of (3.42), respectively.

The ideal solution H(s) and G(s) can be easily found using classical optimal
control methods (see Section 4.2 for the state-feedback case). In addition to its limited
practical applications presented in Sections 3.5.1 and 3.5.2, the ideal solution can be

used to compute fd. This ideal cost may be used as a design “target” for practical

ODC designs (3.43).

Two applications of the ideal solution for stable plants are presented in the

following.

3.5.1 Open-loop control implementation

Theoretically the ODC componentwise control law @ of (3.29) can be generated by an
artificial duplicated system. Then from (3.30) we can use the open-loop ODC u = U4
for the actual system. This idea may be expanded to use the better control law 4 of

(3.44), as stated in the following proposition.

Proposition 3.1 Let P(s) be a transfer function for a linear system with input u(s)
and output y(s). Let P(s) be the transfer function for the duplicated system with input
u(s) and output G(s). Suppose that W (s) is the optimal control for P(s), i.e., uw*(s)
solves (8.41), then u(s) = Un*(s) is the ODC for P(s).

Proof: Let §*(s) denote the optimal output of the duplicated system P(s). Then all

we have to show is that using u(s) = Uu*(s), the output of P(s) is y(s) = U 4*(s).
But this follows directly from (3.25), P(s)U = UP(s) then

y(s) = P(s)u(s) = P(s)Un*(s) = UP(s)u*(s) = Uj*(s). (3.46)
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Figure 3.4: Open-loop optimal decoupling.

The implementation of this open-loop ODC is shown in Figure 3.4. The open-

loop controller transfer function C(s) can be derived from (3.45)

Cls) = UTu(s)V = [Ti(s) To(s) -+ TI'(5)] (3.47)

where TJ(s) is the & column of the j& block of Tu(s) in (3.45).

Practically this solution is not very useful. First it is an open-loop control which
fails in the presence of disturbances and plant perturbations. Second the resultant
controller has a very high order, e.g., if C(s) is obtained from an LQ componentwise
state-feedback optimal control law, then it is of order nn. However this simple idea

helps to demonstrate the importance of the ideal solution.

3.5.2 Closed-loop control

The ideal solution can be also used in a closed-loop configuration. For this case we

introduce two new matrices A(s) and I'(s) as an additional design degrees of freedom

(see Figure 3.5).
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Figure 3.5: Closed-loop optimal decoupling.

Proposition 3.2 Consider
P(s). If
H(s) =
G(s) =

U [:f—!- fI(s)I‘(s)ﬁ(s)]
U [T+ H(s)T(s)P(s)]

the closed-loop system shown in Figure 3.1 with stable

1~
H(s)V

1~ (3.48)
G(s)V

where H(s) and G(s) are the ideal ODC matrices and A(s)U + T'(s) = I, then H(s)

and G(s) are the ODC matrices for the system in Figure 3.5.

Proof: If A(s)U + I'(s) = I, then the estimated componentwise output of Figure 3.5

Fe(s)

A(s)y(s)
)

(3.49)
[A(s)U +T(s)] 9(s)

g(s)-

Because P(s) is stable there are no unstable pole-zero cancellations. Converting

the structure of Figure 3.5 to that of Figure 3.1, we obtain (3.48).

O

The closed-loop transfer functions for the nominal case (no system disturbances,

measurement noises, or plant perturbations) are exactly the theoretical transfer func-
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tions (3.45). Moreover, under these assumptions we can choose A(s) = 0, I'(s) = T
(i-e., the ideal open-loop solution of (3.47)). In other cases, A(s) and I'(s) can be cho-
sen to improve the performance of the closed-loop system. For example one natural
choice, when no information on system disturbances, measurement noises, or plant
perturbations is available, is A(s) = V and I'(s) = I — VU. Practically, for this choice,
we assume that the system disturbances, noise and uncertainties, do not affect the

output coupling components.

3.6 High order H,, and H, ODC

In this section the H, and Hy ODC problems are converted to Hadamard weighted
problems using the duplicated system representation of Section 3.3. We start with the
duplicated tracking system of Figure 3.2. This system can be described by the block

diagram of Figure 3.6, with the following generalized plant and controller

_WCV W—eﬁ
— 0 W — Ao
P= A K=|[-H3]. (3.50)
0 p
v 0

We assume that the input reference signal is unknown and £y bounded (i.e.,

Irllz < 1). We are looking for an internally-stabilizing K which minimizes the L,

Wee

norm of the weighted output z = . It is well known (e.g., [17]) that this

Wi
problem is equivalent to the following Ho, problem:

nf_||F(P, K)lleo (3.51)
KckK
where F;(P, K) is the LFT given by
Fi(P,K) = Pyy + PuK (I — PpK) ' Py (3.52)

and K is the set of all internally-stabilizing K’s.
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Figure 3.6: Standard block diagram for the Ho, and Hy ODC problems.

In fact the solution to (3.51) is the open-loop Hwo-ODC. In order to get the
closed-loop solution to (3.51) we force K to have the RBD structure, i.e.,
H G

B= |-
H G

Then (3.51) can be written as the following constrained optimization problem
_inf_||Fi(P, K)lloo- (3.53)
H,Gex

We now show that the structurally constrained problem (3.53) can be trans-
formed to an unconstained Hadamard weighted # -Frobenius problem [71]. Moreover
it turns out that the H.-Frobenius norm used by Van-Diggelen and Glover in [71] as
an approximation to the standard Ho, norm, is indeed the right norm to use in this

problem.

First we define the following weighting matrices,

Weqq T Weyy, Wuyy o Wugy

We=|: Lo S, Wy=1: o andW:[W"'],
. : : . -

Wema o Wemm Wy t Wumm
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Recall from (3.28) that

)

IS

Fi(P,K) = (3.54)

)

eIV
|4

N

utu

Using the definitions for W, and W, (3.10) and (3.11), and for V (3.15) and (3.16)

[ We, 11 = Vi ]
F(P,K) = _ Wen L T ]| Ve
W, Tu Vi
i Wun || Ty Vim |
B Weyg Teqy I
We 1 Te,n,y
Werm Term
(3.55)
_ | Wem Lemm ]
- i Wayq Tuqy i
Wapyy Ty
Wi T m
L L Wernm Tumm 4
_ [ block diag ([We 0 Tel, , -, [We 0 Tel,,)
| block diag (WauoTuly,..., [Wu o Tul,,)

where T, and T, are defined in (3.6), and [A o B]; is the j% column of the Hadamard
product matrix A o B. Finally from the definition of the H,, norm and the H.-
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Frobenius norm (2.89)

m
IF(P, Kl = Sup Z [We o Te]; [WeoTe]; + [Wu 0 Tu]; Wy o Tu]j}
j=1

sup > Wo TJ; [W o T]j} (3.56)
j=1

IW © Tlloor

where T = lTe ]
Ty

Therefore the Ho-ODC problem can be stated as the following Hadamard
weighted Ho-Frobenius problem

ot [WoTlloor (3.57)

where K = [-H G] and K is the set of all internally-stabilizing controllers for the
original tracking system of Figure 3.1. Because now the problem depends only on
the original system and not on the duplicated system, the RBD structural constraint
is removed. That is, the constrained H,, problem becomes an unconstrained H .-

Frobenius problem.

In general there is no explicit solution to (3.57). However, as for the standard
Heo problem this problem may be solved by solving iteratively (“y-iterations”) the

following sub-optimal Ho, problem: find all K € K such that

W o Tlleor <. (3.58)

The sub-optimal problem can be solved using the technique presented in [71]

(see also Section 2.5).

Remark 3.6 Theoretically, the tracking problem of the form of Figure 3.1 is not a
standard Hoo problem. The Doy matriz of the generalized plant state space realization
does not have full row rank (i.e., not a “fat” plant). Therefore theoretically the above
Hoo-Frobenius problem can not be solved [71]. In Hoo theorey there are some ways to

“fiz” this problem. First, we can use a minimum phase “squaring-down” compensator
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as proposed by Le and Safonov [45]. Alternatively we can “square-up” the generalized
plant by adding some fictitious inputs passing through a gain of vanishingly small size
€. The Hoo norm of the closed-loop system with the squared-up generalized plant is an
upper bound on the Hoo norm of the original closed-loop system. Furthermore in [52],
Matson, Mita and Anderson showed that this bound is tight as € approaches 0. Same

ideas may be used to solve the above Ho-ODC problem.

Following the same steps used for the Ho-ODC, we can bring the #5-ODC to
the form of a Hadamard weighted #2 problem. The solution to this problem is also

given in [71].
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Chapter 4

The state-feedback ODC problem

4.1 Introduction
In this chapter we study the ODC problem under the following assumptions:

(A1) The input reference signal is known and has the following state space realization

I, = Ay
T T (4‘1)
r = Crz,

where A, is asymptotically stable, z, € R™", z,(0) = z,, and r € R™, m < n,.

(A2) The componentwise cost function is of infinite horizon, with constant state and

control weighting matrices.
(A3) The control law is a state-feedback of the form
v =Gz, — Hz (4.2)

where z, is the state of the input signal, z is the actual or observed system state,

and G and H are constant gain matrices of proper dimensions.

Considering only assumptions (A1) and (A2), the ideal ODC is not of the closed-
loop form of (A3). First we derive this ideal (free structure) ODC based on standard

LQ results. Then the necessary conditions for optimality, for the given closed-loop
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structure of (A3), are derived using constant-gain optimal fixed structure control
(OFSC) techniques. From these necessary conditions we can obtain the ODC so-
lution. However under assumptions (A1)-(A3), this solution depends on the initial

states.

4.2 The ideal (free structure) state-feedback ODC

As we have already seen in Chapter 3 the ideal ODC is actually a classical optimal
control of an mn-order tracking system. To derive the explicit state-feedback result

we first summarize the well known linear quadratic tracking (LQT) problem.

4.2,1 The optimal linear quadratic tracking (LQT) problem
The standard linear quadratic regulator (LQR) problem

Consider the following minimization problem

Lnellr} (=" Qz + uT Ru)dt
subject to (4.3)
= Az + Bu
where U is the linear space of m-dimensional continuous functions, @ and R are sym-
metric positive-semidefinite and positive-definite matrices, respectively. z € R™, z(0) =
zo, v € R™, y € R™ and m < n. The couple (4, B) is controllable (stabilizable)
and the couple (Q'/2, A) is observable (detectable).

The well known global (global in U and also independent of the initial state)
solution to (4.3) is given by

u=-RB"P=—-Kz (4.4)

where P is the unique, symmetric, positive-(semi)definite solution to the following

algebraic Riccati equation (ARE)

PA+ATP—-PBR'B"P+Q=0. (4.5)
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The closed-loop matrix A. = A — BK is asymptotically stable and the minimal cost

is given by 23— Pxg.

The LQT problem as a standard LQR problem

Consider the tracking problem of Figure 3.1, where P(s) has the following minimal

state space realization

& = Ax+ Bu
(4.6)
y = Cuz.
Recall that the tracking error is defined as e = y — r, where y is given by (4.6),

r is given by (4.1) and the LQ optimal tracking problem is

o0
min / (€7 Qee +u T Ru)dt (4.7)
uel Jo

where @) and R are symmetric, positive-definite matrices.

The standard solution is given by converting this problem to a standard LQR

problem using the following state augmentation X =( “ |. Then
Zr

X = AX + Bu
e = CX

A 0
0 A
minimization problem (4.7) can be rewritten as

where A = ,B= f ),6=[C’ —C;] and X(0) =X0=( o ) The LQT

w —
min / (XTQX +uT Ru)dt (4.9)
ueld Jo

where
Q = UTQe6= [_C;T ]QE[C —Cr]

_ cTe.c —cTec: | _[@ @] o,
~CTQ.C  CTQ.Ch Q4 @ | T

(4.10)
The augmented realization (4, B, Ql/ 2) is stabilizable and (at least) detectable.

Therefore the optimal control is

B'P=-KX (4.11)

69



where P is the unique, symmetric, positive-semidefinite solution of the following ARE
PA+A P-PBR'B'P+Q=0 (4.12)

A, = A — BK is asymptotically stable and the minimal cost is given by X, PX,.

In order to apply this solution to the original system, let K = [H — G]. The

optimal control law is now given by v = Gz, — Hz. Let P = ilT P l, then (4.12)

P, P;
can be replaced by the following matrix equations

PiA.+ AP, +H"RH +Q, 0 (a)
PyA, +AlP2+Qy = 0 (b) (4.13)

P3A, + AJP3—GTRG+Q; = 0 (o)
where Py > 0, P; >0, H= R 'B"P;, G = -R'B"Py, and A, = A— BH
is asymptotically stable. From (4.13) we conclude that H does not depend on the
reference input. In fact H is the LQR solution obtained from (4.4) and (4.5) with

Q=0

4.2.2 The ideal ODC problem as a standard LQT problem

The ideal ODC can be derived by applying the LQT formulation to the duplicated

system (Section 3.3) or to the simultaneous control (Section 3.4) state space equations.

First we define the componentwise state as

T= (%] Zg - Z3)7 (4.14)
with Z; = ( Zy; Ty --- a‘cnj)T, where Z;; is the i2 (i = 1,2,...,n) element of
z, when only the j# (j = 1,2,...,m) input is active. That is, z; = Y.it1 Zij, and

T = YiL, Zj, or using the superposition operator (3.18), z = U,Z.
The duplicated system state space equations are
T = Az+ Bau
y = Cz

(4.15)

where Z € R™, @ € R™ and §j € R™, m < n.
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Remark 4.1 There is some freedom in the choice of the initial componentwise state
z(0). Theoretically any Z(0) which satisfies £(0) = U,Z(0) is acceptable. However, the
“best” (in the LMS sense) one can do is to assume Z;(0) = 2, Vj=1,2,...,m (see
Section 5.3.2 for more details). Note that in decoupling theory we usually consider only

the zero-state (I/0) response of the system (i.e., £(0) = 0). Then naturally, (0) = 0.

Some useful relations between the original system state space realization prop-
erties (4.6), and those of the duplicated system (4.15), are stated in the following

lemma.
Lemma 4.1 Consider the two state-space realizations (4.6) and (4.15), then

(1) The triple (E,E, 6’) is minimal if and only if (A, B,C) is a minimal triple.
(it) The couple (A, BU) is controllable if and only if (A, B) is a controllable pair.

(i3) The couple (Uy, A) is not completely observable.

Proof: Follows from the definition of the duplication operator (3.20) and the matrices
U and Uy, (i), Using the Cayley-Hamilton theorem, the rank of the controllability and
observability matrices of the duplicated system (4.15) is reduced to m times the rank
of those matrices of the original system (4.6). (i7), From the definition of U (3.19),
the rank of the controllability matrix of the couple (A4, BU) is the same as that of the
couple (A, B). (iit), From the definition of U, (3.18), the rank of the observability
matrix of the couple (Uy, A) is n. Thus a realization with this couple has (m — n

unobservable states.

O
Let us define the componentwise tracking error as
e=j—7=0z—VC,az,
Then the ODC problem can be stated as
oo ~
min / (€' Q. + @' Ru)dt, (4.16)
aeUu Jo
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where
Q. = block diag(Qe,, Qey, -.- »Qe,) and R = blockdiag(Ry, Ry, ... , Ry)

are the (diagonal) positive-definite error and control weighting matrices, respectively.
This minimization problem can also be written as a standard LQR problem using state

augmentation of the componentwise state Z and the input reference z;.

Let)~(=( ? ),then
Ty

X = AX+Bu

. (4.17)
e = CX
whereﬁzl 40 ], B=|?% ], C = [5’ —VCT] and )?(0) = )A(:o =( %o ) The
0 A, 0 Zrg
minimization problem (4.16) becomes
w ~ ~ o~
min / (XTQX +u' Ra)dt (4.18)
ac Jo

where U is the m2-dimensional space of continuous functions and

-~

CT
-cTvT®
[ 61‘?8?’: _aTQ:eVCr l _ [ §1 ?2 ] > 0.
-CcTVvTQ.C CIvTQ.VC, 3 Qs -

Q - é—réeé= C’je[é\’ _VCT]

(4.19)

From Lemma 4.1, the triple (2, B,QY 2) is stabilizable and detectable. There-

fore the optimal control is
a=-R'BTP=-KX (4.20)
where P is the unique, symmetric, positive-semidefinite solution of the following ARE
PA+A"P-PBR'BTP+Q=0 (4.21)

A =A- BK is asymptotically stable and the minimal cost is given by XoPXo.

Recall from Lemma 4.1 that the componentwise state Z can not be observed

from the actual state z (v = U,Z, but (Un, A) is not observable). Therefore this
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solution can only be applied to stable plants in high-order open-loop or closed-loop
configuration. See Section 4.2.3 below for these implementations. For this case, let

K= [H — (~}’] The optimal free structure control law is now given by

%= Gz, — Hz (4.22)

where P =[ ; P2 l , and (4.21) is replaced by the following matrix equations
2 I3

PA+AP+H'RH+Q; = 0
PA+ATP+Qy = 0 (b) (4.23)
ﬁ3A7- + A,Tﬁ;; - éTRé + Q3 =0
where .151 > 0, 133 >0, j‘vI = E_IB’Tﬁl € ]Rm(an)’ é = —R—IETﬁz € ]Rm2><nr, and
A, = A-BHis asymptotically stable.

Alternatively, we can use the simultaneous control representation. The j& si-
multaneous control state-space equations are
z; = Azx;+ B,
7 7 T i=12,....m (4.24)
g = Cz
where the ji componentwise tracking error is

ej =y; —7; = C%; — V;Crxy. (4.25)

The ODC problem is given by

m 00
. TX - TS =
u1-¥-r1lil:t1€uj=1/o (e; Qj€; + 4, Rju;)dt (4.26)
or, because the m SIMO systems are independent, for all j =1,2,...,m
. ® = _ _TH -
5%?1/0 (e; Qj&; + u; R;u;)dt. (4.27)

Tr

Let X; =< K ), then

(4.28)



whereZ:{;4 Z ,§=[:},6j‘=[0—‘/er]ande(O)‘—’YOj:(%" ).The

minimization problem (4.27) becomes

L [® T T -
%lérl,l{/(; (Xj Qij + 4y RjUj)dt (4.29)

where

— o~ = cT ~
Qj = Cer,Cj = \: —cTv; ]er[o _’Vjcr}

. A o (4.30)
- CTQEJ‘C —CTQCJ‘/jCT — Ql] sz > 0
—CTV,Ge;C CTViQe;ViCr @ @, ]

For all j = 1,2,...,m the triples (A, B, @;/ 2) are stabilizable and detectable,

and the optimal componentwise control is
U; = ~R;'B _j = —T(_j:}?j (4.31)

where ?j are the unique, symmetric, positive-semidefinite solutions of the following

th ARE

P;A+A, P-P;BR;'B P;j+Q;=0 (4.32)
A, =A- BK; is asymptotically stable, the minimal componentwise cost is given by
YS;I—JJ-YO , and the minimal cost is YLy —X—J;—P-jyoj.

Again we can partition the solution, let K; =[H; — G;). The optimal compo-

P1 P2

~% |, then
P2; Pg

nentwise control law is now given by @; = Gjzr — H,;z;. Let P; =
2

(4.32) can be replaced by the following m sets of matrix equations

Py A, +ALPy +H BH;+ Qi = 0 (9
Py A+ ALPy, +Qy, = 0 () (4.33)
— — — T = = —_—
P3jAr+A;.rP3j —GJ RJG-7+Q3J =0 (C)

where ?1J. > 0, ﬁgj >0, _ﬁj = ﬁj_lBT_ﬁlj, _@j = —-ﬁ;lBT_sz, and ACJ = A— BH;
is asymptotically stable.
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Figure 4.1: Closed-loop ODC using componentwise state feedback estimator.

4.2.3 Implementation of the state-feedback ideal solution

As for the general case of Section 3.5, we can apply the ideal solution only to stable
systems using high order (mn-order) controllers, in either open-loop (Figure 3.4) or
closed-loop configuration. For example, if the actual system state is available for
feedback, we can build an mn-order “componentwise state estimator” and use the

following control law
u="Ua=U |Gz, - H(Az +I%,)] (4.34)

where Z. is the computed componentwise state, G and H are the ideal solution matrices
of (4.13), and AU+T' = I,,,. Note that Z. is computed in “open-loop”, i.e., practically
ze = UpT, may not converge to the actual state z. Because theoretically z = ET:l Zj,
we can use a reduced order (m — 1)n “estimator”. For example, obtaining the mtt
computed componentwise state Z.,, from the other m — 1 componentwise states and
the actual system state (Z,,, =z — ;";11 Ze;). In other cases where the system state
is not available for feedback, an additional standard n-order observer may be used.

The closed-loop system for this case is presented in Figure 4.1.
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4.3 The optimal decoupling fixed structure control problem

The ideal ODC solutions can not be applied to general (unstable) plants. The next
natural step is to search for closed-loop, low-order solutions. We consider the following

two equivalent state-feedback control laws. The duplicated system control law

~

%= Gz, - Hz (4.35)
where # € R™ "has a RBD structural constraint, or
4; = Gjz, ~ HZ; (4.36)

where H is identical for all j =1,2,...,m.

These ODC laws can be implemented as

u=Uu = U@xT—UﬁE
= Gz, — HU,z from (3.25) (4.37)
= Gz, — Hzx from (4.14)

where G = UG , or equivalently

m m m
’U,=Z’l_l,j = EGJ':I:,«—ZH.’EJ‘
j=1 j

j=1 j=1
m
= Gr,—H) 1, (4-38)
i=1
= Gz, - Hzx from (4.14)

where G = 37, Gj.

Remark 4.2 Contrary to the general case (3.36), using “state-feedback” for the input
signal, the general simultaneous control formulation is now made of m identical MIMO
systems with common H and different _éj ’s. Therefore EJ- has an m X n, unconstrained
structure. However in many practical cases where the state of the input is not coupled
(i.e., Ay = block diag (Ar, Ary, ... Ary,), Ar; € R™*™; ), G; has n, — Ny; 2€ro

columns and G has a columnwise structure, G = [G1 Gy --- Gp) where Gj € R™ ™.

76



Note that because the control structure is fixed, the ODC can only be derived
from one of the following parametric optimization problems. The constrained dupli-

cated system problem

0o ~ ~
_min_ / (" Q.& + @' Ra)dt (4.39)
HeS,g 70

S= {ﬁ = blockdiag(H, H,...,H) e R™™*") | H ¢ S}, or the simultaneous control

problem

m

o0
. TA = L ~TH -~
min E €;: Qe.€; +u; R;u;)dt 4.40
H€3,51,m,5mj=1/0 (J Qeg J 71 J) ( )

where S = {H € R™*" | A — BH is asymptotically stable}.

Because of the structural constraint on the state feedback matrices, in (4.39),
or equivalently the summation in (4.40), these LQ problems can not be solved using
classical LQR solutions such as (4.20)-(4.23) or (4.31)-(4.33). In the sequel we derive
the necessary conditions for optimality required to solve this problem using the optimal

fixed structure control (OFSC) formulation.

4.3.1 Deriving the necessary conditions for optimality for the stan-

dard LQR problem using the OFSC formulation

Levine and Athans considered and solved an OFSC problem in the late 60’s [46].
In fact they considered the optimal constant output feedback control problem, with
u = —Ky where the optimal K may be obtained from the necessary conditions for
optimality.

In the following we present the necessary conditions for optimality for the stan-
dard LQR problem (4.3). These conditions are usually not used to solve (4.3) (see
Remark 4.3 below). We will use this result to derive the necessary conditions for

optimality for the ODC problem.

We start with the following definitions:
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Definition 4.1 Let M € R"*"™. Then the trace of M is given by
n
tr{M}=>" M. (4.41)
i=1

Let M,N € R™*", P € R™*", Q € R™™, and m,n € R. Then the trace

operator has the following useful properties

tr {MT} = tr{M}
tr{mM +nN} = mitr{M}+ntr{N} (4.42)
tr {PQ} = tr{QP}.

Definition 4.2 Let Y,Z € R™*". Then the inner product (Y,Z) : R™" —s R, is
given by
(Y, Z) = tr {YTZ} . (4.43)

Definition 4.3 Let F(Z) be a continuously differentiable mapping of Z into R™ ™.
Then f(Z) =tr{F(Z)} is a trace function of Z.

0f(Z)
0z

The computation of , the gradient matrix of f(Z), is given by the follow-

ing lemma

Lemma 4.2 Let f (Z) be a trace function of Z. Then

.
F(Z +aAZ) — f(Z) = atr { [@g] AZ} +o0(aAZ) (4.44)

where o (a@AZ) is a function satisfying (;fr/LAZZ| — 0 as a — 0.

Proof: From Definitions 4.3 and 4.1
f(Z+aAZ)— f(Z) = tt{F(Z+alAZ)}-tr{F(Z)}
= tr{F(Z+alAZ)- F(Z)}
= 3 {FalZ + abZ) - Fi(2)

i=1

_ 22: K%,m@ + o,-(aAZ)]
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where 0; (@AZ) is a function satisfying O—i(”aAA—Zzul —0asa—0.

a

Using Definition 4.2 and the trace properties (4.42)

ai; [tr { [a}giéZ)]T AZ} + Oi(aAZ)]

= atr { [w]T AZ} +3 0(anz)

f(Z+alAZ) - f(Z)

07

ot {F(2)}
atr l:a—z

=1

=
AZ } + o(aAZ)

-
atr % AZ}+0(aAZ)

where o(aAZ) = Y1 0; (@AZ) is a function satisfying ‘;laAA ZZ” —0as a—0.

O
Consider the following minimization problem
oo
P T T
II?EII‘;—/O (x Qzr+u Ru)dt
subject to (4.45)

z = Az + Bu

u = —Kz

where § = {K | A — BK is asymptotically stable}, £(0) = x¢, and (4, B) is control-
lable.

Theorem 4.1 The gradient matriz of the cost function
o0
J= / (s7Qa + uT Ru) di
0

of the minimization problem (4.45), over S is given by

8J(K7 :L'O) _ T
— =2 [RK - BTP| L (4.46)
where P satisfies
PA+A"P+Q+K'RK=0 (4.47)
and L satisfies
LA + AL + zoz] = 0. (4.48)
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Proof: Let Ky € S (recall that from the controllability of the pair (4,B), S is

nonempty), then

o0
Jo(Kp) = /0 (:L'TQCE + uTRu) dt
oo
= / z’ (Q + KOTRKO) zdt
0 o0
= z] [/ efot (Q + KJRKO) eAOtdt] Zo
0
= d:E)rP().’L'()
= ftr {xJPowo}

RC)

= tr {P()H}

(4.49)

where II = zoz{ and P = Py = [{° efot (Q—i—K()TRKo) efotdt > 0 satisfies the
Lyapunov equation

Ag Py + PyAg + Q + K{ RKy = 0. (4.50)
Let K = Ky + aAK € S and the associated P = Py + aAP > 0, then
[ o]
J(K) = / z" (@ + KTRK) adt = tr {PTI} (4.51)
0

where PT = P satisfies the Lyapunov equation

(A() —OlBAK)T(Po + aAP) +(P()+01AP)(A0 —aBAK) (4.52)
+Q + (Ko + aAK) TR(Kq + aAK) _— '
Using (4.50) yields

AJAP+APA—AK"BTPy—PyBAK+K{ RAK+AKTRKy+01(aAK) =0 (4.53)

where 01 (@AK) = o (AKTRAK — AKTBTAP — APBAK). From (4.49) and (4.51)

we also obtain

AJ = J(K) — Jo(Ko) = atr {APII}. (4.54)

We are looking for an expression of the form AJ = f(AK). Therefore we use
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the alternative form to (4.49)
[0
Jo(Ko) = /0 (:L'TQ:B + uTRu) dt
o0
- / 2" (Q + KJ RKo) zdt
0

xR0
= tr / T (Q + KOTRKO) xdt}
0

- (4.55)
= w{(Q+KJRK,) / det}
0
o0
= tr (Q + KOTRKO) / eot [moma—] eA(Ttdt}
0
= tr{(Q+ KJ RKo) Lo}
where L] = Lo = [;° eAotzoz] eAdtdt > 0 satisfies the Lyapunov equation
AoLo + LoAg + T =0. (4.56)

Again, let K = Ky + aAK € S and the associated L = Ly + oAL > 0, then
(Ao — aBAK)(Ly + aAL) + (Lo + aAL)(Ay — aBAK)T + 11 =0 (4.57)
and using (4.56)
AgAL + ALA] — BAKLy— LyAK BT + 03(aAK) =0 (4.58)

where 02(0AK) = —a(BAKAL + ALAKTBT).
The associated cost increment is given by
AJ = J(K) = Jo(Ko)
= tr{[Q+ (Ko + 0AK) T R(K, + aAK)| (Lo + aAL)}

—1tr { (Q + KJ-RK()) Lo}
= 2atr{Lok{ RAK} + atr{(Q+ KJ RKo) AL} + 03(aAK)

(4.59)

where 03(@AK) = o? tr {AKTRAK (Lo + @AL) + 2ALK{ RAK}.

In order to eliminate AP and AL from the expressions for AJ in (4.54) and
(4.59), we first postmultiply (4.50) by aAL and take the trace to obtain

2atr {PAoAL} + atr {(Q + Ky RKo) AL} =0 (4.60)
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where we used properties of the trace (4.42). Then we premultiply (4.58) by aPy and

take the trace to obtain
20:tr {PyAgAL} — 2atr {LoPyBAK} + 04(aAK) = 0 (4.61)
where 04(@AK) = —20? tr {ALPyBAK}. From (4.60) and (4.61) we obtain
atr{(Q+ KJ RKo) AL} = ~20tr {LyPyBAK} + 04(eAK). (4.62)
Substituting (4.62) into (4.59) yields
AJ(aAK) = atr {2Ly [K] R — RB] AK } + o(aAK) (4.63)
where o(@AK) = o3(@AK)+04(@AK) = o? tr { AKTRAK (Lo + oAL) + 2AL (kIR
—PyB) AK} is a trace function satisfying ‘;T‘AAII{ﬂl —0asa—0.
From Lemma 4.2 the expression for the gradient of J(K) at K is given by
% |k=ko= 2 [RKO _ BTPO(KO)] Lo(Ko) (4.64)
where Py(Ky) and Lo(Ky) satisfy (4.50) and (4.56), respectively.

O

Corollary 4.1 The necessary condition for optimality for the minimization problem
(4-45) is
[RK - BTP] L=0 (4.65)

where L and P satisfy (4.56) and (4.50), respectively.

Proof: Follows directly from Theorem 4.1. K which satisfies (4.65) is a stationary

point of the cost function J(K) to be minimized.

O

Remark 4.3 It is clear that the necessary conditions of (4.65) do not simply lead to
the LQR solution (4.4). In order to obtain (4.4), in addition to the standard conditions
Q > 0 and R > 0, L should be positive definite. Recall from the Lyapunov theorem
that L of (4.56) is positive definite if and only if, for all o € R", either zoz] > 0 or

(A — BK, o) is controllable. Of course none of these assumption holds.
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4.3.2 The OFSC-LQT as a standard OFSC-LQR problem

In order to convert the LQT problem to an LQR problem, we again use the augmented

state X =( ’ ) and the control law u = Gz, — Hz.

Ty

Define
K=[H -G (4.66)
2 Bl _ 9. 37 Aa_|% @|s_|P Po| +_|L L
dlet B = A, =A-BK,Q = ! :|,P= , L= ,
st E A Y L E R R
and II = [ ng ;2 . Then the necessary conditions for optimality are
2 3
2/kz0) ~ 2[RK-B P|L = 0 (467)
where P and L satisfy
A.P+PA.+K RK+Q = 0 (a) (4.68)
AL+IA, +T = 0 (b)
We can also use the partitioned form
oiBga) = 2{[RH-B™P\|I,- [RG+B™P|Ly} = 0 (o) (469
2UELs) — 2{|[RH - BTP\|L, - [RG+ BTP,|Ts} = 0 ()
where
P (A-BH)+(A-BH)'P;+H'RH+Q, = 0 (a)
PyA, + (A - BH)T-FQ + P1BG - H'RG + Q =0 (b)
P3Ar+ATP3 + P, BG+GTB TP, +GTRG+Q; = 0 (o) @)
Ii(A- BH)" + (A- BH)L, + I,GTBT + BGL, +1; = 0 (d)
ZQA;[— + (A - BH)Ez +BGL3+1, = 0 (e)
LAl + A, Ly +113 = 0 (f)

4.3.3 The state-feedback ODC problem as an OFSC-LQT problem

We can use both the duplicated system and the simultaneous control representations

to derive the necessary conditions for optimality for the ODC problem. However using
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the duplicated system representation, the stability of the duplicated closed-loop system
is not always guaranteed. Recall that the ODC is given by

u = Uu
= U [é:vr - I:T:E]
= Gz, —-UH=Z
= Gz, — HU,Z.

This is an “output-feedback” control law. Thus a stable solution does not always
exist. On the other hand, the controllability of (A4, B) implies that a stable ODC does
always exists. This “contradiction” is caused because, using the OFSC formulation,
the RBD structural constraint is changed such that the componentwise states Z; are no
longer isolated (i.e., they can affect each other). The simple way to avoid this problem
is to use the alternative simultaneous control representation. Then the componentwise

control laws are indeed isolated state-feedback control laws.

Theorem 4.2 The gradient matrices of the cost function for the ODC problem (4.40)

are
m
~ = 1+ ~ — = 15T
S = 22X {[RH-BTPy|Ly, - [RG;+ BTPy| Iy} (a)
=1
and for all j=1,2,...,m (4.71)
aJ, — D. 5. | T Do, Tp. | T.
2 = 2{[RH-BTP,| Ly - [RC;+B P, T} ()
where
P,(A-BH)+(A-BH)"P,+H RH+Q,, = 0 (a)
?2]-147' +(A- BH)Tﬁgj + —Plngj — HTﬁj@j +62] = 0 (b
Py, A+ ATP3 + P, BG;+G, B'Py + G, R;G; +Qs, = 0 () )
Ly,(A- BH)T + (A~ BH)Ly; + Ip,G; B" + BG,L; +1i, = 0 (d)
fsz;.r +(A- BH)Z2J. + Bajfgj +ﬁ2j = 0 (e
ZgA;.r + Arf;; +II3; = 0 (f)
or, alternatively, in a compact form
PjA;j+ AP+ K; RjK;+Q; = 0 (a) (4.73)
_chTj -+ chfj + ﬁj = 0 (b).
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where @1,’ Q2j, and @3,- are given by (4.30), II; = l ngJ ﬁs ] XOJX0 and A—-BH
2;

s asymptotically stable.

Proof: Using the simultaneous control representation, of (4.40) the the cost function

is given by
m m e _ _
Jg = Z de = Z/O (é;—Qe] €; + ﬂ;-er’l_l,j)dt. (4.74)
j=1 j=1

Similarly to (4.66), define K; = [H —G;]. Then from Theorem 4.1 the 2 gradient of
Jg is given by
8Jy < 0Jy;(K;,X i[ 8Ju, (H GJ,Xo) 8J4,(H,G;,Xo,) ]

6K¢ j=1 BK J:]- a@

(4.75)

P, P = L, L, = o, 1
Let P, [ Pf F:J. ], L= [ 4 _L_ZJ ], and II; = [ ﬁlT’ ﬁ:J ], then from
(4.69)

3 3

a']dj (H, Ej, _X-Oj)

=2{[B;H - BTPy,| Ty, - [B;G; + BTPy]| Ip,}  (4.76)

0H
and
8Jy,(H,G;,Xo) | —2{[R;H-BTP,| Ly, - [R;G; + B'Py]Ls} i=j
9G; 0 i # J.
(4.77)
Therefore for all j = 1,2,...,m, the gradient of J; is given by
aJg  [08Js  8Jy o 8J4; (H,GjXo;)  8Ja;(HGjXo,)
94 _ |d _Ddd | _ =0 4.78
0K, [3H oG, ,Zzl o 6G; (478)
where
aJ - 5. 17 el - 177
8y 22 {[B;H - BTP\,| T, - [B;G; + BTPy| I3} (a)
j= (4.79)
2= 2{[RjH BTPy|Io, - [RiG; + BTPy, | Is}  (b)
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and

P, (A-BH)+(A-BH)'P,;+ HRH+Q,, = 0 (a)
Py, Ar+(A—BH) Py, + PyBG, —~H'R;G; +Qy, = 0 (b)
Py, A, + AJPs + Py BG;+ G, B'Py +G, RiG;j+Qy, = 0 (o)
Ly,(A- BH)T +(A- BH)Ly, + Ip,G; BT + BG;L, +T;; = 0 (d)
Ly, Al + (A— BH)Ly, + BG;L3; +Tp;, = 0 (e)
LA +AL; +T5 = 0 (f)
or,
PiA;+A P+ K, RE;+Q; = 0 (a)
LA, +A,L;+T; = 0 (b)

O

Corollary 4.2 The necessary conditions for optimality for the ODC problem (4.40)

are
S {[fH - BT Ty, - [BG, + BRI} = 0 ()
=1

and for all j =1,2,...,m (4.80)

|BiH - BTPy| T, - [R;G, + BTP,,| I =0 (b

where Flj,ng,le,zgj and L3 satisfy (4.72).

Proof: Follows directly from Theorem 4.2 by letting all the gradient matrices be zero.
O

As for the OFSC-LQR necessary conditions for optimality of Corollary 4.1,
the ODC conditions for optimality given by Corollary 4.2 are neither actually imple-
mentable nor are they truly a solution to the real problem. First, the solution which
is obtained from (4.79) and (4.72) depends on the initial state. Moreover, for a given

initial state, there may exist several local minima for the state-feedback ODC problem

(4.39) or (4.40).

Actually, such a local minimum may be found, using a standard optimization

algorithm, without using explicitly the conditions of Corollary 4.2. Then, the gradient
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information provided by (4.79) and (4.72) may be used in the optimization process.
For example, recall Hirzinger's suggestion to solve a similar problem (for step and

impulse inputs) using the conjugate gradient method [29].

Although the results obtained in this chapter are not generally implementable,
they are used to derive the sub-optimal (but more “global”) solutions presented in the

next chapter.
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Chapter 5

Sub-optimal solutions to the state-feedback

ODC problem

5.1 Introduction

The ideal global solutions presented in Section 3.5 and Section 4.2 are not totally
general because they can be applied only to stable plants. Furthermore they require
high-order controllers. On the other hand the state-feedback fixed structure ODC of
Section 4.3.3 depends on the system initial state and, thus, it is not totally general
either. In this chapter we present some sub-optimal state-feedback solutions to the

ODC problem.

In order to obtain the sub-ODC (SODC) solutions of this chapter we add some
assumptions and/or use approximations. Therefore these solutions are no longer “op-
timal”. Intuitively speaking, all the different SODC solutions of this chapter have

some “average” properties.

The first SODC, average initial state, solution is obtained by randomizing the
initial augmented state. This solution is more “global” than the one which may be
obtained from the necessary conditions of Corollary 4.2, because it no longer depends
explicitly on the system initial state. However it is still “local” because it is obtained

from (other) necessary conditions for optimality. The second sub-optimal solution,
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based on average weights, is not really an ODC solution because it is derived as
an ordinary LQT solution for the average W,,’s and Wy;’s. The third sub-optimal
solution, based on average gain, is a LMS solution, based on the ideal state-feedback
(free structure) ODC solutions of Section 4.2. The last two SODC are completely
global solutions (satisfy the global minimum of a sub-optimal cost function and do not

depend explicitly on the initial states) and are much easier to compute.

5.2 SODC for randomized initial state

In order to remove the explicit dependence of the optimal solution on the initial states,
we assume that the initial (system and input) states are random and normally dis-
tributed. This idea was proposed by Levine and Athans [46] and has been widely used
to solve OFSC problems (for example see [25], [5], [50]). Using the same approach,
under some additional mild assumptions, the necessary conditions for optimality of

Corollary 4.1 transform to a set of equations from which the average initial state

SODC can be obtained.

5.2.1 The state-feedback SODC problem for random initial state

The state-feedback SODC problem can now be written as the following optimization

problem

_min  Jy(K;---Kp) (5.1)

subject to the minimal state space realizations

z; = AzZ;+ B,
! TN =12, ,m (5.3)
yp = Cx;
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and to the input reference signal dynamics

i'r = Armr
(5.4)
r = Crz,

zr(0)
assumed to be normally distributed with zero mean and covariance ﬁj =F {Yojfgj} >

0.

where A, is asymptotically stable. The initial augmented states X, = ( %(0) ) are

We also add the following assumptions.

(Al) R1=R2="'=Rm=R>0.

(A2) Q; >0, forall j=1,2,...,m.

Remark 5.1 (A1) is a fair assumption (see also Remark 3.2). However assump-
tion (A2) seems to be a strong one. Although it is always made for the requlator
problems (e.g., the constant-gain, output-feedback, OFSC problem [/6], [66], [25],
etc.), it does not hold for general tracking problems (then it is true if and only if
m =n = n, and C and C, are invertible). Therefore theoretically it does not hold
for the general ODC problem. However practically Qj may be replaced with a pos-
itive definite approzimation, say _Q—j + €;I where €; is positive and arbitrary small.
Then instead of minimizing the original cost function J; we minimize its upper bound
Je=Ja+ X716 fo° _X_;-r_)?jdt > Jy. Theoretically J, may not be arbitrary tight, i.e.,
€; fg’o YjTyjdt may not go to zero as €¢; — 0. Note that @j > 0 is used to prove
convergence of a numerical algorithm, which for many cases converges with Qj > 0.
Therefore it is not a necessary condition. Moreover for its uses in the sequel, (A2)
can be replaced by a weaker assumption, “ Qj >0, for some j =1,2,...,m”, which

makes J¢ a tighter bound.

Theorem 5.1 Consider the m simultaneous control tracking systems given by (5.3)

and (5.4) with random initial state. For any stabilizing H and G1 - - - Gy, let the average
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componentwise cost J; be given by (5.2) with assumption (Al ). Then

H = R'BTPf+lRr-127-1
G; = RBTPf +iR" IMLP, i=12...,m

m
with T = Y™, L¥ > 0, Pf = z;’;lﬁlefT—l Z = —g Z "’—51 L,, and for

all j =1,2,...,m, I¥ =T, - L, I; 'L, >0, [Pl# P1 ;| T T3t = Py,

where Flj > 0 and ng satisfy (4.72-a,b) and Lj > 0 satisfies (4.72-b) with II; =
- w71

E{Xo;Xo;} > 0.

Proof: Using the gradient expressions of Theorem 4.2 with II; = E {Yojyz)—j} >

0, we first consider equation (4.72-f), where A, is asymptotically stable and II3 =

E {mrom } > 0. Thus L3 is the unique positive definite solution to (4.72-f). Then

from (4.71-b) we can write,

R;G;+BTPy, = [R;H - B'Py,| T, I3 +%%L3. (5.5)
J
Substituting (5.5) into (4.71-a) yields
m _—
> {[R;H-BTP,]L,,-
j=1
[B;H - BTPy| T, I; 'Ly, - %%—;lz;j} = 194 =
m m
S (ma-sm )5 BT - [ S -
j= =
m
> {|&H - BTPy,| L¥} = ig =
T m
ZlR,HLje = BT ZIPIJLf +1=
j= =
(5.6)

where L# is the Schur complement of I; (ie., L¥ = Ly, — Ly, Ly 1f;j), and Z =

% + Z a—JiL3 1f2Tj. Using assumption (A1) yields

m m

- 1

RHY L¥ =BT Y Py,L} + & (5.7)
i=1 i=1
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By assumption, for all j = 1,2,...,m, A, is asymptotically stable and ﬁj > 0.
Therefore L; is the unique positive definite solution to (4.73-b), which implies that
Lf > 0 (the Schur complement is a symmetric positive definite matrix [32]). Hence
equation (5.7) can be rewritten as
-1

m m
H = R'BTY P,L¥ [ZL;* +iR-1E
: =

j=1

m
= RBTY Py L¥r'+iRET!
j=1
R'BTPf + 1R BT

m
where T = Z L;#
—

J

and Pl# = Z;-”:lﬁlj L;.‘#T"1 (ie., Pl# is a “weighted average” of

P1 . ’S).

J

Finally, the expression for G; is derived from (4.71-b)

_ — - = -5 T 8Jy | 71
G; = R [RHng —BTPy Ly~ B Py, Ly, + ?Ef] Ly

[# - R'BTPy| Ty I - R'BTPy + R B4 LS

(5.9)
- 5 1+ 71 - 100,71
= R'BT{[Pf -Py|IyTs" — Py} + R 32T,
— p-lpTp# -18, 771
= R'BTR{ + R EI;
— - ——1 —_
where P = [P - Py,| Tp, I3 - Py,
O

Corollary 5.1 Consider the SODC problem given by (5.1)-(5.4) with random initial
state and with assumption (A1). Then any stabilizing H and Gy - -+ Gy, which satisfy
the necessary conditions for optimality for this problem are given by

H = R 'BTP¥

G; = R'BTP} j=12,...,m

Proof: Follows directly from Theorem 5.1 by letting all the gradient matrices be zero

( = also 2 =0).
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Substituting H and G; - -- Gy, of Corollary 5.1 into (4.73), we get a set of 2m
coupled, (n+nr)-order, nonlinear matrix equations with 2m unknowns Py, Ps, ..., P,
and L1, Ly, ..., Lm. Recall that L3 depends only on the input reference signal (it is
obtained a-priori by solving (4.72-f) once), and that the ng ’s are not required for
the solution. Therefore this set can be replaced by the set of partitioned, nonlinear,
coupled, matrix equations (4.72-a,b,d,e) with the 4m unknowns, Fll,?lz, ey P,

P21aP22a"',P2ma L11aL12,'--ale and L21,L22a"',L2

m**

Remark 5.2 Replacing H by arbitrary H;, (4.72) becomes the standard OFSC cou-
pled Lyapunov/Riccati type set of equations. In fact these equations, for arbitrary
Hj, resemble the more complicated, decentralized OFSC case (e.g., [20] and [67]). Of
course, the H;’s are not arbitrary (H; = H, ¥V j = 1,2,,m) in the ODC problem, there-
fore H and Ej of Corollary 5.1 cause an additional “coupling” between the different

j’s. This coupling makes the solution to the ODC problem more complicated.

5.2.2 Solution using a descent Anderson and Moore type algorithm

Standard OFSC problems can be solved using several different types of numerical
algorithms, such as: the Levine-Athans algorithm [25,46,50,66], the Anderson-Moore
algorithm [1,25,49,50], Newton’s method [5,6,50] and others (for a detailed survey see
[5] and [50]).

In the following we introduce an algorithm based on the descent Anderson and
Moore (DAM) algorithm for solving the above sets of equations [5]. The original
algorithm proposed by Anderson and Moore [1] has no convergence properties because
it is based on a successive approximation approach (i.e., fixed step size) [25]. Later
Mékilé, [49] showed that the successor used by Anderson and Moore is in fact a direction
of descent for the minimized quadratic cost function. Therefore with a proper step
size (obtained by a line search), the algorithm converges. A similar idea is used in the

following algorithm to solve the set of nonlinear coupled matrix equations (4.72) with

H and G; of Corollary 5.1.
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Remark 5.3 Other algorithms with probably better convergence rates may be obtained
by modifying other OFSC algorithms [5], to solve the ODC problem. However the
main goal of this dissertation is to show that the ODC problem can be practically
solved using the new formulations presented in the previous chapters. Therefore this
relatively simple algorithm, which at each iteration, requires only solution of a set of

linear matriz equations, was chosen.
The DAM type algorithm

e Step 0:
- Set k =0.
- Solve the Lyapunov equation (4.72-f) to obtain Ls.

- Choose H® ¢ S,@?,Eg,...,a’?n.

e Step 1:

- Solve equations (4.72-a,b,d, e) for Hk,é’f,@’g, .. ,Efn to obtain Flfl,ﬁlfz,

Sk 5k Hk -k Tk Fk +k +k =k +k
...,le,P21,P227...,P2m, Lll?le""’le anszl,L22,...,L2m.

- Compute directions of descent (see proof of Theorem 5.2 below)

AH* = R'BT p#* _ g+ (5.10)

and

AG =R'BT P#* T (5.11)

- Check the termination condition. If H [AH k Aakl Aakm] “F < 4, stop (4 is

a small positive tolerance parameter). Else, go to Step 2.

e Step 2:

- Perform a line search to find the “best” step size oF, i.e.,

of = arg IIkli% J(H* + akAHk,—(jlf + a’“A@’f, . ,Efn + akA—lefn). (5.12)
af>
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e Step 3:

- Set H*! = H* + ok AH® G = GF + ofAGY, ..., G5 = GF 4+ o#AGE .

-Set k=k+1.

- Go to Step 1.

5.2.3 Global convergence of the numerical algorithm to a stationary

point of the cost function

The main difficulty in analyzing the convergence properties of the above algorithm
is that the stabilizing set over which the minimization is performed is, in general,
unbounded and not closed. Therefore we start this discussion, by introducing the

following level set

Kgo.z0 = { KieK | Ju®:i-Km) < Jo(K] - -Fﬁ’n)} (5.13)

Vv ji=1,2,....,m

where K; = [H —G;]and K = {Fj e R™*(m+m) | A — BH is asymptotically stable}.
(Note that if IEZK,;) = {F]’ €K | Jg (K;) < Ja; (f?)}, then the cartesian product
-

Klox KZox ---x K™ )
?? ?‘2’ 7:1 1K

Lemma 5.1 Let U € RP*P and V € RR?*? be symmetric positive definite matrices.

Then for all X € IRP*? there exist a,b > 0 such that

12 <vix).

allX| < [t {xTUXV}
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Proof: Let Y, Z € RP*9 and define (X,Y) = tr {X U YV}, then using the properties
of the trace operator (4.42)

(a) (x,) = «{XTUyv}=u {viixTulyT Ry vi/2)
= w{VTAYTUV2UTXV2) = tr {vTuxv}
= (¥,X).

() (aX+p2Y) = tr{(aX+p2)"UYV}=at {xTvyv}

+8tx{ZTUYV}
= a(X,Y)+B(Z,Y) for scalars @ and S.

() (X,X) = «{XTUxv}=u{vT2XTUV2uT2XV1/?)
= tr {ATA} > 0, where A = UT/2XV1/2,

(d) (X,X) = 0ifandonlyif X =0.

X=0 > (X,X)=0.
(X,X)=0 — 0=tr{ATA}> HATA“ = [|A4|* = |4 =0 —

A=0oX=U"T2AV-1/2 =,

By (a)-(d), (X,Y) is an inner product for RP*? and [(X,X)]l/2 =
1/2
[tr {X Tux V}] / is the norm induced by it. The assertion of the lemma is a well-

known equivalence property of norms on finite dimensional real spaces.

O

Lemma 5.2 Consider the ODC problem given by (5.1)-(5.4) with assumption (A2).

Then there exists an a < 0 such that {fl, K, ..., fm} € szo 70 implies
K

maxéR{ (A — K)}§a<0forallj=1,2,...,m

Proof: From (449) Jy (K;) = tr {P;(K)IL} = & {P;*(K)L;P;*(K;)}. For

all j = 1,2,...,m, ﬁ' > 0. Then from Lemma 5.1 there exists a; > 0 such that
1 2

Iy, (K;) > a; ||P/ M-

Then {Kl, Ky, ..., Km} € ’EFI’F,’" implies

L&Y Kp) 2> L& Km) = T J4(K;)
tr{P J)H} > aLJ”Pl/2 )”

v

v

&

=
|
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orforall j =1,2,...,m
PjZ‘

where p; is a finite constant.

A-BH BG;
0 Ay
Ait=12...,n,forall j =1,2,...,m. Let A\, be the eigenvalue of ch with the

largest real part (i.e., R{\p} = ma.x?R{)\i(Z——B_K—j)}). Let u be the normalized

Let ch =A- ﬁj = [ } Then ch has the same eigenvalues

(llu||> = 1) eigenvector corresponding to A, and let M; = F}Rfj + @j. Then from
(4.73) for all j = 1,2,...,m

and

P
N
=
N

foud

S~
+

P
&
S
:U

AL
S ST SN
+ f o+

=

=

£

il

(uy, Mju) = 0

where by assumption (A2) M; > -Qj > 0 and (u, Mju) > Agin(M;) > 0. Therefore

pr 2 7] = [T [Pl et 2 (s Po) =~ 5255 > 0

or
<U’7 Mj u)

j

R{\n} <- =a; <0

forall j =1,2,...,m, or

R{d\n} <a

where o = max a; < 0.
J

Lemma 5.3 Consider the ODC problem given by (5.1)-(5.4) with assumption (A2).

Then K—o —o0 15 a compact set.
KiKpnp

Proof: The compactness property is established by showing that ’Eﬁo 70 is bounded
K

and closed. From (4.73), by the positive definiteness of L,, and by Lemma 5.1, for all
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j=1,2,...,m there exists a; > 0 such that K € ’E?O zo implies
0K,

(&Y Kp) > L& Knm) = Y7, Jy(K;)

= w{(K;RK;+Q;)I;} > u{KRK,L;} > oK.

\%
&vg.-g
e

Therefore, for all j = 1,2,...,m

[ <« 2T o

aj

where k¥ = max «; is a finite constant, i.e., Ko 7o is bounded.
¢ LK

Define the set
K(a) = {K €K |§R{)\,~(Z—§K)} <a< 0} .
Vi=12,..n

Since the eigenvalues \;(A — BK;) are continuous functions of K, the set K(a)
is closed. From Lemma 5.2

m m

= = = == =0

R o =Ky € K@) | Y- 04 (By) <3 T (B
Vji=12,.,m j=1 j=1

(K;), L;(K;) and Jy,(K;) are all continuously differentiable on K(a), thus

P;
’C???fn is closed.

Theorem 5.2 Consider the ODC problem given by (5.1)-(5.4) with assumptions (A1)

and (A2). Then for any {F(l), fg, ey —K'-?n} € K the above DAM type algorithm, with
C. =k =k =k =

the termination test excluded, generates a sequence {Kl, K, ..., Km} € K?(l)"'??n

such that {f’f, F’;, ey an} — K where K is a set of stationary points of the cost

function (5.2) (i.e., all the points in K satisfy the necessary conditions for optimality

of Corollary 5.1.

Proof: From Theorem 5.1 any K; € K can be written as K; = [H — G;], with

H=R'B"Pf+ %R‘IE‘I‘_I (5.14)
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and

— T 1 aJd
-1 # _— ]
Gj=R"B FjJ + 2R L

(5.15)
1+T
where 8 = G + 57, 22T, Ty, and T = 17, Lj*.
Omitting the iteration index k, and substituting (5.14) into (5.10) and (5.15)
into (5.11) yields

AH=R'B"Pf-H= —%R—lsr—l (5.16)

and
— — — g, \ =
AG;=R'B'Pf -G, = —LiR! (ET‘ngj —’_"L) ;!

aJy
G,

(5.17)

= AHL,I;' - 1R 1T}

Recall from (4.63) that
m m .
Ady = D AJy =) AJy(aAK))
=t g=1 m (5.18)
= Z tr {ZZJ‘ I:F;I—R - FJE] AE]} + Z 0; (OzAFJ)
i=1 i=1

and from Theorem 4.1

m
AJ; = aZtr{g—fd% Afj}+20j(aA_j)

i=1
+o (aAH,aA@I,...,aA@m)
aJ,. T aJ,. VT —
B - ;
= a) tr 8y, T 8Js, T, —
- —55- AH g5t AT
~+o (aAH,aA@l,...,aAﬁm)
m T m T
= atr{azf;;‘]d‘ AH}+aZtr{%L AG]'}

G
ji=1

!

(5.19)

+0 (aAH aAGy,. . ,aA
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Substituting (5.17) into (5.19) yields

0,7 o {2 (ARE, T - LR 2T
AJy = aw{G AH}+a) trize (AHL2]L3 — R L )}
Jj=1
(aAH aAGy,. ,aAam)
m o0Js —
= atr{g—ﬁ AH}-}-aZtr{(%leL;) AH}_
i=1
2§ {004 T po1 27 AH,aAG AG
5?:-:1 '\ 3G, 3G, (a AU, a )
D (0dy, ——1=T\ "
= atr{%% AH} +atr Z(a—_‘ile;ng) AH}_
J=1
o g [ 4T 12 g
7;“{6_]- R 3G, L, }+o(aAH aAGy,.. aAGm)
m T
&y, —1=T
j=1
i arg T aJy — —
—%Ztr{ﬁ{- R‘IT—LL }+0(aAH aAGh, .. ozAGm).
]=1 ) J
(5.20)
and using (5.16) yields
i 8Jg, T . 8Jy,
- =T p-loy— d 1274 r~1
AJd = —'%tr{_. R 1._4 1}—%21‘51'{-675: R lﬁ;—L?’ }
J:

+o (aAH alAGy,...,aAGp,
= -¢ {(’“T“) R™! (ET-%)} (5.21)
i aJg . —i\ T 8Jy -1
)
J:
+o (aAH, aAGy,... ,aA@m) .
The first two terms in (5.21) are negative for 75 0, = a G L 20 a %(WAA—KKHZ -0

as a — 0. Therefore for any iteration k there always exists @& such that for any

€ (0,a] (obtained by the line search of Step 2), Jk"'1 < Jk.

Hence {J,’f} = {Jd (f’f, f’;, cee ?fn)} is a monotone decreasing sequence,
bounded from below (J; > 0). Thus

{J('frm - Jj} — 0 for any m > 0.
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In particular {AJk} {Jk"'1 Jg} — 0.
Recall from (4.63) that 0o = o (aAH ,aAGH,... ,aAam) can be written as
m
o = a*Su{aK} RAKIT] + 201k &} R-PF | axs}
j=1
= o’ p
where f = YT, tr { AR*' RAR'T! + 241 [F;? "R-P'B ] Aff}. By the com-
pactness of K K9--KY, and by the continuity of the trace operator and the solution to
the Lyapunov equation, for all k > 0, 3 is bounded from above, i.e., there exists 8 > 0
such that
Bx < B, Vk 2 0.

Suppose I and %L are not zero. Let

My= —itr { (ET“%)T R71 ('; ‘% }
—-Ztr{(wd )TR‘ (‘%LL3 )}<0.
Now, the expression for the cost increment can be written as
AJY = oF My, + ok B, < oF My + o*2 8.

We continue by contradiction. Suppose that for all k¥ > 0, M}, is bounded away from

zero, i.e., there exists M < 0 such that
My <M<0,Vk>0.
Then using the descent property (5.21), for all £ > 0

AJy< oM+ k2 g <. (5.22)

Recall that for any k > 0, o* is a positive scalar. Then from (5.22) we conclude

that any of € (0, %) is acceptable. For all k£ > 0, let us choose of = o = then

2ﬁ’

AszAJd<—JZI—ﬁ<O Yk >0
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which implies that {J!tc} — —oo. This contradicts the fact that J; > 0. Therefore

M, — 0 regardless of o*. Hence,

k
57

aJk .
”6—61;;” — Oforallj=1,2,...,m

- 0

and
aJ*
_TaH} - 0

k 5.23
2} - oforallj=12..,m (528)
J

That is, any accumulation point of the infinite sequence {flf 7,’;} generated by the

above algorithm is stationary.

Further, from (5.16) and (5.17) it follows that also
{AF;?} = {[an* ~AGj|} 2 0forall j=1,2,...,m.

Let £ = {T(_l---fm eﬁﬁ,m | g—%"; =0Vj= 1,2,...,m} be a set of station-

0Ja(Kr-Ko) .

ary points of the cost function Jy (71 x -—I?m). By the continuity of B in
7

K- K, K is closed. Moreover because X C Kzo. 705 K is compact.
RS

We show by contradiction that {ff e an} — K, or that the distance between
(K- K} and Rd({K} - K} ,K) = 0. Let

m

—~ m —_—
o({R-R)0) =m0

Then from the compactness of IE, d ({F’f i ffn} ,IE) is a continuous function in

K, --Kpn.

Suppose d ({f’f .- ffn} , IE') # 0. Then there exists § > 0 and an infinite set
of nonnegative indices Z, such that d ({flf . an} ,IE) > 6 for all kK € Z. On the
other hand recall that for all k > 0 {f’f . K’:n} is bounded (in a compact set). Thus
there exists an infinite set of nonnegative indices Z C T and an accumulation point

K7 -+ K,, such that the sub-sequence {f’f e F:I} - K, K, forallkecT.
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Using the continuity of d ( {K’f . ffn} , IE) leads to the following contradiction

d({K} - K,}.K)26>0= K- K, ¢K.

-k -k

Hence, {Kl Km} - K.

5.3 Global sub-optimal solutions

The solution to the state-feedback ODC problem presented in Section 5.2 does not
depend explicitly on the initial state. However it depends on its covariance matrix.
Furthermore this solution does not guarantee convergence to a global minimum of the
cost function (generally J;(K) is not convex in K on K). On the other hand solving
numerically the above DAM type algorithm may require many iterations (much CPU
time). In this section two alternative SODC solutions are presented. It turns out that

they are both related to the following average approximation

Ty Lo ™o Ly

% (5.24)

forallt > 0.

5.3.1 The average weight solution

Intuitively we can get the average weight solution for the ODC problem, by replacing
all the weighting matrices with their averages, e.g., Wéj = # E;-"zl We,. In fact this
solution was mistakenly obtained as the optimal solution to the ODC problem in [56]
using a wrong assumption (see Remark 2.11). Indeed their assumption is true only if

we require the @j to be also identical for all j =1,2,...,m (i.e., the same structural

constraint as for H). Then, assumptions (A1) and (A2) of Section 5.2, can be removed.

Proposition 5.1 Let Qj > 0, }~?,j > 0, and T, = T, = -+ = Zo,, = 2. Suppose

m

that all the G;’s in (5.1) are forced to be equal. Then the ODC is given by

K=[H —-G|=R'B'P (5.25)

104



where P is the unique positive-semidefinite solution of
PA+AP—-PBR'BP+Q=0 (5.26)

where Q@ = = Y7, Q; and R=L 57, R;.

Proof: Let Gi =Gy = =G = #G', then forallt > 0,and forall j = 1,2,...,m,
Uj = %u = %G’zr —-HZ =G& — HZ. Define Yj = ? >, then the ODC

componentwise cost function is given by

X T = T
Jg = Z/O (Xj Qij+u;-Rjuj) dt
J=1
CJXTIGG | X v s | v (5.27)
= /0 E L;lQ] E-}-E ;R] E}dt

=1 /0 (XTQX +u"Ru) dt

where X = [ * |, Q = 1 pDyi) Qj and R=1 pIyi fij. Minimizing Jy (or mJy)

Ty

leads to the ordinary LQT solution (5.25), (5.26).
a

Using an average ) the advantage of componentwise costs vanishes. Thus this
solution is not really an ODC. However the simple average solution of Proposition
5.1 has several advantages. First it is very easy to compute. Moreover it does not
depend on the system or input initial states or their statistics. The optimal cost of
this solution can be used as the “ordinary LQR” comparative measure to any other
ODC cost function. Recall that the lower bound to any ODC solution is the ideal
solution obtained in Section 4.2. The average weights solution is generally not an
upper bound (e.g., using the average initial state ODC with extreme initial states may

lead to higher cost). It may be used as an initial guess for the DAM type algorithm
of Section 5.2.
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U#

Figure 5.1: The global LMS sub-optimal solution.

5.3.2 The LMS componentwise state-feedback (average gains) solu-

tion

This solution is based on the ideal (free structure) results of Section 4.2. Recall from
Lemma, 4.1 that (A, Up,) is not completely observable, thus the componentwise state
Z is not measurable and the ideal solution can not be implemented. However using
the following simple idea, the ideal solution can be applied to the least mean square

(LMS) estimation of Z.

Suppose that there exists a constant matrix U# € R™*" such that z, = U¥z
is the (static) LMS estimation of the unmeasurable componentwise state z (i.e., U# =
arg I]ﬁ'ir};lnxn(j —U'z)"(Z — U'z)). If the closed-loop system shown in Figure 5.1 is
stablieeand the couple (H,G) is the ideal ODC, then the couple H = UHU# and

G = UG is the LMS-SODC.

Conjecture 5.1 Consider the set of unique, symmetric, positive definite solutions

{P1, P2, ..., Py} to the set of AREs
PjA+A"Pj+ P;BR'B'P;+Q; =0

where R > 0, (A, B) is controllable and for oll j =1,2,...,m, Q; > 0 and (A, Q;/2)
is detectable. Let H; = R_lBTPj and H = # Z;-"zl Hj, then A—BH is asymptotically
stable.
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Remark 5.4 The assertion of Conjecture 5.1 is based the following observations.
First, it generally holds for the scalar case. Second, no counter example was found for
the many cases which have been checked throughout this research. In order to prove this
conjecture (and make it a lemma), one may try using the “return difference” inequal-
ity (e.g., [2]) to derive the LQR “gain margin” condition for this case. Other possible
proof approaches using: Lyapunov theorem, Hamiltonian matriz, ARE operator, etc.,

may also be used.

Proposition 5.2 The LMS-SODC solution is given by H = UHU] = #E;-":l H;
and G =UG = Iy G;, where (H, Q) is the ideal (free structure) solution (4.22).

Proof: Recall that by definition £ = U,Z. Then Z., the LMS static estimator for
given z, is given by [32]
T, =Ulz (5.28)

Ul = —U,. (5.29)

Substituting (5.28) and (5.29) into the ideal ODC (4.22), and using u, = Ut

we finally obtain

ue = Ut
= U(Gz, — Hz,) (5.30)
= UGz, —UHU}z
= Gz,— Hzx

where H = UHU} = LUHU] = LY™ H; and G = UG = ¥, G;. From

Conjecture 5.1, A — BH is asymptotically stable, which completes the proof.
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Chapter 6

Numerical example

6.1 Introduction

In this chapter we apply the ODC techniques presented in this thesis to the design
of an attitude control system for a helicopter in hover. This particular example was

chosen in order to demonstrate an application of the ODC design.

Decoupled attitude control in hover is required for almost all helicopters. Mil-
itary and civilian helicopters have very complicated hovering missions. For example,
military army helicopter missions requiring precise nap-of-the-earth (NOE) tasks such
as landing airborne troops, or mask/unmask tasks such as target tracking, etc. [31,
36]. Civilian helicopters also have hovering tasks such as police, rescue, industrial,
TV reports, etc. For these tasks the helicopter and its pilot are required to per-
form “precision hover” in very dangerous situations such as, very low flight levels,
close to steep mountain sides or canyon walls, or complex environments (cities, army
bases, ships, hospitals, industrial facilities, etc.). In these situations good decoupled
pilot/helicopter operation is required (e.g., [30]).

From its dynamics and aerodynamics it can be seen that a helicopter with
its flight control system (FCS) off is a highly coupled MIMO system, even in hover
conditions [37). Moreover, the coupling levels of most helicopters with their FCS on

are still too high for the above hovering tasks. Then the pilot has to correct the
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Figure 6.1: The NASA Ames UH-60A “Black Hawk” helicopter.

coupling effects by entering proper commands to the coupled channels. This requires
from the pilot to give his full attention to flight operations. As a result either the
pilot /helicopter performance level is reduced, or additional crew members are required

in order to complete the helicopter tasks.

In the following example we show that, using ODC, the control system designer
has a simple and direct design method which allows him to reduce one or more coupling
components (in this case roll-to-pitch attitude coupling), almost without changing the

other error components.

6.2 Attitude control of the UH-60A “Black Hawk” helicopter in

hover

The UH-60A helicopter of Figure 6.1 is used by NASA and the US army as a demon-
strator for advanced flight control laws [43]. It was chosen as the example for this
thesis mainly because it is one of the relatively highly coupled helicopters [8]. As can
be seen from Figure 6.1 it has a relatively long tail and a tilted tail rotor (to balance

its tail weight) which increase the coupling of its dynamics.
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6.2.1 Linearized model for the UH-60A in hover

The helicopter dynamics and aerodynamics are represented by a set of nonlinear cou-
pled ordinary differential equations (ODE). The model used in this chapter is based
on the full helicopter model suggested by Kim [40]. This mathematical model includes
a total of 39 states including 9 states for the 6 degree-of-freedom fuselage motion, 8 for
the rotor blades’ flap motion, 8 for lag, and 2 for torsion motion, 2 states for the rotor
rotational speed and 3 for its inflow dynamics, 1 state for the tail rotor inflow dynam-
ics, 2 states for the delay effect of the fuselage wake on the empennage, 1 state for the
gas generator speed, and 3 states for the main engine thermodynamic effects. This
set of equations can be solved using the software simulation package UMGenHel [41].
Using the finite difference method (about the heave trim solution), this package can
generate a linearized model about a given flight condition. In addition, using model
reduction techniques, it is possible to eliminate states from the full order linearized

model.

For the purpose of this dissertation we consider such a linearized (about hover
conditions), reduced order (9 states) model. Using only the 9 fuselage states, the
coupling effects (contained also in the other 30 states), are reduced. However from the
use of similar linearized and reduced models, [63], [8] and [81], it turns out that this 9

state model represents most of the coupling effects.

The state space equations for the attitude control of the helicopter in hover are

& = Az+ Bu
(6.1)

y = Cxz
where z = (uvwpqgre¢b 1/))T. Using the standard rotorcraft notation, u,v,w -
stand for the fuselage longitudinal, lateral and vertical linear velocity, respectively,
p,q,7 - stand for the fuselage angular rates about its body axes zy, yp, 2, and ¢, 0, -
stand for angular rotation about these axes. The attitude of the helicopter is usually
given by three Euler angles where, in hover, we assume them to be the fuselage body

angles. Therefore y = (6, ¢,%) " are the helicopter pitch, roll and yaw attitude angles.
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The pilot controls these angles by using the following corresponding commands u =

(06, 0, 6¢)T. See Appendix A for the UMGenHel A and B matrices.

6.2.2 Design methods for rotorcraft flight control systems (FCS) and

their decoupling properties.

Three main design methods have been used for FCS:

e High gain decentralized control - This classical design method has been
used for many rotorcraft FCS (e.g., [44,63,65]). Using high gain decentralized
feedback control, the off-axis response is treated as an unmeasurable disturbance
input. Mathematical models of helicopter dynamics give good prediction of the
helicopter on-axis response, but usually poor prediction of its off-axis response
[40], [26]. Therefore this method has been mainly used in cases where other
information (e.g., system identification models [64]) are not available. The main
advantages of this method are: simple design procedure (SISO techniques) and
simple implementation. The main disadvantages are: poor robustness (low sta-

bility margins) and high control signals (saturated actuators).

o Cross-feed techniques - These design techniques are used to reduce the I/O
coupling “directly”. That is, the coupling effect is reduced by feeding “oppo-
site” control signals to the coupled channels. These methods are very useful
for systems with coupled and/or cross-coupled I/O pairs. Helicopters have two
main coupled pairs, the cross-coupled pitch and roll and the yaw-to-heave cou-
pled pair. Therefore these methods are used for rotorcraft FCS design [36],
[8]. The main advantages of these methods are: directly affects the desired
coupling components, relatively simple design procedure (e.g., using an approx-
imate scalar inverse of the coupling component as the cross-feed transfer func-
tion). The main disadvantages are: requires fair knowledge of the helicopter
off-axes response, becomes very complicated (even impossible) for more general

(not pairwise) coupled systems.
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e MIMO design techniques - In modern rotorcraft FCS design classical and
modern MIMO control design methods have recently been used. These meth-
ods including optimal techniques such as LQR [24], Ha/Ho [59,61], parametric
optimization [15,68,81], etc., and other MIMO design techniques such as eigen-
structure assignment [34], QFT [27], Nyquist array [73], etc. (see [51] for partial
review). The main disadvantage of the MIMO techniques is that using precisely
the theoretical design procedure it is either impossible to meet all the design
requirements or many design iterations are required. Therefore many ad hoc
design methods, based on theoretical MIMO techniques, are also used. Using
those techniques (e.g., [26]) the design process is usually made in two phases.
In some of these two-phase methods (e.g., [34] and [73]), in order to make the
design process simpler, decoupling techniques are used in the preliminary design
phase. In some other works (e.g., [15,81]) the decoupling requirement is taken
into account. However most of those and the other MIMO design methods do

not give a special priority to the decoupling requirement.

6.2.3 A preliminary LQR design example

In order to make a fair comparison between ODC techniques and a standard optimal
control technique, we need a proper preliminary LQR design. Recall from Section 5.3.1
that the “average weights” solution is not an ODC. However because its cost function is
the average of the m componentwise cost functions, it can be used as a fair comparison
to other ODCs. In order to emphasis the importance of the decoupling requirement
and the optimal decoupling design, the preliminary LQR design was made such that
one of the coupling components (roll-to-pitch) is very high. This highly coupled design
is set to be the “starting point” for all the different design techniques compared in

Section 6.3.6.

In order to make the roll-to-pitch coupling component higher, the LQR prelim-

inary design parameters were chosen as follows. First, in order to make this example
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Figure 6.2: Typical set of pilot commands.

as real as possible, the error and control weighting matrices (W, and W,) were tuned
such that their final gains (those which are implemented) have about the same values
as those in [63]. After several design iterations we obtained, W, = diag (1,1.2,1) and
W, = diag (0.1,0.5,0.1). Then, the weigh of the roll error was reduced to 0.3. Later

at the end of the design process, this weight will be increased back to its “real” value.

We assume that at ¢ = 0 the helicopter is in trim conditions (hover), thus
zg = 0. The input commands used for this example are an approximation of a pilot’s
slow attitude change commands in hover . The input for each channel is given by a
state response of a second order system with 1%‘;—‘3- natural frequency and 0.8 damping
ratio. Note that the test inputs defined in [30] and [60] can not be used for this

example because they can not be obtained as the state response of a stable autonomous
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Figure 6.3: Attitude error for the UH-60A in hover with preliminary LQR control law.

Horizontal axes - time [0 to 10 sec], vertical axes - attitude error.

system (i.e., in this case A, is not asymptotically stable). For each channel input
model, the initial “position” state (z,,) is set to be zero, and the “rate” state (z,,) is
randomly chosen. This choice of the initial system and input states can be considered
as a reasonable random choice of initial augmented state normally distributed with
zero mean and covariance I. A typical pilot command set for the choice z,,(0) =
(3,—1.5,2), is shown in Figure 6.2.

The attitude change of the UH-60A helicopter (from 0 to 10 seconds) with such
a closed-loop FCS in response to the above typical set of inputs is shown in Figure
6.3. Obviously the above choice of W, and W, lead to high roll-to-pitch coupling

response (see e4/d9 = ey; in Figure 6.3). However usually (e.g., [65]) the roll-to-pitch
coupling response is relatively high (higher than the pitch-to-roll response), due to the
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relatively low fuselage moment of inertia about its roll (z;) axis.

6.3 Reducing roll-to-pitch coupling using ODC techniques

Our goal is to reduce the roll-to-pitch component (e4/dg of Figure 6.3) and keep the
main and other coupling error components (almost) unchanged. For this purpose we

check the following four different design techniques presented in this thesis:

e The theoretical solution of Section 4.2.
e The average gain solution of Section 5.3.2.
e The average weights solution of Section 5.3.1.

e The average initial state solution of Section 5.2.

For all these techniques, the componentwise error and control weighting matrices

are
W. = diag(1,We,,1, 1,0.3,1, 1,0.3,1)

W. = diag(0.1,0.5,0.1, 0.1,0.5,0.1, 0.1,0.5,0.1) (62
where w,,, is the only decoupling design degree-of-freedom. Using each of the above
ODC techniques we obtain three different solutions for the following values of w,,,, 0.3, 1
and 3. Note that the first value (0.3) leads to equal We;’s (i.e., Wer = Weo = Weg =
diag (1,0.3,1)). Therefore we expect the corresponding solution to be equal for all the

above design methods (the same “starting point”).

6.3.1 The theoretical (free structure) solution

Recall that the theoretical solution may be applied only to stable plants in practice.
The open-loop helicopter (without the FCS) is unstable. Therefore this free structure
solution is only a theoretical one. However it still can be used for comparison because
its minimum cost function is the lower bound for all the cost functions of the other

design methods. The theoretical solution is computed using standard LQR routines
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(e.g., MATLAB’s “lgr” function [62]). The attitude change of the UH-60A helicopter

with the theoretical solution is shown in Figure 6.4.

The main observation is that the theoretical solution gives almost the perfect
desired response. That is, increasing we,, reduces the é; (roll-to-pitch) coupling
component. Moreover it hardly affects the other &;; error components. In fact the
€2 and é3 error components are not affected at all and &;; and é€3; are affected very
little. Recall that using the simultaneous control representation, changing only one
weighting component W, implies that only the j# sub-system (the first one in this

example) is affected. The theoretical cost is computed by

Ja

min

= -’E(-)I—I—P—Ifiol + il_/'g;ﬁzfioz + .’723;?3503. (63)

The computed values for we,, = 0.3,1, and 3, are 1.934, 2.243 and 2.442, respectively.

6.3.2 The average gain (LMS) solution

This practical SODC solution is obtained directly from the above theoretical solution,
where H = % [Fl +Hy+ Fg] and G = G + G2 + G3. From Figure 6.5 we conclude
that the results are not as good as for the theoretical solution. Moreover, contrary to
the theoretical solution, the other error components are slightly affected. The average

gain costs are computed by integrating

Ty, — —
Jo . = /0 (élTQlél +4{ Ry + & Q8 + Uy Rila + & Qg&3 + U3 Rﬂs) dt.  (6.4)

with T > Tmax Where 7,y is the largest time constant of the closed loop system (i.e.,
practically Ty = 0o). The minimum costs are 1.934, 2.366 and 3.027. Note that the
minimum cost for we,, = 0.3 is exactly the same as for the theoretical solution and it

is higher for w,,; = 1 and for the final design value 3.

6.3.3 The average weight solution

As we have already pointed out, this solution is not an ODC. It is used for comparison

and as the initial guess of the next two ODC solutions. The solution is simply a LQR
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solution with the average error weighting matrix W, = % [We1 + We, + We3]. Note
that for we,, = 0.3 it is also the preliminary LQR solution. The attitude change for
this solution is shown in Figure 6.6. Although it gives fair reduction of the roll-to-
pitch coupling, this solution affects the other error components. In fact it increases
substantially two other coupling components &;5 and €3s. This demonstrate the claim
that it is not really an ODC. The average weights cost is computed by integration
(6.4). The minimum costs are 1.934, 2.348 and 2.973. Note that although this is not
an ODC, its cost for We,, = 1 is less (better) than this of the average gain SODC

solution.

6.3.4 The average initial state solution

This solution is obtained by using the DAM type algorithm of Section 5.2.2. See
Appendix A for MATLAB code solving this algorithm with Armijo line search., nor-
malized covariance matrices (II; = II, = II3 = I) and stopping criterion § = 107°.
The above average weight solution was taken as the initial guess for the algorithm.
The attitude change for this solution is shown in Figure 6.7. The minimum average
costs 8.4280, 10.5186, and 18.9254 are obtained from the numerical algorithm after 5,
16, and 130 iterations, respectively. The minimum actual costs 1.9345, 2.2791, and

2.4957 are computed by numerical integration (6.4).

6.3.5 The direct minimization solution

A direct minimization has been used for comparison. The constrained optimization
problem was solved using the CONSOL-OPTCAD (C-O) optimization package [16]
with MATLAB interface (to evaluate the componentwise cost function). See Appendix
A for C-O and MATLAB codes. Recall that this solution depends on the initial system

and input states. The direct minimization has been performed only for w,,, = 3.
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Figure 6.8: Comparison between the minimum costs of the different ODC design

methods.

6.3.6 Comparison between the different ODC design methods

Using each of the four different ODC methods, it is possible to reduce the roll-to-pitch
(€21) error coupling component. The reduction level is proportional to the correspond-
ing weight (w,,, ). For all the ODC methods, except the average weight, the other error

coupling components are almost not affected at all.

Because the target is to minimize the componentwise cost function, the best
mathematical comparison measure is the minimum cost achieved by using each one
of the above methods. The minimum normalized costs (divided by the theoretical

minimum cost) for w,,, = 3 are shown in Figure 6.8.

Using direct minimization for a specific input (initial states) it is possible to
achieve almost (40.4%) the theoretical (lowest) cost. However, this solution may
not be good for any possible input (initial states). The best SODC cost (+2.2%) is
obtained by using the average-initial-state solution. This controller does not depend

on the specific initial state of the input reference signal. The minimum costs obtained
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Figure 6.9: Comparison between the es/dy error component of the different ODC

design methods.

by using the other SODC solutions are about 20% higher than the theoretical one.

Another way to compare between the different methods is by looking at the
time response of the ez (es/dg) error coupling component (Figure 6.9). The time
responses for direct minimization and average initial state are close to the theoretical
time response. The other two SODC solutions having much higher error coupling
component. The average weight error coupling component is better than that of the
average gain. However recall that the e)2 and e32 error coupling components of the

average weight solution are much higher.
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Chapter 7

Conclusions and future research

7.1 Conclusions

In this dissertation a new approach to optimal decoupling control (ODC) is developed.
This research has been motivated by the need to have alternative design methods to
the strict decoupling design techniques. ODC techniques are not only theoretically

important but also practically implementable.

All the various solutions to the ODC problem derived in this dissertation are
based on componentwise representations of the system and its control laws. These
representations allow us to perform a more detailed analysis of the coupling of the
system, than can be done using standard mathematical representations. Furthermore,
using these representations, we can define a scalar quadratic coupling measure for
minimization. The particular minimization problems depend on the specific design

requirements.

Using this idea, the theoretical ODC can be simply obtained from standard
optimal control solutions. This theoretical ODC has two major disadvantages. First,
it may be applied only to stable plants. Moreover the theoretical ODC has high order.
It is also shown that high order stabilizing ODC controllers can be obtained by using

this formulation and the Hadamard weighted design techniques [71].

In order to find low order solutions to the ODC problem, a constant state
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feedback control law is considered. It is shown that the optimal solution in this case
depends on the initial state. This dependence can be removed by randomizing the
initial state. A globally convergent algorithm for the new sub-optimal problem is

derived. In addition some other global sub-optimal solutions are presented.

Finally it is shown that, at least in some cases, using these componentwise
control design techniques, one (or more) component of the system coupling error can
be reduced almost without changing the other coupling components. This property
of the ODC design technique is demonstrated by using this approach in the design of
the attitude control of the UH-60A helicopter in hover.

7.2 Future research

The solutions to the ODC, presented in this thesis, are either (very) high order control,
or (very) low order control. High order controllers are usually not practical (i.e., too
expensive, too “big”, etc.). On the other hand, for most practical cases, constant gain
ODC'’s are not satisfactory. For these cases the “best” solution is probably a “low”
order dynamic controller. The first question to be asked is: how low should be the
order of the ODC ? Note that similar questions were studied by Hirzinger [29] and by
Sirisena and Choi [58].

The answer to this question may be found by going in the following two opposite

directions:

e “Going up” from the constant gain solutions of Chapter 5 by adding dynamics.
This can be done using similar ideas to those which are used in [55] for the design

of optimal fixed structure control (OFSC) dynamic output feedback.

e “Going down” from the high order ODC of Section 3.6 For this purpose, model

reduction techniques may be studied.

It is also very useful to study the performance of two controllers, with the same

given order, obtained by the above two different methods.
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One interesting open question is the conjecture used in Section 5.3.2 (see Remark
5.4). The proof of this claim may be also useful for other optimal control applications.

Moreover, if it is proved it may be extended to the case of dynamic controllers.

Another possible future research topic is to improve the numerical algorithm for
the constant state feedback SODC problem of Section 5.2.2 (make it converge faster,
include additional dynamics, etc.). Furthermore, under some additional assumptions,
this algorithm can be extended to find the SODC for constant output feedback con-
trol. See [5] for improved OFSC algorithms for the optimal constant output feedback

problem.

One interesting question for future research would be to determine the class of
systems for which the coupling error can be greatly reduced without affecting other
aspects of performance. Topics for further research can also be suggested by expanding
the ideas of this dissertation to the case of digital systems, time-varying systems,

nonlinear systems, etc.
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Appendix A

Some codes used for the numerical example

A.1 Linearized A and B matrices for the UH-60A in hover

A = [0.0162 0.0013 0.0116 -0.7495 1.0102 -0.3027 0 -32.0681 0
-0.0068 -0.0458 -0.0008 0.3325 -0.6139 -1.1648 32.0231 0.1381 0
-0.0456 -0.0052 -0.1692 -0.1387 2.3348 2.0203 1.6973 -2.6048 0

0.0362 -0.0404 0.0021 -5.4470 -0.9290 -0.1352 0 00
0.0014 0.0031 0.0031 0.0346 -0.7940 -0.0721 0 00
0.0060 0.0021 -0.0012 -0.3009 -0.1079 -0.2535 0 00
0 0 0 1.0000 -0.0043 0.0812 0 00
0 0 0 0 0.9986 0.0529 0 00
0 0 0 0 -0.0531 1.0019 0 0 0];
B = [-1.5621 -0.0666 1.0216
-0.0966 0.4041 -0.7989
-0.0826 0.0001 0.4177
0.1493 1.3605 ~-0.5341
0.3711 0.0113 -0.1096
0.0103 0.0876 0.3247
0 0 0
0 0 0
0 0 0]1;

A.2 The DAM type algorithm with Armijo line search

function [H,G,f0] = dam(A,B,C,Ar,Cr,Web,Wu,Pi,H0,G0)
% DAM  Solves the LQ-SODC problem using DAM (Descent Anderson and Moore)

% type algorithm. H and G are the constant system and input

% state feedback gains. fO is the final cost.

h

% - (A,B,C) are the m x m strictly-proper system state-space matrices.
% - (Ar,Cr) are the m input state-space matrices.

% - Web is an m"2 x m"2 nonsingular diagonal componentwise error

% weigthing matrix, and Wu is an m x m control weighting matrix.
% - Pi is the initial augmented state covariance matrix.

% - HO,GO is the initial guess, if they are not specified then the
% "average weight" solution is taken.

h Gil Yudilevitch

% April-24-94

% Initialization
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i=20;
[n,m]=size(B); nr=length(Ar);
M =1:m"2; M2=1:m+1:m2;

for i=1:m, UM, M+m*(i-1)) = eye(m); end; % computing U
V=zeros(m"2,m ); V(M2,M ) = eye(m); % computing V
Ab=[A,zeros(n,nr) ;zeros(nr,n) ,Ar]; % augmented sys.

Bb=[B;zeros(nr,m)];
Qb=Web’*Web; R=Wu’x*Wu;

% --- if no HO,GO are specified, the initial
% guess is the average weight solution

if nargin==9,
[H,G,P] = 1qt(A,B,C,Ar,Cr,UxQb*U’ /m,R);
else, H=HO; G=GO; end;

h

% --- computing Q

for j=1:m,
js=num2str(j);
Vj=V((j-1)*m+1:j*m,:);
eval([’G_?,js,’ = G/m;’]);
Qbj = Qb((j-1)*m+1:j*m, (j-1)*m+1:j*m);
Q1

= C’*ij*C;
Q2 = -C?*Qbj*Vj*Cr;
Q3 = Cr’*Vj*Qbj*Vj*Cr;
eval([’Q_’,js,’ = [Q1,G2;Q2°7,Q3]1;°1);
end;

% Main loop (START)

while 1 == 1,

% Finding directions of descent
h
% _____________________________
h

£0=0; LM=zeros(a,n); LL=zeros(n,n);
PL=zeros(n,n); dJdHH=zeros(m,n+nr);
for j=1:m,
js=num2str(j);
eval([’K_’,js,’ = [ H ,-G_?,js,’]1;’]);
eval([’Ac_’,js,’ = Ab-Bb*K_’,js,”;’]);

eval([’P = lyap(Ac_’,js,"’,K_’,js,’”*R*K_’,js,’+Q_’,js,’);’]);
£0=f0+trace(P*Pi);
eval([’P1_’,js,” = P(1:n , Lin )’1); % | P1 | P2 |
%
eval([’P2_’,js,’ = P(1:n ,a+l:n+nr);’1); Y P = | ——|-— |
%
, P3 = P(n+1:n+nr,n+1:n+nr); % | P2°| P3 |
" eval(['L = lyap(Ac_’,js,?,Pi);’]);
L1 =L(l:n , 1:n ); % [ L1} L2 |

%

eval([’L2_’,js,” = L(1:n  ,n+l:n+nr);’]); % L= -—-]-—- |
%

if j==1, L3 = L(n+l:n+nr,n+l:n+nr); end;Y% | L2°]| L3 |
%

eval([’dJdK=2*(R*K_’,js,’-Bb’’*P)*L;’]);
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eval([’dJdG_’,js,’ = ~dJAK(:,n+1:n+nr);’]);
dJdHH=dJdHH+dJdK;
eval ([’LS = L1—L2_’,js,’*inV(LS)*L2_’,js,”’;’]);

LL = LL+LS;
eval([’PL = PL+P1_’,js,’*LS;’]);
end;

dJdH = dJAHH(:,1:n);

Hn = inv(R)*B’*PL*inv(LL); DH = Hn-H; DK = DH;
for j = 1:m,
js=num2str(j);
eval([’Gn = (Hn-inv(R)*B’’*P1_’,js,’)*L2_’,]js,.
**inv(L3)-inv(R)*B’ ’*P2_",js,’;’]);
eval([’DG_?,js,’ = Gn-G_’,js,’;’]);
eval ([’DK = [DK,DG_’,js,’]1;’]);
eval([’DK_’,js,’ = [DH,-DG.’,js,’1;'1);
end;

% —-—- checking termination condition

[

DKn = norm(DK,’fro’)/m"2;

if DKn < 1le-5,
disp([’Local min. after ’,num2str(i),’ iterations’]);
break;

end;

% Armijo line search algorithm
%
A
%

% --- initialization of line search
[}

K_G=zeros(nr,nr);
for j = 1:m,
js=num2str(j);
gval([’K_G = K_G+dJdG_’,js,’’?*DG_",js,’;’]);
end;
KKn=trace(dJdH’*DH) + trace(K_G);
delF=1; alflag = 0; KKc=0;
Alfa=0.01; Beta=0.9; k=-2;), line search parameters (can be changed)
%

while delF >= KKc, % Armijo criterion
h

k=k+1;

alfa = Beta"k; Y% updating step size
h

% --- cheking step size and stability the algorithm stop
h
% if the step size is too small or the closed-loop is unstable
h
if alfa < 1le-10,
alflag = 1;
disp(’The step size is less than le-10 !’);
break;
end;
for j=1:m,

js=num2str(j);.
eval([’k_’,js,’ = K_’,js,’+alfa*DK_?,js,’;’]);
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eval([’Ac_’,js,’ = Ab-Bb*k_’,js,’;’]);
eval ([’Eig=max(real(eig(Ac_’,js,’)));’]);
while Eig >= 0,

k=k+1;

alfa = Beta“k;

if alfa < 1e-10,

alflag = 1;
disp(’Can not find a stable solution !’);
break;
end;
end;
if alflag==1, break; end;
end;
% --- evaluating the cost function
%
f1 = 0;
for j=1:m,

js=num2str(j);
eval([’P = lyap(Ac_’,js,”?’,k_?,js,’? "*R*k_’,js,’+Q_",js,?);°]1);
f1 = fl+trace(P*Pi);

end;

delF = £1-£0;

KKc=AlfaxBeta"k*KKn;

end;’ of Armijo line search

%

% Update H and G’s

H = H+alfa*DH; % computing H
A

"for j=1:m, % computing G’s
%
js=num2str(j);
eval([’G_?,js,’ = G_’,js,’+alfa*DG_",js,’;’]);
end;
% --- printing algorithm information
%
if 1 > 0,
fprintf(’i =kg, |dK| = %7.4g, dJ = %7.4g, alfa = %7.4g\n’,...
%
i, DKn, delF, alfa); end;
i= i+1;

end; % Main loop

h
% --- computing G

G = zeros(m,nr); for j=1:m, eval([’G = G + G_’,num2str(j),’;’]); end;
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A.3 C-O/MATLARB files for direct minimization

A.3.1 The C-O Problem Description File (PDF)

/ ¥/
/% C-0/MATLAB - OPTIMAL DECOUPLING - PDF */
/* Direct minimization of the componentwise quadratic cost function */
/* To be run with SIMU.M and INIT.M *x/
/* Gil Yudilevitch */
/* May-13-94 */
/* /
/¥ --- design parameters and their initial values (average weight)
C-0 does not work with matrices */

design_parameter hll init = -0.1234

design_parameter h12 init = 0.0995

design_parameter h13 init = 0.0017

design_parameter hi4 init = -0.5631

design_parameter hlb init = 6.1277

design_parameter h16 init = 0.7893

design_parameter hl7 init = -2.3985

design_parameter hil8 init = 12.1081

design_parameter h19 init = 1.1815

design_parameter h21 init = 0.0130

design_parameter h22 init = -0.0093

design_parameter h23 init = -0.0005

design_parameter h24 init = 0.4941

design_parameter h25 init = -0.2279

design_parameter h26 init = 0.6848

design_parameter h27 init = 3.1004

design_parameter h28 init = 0.0395

design_parameter h29 init = 0.3535

design_parameter h31 init = 0.0407

design_parameter h32 init = -0.0131

design_parameter h33 init = -0.0037

design_parameter h34 init = -0.3867

design_parameter h3b init = -0.7414

design_parameter h36 init = 7.3236

design_parameter h37 init = -1.8386

design_parameter h38 init = -0.8363

design_parameter h39 init = 9.7714

design_parameter gil init = -1.,5140

design_parameter gi2 init = 2.7649

design_parameter gi3 init = 2.0019

design_parameter gi4 init = 0.7473

design_parameter gib init = -0.4458

design_parameter gi6 init = -0.1185

design_parameter g21 injit = 0.0501

design_parameter g22 init = 0.0686

design_parameter g23 init = -0.9551

design_parameter g24 init = 0.5976

design_parameter g25 init = -0.0944

design_parameter g26 init = -0.0167

design_parameter g3l init = -0.0656

design_parameter g32 init = -0.4583

design_parameter g33 init = -0.5195

design_parameter g34 init = -3.5588

design_parameter g35 init = -3.4731

design_parameter g36 init = 1.9150

global double getout();

/* --- the objective

(JD)

and the constraint (MR) are computed
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by simulation (see SIMU.M) */
objective "coupling D"

minimize {

return getout("JD", 1);

0.000
0.002

good_value
bad_value

constraint "stability" hard

{
return getout ("MR", 1);
3
<=
good_value = 0.00000
bad_value = 0.00001

A.3.2 MATLAB initialization file INIT.M

% C-0/MATLAB initialization m-file
% for OPTDEC and SIMU.M

% Gil Yudilevitch
% May-16-94

% --- loading system matrices

load A -ascii; load B -ascii;
[n,m]=size(B); M =1:m"2; M2=1:m+1:m2;
V=zeros(m*2,m ); V(M2,M ) = eye(m);

% --- pilot’s typical input
% Wn and zeta are human factors

Wn=1; zeta=0.8; nr=6; a=Wn"2; b=2%zetaxWn;

Ari=fo 1;-a -b]

Ar=[Ari, zeros(2 4) ;zeros(2,2) ,Ari,zeros(2,2) ;zeros(2,4) ,Ari];
Cr=[0a 0000;000a0 0 00000 al;

x0=[3,-1.5,2]; % initial stse for the pilot’s specific input

x01= [zeros(l n),x0(1),0,0,0,0,01;
x02=[zeros(1, n) O 0, x0(2) 0 0 0],
x03=[zeros(1,n),0,0,0,0,x0(3),0];
% —-- componentwise error and control weighting matrices

Web=diag([1 31 10.31 10.31]);
Wu=0.1*diag([1,5,1]);% Wub = block diag(Wu,Wu,Wu)
%

A.3.3 MATLAB simulation file SIMU.M
% C-0/MATLAB initialization m-file
% for OPTDEC and SIMU.M

% Gil Yudilevitch
% May-16-94

% —-—- packing d.p.’s into matrices
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fa ]
]

[h11 h12 h13 hi4 hi15 h16 h17 hi18 hi9
h21 h22 h23 h24 h25 h26 h27 h28 h29
h31 h32 h33 h34 h35 h36 h37 h38 h39];

= [gl1l g12 g13 gl4 gi5 gl6
g21 g22 g23 g24 g25 g26
g31 g32 g33 g34 g35 g36];

«
!

Ac = [A-B#H,B*G;zeros(nr,n),Ar] ;% closed-loop matrix
MR = max(real(eig(Ac))); % stability criterion (C-0 constraint)
%

% --- computing the cost function JD (C-0 objective)

JD =
for j
js
Cc

13,

num2str{j);

[C,-V((j-1)*m+1:j*m,:)*Cr];
We = Web((j-1)*m+1:j*m, (j-1)*m+1:j*m);
P lyap(Ac’, [H,-G] **Wu’*Wux [H,-G] +Cc’ *We’ *xWexCc) ;
eval([’JD = JD+x0°’,js, ’*P*x0’,js,”’’;°]);

end;

wmuuonno
farghy

save simu JD MR;
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