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Miniature (< 500g) bio-inspired robotic vehicles are being developed for a variety 

of applications ranging from inspection of hazardous and remote areas to 

environmental monitoring.  Their utility could be greatly improved by replacing 

batteries with fuel cells consuming high energy density fuels.  This thesis surveys 

miniature fuel cell technologies and identifies direct methanol and sodium 

borohydride technologies as especially promising at small scales.  A methodology for 

estimating overall system-level performance that accounts for the balance of plant 

(i.e. the extra components like pumps, blowers, etc. necessary to run the fuel cell 

system) is developed and used to quantify the performance of two direct methanol 

and one NaBH4 fuel cell systems.  Direct methanol systems with water recirculation 

offer superior specific power (400 mW/g) and specific energy at powers of 20W and 

system masses of 150g.  The NaBH4 fuel cell system is superior at low power (<5W) 

because of its more energetic fuel.  
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Chapter 1: Introduction. 

 

1.1 Motivation, challenge, and the advantage of fuel cells. 

 The United States Army has increased its interest in robotic platforms that fly 

and /or crawl in recent years due to the platforms’ successes in war zones.  These 

remotely-operated platforms often aid the warfighter in areas such as sensing and 

scanning, communications, and defense or weaponry.  They are especially useful in 

terrain that is difficult for human exploration, such as caves or under urban debris.  

Recently, the U.S. Army initiated a program with the objective of providing the 

warfighter with smaller, multifunctional platforms, which can act autonomously when 

desired.  Three search and surveillance missions were presented that are of particular 

interest to the Army [1]:  exploring a potentially hostile building, exploring a cave or 

demolished building, and perimeter defense.  These scenarios place severe demands 

on the vehicles power and energy systems.  In addition to the general need to 

maximize range/endurance, the movement of the platform may be intermittent and 

include sustained periods of perching and hovering or compensation for gusty winds.  

Thus, power requirements are also intermittent and the system would rarely reach a 

“steady state” operating condition.  In addition, complex terrain requires crawling 

platforms to overcome obstacles that may be as large as the platform itself. This could 

require asymmetric power distribution, as well as large amounts of energy for 

minimal distance. 
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 Most of the individual components of an unmanned autonomous vehicle 

(UAV) are electrically powered, and so it is natural that they are often designed and 

tested with batteries in mind [2].  However, in spite of years of improvements, 

batteries’ energy densities remain low and as a result, fully integrated vehicles cannot 

meet the needs of missions described above [3].  For example, the endurance of one 

small (~100g) flying vehicle that could be a candidate for the missions described 

above is only about 10 minutes – without accounting for increased power demands 

associated with changing flight conditions.  This short life span is inadequate for 

mapping a single floor of a typical office.  Also, the short endurance endangers the 

warfighter by requiring them to place the platform directly on site as opposed to 

dispatching the vehicle from a safe distance.      

The hovering endurance of a rotor-powered vehicle is given by the following 

expression: 
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where ηp is the propulsive efficiency of the rotor, A/Mg is the rotor disc loading (M is 

the empty weight, A is the swept area of the rotor and g is gravitational acceleration), 

ζ is the fuel mass fraction (fuel mass/empty weight), QR is the energy/mass of the 

fuel, and ηth is the overall thermodynamic efficiency of the powerplant.  A derivation 

of Eq. 1.1 is presented in Appendix A.   

Figure 1 shows how the hovering endurance of a typical 100 g micro air vehicle 

(MAV) – in this case Micor, a battery powered co-axial rotor vehicle [4] – depends 

on the energy density and overall thermodynamic efficiency of its power system.  The 
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horizontal axis is the energy density of the fuel and the vertical axis is the overall 

thermodynamic efficiency of the power plant.  The diagonal dashed lines are contours 

of endurance computed based on the Brequet range equation given in Eq. 1.1.  The 

figure shows that the key attributes of the power system that set the hovering 

endurance are the energy density of the fuel and the efficiency with which it is 

converted.  The figure demonstrates the power challenge clearly:  Batteries convert 

their stored energy very efficiently but don’t store it very efficiently (i.e. they have 

relatively low energy densities) and Micor’s endurance is limited to about 15 minutes.  

While replacing batteries and electric motors with a model aircraft engine operating 

on ‘glow fuel’ (a mixture of methanol, nitromethane, and oil) greatly increases the 

energy density of the system, the efficiencies of heat engines at the scales necessary 

for the class of vehicles considered here are very low (~5%), [5] and so switching to 

heat engines leaves endurance virtually unchanged.  Similarly, a direct methanol fuel 

cell (DMFC) system that meets the DARPA target energy density of 1000 W-hr/kg 

[6] has higher conversion efficiency than a miniature engine (~26%) and higher 

energy density than batteries, but neither is enough to appreciably change vehicle 

endurance.   Therefore, the main challenge is to find a power and energy system that 

can deliver an order of magnitude increase in energy density over batteries in an 

approximately 20 g package that still delivers ‘reasonable’ (> 20%) overall 

thermodynamic efficiency.   

However, other fuel cell technologies are more promising.  For example, H2-

Proton Exchange Membrane (PEM) fuel cells can achieve thermodynamic 

efficiencies > 50% and energy densities of 1200 W-hr/kg if H2 is stored in NaBH4 [7].  
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Direct ammonia solid oxide fuel cells offer only slightly lower thermodynamic 

efficiencies (~50%) but much greater energy/mass than NaBH4 and this leads to 

levels of performance increase (approximately a factor of 10) that justify further 

research.  Potentially even better are solid oxide fuel cells capable of consuming 

liquid hydrocarbons like JP8.  However, the critical question in all of these analyses is 

what levels of energy storage and conversion efficiency are attainable at the system 

level.   

 

Figure 1: Performance of various batteries, fuel cells, and an engine as power 

and energy systems for Micor, a micro hovering vehicle (100 g).  The solid black 

line is the energy density of JP-8. 

  

Determining system-level performance is a complex problem – especially at 

scales relevant to sub-kilogram flying, crawling, and jumping sensor platforms.  First, 

the unit cells usually must be bundled together in series or parallel to achieve the 

desired voltage and power.  These ‘bundles’ are called ‘stacks’.  This packaging adds 
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weight and losses.  Second, while the stack is the heart of the fuel cell system, it 

requires many other additional components to service it.  Some examples include 

pumps and blowers, condensers, heat exchangers, membranes, valves, and other parts 

necessary for thermal management and power conditioning.  The net result is that the 

volume, mass, and sometimes the overall efficiency of the fuel cell system can be set 

by the size, mass, and performance of the additional components required to service 

the stack.    

 The power/energy consumed by these subsystems is termed ‘balance of plant’ 

(BOP) and can become increasingly important as the size of the fuel cell system is 

reduced.  The conversion efficiency of the overall fuel cell system is determined by 

the operating voltage, fuel utilization in the cell stack and by the parasitic losses 

associated with fluid pumping, fuel pre-processing (as needed), thermal management, 

and power conditioning.  These parasitic losses become more significant with 

decreasing fuel cell size because of the aforementioned increased surface area/volume 

ratio and can reduce or even eliminate the advantage of using high energy density 

fuels in small-scale systems [8].  As a result, power densities reported in the literature 

- which are usually of  MEAs or stacks -  do not translate directly into system-level 

power density, and overall efficiency and balance of plant must be accounted for in 

order to  make meaningful comparisons between different fuel cell technologies.  The 

objective of this work is to provide a methodology and computational tool for 

predicting the performance (power density and energy density) of miniature fuel cell 

systems by considering the performance of the fuel cell stack as well as the overall 

balance of plant. 
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1.2 Previous work. 

 There are a number of example analyses including balance of plant in kW-

scale power systems like a high temperature PEM fuel cell system that operates on 

reformed diesel fuel [9], a bus powered using a fuel cell/battery system [10], and a 

stationary, residential PEM fuel cell system that uses reformed methane [11].  Some 

simulations look into individual issues inside the system, such as anode CO tolerance 

[12] or water balance [13] of the MEA.  Doss et al. used a model that was built in-

house that simulates a gasoline reformer system coupled with fuel cells for 

automotive applications [14, 15].  The investigation was a parameter study to provide 

insight into how the autothermal reformer (ATR) temperature, pressure, and fuel to 

air ratios affect the system and reformer efficiencies.  System efficiencies up to 40% 

were attained with this model.   However, none of these studies provides any insight 

into how these systems would perform if scaled down for use in the miniature sensor 

platforms envisioned by the U.S. Army.  Another balance of plant investigation 

involved modeling of a reversible fuel cell system, which is a system that uses 

electricity to dissociate water in order to make and store H2.  When power is required 

of the system, the hydrogen is fed to a PEM fuel cell.  This reversible system showed 

good agreement with its experimental counterpart, however the system appears far 

too complex to scale down to the Army’s needs [16].  While some system studies 

have been performed for small-scale power applications [17], they often assume 

component efficiencies based on larger applications.  Other studies have given insight 

into the fuel cell performance through mathematical modeling, but these models do 

not include the balance of plant that would support the fuel cell under consideration 
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[18, 19].   

Benavides et al understood the complexity of scaling down balance of plant 

components, and focused their efforts on the DC to DC converter to improve system 

efficiency and mass [20].  While much insight can be gained from these models, they 

are insufficient in determining whether a fuel cell system is the solution to the Army’s 

needs.   

In summary, what is required is a thermodynamic model of a fuel cell system 

that incorporates the entire BOP and is designed to address the specific missions the 

Army envisions for its microsystems.  Such a model is required to assess the relative 

merits of various power/energy systems being considered for these missions but at 

present one does not exist.  This thesis seeks to create one. 

1.3 Objectives and approach. 

 The overall objective of this thesis is to identify a fuel cell power system that 

is well-suited for powering the miniature flying, crawling, and hopping vehicles being 

developed for the three mission scenarios of the U.S. Army’s Collaborative 

Technology Alliance (CTA) in Micromechanics [1] described in section 1.1, and 

whose performance exceeds that of batteries.  The challenge is that what is usually 

reported in the literature is MEA performance whereas overall system performance 

(i.e. system level power and energy density) is required in order to assess suitability 

for the CTA applications.  Unfortunately, the latter is usually not available because 

balance of plant considerations make it highly dependent on scale (i.e. physical size) 

and the particulars of the application (mission environment, profile, etc.).  The 

objective here is to provide a methodology and computational tool that can be used 
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when the size and application details are known.  The fuel cell system model would 

predict the system performance described above and can be used to analyze the 

advantages of a hybrid fuel cell/battery system over a battery only system.  Since 

there are many types of fuel cells and possible implementations, it is not possible to 

do complete system-level analyses for each possible fuel cell-based power system.  

Therefore, a multi-step approach is taken. 

The first step is to narrow the field of candidate technologies.  This is 

accomplished by performing a survey of current fuel cell technologies that establishes 

the level of performance that is available today (at the MEA/stack level) and 

summarizes the advantages and disadvantages of different technologies.  Hydrogen-

based PEM fuel cells are not included in the survey because the specific energy of 

compressed or liquid hydrogen is too low; instead more research is conducted on fuel 

reformers that provide the PEM cell with H2 from another fuel source.  Also, some of 

the literature reviewed compares results with a typical PEM fuel cell, providing a 

good baseline for comparison. Solid oxide fuel cells are also not included in the 

survey because the high temperature operation could mean an excessive system 

complexity for MAV applications.  Items of interest include what type of fuel and 

oxidizer are used, power density, efficiency, operating temperatures, and an estimate 

of the overall complexity of the entire system in a real application.  The results of this 

survey are used to generate a semi-quantitative ranking of each candidate 

technology’s suitability for the three CTA mission scenarios and to identify two or 

three technologies worthy of further study. 

The second step is to perform a more detailed system-level analysis of the 
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promising technologies identified in step one.  This is accomplished by assembling a 

system model from physics-based models of each component.  Particular attention is 

paid to properly representing how the performance of all system components - not 

just the fuel cell - changes with size. 

The third step is to use the system models to compare fuel cell to battery-based 

power systems using a baseline mission of a micro-air vehicle that weighs 225 g or 

less. The influence of mission profile is investigated by repeating the comparison for 

alternate missions.  The outcome will be an improved understanding of the 

capabilities and limitations of fuel-cell based power systems in small unmanned air 

vehicles.  

1.4 Thesis structure 

 This chapter has explained the overall motivation for developing miniature 

fuel cell-based power systems and the challenges associated with assessing fuel cells’ 

suitability for various autonomous sensor platforms being developed by the U.S. 

Army.  Balance of plant is identified as the critical parameter governing fuel cells’ 

applicability at these scales and a research program is outlined for addressing the gaps 

in the literature.   

 Chapter two presents an overview of fuel cell fundamentals, as well as a 

survey of fuel cell technologies that appear to be most relevant/suitable for the 

miniature vehicle application.  Hydrogen storage and some current reforming 

technologies are also discussed.  The critical parameters of interest for the survey are 

power density, operating temperature, efficiency, system complexity and type of 

oxidizer used.  Chapter three discusses the survey results presented in chapter two and 
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develops a semi-quantitative methodology for ranking each fuel cell system based on 

its suitability to the CTA missions.  Three technologies worthy of additional 

consideration are identified. 

 Chapter four presents the system model used to simulate one of the promising 

candidates, a direct methanol fuel cell.  Detailed models of each component are 

developed and water recirculation is incorporated.    

 Chapter five presents results from the system simulations.  Power densities 

and efficiencies are computed and the influence of water recirculation is quantified. A 

case study is presented to compare the mission performance of a battery-only power 

system to a hybrid fuel cell/battery system.  The advantages of a hybrid system are 

discussed. 

 Chapter six summarizes the major conclusions of the thesis and makes 

recommendations for future work. 
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Chapter 2: Survey of Advanced Fuel Cell Technologies. 
 

 

 The objective of this chapter is to survey current fuel cell technologies that 

have been researched at the component level (reformer or fuel cell stack only) and to 

summarize the advantages and disadvantages of each.  Items of interest include what 

type of fuel and oxidizer are used, power density, efficiency, operating temperatures, 

and an estimate of the overall complexity of the entire system in a real application.  

The discussion begins with energy storage and continues with a survey of reformer 

technology.  Fuel cell technologies are then presented with an overview on the basic 

principles of operation followed by summaries of the state of the art for each type of 

fuel cell.  A summary of the findings is then presented. 

2.1 Energy storage media: capabilities, advantages, and challenges. 

 The most energetic fuel per unit mass for fuel cells is the same as for standard 

combustion: hydrogen.  Pure hydrogen has a large specific energy (120 MJ/kg) when 

it reacts with oxygen, and its waste product is water.  A major concern with using 

hydrogen directly for fuel cells is storage and transportation of the fuel.  Storing 

gaseous hydrogen can be hazardous because of its high pressure and propensity to 

leak.  This is especially a concern for the automotive industry and portable devices.  

Another concern is that hydrogen is a gas at normal temperatures and pressures so its 

energy density is very low, and it is not possible to store a significant amount without 

a large or heavy (i.e. high pressure) tank.  This is illustrated in Figure 2.  As the 



 

 12 

 

pressure is increased to achieve a energy density closer to liquid hydrocarbon (LHC) 

fuels, the specific energy drops to inadequate levels. 

 

Figure 2: Specific energy and energy density vs. pressure for a H2 gas tank 

 An alternative to storing pure hydrogen is storing it within a larger, more 

complicated molecular compound like liquid hydrocarbons.  While this lowers the 

overall energy density, it can make storage more efficient and safe.  The removal of 

hydrogen from a carrier is generally called reforming, and the process generally has 

strict conversion requirements when combined with a hydrogen based fuel cell.  

Often unreformed fuel can damage the membrane and lower performance to 

undesirable levels.  

 Ammonia can also be viewed as a hydrogen carrier but it poses some safety 

challenges due to its toxicity.  Less-hazardous ammonia-carriers have been 

investigated.  One option is storing the ammonia in metal ammine salts.  For example, 

Ca(NH3)8Cl8 can store hydrogen at a relatively high gravimetric hydrogen density 

(just under 10%) [21] and also releases the ammonia at lower temperatures than other 
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carriers like Mg(NH3)8Cl8, requiring less energy.  Table 1 provides a comparison of 

non-hydrocarbon hydrogen carriers’ energy densities.  Ammonia stored in metal 

ammines is also less toxic than gasoline.  Ammonia borane (NH3BH3) has also been 

considered as an ammonia carrier.  The substance is easy to transport as a solid and is 

non-toxic [22].   

 Regardless of the carrier, Ammonia decomposition to hydrogen is 

endothermic, and heat is also needed to extract the ammonia from the carriers.    

Therefore, a reformer is required for any of these storage methods and therefore the 

challenge of devising an efficient integration of the reformer and fuel cell remains. 

Table 1: Energy Densities of Hydrogen Carriers [21] 

Carrier Name Phase Specific Energy 

(MJ/kg) 

Energy Density 

(MJ/L) 

Ca(NH3)8Cl2 Solid 11.76 13.8 

Mg(NH3)6Cl2 Solid 11.01 13.08 

NH3 Liquid 12.5 12.96 

H2 Liquid 120 8.52 

Mg2NiH4 Solid 3.06 4.8 

LaNi5H6 Solid 1.64 4.32 

NaAlH4 Solid 4.2 3.12 

H2 (200 bar) Gas 2 1.68 

 

 Another class of hydrogen storage compounds is the borohydrides.  These 

solid state storage compounds can be reformed in a decomposition reactor to produce 

H2 like the metal ammines or they can be used directly in a fuel cell when placed in 

an aqueous solution.  The metal ammine salts are generally lighter in weight than 

metal hydrides.  Ponce de Leon et al. wrote a review of progress being made and 

challenges to consider for these direct borohydride fuel cells in 2006 [23].  

Borohydrides produce higher open circuit voltages than methanol and can attain 
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similar power densities at lower operating temperatures.  A recent review of hydrogen 

storage carriers [24] included borohydrides and compared them with nitrogen based 

hydrides.  It also found that sodium and lithium borohydrides have lower hydrogen 

yields (on a gravimetric basis) than ammonia or ammonia borane.  In 2007, 

Millennial Cell Inc. was developing a hydrogen source based on the hydrolysis of 

sodium borohydride [25].  This process is exothermic giving it an advantage over 

ammonia and the metal ammines described above.  A systems study showed that a 

heat exchanger could be used to recover the heat of decomposition thereby doubling 

the hydrogen production rate of their reactor to 400 SLPM/L.  Operating temperatures 

were moderate (around 150 °C) and the temperature distribution within the reactor 

was uniform which improved fuel conversion and catalytic effectiveness.    

  Light alcohols are of particular interest due to their relatively high energy 

densities (12-36 MJ/kg) and potential to be produced from bio-mass.  Fuels like 

ethanol and methanol are like borohydrides in that they can be used directly in a fuel 

cell, or reformed to create H2.  However, using these fuels directly requires them to be 

in an aqueous solution which lowers the effective energy density.  These alcohols will 

be discussed further in this chapter. 

 

2.2 Reformers. 

2.2.1 Ammonia 

 One of the earlier investigations of miniature ammonia reformers was carried 

out by Arana et al. at MIT [26].  The reactor used 4 silicon nitride tubes in a double-u 

formation that also functioned as a heat exchanger.  A schematic of the reactor 
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geometry is presented in Figure 3.  Ammonia cracking takes place in one of the tubes 

while the other provides the necessary heat.  The catalyst was iridium amine on 

alumina and the tube length was a little less than 3 mm.  Up to 97% of the ammonia 

was converted to hydrogen with a thermal input of 1.8 W – supplied using electric 

heaters not the other tube for the purposes of the experiment. The authors interpreted 

the high conversion to be almost 1.6 W of H2, based on the LHV.  In a reactor that is 

0.12 cm
3
 in volume, this translates to a power density of over 13 W/cm

3 
before 

accounting for the necessary auxiliary components which take up the better part of 

the system volume. The author noted that common hurdles for miniature “generators” 

are tight fabrication and geometries, parasitic losses associated with pumps, blowers, 

and power management, and thermal losses.  Insulation can actually be bad for small 

systems, depending on the conduction and convection coefficients of the insulation 

and air respectively.  For example, the authors found that adding insulation to a 

channel with a radius smaller than 1 mm would increase thermal losses by increasing 

its exterior surface area.  That being said, an improvement in performance was 

expected when other improvements in thermal management were made like vacuum 

packaging and adding heat shields.  Finally, the effect of improved thermal 

management will be limited if the parasitic losses associated with pumps and/or other 

components are comparable to or larger than the thermal losses. 
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Figure 3: Schematic illustration of the suspended-tube reactor [26].  In the 

fabricated device, each tube is 200 µm wide by ~ 480 µm high. A 3-slab reactor is 

shown in the figure. Reactors with up to 7 slabs have been fabricated. 

  

 Another group at MIT developed a system model of a SOFC operating on 

ammonia. [27] The model included butane-fueled catalytic burners to maintain the 

SOFC’s operating temperature.  The goal of the model was to maximize energy 

density while meeting a specific power demand.  The authors noted that ammonia 

was not fed directly to the SOFC so as not to form large amounts of NO.  Yttria 

stabilized zirconia (YSZ) was assumed for the electrolyte, nickel (Ni) +YSZ cermet 

for the anode, and strontium doped lanthanum manganite (LSM) +YSZ cermet for the 

cathode.  Ruthenium (Ru) was used to decompose the ammonia in the reactor.  The 

specifications made in the model produced around 1 W at 0.65 V.  It was found that 

increasing the electrolyte thickness increased efficiency and also improved 

mechanical stability.  As the thickness increases, so does the active electrochemical 

surface and the current density through the electrolyte decreases, causing a reduction 

in activation overpotential.  Other conclusions were drawn about the SOFC, which 
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was the primary interest of the research.  However, the most relevant conclusion for 

the purposes of this thesis was reiteration of the fact that thermal management will be 

a critical issue when designing an optimal ammonia based system.  The authors 

indicated that radiation shields and vacuum packing could be necessary to reduce heat 

losses. 

 In 2004, a few publications by J.C. Ganley focused on ammonia reformers 

that were not coupled with any fuel cells [28-30].  The first publication focused on 

finding cheaper alternatives to Ru for an ammonia reformer catalyst [28].  The 

authors argued that there are many catalytic activity correlations in the literature that 

are meant to encompass most types of catalysts, but these analytical results differ 

from one another.  Therefore, the research focus was to evaluate each catalyst 

experimentally and to determine if a single correlation could be found that accurately 

describes the performance of all of these catalysts.  The catalysts were deposited onto 

alumina foam pellets, and the foams were used in a quartz tube reactor.  The reactor 

was heated by a temperature-controlled tube furnace.  The results indicated that Ru 

gave the highest reaction rates by far with Ni taking second place at 61% the reaction 

rate of Ru. Based on these results, Ru was selected for all subsequent experiments.     

 The first of these studies considered monolithic anodized alumina posts for 

supporting the Ru catalyst in a microreactor [29].  The large surface area of this array 

of posts modestly increased activity compared to other supports while avoiding issues 

like fluid bypassing (clogs), thermal non-uniformity, and mechanical 

strength/stability.  The results were relatively promising in that 50 sccm of NH3 in a 

penny-size reactor produced 46 sccm of H2 which translates to about 13 W of power 



 

 18 

 

in a ‘typical’ PEMFC.  This is enough power to run small electronic devices.  

Ammonia conversion decreased with flowrate and increased with temperature making 

it difficult to increase power density without increasing operating temperature. The 

authors concluded that more work needed to be done on the reactor geometry and this 

was one of the items considered in the next study.   

 The geometry study included a comparison of various post and channel-based 

flow arrangements as well as various methods for altering the chemistry including 

hydrothermal treatment of the supports, whether or not to use a potassium promoter, 

and changing the type of catalyst precursor [30].  Similar to the previous study, Ru 

deposited on anodized alumina served as the catalyst.  The authors found that 

channels worked better than posts and smaller channels increased the conversion of 

ammonia.  Hydrothermal treatment and potassium promoters also improved 

performance, and the original design for a catalyst precursor, RuCl3, was the better 

option.  Incorporating all of these improvements into one reactor led to 99% 

conversion at 600 °C and a flow rate of 0.25 sccm which corresponds to roughly 60 

W worth of H2.  Given that the size of the reactor was 0.35 cm
3
, this gave a 

volumetric power density of about 180 W/cm
3
 which is quite impressive for a small 

scale reformer.  It was concluded that although the reformer is only a part of the 

entire system, it could meet or exceed the requirements of a typical portable power 

applications which require approximately 20 W within a 0.5 cm
3
 volume. 

 Ammonia decomposition for H2 production was also being investigated by 

researchers in Denmark [31].  One study focused on using porous graphite for catalyst 

supports.  The activity of Ru on graphite was found to be orders of magnitude higher 
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than Ru on alumina for the same reactor geometry.  Promotion using Ba or Cs could 

further enhance the performance of the reformer.  However, high Cs loading also 

lowers the required operating temperature causing a shift in equilibrium back to NH3.  

Therefore, removing either the NH3 or H2 during the process is necessary.  The two 

options suggested by the author were to divide the reactor into two stages and remove 

the NH3 to a second smaller, hotter reactor, or bleeding the H2 through a Pd 

membrane thereby increasing the fraction of NH3 in the reactor and causing it to 

decompose.  The membrane would also provide the fuel cell with pure H2 fuel.   

 The U.S. Army has also investigated technologies using ammonia as fuel [32].  

Hydrogen Components Inc. had their Ammonia Hydride Hydrogen Generators 

(AHHG) tested by the Army (CERDEC).  The ammonia is stored in vapor form in a 

cartridge which plugs into the lithium aluminum hydride (LiAlH4) reactor bed.  The 

hydride and ammonia produce H2 which is fed through a filter, or ‘getter’, to remove 

the NH3 before entering the fuel cell stack.  The hydrogen is generated on-demand as 

it is consumed using a pressure check valve system.  The fuel cell is a Proton 

Exchange Membrane (PEM) system by Ball Aerospace.  The reactor was tested at 

different power demands.  The system operated stably at lower power levels (5W), 

but 50 W demanded too much of the system.  Higher power levels led to more 

unconverted ammonia leaving the reactor, saturating the ammonia getter, and 

restricting hydrogen flow.  At the 5W level, an energy density of 483 W-hr/kg was 

provided, and the reactor could run autonomously for 50 hrs.  However, the reforming 

system alone weighed almost 1 kg, which is much larger than the desired system 

weight for MAVs.  
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Incomplete conversion of ammonia can have more serious consequences than 

simply clogging a getter.  For example, Uribe studied the effects of unreformed 

ammonia on a Nafion proton exchange membrane with catalyst layers prepared from 

carbon supported 20% Platinum (Pt) [33].  The cell size was 5 cm
2
.  His results 

showed that traces of ammonia in the anode cause a decrease in cell current while 

larger amounts (130 ppm) can damage the membrane irreversibly limiting operation 

to only a few hours.  As a result, great care must be taken when using ammonia with 

PEM cells to ensure that conversion is complete.  

 In summary, PEM cells coupled to NH3 decomposition reactors have great 

potential assuming the ammonia doesn’t find its way to the PEM cell.  However, the 

main problem with ammonia-based systems is that whatever route is taken, direct or 

indirect, there will be an extremely hot (above 600 °C) component in the system.  As 

a result, thermal management will be the critical barrier to implementing miniature 

NH3-based fuel cell power systems for 100 gram-scale vehicles. 

2.2.2 Liquid hydrocarbons  

Hydrocarbon fuel reformers have received much attention for hydrogen 

production.  One such reformer has microchannels on each side with different 

catalysts to utilize two different ethanol reforming reactions at the same time [34].  

Ethanol autothermal steam reforming takes place with a Co/ZnO catalyst at lower 

temperatures (500 °C).  The process is endothermic.  On the bottom side, total 

oxidation of ethanol using a CuMnOx catalyst takes place, which is an exothermic 

process.  Thus the bottom side provides heat for the top side reactions to occur.  

Complete ethanol conversion was observed at operating temperatures higher than 400 
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°C.  Hydrogen selectivity, which is the amount of hydrogen atoms from the reactants 

that form H2, hovered around 60% for the temperatures tested.  These high 

selectivities amounted to a reformer efficiency of 71%, or 0.9 STP mL/min of H2 was 

formed from 0.36 STP mL/min of ethanol. 

Ethanol can also be partially oxidized to for H2 through catalytic combustion.  

Behrens et al. investigated different operating regimes of their reactor, focusing on 

equivalence ratio of the fuel [35].  When the ethanol (or butanol) was combusting at a 

slightly fuel rich regime, partial oxidation occurs and H2 was formed.  The hydrogen 

selectivity attained is only 18%.  The catalyst, a slurry mixture containing rhodium 

(Rh) on a γ-Alumina coated surface, provides a cheaper alternative to other types of 

catalysts used in reforming.   

Another group investigated a micro-methanol steam reformer that uses solar 

energy for the endothermic reforming process [36].  The reactor was first tested with 

a green (argon) light laser and achieved efficiencies around 5%.  The carbon 

selectivity to CO was 11%.  The catalyst was made of fine particles 

(CuO/ZnO/alumina) that were loaded onto the surface using pulsed laser ablation 

technology.  The efficiency dropped by half when the technology was tested with a 

simulated solar light.   

A three dimensional simulation was built to study the effects of operating 

conditions and geometry on a methanol reformer [37].  Parameters like channel size, 

flowrate and inlet/outlet configurations were varied and tested to see if improvements 

could be made on an existing reformer.  The reformer with a central inlet and two 

outlets improved the methanol conversion ratio to 42.3% (the previous design with 
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the inlet and outlet on opposite sides attained 32.4%) and decreased CO production.  

Larger channel widths (0.9 mm) also improved the performance in these areas.   

 In summary, the liquid hydrocarbon reformers have great potential in 

providing a PEM fuel cell with the hydrogen it requires.  These reformers, like 

ammonia reformers, require high temperatures to ensure high conversion efficiencies; 

therefore thermal management will also be a challenge with a system that utilizes 

these technologies. 

2.2.3 Other types 

 Aluminum functions like a fuel when used to reform water to make H2.  

Aluminum reacts with water over a catalyst producing H2 and Al2O3. A group from 

Samsung investigated this concept for fuel cell reformer applications [38].  An 

efficiency of 78.6% with respect to the aluminum reaction enthalpy was attained 

when NaOH is mixed with the water and CaO promotes the aluminum.  Lifetime 

concerns arose during testing however, because H2 was not produced after the first 

hour of operation. 

2.3 Fuel cells. 

 For the purposes of this thesis, a fuel cell is defined as a device that converts 

chemical potential energy stored in fuel molecules into electrical power by reacting it 

electrochemically with oxygen in the air.  A unit cell generally consists of an 

electrolyte located between two electrodes - a positive anode and a negative cathode - 

as illustrated in Figure 4.  Fuel is fed to the anode, while oxidizer (air) is supplied to 

the cathode.  The electrolyte is impermeable to fuel and oxidizer molecules but allows 



 

 23 

 

transport of certain ionic species produced by electrochemical reactions occurring at 

the electrodes  The transport of the ions through the electrolyte is driven by the 

difference in chemical potential between the two electrodes.  The ions create an 

electric potential which drives the electrons through an external load.  Where reaction 

products are produced depends on the type of fuel cell.  Since the reactants (both the 

fuel and oxidizer) are usually stable at normal temperatures and pressures, a catalyst 

is often needed to ensure that the ionized species are present in adequate quantities.  

Catalysts are generally rare earth metals like Pt or palladium (Pd), although 

researchers are constantly looking for alternatives.    Electrolytes can be either solid 

or liquid, depending on the type of cell.   

 One way to classify fuel cells is based on how fuels are reformed in the cells 

to species that are better suited for the particular type of cell.  Indirect means that the 

fuel is reformed in a separate component before it enters the fuel cell. Often the 

reformate is hydrogen which is required for use in PEM fuel cells.  In direct fuel cells, 

the reforming process occurs within the MEA.  An example is the direct methanol 

fuel cell (DMFC).   

 Another classification is based on how the reactants enter the fuel cell.  An 

actively-fed fuel cell uses pumps, blowers, or fans to introduce the reactants, whereas 

a passive system uses diffusive or naturally convective methods like CO2 bubbles in 

the effluent flow.  Passive fuel cells may have higher system efficiencies because they 

have fewer parasitic processes; however they often suffer in other areas such as 

power density and low flow rates.  They also can be more expensive to produce.  For 
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example, while an actively pumped DMFC requires 10 times the catalyst loading of a 

PEM cell, a passively fed DMFC requires even more [39]. 

2.3.1 Proton exchange membrane fuel cells 

 2.3.1.1 Operating principles 

 

Proton Exchange Membrane fuel cells are perhaps the most well known.  

Figure 4 is a schematic of a PEM cell, with the fuel being hydrogen and the 

electrolyte being a polymer membrane, such as Nafion ®.  The reactions that take 

place at the electrodes are: 

           Anode: H2 → 2H
+ 

+ 2e
-
             (2.1) 

Cathode: 2H
+ 

+ 2e
- 
+ ½ O2 → H2O                 (2.2) 

 

 

Figure 4: Proton exchange membrane fuel cell schematic. 

Because the fuel is H2, the system is carbon free and the only product is water.  

Hydrogen has a high gravimetric energy density, can produce high voltages, and is 

quite diffusive so it can produce high power densities.  PEM cells also operate at 

relatively low temperatures and have relatively short start-up times.  The greatest 

disadvantage of this type of cell is the problem of supplying and/or storing hydrogen 

which has been discussed in the previous section.   
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 To overcome the impracticality of H2, a PEM fuel cell is often combined with 

a fuel reformer.  The reformer takes other types of fuel and converts them to H2 plus 

other byproducts, some of which will be CO if the fuel is a hydrocarbon.  Since the 

anode catalyst is easily poisoned by CO, great care must be taken when reforming 

hydrocarbon fuels to ensure that only H2 enters the fuel cell.  The separation hardware 

adds size, mass, and complexity.    Water and thermal management are also concerns 

for PEM fuel cells.  The membrane must remain hydrated in order to conduct H
+
 ions, 

but cannot be flooded either.  The narrow, low operating temperature range of the cell 

often requires additional components like heat exchangers to be added to the system.  

This increases complexity and balance of plant losses. 

 2.3.1.2 State of the art 

 The state of the art in PEM fuel cells was not reviewed because it was beyond 

the scope of this thesis.  This technology has also been around for quite some time.  

There is an extensive amount of research done in improving this technology, yet it is 

felt that little progress has been made. This suggests that the solution should be 

looked for elsewhere. The other technologies that are presented occasionally provide 

a comparison with H2 fed PEM fuel cells as a point of reference.  These have been 

considered sufficient for the current work. 

2.3.2 Solid oxide fuel cells 

 2.3.2.1 Operating principles 

 Solid Oxide Fuel Cells (SOFC) operate at high temperatures, usually above 

600 °C so that ionic conduction of oxygen ions through the electrolyte can take place.  

Whereas researchers of PEMFCs are trying to increase operating temperatures to 
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improve performance, SOFC researchers are trying to lower the temperature in order 

to expand the types of materials that can be used and to reduce problems with 

coefficient of thermal expansion (CTE) mismatches that constrain how components 

can be connected to each-other without failing during thermal cycling.  Complexity is 

increased because means to heat the stack and control its temperature must be 

provided.  The thermal time constant of the stack also limits transient performance.   

On the other hand, high temperature operation also has some very important 

advantages.  First, kinetics can be fast when compared to other FC types.  Second, 

hydrocarbons can be directly used as fuel which eliminates the need for a reformer 

and CO poisoning is not an issue.  A schematic of an SOFC is given in Figure 5.  

When methane is used as a fuel in a SOFC, the following overall reactions occur at 

the electrodes:   

           Anode: CH4 + 4O
2-
→ CO2

 
+ 8e

-
 + 2H2O     (2.3) 

Cathode: 8e
- 
+ 2O2 → 4O

2-
      (2.4) 

 

So far, the high temperature requirement has restricted applications to relatively 

large-scale stationary power.  Improvements in thermal management, however, could 

make SOFCs more attractive for small-scale portable power applications. 

 2.3.2.2 State of the art 

 

 Solid oxide fuel cells were also considered beyond the scope of this thesis, 

with the exception below.  This decision was made due to the concerns associated 

with high temperature operation.  Fournier et al. studied solid oxide fuel cells using 

ammonia as the fuel [40].  The objectives were to determine which stabilized zirconia 

electrolyte performed best and to compare anode materials.  It was concluded that 

among Pt, Ag, and Ni cermet anodes, Ni cermet was the most suitable.  It was also 
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found that yitria stabilized zirconia electrolytes performed better than the calcium 

type.  A maximum power density of approximately 75 mW/cm
2
 was achieved at 800 

°C, which is comparable to other small fuel cell designs.  At high temperatures 

(above 700 °C), ammonia performed better than hydrogen with an 11 mW/cm
2
 

increase in power density.  This is explained by the orders of magnitude difference 

between the equilibrium constants for dissociation of H2 vs. NH3, which results in 

different cell potentials. 

 
Figure 5: Schematic of a solid oxide fuel cell using methane as fuel. 

 

2.3.3 Direct methanol or ethanol fuel cells 

 2.3.3.1 Operating principles 

 

 A variation on using hydrogen with a PEM fuel cell is using light alcohols 

directly without a reforming process.  The most common fuels under consideration 

for use in this way are methanol and ethanol.  Figure 6 is a schematic of a direct 

alcohol fuel cell, using either ethanol or methanol.  Using the fuel directly can reduce 

system complexity as well as eliminate the concern for hydrogen storage.  These fuels 

can also be produced from biomass, or “out in the field” sources, which could 
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improve replenishment time.  However, the fuel must often be heavily diluted in 

water (~10% by weight) in order to protect the electrolyte from carbon build up 

which leads to poisoning of the cathode.  The dilution drastically reduces the effective 

energy density of the entire system unless the water is recirculated.  In addition, water 

recirculation carries the penalty of increased system complexity.  The direct methanol 

fuel cell (DMFC) suffers from two major problems: slow oxidation and methanol 

crossover through the membrane.  Methanol crossover refers to the diffusion of 

methanol through the membrane to the opposite electrode side.  This can damage the 

membrane and block sites intended for proton conduction.  The reactions that occur at 

the electrodes are: 

           Anode: CH3OH + H2O → CO2 + 6H
+ 

+ 6e
-
        (2.5) 

 Cathode: 6H
+ 

+ 6e
- 
+ 1.5O2 → 3H2O             (2.6) 

Ethanol has the following overall reactions occur at the electrodes 

           Anode: C2H5OH + 3H2O → 2CO2 + 12H
+ 

+ 12e
-
       (2.7) 

 Cathode: 12H
+ 

+ 12e
- 
+ 3O2 → 6H2O            (2.8) 

A problem with ethanol fuel cells is that ethanol has slow oxidation kinetics 

with Pt-based catalysts, which are typically used for PEM fuel cell anodes.  Partial 

oxidation of ethanol produces acetic acid.  This lowers the electron count from the 

ideal case of 12 electrons per ethanol molecule when the products are CO2 and H2O 

to only 4 per molecule.  The power densities obtainable with ethanol have been 

shown to be about 1/7 of what could be obtained with a direct methanol fuel cell.  

And, power densities of alcohol-based fuel cells  are often an order of magnitude 

smaller than a PEM cell running on pure H2 [41].  
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Figure 6: Schematic of an acidic-based direct alcohol fuel cell using either 

methanol or ethanol for fuel. 

 

 2.3.3.2 State of the art 

 

A study was conducted in 2006 to investigate the performance of a passive 

direct methanol fuel cell under different operating conditions.  The effects of fuel 

concentration, catalyst loading, membrane thickness, reactant supply mode, and long 

term operation were investigated [39].  The maximum power density of 45 mW/cm
2
 

was achieved with 5 M methanol and a catalyst loading of 8 mg/cm
2
.  The methanol 

concentration associated with maximum power was found to be higher in a passive 

cell than in an active one.  This is because slower mass transport in passive cells leads 

to higher cell temperature because less heat is carried away by the reactant supply 

flow.  The higher temperature leads to higher kinetic rates at the anode and cathode.  

However, it is noted that methanol crossover must be reduced and fuel feed 

concentration must be increased in order to achieve acceptable system-level energy 

and power densities.     
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Kim, in 2006, considered a vapor fed passive fuel cell where the pure 

methanol is vaporized before it enters the anode [42].  Liquid fed passive DMFCs 

have higher methanol crossover than vapor fed DMFCs, but achieve better power 

densities because of higher catalytic activity and water back diffusion from the 

cathode that helps maintain anode humidity. The higher catalytic activity was due to 

higher operating temperatures caused by greater methanol crossover; however, 

performance degradation was observed after a few hours.  The authors found that the 

vapor fed system had a higher fuel efficiency as well as energy density, compared to a 

liquid fed system.  The power density of the membrane was around 30 mW/cm
2
.  

Similar conclusions were reported by a different group, although their power densities 

for a passively fed system were in the tens of mW/cm
2
 [43].  The author of this study 

also noted that passive approaches improve system efficiency, durability and 

reliability, and that a planar serial connection is more desirable than stack geometry.      

A study by Ye et al. investigated a methanol fuel cell driven by natural 

circulation [44].  This involved using the buoyancy of CO2 gas produced at the anode 

to draw in fresh reactants instead of a pump.  The authors found that longer inlet 

tubes improved performance but limited applicability at small scales.  For example, 

power densities in the range of 30 mW/cm
2
 are achievable but require an inlet tube 

length of 2.4 m.  A convenient aspect of this arrangement was that the feed flow rate 

increased naturally with current density which means that this DMFC was self-

regulating and could operate in a load-on-demand mode.   

 Another variation on the direct methanol fuel cell involved using carbon 

nanotubes as supports for the Pt/Ru catalyst [45].  A power density of 62 mW/cm
2
 at 
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60 °C was achieved using pure oxygen at the cathode.  The power density was about 

20 mW/cm
2
 lower using regular carbon supports.  Even though performance would 

be lower using air at the cathode, it appeared that carbon nanotubes could increase the 

performance of other DMFC designs that have achieved high performance using air.   

The catalyst isn’t the only component within the cell that could benefit from 

the use of nanomaterials.  Nanocomposite membranes have also been considered for 

use in DMFCs [46].  They are less expensive than Nafion ® and allow less crossover 

and better proton conduction.  While this study focused on the characterization of the 

membrane, the authors did conduct a performance comparison test.  At lower 

concentrations, the membrane performed worse than the standard Nafion ® 

membrane.  At a concentration of 5 M methanol however, the nanocomposite 

membrane performed better.  At 90 °C, a power density of 125 mW/cm
2
 was attained 

with oxygen as the oxidizer. It was not clear whether the membrane could be operated 

at higher fuel concentrations and the degree to which the higher performance is due to 

the high temperature and pure O2 oxidizer.  However, the results are promising and 

confirm the belief of many researchers that changing the membrane could increase 

performance.   

Tain et al. in 2008 attempted to improve the performance of a Nafion® 

membrane by impregnating it with a poly(1-vinylimidazole)/Pd composite [47].  The 

modification improved performance at lower temperatures mostly by decreasing 

methanol crossover.  At 80 °C however, crossover became problematic again.  At 5 

M fuel concentration, a maximum power density of about 130 mW/cm
2
 was achieved 
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using oxygen as the oxidizer.  This seems to be an improvement over the 

nanocomposite membrane.    

Another study to note used a combination of catalyst coated membranes 

(CCM) and catalyst coated substrates (CCS) for the electrodes [48].  The combination 

of the CCM anode and CCS cathode performed better than having both electrodes of 

the same type.  One reason was that there was less fuel crossover.  The authors also 

showed how temperature can have a substantial effect on power density.  The mixed 

system produced 130 mW/cm
2
 at 70 °C but decreased down to around 80 mW/cm

2
 at 

50 °C.  The oxidizer was air and not pure O2, and the results show this mixed coating 

technique could be a promising idea for DMFCs.  

The last study considered for direct methanol fuel cells focused on how the 

cathode channel depth could change the performance of the cell [49].  Hwang et al. 

found that changing this geometric parameter had a significant impact on the 

performance because it changed the linear velocity and the internal pressure 

distribution.  Decreasing the depth from 1 mm to 0.3 mm could increase power 

densities by approximately 20 mW/cm
2
.  The pressure drop and linear velocities were 

calculated and simulated with CFD software to confirm the cause for the increase in 

power density.  Increasing the internal pressure increased performance - most likely 

because of the increase of oxygen partial pressure.  The maximum power density 

achieved at 80 °C was an impressive 140 mW/cm
2
, a value that makes this study 

stand out among the DMFC technologies investigated.   

In 2006, an anode study was performed for a DEFC that combined tin with a 

ruthenium/ platinum catalyst [50].  The fuel cell produced 50 mW/cm
2
 with an OCV 
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of 0.75 V that was stable over many days.  The oxidizer was pure oxygen like another 

ethanol study.  This DEFC study used a double layer anode catalyst using a Pt/Sn 

mixture for the outer layer, and Pt/Ru for the inner layer.  At 90 °C, power densities 

around 90 mW/cm
2
 were achieved.  [51]  

Another study investigated the use of nanowires as the electrolyte integrated 

on a silicon substrate of a micro fuel cell [52]. The wires are Nafion/poly(vinyl 

pyrrolidone) (PVP). The catalysts were PtRu/C and Pt/C, and the fuel tested was 

methanol with air as the oxidant.  A single 2.1 micrometer diameter wire produced 

1.54 µW. While this power level is very small, one could increase the number of 

wires (the author gives 10
5
 wires as an example) in stacks of 10’s.  The author claims 

that in a space of 7cm x 2cm x 2cm, one could fit a small fuel cell assembly that 

would be capable of powering portable electronic devices. 

 In summary, direct fuel cells using alcohols like methanol and ethanol seem to 

provide a promising combination of performance, simplicity, and compactness.  

Without the need of a reformer or high temperatures for operation, the direct alcohol 

fuel cell system appears to be an attractive option for powering small, electronic 

platforms used by the warfighter. 

2.3.4 Alkaline fuel cells 

 2.3.4.1 Operating principles 

 

Alkaline fuel cells (AFCs) have been used since the 1960’s in spacecraft to 

generate power for the vehicle and to generate drinking water for the astronauts.  

Alkaline fuel cells have several advantages.  First, the kinetics of oxygen reduction in 

an alkaline media is faster than those in an acidic media (PEM).  Second, a wider 
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variety of catalysts may be used for AFCs, making them less costly. [53]   Third, a 

variety of fuels may be used (including alcohols) but like the direct methanol/ethanol 

PEM fuel cells, dilution of the fuel is required.  AFCs require higher levels of dilution 

due to the fact that many alkaline cells use a liquid electrolyte that flows with the 

fuel.  They also require pure air and can be poisoned by CO2, which is why they have 

been mostly used in spacecraft applications where pure H2 and O2 are available.  A 

portable terrestrial device would require additional hardware to separate the CO2 in 

the air and so would be more complex than other types of FCs.  However, the 

crossover in an alkaline methanol fuel cell is lower than in acidic media, perhaps 

making higher flow rates more feasible [54].  Figure 7 is a schematic of an alkaline 

fuel cell using methanol, ethanol, or sodium borohydride (NaBH4) as fuel.  The 

overall reactions that occur on the electrodes of an alkaline methanol fuel cell are 

           Anode: CH3OH + 6OH
-
 → CO2 + 5H2O

 
+ 6e

-
        (2.9) 

 Cathode: 6e
-
 + 3H2O + 1.5O2 → 6OH

-
              (2.10) 

 And for ethanol: 

           Anode: C2H5OH + 2OH
-
 → CH3CHO + 2H2O

 
+ 2e

-
      (2.11) 

 Cathode: 2e
-
 + H2O + 0.5O2 → 2OH

-
                     (2.12) 

And for sodium borohydride: 

           Anode: NaBH4 + 8OH
-
 → NaBO2 + 6H2O

 
+ 8e

-
       (2.13) 

 Cathode: 8e
-
 + 4H2O + 2O2 → 8OH

-
               (2.14) 
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Figure 7: Direct alkaline fuel cell using methanol, ethanol or sodium 

borohydride as fuel. 

 2.3.4.2 State of the art 

 

A feasibility study was performed in 2003 to determine if methanol and 

perhaps other non-traditional fuels could be used in alkaline fuel cells [55]. A 

comparison was then made between the alkaline fuel cell and its acidic counterpart, 

the direct methanol fuel cell.    They pointed out that an alkaline equivalent to Nafion 

has not become available as yet in that an alkaline membrane still requires the fuel in 

its aqueous solution to be at least slightly alkaline to perform as well or better than 

DMFCs.  The authors found that as the voltage increased as the operating temperature 

increased.  However, higher temperatures can degrade and damage the alkaline 

membranes just as is the case with acidic membranes.  However, alkaline media with 

pH > 7 are great for oxygen reduction, and methanol can be fully oxidized to CO2.  

Therefore, the authors concluded that an alkali methanol fuel cell would be feasible if 

improved membranes were developed. The improvements necessary included higher 

conductivity and stability at higher temperatures.  The author noted that new catalysts 

and alternative fuels were also worth looking into.  
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 An alkali fuel cell capable of operating on multiple types of fuels was built 

and tested by Verma et al. in 2005. [56] The fuel cell ran successfully on aqueous 

solutions of methanol, ethanol, or sodium borohydride.  At room temperature, the 

sodium borohydride performed the best both in terms of current density and power 

density, but the maximum power density was low, peaking at only 16.5 mW/cm
2
.  At 

a higher temperature (60 °C), the methanol cell performed better achieving a 

maximum power density of 31.5 mW/cm
2
.  Sodium borohydride was slightly lower 

due to the loss of H2 via hydrolysis.  At both temperatures, the open circuit voltage 

(OCV) of sodium borohydride was the highest of all fuels. 

Next, the same authors performed an anode study comparing the performance 

of this multi-fuel cell with Pt black, Pt/Ru, or Pt/C anode catalysts. [53] The catalyst 

loading was also varied for comparison.  An important problem with methanol 

operation is that the electrolyte reacts with carbon dioxide produced on the anode and 

is gradually consumed.  The proposed solution was to recycle the electrolyte to 

remove the carbonate, and to periodically recharge with fresh KOH.  However, this 

would lead to a larger system.  Ethanol does not have this problem because 

acetaldehyde is generated instead of CO2.  For both methanol and ethanol, it was 

found that Pt/Ru was the best catalyst but only slightly. Ruthenium is not the most 

active catalyst for these particular fuels, but it enhances activity by supplying OH 

species to aid in the oxidation of adsorbed CO. It is also reasonably CO tolerant.  The 

use of Ruthenium increases the power density from 13.86 to 15.8 mW/cm
2
 for 

methanol and from 11.42 to 16 mW/cm
2
 for ethanol.  The performance of the sodium 
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borohydride cell varied little with catalyst loading and type; the typical power density 

was 20 mW/cm
2
 using Pt black.    

 A mathematical model of this cell was also created [57].  Because of the 

nature of the study, more details were given on the reaction mechanisms and kinetics 

than the other two papers.  These details will not be covered here; however it is 

worthwhile to note a few items.  The activation overpotential is more significant at 

the anode than the cathode with this alkaline configuration.  The authors found that 

there is an optimal electrolyte concentration and that increasing fuel concentration 

above 2 M did not improve performance.  Cell voltage did increase with temperature 

for the alcohols, but the increase in temperature lowers the performance of a sodium 

borohydride cell. This study quoted a power density of 22.5 mW/cm
2
 for NaBH4 at 

room temperature, while the methanol and ethanol maximums produced 24.3 and 

14.5 mW/cm
2
 at 65°C, respectively.    

 Bunazawa and Yamazaki studied the effect of neglecting an alkaline in the 

fuel solution with an alkaline fuel cell [58].  The difference in adding 0.5 M NaOH to 

the 1 M methanol aqueous solution increased the power density by an order of 

magnitude to 58.9 mW/cm
2
. The operating temperature was 80 °C and pure O2 was 

used as the oxidizer.  A different direct alkaline methanol fuel cell built by Scott et al. 

performed even worse using oxygen, but the temperature was at 60 °C [54].  The 

power density was given as 16 mW/cm
2
 and around 6 mW/cm

2
 when air was used as 

the oxidizer at near ambient conditions.  

 Yang et al. looked into improving methanol alkaline fuel cells by using a 

composite polymer membrane [59].  The membrane, which was poly(vinyl 
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alcohol)/hydroxyapatite (PVA/HAP), was tested using an 8 M KOH and 2 M 

methanol solution.  Using air at the cathode at ambient conditions, a power density of 

11.48 mW/cm
3
 was achieved.  The authors noted that this is a great improvement 

over other alkaline DMFC results because the membrane is less expensive than 

Nafion ®, and the manganese cathode catalyst was also less expensive than precious 

metals like platinum. Yang et al. also tested a poly(vinyl alcohol)/titanium oxide 

(PVA/TiO2) membrane [60].  The KOH concentration of the electrolyte solute was 

lowered to 4 M due to better alcohol solubility in that solution.  Ethanol and 

isopropanol were also tested but methanol performed the best due to its higher open 

circuit voltage. Methanol produced a power density of 9.25 mW/cm
2
.  While this is a 

somewhat lower performance than that of the PVA/HAP membrane, the PVA/TiO2 

membrane required half as much KOH solute.  Therefore, it is difficult to tell which 

of the composite membranes is actually better. 

 Another alkaline-methanol study used the idea of laminar, parallel flow of the 

anode and cathode streams. Laminar flow, when combined with microfluidic 

geometry, can be used to create a barrier between the reactants within a single 

channel while still allowing ionic transport to take place.  This design removes the 

necessity of a membrane [61, 62].  The authors found that when comparing alkaline 

and acidic fuel mixtures, alkaline mixtures generated higher OCV and power density.  

The power density of the 1 M methanol with 1 M KOH solution at room temperature 

was 17.2 mW/cm
2
, and the OCV was 1.05 V.  It was concluded that the better 

performance of the alkaline mixture over acidic mixtures stemmed mainly from lower 

anode overpotentials and improved kinetics of methanol oxidation and/or oxygen 
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reduction.  Another feature of the design was that although carbonates were formed 

like in traditional alkaline fuel cells, they were washed away with the flow because 

there were no membrane pores to clog.  

 Hayes et al. investigated a similar geometry, in which the oxidant enters the 

fuel cell orthogonally from the plane of reactant flow through the electrodes [63].  

The orthogonal flow convects the effluents forward, and like above, a membrane is 

not required.  Instead the fuel is reduced and diffuses into an empty gap between the 

electrodes where it reacts with the oxidizer at the cathode to form the final products.  

This design focuses on optimization of the fuel and catalysts, not on membrane 

limitations.  There are limitations with this design, such as lower fuel utilization 

caused by channel length constraints.  The design was tested with H2 and methanol in 

an alkaline aqueous solution, using O2 as the oxidizer.    With .01 M methanol in 1 M 

KOH at 90 °C, a power density of 46 mW/cm
2
 was achieved.  Similar power densities 

were claimed using H2 as fuel.  That is a fairly low power density for such a high 

temperature and is probably due to the low concentration of fuel.  The fuel utilization 

at this maximum power density was near 42% meaning that more than half of the fuel 

is wasted.  

 In 2007, Tsivadze et al. performed a catalyst study using ethanol as the fuel 

and NaOH as the electrolyte in the solution [64].  The fuel solution was 2 M ethanol 

and 6 M NaOH.  The catalyst that performed the best was cobalt based giving a 

power density of about 40 mW/cm
2
 at 60 °C.  This is more than double the power 

density Scott et al. achieved using methanol and pure O2.  Another ethanol study by a 

different group attained a maximum power density of 58 mW/cm
2
 at ambient 
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conditions but it was achieved using pure O2 as the oxidizer.  The fuel solution was 1 

M ethanol and 0.5 M KOH [41]. 

 In summary, alkaline fuel cells consuming alcohols or sodium borohydride 

appear to be reasonable alternatives to direct types or PEM cells with external 

reformers.  The fuel crossover in an alkaline fuel cell is lower than its direct, acidic 

counterpart and similar power densities are achievable. However, means must be 

provided for recirculating the water/alkaline fuel carrier solution in order to achieve 

reasonable system-level energy density.  The necessity of CO2 removal remains a 

logistic challenge. 

2.3.5 Other fuel cells 

 2.3.5.1 Proton Conducting Ammonia Fuel Cell 

 

Maffei et al. in 2005 reported a planar ammonia fuel cell with a proton 

conducting electrolyte: BaCeO3 doubly doped with gadolinium and praseodymium 

[65].  The fuel was switched between hydrogen and ammonia over a 96 hour time 

period, and it was found that there was little deterioration in performance.  In other 

words, the ammonia performed just as well as the hydrogen, although power densities 

using either fuel were somewhat low (30-40 mW/cm
2
) for high temperature fuel cells.  

The special doping did help performance, but the large thickness of the electrolyte 

resulted in a relatively low current density.  The advantage of proton conducting 

electrolytes over oxide types is that no NOx formation occurs.  This was confirmed 

using gas chromatography on the products. Zhang et al. were able to achieve much 

higher power densities (147 mW/cm
2
) using thinner, slightly differently doped 

electrolytes layers [66].  While pure oxygen was used as the oxidizer, the high open 
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circuit voltage and current densities still show great potential for a proton conducting 

ammonia fuel cell. 

 2.3.5.2 Molten Alkaline Fuel Cell 

 Ganley reported results from a molten alkaline type fuel cell using ammonia 

directly as the fuel [67].  The nickel cathode had to be doped with lithium to prevent 

polarization or deactivation.  He found that ohmic losses are significant, even with the 

doping, and that the potential dropped as the temperature increased.  The maximum 

power density of the membrane was 40 mW/cm
2
 at 450 °C.  It was concluded that if 

the electrodes were placed closer together (they were at 2 cm distance) and their 

surface area were increased, higher performance would be achieved. While the ability 

to use ammonia directly (i.e. without a separate reformer) is promising, the 

40mW/cm
2
 is relatively low for a high temperature fuel cell. 

 2.3.5.3 Direct Formic Acid Fuel Cell 

Most of the literature that was collected on direct formic acid (HCO2H) fuel 

cells originates from Dr. Richard Masel’s research group from the University of 

Illinois at Urbana-Champaign, as well as his partners.  Direct formic acid fuel cells 

(DFAFCs) are similar to other direct types using no reformer but directly oxidizing 

the formic acid at the anode of a PEM fuel cell.  Formic acid in its natural state is 

found in the venom of bees and ant stings, but its uses in the chemical industry 

include being a preservative for livestock hay, as well as a food additive that has been 

approved by the U.S. Food and Drug Administration (FDA) [68]. 

  Dr. Masel and his group started investigating formic acid fuel cells around 

the turn of the century, with high expectations due to certain properties of the acid.  
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Reduced surface poisoning reactions were also expected.  The theoretical open circuit 

voltage of formic acid is 1.45 V - a great improvement over other direct fuels like 

methanol.  With their first attempt, however, an OCV of only 0.7 V was attained [68].  

The anode catalyst was Pt with noble metal additives, which was used to ensure 

minimal amounts of CO were produced.  The cell area was 5 cm
2
 and Nafion 117 was 

used as the membrane.  Electrodes were made from graphite blocks.  The optimal 

feed concentration was in the range of 10-20 M.  Below this range there was a 

limitation due to mass transport, and above the range dehydration of the membrane 

was the probable cause.  The formic acid fuel cell was shown to excel compared to an 

in-house direct methanol fuel cell.  Operating at 0.4 V, the DFAFC at 12 M reached a 

power density of 48.8 mW/cm
2
 compared to 1 M methanol producing 32 mW/cm

2
.  

Methanol did have a higher maximum power density at 51.2 mW/cm
2
.   Lastly it was 

found that DFAFCs were not dominated by fuel crossover losses like DMFCs 

because the sulfur within the membrane repels the formic acid. This was later 

confirmed by the team in a study specifically observing fuel crossover through a 

Nafion membrane [69].  

Shortly following this initial study, another study looked into different 

variations of Pt for the anode catalyst [70].  With Pt alone as the baseline, the 

variations included adding palladium or palladium with ruthenium.  Pt/Pd catalyst’s 

catalytic reactivity outperformed the other two by two orders of magnitude.  A current 

density of 1 µA/cm
2
 at 0.27 V was attained.  Another advantage of Pt/Pd was that it 

favored the production of carbon dioxide directly, unlike the other catalysts that made 

CO in an intermediate stage.  
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Instead of comparing ruthenium on palladium, an alternate study was done to 

compare Pt/Pd with Pt/Ru, a popular catalyst for fuel cells like DMFCs [71].  The 

OCV was found to have a strong dependence on the catalyst.  Pt/Pd had an OCV of 

0.91 V compared to Pt/Ru which had an OCV of 0.59 V.  However, the voltage 

dropped relatively quickly with increasing current density with the Pt/Pd catalyst.  In 

consequence, at high voltages (>0.5 V) Pt/Pd was the better choice, whereas at low 

voltages Pt/Ru produced a higher power density.  Unfortunately, Pt/Ru favors the 

production of CO, which makes Pt/Pd a better candidate for electro-oxidation of 

formic acid.  The authors also noted that the reactivity of Pt/Pd was not nearly as high 

as the previous study and the cause was unknown.  The authors hypothesize that the 

process by which the catalyst is made and deposited made the noticeable difference.  

A kinetic study was also performed to confirm that Pt/Pd performs better than Pt 

black, and that the former catalyst is CO tolerant [72]. 

Pre-treatment of the anode was also considered.  This conditioning process 

lowers the cell resistance, thus increasing the current. [73] Typically for a DMFC, 

hydrogen is used as the conditioner, but with formic acid, it was found that methanol 

had a positive effect, and hydrogen actually had a negative effect.  The authors were 

unsure why conditioning with methanol increases the power density, but they were 

sure that the conditioning is only beneficial if a load is being applied simultaneously.  

Loading can cause pore alignment within the Nafion membrane, so that may have 

been the cause for the increased performance.  The conditioning provided an increase 

of power density (through improved current density) of 33 mW/cm
2
 to 119 mW/cm

2
. 
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Following these advancements, a passive miniature air breathing direct formic 

acid fuel cell was built and tested. [74] Interestingly, no methanol conditioning was 

used, and the anode catalyst was Pt.  Perhaps the cell was being tested before the 

previous insights had surfaced.  The size of the fuel cell was 2 cm x 2.4 cm x 1.4 cm, 

and the cell operated at room temperature.  Oxygen plasma treated carbon cloth had 

the best performance when compared to other cloths considered.  The maximum 

power density achieved was 33 mW/cm
2
 and the cell ran better at lower 

concentrations between 1.8-10 M.   This range is lower than the range quoted for the 

actively pumped fuel cell from before [67], and the authors felt that dehydration was 

the limiting factor for achieving higher concentrations.  Regardless, the effective 

energy density of a 10 M solution of formic acid is higher than 2 M of methanol, 

which the authors claim as the upper limit of each, respectively.  A similar study was 

also performed on an actively pumped system, where none of the recent findings were 

implemented [75].  A comparison with a stack running on methanol was made, and 

the results re-affirmed the advantages of formic acid.  Power densities using formic 

acid as the fuel achieved were 84 and 110 mW/cm
2
 for 18 and 30 °C, respectively, 

while methanol attained 45 and 67 mW/cm
2
 at those temperatures.  These higher 

power densities were attributed to the higher concentrations at which formic acid can 

run.  

Another passive formic acid fuel cell system was built and tested slightly 

later, this time with a Pd black anode and no conditioning [76].  The concentration 

range that was tested increased to 12 M with satisfactory results.  The passive cell at 

10 M concentration could attain a power density of 177 mW/cm
2
 at 0.53 V at ambient 
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temperatures.  According to the authors, this surpasses the best current passive DMFC 

technologies. Because the fuel cell was passively fed, the mass transport through the 

cathode was considered the limiting factor of performance.  

Because the Pt/Pd catalyst performed well in previous research, the group next 

investigated an anode catalyst that was purely Palladium [77].  Formic acid was also 

used as the pre-conditioner.  The concentration of formic acid in the aqueous solution 

was varied, including concentrations which were higher than typical for alcohols in 

direct fuel cells (3-20 M).  Performance increased substantially.  The fuel cell 

generated power densities between 230 and 255 mW/cm
2
 at voltages between 0.4-0.5 

V within the concentration range of 3-15 M at 20 °C.  This impressive 

accomplishment is compared with methanol (50 mW/cm
2
) and hydrogen (320 

mW/cm
2
) at room temperature.  When the temperature was increased, the power 

density also increased, such as 375 mW/cm
2
 at 50 °C.  A concentration of 20 M did 

produce good results (110 mW/cm
2
 at room temperature) but not as well as lower 

concentrations. Thus it was assumed that this is the breaking point for the hydration 

of formic acid.  Decay in performance after several hours was reported, but it was 

proposed that anode polarization would restore performance after such extended use. 

In order to overcome this decay, the researchers investigated supports to use 

with the palladium [78].  Many metals were considered, and it was found that a few 

could stabilize the activity, vanadia (V) being the best option.  The electric current 

produced per mass of precious metals for Pd-V was 3 orders of magnitude higher than 

a typical Pt/Ru catalyst.  Other materials were investigated including carbon.  The 

study confirmed previous findings that carbon was more “efficient” in that it could 
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reach power levels with lower amounts of catalyst, but the power densities (with 

respect to surface area) were lower than those obtained with Pd black as the 

catalyst/support.  The authors expressed hope, however, that this weakness could be 

improved with future research, thus making the catalyst efficient and power dense.  

Gold was also mentioned as an option to improve the activity of the anode. [79, 80] 

Formic acid was also considered as a fuel for use in silicon based micro fuel 

cells, for chip-scale uses [81].  The silicon was etched with sulfuric acid for the 

membrane, giving a thickness of less than 100 microns.  The etched silicon is used as 

the electrolyte because Nafion is difficult and less robust when bonding to the silicon 

substrate.  In some cases, the silicon membrane had higher proton conductivity and 

lower crossover leading to better performance than a Nafion membrane.  On a per 

unit area basis (because these membranes are thinner than Nafion), only the lowest 

anodization current density sample (20 mA/cm
2
) was lower in proton conductivity.  

 Two identical silicon MEAs were later tested, and a difference of 10 mW/cm
2
 

was observed between the two maximum power densities [82].  In addition to this 

discrepancy in reproducibility, both cases showed higher crossover than Nafion.  

Doping the fuel with sulfuric acid was necessary to achieve desirable power densities 

of about 30 mW/cm
2
. Improvements were made to the fuel cell to increase 

performance consistently, including alterations to the substrate and structure, 

insulating materials, and catalyst layers [83]. These improvements increased proton 

conductivity and transport while reducing crossover to triple the power density to 94 

mW/cm
2
.  The fuel was still doped with sulfuric acid, however.  More specific 

reasons for the increase in performance were attributed to how the substrate was dry-
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etched, adding gold palladium to the catalyst layer, and removing titania 

nanoparticles from the design that were previously deposited between the membrane 

and anode catalyst [84]. These results show a more substantial potential for formic 

acid fuel cells in micro power applications.  

 The Korean Institute of Science and Technology built a formic acid fuel cell 

system to power a laptop computer [85]. It was a stack of 15 cells that could provide 

30W with a power density of 60mW/cm
2
.  The entire system was 1440 cm

3
 and 1.8 

kg, including the stack, a full fuel tank, tubing, a mini pump, a mini compressor, 3 

cooling fans, a small battery, and a power conditioning control board.  This system is 

quite large compared to a typical 12 V laptop battery that is 95 cm
3
 in size and weighs 

only 0.16 kg.  The mini pump and compressor run on the battery, making it a hybrid 

system.  Platinum was used as the catalyst and Nafion 115 ® as the membrane.  The 

highest efficiency attained was 23%, which decreased as the fuel flow rate increased.  

However, it should be noted that this efficiency was attained at a concentration of 11 

M (50%wt) so lowering the concentration might have improved performance.  After 

three months of operation, performance was reduced but still stable. 

After this extensive study of direct formic acid fuel cells, it was determined 

that the advantages of these systems do not outweigh the safety concerns associated 

with formic acid itself.  While it is used for preservatives and food additives, the acid 

itself can cause severe burns to skin and eyes - even in the vapor phase - and the 

recommended maximum exposure is 5 PPM.  Higher concentrations, which most 

researchers used in these studies, can be corrosive or cause blindness similar to 

methanol poisoning.  Also, the formic acid fuel cells showed stability concerns after 
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many hours, requiring a type of recharge for the fuel cell to achieve optimal 

performance.  Therefore, the formic acid fuel cell was not believed to be a viable 

replacement for batteries in miniature autonomous systems.    

 2.3.5.4 Non-conventional fuel cells 

L-ascorbic acid, more commonly known as vitamin C, was considered by a 

group in Japan as a possible fuel.  Various catalysts were tested, and one test case 

included no catalyst, just carbon cloth [86].  The fuel cell did function without a metal 

catalyst, although the performance was worse than most of the catalysts tested.  The 

theoretical OCV for L-ascorbic acid is 0.758 V, but actual OCVs varied between 0.5 

and 0.6 V.  The cell area was 10 cm
2
, and the experiment was run at room 

temperature with air at the cathode.  The overpotential of L-ascorbic acid oxidation 

was relatively small, as was the crossover.   At a concentration of 1 M, Pd gave the 

best power density at 6 mW/cm
2
, compared to the 2.3 mW/cm

2
 attained with the 

anode absent of a metal catalyst. A later study indicated improvement in the L-

ascorbic acid cell, citing 15 mW/cm
2
 using carbon black at the anode [87].  However, 

the oxidant was oxygen, which makes a proper comparison with previous results 

difficult. 

Another design uses nuclear power to drive a closed loop system.  H2 and O2 

are formed from water using the decay energy of a radioisotope [88].  As long as the 

isotope is active, the products of the fuel cell resupply the system with reactants.  The 

fuel cell uses an alkaline-based electrolyte.  The catalysts are silver at the cathode and 

platinum at the anode.  The author mentions that breakthroughs in thermal insulation 

design would be necessary if small sizes are desired.  The goal was to achieve 10 mW 
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in a volume of 1 cm
3
, but the current design produced only 0.45 mW, with an 

efficiency quoted between 10 and 20%. 

2.4 Summary. 

 Pure hydrogen would be an ideal fuel for fuel cells, absent storage and safety 

issues.  Other forms of hydrogen storage, such as ammonia, metal ammines and 

borohydrides provide safer alternatives at the expenses of complexity (because 

reforming is required) and energy density.  Four fuels stand out as alternatives to pure 

H2: ethanol, methanol, ammonia, and sodium borohydride.  The alcohol-based fuel 

cells can also be separated into two categories – alkaline and acidic.  Table 2 provides 

some highlighted fuel cell technologies discussed in this chapter.  Each fuel and type 

has its advantages and disadvantages.  Fuel crossover in an alkaline fuel cell is less 

than in an acidic fuel cell.   DEFCs show poor performance compared to DMFCs 

because of higher overpotentials of ethanol oxidation at low temperatures.  Ammonia 

is carbon free and is not required to be diluted in water for use, but high temperatures 

are required for direct or indirect fuel cell operation.   However, no technology clearly 

stands out over another.  Therefore a more detailed ranking system is required to 

determine which type of fuel cell system is best suited for powering the miniature 

autonomous systems described in Chapter 1.  These will be developed and discussed 

in the next chapter.  Finally, tables summarizing all of the fuel cells considered when 

preparing this chapter and their defining features are presented in Appendix B. 
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Table 2: Sample fuel cell technologies 

Type Ox. Catalyst(s) 

Max Power 

Density 

(mW/cm
2
) 

Temp. 

(°C) 

Ref 

# 

Direct Methanol  air A: Pt/Ru, C: Pt 140 80 [49] 

Alkaline Methanol air A: Pt/Ru, C: MnO2 11.48 25 [59] 

Direct Ethanol O2 A: Pt-Sn-Ru/C 50 80 [50] 

Alkaline Ethanol air A: Pt, C: MnO2 16 25 [53] 

Alkaline Borohydride air A: Pt, C: MnO2 22.5 25 [57] 

Direct Ammonia O2 A; Ce0.8Gd0.2O1.9 147 600 [66] 
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Chapter 3: Survey Results. 

 

 The literature review provided key insights into current fuel cell technologies, 

and what advantages and disadvantages are associated with them.  In order to 

determine which technology would be the best candidate for the U.S. Army’s CTA 

objectives, a scoring system to rank these technologies is developed.  This semi-

quantitative methodology is presented as well as the results. 

3.1 Categories for consideration. 

 The first category for the scoring process is perhaps the most apparent when 

reading the literature: the energy density of the fuel.  This quantitative value, being 

the amount of energy stored in the fuel per unit volume or mass, depends on nothing 

more than what type of fuel is being used.  Power density is also a quantitative 

category of interest that is generally not difficult to find for each particular case 

considered.  For most fuel cell MEA research, the power density is the foremost result 

of the experimental study or modeling.  Another category of interest is the operating 

temperature.  One of the concerns of utilizing reformers and ammonia-based FCs is 

high operating temperature and the effect it could have on the vehicle system.  In 

order to minimize extra weight and volume necessary for thermal isolation, as well as 

ensuring that the fuel cell stack would not melt other electronics on the platform, 

lower temperatures are more desirable.  Oxidizer type is another category of interest.  

As was discussed in chapter two, many researchers used air for the oxidizer, but some 

used pure O2 for the experiment.  This can have important ramifications on the results 
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given, especially if the fuel cell is alkaline.  AFCs are CO2 intolerant and would 

require increased system complexity when running on air to remove the unwanted 

constituent.  Conversion efficiency, or how much fuel was converted into useful 

power, is another category.  This value was not found as often as the power density of 

the fuel cell so estimates are made when a specific number was not published.  The 

basis for these estimates is described in the following section.  System simplicity is 

based on a qualitative assessment of the balance of plant.  The more complex the 

system appeared, as far as what type of components it contained and how many of 

them, the lower the score it received. 

3.2 Conversion efficiency. 

 Efficiency in a fuel cell system is generally broken into three parts:  The 

reforming efficiency, the fuel cell efficiency, and the balance of plant efficiency.  The 

reforming efficiency is a measure of how effectively the chemical potential energy in 

the original fuel is converted to chemical potential energy in the fuel of choice which 

is usually H2:  

           
rin

refref

FP
Qm

hm

&

&
=η           (3.1) 

 

In Eq. 3.1, m&  is the mass flow rate and h is the heat of combustion.  The subscripts in 

and ref refer to the fuel entering the reformer and reformate, respectively.  Efficiency 

in a fuel cell is a measured by the amount of electrical power the cells produce 

divided by the power brought into the cells via the reformate: 
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where ncells is the number of cells in the stack, Acell is the cross sectional area, i is the 

current density, and Vcell is the voltage the cell operates at.  Lastly, the balance of 

plant efficiency takes into account the parasitic losses, lostW& , due to the components 

necessary for functionality: 
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The overall thermodynamic efficiency is the product of the previous three 

efficiencies: 
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This methodology is used to find the conversion efficiencies of the systems chosen 

for consideration.   When values for certain parasitic losses (like pumps, blowers, and 

power conditioning) were not provided in the text, estimates were made based upon 

previous experience using these components.  The ‘effective’ energy density of a fuel 

is the product of the overall thermodynamic efficiency of the cell with the fuel’s 

heating value: 

rthsyseff Qh η=,        (3.5) 
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Eq. 3.5 also shows how using an energy dense fuel has little advantage if the overall 

conversion efficiency is low.  Table 3 summarizes the efficiencies of three fuel cell 

systems each of which utilizes a different fuel.  In each case, the reforming efficiency 

is unity because the original fuel is used directly in the fuel cells.  The last two 

columns show how these efficiencies affect the effective energy density of the fuel.  

  

Table 3: Conversion Efficiency and Effective Energy Density 

System ηFP ηFC ηBOP ηth 
hin 

(kJ/g) 

Eff. hsys 

(kJ/g) 

Direct NaBH4 AFC with 

2M solution feed and 

water recycling. 
1.00 0.46 0.61 0.27 

33.5 9.05 

NaBH4 without recycling 7.62 2.06 

Direct Methanol FC 

with 2M solution feed 
1.00 0.38 0.71 0.28 21.1 5.91 

Ammonia PCFC  

with high-T membrane  
1.00 0.50 0.74 0.37 18.8 6.96 

 

3.3 Scaling methodology. 

 First the categories are assigned weights proportional to their relative 

importance. The values of the weights reflect the author’s personal assessments of 

what was important in a micro UAV application. Both energy density and conversion 

efficiency receive the highest weights of five in light of the conclusions of Figure 1 in 

Chapter 1 and Eq. 3.5 above. Oxidizer is assigned a weight of four, to capture the 

very unrealistic possibility of using pure O2. Overall simplicity is also given a weight 

of four because complexity is something that should be minimized to ensure 

reliability.  Operating temperature is assigned a weight of three, and power density a 
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weight of two.  Power density is lower on the scale because the fuel cell membrane is 

not the direct object of improvement per se; rather it is the power density of the 

system as a whole.   

 A score between zero and one is assigned to each technology considered for 

each category, based on the following qualifications:  The score for energy density is 

found by dividing the energy density of the technology in question by the energy 

density delivered by the best technology in the set.  Thus, the most energy dense fuel 

in the set gets a score of one.  The same concept is used for conversion efficiency and 

power density.  Oxidizer and operating temperature are Boolean in nature.  If the 

oxidizer is air, the technology score is one; otherwise a zero score is given.  If the 

operating temperature is below 250 °C, a one is given; otherwise the score is zero.  

The score for overall simplicity is based upon the current author’s understanding of 

how complex the system would be.  For example, if the system uses a reformer, the 

maximum score it can receive is 0.5 because the reformer makes it twice as complex, 

if not more, than a system without a reformer.   The overall score of the technology is 

computed by summing the product of the weight and score of each category of 

interest: 

           ∑=
i

ii swS         (3.6) 

 

The scoring methodology is summarized in Table 4. An uncertainty score is also 

assigned to each category and technology.  This value represents how much 

estimation is used for that technology.  The overall uncertainty was computed in a 

root-mean-square fashion: 
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Table 4: Fuel Cell Technology Scoring System 

Criteria (i) 
Weight 

(wi) 

Scoring (si) 

Range Explanation 

Energy Density of fuel 5 0-1 hi/hmax of set 

Conversion efficiency 5 0-1 ηi/ηmax of set 

Oxidizer 4 0-1 1 if Air, 0 otherwise  

Overall simplicity 4 0-1 
Max 0.5 if uses separate 

reformer 

Operating Temperature 3 0-1 1 for T < 250 C, else 0  

Power Density (membrane) 2 0-1 ρi/ρmax of set 

 

3.4 Scaling results. 

The results of the scoring exercise are presented in Figure 8.  The number 

label provided for each bar gives the number of the reference to the publication where 

data used to compute the score came from, the first author’s last name, and the first 

letter of the fuel name (A-ammonia, E-ethanol, M-methanol, S-sodium borohydride).  

The results show no clear winner as far as what type of fuel to use.  Ethanol, 

methanol, sodium borohydride, and ammonia based systems each have at least one 

technology with a score higher than 15 (top score possible is 23).  Fuel cell systems 

using sodium borohydride have a higher uncertainty level (see Figure 9) than other 

fuel types because of the importance of water recovery in these cells. If NaBH4 is 

stored in stoichiometric proportions and is used in a non-looping system, the effective 

energy density of the system is low.  However, if water can be recovered from the 

exhaust, then the system could deliver the highest effective energy density (as shown 
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in Table 3).  The adjacent bars representing the same sodium borohydride technology 

illustrate the advantage of a water recovery system.     

 Figure 8 separates the overall score into the different scoring categories, to 

show the effect of each.  When comparing the top performers in each fuel category, 

there are observations that can be made.  Ethanol has a higher energy density, but the 

methanol system has a higher conversion efficiency.  Ammonia has a higher 

simplicity score, but the operating temperature brings the score down.  The sodium 

borohydride system performs well in all categories, but only if the water is recovered.  

Without water recovery, the technology drops from having the top score, to the 13
th

 

highest score.  The water recovery causes a slight decrease in simplicity of the 

system, which is also represented.  Also note that because of the significance of the 

category, all technologies using pure O2 as the oxidizer are lower in the overall score. 

 
Figure 8: Individual category scores for each fuel cell technology.  Numbers in 

brackets are references and letters the type of fuel used. 
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Figure 9: Overall Scores and uncertainties of fuel cell technology rankings. 

 

3.5 Summary. 

 The purpose of the literature survey and scoring system is to identify which 

technology type should be considered for the system modeling and future research.  

Although some insight was developed, no fuel appears to outdo the others.  Although 

there are many low scoring methanol systems, there are still some that show great 

potential.  Ammonia system scores in general appear high, even with the temperature 

disadvantage.  All of the sodium borohyride systems could be ranked high with water 

recovery integrated into the system.  Ethanol has the lowest high score compared to 

the others.  Because of this, methanol, ammonia, and sodium borohydride systems 

appear to be the best ones to focus on in the quest to develop high energy density 

power supplies for the miniature crawling, hopping, and flying vehicles envisioned by 

the U.S. Army. 
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Chapter 4: System Model for Direct Methanol or Sodium 

Borohydride Fuel Cells. 

 

 The results of the previous chapter suggest that direct methanol and alkaline 

direct sodium borohydride systems appear to be particularly well-suited for powering 

the small vehicles envisioned by the U.S. Army.  A DMFC system is selected for 

detailed modeling (and comparison to batteries) because simple configurations are 

possible while still achieving high efficiencies.  Simplicity tends to result in relatively 

low system mass suitable for use in miniature ground vehicles and aircraft.  A direct 

sodium borohydride fuel cell (DBFC) system is also selected for detailed modeling 

and comparison because the energy density is comparable to ammonia and its lower 

temperature operation greatly facilitates integration with the vehicle structure. 

4.1 Selection of simulation environment. 

 The system model derives from one developed for a larger system that 

incorporated a liquid hydrocarbon reformer that produces hydrogen for a PEM fuel 

cell [87].  The model is implemented in MS Excel using a Visual Basic program 

running as a macro.  This provides some advantages to the user.  First, very little 

experience in programming is necessary as most of the changes necessary can be 

implemented directly in the spreadsheet.  The programming that is required is done in 

Visual Basic.  Second, MS Excel provides a visual picture of what is happening to 

each variable when another variable or equation is modified.  While the equations are 

not as easy to follow as other programming languages, debugging can be easier 



 

 60 

 

because each cell provides the value of its variable in real time.  If blaring mistakes 

are made in the code, they can be seen before the code is initiated.  Also, Excel 

enables one to create worksheets that make the system modular without the necessity 

of declaring variables as global.  It also makes it easy to ensure that the functions 

have the correct variables listed.  Third, individual macros can be run without the 

necessity of running the entire program.  This is ideal for when only one component 

has been modified and the user would like to check the functionality of that 

component prior to investing time in a full system calculation.  Generally speaking, a 

complete system simulation takes up to 30 minutes.  

 

4.2 System overview. 

4.2.1 Non-recirculating methanol system 

 Figure 10 is a schematic illustration of the complete non-recirculating direct 

methanol fuel cell power and energy system (NRDMFCPES)
*
.  A pump feeds fuel to 

the anode and a fan supplies air to the cathode.  The air performs three functions.  

First, it is the oxidizing agent for the electrochemical reaction.  Second, since a lot of 

water is created at the cathode, excess air is used to remove the water to prevent 

cathode flooding [46].  Third, the cathode air flow is also used to cool the stack and 

the air flow rate is controlled to maintain the fuel cell at a stable operating 

                                                 
*
 The term ‘fuel cell power and energy system’ (FCPES) refers to the complete power system that 

includes the fuel cell stack, all balance of plant components, the fuel and fuel tank. This is what goes in 

a vehicle and is ultimately the goal of this study to predict.  However, it will also be convenient at 

times to focus on the energy conversion components of the FCPES which are the fuel cell stack plus all 

balance of plant components.  This will be referred to as the ‘fuel cell system’ (FCS). 



 

 61 

 

temperature of 57 °C.  The net result is that the cathode functions with a large excess 

of air.   

The fuel is stored in an external fuel tank as a concentrated solution of methanol 

in water (5 M or 8.3% by mole).  The anode and cathode flows discharge directly to 

the atmosphere.  A DC-DC converter boosts the low voltage DC power from the 

DMFC stack to a higher bus voltage (12 VDC) used to run the auxiliary components 

and provide external load power.  The efficiency of the DC-DC converter efficiency 

(ηinv) is assumed to be 93% for all power and energy systems (PES) considered here. 

 

Figure 10: Direct methanol fuel cell system with pre-diluted fuel and direct 

discharge of anode and cathode feeds to atmosphere. 

 

4.2.2 Recirculating methanol system 

 Figure 11 is a schematic diagram of a water recirculating direct methanol fuel 

cell power and energy system (RDMFCPES).  This system is similar to the 

NRDMFCPES but has some modifications to make it more favorable and realistic.  
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The most important modification is the incorporation of a recirculation loop that 

recovers the water at the anode and returns it to a tank where it is mixed with pure 

methanol to create the 5 M solution needed at the anode.  This greatly increases the 

overall energy density of the system because pure methanol instead of diluted 

methanol can be stored in the fuel tank and a much smaller amount of water needs to 

be stored on board.  However, this advantage comes at the cost of increased 

complexity and system mass.  The water created at the cathode is not recirculated 

because most of the cathode exhaust is oxygen.  Oxygen in the mixer is not desirable, 

and removal would introduce more system complexity.  

 

Figure 11: Direct methanol fuel cell model system with recirculation of the anode 

products, separate tanks for pure methanol and water, and a mixing/CO2 

separation tank. 

4.2.3 Recirculating alkaline NaBH4 system 

 Figure 12 is a schematic illustration of the alkaline sodium borohydride fuel 

cell power and energy system (ANaBH4FCPES).  It is similar to the RDMFCPES in 

that water is recirculated from the anode and reactants are stored separately.  Some of 
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the differences, however, will pose significant challenges should one actually try to 

build a prototype.    One difference is the need for a third tank that stores enough of 

the KOH electrolyte to get the system started.  Since KOH is recirculated with the 

water, it shouldn’t need replenishment.  Another difference is the mechanism for 

feeding NaBH4 – a solid - into the mixing tank.  While such a metering mechanism is 

simple to implement in a simulation, achieving this in practice will be more difficult 

as alternatives to the simple metering valve used in the liquid methanol systems will 

need to be developed.  Finally, the oxidation product NaBO2 is also a solid and means 

also will need to be developed to separate it from the recirculation loop.  This 

separation is achieved in the simulation using a membrane but something else might 

have to be devised in practice. 

 

Figure 12 Direct Sodium Borohydride system diagram with anode product 

recirculation and solid waste removal. 
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4.3 System component models. 

4.3.1 Methanol fuel cell stack 

 The overall power the fuel cell stack is required to produce depends on the 

desired power level (Puser), parasitic loads (Ploss), and electrical inverter efficiency: 

loss

inv

user
FC P

P
P −=

η
     (4.1) 

where: 
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The fuel flow rate and current associated with PFC are given by: 
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In these expressions, the flow rate, ńfuel, is in units of mole/s, current, I, is in Amperes, 

Vcell, is the voltage through each cell, e is the number of electrons shed per fuel 

molecule (which is 6 from Eq. 2.5), ncells is the number of cells in the stack, and F is 

Faraday’s constant.  The performance of the MEA is modeled assuming that the cell 

voltage (V) is linearly proportional to the current density (i): 

iVVV slopelcell −=                (4.5) 

 

The current density is found simply by dividing the current by the area of a single 

cell.  The Tafel slope (Vslope) and the baseline limiting voltage (Vl) are inferred from the data 
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of Hwang et al [49].  Eq. 4.5 is a reasonable approximation of MEA performance for current 

densities between 50 and 500 mA/cm
2
 and pressures around 1 atm.  Operating conditions 

outside this space are not considered.  The methodology used to compute the pressure 

losses associated with the anode and cathode flows is explained in Appendix C.  

Multiplying the actual operating voltage by the current density provides the power 

density of the individual fuel cell.  The fuel cell stack design/architecture is also 

loosely based on the work of Hwang et al. [49].  The cell area is held fixed at 10.9 

cm
2
.  Cell thickness and weight were not given for this design and are estimated to be 

5 mm and 2 g, respectively.     

 Species conservation is enforced at the anode and cathode sides per the 

chemical reactions taking place there - Eqs. 2.5 and 2.6 for a DMFC.  Methanol and 

water are consumed at the anode side, while CO2 is produced.  The anode 

stoichiometric ratio equals the inverse of the stack fuel utilization, meaning the 

amount of fuel used in relation to the amount of fuel needed to satisfy Eq. 2.5.  The 

anode flow is run fuel rich in order to make sure that adequate fuel remains near the 

end of the flow path.  Inadequate concentrations drop the open circuit voltage of the 

local cells to the operating voltage of the stack, and no current is produced.  If this 

occurs at lower voltages, carbon can be oxidized in the catalyst layer which could 

damage the stack.  Therefore, an anode stoichiometric ratio (ψ) of 1.3 was used in the 

non-circulating model while 1.1 was used in recirculating case. The species mole 

fractions at the anode are given by:  
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where atoutn&  is the total mole flow out of the anode.  The total flow out is the flow in 

( atinn& ) plus the changes due to the reaction at the anode:  

ψψψψ /)/()/()/( ,2,2,, infuelatinOHinfuelCOinfuelfuelinfuelatinatout nnnnnnn &&&&&&& −=−++−+=

 (4.9) 

 

Since the stack is air cooled, the total air flow rate is determined by the species 

balance on the cathode side and an energy balance on the entire stack.    

The species mole fractions on the cathode side are given by: 
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The air flow required to feed the electrochemistry and cool the stack is calculated by 

performing an energy balance on the stack: 

0,,,,,,,, =+−−+ FCincincinainaoutcoutcoutaouta Phmhmhmhm &&&&         (4.13) 

Eq. 4.13 is solved iteratively by varying incm ,
&  so as to maintain a stack exit 

temperature of 57 °C (330 K). 
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 The fuel cell stack solver iteratively solves for three main values, the MEA 

voltage (Vact), the power produced by the fuel cell (PFC), and the flow rate of the 

cathode air flow ( incm ,
& ).  A residual is for the purpose of this work is defined as the 

difference between the guess values and actual values or a measure of convergence to 

a solution.  With the voltage, the guess value is used for Eqs. 4.3 and 4.4, which then 

produces an actual value in Eq. 4.5.  The residual of the two values is taken and 

multiplied by 10
4
 to ensure greater refinement towards convergence.  The power 

guess and actual value are related in much the same way, but in a larger scale due to 

the changes associated with system parasitics.  The residual between the two power 

values is multiplied by 10
2
 for refinement purposes.  The cathode flow guess value is 

varied until Eq. 4.13 is equal to zero, a non-zero value being the residual.    The 

solver will continue to refine these residuals towards convergence until the sum of the 

three residuals is less than the tolerance of 10
-3

.    

4.3.2 NaBH4 fuel cell stack 

 The physics of the NaBH4 cell are identical to that of the methanol version 

except that the reactions at the cathode and anode are different.  The fuel cell 

architecture is based loosely on the research of Verma et al. [51].  The cell area for 

the NaBH4 system is 9 cm
2
. As with the recirculating methanol system, ψ = 1.1.  

Given the reaction in Eq. 2.13, the mole ratios at the anode side are 
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where γ is the fraction of water produced that seeps to the cathode.  In previous 

renditions of the model, this is a property that is known based on previous experience 

with the electrolyte.  Because this information was not provided for the current 

design, this value was set at 2/3, which would be optimum for the cathode reactions 

(see Eq. 2.14).   The total flow out is the flow in, plus the changes made due to the 

reaction at the anode:  

OHinfuelCOinfuelfuelinfuelatinatout nnnnn 2,2,, ])1[/6()/()/( γψψψ −⋅⋅++−+= &&&&&  (4.17) 

 

Given Eq. 2.14, the cathode mole ratios are 
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And the energy balance at the cathode is the same as Eq. 4.13.  The same residuals 

and tolerance are used for the fuel cell stack solver of both fuel cell designs. 

4.3.3 Mixer 

   Figures 11 and 12 show the mixer as simply a volume where water from its 

tank, unconsumed fuel and water from the anode exhaust, and the alkaline electrolyte 
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KOH in the NaBH4 system, are combined and mix
†
.  The mixing process itself is not 

modeled and it is simply assumed that the stream leaving the volume on its way to the 

fuel pump is homogeneous and, in the case of the direct methanol cell, does not 

contain any CO2.  The desired fuel concentration at the anode of the direct methanol 

system is 5M or 0.09 moles methanol per mole H2O.  This gives a methanol mole 

fraction of  
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 and a water mole fraction of 0.9174.  The amount of water needed to be drawn from 

the water tank in order to maintain XCH3OH=0.0826 is the difference between the 

amount required for the fuel cell and the amount recirculated: 
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           (4.22) 

 

It is assumed that CO2 is able to bubble out completely in the mixer so the mass flow 

of CO2 exiting the mixer equals the mass flow of CO2 into the mixer via the anode 

exhaust.  The temperature of the exit flows are determined by performing an energy 

balance assuming that the mixer is adiabatic: 

bubbubmixmixrecrecwaterwaterfuelfuel hmhmhmhmhm &&&&& +=++           (4.23) 

 

In Eq. 4.23, the subscript rec means recirculated products (i.e. from the anode flow) 

and mix refers to the reactants that are sent to the anode.  Pure methanol and water 

                                                 
†
 Note that there is no mixer in the pre-diluted direct methanol system.  Also, mixer volume and mass 

were not considered for performance. 
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enter the mixer at room temperature and pressure from their respective tanks, and the 

CO2 exits the mixer at the same temperature as the fuel mixture.   Power laws relate 

the enthalpy and entropy of each species to the temperature: 
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The enthalpy or entropy of a mixture is the sum of the product of the species enthalpy 

or entropy and the respective mass fraction (yi): 
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The mixer solver iteratively solves for the temperature of the exit mixture using Eqs. 

4.23 and 4.24.  The residual is calculated as the difference between both sides of Eq. 

4.23, and the tolerance for the mixture is the same as the fuel cell stack and all other 

components (10
-3

).     

 For the NaBH4 model, the electrolyte makes the mole fraction calculations 

slightly different: 
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The energy balance of the NaBH4 mixer is then 
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mixmixrecrecKOHKOHwaterwaterfuelfuel hmhmhmhmhm &&&&& =+++       (4.30) 

 Because there is no carbon in the system, no bubbling is required.  However, the fuel 

cell produces NaBO2, a solid that requires removal from the system.  This is the 

purpose of the membrane in Figure 12 which is assumed to work with 100% 

efficiency
‡
. 

 4.3.4 Fuel, water, KOH tanks and ambient air 

 

 In the NRDMFCPES, the fuel concentration is fixed and the solver works by 

controlling the mole flow rate exiting the fuel tank.  With recirculation, the individual 

fuel mole flow rates are determined in the mixer and the solver works by controlling 

amount of fuel entering the system from the fuel tank.  The residual for the fuel solver 

is the difference between the guess value in the fuel tank and the calculated value in 

Eq. 4.3.  The tolerance for this residual is 10
-7

.  The water needed from the tank is 

determined by the fuel concentration in the anode return flow and the target anode 

supply concentration.   

 The fuel cell system model does not incorporate fuel and fuel tank mass and 

volume, since these will vary depending on mission requirements.  So, calculation of 

the total mass and volume of the complete PES occurs in post-processing and will be 

described in more detail in section 5.2.  Note that the total mass of the PES (mtot, PES) 

is the sum of the fuel cell components mass (mFCsys) plus the mass (mfuel) of the fuel 

                                                 
‡
 This assumption, as well as perfect CO2 removal, is adequate for its current purposes.  However, 

perfect membranes do not exist, and this result may cause a decline in performance.  Further study of 

the membranes is required.    
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and fuel tank. Similarly, the total volume of the PES is the sum of the volumes of the 

fuel cell components plus the volume of fuel plus tank.   

 

 4.3.5 Fuel pump 

 

 The fuel mixture exits the mixer and enters the fuel pump where its pressure is 

raised to overcome pressure losses through the flow system and fuel cell stack.  The 

isentropic efficiency of a pump is defined as [89]: 

inact

inisen

p
HH

HH

−

−
=η                (4.31) 

 

where Hin is the enthalpy at the inlet, Hisen is the enthalpy at the outlet if the pressure 

rise is accomplished isentropically and Hact is the actual enthalpy at the pump exit.  

The isentropic efficiency of the pump is assumed to be 1%, based on the volume flow 

rate and pressure provided by the manufacturer.  Rearranging Eq. 4.31 enables one to 

solve for the actual enthalpy leaving the pump.  A solver is used to find the 

temperature to match the isentropic enthalpy, and then the solver finds the 

temperature that gives the actual enthalpy.  The residual of the first step is the 

difference between the mixture entropy values considering isentropic flow, and the 

second step has a residual based on energy conservation like the previous 

components.  The summed residual must be less than the 10
-3

 tolerance to be 

considered converged.  The electrical power required to run the pump (Pp) is given 

by: 
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The motor efficiency is assumed to be 90% (electrical to mechanical), and the pump 

is assumed to be adiabatic [12].  The power is negative to show that energy is being 

consumed.  Because the conditions (pressure, temperature, and parasitic power 

required for operation) of the pump change very little with different power demands 

and fuel cell stack sizes, only a single pump was considered for all the simulations.  It 

is made by TCS Micro Pumps Ltd. [90].  

4.3.6 Cathode fan 

 The fan model is very similar to the fuel pump model.  An isentropic 

efficiency of 1% is also assumed but some heat loss is considered in order to keep the 

simulation stable.  The operation is very different however, due to the fact that the 

fluid is now a gas, not a liquid.  The specific enthalpies of the fuel mixture and air are 

not similar.  This causes quite a change in parasitic losses from one test case to the 

next, as opposed to the small changes observed in the fuel pump.  Because of this, 

some heat loss is required; otherwise the parasitic values for the fan would keep 

increasing, causing model divergence.  Since air serves as both a reactant consumed 

by the chemical reaction and the cooling medium, small changes in power demands 

can cause large changes in required air flow that require a different fan to be used.  

Therefore, it may be necessary to switch fans during the iteration process with one of 

a larger or smaller flow rate range.  The  code handles this automatically but the 

discontinuities this introduces in response along with the already high sensitivity to 
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air flow rate make it more difficult to get the system performance iteration process to 

converge if inappropriate starting conditions are selected.      

At present, the code chooses between nine fans from three companies: Risun 

Expanse Corp [91], Jarothermal [92], and Indek [93].  Their flow rates range from 

<0.32 to 6.35 CFM and their mass ranges from 1.8 to 25 g. The power of the fan is 

varied to match the necessary flowrate for cathode/cooling operation.  The volume 

flow rate is found using the ideal gas law.  Air flow properties are predicted just like 

with the pump, using two temperatures guess values for isentropic and actual flow.  

The residual calculations and tolerances are also the same.  All fan property (mass, 

volume, etc) and performance data come from the fan manufacturer, and are given in 

Appendix D.  Because multiple performance curves for each power level/speed 

possible were not provided, the model uses the flow rates that were listed by the 

manufacturers.   

4.4 Simulation overview. 

 The main screen, which is the first worksheet in the Excel workbook, provides 

the system level parameters and results.  User input parameters include: power 

demand, ambient temperature, ambient pressure, humidity, stoichiometric ratio for 

anode flow, number of cells in the fuel cell stack, electric motor and inverter 

efficiencies, and the iteration tolerances.  System outputs (results) include: fuel 

energy input, system efficiency, power produced by the fuel cell (which is larger than 

the system power demand), MEA power density, operating voltage, and parasitic 

loads.  Additional results include mass and volume of the entire system  
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 The main screen also includes a summary of each component in the system.  

This summary includes the electric work demand (positive if providing power and 

negative if requiring it), heat transfer demand, the sum of the residuals, the inlets, and 

the flow data.  It also provides a summary of each component, including where the 

incoming flow is coming from and flow properties. 

Within each component, which has its own worksheet, the inlet flow data is taken 

from the outlet data of the sheet given in the prescribed cell.  The numbered outlet is 

also provided, since some components have more than one.  Flow data, which is 

given for the inlet and outlet of each component, includes: the mass flow rate (g/s), 

total molar flow rate (mol/s), temperature (K), pressure (bar), molecular weight 

(g/mol) of the pure or mixed fluids, mole and mass fractions of all the constituents 

being considered, individual mole flow rates of the constituents, enthalpy (J/g) and 

entropy (J/g*K) of the constituents as well as the total amounts, the vapor pressure of 

water, the entropy (J/mol*K) of the constituents at ambient pressure, and the mole 

flow rates of the periodic elements (C,H,O).  A sum of the mole fractions is also 

provided for each outlet for debugging.  This flow data is passed from one component 

to the next through the main screen, like the tubing of an actual system.  

A schematic illustration of the overall iteration process is provided in Figure 13.  

The gross power output of the fuel cell (i.e. the usable power requirement plus the 

parasitic power losses) is selected along with a stack operating voltage and the 

conditions in each component are updated by their own iterative solvers.  When the 

components are converged, the gross power output of the fuel cell is updated, a new 

stack operating voltage is selected to meet this demand, and the process is repeated 
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until the stack voltage, power output, and the energy balances of all components have 

converged. 

 This model was used to investigate the scaling of fuel cell system performance 

with size by varying two parameters in the model:  net power output and the number 

of electrochemical cells in the fuel cell stack.  Increasing the number of cells for a 

particular system decreases the current density, increases cell voltages, and improves 

the stack efficiency ηFC.  However, it also increases system mass and volume leading 

to tradeoffs between energy density, power density, and efficiency (specific fuel 

consumption).    These tradeoffs and how they differ for the three fuel cell systems 

considered here will be discussed in the next chapter. 

 

Figure 13: Iterative scheme for fuel cell system model. 
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Chapter 5:  Model Results. 
 

5.1 Fuel cell and BOP alone. 

5.1.1 Non-recirculating DFMC system 

 Figure 14 shows how system efficiency ηth varies with the total mass mFCsys of 

the non-recirculating DMFC systems.  The numbers at the ends of each curve give the 

number of cells in the stack at those maximum or minimum points.  The number of 

cells varies linearly along the curves between the end points.  Since the cells are 

stacked in parallel, ηth increases with the number of cells because increasing the 

number of cells decreases the current density.  However, the improvement in 

efficiency is non-linear and decreases with increasing numbers of cells.   

 Figure 14 also shows that decreasing the power requirement does not change 

the peak attainable efficiency until the power drops below 10W.  At 5W, the baseline 

parasitic losses associated with the pump and blower are more significant than the 

ohmic losses and the peak attainable efficiency is lower.  This is the reason that the 

5W curve crosses the others.  The net result is that efficiencies as high as 30% can be 

attained for fuel cell systems lighter than 150 g (without fuel). 

 Figure 15 shows efficiency as a function of power demand for three different 

stack sizes.   It shows that there is an optimum power level associated with a 

particular number of cells.  This is a result of the tradeoff between stack overpotential 

losses that increase with power and the baseline parasitic loss fraction (baseline 

parasitic power /system power output) that decrease with power.  Both the peak 
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efficiency and the power level associated with this peak increase with the number of 

cells.  Peak efficiency increases with number of cells because the relative importance 

of parasitic losses decreases as the system gets larger. 

 

Figure 14: Fuel cell system efficiency vs. the mass of the system (mFCsys) without 

fuel for different overall power levels. The numbers at the ends of the curves 

indicate the number of electrochemical cells in the fuel cell stack at those points. 

 

 

Figure 15: DMFC system efficiency vs. power output for various stack sizes. 
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The efficiencies achieved seem high for a fuel cell system.  To better assess 

the cause, the individual efficiencies – fuel cell and balance of plant – are plotted in 

Figure 16.  Fuel cell efficiencies hover above 30%, but the BOP efficiencies are high, 

mostly above 80%.  This is most likely due to the assumed high efficiencies of the 

parasitic motors and power conditioning.  Predicting most of the ancillary 

components to be adiabatic is also another possible cause.   

 

Figure 16: Fuel cell and balance of plant efficiencies for systems with various 

stack sizes.  The dashed lines represent the FC efficiency, and the solid the BOP 

efficiency. 

Figure 17 shows the specific power of the fuel cell system as a function of 

mFCsys for different numbers of cells and power levels.  Decreasing the number of 

cells increases specific power for all configurations considered.  This trend is also 

non-linear.  The lowest cell count on each curve in Figure 17 corresponds to the 

minimum number of cells capable of satisfying the specified power demand.  The 45 

W system has the highest system specific power recorded of 510 mW/g using a 49 

cell stack.  The high for the lowest power system (0.25W using a 1 cell stack) is 45 

mW/g.   
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Figure 17: System specific power of non-recirculating DMFC systems at various 

power demands.  Numbers at ends of curves give the number of electrochemical 

cells in fuel cell stack at those points.  The specific power of a 1 cell system 

producing 250 mW is also provided. 

5.1.2 Water recirculating direct methanol fuel cell system 

 The lowest cell counts shown in Figures 14 and 17 are the minimum amounts 

of fuel cells necessary to achieve the desired power output.  These minimum amounts 

were found with the recirculating systems as well.  Figure 18 provides these minimal 

stack values as well as a larger range of cell count.  The point after the minimum on 

each curve is the next multiple of 5.  The effect of increasing the number of cells can 

be quite dramatic when the fuel cell power is low.  For example, adding 3 more cells 

to a 5W system boosts efficiency by almost 8 percentage points.  The difference in 

system mass is relatively small because the system with fewer cells actually uses a 

slightly heavier fan.  As with the non-recirculating systems, the curves also show that 

systems with more cells and operating at higher power levels are more efficient.  This 
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is because the larger blowers, motors, and other components used by these systems 

are more efficient.  Changing the power requirement does not have a significant effect 

on the peak attainable efficiency until ohmic losses become much less important (< 

10%) compared to total parasitic losses.  This occurs at approximately 10 W. 

 Figure 19 shows efficiency as a function of power demand for three different 

stack sizes.  As is the case with the previous system, efficiency is maximized at 

intermediate power demands because of the tradeoff between stack overpotential 

losses that increase with power and baseline parasitic losses that decrease as a 

fraction of total power.  The power level associated with peak efficiency increases as 

the number of cells increases.  Efficiency is maximum in the 20 and 30 cell systems 

at about 7.5 W while peak efficiency in 40 cell systems occurs at about 12.5 W. 

The specific power of the recirculating DMFC systems is shown in Figure 20.  

Specific power is maximized at a single power level and number of cells.  Increasing 

or decreasing the power level or the number of cells decreases the overall specific 

power.  The figure shows that the maximum specific power density is about 0.4 W/g 

and corresponds to 24 cells, a power output of 20 W, and a system mass of 

approximately 70 g. 
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Figure 18: Fuel cell system efficiency without fuel for different overall power 

levels. The numbers at the ends of the curves indicate the minimum number of 

cells required to achieve the desired power level. 

 

Figure 19: Recirculating DMFC system efficiency vs. power output for different 

stack sizes. 
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Figure 20: Specific power of recirculating DMFC systems at various power 

levels.  Numbers show the number of cells in the fuel cell stack at the end points 

of the curves.  The symbols correspond to increments of 5 cells. 

 

 

 While the results show that recirculating DMFC systems are more efficient 

than non recirculating ones, the greatest impact of water recovery is on the energy 

density of the system because less water storage is required and more of the mass 

budget of the system can be spent on the fuel.  This advantage will be discussed 

further in section 5.2.   

Figures 21 and 22 compare the performance of non-recirculating and 

recirculating systems.  Figure 21 shows how the efficiency of the system at 10 W 

changes relative to the baseline system when water recovery and recirculation is 

added.  Clearly, including water recirculation significantly improves efficiency.  This 

is because non-recirculating systems run rich in order to maintain good diffusive 

transport of fuel to the anode and this extra fuel flows overboard and is wasted.  
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Water recovery and recirculation enables one to recover unreacted fuel exiting the 

anode.  The net result is less fuel is wasted and the efficiency of the system is higher.  

The increase in efficiency can reach 8.5%.  Figure 22 shows that while the system 

specific power curves overlap, when comparing similar stack sizes, the specific 

power of the recirculating system is slightly lower than the non-recirculating design 

for the same stack size.   Adding recirculation decreases specific power because it 

adds a parasitic load.  This load becomes less significant as the stack size increases 

causing the two curves to overlap more closely at higher cell counts.   

 

 

Figure 21: Fuel cell system efficiency of a DMFC system with and without 

recirculation of the anode exhaust for a 10 W power demand.  Numbers denote 

cell count in the stack. 
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Figure 22: Specific power of a DMFC system vs. the system mass (mFCsys) with 

and without recirculation of the anode exhaust for 10 W power demand. 

5.1.3 Recirculating direct alkaline sodium borohydride fuel cell system 

 Although the open circuit voltage of the sodium borohydride fuel cell is 

higher than the methanol fuel cell, the Tafel slope of the voltage-current density (V-i) 

curve is much steeper.  This means that MEAs current densities must be lower in 

order to function and therefore more stacks are required to meet a particular power 

demand.  Figure 23 shows sodium borohydride system efficiency as a function of 

overall system mass. As alluded to earlier, the minimum stack size is much larger for 

this system than the previous DMFC system. Efficiencies are comparable to the 

DMFC system because it also uses water (and fuel) recovery of the anode.  However, 

the larger required stack size leads to a significant weight penalty: Figure 18 shows 

that a 12.5 W recirculating DMFC could be as light as 50 grams whereas Figure 23 

shows that a comparably efficient NaBH4 system would weigh about 200 grams.  
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Because the system weight is 4 times as much as the methanol system, it is no 

surprise that the specific power values shown in Figure 24 are about a quarter of those 

attainable by the  recirculating DMFC systems.  Finally, the largest power level 

considered was 12.5 W because the results suggest that higher power systems would 

be far too heavy for the miniature vehicles that are of interest in this study.   

 

 

Figure 23: Sodium borohydride fuel cell system efficiency at different power 

levels. The numbers at the ends of the curves indicate the minimum number of 

cells required to achieve the specified power level. 
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Figure 24: Specific power of sodium borohydride fuel cell system at various 

power demands.  The numbers at the upper end of the curves show the 

minimum number of cells required to achieve the specified power level. The 

numbers at the lower ends show the number of cells in the fuel cell stack at those 

points. 

5.2 Power and energy density comparison. 

 Up to this point, the discussion has focused on the fuel cell system by itself 

without consideration of the fuel and fuel tank.  This was done in order to highlight 

the critical aspects of the fuel cell system (FCsys) design.  However, the specific 

power and specific energy of the overall PES are heavily influenced by the fuel mass 

fraction (ζ).  The fuel mass fraction is defined as the ratio of the mass of fuel and tank 

(mfuel) to the mass of the fuel cell stack plus the balance of plant components (mFC + 

mBOP= mFCsys).   As discussed previously, the total mass of the integrated power and 

energy system, mtot, PES equals mFCsys + mfuel.  This leads to the following expressions 

for the power and energy density of the system: 
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In these equations, P/mFCsys is the specific power of the system without fuel (reported 

for the various systems considered in Figures 17, 20, 22, and 24) and QR is the 

specific energy of the fuel-water mixture (2914 J/g for the 5 M methanol solution).  

P/mFCsys is the maximum specific power achievable by the PES and ηthQR (the product 

of the overall thermodynamic efficiency with the specific energy of the fuel) is the 

maximum possible specific energy of the PES.  Neither extreme is realizable in a 

practical PES system as peak specific power is only achieved at ζ=0 (which means 

zero specific energy and hence range/endurance) and peak specific energy is only 

achieved at ζ=infinity (which means zero power density).   

The functions of ζ that modulate the peak power and energy density are plotted in 

Figure 25. Increasing the fuel mass fraction decreases the specific power and 

increases the specific energy of the complete fuel cell system.  Eq. 5.1 and 5.2 show 

that while the performance limits are set by the fuel cell and BOP considerations 

only, the actual specific power and specific energy of the complete fuel cell system is 

also strongly affected by the fuel mass fraction.  Optimizing the system requires 

trading specific power for specific energy (or endurance).   While this trade ultimately 

must be driven by the mission, choosing ζ =1 is a reasonable interim strategy that 

maximizes the product of the two curves and represents an even-handed compromise 

between PES specific power and specific energy. 
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Figure 25: Functions of ζζζζ that modulate the peak specific power and specific 

energy of the fuel cell system. 

 

The complete tradeoff between specific power and specific energy is 

illustrated in Figure 26.  It shows specific power as a function of system specific 

energy for three 10 Watt PES – direct methanol, direct methanol with recirculation, 

and direct borohydride with recirculation - each with two different cell stack sizes.  

The stack sizes chosen correspond to the endpoints of the fuel cell system specific 

power figures above.  The solid circles show where systems with different values of ζ 

lie on the curves with the color of the circle denoting the value of ζ.  Colors range 

from black (ζ=0.2) to purple (ζ=10).  The dashed diagonal lines show contours of 

constant endurance.  The open symbols (x, +, and *) denote mtot, PES = 100 g, 150 g, 

and 200 g respectively and provide an indication of the relative sizes of the various 

systems.  The vertical line crossing the x-axis shows the DARPA specific energy 

target of 1000 W-Hr/kg.   
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The figure shows that as ζ becomes large, most of the PES’s mass is contained 

in the fuel and the system performance curves approach the specific energy of the fuel 

times the conversion efficiency.  As ζ becomes small, specific power approaches its 

maximum but this comes at the price of reduced endurance because there is less fuel 

available.  The curves for each class of system cross each-other because systems with 

more cells have lower specific power but are more efficient.     

The first set of curves in the lower left corner of Figure 26 corresponds to the 

baseline methanol system without recirculation.  A symbol corresponding to a high 

performance Li-ion battery from A123 Systems is provided on the figure as a 

reference [94].  While the battery’s endurance is lower than all of the fuel cell 

systems under consideration, its specific power is about an order of magnitude larger 

than the best NRDMFCPES.  The second set of solid curves on the lower right side of 

the figure correspond to direct methanol fuel cell systems with recirculation.  Adding 

recirculation shifts the baseline system to the right for two reasons.  First, 

recirculation improves efficiency by recovering unreacted fuel exiting the anode.  

Second, and more importantly, recirculation reduces the amount of water needed to 

be carried on board.  This frees space for more fuel thereby increasing QR. The net 

effect is nearly an order of magnitude improvement in effective specific energy and 

endurance over the non-recirculating system and batteries.  

The third set of curves to the far right in Figure 26 shows the performance of a 

recirculating alkaline direct sodium borohydride fuel cell PES.  Although the 

borohydride systems have lower specific power values, the higher specific energy of 

the fuel provides the opportunity for longer endurance missions using less fuel.  This 
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is important because more weight is needed for the system itself.  Notice, however, 

that only 200 g systems are shown for the borohydride system as 100 g and 150 g 

systems are not possible because BOP would consume more power than the fuel cell 

supplies.  The 60 cell RDMFCPES and the 66 cell ANaBH4FCPES curves overlap at 

an overall system weight of 200 g, meaning that the same system weight provides the 

same endurance and system specific power and specific energy.  Comparing the 

methanol and NaBH4 systems on a mass basis, the methanol system with a 200 g 

weight and smaller stack size will outlast the sodium borohydride systems.  While 

both the RDMFCPES and ANaBH4FCPES can meet the specific energy DARPA 

target if size is not a consideration, the RDMFCPES comes closer to meeting it at the 

200 g mass limit relevant to the miniature crawling/hopping/flying vehicles of interest 

to the U.S. Army. 

 

Figure 26: Ragone plot for a series of 10 W fuel cell systems. Subscripts r, B, and 

M refer to recirculation, borohydride, and methanol, respectively.  Dashed lines 

indicate PES with maximum specific power, while solid lines are PES with peak 

efficiency.  Colored circles indicate the fuel mass fraction of the PES at that 

point.  Other colored symbols represent PES weight.  Diagonal dotted lines are 

of constant endurance. 
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Figure 27 shows how the power requirement influences the relative merits of 

one technology over another.  At 5 W, the sodium borohydride system requires fewer 

cells in the stack thereby lowering system weight and making the ANaBH4FCPES 

more competitive with the RDMFCPES.  The ANaBH4FCPES outperforms the 

RDMFCPES for 5W systems weighing more than 150 g while the RDMFCPES 

continues to be best for 5W systems weighing less than 150 g.  The reader is referred 

to Appendix E for the data in table format of all Ragone plots. 

 
Figure 27: Ragone plot for a series of 5 W fuel cell systems. Subscripts r, B, and 

M refer to recirculation, borohydride, and methanol, respectively. Dashed lines 

indicate PES with maximum specific power, while solid lines are PES with peak 

efficiency.  Colored circles indicate the fuel mass fraction of the PES at that 

point.  Other colored symbols represent PES weight.  Diagonal dotted lines are 

of constant endurance. 

  

 Figure 28 shows a comparison of performance for the baseline NRDMFCPES 

at different power levels.  This is beneficial because if the PES mass is known, a 

designer can quickly see how much power is achievable at what specific power, 

specific energy, and endurance.  Points of constant PES mass are not linear, thus 
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having a power demand or endurance requirement in mind would make the design 

decisions easier.  Figure 29 is a similar plot, but with the RDMFCPES.  Figure 30 

provides the same comparison for the ANaBH4FCPES.  The performance in these 

curves is very similar, but endurance per PES mass does improve with lower power 

levels.   

 

Figure 28: Ragone plot for NRDMFCPES.  Curves depict stack size and power 

demand. Dashed lines indicate PES with maximum specific power, while solid 

lines are PES with peak efficiency.  Colored circles indicate the fuel mass 

fraction of the PES at that point.  Other colored symbols represent PES weight.  

Diagonal dotted lines are of constant endurance. 
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Figure 29: Ragone plot for RDMFCPES.  Curves depict stack size and power 

demand. Dashed lines indicate PES with maximum specific power, while solid 

lines are PES with peak efficiency.  Colored circles indicate the fuel mass 

fraction of the PES at that point.  Other colored symbols represent PES weight.  

Diagonal dotted lines are of constant endurance. 

 
Figure 30: Ragone plot for ANaBH4FCPES.  Curves depict stack size and power 

demand. Dashed lines indicate PES with maximum specific power, while solid 

lines are PES with peak efficiency.  Colored circles indicate the fuel mass 

fraction of the PES at that point.  Other colored symbols represent PES weight.  

Diagonal dotted lines are of constant endurance. 
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5.3 Effect of mission profile and fuel cell/battery hybridization. 

Since a typical vehicle mission involves periods of high power operation 

during locomotion and periods of lower power operation associated with data 

gathering or waiting, hybridizing the fuel cell system with a battery is natural.  The 

challenge is selecting the optimum battery-fuel cell combination.  While a formal 

optimization is beyond the scope of this thesis, some insight can be gained by 

considering how battery-fuel cell systems would be configured to support various 

missions. The DMFC system was chosen for this case study due to higher power level 

demands associated with the vehicle’s functionality.   

Two types of missions (illustrated in Figure 31) were considered for an 

arbitrary flying vehicle with the properties listed in Table 5.    The first type has the 

vehicle flying to its destination, performing its required functions, and then flying 

back to its origin.  The second type has the vehicle stop in three places (following a 

square flight path), before returning to its origin.  Power is taken from the battery 

when the vehicle is in flight.  Transient time required for a power level change was 

assumed to be 1 minute so the vehicle can land or perch with a safe deceleration and 

the total mission time is held constant at 60 minutes for all missions.  Obviously, 

these parameters will vary widely depending on the mission but these choices are 

satisfactory for the purpose of demonstrating the advantages of a hybrid system.    A 

total of 5 missions with different power profiles were investigated. 
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Table 5 Hybrid Vehicle Properties 

Vehicle Mass Max 225 g 

Payload Mass Max=80 g 

Fuel Mass Fraction Max = 1 

Vehicle Speed 5 mph 

Propeller Length 20 cm 

Flight Power Requirement 30 W (ηProp=0.4) 

Stationary Power Requirement 10 W 

Sensor Power  2 W 

Transmit Power 3 W 

Computation Power 5 W 

 

 

Figure 31: Flight path of hovering UAV for the different missions under 

consideration.  Missions 2, 4, and 5 involve battery recharging.  

Figure 32 shows the power profiles associated with the 5 missions under 

consideration.  Mission 1 is the fly in/fly out scenario and uses two batteries to power 

the airborne legs.  Mission 2 is the same, except that the fuel cell recharges the battery 

after landing at its destination so that only one battery is required.  Mission 3 is the 

baseline for the square path where four batteries are used to fly the four airborne legs.  

Mission 4 uses two batteries that are recharged at the second stop after both have 

been depleted.  Mission 5 uses only one battery and recharges it at each stop.   
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Figure 32: Mission profiles of a battery/ fuel cell hybrid power system for a 

flying micro vehicle.  Higher power levels at non-flight conditions correspond to 

battery recharging. 

  

Table 6 summarizes the results.  The first row gives the energy required to 

complete the missions.  The next two rows give the weights of a PES that utilizes 

only batteries.  The weights of a hybrid battery/FC PES follow, as well as the fuel cell 

efficiency.  PES weight reduction is the entire weight of the power system (battery+ 

FC PES) divided by the weight of a battery-only system.  Previous results (Figure 18) 

indicated that increasing the number of cells in the fuel cell stack increases its 

efficiency.  The hybrid PES could be enlarged by increasing the amount of cells in the 

FC stack in order to attain peak efficiency.  Increasing the number of cells in the stack 

until the mass of the hybrid PES system equaled the mass of the battery only PES 

results in an efficiency increase of about 8%.  This difference in efficiency reduces 

the amount of fuel necessary for the mission by about 1 gram, but the increase in PES 
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weight is 10 or more grams.  Because of the low fuel savings, the PES system used 

for the results in Table 6 had the minimal amount of fuel cells in the stack 

(performing at peak system power density).      

As can be seen from the table, the PES and vehicle weight reduction are 

considerable for each mission - even those with no recharging.  A power system 

under mission profile 5 could have its weight reduced by almost half. Even without 

recharging, the power system mass can be reduced by a fourth.  Because a fuel cell 

system is used in conjunction with a battery, the vehicle mass will be lighter, or the 

mass “saved” can be used towards a greater payload.  This advantage is shown in the 

last row of the table. For mission 5, the payload weight could almost be doubled due 

to the mass savings with the hybrid PES.  The battery is well suited for flight power; 

however, recharging one battery with the fuel cell system is the best option for both 

types of missions because the total and power system mass are smallest.  Less mass in 

the power system leads to better sensing and computing technologies that can be 

incorporated into the vehicle.  A direct methanol fuel cell system coupled with a 

battery has the potential to meet the needs of the U.S. Army’s future fleet of mini 

flying vehicles. 
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Table 6: Hybrid system performance evaluation 

  
Mission 

1 

Mission 

2 

Mission 

3 

Mission 

4 

Mission 

5 

Total Energy Required (J) 47400 59400 

Battery 

Only PES 

Battery 

weight (g) 
121.5 152.3 

Vehicle 

weight (g) 
191.5 222.3 

      Battery/FC 

Hybrid 

PES 

Battery 

weight (g) 
32.3 16.0 63.1 30.8 15.6 

Fuel cell PES 

(g) 
52.2 57.3 52.3 74.6 69.3 

Total vehicle 

weight (g) 
154.4 143.1 185.2 175.2 154.8 

Fuel cell 

efficiency 
29.41% 28.85% 29.41% 32.12% 29.19% 

Benefits 

FC PES 

weight 

reduction 

69.58% 60.31% 75.72% 69.16% 55.76% 

Vehicle 

weight 

reduction 

80.68% 74.79% 83.35% 78.85% 69.67% 

Payload 

weight 

increase 

52.95% 69.08% 52.95% 67.27% 96.49% 
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Chapter 6:  Conclusions and Future Work. 

 

6.1 Summary/Conclusions. 

The U.S. Army is developing miniature (<500g) robotic sensor platforms to 

explore and monitor harsh/dangerous environments.  At present, the range and 

endurance of these vehicles is severely limited by their battery-based power systems 

which have relatively low specific energy.  Miniature fuel cells consuming high 

energy density fuels could improve range and endurance by an order of magnitude or 

more provided suitable levels of overall system-level efficiency can be achieved at 

small-scale.  The objective of this thesis was to identify promising fuel cell 

technologies appropriate for implementation in sub 500g systems and to develop 

quantitative methodologies for evaluating miniature fuel cell performance.  

A literature survey was conducted to identify the fuel cell technologies that are 

best suited for powering small autonomous vehicles. It focused on ammonia, 

methanol, ethanol, and sodium borohydride fuels.  A ranking system was developed 

to assess relative suitability for U.S. Army applications. The survey provided insights 

into the important advantages and disadvantages of each technology, but did not 

identify a clear winner.  A more quantitative analysis that accounted for the parasitic 

losses associated with the overall balance of plant (pumps, blowers, power 

conditioning, etc.) and system weight or size was necessary.   

Two types of systems were selected for this focus.  The sodium borohydride 

alkaline fuel cell was selected because it scored highest in the literature survey - 

partially because of the high energy density of the fuel. The direct methanol system 
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was selected for the balance of plant’s simplicity and the MEAs relatively high power 

density for a low temperature fuel cell.  

A methodology was developed for predicting overall system-level performance of 

fuel cell power and energy systems.  It is unique in that it accounts for how balance of 

plant losses scale with the physical size of the fuel cell system.  This is found to be 

essential in order to evaluate the suitability of various fuel cell technologies for 

vehicles of different scales.   The methodology was applied to three different types of 

miniature fuel cell systems: a direct methanol fuel cell system, a direct methanol fuel 

cell system with water recovery at the anode, and an alkaline NaBH4 fuel cell system.   

The results showed that a 150 g, 10 W direct methanol fuel cell system is 

approximately 15.9% efficient, can achieve system specific power around 100 mW/g, 

and can maintain it for  1 hour.  A 150 g, 10 W direct methanol system with water 

recovery at the anode achieved slightly lower specific power (5 mW/g difference) but 

was more efficient (25.3%) and could operate much longer (7.5 hours) because pure 

methanol fuel could be used instead of a dilute methanol-water mixture.   The specific 

power of a 200 g, 10W NaBH4-based fuel cell system was much less than 100 mW/g 

because the fuel cell stack must be larger to produce the necessary current.  However, 

the endurance of the 200 g NaBH4 system is also approximately 7.5 hours.  This is 

because of the high energy density of NaBH4.  At power levels less than 10W, the 

NaBH4 power and energy system also offers better specific power than the direct 

methanol systems because the DMFC BOP mass is a higher percentage of the overall 

system mass due to the small stack size.  With all three cases, the system specific 

power can be improved by decreasing the number of cells in the stack and decreasing 
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the fuel mass fraction at the expense of reduced endurance.   

A case study of 5 lightweight flying vehicle missions was used to investigate the 

impact of mission on fuel cell system configuration and integration with a battery.  

Only direct methanol systems with anode recirculation were considered.  The study 

concluded that sizing the battery to meet the power/energy demands of a single flight 

leg and using the fuel cell to recharge after each leg is beneficial because it 

maximizes the amount of energy stored in the fuel instead of the batteries.  

Incorporating a fuel cell can reduce the weight of the overall power and energy 

system by as much as 55.76%.  This corresponds to a 30% decrease in vehicle mass.  

If weight reduction is not the goal, the payload mass could be almost doubled 

enabling greatly expanded operational capabilities. 

6.2 Future work. 

Future work would focus on applying this modeling methodology to other 

types of fuels and fuel cells so as to expand the ability to quantitatively rate the 

performance of different fuel cell systems at different scales.   New fuels of particular 

interest include ethanol, ammonia, and H2 generated by liquid hydrocarbon reformers.  

Once multiple fuels and their corresponding systems have been modeled, a more 

extensive comparison could be made of different fuel cell types based on power, 

mass, volume, and efficiency requirements.  Also, because the overall and BOP 

efficiencies were higher than typical systems, better estimates of motor, inverter, and 

membrane efficiencies should be obtained and used to determine the effect they have 

on the performance shown.  Long-term future work would include choosing a system 
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that outperforms the others for a particular vehicle and mission and fabricating and 

testing the system to determine functionality and performance. 
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Appendices 
 

A. Endurance of a hovering vehicle: 

 

Power requirement to hover (Leishman p. 63): 

( )
A

mg
P

p ρη 2

1
3

=             (A-1) 

Where m is the vehicle mass, g is the acceleration due to gravity, ηp is the propulsive 

efficiency of the rotor, ρ is the density of the air and A is the disc area.  The power to 

hover can also be written in terms of the mass flow rate of the fuel, the heating value 

of the fuel (QR) and the overall thermal efficiency of powerplant: 

Rfth QmP &η=          (A-2) 

Equating A-1 and A-2 and recognizing that dtdmm f =& gives: 
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This is an ODE that can be solved directly by integration: 
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In this equation, M is the empty weight of the vehicle, mf  is the weight of the fuel, 

and τ is the hover time.  Integrating gives: 
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Solving for τ gives: 
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Introducing the fuel mass fraction (ζ = mf/M) gives: 
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The quantity in parenthesis inside the square root is the disc loading. 
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B. Survey Data Collection 
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C. Pressure/current reference relation. 

  

   

The MEA is assumed to be square and fed by a series of parallel channels (as 

opposed to the single serpentine channel used by Hwang et. al [47]).  The number of 

channels (nchan) is given by:   

rib

chan
ww

wL
n

+

−
=                (C-1) 

 

where L is the channel length, w is the channel width, and wrib is the width of the 

channel ribs.  The hydraulic diameter (Dh) of each channel is given by: 

P

A
Dh

4
=                (C-2) 

 

where A is the cross-sectional area and P is the perimeter of the cross-section.   

Eq. 4.3 and 4.4 give the relationship between current density (current divided by 

the area) and the molar fuel flow rate.  Knowing the concentration of the fuel enables 

one to compute the total mass flow rate of the fuel-water mixture.  This mass flow 

rate is converted to a volume flow rate assuming that the density of the fuel-water 

mixture is approximately the density of water alone.  This is a reasonable assumption 

at the small methanol concentrations considered here.      

Another assumption is made as to how much air flow is required on a mole basis 

for each mole of anode flow.  The assumption is necessary because the amount of air 

is unknown, as it is also used for cooling the stack.  This value was estimated by 
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running the program at different pressure references, and observing the change in air 

flow.   

The Reynolds number of the flows at the cathode and anode are computed using 

the volume flow rates:  

A

DV h

L
µ

ρ &

=Re                (C-3) 

 

In this expression, ρ is the density of the fluid, and µ is the dynamic viscosity.  Since 

all values of ReL obtained are well below 2300, the flows in both the anode and 

cathode are laminar enabling one to estimate the pressure drop using [95]: 

2
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V

D

L
P

hL

L
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Eq. C-4 is used to find the pressure drops across the anode and cathode flows at 

the maximum and minimum current densities the model uses (i.e. for DMFC 50 

mA/cm
2
 and 500 mA/cm

2
).  The pressure drop through an electrode is given by 

interpolating between the maximum and minimum pressure value. 
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D. Fan Performance Data 
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E. Ragone plot data. 
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