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In this dissertation we study an algorithm for convex optimization problems in conic

form. (Without loss of generality, any convex problem can be written in conic form.) Our

algorithm belongs to the class of interior-point methods (IPMs), which have been associated

with many recent theoretical and algorithmic advances in mathematical optimization. In

an IPM one solves a family of slowly-varying optimization problems that converge in some

sense to the original optimization problem. Each problem in the family depends on a so-

called barrier function that is associated with the problem data. Typically IPMs require

evaluation of the gradient and Hessian of a suitable (“self-concordant”) barrier function. In

some cases such evaluation is expensive; in other cases formulas in closed form for a suitable

barrier function and its derivatives are unknown. We show that even if the gradient and

Hessian of a suitable barrier function are computed inexactly, the resulting IPM can possess



the desirable properties of polynomial iteration complexity and global convergence to the

optimal solution set.

In practice the best IPMs are primal-dual methods, in which a convex problem is solved

together with its dual, which is another convex problem. One downside of existing primal-

dual methods is their need for evaluation of a suitable barrier function, or its derivatives,

for the dual problem. Such evaluation can be even more difficult than that required for the

barrier function associated with the original problem. Our primal-dual IPM does not suffer

from this drawback—it does not require exact evaluation, or even estimates, of a suitable

barrier function for the dual problem.

Given any convex optimization problem, Nesterov and Nemirovski showed that there

exists a suitable barrier function, which they called the universal barrier function. Since

this function and its derivatives may not be available in closed form, we explain how a

Monte Carlo method can be used to estimate the derivatives. We make probabilistic state-

ments regarding the errors in these estimates, and give an upper bound on the minimum

Monte Carlo sample size required to ensure that with high probability, our primal-dual IPM

possesses polynomial iteration complexity and global convergence.
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Chapter 1

Introduction and background

This dissertation studies a certain class of problems in the area of optimization, also known

as mathematical programming. In a typical optimization problem, one minimizes or max-

imizes a given “objective function” of some unknown variables, subject to constraints on

these variables. Each constraint can be considered as a restriction on the variables due

to, say, the limited availability of a certain resource, or a physical law that is relevant to

the particular problem at hand. Resources can be interpreted broadly, and may refer to

raw materials, people, time, money, etc. In practical terms, by solving an optimization

problem, one determines an allocation of resources that yields the highest return for their

use. We shall study continuous optimization problems whose data is convex. That is, the

finite-dimensional set S of admissible variable values is convex, and the objective function

is a convex function on S. Convex optimization problems have a wide range of applications;

such problems can be found in fields such as chemistry, engineering, and economics. As a

concrete example of an application, consider that in the field of optimal control, one seeks

the best way to externally control a dynamical system in such a way that the total energy

of the system is minimized. (Minimization of energy corresponds to a stable state.) A con-

dition for stability is given by the well-known Kalman-Yakubovich-Popov lemma, and can

be verified by solving a certain type of convex problem called a semidefinite optimization

problem.

Due to the wide range of applications of convex optimization problems, it is of interest to
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study efficient and implementable algorithms for such problems. Many of the best practical

algorithms require the accurate evaluation of special auxiliary functions associated with the

problem data. In some cases such accurate evaluations may be difficult or even impossible

to obtain. The effect of using approximate, or inexact, evaluations will be studied. It

will be shown that in the presence of inexact evaluations—which in principle require less

computational effort than exact evaluations—our algorithm inherits the desirable properties

of algorithms that use exact evaluations.

Given an optimization problem, which is called the primal problem, one can formu-

late an associated problem known as the dual problem. The same set of problem data or

“inputs” used to formulate the primal problem is used to describe the dual problem. The

variables, constraints, and objective function of the dual are different from those of the

primal, but the two problems are related in such a way that information about the solution

to the primal can be used to obtain information about the solution to the dual, and vice

versa. More specifically, the dual is constructed in such a way that the optimal values of

the dual variables, which are sometimes called “Lagrange multipliers”, represent marginal

prices associated with the primal constraints. We can similarly think of the optimal pri-

mal variables as marginal prices associated with the dual constraints. The marginal price

associated with a constraint on a certain resource is a measure of how valuable it would

be to allow the use of an additional unit of that resource. Such information is very useful

if the data defining the optimization problem is uncertain, or if, given the solution of an

optimization problem, we wish to solve a problem with perturbed data.

We now describe our problem in more concrete terms. We study convex optimization

problems of the form

v = inf
x

{〈c, x〉 | Ax = b, x ∈ K}, (1.0.1)

where A is a linear operator between finite-dimensional real vector spaces, each of which

is equipped with an inner product 〈·, ·〉, b and c are vectors of the appropriate dimensions,
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and K is a closed convex cone lying in a finite-dimensional real vector space. In words, the

right-hand side of (1.0.1) is the infimum of the linear objective function 〈c, x〉 subject to the

constraints Ax = b and x ∈ K on the components of the vector x. The set of permissible

values of x, {x | Ax = b, x ∈ K}, is called the feasible set of (1.0.1). We seek an optimal

vector x, i.e., a feasible x satisfying v = 〈c, x〉, if such an x exists. We also seek the optimal

value v, an extended real number. We call (1.0.1) a conic convex optimization problem

because its feasible set includes a constraint that x lies inside a convex cone. Since convexity

of the cone will always be assumed in this work, we will refer to such problems simply as

conic optimization problems. We see that the feasible set of (1.0.1) is the intersection of an

affine subspace and a convex cone. Any convex set can be written as such an intersection,

hence any convex optimization problem can be represented in the above conic form. Writing

a problem in conic form does not make it intrinsically easier to solve, but can provide us

with helpful theoretical insights, especially if the dual problem associated with (1.0.1) is

also written as a conic optimization problem.

The study of problems that can be expressed in the form (1.0.1) began in the late 1940s.

At that time, the constraints of (1.0.1) were expressed as linear equality constraints Ax = b

and linear inequality constraints, say, Cx ≥ d, where C is a matrix and d is a vector. (The

inequality between vectors is to be taken componentwise.) This amounts to K being a

polyhedral cone. By a linear change of variables, one can rewrite the constraints so that

K is the nonnegative orthant. Since the objective function is linear and the constraints

are defined by linear functions of the variables, the resulting problems are called linear

optimization or linear programming problems.1 Ever since the 1940s, researchers have spent

much effort studying theoretically and practically efficient algorithms for such problems.

Extensions to nonlinear problems, i.e., instances of (1.0.1) for which K is nonpolyhedral,

have also been the focus of much attention.

With regard to linear optimization problems, for several decades the simplex method

1The term linear programming was originally used to describe such problems, but in the last few decades
the term “programming” has become synonymous with the unrelated field of computer programming. There-
fore we will avoid this term.
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of George Dantzig was the method of choice. Despite much effort, the simplex method has

not been successfully generalized to solve nonlinear problems or linear problems over more

general cones, and so the need arose for algorithms to solve such problems. The foundation

for such algorithms was laid in the 1950s and 1960s with pioneering work on barrier methods

and penalty methods. At that time, a theory of nonlinear optimization had developed to

such an extent that in 1968 Fiacco and McCormick were able to publish a book [11] contain-

ing many foundational principles of optimization that are recognizable in the most efficient

algorithms of today. However the gap between theory and practice was significant, and for

various reasons—some of them related to poor computer implementations—such methods

fell out of favor. Furthermore, despite the theoretical advances that were made in nonlin-

ear optimization, from the standpoint of computational complexity most algorithms were

deficient. In short, until the mid-1980s, all algorithms for solving linear and nonlinear opti-

mization problems were deficient in one of two ways: either their worst-case computational

complexity was exponential, or the running time required to solve even moderately-sized

problem instances was large.

As for convex (linear and nonlinear) optimization problems, these deficiencies have in

many respects been addressed in the last twenty years with the proliferation of interior-

point methods, which are iterative methods producing iterates lying in the (relative) interior

of the feasible set of an optimization problem. One of the main ingredients of interior-point

methods is a so-called barrier function that forces iterates to stay away from the (relative)

boundary of the feasible set, where the set of solutions to (1.0.1) lies. The barrier function

can be considered as a regularization term that becomes prohibitively large at points close

to the boundary of the feasible set. A positive “regularization parameter” µ times such

a function is added to the objective function 〈c, x〉 in (1.0.1), resulting in a regularized

function that is strictly convex on the interior of the feasible set. At each iteration of

an interior-point method, an approximate minimizer of the regularized function over the

feasible set is computed. From one iteration to the next the regularization parameter is

reduced slowly in much the same way as one varies the homotopy parameter in a homotopy
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method. As µ is decreased toward zero, the effect of the regularized function is gradually

decreased, and under certain conditions the sequence of resulting approximate minimizers

converges to an optimal solution of (1.0.1). So instead of solving (1.0.1) directly—which is

difficult—one solves a sequence of optimization problems that converge in an appropriate

sense to (1.0.1). We now address how to solve a particular optimization problem in the

sequence.

The classical method for performing smooth minimization without constraints is New-

ton’s method, but this method is local rather than global. Suppose that Newton’s method

is used to minimize a smooth nondegenerate convex function f of several variables. The

well-known sufficient conditions for local convergence of Newton’s method to a minimizer,

as given by the classical Kantorovich theory, hold in a neighborhood (or “basin of attrac-

tion”) of the minimizer, and quadratic convergence to the minimizer is guaranteed there.2

However the form of the above-mentioned sufficient conditions is problematic if one uses

the “standard” Kantorovich result rather than the “affine invariant” version, because these

conditions are not affine invariant. Yet the Newton iteration is affine invariant with respect

to the coordinate system, in the sense that under an affine change of coordinates the Newton

direction will be unchanged. In addition, regardless of which form of Kantorovich’s result is

used, the sufficient conditions for local convergence involve norms of quantities depending

on the gradient and Hessian of f . The choice of norm is arbitrary, and it was unclear which

norm is to be preferred. As we have already noted, barrier functions give rise to a family

of convex optimization problems that is parameterized by a regularization parameter µ,

which is decreased to zero. Unfortunately as µ approaches zero, the volume of the basin of

attraction of the minimizer shrinks to zero, hence the regularized problems become more

difficult to solve accurately. As µ approaches zero, in order to obtain a unit increase in the

accuracy, the amount of work required increases significantly.

To remedy this situation, Nesterov and Nemirovski in the late 1980s proposed that a

2For a modern survey on the Kantorovich theory and its connection to interior-point methods, see [41]
and the references therein.

5



special norm, dependent on f , be used. They showed that if the Hessian of f is Lipschitz

continuous in the metric induced by itself (see [33, p. 32]), hence the name self-concordant

function, then progress towards the minimizer can be measured with respect to this same

metric. Since we are interested in solving constrained problems such as (1.0.1), rather than

unconstrained problems, a self-concordant function f used to solve (1.0.1) should be related

to K in an appropriate way. For example, f should be a barrier function for K. The

term self-concordant barrier function (for the cone K) is used by Nesterov and Nemirovski

to describe a barrier function that can suitably regularize the original objective function

〈c, x〉 in the presence of the constraint x ∈ K. A “suitable” barrier function gives rise to

interior-point methods having low worst-case iteration complexity.

Since interior-point methods applied to problems of the form (1.0.1) typically involve the

application of Newton’s method to the original objective function 〈c, x〉 plus a multiple µ of a

(self-concordant) barrier function, in principle numerical values of the gradient and Hessian

of this function are required. In this work, we consider the situation where evaluation of the

gradient and Hessian is either impossible or expensive to perform exactly, even if rounding

errors are ignored. For example, in semidefinite optimization, where the variables are not

vectors, but symmetric matrices that are constrained to be positive semidefinite, it may

be necessary to compute inverses or Cholesky decompositions of dense matrices in order to

evaluate the gradient and Hessian of a suitable self-concordant barrier function. Since these

linear algebra tasks are expensive, it may be preferable to instead compute approximate

inverses or approximate Cholesky decompositions, and hence an approximate gradient and

Hessian. In doing so, we choose to sacrifice accuracy in the computed gradient and Hessian

at each iteration, at the cost of additional iterations. The question arises as to how much

accuracy can be sacrificed at each iteration without destroying the polynomial worst-case

iteration complexity of the interior-point method. Roughly speaking, an algorithm has

polynomial worst-case iteration complexity if the number of iterations required to obtain a

near-optimal solution is at most polynomial in the problem size and the number of digits

of accuracy.
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Practically speaking, the most efficient algorithms for conic optimization are primal-dual

interior-point methods, so called because they solve a given primal convex optimization

problem together with its dual, which is also a convex optimization problem. In this work

we study how the errors in evaluating the gradient and Hessian of a self-concordant barrier

for the underlying cone affect the convergence and the iteration complexity of a primal-dual

interior-point algorithm. As our main contribution, we show that if the “relative errors”

in our gradient and Hessian estimates are not too large, then such estimates can be used

in a primal-dual “path-following” algorithm that is globally convergent and has polynomial

worst-case iteration complexity.

To our knowledge, all primal-dual interior-point methods for conic optimization in the

literature require the evaluation—or at least approximate evaluation—of a barrier function

for the dual cone K∗, or the gradient and Hessian of such a function.3 Another contribution

of this work lies in the fact that our primal-dual interior-point method does not require the

evaluation—or even approximate evaluation—of a dual barrier function, or its derivatives.

This is desirable because such quantities are in general difficult to compute. While our

algorithm avoids the evaluation—or approximate evaluation—of dual barrier information,

it is not clear how one can obtain an estimate of the gradient and Hessian of a barrier

function for K itself. (We have already given details as to how this might be done in the

case of semidefinite optimization, but in doing so, we used the fact that simple explicit

formulas for the gradient and Hessian of a suitable self-concordant barrier function are

known. In general this is not the case.) Nesterov and Nemirovski showed in [33] that

for every pointed closed convex cone K having nonempty interior, there exists a cone-

dependent universal barrier function F , which is a self-concordant barrier for K. However

F was written in terms of a multidimensional integral whose domain of integration depends

on K∗. In [33, p. 50] Nesterov and Nemirovski write, “[T]he universal barrier usually

is too complicated to be used in interior-point algorithms, so [the result proving that the

universal barrier function is a self-concordant barrier, and gives rise to theoretically efficient

3For optimization problems in which K = K∗, a self-concordant barrier for K can also be used for K∗.
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interior-point methods] should be regarded as nothing but an existence theorem.” In other

words, although it was shown that various classes of interior-point methods generate a near-

optimal solution in a polynomial number of iterations, it is not known if the computational

effort required at each iteration is polynomial—or even finite—since only for some classes

of convex optimization problems has it been established that the gradient and Hessian of

F can be evaluated using polynomial or finite computational effort. For example, in the

case that K is the nonnegative orthant in Rn, F takes a particularly simple form, and its

gradient and Hessian can be computed in O(n) arithmetic operations.

Despite the difficulty mentioned by Nesterov and Nemirovski, we show in the second

part of this work how to use their universal barrier function in an interior-point method,

even when the multidimensional integral defining this function cannot be computed exactly.

The basic idea is to use a Monte Carlo method to estimate this integral, and hence the

barrier gradient and Hessian. We investigate the properties of such gradient and Hessian

estimates, and give probabilistic error bounds for these estimates. We indicate how large the

sample size should be in order that with “high probability” the errors in the gradient and

Hessian estimates are small enough for the estimates to be used in our inexact interior-point

algorithm.

This work is organized as follows. We first give notation and preliminaries in Chap-

ter 2. In Chapter 3 we introduce and study properties of the class of self-concordant barrier

functions. We also discuss an important class of self-concordant barrier functions for cones

known as logarithmically homogeneous barrier functions, explaining the properties of these

functions that play a key role in interior-point methods for conic optimization. The main

contribution of this work is in Chapter 4. There we state and analyze a primal-dual interior-

point method for conic problems, which uses inexact values of the gradient and Hessian of

a self-concordant barrier for the underlying cone. We then show how accurate the gradient

and Hessian estimates need to be in order for the algorithm to be globally convergent and

to converge in a polynomial number of iterations. We study three types of perturbation (or

“error”) in the exact gradient and Hessian: unstructured perturbations, structured pertur-
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bations (meaning that the errors in the gradient and Hessian are related in a certain way),

and no perturbations (meaning that the exact gradient and Hessian are used). In each case

our interior-point method solves the primal and dual conic optimization problems without

needing to evaluate—or even approximately evaluate—a barrier function for the dual cone.

In Chapter 5 we study an application in which a Monte Carlo method is used to estimate

the gradient and Hessian of the above-mentioned universal barrier function. These estimates

may then be used in our inexact interior-point method. After making some introductory

comments in Section 5.1, we study in Section 5.2 the universal barrier function of Nesterov

and Nemirovski. We present several equivalent expressions for this function, and for several

cones of interest, give “explicit” formulas for the universal barrier function, its gradient and

its Hessian. In Section 5.3 some background to Monte Carlo methods is given in preparation

for later analysis. In Section 5.4 we study an application of the structured perturbations

discussed in Chapter 4. Specifically, we estimate the gradient and Hessian of the universal

barrier function using a Monte Carlo method. In accordance with the standard theory of

Monte Carlo error estimates, the expected error in our Monte Carlo estimates decreases

as the sample size increases. We give a minimum sample size such that the approximate

gradient and Hessian are suitable for use in our inexact interior-point algorithm, where

“suitable” means that with high probability, the algorithm is globally convergent and has

polynomial iteration complexity. Finally in Chapter 6 we present conclusions and give some

directions for future research.
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Chapter 2

Notation and Preliminaries

2.1 Linear algebra

Denote by Rn the n-dimensional real Euclidean vector space equipped with the inner prod-

uct 〈x, y〉 = xT y, where xT denotes the transpose of the vector x. This inner product

induces the Euclidean norm (also called the vector 2-norm) ‖x‖2 := (xTx)1/2 = (
∑

j x
2
j )

1/2,

where xj is the j-th element of the vector x. We will also refer to two other vector norms:

‖x‖1 :=
∑

j |xj | and ‖x‖∞ := maxj |xj |. Let Rm×n denote the set of real matrices of order

m by n, and denote by In the identity matrix of order n. When the order of an identity

matrix is clear from the context, we omit the subscript. The rank of a matrix is the number

of linearly independent rows, which is equal to the number of linearly independent columns.

The matrix A is said to have full row rank if all rows of A are linearly independent.

Let A be a real square matrix. If x is a nonzero (possibly complex-valued) vector

satisfying Ax = λx for some (possibly complex) number λ, then x is said to be an eigenvector

of A associated with the eigenvalue λ. A square matrix of order n has n eigenvalues,

counting multiplicity. If A is a symmetric matrix, then all eigenvalues of A are real. A

symmetric matrix A is said to be positive semidefinite if yTAy ≥ 0 for every vector y of the

appropriate dimension. Equivalently, all eigenvalues of A are nonnegative. If yTAy > 0 for

every nonzero vector y, then A is said to be positive definite. Equivalently, all eigenvalues

of A are positive. If A has some positive and some negative eigenvalues, then A is said to
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be an indefinite matrix. The sum of positive semidefinite (respectively positive definite)

matrices is also positive semidefinite (positive definite).

The matrix 2-norm of the real square matrix A is the matrix norm induced by the vector

2-norm:

‖A‖2 = sup
x6=0

‖Ax‖2

‖x‖2
. (2.1.1)

Let λ1(A), λ2(A), · · · denote the distinct eigenvalues of the (not necessarily symmetric)

matrix A, and denote the modulus of the complex number λ by |λ|. Let xi be an eigenvector

of A associated with the eigenvalue λi(A). It follows from (2.1.1) that

‖A‖2 ≥ max
i

‖Axi‖2

‖xi‖2
= max

i

‖λi(A)xi‖2

‖xi‖2
= max

i
|λi(A)|. (2.1.2)

Now let λ be a eigenvalue of ATA. The matrix ATA is symmetric, and is also positive

semidefinite since yT (ATA)y = (Ay)T (Ay) = ‖Ay‖2
2 ≥ 0 for every y of the appropriate

dimension. Hence λ ≥ 0. By definition, ATAx = λx for some eigenvector x, so ‖Ax‖2
2 =

xTATAx = xT (λx) = λ‖x‖2
2. It follows from (2.1.1) that ‖A‖2

2 = maxi λi(A
TA). This

result does not assume A is symmetric, but when A is symmetric, the maximum eigenvalue

of ATA can be written as maxi λi(A
TA) = maxi λi(A

2) = maxi |λi(A)|2. So when A is

symmetric, the inequality in (2.1.2) is tight:

‖A‖2 = max
i

|λi(A)|. (2.1.3)

We denote the minimum and maximum eigenvalues of a matrix A having all real eigenvalues

by λmin(A) and λmax(A) respectively. It can be shown that for every vector x of the

appropriate dimension,

λmin(A)xTx ≤ xTAx ≤ λmax(A)xTx.
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The left-hand and right-hand inequalities are tight when x is an eigenvector corresponding to

λmin(A) and λmax(A) respectively. Suppose now that A is nonsingular. Then its eigenvalues

are nonzero, so Ax = λx implies λ−1x = A−1x. Hence

λmax(A
−1) =

1

λmin(A)
.

Given a symmetric positive definite matrix A, there exists a unique symmetric positive

definite square root of A, which we denote by A1/2: A = A1/2A1/2. We will also write

A−1/2 to denote the unique positive definite square root of A−1. Let x be an eigenvector

corresponding to an eigenvalue λ of A1/2. Then Ax = A1/2(A1/2x) = A1/2(λx) = λ2x.

Hence λ2 is an eigenvalue of A. It follows that

λmin(A
1/2) = (λmin(A))1/2.

We now give some relations between the 2-norms of various matrices.

Lemma 2.1.1. Let M,P be symmetric matrices of the same order. We have:

(i)

‖MP 2M‖2 = ‖MP‖2
2,

(ii)

‖MPM‖2 ≤ ‖M2P‖2.

(iii) If M is also nonsingular,

‖P‖2 ≤ ‖M−1PM‖2.

Proof. If M and P are symmetric, then MP 2M = (MP )(MP )T , which is symmetric and

positive semidefinite. So

‖MP 2M‖2 = λmax(MP 2M) = λmax((MP )(MP )T ) = ‖MP‖2
2,

12



proving (i). To prove (ii), note that the symmetry of M and P guarantees MPM is also

symmetric. Assume that M is nonsingular. The eigenvalues of a matrix are unaffected

by a similarity transformation, viz., λi(MAM−1) = λi(A) for any A of the appropriate

dimensions. Using this fact as well as (2.1.3) and (2.1.2), we have

‖MPM‖2 = max
i

|λi(MPM)| = max
i

|λi(MMPMM−1)| = max
i

|λi(M2P )| ≤ ‖M2P‖2,

as required. If M is singular, then the result holds with M replaced by M + εI, for all

sufficiently small positive ε. Taking the limit as ε→ 0, we obtain the required result, since

the maximum eigenvalue of a matrix is a continuous function of the matrix components.

The result in (iii) follows from (ii) after replacing M and P in (ii) by M−1 and MPM

respectively.

The next result, which follows from, e.g., [18, Exercise (8.1.16), p. 491], is useful for

bounding the norm of a matrix for which only bounds on the components are known.

Given square matrices A and B of the same dimensions, we write A ≤ B to mean that

B − A is a nonnegative matrix, i.e., Aij ≤ Bij for all i and j. We also write |A| to denote

the componentwise absolute value of the matrix A.

Lemma 2.1.2. Let B ∈ Rn×n be a nonnegative matrix. Then

‖B‖2 = max
A∈Rn×n

{‖A‖2 | |A| ≤ B}.

Lemma 2.1.2 holds even when B is nonsquare, but we do not require this more general

result.
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2.2 Convex analysis and cones

2.2.1 Convexity

This work is heavily related to convex functions and convex sets, the definitions of which we

review now. We use ⊂ to denote strict set inclusion and ⊆ to denote nonstrict inclusion. A

set S ⊆ Rn is said to be a convex set if for any two points in S, the line segment connecting

these points lies entirely in S. Mathematically, for all scalars β ∈ [0, 1],

x, y ∈ S =⇒ βx+ (1 − β)y ∈ S.

Given a convex set S ⊆ Rn, a function f : S → R is said to be a convex function on S if

for all β ∈ [0, 1],

x, y ∈ S =⇒ f(βx+ (1 − β)y) ≤ βf(x) + (1 − β)f(y).

Geometrically, f never lies above its secants. If f is twice continuously differentiable on S,

then f is convex on S if and only if its Hessian, i.e., the matrix of mixed second partial

derivatives of f , is positive semidefinite at all points in S whose neighborhood is contained

in S. We denote the Hessian of f by f ′′ or ∇2f . Let A be a symmetric matrix. Since the

Hessian of the quadratic form f(x) = xTAx is A, the function f(x) is convex (everywhere)

if A is positive semidefinite. The function f is said to be strictly convex on S if f lies strictly

below all of its secants: for all β ∈ (0, 1),

x, y ∈ S =⇒ f(βx+ (1 − β)y) < βf(x) + (1 − β)f(y).

The vector of first partial derivatives of f is called the gradient of f , denoted by f ′ or ∇f .

A characterization of convex functions in terms of the gradient of f is as follows. Suppose

that f is continuously differentiable at all points in S whose neighborhood is contained in
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S. Then f is convex on S if and only if

f(x+ y) ≥ f(x) + 〈y,∇f(x)〉

for all x and y such that a neighborhood of x is contained in S, and x+ y ∈ S.

2.2.2 Elementary topology on sets

We now introduce some topological notions on sets. A nonempty set L ⊆ Rn that is

closed under addition and real scalar multiplication is said to be a linear subspace of Rn.

Geometrically, L is a flat manifold passing through the origin 0 ∈ Rn. Now let S + T :=

{s + t | s ∈ S, t ∈ T} represent the Minkowski sum of the sets S and T . Given a vector

x ∈ Rn and a linear subspace L ⊆ Rn, the set x + L = {x + y | y ∈ L} is said to be an

affine subspace of Rn. The smallest affine subspace x+L containing a given set S ⊆ Rn is

called the affine hull of S, denoted by aff(S). It can be shown that

aff(S) =

{

∑

i

αix
i

∣

∣

∣

∣

∑

i

αi = 1, αi ∈ R, xi ∈ S ∀ i
}

.

The convex hull of a set S, denoted by conv(S), is the smallest convex set containing S:

conv(S) =

{

∑

i

αix
i

∣

∣

∣

∣

∑

i

αi = 1, αi ≥ 0, xi ∈ S ∀ i
}

.

It is the set of convex combinations of points in S. If S ⊆ Rn, then the summations in the

definition of conv(S) need not consist of more than n + 1 points in order to generate the

convex hull.

Let B = {x ∈ Rn | ‖x‖ ≤ 1} be the unit ball in Rn, where ‖ · ‖ is some norm on Rn.

The interior of S, denoted by int(S), is given by

int(S) = {x ∈ S | (x+ εB) ⊆ S for some ε > 0}.
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In words, int(S) is the set of points in S for which a neighborhood is contained in S. (We

can think of x+ εB as being a neighborhood of x.) If int(S) = S, then S is said to be open.

The relative interior of S, denoted by ri(S), is the interior of S when S is regarded as a

subset of its affine hull:

ri(S) = {x ∈ aff(S) | (x+ εB) ∩ aff(S) ⊆ S for some ε > 0}.

If S is a nonempty convex set, then ri(S) and S have the same affine hull, so ri(S) is

nonempty [44, Theorem 6.2]. The closure of S, denoted by cl(S), is given by

cl(S) = {x | there exists a sequence of points in S converging to x}.

If cl(S) = S, then S is said to be closed. We will denote the boundary of S by bnd(S). It

is the set of points lying in the closure of S but not its interior. Similarly we define the

relative boundary of S to be the set of points lying in cl(S) but not in ri(S).

2.2.3 Cones

A cone K ⊆ Rn is a nonempty set such that αx ∈ K for all scalars α ≥ 0 and x ∈ K. Hence

a cone always includes the origin.1 If K is also a convex set, K is called a convex cone. A

cone whose interior is nonempty is said to be solid. IfK contains no lines, i.e.,K∩−K = {0},

then K is said to be pointed. A cone that is closed, convex, solid, and pointed, is said to be

a full cone.2

Given two symmetric matrices M1 and M2, we will write M1 ¹M2 or M2 ºM1 if and

only if M2 −M1 is a positive semidefinite matrix. We will write M1 ≺ M2 or M2 Â M1

if and only if M2 −M1 is a positive definite matrix. These relations are partial orderings

with respect to the cone of positive semidefinite matrices, which is a full cone.3 That is,

1Some authors only require that αx ∈ K for all α > 0, rather than for all α ≥ 0; they do not require that
the origin lie inside a cone.

2Some authors call such a cone proper or regular.

3It is not difficult to verify that cone of positive semidefinite matrices is closed and convex. It is also solid
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the relations are reflexive, transitive, and anti-symmetric.

The dual of a set S ⊆ Rn is the set of vectors making a nonnegative inner product with

every vector in S:

S∗ = {y | 〈x, y〉 ≥ 0 ∀x ∈ S}.

It can be easily verified that the dual of any set is a closed convex cone, so we may refer to

S∗ as the dual cone of S. Taking the dual of the dual does not always recover the original

set. Let S∗∗ := (S∗)∗ denote the double dual of S. It is shown in, e.g., [3, Theorem 2.2],

that

S = S∗∗ ⇐⇒ S is a closed convex cone. (2.2.1)

If for some inner product 〈·, ·〉, K = K∗, then the set K is said to be self-dual. It is not

difficult to show that all self-dual sets are full cones. In the case that K is a pointed closed

convex cone,

int(K∗) = {y | 〈x, y〉 > 0 ∀ 0 6= x ∈ K},

so that K∗ is solid, and it can be shown from the definitions that when K is a solid closed

convex cone, K∗ is pointed. It follows that if K is a full cone, then K∗ is also. In Figure 2.1

we give two examples of sets in R2 with their dual cones.

In some contexts it will be convenient for us to consider matrices as linear operators.

A full rank matrix A ∈ Rm×n can be considered an onto linear operator A : Rn → Rm,

meaning that A is onto Rm. The adjoint of a linear operator A : Rn → Rm is denoted by

A∗, which maps Rm to Rn, and is defined by 〈x,A∗y〉 = 〈Ax, y〉 for all x ∈ Rn and y ∈ Rm.

It will be clear from the context whether ∗ denotes the dual cone or an adjoint operator.

Let A be a linear operator and S a set lying in the domain of A. Define A(S) = {Ax | x ∈

because its interior, being the set of positive definite matrices, is nonempty. Finally, the cone is pointed
because if M and −M are both positive semidefinite matrices, then all eigenvalues of M and −M are
nonnegative. Hence they are all zero.
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0
S∗

0

S

S∗

S

Figure 2.1: For two two-dimensional sets S, the dual S∗ is shown. In
the first figure only part of the (unbounded) dual cone is shown, and
in the second figure only part of the cone S and its dual are shown.

S} to be the linear image of S (under A). The dual of the linear image A(S) is given by

A(S)∗ = {y | 〈y, z〉 ≥ 0 ∀ z ∈ A(S)}

= {y | 〈y,Ax〉 ≥ 0 ∀x ∈ S}

= {y | 〈A∗y, x〉 ≥ 0 ∀x ∈ S}

= {y | A∗y ∈ S∗}. (2.2.2)

It is of interest in convex analysis and optimization to know when the linear image of a

closed convex cone is closed. Related to this issue is the family of theorems of the alternative,

which say that exactly one of two systems of linear or nonlinear inequalities or inclusions

has a solution. These theorems come in many different forms; for a collection of theorems

of the alternative involving only linear equalities and inequalities, see [27, p. 34]. Perhaps

the most well known is Farkas’ lemma [7], which we now give.

Lemma 2.2.1. Let A ∈ Rm×n and b ∈ Rm. Exactly one of the following two systems of

equalities and inequalities has a solution:

(a) Ax = b and x ≥ 0;

(b) AT y ≥ 0 and bT y < 0.

A cone is said to be polyhedral if it can written as the set of points satisfying a finite number

of linear equalities and nonstrict inequalities. Hence a polyhedral cone can be written as
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a linear image of the nonnegative orthant Rn
+ ≡ {x ∈ Rn | x ≥ 0}. Farkas’ lemma relies

on the fact that any linear image of a polyhedral cone is closed. For nonpolyhedral closed

convex cones it is not always the case that a linear image results in a closed set. An example

of this is given by A =
[√

2 −2 0√
2 0 −2

]

and K = {x ∈ R3 | x1 ≥ (x2
2 + x2

3)
1/2}: it can be verified

that
[

1+ε
−1

]

∈ A(K) for each ε > 0, yet
[

1
−1

]

/∈ A(K). We now generalize Lemma 2.2.1 to

involve (possibly nonpolyhedral) convex cones; cf. [3, Theorem 3.1]. Note the assumption

on the closedness of the linear image.

Lemma 2.2.2. Let A : Rn → Rm, b ∈ Rm, and let K ⊆ Rn be a closed convex cone.

Suppose that the convex cone A(K) is closed. Then exactly one of the following two systems

has a solution:

(a) Ax = b and x ∈ K;

(b) A∗y ∈ K∗ and 〈b, y〉 < 0.

Proof. The statement in (a) is equivalent to b ∈ A(K), which in view of the closedness of

A(K) and (2.2.1), is equivalent to b ∈ cl(A(K)) = A(K)∗∗. By definition, this means that

〈b, y〉 ≥ 0 for all y ∈ A(K)∗, which in light of (2.2.2) is equivalent to 〈b, y〉 ≥ 0 for all y such

that A∗y ∈ K∗. The last statement is the negation of (b). Since (a) and (b) are mutually

exclusive alternatives, exactly one of (a) and (b) holds.

Although the closedness condition in Lemma 2.2.2 may not necessarily hold if K is nonpoly-

hedral, an “asymptotic” Farkas Lemma that is slightly weaker than Lemma 2.2.2 always

holds; see e.g., [43, Theorem 3.2.3]. Conditions under which the linear image of a closed

convex set is closed can be found, e.g., in [38] and the references therein.

2.3 Convex optimization

In this section we explain some fundamentals of convex optimization. The problem data or

“input” for a generic convex optimization problem consists of a closed convex set S ⊆ Rn

and a convex function f : Rn → R. We seek the minimum value of f over S, and a vector
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x, if one exists, for which the minimum is attained. Mathematically we may write this as

v = inf
x∈Rn

{f(x) | x ∈ S}. (2.3.1)

The function f is known as the objective function and the set S is called the feasible set.4

A feasible point/vector x for (2.3.1) is one satisfying x ∈ S; if x /∈ S, then x is said to

be infeasible for (2.3.1). The vector x contains n unknown variables. The infimum v is

called the optimal value of (2.3.1). We seek feasible points x such that v = f(x), i.e., the

optimal value is attained. The set of such points is called the optimal solution set of

(2.3.1). In the case that for any real number δ there exists an x ∈ S with f(x) < δ, we

say that (2.3.1) is unbounded and set the optimal value to be v = −∞. If the set S is

empty, we adopt the convention that v = +∞. There is no loss of generality in considering

minimization problems as opposed to maximization problems, since sup{f(x) | x ∈ S} =

− inf{−f(x) | x ∈ S}. If in (2.3.1) the “inf” is replaced by “sup”, and the resulting

problem is unbounded, we use the convention that v = +∞. If instead S is empty, then we

set v = −∞.

It will be convenient to consider convex optimizations in a different form from that in

(2.3.1)—one involving a convex cone. Firstly, we can assume without loss of generality that

the objective function in (2.3.1) is linear. That is, f(x) = 〈α, x〉 for some constant vector α.

If f is not linear, we may add an additional constraint f(x) ≤ y to the existing constraint

x ∈ S, where y ∈ R is a new variable, and minimize y instead of f(x). So we have rewritten

(2.3.1) as

v = inf
x∈Rn

y∈R
{y | f(x) ≤ y, x ∈ S}. (2.3.2)

4Sometimes the feasible set is written as a finite number of inequality constraints gi(x) ≤ 0, i = 1, · · · , p,
where each gi : Rn → R is a convex (possible nonlinear) function, and some linear equality constraints.
There is no loss of generality in writing all constraints in ≤ form, since constraints of ≥ form can easily
be converted to ≤ form. In fact the gi need not be convex; what matters is that the points satisfying all
constraints—however they are described—form a convex set.
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The objective function of (2.3.2) is clearly convex, and the feasible set is convex since it is

the intersection of two convex sets: the epigraph {(x, y) | f(x) ≤ y} of f , whose convexity

follows from that of f , and S. Hence (2.3.2) is a convex optimization problem. In order for

(x, y) to be feasible for (2.3.2), y can be decreased only as far as the infimum of f(x) over

x ∈ S. Therefore the optimal value and the x components of the optimal solution set for

(2.3.2) are the same as those in (2.3.1).

It is preferable in some cases to write the feasible set in (2.3.2) as a “cone constraint”,

i.e., a constraint of the form x ∈ K where K is a convex cone. This is done as follows.

Given a closed convex set S̃ ⊆ Rp, define the cone fitted to S̃ by

K(S̃) = cl{(z, t) | z/t ∈ S̃, t > 0} ≡ cl{t(z, 1) | z ∈ S̃, t > 0} ⊆ Rp+1. (2.3.3)

The cone fitted to S̃ is an embedding of S̃ into Rp+1, and S̃ is the intersection of K(S̃)

with the affine subspace Rn × {t | t = 1}. It can be easily verified that K(S̃) is a closed

convex cone, so we have written the convex feasible set of (2.3.2) as the intersection of a

closed convex cone and an affine subspace. Hence any convex optimization problem can be

written in the so-called conic form:

vP = inf
x∈Rn

{〈c, x〉 | Ax = b, x ∈ K}, (2.3.4)

where A : Rn → Rm, b ∈ Rm, c ∈ Rn, and K ⊆ Rn is a closed convex cone. We call this

formulation a conic (convex) optimization problem because the feasible set involves a convex

cone. We may assume without loss of generality that the operator A is onto. If this is not

the case, then we can remove redundant constraints in the system Ax = b, reducing it to a

smaller system whose linear operator is onto. We may also assume without loss of generality

that the closed convex cone K is pointed and solid. If K is not pointed, i.e., contains a line,

then it can be written as the (Minkowski) sum of a linear subspace and a pointed cone; see

e.g., [44, p. 65]. As an example, the non-pointed closed convex cone {x ∈ R2 | x2 ≥ 0} is

the sum of the line x2 = 0 and the nonnegative orthant R2
+, the latter being a full cone.
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The existing linear equality constraints will be changed as a result of this reformulation.

Now suppose K ⊆ Rn is not solid. Then K is solid as a subset of the span of the points

in K, and this subset is a linear subspace having dimension, say, k < n. So (2.3.4) can be

rewritten as a problem involving the cone constraint x′ ∈ K ′ ⊆ Rk, where K ′ is a solid

cone. The existing linear equality constraints will be changed as a result of this change of

variables.

The notion of duality is fundamental to the study of optimization problems. The basic

idea is that for a given (not necessarily convex) optimization problem, which is called the

primal problem, one can associate with it a dual optimization problem. Many types of

dual problem exist. We will study perhaps the most widely known—the Lagrangian dual,

but this dual is equivalent to others such as the Fenchel dual. A primal problem and its

Lagrangian dual are linked through the Lagrangian function. The primal problem (2.3.4)

can be written as the minimax problem

inf
x∈Rn

sup
w∈Rm

s∈K∗

L(x,w, s), (2.3.5)

where

L(x,w, s) = 〈c, x〉 − 〈w,Ax− b〉 − 〈s, x〉 (2.3.6)

is the Lagrangian associated with (2.3.4). Let us verify this assertion. For fixed x ∈ K,

sup
w∈Rm

s∈K∗

L(x,w, s) = 〈c, x〉 + sup
w∈Rm

−〈w,Ax− b〉 + sup
s∈K∗

−〈s, x〉

= 〈c, x〉 +















0 : Ax = b

+∞ : otherwise

+















0 : x ∈ X := {x | 〈s, x〉 ≥ 0 ∀ s ∈ K∗}

+∞ : otherwise.

(2.3.7)

The set X is seen to be K∗∗ by definition of a dual cone. From (2.2.1) we have K∗∗ = K.

22



Hence

sup
w∈Rm

s∈K∗

L(x,w, s) =















〈c, x〉 : Ax = b, x ∈ K

+∞ : otherwise,

giving

inf
x∈Rn

sup
w∈Rm

s∈K∗

L(x,w, s) = inf
x∈Rn

{〈c, x〉 | Ax = b, x ∈ K},

which is (2.3.4). The Lagrangian dual of (2.3.4) is defined to be the associated maximin

problem, i.e., (2.3.5) with the inf and sup reversed:

sup
w∈Rm

s∈K∗

inf
x∈Rn

L(x,w, s) = sup
w∈Rm

s∈K∗

inf
x∈Rn

〈c−A∗w − s, x〉 + 〈b, w〉

= sup
w∈Rm

s∈K∗















〈b, w〉 : c−A∗w − s = 0

−∞ : otherwise.

It can be verified in a similar way that the dual of the Lagrangian dual is the primal problem,

so the following pair of problems are dual to each other:

vP = inf
x

{〈c, x〉 | Ax = b, x ∈ K}, (2.3.8)

vD = sup
w,s

{〈b, w〉 | A∗w + s = c, s ∈ K∗}. (2.3.9)

We now see the first advantage of using a conic formulation: symmetry between the primal

problem, which involves optimization over the cone K, and the dual problem, which involves

optimization over the dual cone K∗. Since K∗ is a closed convex cone, (2.3.9) is also a

convex optimization problem. The “structure” of the cones K and K∗ play an important

role in algorithms. We should point out that writing a pair of dual convex optimization

problems in the conic form (2.3.8)–(2.3.9) does not make them intrinsically easier to solve.
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However the symmetry between the two conic problems can assist us both theoretically

and algorithmically.5 We will refer to the constraints Ax = b and x ∈ K as the primal

constraints, and the constraints A∗w + s = c and s ∈ K∗ as the dual constraints. The

components of the vector x will be called the primal variables, and the components of the

vectors w and s will be called the dual variables.

We give three important special cases of the pair (2.3.8)–(2.3.9). In the case that

K = Rn
+ is the nonnegative orthant, (2.3.8) and (2.3.9) are called linear optimization

problems. The nonnegative orthant is a self-dual cone (with respect to the Euclidean inner

product), so the constraints x ∈ K and s ∈ K∗ amount to x ≥ 0 and s ≥ 0 respectively.

Let x1:n−1 be the vector x ∈ Rn with the last component removed, so ‖x1:n−1‖2 =

(x2
1 + · · · + x2

n−1)
1/2. If K is the second-order cone {x | xn ≥ ‖x1:n−1‖2}, then (2.3.8)

and (2.3.9) are called second-order cone optimization problems.6 It can be shown that the

second-order cone is self-dual, hence it is a full cone. For a recent survey on second-order

cone optimization problems, see [1].

Let S n̂ be the vector space of symmetric matrices of order n̂ equipped with the trace

inner product 〈X1, X2〉 = trace(X1X2) for X1, X2 ∈ S n̂. If K is the positive semidefinite

cone {X ∈ S n̂ | X º 0}, and n = n̂(n̂+1)
2 , then (2.3.8) and (2.3.9) are called semidefinite

optimization problems. The vectors x and s can be considered as matrices in S n̂ or vectors

in Rn. The positive semidefinite cone is self-dual under the trace inner product. For recent

surveys on semidefinite optimization problems, see [57, 52].

We have explained notions of feasibility and optimality for the generic convex optimiza-

tion problem (2.3.1), but we now formally define these and other concepts for the pair

(2.3.8)–(2.3.9) since we will focus our attention on this pair.

Definition 2.3.1 (Feasibility, strong feasibility7). For the primal-dual pair of conic

5In contrast to (2.3.9), the Lagrangian dual of a convex problem whose feasible set is written as a finite
number of linear equality and nonlinear inequality constraints sometimes cannot be written down in a simple
form. The reason is that in the maximin formulation of the dual problem, it is sometimes not possible to
find the optimal value of the inner optimization problem infx L(x, w, s) explicitly in terms of w and s.

6The second-order cone is also known as the Lorentz cone or ice-cream cone.

7Some authors refer to strong feasibility as strict feasibility.
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problems (2.3.8)–(2.3.9):

(a) The point x is said to be feasible for (2.3.8) if Ax = b and x ∈ K;

(b) The pair (w, s) is said to be feasible for (2.3.9) if A∗w + s = c and s ∈ K∗;

(c) The point x is said to be strongly feasible for (2.3.8) if Ax = b and x ∈ int(K);

(d) The pair (w, s) is said to be strongly feasible for (2.3.9) if A∗w+s = c and s ∈ int(K∗);

(e) A triple (x,w, s) is said to be a (strongly) feasible primal-dual point if x is (strongly)

feasible for (2.3.8) and (w, s) is (strongly) feasible for (2.3.9);

(f) If there exists a (strongly) feasible point for (2.3.8), (2.3.8) is said to be a (strongly)

feasible problem. Similarly for (2.3.9).

It can be shown that for any sets X and Y and any function F : X×Y → R, the inequal-

ity infx∈X supy∈Y F (x, y) ≥ supy∈Y infx∈X F (x, y) holds. It follows that the optimal values

of (2.3.8) and (2.3.9) are related by vP ≥ vD. This result is known as weak duality. Recall

that the optimal values are extended real numbers, i.e., they can take on the values ±∞.

The (possibly infinite) quantity vP − vD is called the duality gap of the pair (2.3.8)–(2.3.9).

It is common to also refer to the duality gap associated with a primal-dual triple (x,w, s)

as the difference between the primal and dual objective function values, 〈c, x〉 − 〈b, w〉. If

(x,w, s) is a feasible primal-dual point, then the (nonnegative) duality gap associated with

(x,w, s) is given by

〈c, x〉 − 〈b, w〉 = 〈A∗w + s, x〉 − 〈Ax,w〉

= 〈A∗w, x〉 + 〈s, x〉 − 〈Ax,w〉

= 〈A∗w, x〉 + 〈s, x〉 − 〈x,A∗w〉

= 〈s, x〉.

Definition 2.3.2 (Optimality). (a) A feasible point x for (2.3.8) is said to be optimal

for (2.3.8) if vP = 〈c, x〉.

(b) A feasible pair (w, s) for (2.3.9) is said to be optimal for (2.3.9) if vD = 〈b, w〉.

(c) A triple (x,w, s) is said to be an optimal primal-dual solution if x is optimal for (2.3.8)
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and (w, s) is optimal for (2.3.9).

Although we might in an application be interested in solving only one conic optimization

problem, say (2.3.8), the most efficient practical algorithms solve (2.3.8) together with

(2.3.9). The information gained by solving (2.3.9) is used in helping solve (2.3.8), and vice

versa.

When solving optimization problems, one usually desires global optimal solutions, i.e., so-

lutions for which the objective function is the best over all possible feasible points. Some-

times this is too ambitious, and instead one has to settle for local optimal solutions that give

the best objective function value only locally. For convex optimization problems the set of

locally optimal solutions is a (possibly empty) convex set, and all local optimal solutions

are global optimal solutions.

Although all pairs of dual optimization problems satisfy weak duality (vP ≥ vD), only

some satisfy a stronger property known as strong duality.

Definition 2.3.3 (Strong duality). If the problems (2.3.8) and (2.3.9) are such that

vP = vD, and both optimal values are attained, then strong duality is said to hold for

(2.3.8)–(2.3.9).

It can be shown using Farkas’ lemma (Lemma 2.2.1) that whenK is the nonnegative orthant,

if either (2.3.8) or (2.3.9) is feasible, then strong duality holds. This is not necessarily the

case if K is nonpolyhedral. In fact it was shown in [49] that if K is any nonpolyhedral closed

convex cone, then there exists a triple (A, b, c) in (2.3.8)–(2.3.9) such that either (2.3.8) or

(2.3.9) is feasible, yet the duality gap is nonzero. Many examples of such problems can be

found in the literature. See e.g., [26, Section 6.1], [43, Section 3.2], and [52, Section 4].

If the duality gap vP−vD is zero, then the optimal values of the dual variables—whenever

they exist—measure the sensitivity of the primal objective function 〈c, x〉 to changes in the

primal constraint data. For this reason, among others, it is desirable for a pair of dual

convex optimization problems to have a zero duality gap. It would also be desirable to

know whether this is the case before solving (2.3.8)–(2.3.9). In order to ensure a priori
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that a zero duality gap occurs, we usually must assume that the data (A, b, c,K) defining

these problems satisfies a regularity condition called a constraint qualification. Roughly

speaking a constraint qualification for a particular optimization problem is a condition on

the constraints that ensures the feasible set is regular is a certain sense. Many types of

constraint qualification are known; see e.g., [2]. We will use only one, which we now define

formally.

Definition 2.3.4 (Generalized Slater constraint qualification). The generalized Slater

constraint qualification (GSCQ) is said to hold for (2.3.8) if this problem is strongly feasible.

Similarly for (2.3.9).

A sufficient condition for strong duality of (2.3.8)–(2.3.9) is that both problems satisfy the

GSCQ. Moreover, under this condition, the optimal primal-dual solution set is nonempty.

This set is also bounded under the further assumption that A is onto; for a proof, see

e.g., [30, Theorem 1]. If the GSCQ holds for only one of the two problems, then a zero

duality gap still results, but the optimal values need not both be attained, although at least

one value is attained. Given a full cone K, if A is onto and the GSCQ holds for both (2.3.8)

and (2.3.9), then the optimal primal-dual solution set is stable with respect to perturbations

in A, b, and c. In particular, if the perturbations in A, b, and c are sufficiently small, then

the optimal primal-dual solution set remains nonempty and bounded, and the primal and

dual optimal values are continuous functions of A, b, and c.

Of interest are conditions that guarantee a zero duality gap regardless of the perturba-

tions in the primal and dual objective function and right-hand side, b and c. Such a notion

was called universal duality in [48]. The sufficient conditions (on A and K) for universal

duality were also shown in [48] to be necessary. Furthermore, for fixed K, such conditions

were shown to hold generically in both a metric and a topological sense.
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2.4 Miscellaneous preliminaries

In this section we state other preliminary results that will be used elsewhere in this work.

First we give the Cauchy-Schwarz inequality on the inner product space of real square

integrable functions, and also a discretized version of this inequality.

Lemma 2.4.1. (a) Let a1 : Y → R and a2 : Y → R be real square integrable functions,

i.e.,
∫

Y ai(y)
2 <∞ for each i. Then

(∫

Y
|a1(y) a2(y)| dy

)2

≤
(∫

Y
a1(y)

2 dy

) (∫

Y
a2(y)

2 dy

)

.

(b) Let {ak} and {bk} be square summable sequences, i.e.,
∑

k a
2
k < ∞ and

∑

k b
2
k < ∞.

Then

(

∑

k

|akbk|
)2

≤
∑

k

a2
k

∑

k

b2k .

The following lemma follows from [59, Theorem 3.2]. It will be used in the analysis of

our conic optimization algorithm. For completeness, we provide a proof.

Lemma 2.4.2. Let ε ∈ (0, 1) and ψ > 1, and suppose that µ0, µ1, · · · is a sequence of

positive numbers satisfying µk+1 ≤ (1 − 1
ψ )µk for k = 0, 1, · · · . Then

k ≥
⌈

ψ log

(

µ0

ε

)⌉

=⇒ µk ≤ ε.

Proof. For any nonnegative integer k we have µk ≤ (1− 1
ψ )kµ0, so log(µk) ≤ k log(1− 1

ψ ) +

log(µ0). Therefore µk ≤ ε is implied by k log(1− 1
ψ )+log(µ0) ≤ log(ε). The latter inequality

is in turn implied by − k
ψ + log(µ0) ≤ log(ε), in view of the inequality log(1 − x) ≤ −x for

x < 1. Rearranging this gives the required result.

Finally, given a set S ⊆ Rn and functions f, g : S → R, we write f(x) = O(g(x)) to

mean that there exists a positive constant C independent of x such that |f(x)| ≤ C|g(x)|

for all x ∈ S.
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Chapter 3

Self-concordant barrier functions

3.1 Introduction

In this chapter we discuss a key ingredient in the design of efficient algorithms for convex

optimization problems, especially those in conic form. Given a full coneK, we seek a smooth

convex function F that is “compatible” with the cone K in the conic problem (2.3.8). The

properties of F that make for compatibility will be explained in this chapter. Basically, F

must be capable of regularizing (2.3.8) in such a way that when Newton’s method is applied

to the regularized problem, fast convergence ensues. Once we have characterized the class

of functions that help realize this goal, we will be in a position to present an algorithm for

(2.3.8)–(2.3.9) based upon Newton’s method. The algorithm will generate a near-optimal

solution of (2.3.8)–(2.3.9) in an efficient way, where efficiency is measured in terms of a

worst-case bound on the number of iterations of the algorithm.
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3.2 Properties and characterizations of self-concordant bar-

rier functions

Given a set S ⊆ Rn and a function F : S → R, we will denote the k-th directional derivative

of F at the point x ∈ int(S) in the directions h1, · · · , hk, by

F (k)(x)[h1, · · · , hk] =
∂k

∂t1 · · · ∂tk
F (x+ t1h1 + · · · + tkhk)

∣

∣

t1=···=tk=0
,

assuming that F is k times continuously differentiable in a neighborhood of x. It follows

from the smoothness of F that the differentiation operators commute, i.e., the directional

derivatives are symmetric with respect to the collection of directions h1, · · · , hk; see e.g., [25,

Chapter XVII, Theorem 6.2]. If F is three times continuously differentiable on int(S), then

for all h1, h2, h3 ∈ Rn, and all x ∈ int(S), we have F ′(x)[h1] = F ′(x)Th1, F
′′(x)[h1, h2] =

hT1 F
′′(x)h2, and F ′′′(x)[h1, h2, h3] = d

dαh
T
1 F

′′(x + αh3)h2

∣

∣

α=0
. Define F ′′′(x)[h1, h2] to be

the vector satisfying

F ′′′(x)[h1, h2, h3] = hT3 F
′′′(x)[h1, h2]. (3.2.1)

Both modern and classical barrier-type methods for convex optimization problems in-

volve functions that become prohibitively large as the relative boundary of the feasible set

is approached. This is referred to as the barrier property.

Definition 3.2.1 (Barrier property). Let S ⊂ Rn be a closed convex set with nonempty

interior. The function F : int(S) → R is said to satisfy the barrier property if for every

sequence {xi} ⊂ int(S) converging to a boundary point of S, F (xi) → ∞. Such an F is

called a barrier function for S.

It will be helpful to have a special designation for functions whose Hessian is positive

definite on its entire domain.

Definition 3.2.2 (Nondegenerate convex function). Let S ⊂ Rn be a closed convex set
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with nonempty interior. Let F : int(S) → R be a twice continuously differentiable convex

function. If F ′′(x) is positive definite (implying that F is strictly convex) on int(S), then

F is a nondegenerate convex function.

A key concept in the study of barrier functions for interior-point methods is that of

self-concordancy, introduced in [33].

Definition 3.2.3 (Complexity parameter, Newton decrement, self-concordant

barrier function). Let S⊂Rn be a closed convex set with nonempty interior. Suppose that

the function F : int(S) → R satisfies the following properties:

(a) F is convex and three times continuously differentiable;

(b)

|F ′′′(x)[h, h, h]| ≤ 2(F ′′(x)[h, h])3/2 ∀x ∈ int(S), h ∈ Rn; (3.2.2)

(c)

ψ := sup
x∈int(S)

ω(F, x)2 <∞, (3.2.3a)

where ω(F, x) := inf
t
{t | |F ′(x)[h]| ≤ t(F ′′(x)[h, h])1/2 ∀h ∈ Rn}. (3.2.3b)

The quantity ψ is called the complexity parameter of F , and ω(F, x) is called the Newton

decrement of F at x;

(d) F satisfies the barrier property.

Then F is said to be a ψ-self-concordant barrier function for S.

The following result from [33, Proposition 2.3.1] allows us to easily generate new self-

concordant barrier functions from existing functions.

Lemma 3.2.4 (Properties of self-concordant barrier functions). Let S1 ⊂ Rm and

S2 ⊂ Rn be closed convex sets having nonempty interior, let F1(x) be a ν1-self-concordant

barrier for S1, and let F2(y) be a ν2-self-concordant barrier for S2. Then:
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(a) F1(x) + F2(y) is a (ν1 + ν2)-self-concordant barrier for S1 × S2 ⊆ Rm ×Rn;

(b) If the image of the affine map Az− b : Rn → Rm intersects int(S1), then the restriction

F (z) := F1(Az − b) is a ν1-self concordant barrier for the closed convex set S := {z ∈

Rn | Az − b ∈ S1}.

We now give two examples of self-concordant barrier functions.

Example 3.2.5. Let ai ∈ Rn and bi ∈ R for i = 1, · · · ,m be such that the set

S0 = {x | aTi x > bi, i = 1, · · · ,m} ⊂ Rn

is nonempty. It can then be verified that S0 is the interior of the (closed convex) polyhedron

S = {x | aTi x ≥ bi, i = 1, · · · ,m},

and the function

F (x) = −
m
∑

i=1

log(aTi x− bi)

is a nondegenerate m-self-concordant barrier for S.1 We can verify this directly, i.e., from

Definition 3.2.3, or more simply, we may build up F from one-dimensional barrier functions.

We first verify that F (x) = − log(x) is a nondegenerate 1-self-concordant barrier function

for the nonnegative half line R+. Clearly F is smooth on the positive half line, which is the

interior of R+. Now for all h ∈ R and x > 0, the first three directional derivatives of F are

F ′(x)[h] =
−h
x
,

F ′′(x)[h, h] =
h2

x2
,

F ′′′(x)[h, h, h] =
−2h3

x3
.

1To be more precise, according to Definition 3.2.2, F is a nondegenerate convex self-concordant barrier.
However convexity is implied by self-concordancy, so it is redundant to describe such a barrier as convex.
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Hence

|F ′′′(x)[h, h, h]| = 2
|h|3
x3

= 2

(

h2

x2

)3/2

= 2(F ′′(x)[h, h])3/2,

ω(F, x) = inf
t

{

t

∣

∣

∣

∣

|h|
x

≤ t

(

h2

x2

)1/2

∀h
}

= 1,

ψ = sup
x∈int(S)

ω(F, x)2 = 1,

verifying properties (b) and (c) of Definition 3.2.3. Clearly F (x) → ∞ as x→ 0+, so F also

satisfies the barrier property. Finally F ′′(x)[h, h] > 0 for all nonzero h and for all x > 0,

so F is nondegenerate. This verifies that F is a nondegenerate 1-self-concordant barrier

function for R+. Of course Rm
+ is the direct product of m nonnegative half lines, so from

Lemma 3.2.4(a), −∑m
i=1 log(xi) is an m-self-concordant barrier function for Rm

+ , where xi

is the i-th component of the vector x. The function −∑m
i=1 log(xi) is called the logarithmic

barrier function for the nonnegative orthant. Now apply Lemma 3.2.4(b), where A is the

matrix whose rows are aTi and b is the vector whose i-th component is bi. We conclude that

F as given above is a nondegenerate m-self-concordant barrier for S.

Example 3.2.6. The function F given by F (x) = − log(1 − ‖x‖2
2) is a nondegenerate 1-

self-concordant barrier for the unit ball S = {x | ‖x‖2 ≤ 1} ⊂ Rn. Clearly F is smooth

on int(S) = {x | ‖x‖2 < 1}. Now for all h ∈ Rn and x ∈ int(S), the first three directional

derivatives of F are

F ′(x)[h] =
2hTx

1 − ‖x‖2
2

,

F ′′(x)[h, h] =
2‖h‖2

2(1 − ‖x‖2
2) + 4(hTx)2

(1 − ‖x‖2
2)

2
,

F ′′′(x)[h, h, h] =
12hTx‖h‖2

2(1 − ‖x‖2
2) + 16(hTx)3

(1 − ‖x‖2
2)

3
.

Using these, we can verify that properties (b) and (c) of Definition 3.2.3 hold with ψ = 1.

It is easily seen that F also satisfies the barrier property, and since F ′′(x)[h, h] > 0 for all

nonzero directions h ∈ Rn and all x ∈ int(S), F is nondegenerate. This shows that F is a
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nondegenerate 1-self-concordant barrier for S.

Note that in the differential inequality in property (b) of Definition 3.2.3, the exponent

3/2 ensures invariance with respect to a linear scaling of the direction h. The constant 2 is

somewhat arbitrary, but was chosen so that the logarithmic barrier function −∑n
i=1 log(xi)

is a self-concordant barrier for the nonnegative orthant in Rn. We now discuss the complex-

ity parameter and Newton decrement defined in Definition 3.2.3. The Newton decrement is

so called because it measures the difference between the minimum of F and the minimum

of the quadratic approximation of F about x; the location of the latter is the objective of

Newton’s method. The name “complexity parameter” for ψ was coined by Renegar [43],

and is preferable to the term “parameter of the barrier” used in [33], since the latter may

be confused with the term “barrier parameter” that dates back to classical barrier methods.

The complexity parameter plays a central role in the theoretical development of interior-

point methods for convex optimization problems. As the name suggests, it appears in the

worst-case computational complexity estimates of interior-point methods. Given a closed

convex set S having nonempty interior, it is desirable from a theoretical viewpoint to find

self-concordant barriers for S for which ψ is as small as possible. It was shown in [33,

Corollary 2.3.3] that if S ⊂ Rn is a closed convex set with nonempty interior and F is

a ψ-self-concordant barrier for S, then ψ ≥ 1. This bound is tight, as evidenced by the

1-self-concordant barrier given in Example 3.2.6.

Let F be a nondegenerate ψ-self-concordant barrier for S ⊂ Rn, and let x ∈ int(S).

Then F ′′(x) and F ′′(x)−1 are positive definite matrices for each x ∈ int(K). Therefore the

second differential of F and the inverse of this second differential induce the following dual

“local” norms on Rn:

‖h‖x,F = (hTF ′′(x)h)1/2, ‖h‖∗x,F = (hTF ′′(x)−1h)1/2, h ∈ Rn. (3.2.4)
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The norms are called local because they depend on x. That the norms are dual follows from

max
y

{hT y | ‖y‖x,F ≤ 1} = (hTF ′′(x)−1h)1/2 ≡ ‖h‖∗x,F .

Given r > 0, the ball {y | ‖x− y‖x,F ≤ r} is called is called the Dikin ellipsoid of radius r

centered at x. The elongation of the Dikin ellipsoid depends on x. It is readily seen from

property (b) of Definition 3.2.3 that for any x ∈ int(S), a self-concordant barrier satisfies

|F ′′′(x)[h, h, h]| ≤ 2 inside the unit ball ‖h‖x,F ≤ 1. Therefore, inside this ball the Hessian

of F is (locally) Lipschitz continuous with respect to the metric induced by the local norm

‖ · ‖x,F . In other words, a quadratic approximation to F at x is reasonably reliable within

a unit ball centered at x. This is important in order that Newton’s method be successfully

applied to the problem of minimizing F , or of more importance to us, the primal objective

function 〈c, x〉 plus a positive multiple of F . So on one hand, the differential inequality in

(3.2.2) implies that the Hessian of F—and by extension, F itself—does not grow too fast.

In fact Renegar showed the following result regarding the rate of increase of F :

Lemma 3.2.7 ([43, Theorem 2.3.8]). Let F be a nondegenerate ψ-self-concordant barrier

for the closed convex set S having nonempty interior, and let x ∈ int(S) and y ∈ cl(S). For

all t ∈ (0, 1],

F (y + t(x− y)) ≤ F (x) − ψ log(t).

On the other hand, property (3.2.3a) in Definition 3.2.3 shows that the Hessian of F does not

grow too slowly (relative to F ′). The following characterization of the Newton decrement

was mentioned in [33, Section 2.2.1].

Lemma 3.2.8. Let F be a nondegenerate convex function on a closed convex set S having

nonempty interior. For all x ∈ int(S), the Newton decrement of F is given by

ω(F, x) = ‖F ′(x)‖∗x,F .
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Proof. From the definition of the Newton decrement in (3.2.3b), we have

ω(F, x) := inf
t
{t | |F ′(x)[h]| ≤ t‖h‖x,F ∀h ∈ Rn}

= inf
t
{t | F ′(x)[h] ≤ t‖h‖x,F ∀h ∈ Rn}

= inf
t
{t | F ′(x)[h] ≤ t‖h‖x,F ∀ ‖h‖x,F = 1}

= inf
t
{t | F ′(x)[h] ≤ t ∀ ‖h‖x,F = 1}

= max
h

{F ′(x)[h] | ‖h‖x,F = 1}

= max
h

{F ′(x)[h] | ‖h‖x,F ≤ 1}

= ‖F ′(x)‖∗x,F ,

where the penultimate equality follows from the fact that the maximum of a linear function

over a compact set exists and lies on the boundary.

We see from Lemma 3.2.8 that the Newton decrement of F at x can be interpreted as the

dual local norm of the gradient of F at x. The following result—which builds upon [33,

Theorem 2.1.1]—characterizes the local behavior of the Hessian of a self-concordant barrier.

Lemma 3.2.9. Let F be a self-concordant barrier for the closed convex set S ⊂ Rn having

nonempty interior.

(a) If x, y ∈ int(S) are such that r := ‖x− y‖x,F < 1, then for all h ∈ Rn,

(1 − r)‖h‖x,F ≤ ‖h‖y,F ≤ 1

1 − r
‖h‖x,F , (3.2.5)

and if F is also nondegenerate, then for all h ∈ Rn,

(1 − r)‖h‖∗x,F ≤ ‖h‖∗y,F ≤ 1

1 − r
‖h‖∗x,F , (3.2.6)

1 − r ≤ ‖F ′′(x)−1/2F ′′(y)1/2‖2 ≤ 1

1 − r
, (3.2.7)

1 − r ≤ ‖F ′′(y)−1/2F ′′(x)1/2‖2 ≤ 1

1 − r
. (3.2.8)
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(b) For every x ∈ int(S), ‖x− y‖x,F < 1 implies that y ∈ int(S).

Proof. The inequalities in (3.2.5) are from [33, Theorem 2.1.1]. We now prove the inequal-

ities in (3.2.6), (3.2.7), and (3.2.8) under the nondegeneracy assumption on F . To prove

(3.2.7), observe that (3.2.5) is equivalent to (1−r)2F ′′(x) ¹ F ′′(y) ¹ 1
(1−r)2F

′′(x), which due

to the nondegeneracy of F , is equivalent to (1−r)2I ¹ F ′′(x)−1/2F ′′(y)F ′′(x)−1/2 ¹ 1
(1−r)2 I.

It follows that (1−r)2 ≤ ‖F ′′(x)−1/2F ′′(y)F ′′(x)−1/2‖2 ≤ 1
(1−r)2 . Since ‖F ′′(x)−1/2F ′′(y)F ′′(x)−1/2‖2 =

‖F ′′(x)−1/2F ′′(y)1/2‖2
2 by Lemma 2.1.1(a)(i), we have proven (3.2.7). The proof of (3.2.8) is

similar, beginning from (1−r)2F ′′(y) ¹ F ′′(x) ¹ 1
(1−r)2F

′′(y), which is equivalent to (3.2.5).

We now prove (3.2.6). Letting D = F ′′(x)−1/2F ′′(y)1/2 and using (3.2.7) and (3.2.8), we

have

‖h‖∗x,F = ‖F ′′(x)−1/2h‖2 = ‖DF ′′(y)−1/2h‖2 ≤ ‖D‖2 ‖h‖∗y,F ≤ 1

1 − r
‖h‖∗y,F ,

‖h‖∗y,F = ‖F ′′(y)−1/2h‖2 = ‖D−1F ′′(x)−1/2h‖2 ≤ ‖D−1‖2 ‖h‖∗x,F ≤ 1

1 − r
‖h‖∗x,F .

The result in (b) was proven in [33, Theorem 2.1.1].

Given a self-concordant barrier F for the closed convex set S ⊂ Rn having nonempty

interior, the set R(F ) = {h ∈ Rn | ‖h‖x,F = 0} is called the recessive subspace of F at

x ∈ int(S). It is a linear subspace, and is independent of x (see [33, Corollary 2.1.1]).

Remark 3.2.10. It follows from Lemma 3.2.9 that a self-concordant barrier F for a full

cone K is necessarily nondegenerate. To see why, suppose that F is degenerate, i.e., ‖h‖x,F =

0 for some x ∈ int(K) and nonzero h ∈ Rn. By Lemma 3.2.9(b), it follows that x + h ∈

int(K) for any h ∈ R(F ). But this is impossible in light of the pointedness of K. So F

must be nondegenerate.

We will primarily be interested in self-concordant barriers for full cones. Although such

barriers are necessarily nondegenerate, we will still call them nondegenerate self-concordant

barriers for the sake of clarity. Another consequence of Lemma 3.2.9(b) is that for any
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x ∈ int(S), the Dikin ellipsoid of radius 1 centered at x will be contained in int(S). However

as x gets closer to the boundary of S, this ellipsoid becomes more elongated.

The following result follows from Definition 3.2.3 and [33, Proposition 9.1.1].

Lemma 3.2.11. Let F be a self-concordant barrier for the closed convex set S ⊂ Rn having

nonempty interior. We have

|F ′′′(x)[h1, h2, h3]| ≤ 2‖h1‖x,F ‖h2‖x,F ‖h3‖x,F ∀x ∈ int(S), h1, h2, h3 ∈ Rn.

The following technical result will be used in the analysis of our interior-point method.

Lemma 3.2.12. Let F be a nondegenerate self-concordant barrier for the full cone K ⊂ Rn.

Let x ∈ int(K) and h ∈ Rn be such that β := ‖h‖x,F < 1, and let α ∈ [0, 1]. We have

‖F ′′′(x+ αh)[h, h]‖∗x+h,F ≤ 2β2

(1 − β)(1 − αβ)
.

Proof. For all α ∈ [0, 1], ‖x − (x + αh)‖x,F = αβ < 1. It follows from Lemma 3.2.9(b)

that for all α ∈ [0, 1], x + αh ∈ int(K), hence the third directional derivatives of F at

x + αh are well defined, as is the matrix F ′′(x + αh)−1/2. The result in (3.2.9a) follows

from the definition of the ‖ · ‖∗·,F norm in (3.2.4), and (3.2.9b) follows from the relation

‖h‖2 = max‖y‖=1 |yTh|. The result in (3.2.9c) follows from the definition of F ′′′ in (3.2.1),

(3.2.9d) follows from Lemma 3.2.11, and (3.2.9e) follows from the definition of the ‖ · ‖·,F
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norm in (3.2.4).

‖F ′′′(x+ αh)[h, h]‖∗x+αh,F = ‖F ′′(x+ αh)−1/2F ′′′(x+ αh)[h, h]‖2 (3.2.9a)

= max
y:‖y‖2=1

|yTF ′′(x+ αh)−1/2F ′′′(x+ αh)[h, h]| (3.2.9b)

= max
y:‖y‖2=1

|F ′′′(x+ αh)[h, h, F ′′(x+ αh)−1/2y]| (3.2.9c)

≤ max
y:‖y‖2=1

2‖h‖2
x+αh,F ‖F ′′(x+ αh)−1/2y‖x+αh,F (3.2.9d)

= 2‖h‖2
x+αh,F max

y:‖y‖2=1
‖y‖2 (3.2.9e)

= 2‖h‖2
x+αh,F .

Now from (3.2.5) (with y = x+ αh so that r = αβ) we have ‖h‖x+αh,F ≤ β
1−αβ . Using this

and (3.2.6) (with y and x replaced by x+ h and x+ αh respectively), we get

‖F ′′′(x+ αh)[h, h]‖∗x+h,F ≤ 1

1 − ‖(1 − α)h‖x+αh,F
‖F ′′′(x+ αh)[h, h]‖∗x+αh,F

≤ 1

1 − (1 − α)‖h‖x+αh,F
2‖h‖2

x+αh,F

≤ 1

1 − (1 − α) β
1−αβ

2

(

β

1 − αβ

)2

=
2β2

(1 − β)(1 − αβ)
.

3.3 Logarithmic homogeneity

In this section we study a special class of self-concordant barriers for convex cones called

logarithmic homogeneous barriers, first defined in [33, Definition 2.3.2].

Definition 3.3.1 (Logarithmically homogeneous barrier, normal barrier). Let K

be a full cone. A function F : int(K) → R is said to be a ν-logarithmically homogeneous

barrier for K if ν ≥ 1 and the following properties hold:

(a) F is convex and twice continuously differentiable;

(b) The barrier property holds for F on int(K);
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(c) The logarithmic-homogeneity relation holds:

F (tx) = F (x) − ν log(t) ∀ x ∈ int(K), t > 0. (3.3.1)

If F also satisfies properties (a) and (b) of Definition 3.2.3, then F is said to be a ν-normal

barrier.

We now give some important properties of logarithmically homogeneous barriers. Most of

them are true for any twice continuously differentiable functions satisfying the logarithmic-

homogeneity relation: it is not necessary that these functions be convex or satisfy the barrier

property. Most of the results in the following lemma are taken from [33, Proposition 2.3.4].

It is shown in, e.g., [43, Theorem 3.3.1] that F ′ maps int(K) to −int(K∗).

Lemma 3.3.2. Let K be a full cone, and F : int(K) → R be a twice continuously dif-

ferentiable function satisfying the logarithmic-homogeneity relation (3.3.1). Then for all

x ∈ int(K) and t > 0:

(a) F ′(tx) = 1
tF

′(x) and F ′′(tx) = 1
t2
F ′′(x);

(b) F ′(x)Tx = −ν;

(c) F ′′(x)x = −F ′(x);

(d) ‖x‖2
x,F ≡ xTF ′′(x)x = ν;

(e) If F is also nondegenerate, then ‖F ′(x)‖∗x,F ≡
(

F ′(x)TF ′′(x)−1F ′(x)
)1/2

= ν1/2.

Proof. (a) Differentiating (3.3.1) with respect to x gives tF ′(tx) = F ′(x). Differentiating

again with respect to x gives t2F ′′(tx) = F ′′(x).

(b) Differentiating (3.3.1) with respect to t gives F ′(tx)Tx = −ν/t. Setting t = 1 gives the

required result.

(c) Differentiating the relation in (b) with respect to x gives F ′′(x)x+ F ′(x) = 0.

(d) Take the inner product of the relation in (c) with x, and then use (b) to get the required

result.

(e) Since F ′′(x) is now assumed positive definite, F ′′(x)−1 is well defined, and it follows
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from (c) that F ′′(x)−1F ′(x) = −x. Taking the inner product of this equation with F ′(x)

and using (b) gives the required result.

The following corollary shows that if a nondegenerate convex function satisfies the

logarithmic-homogeneity relation, then its gradient cannot grow too fast relative to its

Hessian.

Corollary 3.3.3. Let K be a full cone, and F : int(K) → R be a nondegenerate convex

function satisfying the logarithmic-homogeneity relation with parameter ν. (That is, F is

nondegenerate and satisfies properties (a) and (c) of Definition 3.3.1.) Then F satisfies

(3.2.3a) with ψ = ν.

Proof. Since F is a nondegenerate convex function, it follows from Lemma 3.2.8 that the

square of the Newton decrement is given by (‖F ′(x)‖∗x,F )2, and the latter quantity is ν in

light of Lemma 3.3.2(e).

Corollary 3.3.4—which is suggested by Corollary 3.3.3—combines results from [33, Corol-

lary 2.3.2] and [33, Proposition 2.3.5], and gives a connection between logarithmically ho-

mogeneous barriers and self-concordant barriers.

Corollary 3.3.4. If F is a ν-normal barrier for the full cone K, then F is also a nonde-

generate ν-self-concordant barrier for K.

Proof. From the definition, a ν-normal barrier satisfies properties (a), (b), and (d) of Def-

inition 3.2.3. It follows from Corollary 3.3.3 that property (c) also holds with ψ = ν.

Hence F is a ν-self-concordant barrier for K. The nondegeneracy of F was established in

Remark 3.2.10.

Given a full cone K and a function F : int(K) → R, we will make use of the conjugate
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function of F , F∗ : int(K∗) → R, which is given by2

F∗(s) := sup
x∈int(K)

{−xT s− F (x)}, s ∈ int(K∗). (3.3.2)

Since F∗(s) is the pointwise supremum of linear functions of s, F∗ is convex on int(K∗). We

gather some properties of self-concordant barrier functions and their conjugates.

Lemma 3.3.5. Let K be a full cone.

(a) If F is a nondegenerate self-concordant barrier for K, then F∗ is a nondegenerate self-

concordant barrier for K∗.

(b) If F is a ν-normal barrier for K, then F∗ is a ν-normal barrier for K∗.

(c) Let F be a ν-normal barrier for K. For any scalars α > 0 and β, and s ∈ int(K∗), we

have (αF + β)∗(s) = αF∗(s) + αν log(α) − β.

Proof. Parts (a) and (b) are contained in [43, Theorem 3.3.1]. We now prove (c). From

(3.3.2)

(αF + β)∗(s) = sup
x∈int(K)

{−xT s− αF (x) − β}

= α sup
x∈int(K)

{−xT (s/α) − F (x)} − β

= αF∗(s/α) − β

= α
(

F∗(s) − ν log(1/α)
)

− β,

where the last equality follows from (b) and (3.3.1).

In light of Lemma 3.3.5(a), the next result follows immediately from Lemma 3.2.9.

Lemma 3.3.6. Let F be a nondegenerate self-concordant barrier for the full cone K.

2Strictly speaking, in the definition of a conjugate function, the domain of F∗ is not restricted to int(K∗).
We include such a restriction here so that F∗ is finite, which is the only case of interest to us. The definition
of a conjugate function used here is found in, e.g., [35, 36, 43]. It is slightly different from that found
elsewhere in the literature, including [33]. The difference is the minus sign in front of the xT s term, which
turns the domain of F∗ from int(−K∗) into int(K∗).
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(a) If t, s ∈ int(K∗) are such that r := ‖t− s‖t,F∗
< 1, then for all h ∈ Rn,

(1 − r)‖h‖t,F∗
≤ ‖h‖s,F∗

≤ 1

1 − r
‖h‖t,F∗

.

(b) For every s ∈ int(K∗), ‖s− t‖s,F∗
< 1 implies that t ∈ int(K∗).

The following results relate the derivatives of F to those of F∗. They use the fact that

F ′ maps int(K) to −int(K∗), which was noted earlier, and furthermore, F ′
∗ maps int(K∗)

to −int(K), which follows from [43, Theorem 3.3.4].

Lemma 3.3.7. Let F be a nondegenerate self-concordant barrier function for the full cone

K. For every x ∈ int(K) and s ∈ int(K∗) we have:

(a) F ′
∗(−F ′(x)) = −x;

(b) F ′(−F ′
∗(s)) = −s;

(c) F ′′
∗ (−F ′(x)) = F ′′(x)−1;

(d) F ′′(−F ′
∗(s)) = F ′′

∗ (s)−1;

(e) If F is also logarithmically homogeneous, then ‖h‖−µF ′(x),F∗
= 1

µ‖h‖∗x,F for all µ > 0

and h ∈ Rn.

Proof. See [43, Theorem 3.3.4] for a proof of (a) and (c). (These results are proven for

a larger class of functions than nondegenerate self-concordant barrier functions.) See [35,

Section 2] for (b) and (d). We now prove (e). It follows from Lemma 3.3.5(b) that for some

ν, F∗ is a ν-normal barrier for K∗. Using Lemma 3.3.2(a), and then (c) above, we obtain

for all x ∈ int(K) and µ > 0,

F ′′
∗ (−µF ′(x)) =

1

µ2
F ′′
∗ (−F ′(x)) =

1

µ2
F ′′(x)−1.

So for all h ∈ Rn, ‖h‖−µF ′(x),F∗
= ‖h‖x,F−1/µ2 = 1

µ‖h‖x,F−1 = 1
µ‖h‖∗x,F .

To end this section we briefly discuss an important class of full cones and normal barrier

functions that have been used successfully in practical algorithms. The following is taken

from [35, 36].
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Definition 3.3.8 (Self-scaled barrier, self-scaled cone). Let F be a ν-normal barrier

for the full cone K. F is said to be a self-scaled barrier for K if for all x,w ∈ int(K),

(a) F ′′(w)x ∈ int(K∗),

(b) F∗(F ′′(w)x) = F (x) − 2F (w) − ν.

If K admits a self-scaled barrier, then K is said to be a self-scaled cone.

The conditions in Definition 3.3.8 are symmetric in that if F is a self-scaled barrier for

K, then F∗ is a self-scaled barrier for K∗: for any t, s ∈ int(K∗), we have F ′′
∗ (t)s ∈ int(K),

and F (F ′′
∗ (t)s) = F∗(s) − 2F∗(t) − ν; see [35, Proposition 3.1].

The name “self-scaled” is due to property (a) in Definition 3.3.8: points can be mapped

from int(K) to int(K∗) via the linear operator F ′′(w), which is the Hessian of F evaluated at

a point in K itself. It was shown that for any x ∈ int(K) and s ∈ int(K∗), the scaling point

w ∈ int(K) such that F ′′(w)x = s, is unique. Another important property of self-scaled

cones is that they are self-dual, i.e., K = K∗.

The class of self-scaled cones has been completely classified. In fact self-scaled cones are

precisely the homogeneous self-dual or symmetric cones, as was noted in [16]. This class

of cones includes the (real symmetric) positive semidefinite cone, the second-order cone,

the cones of positive semidefinite Hermitian complex matrices and positive semidefinite

quaternion matrices, and a certain 27-dimensional cone. Direct products of these cones

are also self-scaled; see [35, Theorem 2.1]. The nonnegative orthant is also a self-scaled

cone. This can be proven directly, or using the facts that (i) the real symmetric positive

semidefinite cone is self-scaled, and (ii) the restriction of a self-concordant barrier function

to a linear subspace is also a self-concordant barrier function (Lemma 3.2.4(b)). These facts

are relevant because the nonnegative orthant is the restriction of the positive semidefinite

cone to the subspace of diagonal matrices.
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Chapter 4

An inexact primal-dual interior-point

method for conic optimization

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Statement of our interior-point method . . . . . . . . . . . . . . 58

4.3 Unstructured perturbations in the gradient and Hessian of F . 64

4.4 Using the exact gradient and Hessian of F . . . . . . . . . . . . 92

4.5 Structured perturbations in the gradient and Hessian of F . . 95

4.1 Introduction

We will study an algorithm to solve the conic convex optimization problem

vP = inf
x

{cTx | Ax = b, x ∈ K}, (4.1.1)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and K ⊆ Rn is a closed convex cone. It was shown in

Section 2.3 that any convex optimization problem can be recast in the form (4.1.1), where in

Section 2.3 a general inner product 〈·, ·〉 was used. There is essentially no loss of generality
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in using the Euclidean inner product here. The Lagrangian dual of (4.1.1) is

vD = sup
w,s

{bTw | ATw + s = c, s ∈ K∗}. (4.1.2)

The following assumptions on the problem data will be made.

Assumption 4.1.1. (a) A has full row rank.

(b) The equality constraints Ax = b in (4.1.1) are nonvacuous.

(c) K is a full cone, i.e., a pointed closed convex cone having nonempty interior.

As shown in Section 2.2, it follows from Assumption 4.1.1(c) that K∗ is also a full cone.

Nesterov and Nemirovski showed the following theoretically important result in [33, Theo-

rem 2.5.1].

Lemma 4.1.2. There exists a constant C > 0 independent of n such that for any full cone

K ⊂ Rn, there exists a ν-normal barrier F for K with ν = Cn.

Remark 4.1.3. Our interest is in algorithms for which strong feasibility of (4.1.1) is main-

tained at each iteration. Therefore what is important is the behavior of F not on the whole of

K, but on the restriction of K to the affine subspace {x | Ax = b}. The restriction of a self-

concordant barrier to a linear subspace is also a self-concordant barrier (Lemma 3.2.4(b)).

So the presence of linear constraints Ax = b in (4.1.1) is of no concern to us as we study

self-concordant barriers for K. The complexity parameter ν for the set {x | Ax = b, x ∈ K}

will be less than or equal to that for the cone K, since {x | Ax = b, x ∈ K} ⊂ K.

The proof of Lemma 4.1.2 is constructive in the sense that a specific F , called the universal

barrier function, was given in [33]. We discuss this function further in Section 5.2. For

now we may be content knowing that for any convex optimization problem there exists a

suitable barrier function. In this section we explain how a barrier function for the cone K

may be used in an interior-point method to solve the conic optimization problems (4.1.1)

and (4.1.2). First we give a brief history of some discoveries in the field of interior-point

methods. We note that while some properties of self-concordant barrier functions such as
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(b) and (c) in Definition 3.2.3 were not developed until the late 1980s, other properties

such as the barrier property date back to much earlier work on interior-point methods for

nonlinear optimization; see e.g., [11, Chapter 3].

It was not until the work of Khachiyan in [20, 21], which later became known as the ellip-

soid algorithm, that a polynomial time bound on the worst-case computational complexity

of a linear optimization algorithm was proven. (We can think of such a complexity bound

as being a worst-case estimate on the amount of work required to obtain a near-optimal

solution.) Khachiyan’s algorithm was based on earlier algorithms for convex optimization

by Yudin and Nemirovski [60], and independently, Shor [51]. Although a theoretical mile-

stone had been reached, these algorithms proved to be extremely slow in practice. The next

major development came in 1984 when Karmarkar’s seminal paper [19] appeared. In it a

polynomial-time algorithm for linear programming, or in our nomenclature, linear optimiza-

tion, problems was presented. Karmarkar’s algorithm was also novel in several respects, and

contained some underlying ideas that would find their way into more recent algorithms, and

that can be motivated in an easier way. One such idea was that of staying away from the

(relative) boundary of the feasible set of the problem. By approaching the solution—which

lies on the boundary—from the “center” of the feasible set, one can make faster progress.

Progress was measured by Karmarkar in the form of a so-called “potential function”, which

combined a measure of the distance from the current objective function value to the opti-

mal value, with a function measuring proximity to the “center” of the feasible set. (The

potential function can be interpreted in various other ways.) More recently, variants of

Karmarkar’s algorithm called potential reduction methods have been developed to solve not

just linear, but also classes of nonlinear convex problems quite efficiently in practice, while

maintaining polynomial worst-case complexity. For surveys on potential reduction methods

for linear optimization problems, see e.g., [53, Sections 2-6] and [59, Chapter 4], and the

references therein. Potential reduction methods have also been developed for general conic

problems (of the form (4.1.1)) in [33, Chapter 4], [30], and [53, Section 8]. Another major

class of algorithms known as path-following algorithms has been developed to solve conic
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optimization problems. In this chapter we will present an algorithm belonging to this class.

Path-following algorithms for linear optimization can be found in e.g., [15] and [59, Chap-

ters 5-6]. Primal algorithms for general conic problems are studied in e.g., [33, Chapter 3]

and [43, Section 2.4].

We now explain the interior-point framework we will use to solve (4.1.1)–(4.1.2). Con-

sider the barrier problem associated with (4.1.1):

vP (µ) = inf
x
{cTx+ µF (x) | Ax = b}. (4.1.3)

where µ > 0 is called the barrier parameter, and the function F in (4.1.3) is defined on the

interior of the cone K. The following will be a standing assumption on F throughout the

remainder of this chapter.

Assumption 4.1.4. The function F is a ν-normal barrier, i.e., a ν-logarithmically homo-

geneous self-concordant barrier, for K.

It follows from Assumption 4.1.4 that (4.1.3) is a convex optimization problem having a

strictly convex objective function on the interior of K. The constraint x ∈ K from (4.1.1)

is enforced implicitly here by restricting the domain of F to int(K). The properties of

a ν-normal barrier are what make F “compatible” with K; the precise sense in which

F is compatible with K will be explained in various ways throughout the rest of this

chapter. Observe that the optimal solutions of (4.1.1) and (4.1.2) occur when the infimum

or supremum of a linear function over a closed convex set is attained. Therefore these

optimal solutions—if they exist—lie on the boundary of the convex (feasible) set. Since the

primal and dual feasible sets are the intersection of an affine subspace and a closed convex

cone, the primal and dual optimal solutions lie on the boundary of the cone in question (K

for (4.1.1) and K∗ for (4.1.2)).

We can consider (4.1.3) as a family of convex optimization problems parameterized

by µ. Although the feasible set {x | Ax = b, x ∈ int(K)} of (4.1.3) excludes points

on the boundary of K, one can show that under certain conditions, (4.1.3) has a unique
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minimizer, and as µ is decreased to zero, the sequence of minimizers of (4.1.3) converges to

the minimizer of (4.1.1), which lies on the boundary of K. Furthermore, the corresponding

sequence of optimal values vP (µ) converges to vP . So the classical idea was to solve a

sequence of barrier problems for a sequence of µ values decreasing to zero. One can think of

µ as being a weighting, used to balance the original objective function cTx and the barrier

function F .

We see that the only (explicit) constraints in (4.1.3) are of linear equality form, and these

cause us little difficulty as far as solving (4.1.3) is concerned. We will make the following

assumption on the pair (4.1.1)–(4.1.2).1

Assumption 4.1.5. The dual optimization problems (4.1.1) and (4.1.2) each satisfy the

generalized Slater constraint qualification (Definition 2.3.4). That is, there exists an x ∈

int(K) such that Ax = b, and a pair (w, s) ∈ Rm × int(K∗) such that ATw + s = c.

As was noted in Section 2.3, under Assumptions 4.1.5 and 4.1.1(a) the optimal primal and

dual solution sets are nonempty and bounded, and the duality gap is zero, i.e., vP = vD.

Since the sequence of minimizers of (4.1.3) ideally converges to a solution of (4.1.1), the

set of such minimizers has special significance. It was shown in [30, Lemma 1] that under

Assumption 4.1.5, (4.1.3) has a unique minimizer for each µ > 0.

Definition 4.1.6 (Primal central path). Let x(µ) be the (unique) minimizer of (4.1.3).

The set

{x(µ) | µ > 0} ⊂ int(K)

is called the primal central path.

In Chapter 3 we defined the conjugate function F∗ associated with a function F . Lemma 3.3.5(b)

shows that F∗ is a ν-normal barrier for the full cone K∗. Hence F∗ is a suitable barrier for

1This assumption can be made without loss of generality, since if it fails to hold, one can embed (4.1.1)–
(4.1.2) in a higher-dimensional conic problem for which the assumption does hold. See e.g., [34].
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the dual problem (4.1.2). The resulting dual barrier problem is

vD(µ) = sup
w,s

{bTw − µF∗(s) | ATw + s = c}. (4.1.4)

We may define a concept analogous to the primal central path for the dual barrier problem.

It was shown in [30, Lemma 2] that under Assumption 4.1.5, (4.1.4), like (4.1.3), has a

unique minimizer for each µ > 0.

Definition 4.1.7 (Dual central path). Let (w(µ), s(µ)) be the (unique) minimizer of

(4.1.4). The set

{(w(µ), s(µ)) | µ > 0} ⊂ Rm × int(K∗)

is called the dual central path.

Of special importance in primal-dual algorithms is the set of triples (x,w, s) such that for

some µ > 0, x lies on the primal central path and (w, s) lies on the dual central path.

The resulting set—which is a curve—is important since it leads to the optimal primal-dual

solution set, in which we are ultimately interested.

Definition 4.1.8 (Primal-dual central path). Let x(µ) be the minimizer of (4.1.3) and

let (w(µ), s(µ)) be the minimizer of (4.1.4). The set

{(x(µ), w(µ), s(µ)) | µ > 0} ⊂ int(K) ×Rm × int(K∗)

is called the primal-dual central path.

Figure 4.1 illustrates a possible primal central path and its connection to the primal optimal

solution set.2

To exploit the fact that the primal-dual central path is a curve culminating at a point in

the primal-dual optimal solution set, we will design an iterative algorithm whose iterates

2The figure could also describe a dual central path or a primal-dual central path projected onto two-
dimensional space.
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µ
decreasing

central pathfeasible set

optimal solution

(µ = 0)

Figure 4.1: The shaded feasible set is a portion of the convex feasible
set in (4.1.1). The primal central path is traced by varying µ ∈ (0,∞).

stay close to the primal-dual central path while also converging to the primal-dual optimal

solution set. To this end, we now characterize more explicitly the points lying on the primal-

dual central path. In other words, we characterize the optimal solutions of the primal and

dual barrier problems.

The study of necessary and sufficient optimality conditions for general nonlinear (in-

cluding nonconvex ) continuous optimization problems received much attention during the

second half of the twentieth century. Some of the main results in this area can be found in,

e.g., [11, 27, 2]. We will refer only to the results from this theory that are relevant to our

context. Let L(x,w) be the Lagrangian function associated with the problem (4.1.3):

L(x,w) = cTx+ µF (x) − wT (Ax− b),

where w is the vector of dual variables associated with the m constraints represented by

Ax = b. Solutions to (4.1.3) are related to stationary points of the Lagrangian function,
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and the latter occur when







∇xL

∇wL






=







c+ µF ′(x) −ATw

−(Ax− b)






=







0

0






. (4.1.5)

The theory of necessary and sufficient optimality conditions for smooth nonlinear optimiza-

tion problems, i.e., those problems whose objective and constraint functions are smooth

functions of the variables, shows that the conditions in (4.1.5) are necessary in the presence

of a constraint qualification for (4.1.3), such as that in Assumption 4.1.5. (The general-

ized Slater constraint qualification for (4.1.3) is the same as that for (4.1.1).) Under this

constraint qualification, the conditions in (4.1.5) are necessary in the sense that in order

for x to solve (4.1.3), it is necessary that there exists a w such that (x,w) solves (4.1.5);

see e.g., [11, Theorem 21]. On the other hand, the conditions in (4.1.5) are sufficient for

optimality of x in light of the convexity of the objective function and feasible set of (4.1.3);

see e.g., [11, Theorem 20].

It was noted in Chapter 3 that for every x ∈ int(K) we have −F ′(x) ∈ int(K∗). It follows

from the first equation in (4.1.5) that if (x,w) solves (4.1.5), then s := c−ATw ∈ int(K∗).

So for a fixed µ > 0, the points x on the primal central path satisfy the following system of

equations and inclusions for some w and s:

Ax = b

ATw + s = c

µF ′(x) + s = 0

x ∈ int(K), s ∈ int(K∗).

(4.1.6)

Let us identify the vectors w and s in (4.1.6) as the dual vectors in (4.1.2). Then the

conditions in (4.1.6) are just strong feasibility of (4.1.1) and (4.1.2), in addition to the

nonlinear system of equations µF ′(x) + s = 0 that links the primal and dual variables.

Now using the constraint qualification for (4.1.2) in Assumption 4.1.5, we can similarly
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show that for a fixed µ the points (w, s) on the dual central path satisfy the following system

of equations and inclusions for some x:

Ax = b

ATw + s = c

µF ′
∗(s) + x = 0

x ∈ int(K), s ∈ int(K∗).

(4.1.7)

For any x ∈ int(K) and s ∈ int(K∗), µF ′(x) + s = 0 if and only if µF ′
∗(s) + x = 0, i.e., the

third equation in (4.1.6) is equivalent to that in (4.1.7): µF ′(x) + s = 0 is equivalent to

s = −µF ′(x), which implies

µF ′
∗(s) = µF ′

∗(−µF ′(x))

= µF ′
∗(−F ′(x/µ)) (4.1.8a)

= µ(−x/µ) (4.1.8b)

= −x.

Here (4.1.8a) follows from Lemma 3.3.2(a) and (4.1.8b) follows from Lemma 3.3.7(a). The

reverse implication is proved similarly, using Lemmas 3.3.2(a) and 3.3.7(b). Therefore

the primal and dual central paths are the same when embedded in (x,w, s) space. The

equivalent relations µF ′(x)+s = 0 and µF ′
∗(s)+x = 0 allow us to generate the dual central

path from the primal central path and vice versa. Furthermore, the primal-dual central

path is nothing but the set of triples (x,w, s) satisfying (4.1.6). The vectors w and s in the

definition of the primal central path in fact belong to the dual central path, and the vector

x in the definition of the dual central path belongs to the primal central path.

On the primal-dual central path there exists a simple relation between x and s:

xT s = xT (−µF ′(x)) = −µxTF ′(x) = νµ,
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where the last equality follows from Lemma 3.3.2(b). Therefore to follow the primal-dual

central path to the optimal primal-dual solution set, we define what is known as the duality

measure,

µ =
xT s

ν
, (4.1.9)

and decrease µ to zero. The duality measure of a triple (x,w, s) may be thought of as

the normalized duality gap; the duality gap associated with (x,w, s), xT s, was defined

in Section 2.3, and is nonnegative for any feasible (x,w, s). Throughout this chapter the

parameter µ will be defined according to (4.1.9).

One might wonder whether it is better to replace the central path equation µF ′(x)+s = 0

by the equation −diag(F ′(x))−1s + µe = 0, where e is the vector of ones and diag(F ′(x))

is the matrix whose diagonal is the vector F ′(x). If F (x) = −∑i log(xi) is the standard

logarithmic barrier function for the nonnegative orthant, then −diag(F ′(x))−1s + µe = 0

becomes the familiar Xs = µe, which is symmetric in x and s. Here X denotes the matrix

whose diagonal is x. However there is no guarantee that for a given cone K, diag(F ′(x))

is nonsingular for every strongly feasible x.3 Applying Newton’s method to the nonlinear

system of equations in (4.1.6), we obtain the linear system













A 0 0

0 AT I

µF ′′(x) 0 I

























∆x

∆w

∆s













=













b−Ax

c−ATw − s

−µF ′(x) − s













. (4.1.10)

The primal Newton direction is ∆x. Similarly we may apply Newton’s method to the

3Consider, for example, the case that K = {x ∈ R2 | x2 ≥ |x1|} is the two-dimensional second-order
cone. The self-concordant barrier function F (x) = − log(x2

2 − x2
1) for K is such that diag(F ′(x)) is singular

along the strongly feasible ray {x | x1 = 0, x2 > 0}.
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nonlinear system of equations in (4.1.7) to obtain the linear system













A 0 0

0 AT I

I 0 µF ′′
∗ (s)


















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



∆x∗

∆w∗

∆s∗


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





=













b−Ax

c−ATw − s

−µF ′
∗(s) − x













. (4.1.11)

The dual Newton direction is (∆w∗,∆s∗). We now discuss the relationship between the

solutions of (4.1.10) and (4.1.11).

Note that (4.1.10) and (4.1.11) do not generally have the same solution. However they

do for self-scaled cones (Definition 3.3.8) due to the additional structure possessed by these

cones and their associated self-concordant barriers. In this case (∆x,∆w,∆s) can be con-

sidered a true primal-dual Newton direction. It is further noted in [35] that for the most

widely studied self-scaled cones—the nonnegative orthant, the positive semidefinite cone,

and the second-order cone—the optimal normal barrier F is such that F (x) and F∗(s) have

exactly the same form up to an additive constant. The formulas for F , F∗, and the gradient

and Hessian of F for such cones are given in Section 5.2.3. In [43, Section 3.5.1] the connec-

tion between self-scaled cones and the relation “F (s) − F∗(s) = constant” for s ∈ int(K∗)

is explained. (Note that F (s) is well defined for a self-scaled cone, since such cones are

self-dual (K = K∗), implying that s ∈ int(K∗) lies in the domain of F .) A detailed discus-

sion of self-scaled cones and self-scaled barrier functions associated with these cones can be

found in [35, 36].

We will present a short-step algorithm to solve (4.1.1) and (4.1.2). Short-step algorithms

date back to an important paper of Renegar [42], in which a polynomial-time primal algo-

rithm for linear optimization was given. The name “short-step” arises from that fact that

this class of algorithms generates at each iteration Newton steps that are “short” enough

to be feasible. That is, no line search is required. This is a definite plus, since line searches

may be expensive and difficult for many classes of cones K. The major downside is that

such Newton steps are usually too conservative; in practice larger steps may be possible,

leading to a faster reduction in the duality measure (to zero), and hence faster convergence
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to the set of optimal primal-dual solutions. Before giving the algorithm and analyzing it,

we first discuss some preliminary issues. We have noted that the primal-dual central path

converges to the optimal primal-dual solution set, so it seems advantageous to design an

algorithm that stays close to this path and makes progress towards the optimal primal-dual

solution set. We now quantify what it means for a point to lie close to the central path.

Given θ ∈ (0, 1), define the N (θ) neighborhood of the primal-dual central path by

N (θ) :=

{

(x,w, s) | (x,w, s) is strongly feasible for (4.1.1)–(4.1.2),

‖s+ µF ′(x)‖∗x,F ≤ θµ, µ =
xT s

ν

}

.

(4.1.12)

The neighborhood N (θ) defined in (4.1.12) was used in [36, Section 6] for optimization over

self-scaled cones. In the case that K is the nonnegative orthant and F (x) = −∑i log(xi) is

the standard logarithmic barrier function, we have ‖s+ µF ′(x)‖∗x,F = ‖Xs− µe‖2, so N (θ)

is the familiar N2 neighborhood used in linear optimization; see e.g., [59, p. 9]. Note that

points in the set N (θ) satisfy all conditions in (4.1.6) with the possible exception of the

system of equations s+µF ′(x) = 0, whose residual is sufficiently small (as measured in the

‖ · ‖∗x,F norm). Larger values of θ correspond to a wider neighborhood of the primal-dual

central path, since θ dictates the extent to which points in the neighborhood fail to satisfy

s+µF ′(x) = 0, where µ is the duality measure. In fact, if for some x ∈ int(K), s ∈ Rn, and

scalar µ̃ > 0, the quantity ‖s+ µ̃F ′(x)‖∗x,F is small, then µ̃ is close to the duality measure of

(x,w, s). The proof is as follows, where (4.1.13a) follows from Lemma 3.3.2(b) and (4.1.13b)

follows from Lemma 3.3.2(d).

|xT s− νµ̃| = |xT s+ µ̃xTF ′(x)| (4.1.13a)

= |xT (s+ µ̃F ′(x))|

= |
(

F ′′(x)1/2x
)T
F ′′(x)−1/2(s+ µ̃F ′(x))|

≤ ‖F ′′(x)1/2x‖2 ‖F ′′(x)−1/2(s+ µ̃F ′(x))‖2

= ν1/2‖s+ µ̃F ′(x)‖∗x,F . (4.1.13b)
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We now give a key relation between the norms induced by the Hessians of F and F∗.

To our knowledge it is new. It shows that in a neighborhood of the central path, the dual

norm induced by the Hessian of F is approximately proportional to the norm induced by

the Hessian of F∗.

Lemma 4.1.9. Let F be a ν-normal barrier for the full cone K for some ν. Let θ ∈ (0, 1)

and (x,w, s) ∈ N (θ). For any vector h ∈ Rn,

(1 − θ)
1

µ
‖h‖∗x,F ≤ ‖h‖s,F∗

≤ 1

(1 − θ)µ
‖h‖∗x,F .

Proof. Let t = −µF ′(x). As noted in Chapter 3, F ′(x) ∈ −int(K∗) for all x ∈ int(K), so

t ∈ int(K∗). Since x ∈ int(K) and µ > 0, we may invoke Lemma 3.3.7(e). Using this lemma

and (x,w, s) ∈ N (θ), we have

r := ‖t− s‖t,F∗
= ‖µF ′(x) + s‖−µF ′(x),F∗

=
1

µ
‖µF ′(x) + s‖∗x,F ≤ θ < 1.

Therefore the hypotheses of Lemma 3.3.6(a) hold for t and s as defined above. Applying

this result and using r ≤ θ, we obtain

(1 − θ)‖h‖−µF ′(x),F∗
≤ ‖h‖s,F∗

≤ 1

1 − θ
‖h‖−µF ′(x),F∗

. (4.1.14)

But by Lemma 3.3.7(e) again, we have

‖h‖−µF ′(x),F∗
=

1

µ
‖h‖∗x,F . (4.1.15)

Combining (4.1.14) and (4.1.15) gives the required result.

Given θ ∈ (0, 1) and 0 < µ ≤ µ̄ ≤ ∞, we will find it convenient to define the truncated

neighborhood

N (θ, µ, µ̄) :=
{

(x,w, s) ∈ N (θ) | µ ≤ xT s

ν
≤ µ̄

}

. (4.1.16)
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We have already noted that under Assumptions 4.1.1 and 4.1.5, the primal and dual optimal

solution sets are nonempty and bounded. It follows that the level sets of the duality measure

must also be bounded in (x,w, s) space; see [30, Theorem 1]. Hence N (θ, µ, µ̄) is bounded

for fixed θ, µ, and µ̄.

4.2 Statement of our interior-point method

We now present an iterative algorithm to solve (4.1.1)–(4.1.2). This algorithm is a primal-

dual feasible-point algorithm, meaning that at each iteration the iterates are feasible with

respect to the primal and dual constraints. This is achieved by using a feasible starting

triple (x0, w0, s0), giving b−Ax0 = 0 and c−ATw0−s0 = 0 in the right-hand side of (4.1.10).

It involves the application of Newton’s method to the system of equations in (4.1.6) for a

sequence of µ values converging to zero. That is, we solve a sequence of linear systems of

equations, each having a form similar to (4.1.10). The algorithm uses two parameters. One

is θ ∈ (0, 1), which stipulates the width of the neighborhood N (θ) inside which the initial

iterate is constrained to lie. To explain the need for the second parameter, let us observe

that the solution of (4.1.6) for a fixed µ > 0 is the triple (x(µ), w(µ), s(µ)) on the primal-

dual central path. It is desirable to find this point since following the central path from this

point leads to an optimal solution. However in order to guarantee progress at each iteration

toward the optimal solution set, we need to not only make progress towards the central path,

but also toward the optimal solution itself. In order to balance these two objectives, we

multiply µ in the right-hand side of (4.1.10) by a so-called centering parameter τ ∈ (0, 1).

(This idea is not new; see e.g., [59, p. 8], where the parameter is denoted by σ.) Now

suppose we can find a triple (x0, w0, s0) ∈ N (θ) to use as a starting point in an iterative

algorithm that solves (4.1.1)–(4.1.2).4 By choosing τ and θ appropriately, we will ensure

4Finding such an initial point can be as difficult as solving (4.1.1) and (4.1.2). However such a point can be
found by solving a so-called homogeneous self-dual optimization problem. This class of optimization problems
is not to be confused with the class of homogeneous self-dual cones, mentioned in Section 3. A homogeneous
self-dual optimization problem can be formulated regardless of the convex cone. This procedure was first
developed for linear optimization problems. The basic idea is to embed (4.1.1) and (4.1.2) in a higher-
dimensional conic optimization problem that possesses certain symmetries, and furthermore, an obvious
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that all iterates of our algorithm stay in the neighborhood N (θ). Moreover, the iterates

converge to an optimal solution in a reasonable number of iterations by guaranteeing at each

iteration a geometric reduction in the duality measure from its initial value of (x0)T s0/ν.

In practice, computations are performed in real arithmetic as opposed to rational arith-

metic, in which all quantities are expressed as rational numbers. Therefore we cannot

realistically expect to compute an exact optimal solution. So our goal will be to compute

feasible primal and dual points that are within some prescribed distance of the set of op-

timal primal-dual solutions. One measure of the closeness of a feasible primal-dual point

to the optimal solution set is the duality measure xT s/ν, which due to Assumption 4.1.5 is

zero at an optimal primal-dual solution.

Definition 4.2.1 (ε-optimal solution). Given ε ∈ (0, 1), an ε-optimal solution of (4.1.1)–

(4.1.2) is a feasible primal-dual point whose duality measure is no greater than ε.

So when we refer to convergence of our algorithm, we mean that for some prescribed ε, an

ε-optimal solution of (4.1.1)–(4.1.2) has been generated.

We now explain the sense in which our interior-point method uses inexact barrier func-

tion evaluations. We will consider three cases, each of which involves a different assumption

on the errors in F ′(x) and F ′′(x) at a given x ∈ int(K), due to computing these quantities

inexactly. We first analyze the case where the errors or “perturbations” in the gradient

and Hessian of F are completely unstructured. We then study the case that there are no

perturbations, i.e., F ′ and F ′′ are evaluated exactly. We finally consider the case where the

perturbations are structured, i.e., the errors in our estimates of F ′ and F ′′ are related. We

stress that our primal-dual interior-point method, unlike others in the literature, does not

require the evaluation—or an estimate—of a barrier function or its derivatives for the dual

problem (4.1.2). Only in the analysis do we make use of a suitable barrier function (F∗) for

the dual problem.

strongly feasible point. For the details of how this can be extended to convex optimization problems, see
[34], where it is assumed that exact barrier and Hessian information is known. Since we are not making
such an assumption, we need to assume that an initial point can still be obtained in polynomial time.
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Let x ∈ int(K). Suppose estimates of the gradient and Hessian of F at x are known.

Denote these estimates by F1(x) and F2(x) respectively. For the sake of discussion, in this

section only we will make the following assumption on F2. (In the analysis of our algorithm

(Section 4.3) we will make a stronger assumption on F2(x).)

Assumption 4.2.2. For all x ∈ int(K), F2(x) is a positive definite matrix.

Assumption 4.2.2 is sensible because from Assumption 4.1.4 the exact Hessian is positive

definite for all x ∈ int(K). Our short-step interior-point algorithm is presented below as

Algorithm short step.5

Algorithm short step

Let θ, τ ∈ (0, 1) and (x0, w0, s0) ∈ N (θ).

For k = 0, 1, · · · until convergence:

(1) Let µk = (xk)T sk/ν and solve the linear system













A 0 0

0 AT I

µkF2(x
k) 0 I

























∆xk

∆wk

∆sk













=













0

0

−τµkF1(x
k) − sk













. (4.2.1)

(2) Set (xk+1, wk+1, sk+1) = (xk, wk, sk) + (∆xk,∆wk,∆sk).

end

Note the appearance of the centering parameter τ , and compare (4.2.1) with (4.1.10).

Before analyzing Algorithm short step, we first explain the different ways in which the

linear system (4.2.1) can be solved. We also give an overview of the literature for exact and

inexact interior-point methods. (Here the term “exact” refers to the exact evaluation of the

gradient and Hessian of F .)

5The algorithm is given in what we may call a “generic” form, since in order to prove convergence and
polynomial iteration complexity, it is necessary to choose θ and τ appropriately, and to choose appropriate
bounds on the errors in the estimates F1 and F2.
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The linear system (4.2.1) is equivalent to

AF2(x
k)−1AT∆wk = AF2(x

k)−1(τµkF1(x
k) + sk),

∆sk = −AT∆wk, (4.2.2)

µkF2(x
k)∆xk = −τµkF1(x

k) − sk − ∆sk.

Since A has full row rank (Assumption 4.1.1) and F2(x
k) is positive definite (Assump-

tion 4.2.2), F2(x
k)−1 is defined and the system (4.2.2), which is called the normal equations

system, has a unique solution. Hence the solution of (4.2.1) is also unique. We can use

the positive definiteness of F2 to solve the normal equations system by finding a Cholesky

factorization of F2(x
k), say F2(x

k) = LLT . We then solve LG = AT for G ∈ Rn×m by

solving m triangular systems—one for each column of G. We then compute the vector

u = F2(x
k)−1(τµkF1(x

k)+ sk) by solving LLTu = τµkF1(x
k)+ sk using forward then back-

ward substitution. Since AF2(x
k)−1AT = GTG is positive definite, the vector ∆wk may

be computed by solving GTG∆wk = Au via a Cholesky decomposition of GTG. The com-

putation of ∆sk is straightforward, and the Cholesky factorization of F2(x
k) is reused to

compute ∆xk. In addition to the cost of computing F1(x
k) and F2(x

k), the cost of forming

and solving (4.2.2) can be estimated as follows:

• O(n3) arithmetic operations to find the Cholesky factorization of F2(x
k) if F2(x

k) is

dense.

• O(mn2) arithmetic operations to solve LG = AT for G ∈ Rn×m.

• O(n2) arithmetic operations to solve LLTu = τµkF1(x
k) + sk for u.

• O(m2n) arithmetic operations to form GTG.

• O(m3) arithmetic operations to solve GTG∆wk = Au for ∆wk.

• O(mn) arithmetic operations to compute ∆sk.

• O(n2) arithmetic operations to compute ∆xk.
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Since m ≤ n the total cost is O(n3) arithmetic operations. An advantage of solving (4.2.2)

is that the size of each of the three systems of equations is no greater than n, whereas

the size of (4.2.1) is m + 2n, so the cost of blindly solving (4.2.1) without regard to the

structure apparent in the matrix is greater. Solving (4.2.2) does have its disadvantages

however. Unless the matrices A and F2(x
k)−1 are sparse, it is unlikely that AF2(x

k)−1AT

will be sparse, so (4.2.2) involves two linear systems whose matrices are dense. Furthermore,

AF2(x
k)−1AT becomes increasing ill-conditioned as xk approaches the optimal solution set

of (4.1.1). To compensate for this a preconditioner is sometimes used. Sometimes it may

be better to solve the so-called augmented system, which results from eliminating only the

variables ∆sk from (4.2.1):







−µkF2(x
k) AT

A 0













∆xk

∆wk






=







τµkF1(x
k) + sk

0






,

∆sk = −τµkF1(x
k) − sk − µkF2(x

k)∆xk.

(4.2.3)

Although the linear system in (4.2.3) is larger than those in (4.2.2), if A is sparse, the cost

of solving these systems may be comparable. Note however that the linear system (4.2.3)

involves a symmetric indefinite matrix. The ill-conditioning in the augmented system is

generally not as severe as for the normal equations. Still, in some practical algorithms an

indefinite preconditioner is used. See e.g., [12], where an algorithm for linear optimization

is presented.

There is an extensive literature on inexact interior-point methods for linear optimization

problems, and a smaller body of work on inexact methods for nonlinear convex optimiza-

tion problems. We note the interesting paper [56], in which various types of primal-dual

potential reduction methods are given for conic optimization. It is shown that the assump-

tions made on the availability of a self-concordant barrier function and its derivatives affect

the convergence and worst-case complexity properties of the potential reduction algorithm.

Specifically, three cases are studied. In the first case, it is supposed that one cannot evaluate

a self-concordant barrier F or its derivatives for the cone K in question, nor is it possible to
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evaluate the conjugate barrier or its derivatives. Due to the absence of derivative informa-

tion, the resulting algorithm is called a “zeroth order algorithm”. Then it is supposed that

we can evaluate the first derivatives of F and its conjugate, giving a “first order algorithm”.

Finally, it is supposed that we can evaluate both the first and second derivatives of F and

its conjugate, giving a “second-order algorithm”. In each case the inverse Hessian of a self-

concordant barrier function is approximated by a matrix that may be updated according

to a Quasi-Newton method.

In the interior-point method literature, the term “inexact algorithms” typically refers

to algorithms in which approximate right-hand sides of say, (4.2.1), (4.2.2), or (4.2.3), are

used. In some schemes approximate coefficient matrices are also used. Our inexact algo-

rithm can also be considered this way, although our primary concern is to estimate F ′ and

F ′′ rather than the coefficient matrix and right-hand-side of a linear system per se. In

[28, 13, 24] infeasible-point methods for linear optimization are presented in which (4.2.1) is

solved approximately. In [4] an inexact algorithm is presented for monotone horizontal lin-

ear complementarity problems. (This class of complementarity problems includes as special

cases linear optimization problems and convex quadratic optimization problems; the latter

problems have linear constraints and a convex quadratic objective function.) Inexact meth-

ods for other classes of nonlinear convex problems have also been studied. In [61] an inexact

primal-dual method was presented for semidefinite optimization. This method generated a

near-optimal solution in polynomial time under certain conditions on the inexactness. We

also mention the paper [55] in which an inexact primal-dual path-following algorithm is

given for a class of convex quadratic semidefinite optimization problems.

Only the system of equations resulting from the linearization of the complementarity

condition is perturbed, but a polynomial worst-case complexity result is proven. In the

seminal interior-point method paper of Karmarkar [19], a primal (rather than primal-dual)

method was presented for linear optimization. At each iteration of Karmarkar’s method,

instead of computing the matrix in the linear system directly, Karmarkar used an update

from the matrix used in the previous iteration. This method of updating, while it resulted
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in inexact linear systems at each iteration, led to a decrease in the worst-case complexity

of his algorithm. If an iterative method such as the (preconditioned) conjugate gradient

method is used to solve the linear system of equations that occurs at each iteration, one

can control the error in the estimated solution by varying the number of conjugate gradient

iterations. For previous work on the use of the conjugate gradient method in interior-point

methods for linear optimization, see e.g., [58] and the references therein.

To conclude this section, we make a remark about the uniqueness of the Newton di-

rection in Algorithm short step. It is known that for semidefinite and second-order cone

optimization, the linearization of some formulations of the central path equations does not

necessarily yield a well-defined Newton direction, even when A has full row rank; see [54,

p. 778] and [39, Section 3.1] for examples. In other words, alternate forms of (4.1.10) may

not possess a unique solution even if F1 and F2 are exact. This can occur, for example, if

the equation µF ′(x)+ s = 0 is rewritten to be symmetric in x and s.6 In the case that K is

a self-scaled cone, this difficulty may be circumvented by instead computing the Nesterov-

Todd direction, as explained above. However by directly linearizing µF ′(x)+ s = 0 instead,

as we have done, the resulting linear system (4.1.10) always has a unique solution. By

extension, the same is true for (4.2.1), where the Hessian of F is evaluated inexactly.

4.3 Unstructured perturbations in the gradient and Hessian

of F

Given an x ∈ int(K), suppose that the exact gradient and Hessian of F (x) are unknown

or too expensive to compute “exactly”, but we can compute estimates, which we shall call

F1(x) and F2(x) respectively. Since the Hessian of F is symmetric, we will assume that

6In semidefinite optimization, for example, one can use the n-normal barrier function F (X) =
− log(det(X)), where X ∈ Rn×n is the symmetric positive semidefinite matrix of primal variables, and
det(X) denotes the determinant of X; see Section 5.2.3. If S ∈ Rn×n denotes the symmetric matrix of dual
variables analogous to s in (4.1.1), the central path equation µF ′(x) + s = 0 becomes −µX−1 + S = 0,
i.e., XS = µI. The last equation is symmetric in X and S. Now µI is a symmetric matrix, whereas the
product XS need not be. So it is possible that when the linearization of XS = µI is incorporated into
(4.1.10), the resulting system fails to have a unique solution.
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F2(x) is also symmetric. Denote the errors in the gradient and Hessian of F (x) by

E1(x) = F ′(x) − F1(x), E2(x) = F ′′(x) − F2(x).

By definition E2(x) is a symmetric matrix. Throughout this section, we will assume that

the errors E1(x) and E2(x) are “small enough”. We now quantify this. First let us define

for θ ∈ (0, 1)

X (θ) := {x | (x,w, s) ∈ N (θ) for some w, s}.

Assumption 4.3.1. The neighborhood parameter θ satisfies θ ∈ (0, 1). For some ε1, ε2 > 0,

the absolute errors E1(x) and E2(x) satisfy the following relations:

x ∈ X (θ) =⇒ ‖E1(x)‖∗x,F ≡ ‖F ′′(x)−1/2E1(x)‖2 ≤ ε1 < 1, (4.3.1)

x ∈ X (θ) =⇒ ‖F ′′(x)−1/2E2(x)F
′′(x)−1/2‖2 ≤ ε2 < 1. (4.3.2)

Loosely speaking, we will refer to the quantities ‖E1(x)‖∗x,F and ‖F ′′(x)−1/2E2(x)F
′′(x)−1/2‖2

as the “relative errors” in F1(x) and F2(x). (More accurately, they measure the absolute er-

rors relative to the Hessian of F . Note also that ‖E1(x)‖∗x,F is not invariant under a positive

scaling of F .) These “relative errors” are in fact upper bounds on the true relative errors

in F1(x) and F2(x), measured in appropriate norms: the relative error in F1(x), measured

in the ‖ · ‖∗x,F norm, is

‖E1(x)‖∗x,F
‖F ′(x)‖∗x,F

=
‖E1(x)‖∗x,F

ν1/2
≤ ‖E1(x)‖∗x,F ,

where we have used Lemma 3.3.2(e) and ν ≥ 1. The relative error in F2(x), measured in
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the matrix 2-norm, is (using Lemma 2.1.1(a)(iii))

‖E2(x)‖2

‖F ′′(x)‖2
≤ ‖F ′′(x)−1/2E2(x)F

′′(x)1/2‖2

‖F ′′(x)‖2

=
‖F ′′(x)−1/2E2(x)F

′′(x)−1/2F ′′(x)‖2

‖F ′′(x)‖2

≤ ‖F ′′(x)−1/2E2(x)F
′′(x)−1/2‖2 ‖F ′′(x)‖2

‖F ′′(x)‖2

= ‖F ′′(x)−1/2E2(x)F
′′(x)−1/2‖2.

So we may think of ε1 and ε2 in Assumption 4.3.1 as upper bounds on the maximum

allowable relative errors in our estimates of F ′ and F ′′. The assumption in (4.3.2) implies

that the eigenvalues of F2(x) are close to those of F ′′(x) when x ∈ X (θ):

Lemma 4.3.2. The Hessian estimate F2(x) satisfies (1−ε2)F ′′(x) ¹ F2(x) ¹ (1+ε2)F
′′(x).

Moreover F2(x) is positive definite.

Proof. The nonstrict inequality in (4.3.2) implies that

−ε2I ¹ F ′′(x)−1/2E2(x)F
′′(x)−1/2 ¹ ε2I.

Multiplying this matrix inequality on the left and right by the positive definite matrix

F ′′(x)1/2 preserves the partial ordering ¹:

−ε2F ′′(x) ¹ E2(x) ¹ ε2F
′′(x).

Subtracting each quantity in the above matrix inequality from F ′′(x) gives the required

result. Since F is assumed nondegenerate, F ′′(x) is positive definite, so F2 is also.

The outline for the remainder of this section is as follows. We first prove some prelim-

inary perturbation results showing how various quantities are affected when the gradient

and Hessian of F are replaced by the estimates F1(x) and F2(x). We then prove that

for a primal-dual iterate (xk, wk, sk) ∈ N (θ), the Newton steps ∆xk and ∆sk in (4.2.1) are
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bounded by a constant and a constant times the duality measure µk, respectively, in the ap-

propriate norms (Lemma 4.3.5 and Corollary 4.3.6). Using such bounds we show that if the

above-mentioned constants are less than one, then a full Newton step produces a strongly

feasible primal-dual point (Lemma 4.3.7). Therefore no line search procedure is required.

Hence our algorithm indeed belongs to the class of feasible-point algorithms: all iterates

are (strongly) feasible if the starting point is. Next we derive formulas for the minimum

and maximum rates of decrease of the duality measure at each iteration (Lemma 4.3.9).

Since the sequence of positive duality measures generated by Algorithm short step decreases

linearly, they converge to zero, as is required for the algorithm to converge to an optimal

solution of (4.1.1)–(4.1.2). The maximum rate of decrease of the duality measure is used to

show that not only are all iterates strongly feasible, but they stay in an N (θ) neighborhood

of the central path. Thus our algorithm belongs to the class of “path-following” algorithms.

Since F ′′(x) and F2(x) are positive definite on X (θ), the square roots of these two

matrices are well defined. Define

D(x) = F ′′(x)1/2F2(x)
−1/2 = F ′′(x)1/2(F ′′(x) − E2(x))

−1/2. (4.3.3)

for all x ∈ X (θ). In the next lemma and corollary we give several technical results that will

be used in our analysis of the above interior-point method.

Lemma 4.3.3. Let x ∈ X (θ), s, z ∈ Rn and µ̃ ≥ 0. We have

‖D(x)‖2
2 ≤ 1

1 − ε2
, (4.3.4)

‖D(x)−1‖2
2 ≤ 1 + ε2, (4.3.5)

(1 + ε2)
−1/2‖z‖∗x,F ≤ ‖F2(x)

−1/2z‖2 ≤ (1 − ε2)
−1/2‖z‖∗x,F , (4.3.6)

(1 − ε2)
1/2‖z‖x,F ≤ ‖F2(x)

1/2z‖2 ≤ (1 + ε2)
1/2‖z‖x,F , (4.3.7)

‖F2(x)
−1/2(s+ µ̃F1(x))‖2 ≤ (1 − ε2)

−1/2
(

‖s+ µ̃F ′(x)‖∗x,F + µ̃ε1
)

. (4.3.8)
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Proof. Throughout all parts of the proof, suppose that x ∈ X (θ). We first prove (4.3.4).

‖D(x)‖2
2 = ‖D(x)D(x)T ‖2 = ‖F ′′(x)1/2

(

F ′′(x) − E2(x)
)−1

F ′′(x)1/2‖2

= ‖
(

I − F ′′(x)−1/2E2(x)F
′′(x)−1/2

)−1‖2

≤ 1

1 − ‖F ′′(x)−1/2E2(x)F ′′(x)−1/2‖2

≤ 1

1 − ε2
,

where the inequalities follow from (4.3.2). We next prove (4.3.5).

‖D(x)−1‖2
2 = ‖D(x)−TD(x)−1‖2 = ‖F ′′(x)−1/2

(

F ′′(x) − E2(x)
)

F ′′(x)−1/2‖2

= ‖I − F ′′(x)−1/2E2(x)F
′′(x)−1/2‖2

≤ 1 + ‖F ′′(x)−1/2E2(x)F
′′(x)−1/2‖2

≤ 1 + ε2,

where the inequalities again follow from (4.3.2). Using (4.3.4) and (4.3.5), we have

‖F2(x)
−1/2z‖2 = ‖D(x)TF ′′(x)−1/2z‖2

≤ ‖D(x)‖2 ‖F ′′(x)−1/2z‖2

≤ (1 − ε2)
−1/2‖z‖∗x,F ,

and

‖z‖∗x,F = ‖F ′′(x)−1/2z‖2

= ‖D(x)−TF2(x)
−1/2z‖2

≤ ‖D(x)−1‖2 ‖F2(x)
−1/2z‖2

≤ (1 + ε2)
1/2‖F2(x)

−1/2z‖2.

Combining these two inequalities gives (4.3.6). We now prove (4.3.7). Using (4.3.4) and
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(4.3.5) again we have

‖F2(x)
1/2z‖2 = ‖D(x)−1F ′′(x)1/2z‖2

≤ ‖D(x)−1‖2 ‖F ′′(x)1/2z‖2

≤ (1 + ε2)
1/2‖z‖x,F ,

and

‖z‖x,F = ‖F ′′(x)1/2z‖2

= ‖D(x)F2(x)
1/2z‖2

≤ ‖D(x)‖2 ‖F2(x)
1/2z‖2

≤ (1 − ε2)
−1/2‖F2(x)

1/2z‖2.

Combining these two inequalities gives (4.3.7). Finally we prove (4.3.8). In the following,

(4.3.9a) follows from (4.3.6), (4.3.9b) follows from the definition of E1(x), and (4.3.9c)

follows from (4.3.1).

‖F2(x)
−1/2(s+ µ̃F1(x))‖2 ≤ (1 − ε2)

−1/2‖s+ µ̃F1(x)‖∗x,F (4.3.9a)

≤ (1 − ε2)
−1/2‖s+ µ̃F ′(x) − µ̃E1(x)‖∗x,F (4.3.9b)

≤ (1 − ε2)
−1/2

(

‖s+ µ̃F ′(x)‖∗x,F + µ̃‖E1(x)‖∗x,F
)

≤ (1 − ε2)
−1/2

(

‖s+ µ̃F ′(x)‖∗x,F + µ̃ε1
)

. (4.3.9c)
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Corollary 4.3.4. Let x ∈ X (θ) and z ∈ Rn. We have

F1(x)
TF2(x)

−1F1(x) ≤ (ν1/2 + ε1)
2

1 − ε2
, (4.3.10)

|F1(x)
T z| ≤ ν1/2 + ε1

(1 − ε2)1/2
‖F2(x)

1/2z‖2, (4.3.11)

|E1(x)
T z| ≤ ε1‖z‖x,F , (4.3.12)

|E1(x)
Tx| ≤ ε1ν

1/2, (4.3.13)

|xTE2(x)z| ≤ ε2ν
1/2‖z‖x,F . (4.3.14)

Proof. To obtain the bound in (4.3.10), square the relation in (4.3.8), substitute s = 0 and

µ̃ = 1, and use Lemma 3.3.2(e). We now prove (4.3.11).

|F1(x)
T z| = |(F2(x)

−1/2F1(x))
TF2(x)

1/2z|

≤ ‖F2(x)
−1/2F1(x)‖2 ‖F2(x)

1/2z‖2

≤ ν1/2 + ε1

(1 − ε2)1/2
‖F2(x)

1/2z‖2,

where the last inequality follows from (4.3.10). We now prove (4.3.12). Using (4.3.1), we

have

|E1(x)
T z| = |(F ′′(x)−1/2E1(x))

T (F ′′(x)1/2z)|

≤ ‖F ′′(x)−1/2E1(x)‖2 ‖F ′′(x)1/2z‖2

≤ ε1‖z‖x,F ,

where the last inequality follows from (4.3.1). The inequality in (4.3.13) follows from (4.3.12)

with z = x, where Lemma 3.3.2(d) has also been used. Finally we prove (4.3.14). Using
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Lemma 3.3.2(d) and (4.3.2), we have

|xTE2(x)z| = |
(

F ′′(x)1/2x
)T (

F ′′(x)−1/2E2(x)F
′′(x)−1/2

)(

F ′′(x)1/2z
)

|

≤ ‖F ′′(x)1/2x‖2 ‖F ′′(x)−1/2E2(x)F
′′(x)−1/2‖2 ‖F ′′(x)1/2z‖2

≤ ν1/2ε2‖z‖x,F .

It will be convenient to define the following three constants depending on θ, τ, ε1, ε2, and

the complexity parameter ν ≥ 1.

β0 :=
θ + ε1 + (1 − τ)(ν1/2 + ε1)

(1 − ε2)1/2
,

β1 :=

(

1

1 − ε2

)1/2

β0, (4.3.15)

β2 := β0 max

{

(1 + ε2)
1/2

1 − θ
,

(

1

1 − ε2

)1/2}

.

Lemma 4.3.5. Let (xk, wk, sk) ∈ N (θ) be the k-th iterate generated by Algorithm short step.

We have

µ2
k‖F2(x

k)1/2∆xk‖2
2 + ‖F2(x

k)−1/2∆sk‖2
2 ≤ µ2

kβ
2
0 .

Proof. For convenience, we will omit all iteration subscripts and superscripts. Premultiply

the third block equation in (4.2.1) by (µF2(x))
−1/2:

(µF2(x))
1/2∆x+ (µF2(x))

−1/2∆s = (µF2(x))
−1/2(−τµF1(x) − s). (4.3.16)

It is seen from (4.2.1) that ∆x lies in the nullspace of A, while ∆s lies in the range space

of AT . Therefore ∆x is orthogonal to ∆s. Taking the square of the 2-norm of each side of

(4.3.16) and using this orthogonality, we obtain

‖(µF2(x))
1/2∆x‖2

2 + ‖(µF2(x))
−1/2∆s‖2

2 = ‖(µF2(x))
−1/2(−τµF1(x) − s)‖2

2.
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Multiplying this equation by µ, we have

µ2‖F2(x)
1/2∆x‖2

2 + ‖F2(x)
−1/2∆s‖2

2 = ‖F2(x)
−1/2(−τµF1(x) − s)‖2

2. (4.3.17)

Let us now bound the right-hand side of (4.3.17). In the following, (4.3.18a) follows from

(4.3.8), and (4.3.18b) follows from (4.3.10) and the fact that x ∈ X (θ).

‖F2(x)
−1/2(−τµF1(x) − s)‖2

= ‖ − F2(x)
−1/2(s+ µF1(x)) + F2(x)

−1/2(1 − τ)µF1(x)‖2

≤ ‖ − F2(x)
−1/2(s+ µF1(x))‖2 + ‖F2(x)

−1/2(1 − τ)µF1(x)‖2

≤ (1 − ε2)
−1/2

(

‖s+ µF ′(x)‖∗x,F + µε1
)

+ µ(1 − τ)‖F2(x)
−1/2F1(x)‖2 (4.3.18a)

≤ (1 − ε2)
−1/2

(

θµ+ µε1
)

+ µ(1 − τ)
ν1/2 + ε1

(1 − ε2)1/2
(4.3.18b)

≤ µ

[

θ + ε1 + (1 − τ)(ν1/2 + ε1)

(1 − ε2)1/2

]

= µβ0.

Combining this with (4.3.17) yields the required result.

Corollary 4.3.6. Let (xk, wk, sk) ∈ N (θ) be the k-th iterate generated by Algorithm short step.

We have

‖F2(x
k)1/2∆xk‖2 ≤ β0,

‖F2(x
k)−1/2∆sk‖2 ≤ µkβ0,

‖∆xk‖xk,F ≤ β1,

‖∆sk‖∗xk,F ≤ (1 + ε2)
1/2µkβ0,

where β0 and β1 are defined in (4.3.15).

Proof. The first two bounds follow immediately from Lemma 4.3.5. The third inequality

follows from the first inequality and (4.3.7), and the fourth inequality follows from the
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second inequality and (4.3.6).

We now study the convergence of Algorithm short step. First we show that under a

condition on the parameters θ, τ, ε1, and ε2, a full primal-dual Newton step is not only

strongly feasible, justifying step (2) in the Iteration short step, but the new iterate remains

in the N (θ) neighborhood of the central path. We also indicate the rate of decrease of

sequence of duality measures {µk} to zero.

Lemma 4.3.7. Let θ, τ, ε1, and ε2 be such that β2 < 1 where β2 is defined in (4.3.15), and

let (xk, wk, sk) ∈ N (θ). Then the point (xk+1, wk+1, sk+1) generated by Algorithm short step

is a strongly feasible primal-dual point.

Proof. As we have already noted, the equality constraints in (4.1.1) and (4.1.2) are satisfied

by (xk+1, wk+1, sk+1), since they are satisfied by (x0, w0, s0), and any step from (xk, wk, sk)

in the direction (∆xk,∆wk,∆sk) will satisfy these constraints due to the first two block

equations in (4.2.1). We now show that xk+1 ∈ int(K) and sk+1 ∈ int(K∗). For convenience,

we now omit all iteration subscripts and superscripts. Since F is a nondegenerate self-

concordant barrier (Assumption 4.1.4), Lemma 3.2.9(b) is applicable: if ‖∆x‖x,F < 1, then

x+ ∆x ∈ int(K). By Corollary 4.3.6, a sufficient condition for ‖∆x‖x,F < 1 is β1 < 1, and

this holds since β2 < 1.

Similarly, in light of Lemma 3.3.6(b), if ‖∆s‖s,F∗
< 1, then s+∆s ∈ int(K∗). It remains

to show that ‖∆s‖s,F∗
< 1 under our assumption β2 < 1. Since (x,w, s) ∈ N (θ), we may

apply Lemma 4.1.9 with h = ∆s to obtain

‖∆s‖s,F∗
≤

1
µ‖∆s‖∗x,F

1 − θ
≤ (1 + ε2)

1/2β0

1 − θ
,

where the last inequality follows from Corollary 4.3.6. By the definition of β2 in (4.3.15),

we have ‖∆s‖s,F∗
≤ β2 < 1.

It follows from Lemma 4.3.7 that a full step in the Newton direction for (4.2.1) is strongly

feasible. Thus at each iteration the exact gradient and Hessian are well defined. Note that
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it was not necessary to evaluate, or even estimate, values of the conjugate barrier function

F∗ or its derivatives in order to show that a full dual step (∆wk,∆sk) was strongly feasible.

Instead we estimated the gradient and Hessian of F∗ using the gradient and Hessian of F

and the results in Lemma 3.3.7.

Remark 4.3.8. In contrast to our interior-point method, other primal-dual interior-point

algorithms for conic optimization require the evaluation—or at least approximate evaluation—

of the conjugate barrier function (or another normal barrier for K∗) or its gradient and

Hessian. We note the recent work of Nesterov [32] which was made known to us as this re-

search was concluding. Nesterov gave a primal-dual predictor-corrector algorithm for conic

optimization that does not require exact evaluation of the conjugate barrier function or its

derivatives, but uses an estimate of the conjugate barrier function. The reason is that his

algorithm is based upon the use of a primal-dual “global proximity” measure

Ψ(x,w, s) = F (x) + F∗(s) + ν log

(

xT s

ν

)

+ ν,

which by [33, Prop. 2.4.1] is nonnegative for any strongly feasible primal-dual pair (x,w, s),

and zero if and only if (x,w, s) lies on the primal-dual central path. (This proximity function

was first used in an interior-point method in [30].) By ensuring that Ψ(x,w, s) is sufficiently

small at all iterates produced by an interior-point algorithm, one stays sufficiently close to

the central path to guarantee progress towards the optimal solution set.

We now study the behavior of the sequence of duality measures {µk}.

Lemma 4.3.9. Let (xk, wk, sk) ∈ N (θ) be the k-th iterate generated by Algorithm short step.

The duality measure µk+1 of the next iterate (xk+1, wk+1, sk+1) satisfies

δµk ≤ µk+1 ≤ δ̄µk,
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where

δ = τ − τε1

ν1/2
− β0

(1 − τ)(ν1/2 + ε1) + ε1 + ε2ν
1/2

ν(1 − ε2)1/2
− 1

ν
β2

0 , (4.3.19)

δ̄ = τ +
τε1

ν1/2
+ φ

(1 − τ)(ν1/2 + ε1) + ε1 + ε2ν
1/2

ν(1 − ε2)1/2
− 1

ν
φ2, (4.3.20)

with φ = min

{

β0,
(1 − τ)(ν1/2 + ε1) + (ε1 + ε2ν

1/2)

2(1 − ε2)1/2

}

. (4.3.21)

Proof. For ease of notation, we will write x, s, µ for xk, sk, µk, and x+, s+, µ+ for xk+1, sk+1, µk+1.

Recalling that ∆x is orthogonal to ∆s, we have

νµ+ = xT+s+

= (x+ ∆x)T (s+ ∆s)

= xT (s+ ∆s) + (∆x)T s. (4.3.22)

From the third block equation in (4.2.1), we have s+ ∆s = −τµF1(x) − µF2(x)∆x, so

xT (s+ ∆s) = −xT (τµF1(x) + µF2(x)∆x)

= −τµxT (F ′(x) − E1(x)) − µxT (F ′′(x) − E2(x))∆x

= τµ(ν + E1(x)
Tx) + µ(F ′(x)T∆x+ xTE2(x)∆x)

= τµν + τµE1(x)
Tx+ µ(F1(x) + E1(x))

T∆x+ µxTE2(x)∆x, (4.3.23)

where we have used Lemma 3.3.2(b),(c). Since (∆x)T∆s = 0, it also follows from the third

block equation in (4.2.1) that

(∆x)T s = (∆x)T (−µF2(x)∆x− τµF1(x))

= −µ‖F2(x)
1/2∆x‖2

2 − τµF1(x)
T∆x. (4.3.24)
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Combining (4.3.22), (4.3.23), and (4.3.24) we have

νµ+ = τµν + τµE1(x)
Tx+ (1 − τ)µF1(x)

T∆x+ µE1(x)
T∆x

+µxTE2(x)∆x− µ‖F2(x)
1/2∆x‖2

2,

i.e.,

µ+

µ
= τ +

τ

ν
E1(x)

Tx+
1 − τ

ν
F1(x)

T∆x+
1

ν
E1(x)

T∆x

+
1

ν
xTE2(x)∆x− 1

ν
‖F2(x)

1/2∆x‖2
2. (4.3.25)

To reduce clutter, let t̂ = ‖F2(x)
1/2∆x‖2 and t = ‖∆x‖x,F . Then by appealing to the

results of Corollary 4.3.4, we obtain the following upper bound on µ+/µ:

µ+

µ
≤ τ +

τ

ν
|E1(x)

Tx| + 1 − τ

ν
|F1(x)

T∆x| + 1

ν
|E1(x)

T∆x|

+
1

ν
|xTE2(x)∆x| −

1

ν
‖F2(x)

1/2∆x‖2
2

≤ τ +
τ

ν
ε1ν

1/2 +
1 − τ

ν

ν1/2 + ε1

(1 − ε2)1/2
t̂+

1

ν
ε1t+

1

ν
ε2ν

1/2t− 1

ν
t̂2

=: u(t̂, t).

It follows from (4.3.7) and Corollary 4.3.6 that t̂ and t satisfy the following conditions:

(1 − ε2)
1/2t ≤ t̂ ≤ (1 + ε2)

1/2t, 0 ≤ t̂ ≤ β0. (4.3.26)

We now find the best upper bound on u(t̂, t) by solving the problem

max{u(t̂, t) | (t̂, t) satisfies (4.3.26)}.

The function u(t̂, t) is continuous over the bounded set of (t̂, t) pairs satisfying (4.3.26). So

there exists an optimal solution to our maximization problem. Suppose that (t̂∗, t∗) is one

such optimal solution. In view of the positive coefficient of t in the formula for u(t̂, t), it is

76



necessary that given t̂∗, t∗ be as large as possible, i.e., (1 − ε2)
1/2t∗ = t̂∗. So it suffices to

consider

u(t̂, (1 − ε2)
−1/2t̂) = τ +

τ

ν
ε1ν

1/2 +
1 − τ

ν

ν1/2 + ε1

(1 − ε2)1/2
t̂+

ε1 + ε2ν
1/2

ν(1 − ε2)1/2
t̂− 1

ν
t̂2,

and the unconstrained maximizer is t̂ = t̂∗, where

t̂∗ =
(1 − τ)(ν1/2 + ε1) + (ε1 + ε2ν

1/2)

2(1 − ε2)1/2
.

If this nonnegative solution satisfies the constraint t̂∗ ≤ β0, the maximum value of u is given

by u(t̂∗, (1 − ε2)
−1/2t̂∗). Otherwise the maximum is u(β0, (1 − ε2)

−1/2β0). In either case,

µ+/µ ≤ δ̄, where δ̄ is given by (4.3.20) and (4.3.21).

From (4.3.25) we can also obtain a lower bound on µ+/µ:

µ+

µ
≥ τ − τ

ν
ε1ν

1/2 − 1 − τ

ν

ν1/2 + ε1

(1 − ε2)1/2
t̂− 1

ν
ε1t−

1

ν
ε2ν

1/2t− 1

ν
t̂2 =: `(t̂, t).

We seek the best lower bound for `(t̂, t) over t̂ and t subject to the constraints in (4.3.26).

It is clear that ` is minimized when t̂ and t achieve their maximum values, viz., t̂ = β0,

t = (1− ε2)−1/2β0. It is readily verified that the resulting value of `(t̂, t) is δ in (4.3.19).

In the remainder of this section we shall use the following values for the parameters in

Algorithm short step:

θ = 0.1, τ = 1 − 1

47ν1/2
, 0 ≤ ε1 ≤ 0.01, 0 ≤ ε2 ≤ 0.071. (4.3.27)

The bounds on ε1 and ε2 mean that roughly speaking, the relative errors in the gradient and

Hessian estimates are no more than 1% and 7.1% respectively. Using the values and bounds

in (4.3.27), we proceed to bound β1, β2, δ, and δ̄ over ν ∈ [1,∞). (Recall from Chapter 3

that any ν-normal barrier for a full cone has ν ≥ 1.)
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Lemma 4.3.10. Let θ, τ, ε1, and ε2 satisfy (4.3.27). For all ν ≥ 1,

β1 < 0.1416, β2 < 0.1569, δ > 1 − 0.0642

ν1/2
> 0, δ̄ < 1 − 0.00124

ν1/2
< 1.

Proof. See Appendix A.

Lemma 4.3.11. Let θ, τ, ε1, and ε2 satisfy (4.3.27), and let (xk, wk, sk) ∈ N (θ). The

primal-dual point (xk+1, wk+1, sk+1) generated by Algorithm short step also belongs to N (θ).

Proof. For ease of notation, we will write x, s, µ for xk, sk, µk, and x+, s+, µ+ for xk+1, sk+1, µk+1.

We verified in Lemma 4.3.10 that for the values and bounds given in (4.3.27), β2 < 1 for

all ν ≥ 1, so Lemma 4.3.7 is applicable. Therefore it is sufficient to show that for all ν ≥ 1,

‖s+ µF ′(x)‖∗x,F ≤ θµ =⇒ ‖s+ + µ+F
′(x+)‖∗x+,F ≤ θµ+.

From the third block equation in the linear system (4.2.1), we have

s+ + µ+F
′(x+) = −τµF1(x) − µF2(x)∆x+ µ+F

′(x+)

= −τµF ′(x) − µF ′′(x)∆x+ µ+F
′(x+) +D1

= τµ(−F ′(x) − F ′′(x)∆x+ F ′(x+)) +D2 +D1

= D3 +D2 +D1, (4.3.28)

where

D1 = τµE1(x) + µE2(x)∆x,

D2 = (µ+ − τµ)F ′(x+) + µ(τ − 1)F ′′(x)∆x,

D3 = τµ(−F ′(x) − F ′′(x)∆x+ F ′(x+)).

We now bound ‖Di‖∗x+,F
for each i. Since ‖x+ − x‖x,F = ‖∆x‖x,F ≤ β1 (Corollary 4.3.6)

and β1 < 1 (Lemma 4.3.10), we can use (3.2.6) to bound ‖D1‖∗x+,F
in terms of ‖D1‖∗x,F ; the
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result is (4.3.29a). The inequality (4.3.29b) follows from the definition of D1, and (4.3.29c)

follows from (4.3.1). The inequality (4.3.29d) follows from (4.3.2) and Corollary 4.3.6.

‖D1‖∗x+,F ≤ 1

1 − β1
‖D1‖∗x,F (4.3.29a)

≤ 1

1 − β1

(

τµ‖E1(x)‖∗x,F + µ‖E2(x)∆x‖∗x,F
)

(4.3.29b)

≤ 1

1 − β1

(

τµε1 + µ‖F ′′(x)−1/2E2(x)F
′′(x)−1/2F ′′(x)1/2∆x‖2

)

(4.3.29c)

≤ 1

1 − β1

(

τµε1 + µ‖F ′′(x)−1/2E2(x)F
′′(x)−1/2‖2 ‖F ′′(x)1/2∆x‖2

)

≤ 1

1 − β1
(τµε1 + µε2β1). (4.3.29d)

Now in Lemma 4.3.9 we established that δµ ≤ µ+, where δ is given in (4.3.19). From

Lemma 4.3.10 we see that δ > 0 for all ν ≥ 1, so

‖D1‖∗x+,F ≤ τε1 + ε2β1

δ(1 − β1)
µ+

=: d1µ+. (4.3.30)

We now bound ‖D2‖∗x+,F
. First note that for δ and δ̄ given in (4.3.19) and (4.3.20),

δ + δ̄ < 2τ + (φ− β0)
(1 − τ)(ν1/2 + ε1) + ε1 + ε2ν

1/2

ν(1 − ε2)1/2
≤ 2τ,

where the last inequality follows from φ ≤ β0, which is a consequence of (4.3.21). It follows

that δ̄ − τ < τ − δ. Using this and the fact that δ > 0, we have

τ

δ
− 1 =

τ − δ

δ
≥ τ − δ

δ̄
>
δ̄ − τ

δ̄
= 1 − τ

δ̄
.

That is,

max

{

τ

δ
− 1, 1 − τ

δ̄

}

=
τ

δ
− 1. (4.3.31)

In the following, (4.3.32a) follows from the definition of D2, and (4.3.32b) follows from
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Lemma 3.3.2(e) and (3.2.6). Furthermore (4.3.32c) follows from the fact that δµ ≤ µ+ ≤ δ̄µ,

and (4.3.32d) follows from (4.3.31) and Corollary 4.3.6.

‖D2‖∗x+,F ≤ |µ+ − τµ|‖F ′(x+)‖∗x+,F + µ(1 − τ)‖F ′′(x)∆x‖∗x+,F (4.3.32a)

≤ µ+

∣

∣

∣

∣

1 − τ
µ

µ+

∣

∣

∣

∣

ν1/2 + µ(1 − τ)
1

1 − β1
‖F ′′(x)∆x‖∗x,F (4.3.32b)

≤ µ+ max

{

τ

δ
− 1, 1 − τ

δ̄

}

ν1/2 + µ(1 − τ)
1

1 − β1
‖F ′′(x)1/2∆x‖2(4.3.32c)

≤ µ+

(

τ

δ
− 1

)

ν1/2 +
µ+

δ
(1 − τ)

1

1 − β1
β1 (4.3.32d)

=: d2µ+. (4.3.32e)

We now bound ‖D3‖∗x+,F
. In what follows, we will be working with integrals of vectors

and matrices. All such integrals are to be taken componentwise. From the Fundamental

Theorem of Calculus for the gradient of F ,

F ′(x+) − F ′(x) =

∫ 1

0
F ′′(x+ t∆x)∆x dt.

Recalling the definition of F ′′′(·)[·, ·] in (3.2.1), it follows from the Fundamental Theorem

of Calculus for the Hessian of F that for any vectors h1 and h2,

(

F ′′(x+ h1) − F ′′(x)
)

h2 =

∫ 1

0
F ′′′(x+ uh1)[h1, h2] du.

Hence

D3 = τµ

∫ 1

0

(

F ′′(x+ t∆x) − F ′′(x)
)

∆x dt = τµ

∫ 1

0

∫ t

0
F ′′′(x+ u∆x)[∆x,∆x] du dt,

giving

‖D3‖∗x+,F ≤ τµ

∫ 1

0

∫ t

0
‖F ′′′(x+ u∆x)[∆x,∆x]‖∗x+,F du dt.
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As previously noted, β1 < 1, so Lemma 3.2.12 is applicable. Applying this lemma, we get

‖F ′′′(x+ u∆x)[∆x,∆x]‖∗x+,F ≤ 2β2
1

(1 − β1)(1 − uβ1)
,

giving

‖D3‖∗x+,F ≤ τµ

∫ 1

0

∫ t

0

2β2
1

(1 − β1)(1 − uβ1)
du dt

= τµ

(

2 log(1 − β1) +
2β1

1 − β1

)

≤ τ

δ

(

2 log(1 − β1) +
2β1

1 − β1

)

µ+

=: d3µ+. (4.3.33)

(Our bound on 1
τµ‖D3‖∗x+,F

of 2 log(1− β1) + 2β1

1−β1
= β2

1 + 4
3β

3
1 + · · · can be improved upon

in the case that K is a self-scaled cone: in [35, Theorem 4.3] a bound of no greater than β2
1

is derived using special properties of self-scaled barriers and self-scaled cones.) Combining

the bounds in (4.3.30), (4.3.32e), and (4.3.33) with (4.3.28), we obtain

‖s+ + µ+F
′(x+)‖∗x+,F ≤ ‖D3‖∗x+,F + ‖D2‖∗x+,F + ‖D1‖∗x+,F ≤ µ+(d3 + d2 + d1),

where

d1 :=
τε1 + ε2β1

δ(1 − β1)
,

d2 :=

(

τ

δ
− 1

)

ν1/2 +
(1 − τ)β1

δ(1 − β1)
,

d3 :=
τ

δ

(

2 log(1 − β1) +
2β1

1 − β1

)

.

It suffices to show that for all ν ≥ 1,

d1 + d2 + d3 ≤ θ. (4.3.34)
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For the sake of generality, let us write, as we did in the proof of Lemma 4.3.10,

τ = 1 − κ

ν1/2
,

where κ ∈ (0, 1). (We will eventually substitute κ = 1/47.) We now bound the di above in

terms of θ, κ, ε1, and ε2. This will allow us to derive a uniform (with respect to ν, ε1, and ε2)

bound on d1 + d2 + d3. In the remainder of this proof we use the fact that for all ν ≥ 1, the

parameters θ, κ, ε1 and ε2 satisfy β1 < 1, τ > 0, and δ > 0. It follows from Lemma 4.3.10

and κ < 1 that these facts hold for the specific parameters and bounds in (4.3.27). Using

the relationship between τ and κ, we have

d1 =
τε1 + ε2β1

δ(1 − β1)
=

(

1 − κ
ν1/2

)

ε1 + ε2β1

δ(1 − β1)
,

d3 =
τ

δ

(

2 log(1 − β1) +
2β1

1 − β1

)

=
1 − κ

ν1/2

δ

(

2 log(1 − β1) +
2β1

1 − β1

)

.

Let us now bound d2. In (A.0-3) (see Appendix A) we derive a lower bound δ ≥ 1 − f
ν1/2

on the ratio of successive duality measures, where f is defined in (A.0-4). Thus

τ − δ ≤
(

1 − κ

ν1/2

)

−
(

1 − f

ν1/2

)

=
f − κ

ν1/2
,

giving

d2 =

(

τ − δ

δ

)

ν1/2 +
(1 − τ)β1

δ(1 − β1)

≤ f − κ

δ
+

κ
ν1/2β1

δ(1 − β1)

=: d̂2.
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The inequality used the assumption that δ > 0. Now let

a1 :=
ε1 + (ε2 + 2)β1

1 − β1
+ f − κ+ 2 log(1 − β1),

a2 :=
−κ(β1 + ε1)

1 − β1
− 2κ log(1 − β1).

From (A.0-4) in Appendix A, we have f ≥ κ. Moreover, 2 log(1 − β1) + 2β1

1−β1
, being an

upper bound on 1
τµ‖D3‖∗x+,F

, is positive on β1 ∈ (0, 1). Hence

a1 ≥ 2β1

1 − β1
+ f − κ+ 2 log(1 − β1) > 0.

It can be verified that

d1 + d̂2 + d3 =
1

δ

(

a1 +
a2

ν1/2

)

.

Using f ≥ κ and β1 ∈ (0, 1) again, we obtain

a2 + a1f ≥ a2 + a1κ =
κβ1(ε2 + 1)

1 − β1
+ κ(f − κ) > 0.

Hence −a2/a1 < f . It follows from this fact and the lower bound on δ in (A.0-3) that

d1 + d̂2 + d3 = a1

1 − −a2/a1

ν1/2

δ

≤ a1

1 − −a2/a1

ν1/2

1 − f
ν1/2

,

and that the latter quantity is a decreasing function of ν on the interval [1,∞). Thus

d1 + d̂2 + d3 ≤ a1
1 − (−a2/a1)

1 − f

=
a1 + a2

1 − f

=
1

1 − f

[

ε1(1 − κ) + β1(ε2 + κ)

1 − β1
+ f − κ+ (1 − κ)

(

2 log(1 − β1) +
2β1

1 − β1

)]

.
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The latter quantity is an increasing function of ε1, ε2, and also β1. (We have used the fact

that 2 log(1 − β1) + 2β1

1−β1
is an increasing function of β1 on (0, 1).) So

d1 + d̂2 + d3 ≤ 1

1 − f

[

ε̄1(1 − κ) + β∗
1(ε̄2 + κ)

1 − β∗
1

+ f − κ+ (1 − κ)

(

2 log(1 − β∗
1) +

2β∗
1

1 − β∗
1

)]

,

where β∗
1 is the maximum of β1 over all ν ≥ 1, ε1 ∈ [0, ε̄1] and ε2 ∈ [0, ε̄2]. From

Lemma 4.3.10 we see that β∗
1 < 0.1416, so d1 + d2 + d3 ≤ d1 + d̂2 + d3 < 0.09994 < θ.

Theorem 4.3.12. Let θ, τ, ε1, and ε2 be the values specified by (4.3.27).

(a) The sequence of duality measures generated by Algorithm short step converges linearly

to zero.

(b) Algorithm short step is globally convergent: all limit points of the sequence of primal-dual

iterates (xk, wk, sk) generated by Algorithm short step are primal-dual solutions of (4.1.1)–

(4.1.2).

(c) An ε-optimal solution to (4.1.1)–(4.1.2) can be obtained in a polynomial number (in

ν and log(µ0/ε)) of iterations. Specifically, given ε ∈ (0, 1), there exists a number k∗ =

O(ν1/2 log(µ0/ε)) such that k ≥ k∗ implies µk ≤ ε.

Proof. By definition (see Lemma 4.3.9), for each k the positive ratio µk+1/µk is bounded

above by a constant δ̄, and it was verified in Lemma 4.3.10 that δ̄ < 1. Hence the duality

measure decreases at least linearly. This proves (a). It follows from Lemma 4.3.11 that all

iterates of Algorithm short step remain in N (θ). In fact (xk, wk, sk) ∈ N (θ, 0, µk) for each

k; see (4.1.16). Since µk ↓ 0 (from (a)), all limit points of the sequence {(xk, wk, sk)} lie in

N (θ, 0, 0), which is the primal-dual optimal solution set. This proves (b). The polynomial

iteration bound in (c) follows from the bound on δ̄ in Lemma 4.3.10, and Lemma 2.4.2.

Remark 4.3.13. Worst-case complexity estimates of an optimization algorithm are typi-

cally phrased in terms of the problem size and some measure of accuracy of the generated

solution. For the pair of problems (4.1.1)–(4.1.2), the parameters m and n measure the

problem size. The connection to the parameter ν is seen via Lemma 4.1.2: for any full cone
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there exists a ν-normal barrier for K with ν = O(n). The accuracy of the generated solution

is related to log(µ0/ε), which is a rough indication of the number of digits of accuracy in the

final iterate of the algorithm (relative to that of the initial iterate). At the time of writing,

no convex optimization algorithm possessing a better worst-case iteration complexity bound

than O(ν1/2 log(µ0/ε)) has been constructed. This is the case even for algorithms designed

only to solve linear optimization problems using exact evaluations of the barrier gradient

and Hessian.

Corollary 4.3.14. Provided the complexity parameter ν is polynomial in n, if the gradient

and Hessian estimates F1(x
k) and F2(x

k) can each be computed in a polynomial number (in

n) of arithmetic operations, then Algorithm short step generates an ε-optimal solution in a

polynomial number of arithmetic operations.

Remark 4.3.15. Here we sum up the various conditions given in this section on the pa-

rameters in order to guarantee that Algorithm short step produces an ε-optimal solution in

O(ν1/2 log(µ0/ε)) iterations. It is sufficient for the parameters θ, τ , ε1, and ε2 to satisfy

the following condition: There exists a constant α > 0 independent of ν such that for every

ν ≥ 1,

β2 < 1, (4.3.35a)

δ := τ − τε1

ν1/2
− β0

(1 − τ)(ν1/2 + ε1) + ε1 + ε2ν
1/2

ν(1 − ε2)1/2
− 1

ν
β2

0 > 0, (4.3.35b)

τ +
τε1

ν1/2
+ φ

(1 − τ)(ν1/2 + ε1) + ε1 + ε2ν
1/2

ν(1 − ε2)1/2
− 1

ν
φ2 ≤ 1 − α

ν1/2
, (4.3.35c)

where φ = min

{

β0,
(1 − τ)(ν1/2 + ε1) + (ε1 + ε2ν

1/2)

2(1 − ε2)1/2

}

, (4.3.35d)

τε1 + ε2β1

δ(1 − β1)
+

(

τ

δ
− 1

)

ν1/2 +
(1 − τ)β1

δ(1 − β1)
+
τ

δ

(

2 log(1 − β1) +
2β1

1 − β1

)

≤ θ. (4.3.35e)

The condition in (4.3.35a) is from Lemma 4.3.7, the conditions in (4.3.35b), (4.3.35c),

and (4.3.35d) are from Lemma 4.3.9, and the condition in (4.3.35e) is from (4.3.34) in the

proof of Lemma 4.3.11. The condition α > 0 implies that for every ν ∈ [1,∞) the ratio
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of subsequent duality measures µk+1/µk is bounded away from 1. We point out that some

of the above conditions can be made tighter, leading to a slight enlargement in the set of

permissible values of θ, τ , ε1, and ε2; see [47].

Remark 4.3.16. The term ν1/2 in the worst-case complexity statement (Theorem 4.3.12(c))

arises from the condition β2 < 1 in (4.3.35a). We assumed no a priori upper bound on the

complexity parameter ν ≥ 1, so in order that β2 < 1 it is clear from (4.3.15) that (1−τ)ν1/2

needs to be bounded by a constant independent of ν. If τ is of the form 1− κ/νd, then it is

necessary that d ≥ 1/2. So by choosing d = 1/2 the best worst-case complexity is obtained

for our interior-point method, even when the gradient and Hessian are evaluated “exactly”.

Remark 4.3.17. Suppose the quadruple of parameters (θ, τ, ε1, ε2) satisfies the conditions

in Remark 4.3.15. Does the quadruple (θ′, τ, ε1, ε2) also satisfy these conditions for any θ′

satisfying 0 ≤ θ′ < θ? The inequality (4.3.35e) tells us the answer is “no”, since the left-

hand side of this inequality does not tend to zero as θ → 0+. Intuitively this makes sense

since in the limiting case θ = 0, a full Newton step from a point on the central path would

need to end up on the central path. This is not possible however, since the central path is

curved.

How large can the errors in F1 and F2 be?

The parameters given in (4.3.27) are more restrictive than might be allowable in practice,

because they were assumed to hold regardless of ν (≥ 1). For some classes of cones, one

is able to obtain an upper bound or better lower bound on ν. For example, consider the

class of conic optimization problems for which the barrier function whose derivatives we are

estimating has complexity parameter satisfying, say, ν ≥ 50. The following parameters give

rise to global convergence and an iteration complexity of O(ν1/2 log(µ0/ε)) of Algorithm

short step:

θ = 0.1, τ = 1 − 0.031

ν1/2
, 0 ≤ ε1 ≤ 0.015, 0 ≤ ε2 ≤ 0.084. (4.3.36)
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The value of θ is the same as that in (4.3.27). By making τ smaller, we were able to increase

the range of allowable ε1 and ε2 values. The above parameter values and bounds are valid

for a semidefinite optimization problem having a primal matrix variable whose order is at

least 50, since the complexity parameter of the optimal barrier for the positive semidefinite

cone equals the order of this matrix. It is known that in semidefinite optimization there are

many ways of formulating the equations that define the central path, and each will have

a different linearization. Depending on the linearization, it may be necessary to compute

inverses or Cholesky decompositions of dense matrices in order to form the linear system

encountered at each interior-point iteration. Given that such linear algebra operations are

expensive, using an inexact interior-point method (that incorporates approximate inverses

or Cholesky factorizations) is potentially advantageous.

To conclude this section, we indicate for various values of θ and κ, a set of (ε1, ε2) pairs

such that the sufficient condition in Remark 4.3.15 holds. For θ = 0.05, 0.1, 0.15 and 0.2, we

show a set of permissible (ε1, ε2) pairs for τ = 1−κ/ν1/2 with κ = 0.005, 0.010, 0.015, 0.02, 0.03,

and 0.04. The results are shown in Figures 4.2, 4.3, 4.4, and 4.5. Observe that in the case

θ = 0.1 and τ = 1 − 0.02/ν1/2 (see Figure 4.3), the point (0.01, 0.071) is close to the upper

boundary of the shaded region, showing that for the parameter values in (4.3.27), our upper

bounds on ε1 and ε2 of 0.01 and 0.071 are close to the “Pareto optimal” set. (Note that the

parameter τ = 1−1/(47ν1/2) in (4.3.27) is slightly different from 1−0.02/ν1/2.) We should

point out that the actual sets of permissible (ε1, ε2) pairs may be larger than those indicated

in Figures 4.2, 4.3, 4.4, and 4.5, since the conditions from which the plots are produced

can be tightened. Furthermore, no a priori information about the complexity parameter ν

was assumed, and the errors E1(x
k) and E2(x

k) in the gradient and Hessian estimates are

assumed to act in the worst possible directions; cf. the results in Corollary 4.3.4. In practice

it is very unlikely that all the bounds derived in this corollary are tight.
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Figure 4.2: For the parameters θ = 0.05 and τ = 1 − κ/ν1/2 with six values of κ, each
shaded region shows a set of permissible (ε1, ε2) pairs for which Algorithm short step is
globally convergent and has polynomial worst-case complexity for any ν ≥ 1.
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Figure 4.3: For the parameters θ = 0.1 and τ = 1−κ/ν1/2 with six values of κ, each shaded
region shows a set of permissible (ε1, ε2) pairs for which Algorithm short step is globally
convergent and has polynomial worst-case complexity for any ν ≥ 1.
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Figure 4.4: For the parameters θ = 0.15 and τ = 1 − κ/ν1/2 with six values of κ, each
shaded region shows a set of permissible (ε1, ε2) pairs for which Algorithm short step is
globally convergent and has polynomial worst-case complexity for any ν ≥ 1.
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Figure 4.5: For the parameters θ = 0.2 and τ = 1−κ/ν1/2 with six values of κ, each shaded
region shows a set of permissible (ε1, ε2) pairs for which Algorithm short step is globally
convergent and has polynomial worst-case complexity for any ν ≥ 1.
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4.4 Using the exact gradient and Hessian of F

In this section we will suppose that the gradient and Hessian of the ν-normal barrier function

F are computed “exactly”, i.e., ε1 = ε2 = 0. Consequently the results in this section are

special cases of results in Section 4.3. For the iterates generated by Algorithm short step

the following corollary of Theorem 4.3.12 holds.

Corollary 4.4.1. Let θ and τ be the values specified by (4.3.27), and let ε1 = ε2 = 0.

(a) The sequence of duality measures generated by Algorithm short step converges linearly

to zero.

(b) Algorithm short step is globally convergent: all limit points of the sequence of primal-dual

iterates (xk, wk, sk) generated by Algorithm short step are primal-dual solutions of (4.1.1)–

(4.1.2).

(c) An ε-optimal solution to (4.1.1)–(4.1.2) can be obtained in a polynomial number (in

ν and log(µ0/ε)) of iterations. Specifically, given ε ∈ (0, 1), there exists a number k∗ =

O(ν1/2 log(µ0/ε)) such that k ≥ k∗ implies µk ≤ ε.

Intuitively a stronger result than Corollary 4.4.1 should be possible for the case that ε1 =

ε2 = 0, since Theorem 4.3.12 was proven under the assumption that 0 ≤ ε1 ≤ 0.01 and

0 ≤ ε2 ≤ 0.071. First we explain what “stronger” means in our context. We observed in

Section 4.3 that in order for our inexact interior-point method to possess global convergence

and polynomial iteration complexity, it is necessary that the parameters θ, τ , ε1, and ε2 be

chosen appropriately. More specifically, θ, ε1, and ε2 must be small enough (notwithstanding

Remark 4.3.17), and τ must be sufficiently close to (but less than) 1. We expect that if

ε1 = ε2 = 0, then more flexibility can be exercised in choosing appropriate values of θ and

τ .

From a theoretical point of view, we are interested in an algorithm having polynomial

iteration complexity. The worst-case iteration complexity derived in Theorem 4.3.12 is of

the form O(ν1/2 log(µ0/ε)), where the order constant depends on θ, τ , and the maximum

allowable values of ε1 and ε2 (but is independent of ν and ε.) By setting the maximum
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allowable values of ε1 and ε2 to be zero, this constant is lowered, but the complexity is

still O(ν1/2 log(µ0/ε)). So setting ε1 = ε2 = 0 cannot improve the worst-case complexity.

Hence the fundamental results of Corollary 4.4.1—linear convergence of the sequence {µk},

global convergence of the sequence of triples {(xk, wk, sk)}, and O(ν1/2 log(µ0/ε)) worst-case

iteration complexity—cannot be strengthened by setting ε1 = ε2 = 0.

However from a practical point of view, computational experience for convex optimiza-

tion has shown that path-following interior-point methods require fewer iterations when the

iterates are permitted to lie in a wider neighborhood of the central path. This is intuitively

reasonable since the larger neighborhoods associated with larger values of θ give more free-

dom for points to move toward an optimal solution. So if setting ε1 = ε2 = 0 permits larger

values of θ than are otherwise possible to be used in our algorithm, then in a practical sense

the resulting algorithm can be said to represent an improvement. Furthermore we can en-

sure a faster reduction in the sequence of duality measures by choosing τ to be further from

1. Letting τ take the form 1− κ/ν1/2, as in (4.3.27), it can be verified that for ε1 = ε2 = 0,

the bounds on the ratio of successive duality measures in Lemma 4.3.9 are given by

δ = 1 − κ

ν1/2
− (θ + κ)(θ + 2κ)

ν
≤ µk+1

µk
≤ 1 − κ

ν1/2
+
κ2

4ν
= δ̄.

The condition β2 < 1 (see (4.3.35a)) implies that κ < 1 − 2θ. As κ increases from 0 to

1 − 2θ, the above lower and upper bounds on µk+1/µk decrease monotonically. Note also

that for fixed κ, as θ increases, the lower bound on µk+1/µk decreases and the upper bound

remains constant. We conclude that if the barrier gradient and Hessian can be computed

“exactly”, then larger values of θ and κ are to be preferred in Algorithm short step. In the

rest of this section we improve the choices of θ and κ over those in (4.3.27). The proofs of

these results follow from those in Section 4.3, so they are omitted.

In the case that ε1 = ε2 = 0 and τ = 1− κ
ν1/2 , the constants β1 and β2 in (4.3.15) become
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β1 := θ + κ,

β2 :=
θ + κ

1 − θ
.

(4.4.1)

In the remainder of this section we shall use the following values for the parameters in

Algorithm short step:

θ = 0.25, τ = 1 − 1

32ν1/2
. (4.4.2)

Using these values, let us bound the values of β1, β2, δ, and δ̄.

Lemma 4.4.2. Let θ and τ satisfy (4.4.2). For all ν ≥ 1,

β1=0.2813, β2 = 0.3750, δ > 1 − 0.1192

ν1/2
> 0, δ̄ < 1 − 0.0310

ν1/2
< 1.

Proof. Similar to that of Lemma 4.3.10.

We now present a convergence and complexity result for Algorithm short step with exact

gradient and Hessian information. It is similar to Theorem 4.3.12.

Theorem 4.4.3. Let θ and τ be the values specified by (4.4.2).

(a) The sequence of duality measures generated by Algorithm short step converges linearly

to zero.

(b) Algorithm short step is globally convergent: all limit points of the sequence of primal-dual

iterates (xk, wk, sk) generated by Algorithm short step are primal-dual solutions of (4.1.1)–

(4.1.2).

(c) An ε-optimal solution to (4.1.1)–(4.1.2) can be obtained in a polynomial number (in

ν and log(µ0/ε)) of iterations. Specifically, given ε ∈ (0, 1), there exists a number k∗ =

O(ν1/2 log(µ0/ε)) such that k ≥ k∗ implies µk ≤ ε.

Proof. Similar to that of Theorem 4.3.12.
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The disparity between the parameters in (4.4.2) and those in (4.3.27) reflects the fact

that in order to guarantee that the interior-point iterates remain inside N (θ), less flexibility

is allowed when unstructured perturbations are permitted. If in (4.3.27) θ was increased

to 0.25 but the bounds on ε1 and ε2 were unchanged, then it would not be possible to

guarantee that all iterates remain in N (θ); i.e., Lemma 4.3.11 may no longer hold.

The parameters given in (4.4.2) are more restrictive than might be allowable in practice,

due to the assumption that ν ≥ 1. For some classes of cones, one is able to obtain a

better lower bound on ν. Consider the class of conic optimization problems for which the

barrier function whose derivatives we are estimating has complexity parameter ν ≥ 50. The

following parameters give rise to global convergence and a polynomial iteration complexity

of O(ν1/2 log(µ0/ε)) for Algorithm short step:

θ = 0.35, τ = 1 − 1

20ν1/2
. (4.4.3)

Note that the values of θ and τ are superior (in the sense described earlier in this section)

to those in (4.4.2). The above parameter values are valid for a semidefinite optimization

problem having a matrix variable of order at least 50, since the complexity parameter of

the optimal barrier for the positive semidefinite cone equals the order of this matrix.

To conclude this section, we indicate in Figure 4.6 the possible values of θ and κ such

that for ε1 = ε2 = 0 and for any ν ≥ 1, Algorithm short step is globally convergent and has

polynomial worst-case complexity.

4.5 Structured perturbations in the gradient and Hessian of

F

In this section we will consider a class of structured perturbations in the gradient and

Hessian. In other words, the errors in the gradient and Hessian estimates are assumed to be

related. Specifically, throughout the rest of this section it will be assumed that the ν-normal
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Figure 4.6: For the case that exact gradient and Hessian information is computed, i.e., ε1 =
ε2 = 0, the shaded region in the plot on the left shows a set of permissible (θ, κ) pairs (where
τ = 1 − κ/ν1/2) for which Algorithm short step is globally convergent and has polynomial
worst-case iteration complexity for any ν ≥ 1. The region of permissible pairs excludes the
axes. The plot on the right is close-up of the plot on the left when θ is small. It shows
that for fixed κ, if θ is too small, we cannot guarantee that the algorithm will converge to
a solution and have polynomial worst-case iteration complexity. Cf. Remark 4.3.17.
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barrier F is estimated by a function F̂ : int(K) → R possessing the following properties:

(a) F̂ is twice continuously differentiable on int(K);

(b) F̂ is a nondegenerate convex function on int(K);

(c) F̂ satisfies the logarithmic-homogeneity property, i.e., for every t > 0 and x ∈ int(K),

F̂ (tx) = F̂ (x) − ν log(t). (4.5.1)

These properties are enough for the results in Lemma 3.3.2 to apply, even though F̂ is not

assumed to be logarithmically homogeneous. That is, we do not assume F̂ satisfies the

barrier property. Consequently it is not possible to suppose that F̂ can approximate F well

arbitrarily close to the boundary of K: there may exist a point x on the boundary of K

such that for some sequence of points xi ∈ int(K) converging to x, ‖F ′′(xi)‖2 → ∞, yet

‖F̂ ′′(x)‖2 is finite. So we will assume that F̂ approximates F well only inside a restricted

neighborhood X (θ, ε, µ0) of int(K), where

X (θ, µ, µ̄) := {x | (x,w, s) ∈ N (θ, µ, µ̄) for some w, s}, (4.5.2)

and N (θ, µ, µ̄) is defined in (4.1.16). Here ε > 0 is fixed and µ0 is the duality measure of the

strongly feasible starting point in Algorithm short step. All results in this section hold in

such a neighborhood, but may fail to hold outside it. Therefore we can only run Algorithm

short step while its iterates are in N (θ, ε, µ0). In other words, the termination criterion

of the algorithm is determined by ε. We have seen in Section 4.3 that for an appropriate

choice of the parameters θ and τ , and certain ranges of the errors ε1 and ε2, we can ensure

all iterates remain in the neighborhood N (θ). Moreover the sequence of duality measures

{µk} strictly decreases to zero. So if our barrier estimate F̂ is such that the errors ε1 and

ε2 satisfy the conditions derived in Section 4.3, then Algorithm short step will run until the

duality measure falls below ε, thereby yielding an ε-optimal solution.

We will estimate the gradient and Hessian of F by the gradient and Hessian of F̂ , so

that when we refer to Algorithm short step in this section, it will be assumed that F̂ ′ and
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F̂ ′′ will take the place of F1 and F2 in that algorithm.

Denote the errors in our estimates of the gradient and Hessian of F (x) by

E1(x) = F ′(x) − F̂ ′(x), E2(x) = F ′′(x) − F̂ ′′(x).

By definition E2(x) is a symmetric matrix. We first note two relationships between E1(x)

and E2(x).

Lemma 4.5.1. The errors in F̂ ′(x) and F̂ ′′(x) are related by E2(x)x = −E1(x).

Proof. It follows from the logarithmic homogeneity of F that F ′′(x)x = −F ′(x) (see

Lemma 3.3.2(c)), and since F̂ satisfies the logarithmic-homogeneity relation (4.5.1), F̂ ′′(x)x =

−F̂ ′(x). Subtracting these equations gives the required result.

Lemma 4.5.2. Suppose that x ∈ int(K). Then

‖E1(x)‖∗x,F ≤ ‖F ′′(x)−1/2E2(x)F
′′(x)−1/2‖2 ν

1/2.

Proof. It follows from Lemma 4.5.1 that

(

F ′′(x)−1/2E2(x)F
′′(x)−1/2

)(

F ′′(x)1/2x
)

= −F ′′(x)−1/2E1(x).

Taking the norm of each side and using Lemma 3.3.2(d), we obtain

‖F ′′(x)−1/2E2(x)F
′′(x)−1/2‖2 ν

1/2 ≥ ‖F ′′(x)−1/2E1(x)‖2 ≡ ‖E1(x)‖∗x,F .

The relation in Lemma 4.5.1 indicates that if the norm of E2(x) is small, the norm of E1(x)

is also small. Let θ ∈ (0, 1) and ε1, ε2, ε > 0 be given. As in Section 4.3, we will assume

that the “relative errors” in E1(x) and E2(x) are sufficiently small. Specifically,

x ∈ X (θ, ε, µ0) =⇒ ‖E1(x)‖∗x,F ≡ ‖F ′′(x)−1/2E1(x)‖2 ≤ ε1 < 1, (4.5.3)

x ∈ X (θ, ε, µ0) =⇒ ‖F ′′(x)−1/2E2(x)F
′′(x)−1/2‖2 ≤ ε2 < 1. (4.5.4)
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As a consequence of Lemma 4.5.2, it is not essential to assume separate unrelated bounds ε1

and ε2 on the errors in the gradient and Hessian estimates, because if E2(x) satisfies (4.5.4),

then (4.5.3) is guaranteed to hold, provided ε2ν
1/2 < 1. However this is unsatisfactory,

since ε2ν
1/2 < 1 ∀ ν ≥ 1 implies that ε2 = O(ν−1/2) would be required. However, in the

case of unstructured perturbations in Section 4.3—of which the structured perturbations

considered here are a special case—the maximum value of ε2 given in (4.3.27) is O(1).

As another consequence of our structured perturbations being a special case of the

unstructured perturbations considered in Section 4.3, the convergence and worst-case com-

plexity results in Theorem 4.3.12 hold here. The rest of this section is devoted to showing

that the relationship between the estimates F̂ ′ and F̂ ′′ allows one to strengthen Theo-

rem 4.3.12 in the sense that if θ and τ are fixed, the maximum allowable “relative errors”

ε1 and ε2, are increased. The analysis is similar to that in Section 4.3, so we include it in

Appendix B, giving only the main results here.

It will be convenient to define the following three constants depending on θ, τ, ε1, ε2 and

ν ≥ 1 (cf. (4.3.15)).

β0 :=
θ + ε1

(1 − ε2)1/2
+ (1 − τ)ν1/2,

β1 :=

(

1

1 − ε2

)1/2

β0, (4.5.5)

β2 := β0 max

{

(1 + ε2)
1/2

1 − θ
,

(

1

1 − ε2

)1/2}

.

In the remainder of this section we shall use the following values for the parameters in

Algorithm short step:

θ = 0.1, τ = 1 − 1

47ν1/2
, 0 ≤ ε1 ≤ 0.015, 0 ≤ ε2 ≤ 0.12. (4.5.6)

Using these values, let us bound the values of β1, β2, δ, and δ̄.
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Lemma 4.5.3. Let θ, τ, ε1, and ε2 satisfy (4.5.6). For all ν ≥ 1,

β1 < 0.1534, β2 < 0.1692, δ > 1 − 0.0451

ν1/2
> 0, δ̄ < 1 − 0.0211

ν1/2
< 1.

Proof. See Appendix B and in particular Lemma B.0.5.

We now present the convergence and complexity result for Algorithm short step with struc-

tured perturbations in the gradient and Hessian of a normal barrier.

Theorem 4.5.4. Let θ, τ, ε1, and ε2 be the values specified by (4.5.6).

(a) The sequence of duality measures generated by Algorithm short step converges linearly

to zero.

(b) All limit points of the sequence of primal-dual iterates (xk, wk, sk) generated by Algorithm

short step are ε-optimal solutions of (4.1.1)–(4.1.2).

(c) An ε-optimal solution to (4.1.1)–(4.1.2) can be obtained in a polynomial number (in

ν and log(µ0/ε)) of iterations. Specifically, given ε ∈ (0, 1), there exists a number k∗ =

O(ν1/2 log(µ0/ε)) such that k ≥ k∗ implies µk ≤ ε.

Proof. Similar to that of Theorem 4.3.12.

The values of θ and τ in (4.5.6) are the same as those used in the analogous result (Theo-

rem 4.3.12) for the case of unstructured perturbations. Observe however that the allowable

range of ε1 and ε2 values has increased by at least 50%, showing the benefits of structure.

Remark 4.5.5. The parameters given in (4.5.6) are more restrictive than might be allowable

in practice, due to the assumption that ν ≥ 1. For some classes of cones, one is able to

obtain a better lower bound on ν. Consider the class of conic optimization problems for

which the barrier function whose derivatives we are estimating has complexity parameter

ν ≥ 50. The following parameters give an iteration complexity for Algorithm short step of

O(ν1/2 log(µ0/ε)):

θ = 0.1, τ = 1 − 0.031

ν1/2
, 0 ≤ ε1 ≤ 0.02, 0 ≤ ε2 ≤ 0.147. (4.5.7)
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The values of θ and τ are the same as those in (4.3.36), where ν ≥ 50 and unstructured

perturbations were assumed, but the range of allowable ε1 and ε2 values is now significantly

increased. The above parameter values and bounds are valid for a semidefinite optimization

problem having a primal matrix variable whose order is at least 50, since the complexity

parameter of the optimal barrier for the positive semidefinite cone equals the order of this

matrix.

Remark 4.5.6. Here we sum up the various conditions given in this section on the pa-

rameters in order to guarantee that Algorithm short step produces an ε-optimal solution in

O(ν1/2 log(µ0/ε)) iterations. It is sufficient for the parameters θ, τ , ε1, and ε2 to satisfy

the following condition: There exists a constant α > 0 independent of ν such that for every

ν ≥ 1,

β2 < 1, (4.5.8a)

δ := τ − 1

ν1/2
(1 − τ)β0−

1

ν
β2

0 > 0, (4.5.8b)

(1 + τ)2

4
≤ 1 − α

ν1/2
, (4.5.8c)

τε1 + ε2β1

δ(1 − β1)
+

(

τ

δ
− 1

)

ν1/2 +
(1 − τ)β1

δ(1 − β1)
+
τ

δ

(

2 log(1 − β1) +
2β1

1 − β1

)

≤ θ. (4.5.8d)

We point out that some of the above conditions can be made tighter, leading to a slight

enlargement in the set of permissible values of θ, τ , ε1, and ε2; see [47].
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Chapter 5

An application: using the universal

barrier function in an inexact

interior-point method for conic

optimization problems
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5.4.4 How large need the sample size be? . . . . . . . . . . . . . . . . . . 138

5.4.5 Comments on Theorem 5.4.10 . . . . . . . . . . . . . . . . . . . . . 147

5.1 Introduction

Recall from Lemma 4.1.2 that for any full cone K ⊂ Rn, there exists a ν-normal barrier F

for K, with ν = O(n). The proof of this result is constructive in that a cone-dependent ν-

normal barrier was given. This function was named the universal barrier function because it

can be constructed for any full cone. It follows that for any full cone K, at least two normal

barrier functions are known (up to an additive and a multiplicative constant), and for some

cones these are the only known normal barriers. One is the universal barrier function for K.

The other, in light of Lemma 3.3.5, is the conjugate of the universal barrier function for K∗.

Since evaluation of the latter function may require the solution of the optimization problem

in (3.3.2), evaluation of the former function is usually to be preferred. Therefore in order

to solve some conic optimization problems using an interior-point method, one may need

to evaluate, or at least estimate, the universal barrier function or its gradient and Hessian.

As it was given in [33], the universal barrier function F for a cone K was written in

terms of a multidimensional integral whose integrand depends onK. Due to the complicated

nature of this integral, for some classes of cones K, F and its derivatives do not appear

to be available in an easily computable form, which is problematic if we wish to use these

quantities in an interior-point method. In addition, the complexity parameter ν of the

universal barrier function, which appears in the upper bound on the number of iterations

of an interior-point method required to obtain a near-optimal solution, can be much larger

than the optimal value. The optimal value is the smallest ψ satisfying the properties defining

a self-concordant barrier function (see Definition 3.2.3). This disparity was illustrated in

[16, Section 7]. To our knowledge, a systematic procedure for computing the optimal

complexity parameter—or even a good upper bound on it—has not been found. This is

another reason why the universal barrier function has not been used in a general conic
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optimization algorithm. We do, however, point out the work in [9], where the universal

barrier function for the cone K generated by a Chebyshev system was studied. This cone

is such that the evaluation of the gradient and Hessian of the associated universal barrier

function reduces to the computation of several one-dimensional integrals. In some cases,

it is not possible to evaluate exactly such integrals, so a sequence of polyhedral outer-

approximations of the cone generated by a Chebyshev system is designed. This sequence

of cones converges to K in an appropriate sense, and the universal barrier function for

each polyhedral approximation is easily computable; see [8]. As the polyhedral outer-

approximations of K are defined on “finer meshes”, the universal barrier function may be

approximated to arbitrary precision.

As an application of our work on inexact interior-point methods in Chapters 4, we

consider the effect of estimating, by a Monte Carlo approximation, the gradient and Hessian

of the universal barrier function F for any convex cone. It is shown that the resulting

estimate of F satisfies several important properties that make F itself a a suitable barrier

function in the context of interior-point methods. The Monte Carlo sampling can be done

in such way that the errors in the estimated gradient and Hessian of F are related, and

this additional structure permits larger errors than would otherwise be the case. In other

words, we have an application of the structured perturbations that were considered in

Section 4.5. Since for many classes of convex cones, F cannot be computed in a finite

number of arithmetic operations, the problem of using estimates of the gradient and Hessian

of F in an interior-point method is an application of our theory on the inexact evaluation of

barrier functions. A key aspect of the application is to obtain a bound on the Monte Carlo

sample size such that our interior-point method is globally convergent and has polynomial

worst-case iteration complexity. Ideally we would also like each iteration to require only a

polynomial amount of computational effort, but this may be unrealistic in general.
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5.2 Definition and characterization of the universal barrier

function

5.2.1 Introduction

In this section, given a full coneK, we will study the universal barrier function F : int(K) →

R, defined in [33, p. 50] as

F (x) = C log voln(K
o(x)), (5.2.1)

where C > 0 is an appropriately chosen constant,

Ko(x) := {y ∈ Rn | yT (z − x) ≤ 1 ∀ z ∈ K}

is the polar set of K at x, and voln(·) denotes n-dimensional Lebesgue measure. For each

x ∈ int(K) the polar set Ko(x) is compact, convex, and has nonempty interior.

As noted in Lemma 4.1.2, it was shown in [33] that there exists a Cn-normal barrier for

every cone K, for some constant C independent of n and K. The normal barrier constructed

in [33] is in fact the universal barrier function in (5.2.1), and the constant C in (5.2.1) is that

in Lemma 4.1.2. The logarithmic homogeneity of the universal barrier function was noted

in [33, Remark 2.5.1]. In [33] the self-concordancy of this function was used to establish

that in principle (4.1.1) may be solved by certain classes of interior-point methods in a

polynomial number of iterations. More specifically, such methods will produce a feasible x

such that cTx− vP ≤ ε in a number of iterations that is polynomial in n and log(1/ε).1 In

the proof of [33, Theorem 2.5.1], an alternative equivalent formula for the universal barrier

1In Chapter 4 we defined an ε-optimal solution in a slightly different way—in terms of the duality gap
cT x − bT w associated with a primal-dual point (x, w, s). In [33] the main concern was solving the primal
problem (4.1.1), so the “gap to optimality” is defined differently, viz., independently of the dual variables.
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function in (5.2.1) is suggested:

F (x) = C log
1

n
ϕ(x), (5.2.2)

where

ϕ(x) =

∫

K∗∩Sn−1

1

(xT y)n
dy, (5.2.3)

and Sn−1 denotes the unit sphere in Rn. (It is easily verified from (5.2.2) and (5.2.3) that F

does in fact satisfy the logarithmic-homogeneity relation (3.3.1) with parameter ν = Cn.)

Since F (x) is a normal barrier, logϕ(x) is a nondegenerate convex function (on int(K)),

hence a strictly convex function. It follows that ϕ(x) is logarithmically strictly convex,

hence strictly convex. We now discuss the value of C. It follows from the definition of a

self-concordant barrier function that the function C log 1
nϕ(x) is a normal barrier, provided

C is chosen large enough. However the cost of increasing C is an increase in the worst-case

iteration complexity of interior-point methods that use C log 1
nϕ(x) as a barrier function.

Unfortunately it is difficult to find the optimal (minimal) universal constant C. It seems

difficult to even find a good upper bound on the optimal C. Moreover, even if one can

find the optimal C, there is no guarantee that Cn is the smallest complexity parameter of

any normal barrier for K, since other normal barriers for K may exist. We point out that

in practice it is not essential to know a universal constant C that works for any cone K

having any dimension; it is enough to know a C such that C log 1
nϕ(x) is a normal barrier

for the particular cone in (4.1.1). One may ask if there is a relationship between the various

barriers for a given full cone K, so that given one barrier, some or all of the others might

be generated. As far as we know this is an open question. However it has been shown

(see [17]) that the self-scaled barrier functions (see Definition 3.3.8) defined on self-scaled

cones are precisely the universal barrier function up to a homothetic transformation. That

is, given a (irreducible) self-scaled cone K and a self-scaled barrier function F̃ for K, there

exist constants c1 > 0 and c2 such that F̃ (x) = c1F (x) + c2, where F is defined in (5.2.2).
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An equivalent expression for the universal barrier function can be derived. For any full

cone K and x ∈ int(K) we have

∫

K∗

e−x
T y dy =

∫ ∞

R=0

∫

K∗∩{y:‖y‖2=R}
e−x

T y dy dR

=

∫ ∞

R=0

∫

K∗∩Sn−1

e−x
T (Ry) Rn−1 dy dR

=

∫

K∗∩Sn−1

∫ ∞

R=0
e−Rx

T y Rn−1 dR dy

=

∫

K∗∩Sn−1

(n− 1)!

(xT y)n
dy.

The second equality follows from a change of coordinates from Cartesian to radial—e.g., hyperspherical—

coordinates, a linear scaling of the radial variable by R, and then another change of variables

from radial back to Cartesian coordinates.2 The fourth equality follows from integration

by parts on the inner (one-dimensional) integral in R. It uses the fact that xT y > 0 for all

y ∈ K∗ ∩ Sn−1, which is true for any x ∈ int(K). Note that the new region of integration

K∗∩Sn−1 is bounded. So we have the following equivalent formula for the universal barrier

function:

F (x) = C log
1

n!

∫

K∗

e−x
T y dy. (5.2.4)

In fact the relation (5.2.4) was proven in [16, Theorem 4.1], but the details of the proof

are different from those we have given. In [22] (see also [23, Chapter 1]) the characteristic

function of a certain class of convex “cones” U was defined to be
∫

U∗ e
−〈x,y〉 dy, with x ∈ U .3

It will be convenient for us to instead define ϕ(x) as the characteristic function of K. It

2To explain this in more detail, suppose that we use the hyperspherical coordinate representation ex-
plained in Section 5.4. Given a Cartesian point y ∈ K∗ with ‖y‖2 = R, one generates a hyperspherical point
(R, α) ∈ R+×Rn−1. The factor of Rn−1 in the transformed integrand comes from the Jacobian of the coor-
dinate transformation; see (5.4.8). Geometrically, it is a consequence of the fact that an (n− 1)-dimensional
sphere of radius R has (n − 1)-dimensional volume Rn−1 times that of the unit (n − 1)-dimensional sphere.
Now perform the inverse transformation by converting the hyperspherical point (1, α) into a Cartesian point
y with ‖y‖2 = 1.

3More precisely, U was assumed to be the interior of a self-dual cone, and therefore excludes the origin.
Hence by our definition of a cone, U is not a cone. Nevertheless U is a cone according to the definition used
in [22]; see footnote 1 on page 16.
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can be seen that our characteristic function is
∫

U∗ e
−xT y dy up to a constant factor, where

U = K.

Yet another equivalent expression for the characteristic function shows that it can be

written as a one-dimensional integral. Given a full cone K, a vector x ∈ int(K), and a

scalar t ≥ 0, define

H(t, x) =

{

y ∈ K∗ ∩ Sn−1

∣

∣

∣

∣

xT y

‖x‖2
≤ t

}

,

h(t, x) = voln−1(H(t, x)),

γ(x) = min
y∈K∗∩Sn−1

xT y

‖x‖2
> 0. (5.2.5)

Noting that xT y/‖x‖2 is the cosine of the angle between x and y ∈ Sn−1, γ(x) measures

the maximum angle between x and vectors in K∗. We see that h(t, x) = 0 for 0 ≤ t ≤ γ(x)

and h(t, x) = voln−1(K
∗ ∩ Sn−1) for t ≥ 1. The function h(t, x) is a monotone increasing

function of t, but fails to be differentiable everywhere. We can write the characteristic

function as a one-dimensional integral in terms of h(t, x):

ϕ(x) =
1

‖x‖n2

∫

K∗∩Sn−1

(‖x‖2

xT y

)n

dy

=
1

‖x‖n2

∫

K∗∩Sn−1

∫ (‖x‖2/xT y)
n

0
dt dy

=
1

‖x‖n2

∫ ∞

0

∫

H(t−1/n,x)
dy dt

=
1

‖x‖n2

∫ ∞

0
h(t−1/n, x) dt

=
1

‖x‖n2

∫ γ(x)−1/α

0
αnuαn−1h(u−α, x) du, α > 0. (5.2.6)

The third equality follows from the definition of H, the fourth follows from the definition

of h, and the last follows from the change of variables u = tαn.

5.2.2 Derivatives of the universal barrier function

In Chapter 4 we presented an interior-point method that uses estimates of the first and
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second derivatives of a suitable barrier function. We now compute these derivatives for the

universal barrier function. We first give formulas for the first and second derivatives of ϕ.

Since this requires the differentiation of the integral in (5.2.3), we will first need to verify

that it is valid to interchange the differential and integral operators.

Consider the function f : int(K) × (K∗ ∩ Sn−1) → R given by f(x, y) = 1
(xT y)n . For

a fixed x ∈ int(K), y ∈ K∗ ∩ Sn−1 is bounded away from orthogonality to x; cf. (5.2.5).

Hence for all y ∈ K∗ ∩ Sn−1,

f ≤ 1

(γ(x)‖x‖2)n
,

∂f

∂xi
=

−nyi
(xT y)n+1

,

∣

∣

∣

∣

∂f

∂xi

∣

∣

∣

∣

≤ n|yi|
(γ(x)‖x‖2)n+1

≤ n

(γ(x)‖x‖2)n+1
,

∂2f

∂xi∂xj
=
n(n+ 1)yiyj

(xT y)n+2
,

∣

∣

∣

∣

∂2f

∂xi∂xj

∣

∣

∣

∣

≤ n(n+ 1)|yiyj |
(γ(x)‖x‖2)n+2

≤ 0.5n(n+ 1)

(γ(x)‖x‖2)n+2
.

It follows that for each x ∈ int(K), f(x, ·) and its first and second partial derivatives with

respect to the xi exist and are bounded functions on K∗ ∩Sn−1. Since K∗ ∩Sn−1 has finite

(n−1)-dimensional volume, it follows that f(x, ·) and its first and second partial derivatives

are L1 integrable on K∗ ∩Sn−1. So for each i, we can interchange the differential operators

∂
∂xi

and ∂2f
∂xi∂xj

with the integral operator in (5.2.3) to obtain the partial derivatives of ϕ:

∇ϕ(x) =

∫

K∗∩Sn−1

∇x
1

(xT y)n
dy

=

∫

K∗∩Sn−1

−n y
(xT y)n+1

dy (5.2.7)

=
−n

‖x‖n+1

∫

K∗∩Sn−1

∫ (‖x‖/xT y)
n+1

0
y dt dy,
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and

∇2ϕ(x) =

∫

K∗∩Sn−1

∇2
x

1

(xT y)n
dy

=

∫

K∗∩Sn−1

n(n+ 1) yyT

(xT y)n+2
dy (5.2.8)

=
n(n+ 1)

‖x‖n+2

∫

K∗∩Sn−1

∫ (‖x‖/xT y)
n+2

0
yyT dt dy.

The Cn-normal barrier F in (5.2.2) may be written terms of its complexity parameter

ν = Cn rather than C, i.e.,

F (x) =
ν

n
log

1

n
ϕ(x). (5.2.9)

The derivatives of the universal barrier function are given by

F ′(x) =
ν

n

∇ϕ(x)

ϕ(x)
, F ′′(x) =

ν

n

ϕ(x)∇2ϕ(x) −∇ϕ(x)∇ϕ(x)T

ϕ(x)2
. (5.2.10)

Therefore to determine the gradient and Hessian of F , it is necessary to compute (1 +

n + n(n+1)
2 ) n-dimensional integrals: one for ϕ(x), one for each component of ∇ϕ(x), and

one for each independent component of ∇2ϕ(x). For some cones these integrals can be

computed cheaply, but in general this does not appear to be the case. In Section 5.2.3 we

will give some examples of cones for which these integrals can be computed cheaply, but

before doing so, we give a lemma relating the Hessian of the barrier function F to that of

the characteristic function ϕ(x).

Lemma 5.2.1. Let x ∈ int(K), ϕ(x) be the characteristic function defined in (5.2.3), and

F the universal barrier function in (5.2.9). We have

ν

n(n+ 1)

∇2ϕ(x)

ϕ(x)
¹ F ′′(x) ¹ ν

n

∇2ϕ(x)

ϕ(x)
, (5.2.11)

‖F ′′(x)−1/2∇2ϕ(x)

ϕ(x)
F ′′(x)−1/2‖2 ≤ n(n+ 1)

ν
. (5.2.12)
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Proof. Since F is a ν-normal barrier function, it follows from Definition 3.2.3(c) that for

all x ∈ int(K) and h ∈ Rn, (F ′(x)Th)2 ≤ νhTF ′′(x)h, i.e., F ′(x)F ′(x)T ¹ νF ′′(x) for all

x ∈ int(K). The latter inequality is equivalent to, in light of the relations in (5.2.10),

∇ϕ(x)∇ϕ(x)T

ϕ(x)2
¹ n

n+ 1

∇2ϕ(x)

ϕ(x)
.

It follows that

ν

n(n+ 1)

∇2ϕ(x)

ϕ(x)
=

ν

n

(∇2ϕ(x)

ϕ(x)
− n

n+ 1

∇2ϕ(x)

ϕ(x)

)

¹ ν

n

(∇2ϕ(x)

ϕ(x)
− ∇ϕ(x)∇ϕ(x)T

ϕ(x)2

)

= F ′′(x).

This proves the left-hand inequality in (5.2.11). The right-hand inequality follows imme-

diately from (5.2.10), since ∇ϕ(x)∇ϕ(x)T º 0. To prove (5.2.12), multiply the left-hand

inequality in (5.2.11) on the left and right by F ′′(x)−1/2. The result is

ν

n(n+ 1)
F ′′(x)−1/2∇2ϕ(x)

ϕ(x)
F ′′(x)−1/2 ¹ I.

Noting that the matrix on the left-hand side is positive definite, taking the matrix 2-norm

of each side gives the required result.

5.2.3 The universal barrier function and its conjugate for various cones

We list in this section the characteristic function ϕ, the universal barrier function F , and

the gradient and Hessian of F for various full cones K. We will suppose that the constant

in (5.2.2) satisfies C = 1, and will determine if F (x) = log 1
nϕ(x) is a normal barrier for K.

If it is, we indicate, where possible, how C can be chosen so that the complexity parameter

of CF (x) is optimal. Where possible, we also give the conjugate of the universal barrier

function. The formulas for ϕ and F are similar to those derived in [16, Section 7]. See also

[6, Chapter 1].
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1. The nonnegative orthant K = Rn
+. The nonnegative orthant is self-dual (under

the Euclidean inner product), i.e., K = K∗. Let e ∈ Rn denote the vector of ones, and let X

denote the diagonal matrix whose diagonal is the vector x. For x ∈ int(K) and s ∈ int(K∗)

we have

ϕ(x) =
1

∏n
i=1 xi

,

F (x) = −
n
∑

i=1

log(xi) + constant,

F ′(x) = −X−1e,

F ′′(x) = X−2,

F∗(s) = −
n
∑

i=1

log(si) + constant.

F is an n-normal barrier function for K. The complexity parameter n is optimal according

to [33, Proposition 2.3.6].

2. The second-order cone K = {x | xn ≥ ‖x1:n−1‖2}. The second-order cone is

self-dual. For x ∈ int(K) and s ∈ int(K∗), there exists a constant c1(n) depending on n

such that

ϕ(x) =
c1(n)

(

x2
n − ‖x1:n−1‖2

2

)n/2
,

F (x) = −n
2

log
(

x2
n − ‖x1:n−1‖2

2

)

+ constant,

F ′(x) =
n

x2
n − ‖x1:n−1‖2

2







x1:n−1

−xn






,

F ′′(x) =
n

x2
n − ‖x1:n−1‖2

2







In 0

0 −1






+

2n
(

x2
n − ‖x1:n−1‖2

2

)2







x1:n−1

−xn













x1:n−1

−xn







T

,

F∗(s) = −n
2

log(s2n − ‖s1:n−1‖2
2) + constant.
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It can be verified that F is an n-normal barrier function for K. The complexity parameter n

is not optimal since the scaled function 2
nF is a 2-normal barrier function for K [33, Proposi-

tion 5.4.3]. In the formula for the conjugate function, we used Lemma 3.3.5(c) together with

the fact that the conjugate barrier for the 2-normal barrier function − log(x2
n − ‖x1:n−1‖2

2)

is − log(s2n−‖s1:n−1‖2
2)−2+2 log(2). The latter formula can be found in, e.g., [35, Section 2].

3. The positive semidefinite cone K = {X ∈ Sn | X º 0}, where Sn is the vector

space of symmetric matrices of order n equipped with the trace inner product. The positive

semidefinite cone is self-dual under this inner product. Since the dimension of K is n(n+1)
2 ,

using K in (4.1.1) gives a problem with n(n+1)
2 rather than n variables. For X ∈ int(K)

and S ∈ int(K∗), there exists a constant c2(n) depending on n such that

ϕ(X) =
c2(n)

(det(X))(n+1)/2
,

F (X) = −n+ 1

2
log(det(X)) + constant,

F ′(X) = −n+ 1

2
X−1,

F ′′(X)Y =
n+ 1

2
X−1Y X−1, Y ∈ Sn,

F∗(S) = −n+ 1

2
log(det(S)) + constant,

where det(X) denotes the determinant of X. It can be verified that F is a n(n+1)
2 -normal

barrier function for K. The complexity parameter n(n+1)
2 is not optimal since the scaled

function 2
n+1F is an n-normal barrier function for K [33, Proposition 5.4.5]. A complex-

ity parameter of n(n+1)
2 for F appears to contradict Lemma 4.1.2, which shows that the

complexity parameter is O(n). The explanation for the apparent contradiction is that the

dimension of the vector space Sn is n(n+1)
2 rather than n. In the formula for the conjugate

function, we used Lemma 3.3.5(c) together with the fact that the conjugate barrier for the

n-normal barrier − log(det(X)) is − log(det(S)) − n. The latter formula can be found in,

e.g., [35, Section 2].

Note that for each of the above cones, the conjugate barrier function F∗ has the same
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form as F up to an additive constant. Each of these cones is self-scaled.

Recall from (2.3.3) the definition of the coneK(S) ⊂ Rp+1 fitted to a convex set S ⊂ Rp.

We now compute the universal barrier function for the cone fitted to two convex (non-conic)

sets. We first discuss the relationship between self-concordant barriers for S and those for

K(S). In the seminal work of Nesterov and Nemirovski, it was shown that if F is a ψ-

self-concordant barrier for S, then one can construct a self-concordant barrier for K(S).

Unfortunately the complexity parameter of the latter function was 800ψ, which for many

cones is much larger than that of the optimal barrier. A superior bound was proven in [14],

and this was improved recently in [31, Theorem 1], where it was shown that

F̃ (z, t) =

(

1.54 +
1.785

ψ1/2

)2
(

F (z/t) − 4ψ log(t)
)

: int(K(S)) → R.

is a (3.08ψ1/2 + 3.57)2-self-concordant barrier for K(S).

In the following two examples involving cones fitted to convex sets, we omit formulas

for the conjugate function F∗(s).

4. The cone fitted to the `1 unit ball S = {x ∈ Rn | ‖x‖1 ≤ 1}. The cone fitted to

S is K(S) = {(x, t) ∈ Rn+1 | ‖x‖1 ≤ t}. Its dual is K(S)∗ = {(s, u) ∈ Rn+1 | ‖s‖∞ ≤ u},

which is the cone fitted to the `∞ unit ball. Both K(S) and its dual are full polyhedral

cones. For (x, t) ∈ int(K(S)) we have

ϕ(x, t) =
1

∏n
i=1 |xi|

∑

ei=±1

∏n
i=1 ei

t−∑n
i=1 ei|xi|

,

F (x, t) = −
n
∑

i=1

log(|xi|) + log

(

∑

ei=±1

∏n
i=1 ei

t−∑n
i=1 ei|xi|

)

− log(n).

We omit the cumbersome formulas for the gradient and Hessian of F . The work required

to evaluate F and its derivatives at a particular point (x, t) is exponential in n. An “appro-

priately large” multiple of F is a normal barrier for K(S), but we are unable to determine

the “appropriately large” multiple, and hence the complexity parameter of such a normal
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barrier. We do know from Lemma 4.1.2 that the complexity parameter is O(n + 1). Note

that the constraint (x, t) ∈ K(S) can be written as a system of linear inequality constraints.

This can be done by using the fact that for any xi ∈ R, there exist scalars yi, zi ≥ 0 such

that xi = yi − zi and |xi| = yi + zi. So K(S) can be embedded in the higher dimensional

space R2n+1 as

{

(y, z, t)

∣

∣

∣

∣

n
∑

i=1

(yi + zi) ≤ t, y ≥ 0, z ≥ 0

}

.

It follows from Example 3.2.5 that the logarithmic barrier

F (y, z, t) = − log

(

t−
n
∑

i=1

(yi + zi)

)

−
n
∑

i=1

log(yi) −
n
∑

i=1

log(zi)

for this polyhedral description of K(S) has complexity parameter 2n+ 1.

5. The cone fitted to the `∞ unit ball S = {x ∈ Rn | ‖x‖∞ ≤ 1}. The cone fitted

to S is K(S) = {(x, t) ∈ Rn+1 | ‖x‖∞ ≤ t}. Its dual is K(S)∗ = {(s, u) ∈ Rn+1 | ‖s‖1 ≤ u},

which is the cone fitted to the `1 unit ball discussed above. For (x, t) ∈ int(K(S)) we have

ϕ(x, t) =
2ntn−1

∏n
i=1(t

2 − x2
i )
,

F (x, t) = (n− 1) log(t) −
n
∑

i=1

log(t2 − x2
i ) + constant,

F ′(x, t) =







v

n−1
t −∑n

i=1
2t

t2−x2
i






, vi =

2xi
t2 − x2

i

,

F ′′(x, t) =







diag(z) −2tvT

−2tv −n−1
t2

+
∑n

i=1 zi






, zi =

2(t2 + x2
i )

(t2 − x2
i )

2
.

It can be verified that F is an (n + 1)-normal barrier for the (n + 1)-dimensional full

polyhedral cone K(S). For the purpose of comparison with other cones, we need the cone

K(S) to be n-dimensional rather than (n+1)-dimensional; this is achieved by fitting a cone
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to the `∞ unit ball in Rn−1 rather than Rn. The resulting universal barrier function is an n-

normal barrier. The complexity parameter of n is optimal in light of [33, Proposition 2.3.6].

5.2.4 Computing the universal barrier function

We see that easily computable formulas for the gradient and Hessian of the universal barrier

function are known in the cases that K is a polyhedral cone, the second-order cone, the

positive semidefinite cone, the cone fitted to the `∞ unit ball, or the direct products of

such cones (see Lemma 3.2.4). More precisely, the gradient and Hessian are computable

in a polynomial number of arithmetic operations. For cones such that this is not the case,

it may be necessary to approximate the integral in (5.2.3), since this might represent the

easiest way of using gradient and Hessian information in an interior-point method. Even if

the gradient and Hessian can be evaluated in polynomial time, it may still be advantageous

to use estimates of these quantities if such estimates are cheaper to compute. In the next

two sections we study one approach to this approximation problem.

5.3 Monte Carlo methods

In this section, we give a brief review of Monte Carlo methods for the approximation of

integrals, following [37, Chapter 1]. It is well known that traditional deterministic numeri-

cal quadrature methods for estimating integrals suffer from the “curse of dimensionality”,

meaning that the number of function evaluations required to guarantee a fixed level of

accuracy is exponential in the problem size. Therefore such methods are computationally

tractable only for problems in very low dimensions. If we instead generate a uniformly dis-

tributed random sample—rather than a deterministic sample—of points in the domain of

integration, then a probabilistic bound—rather than a deterministic worst-case bound—on

the error in the integral estimate is obtained. However the probabilistic bound can still de-

pend on the problem dimension, even though Monte Carlo methods are typically advertised

as having a rate of convergence independent of the dimension.
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Suppose that the set Y ⊂ Rn has finite positive p-dimensional Lebesgue measure,

i.e., 0 < volp(Y ) < ∞. (Of course p ≤ n.) Let f : Y → R be square integrable,

i.e.,
∫

Y f(y)2dy < ∞. Introduce a random vector y that is uniformly distributed on Y .

The function f(y) is a random variable. We define the expected value E(f) of this random

variable by

E(f) :=
1

volp(Y )

∫

Y
f(y) dy, (5.3.1)

and the variance σ(f)2 of f by

σ(f)2 := E([f − E(f)]2)

= E(f2) − E(2fE(f)) + E(E(f)2)

= E(f2) − 2E(f)2 + E(f)2

= E(f2) − E(f)2. (5.3.2)

Since f is square-integrable, the variance of f is finite. The quantity σ(f) is called the

standard deviation of f . Now take a uniformly distributed random sample of N points

y1, · · · , yN from the set Y . The Monte Carlo estimate of E(f) is given by

E(f) ≈ 1

N

N
∑

k=1

f(yk). (5.3.3)

The strong law of large numbers (see e.g., [10, Section VII.8]) implies that

lim
N→∞

1

N

N
∑

k=1

f(yk) = E(f)

“almost surely”. That is, the above relation holds with probability (Lebesgue measure) 1,

where the Lebesgue measure here is the product measure of countably infinite copies of

one-dimensional Lebesgue measure.

We now study the error in the approximation (5.3.3). The Central Limit theorem used
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in probability theory says that the mean of a random sample, itself a random variable,

approaches a Gaussian distribution as the sample size increases. In our notation,

lim
N→∞

Prob

(

`1
σ(f)√
N

≤ 1

N

N
∑

k=1

f(yk) − E(f) ≤ `2
σ(f)√
N

)

=
1√
2π

∫ `2

`1

e−t
2/2 dt,

where `1 ≤ `2 and Prob(·) denotes probability. For our purposes it is desirable to know a

bound on the absolute error
∣

∣

1
N

∑N
k=1 f(yk)−E(f)

∣

∣ in terms of the sample size N , viz., we

wish to quantify the rate at which the distribution of the sample mean converges to a

Gaussian probability density function. An answer is provided by the Berry-Esséen theorem,

which was discovered independently by Berry and Esséen in the 1940s. We will use the

version of this theorem from [10, Section XVI.5]. It applies to independently distributed

random variables having mean zero. The function f − E(f) is such a random variable: its

mean is E(f −E(f)) = E(f) −E(f) = 0. Its second moment is E([f −E(f)]2) = σ(f)2. If

the third absolute moment of f − E(f),

ρ(f) := E(|f − E(f)|3), (5.3.4)

is finite, the following probabilistic bound holds:

∣

∣

∣

∣

Prob

(

1

N

N
∑

k=1

f(yk) − E(f) ≤ `
σ(f)√
N

)

−
∫ `

−∞

1√
2π
e−t

2/2 dt

∣

∣

∣

∣

≤ 0.7655ρ(f)

σ(f)3
√
N
, (5.3.5)

where ` > 0. Observe that the above-mentioned convergence is described in terms of the

maximum deviation between two distribution functions. To our knowledge, the constant

0.7655 from [50], which uses the fact that the yk are identically distributed, is the best

known.4 Denote the standardized sample mean by Z and the integral of the Gaussian

4If the samples are not drawn from identical distributions, (5.3.5) is known to hold with constant 0.7915
instead of 0.7655.
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density function between two points `1 and `2 with `1 ≤ `2 by Φ(`1, `2):

Z =
1
N

∑N
k=1 f(yk) − E(f)

σ(f)/
√
N

, Φ(`1, `2) =

∫ `2

`1

1√
2π
e−t

2/2 dt.

Then for ` > 0,

Prob(|Z| ≤ `) = Prob(Z ≤ `) − Prob(Z ≤ −`)

= Φ(−`, `) +
(

Prob(Z ≤ `) − Φ(−∞, `)
)

−
(

Prob(Z ≤ −`) − Φ(−∞,−`)
)

≥ Φ(−`, `)−|Prob(Z ≤ `) − Φ(−∞, `)|−|Prob(Z ≤ −`) − Φ(−∞,−`)|

≥ Φ(−`, `)−0.7655ρ(f)

σ(f)3
√
N

−0.7655ρ(f)

σ(f)3
√
N

= Φ(−`, `)−1.531ρ(f)

σ(f)3
√
N
.

So an upper bound on the probability that the Monte Carlo estimate

∫

Y
f(y) dy ≈ volp(Y )

N

N
∑

k=1

f(yk) (5.3.6)

lies within ` standard deviations of its expected value is given by

Prob





∣

∣

∣

volp(Y )
N

∑N
k=1 f(yk) −

∫

Y f(y) dy
∣

∣

∣

volp(Y )σ(f)/
√
N

≤ `



≥
∫ `

−`

1√
2π
e−t

2/2 dt−1.531ρ(f)

σ(f)3
√
N
. (5.3.7)

We now prove a lemma about the tail of a Gaussian probability density function. The

lemma involves a constant Ω, which we will later choose to be proportional to an upper

bound on the number of iterations of our interior-point method, Algorithm short step, that

uses F̂ ′ and F̂ ′′ as estimates of the gradient and Hessian of a suitable barrier function. The

lemma will allow us to compute a lower bound on the probability that our interior-point

method has polynomial iteration complexity.
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Lemma 5.3.1. Let n ≥ 3 be an integer, Ω ≥ 50, `(n,Ω) = 0.08Ω(log(n))1/2, and

G(n,Ω) =

∫ ∞

`(n,Ω)

1√
2π
e−t

2/2 dt.

We have

Ωn1/2(n+ 1)(n+ 2)G(n,Ω) <
11

n5.5
.

Proof. Let f(t) = 1√
2π
e−t

2/2. Then f ′(t) = −tf(t) for all t. So for all t 6= 0,

d

dt

(−f(t)

t

)

=
−tf ′(t) + f(t)

t2
=

(

1 +
1

t2

)

f(t).

Since f(t) is nonnegative everywhere, it follows that

G(n,Ω) =

∫ ∞

`(n,Ω)
f(t) dt ≤

∫ ∞

`(n,Ω)

(

1 +
1

t2

)

f(t) dt =
−f(t)

t

∣

∣

∣

∣

∞

t=`(n,Ω)

=
f(`(n,Ω))

`(n,Ω)
. (5.3.8)

We now find a bound on Ωn1/2(n+1)(n+2)G(n,Ω). Equation (5.3.9a) follows from (5.3.8),

(5.3.9b) uses the assumption that Ω ≥ 50, and (5.3.9c) uses the fact that the function being
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maximized is strictly decreasing for n ≥ 3.

Ωn1/2(n+ 1)(n+ 2)G(n,Ω) ≤ Ωn1/2(n+ 1)(n+ 2)
f(`(n,Ω))

`(n,Ω)
(5.3.9a)

= Ωn1/2(n+ 1)(n+ 2)

1√
2π
e−

1

2
(0.08Ω(log(n))1/2)2

0.08Ω(log(n))1/2

=
n1/2(n+ 1)(n+ 2)

0.08(log(n))1/2
1√
2π
e−

1

2
(0.08Ω)2 log(n)

≤ n1/2(n+ 1)(n+ 2)

0.08(log(n))1/2
1√
2π
e−8 log(n) (5.3.9b)

=
1

n5.5
· (n+ 1)(n+ 2)

0.08
√

2π(log(n))1/2n2

≤ 1

n5.5
· max
n≥3

(n+ 1)(n+ 2)

0.08
√

2π(log(n))1/2n2

=
1

n5.5
· (n+ 1)(n+ 2)

0.08
√

2π(log(n))1/2n2

∣

∣

∣

∣

n=3

(5.3.9c)

<
11

n5.5
.

5.4 Using a Monte Carlo method to estimate F ′ and F ′′

In (5.2.9) a formula for the universal barrier function is given. One method of estimating

the gradient and Hessian of F at x ∈ int(K) would be to first estimate the characteristic

function ϕ(x) and its first two derivatives. The latter can be done by generating a uniform

random sample of points in the bounded set K∗ ∩ Sn−1, and then applying a Monte Carlo

method to estimate the integrals in (5.2.3), (5.2.7), and (5.2.8). One way of generating a

uniform sample of points on the sphere Sn−1 is explained in [29]: generate n numbers zi

sampled from a Gaussian distribution with mean 0 and variance 1, and let z = (z1, · · · , zn).

Then the normalized point z/||z||2 lies in Sn−1. Repeat this process Ñ times to generate a

sample of size Ñ . Suppose that N of these points {yk}Nk=1 also lie in K∗. We shall assume

that N ≥ n, which is always true in practice. Then the points {yk}Nk=1 almost surely span

Rn.

Denote the Monte Carlo estimates of ϕ(x), ∇ϕ(x), and ∇2ϕ(x) by ϕ̂(x), ĝ(x), and
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Ĥ(x) respectively. Aˆ will denote an estimate throughout this chapter, and the quantities

ĝ and Ĥ should remind the reader that we are estimating the gradient and Hessian of ϕ(x).

Letting V = voln−1(K
∗ ∩ Sn−1), we have from (5.2.3), (5.2.7), and (5.2.8) (cf. 5.3.3)

ϕ̂(x) = V
1

N

N
∑

k=1

1

(xT yk)n
, (5.4.1)

ĝ(x) = V
−n
N

N
∑

k=1

yk

(xT yk)n+1
, (5.4.2)

Ĥ(x) = V
n(n+ 1)

N

N
∑

k=1

yk(yk)T

(xT yk)n+2
. (5.4.3)

Observe that ĝ(x) and Ĥ(x)—estimates of the gradient and Hessian of ϕ(x)—are them-

selves the gradient and Hessian of the estimate ϕ̂(x) of ϕ(x). We note that the greatest

contribution to ϕ̂(x), ĝ(x), and Ĥ(x) comes from the points yk that are closest to being

orthogonal to x.

An efficient Monte Carlo code in MATLAB will compute ϕ̂(x), ĝ(x), and Ĥ(x) in the

following way. Let u be the column vector of xT yk values and Y be the matrix whose k-th

column is yk. The values of phi, g, and H in the following algorithm are, after multiplication

by V/N , the values of ϕ̂(x), ĝ(x), and Ĥ(x) respectively.5

Inputs: n,N,u,Y.

beta = 1 ./ (u.^n);

phi = sum(beta);

g = -n * Y * (beta ./ u);

% spdiags(beta./u.^2,0,N,N) is a diagonal matrix with components equal

% to the components of the vector beta./(u.^2) .

H = n * (n+1) * Y * spdiags((beta./u.^2),0,N,N) * Y’;

With estimates ϕ̂(x), ĝ(x), and Ĥ(x) in hand, we now estimate the universal barrier function

5We have used the MATLAB notation a./b to denote componentwise division of two vectors a and b,
and a.^m to denote componentwise exponentiation of the vector a.
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in (5.2.9) as

F̂ (x) :=
ν

n
log

1

n
ϕ̂(x) =

ν

n
log

( N
∑

k=1

1

(xT yk)n

)

+
ν

n
log

(

V

nN

)

. (5.4.4)

A simple computation shows that the gradient and Hessian of this estimate are given by

F̂ ′(x) =
ν

n

ĝ(x)

ϕ̂(x)
, F̂ ′′(x) =

ν

n

ϕ̂(x)Ĥ(x) − ĝ(x)ĝ(x)T

ϕ̂(x)2
. (5.4.5)

(Cf. (5.2.10).) In light of this comparison and our earlier observation that the Monte Carlo

estimates of the gradient and Hessian of ϕ(x) are the gradient and Hessian, respectively,

of the Monte Carlo estimate of ϕ(x), we conclude that the gradient and Hessian of the

Monte Carlo approximation to F are the Monte Carlo approximations of the gradient and

Hessian, respectively, of F . That is, our barrier gradient and Hessian estimates have two

interpretations. They can be thought of derivatives of our estimate of the barrier function

F (x), or as direct estimates, via a Monte Carlo method, of F ′(x) and F ′′(x).

It is seen that the gradient and Hessian of F̂ as given in (5.4.5) are independent of V ,

so it is not necessary to estimate this quantity. However we need to estimate V in our error

analysis.6 This can be done by using the estimate (5.3.3), where N becomes Ñ , Y = Sn−1,

and f : Y → R is now defined to be the indicator function of K∗ ∩ Sn−1, i.e.,

f(y) =















1 : y ∈ K∗ ∩ Sn−1,

0 : otherwise.

We obtain

V

voln−1(Sn−1)
≈ N

Ñ
. (5.4.6)

It is known (see e.g., [46, page xii]) that voln−1(S
n−1) = nπn/2/Γ(1 + n/2), where Γ(·) is

6The error analysis depends on the quantities in (5.3.7), including volp(Y ), which in the present context
is V .
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the gamma function, given by Γ(u) =
∫∞
0 xu−1e−x dx, u > 0. This function satisfies the

recursion Γ(u) = (u− 1)Γ(u− 1) and Γ(0.5) =
√
π.

Note that in estimating the gradient and Hessian of F , the only information about the

cones K and K∗ that was used is (a) K, hence K∗, is a full cone (Assumption 4.1.1), and

(b) we have a membership oracle (also known as an inclusion oracle) for K∗. Such an oracle

takes as its input a vector x, and gives as output “yes” if y ∈ K∗ and “no” if y /∈ K∗. The

membership oracle is used to generate a uniformly distributed sample in the set K∗∩Sn−1.

We do not need to know how far a given point lies from the boundary of K or K∗, nor do

we use any information about the boundary structure of these cones. However, since we

wish to use the estimates of the gradient and Hessian of F in our feasible-point algorithm,

Algorithm short step, and this algorithm requires a strongly feasible initial point, it is also

necessary to have membership oracles for int(K) and int(K∗).

We intend to estimate the gradient and Hessian of the universal barrier function (5.2.2)

at each iteration of an interior-point method applied to the problem (4.1.1). Pseudoran-

domly generated points obtained before running the interior-point method will be used at

each iteration of the method.

We mention that other ways to estimate the gradient and Hessian of the universal

barrier function are possible. For example, we may write the characteristic function (5.2.3)

in terms of hyperspherical coordinates. Following [40], a point y ∈ Rn is represented in

hyperspherical coordinates as (R,α1, · · · , αn−1), where

R = ‖y‖2, (5.4.7a)

αk = arccos

(

yk
(

R2 −∑k−1
i=1 y

2
i

)1/2

)

, k = 1, · · · , n− 2, (5.4.7b)

αn−1 = arctan2(yn, yn−1), (5.4.7c)

where 0 ≤ αk ≤ π, k = 1, · · · , n − 2, 0 ≤ αn−1 < 2π, and
∑0

1 = 0. We define

arctan2(yn, yn−1) to be the angle ξ ∈ [0, 2π) measured counter-clockwise from the posi-

tive real axis (in two dimensional space) to the point (yn, yn−1). That is, yn = cos(ξ) and
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yn−1 = sin(ξ). Using the convention that
∏0

1 = 1, the inverse transformation is

yk = R cos(αk)
k−1
∏

i=1

sin(αi), k = 1, · · · , n− 1, yn = R
n−1
∏

i=1

sin(αi).

We see that the conversion of a n-dimensional Cartesian point to a point in hyperspherical

coordinates, or vice versa, requires the evaluation of O(n) sines, cosines, inverse cosines,

and square roots. It can be shown that for the inverse transformation, the magnitude of

the Jacobian determinant is given by

J(R,α) := Rn−1
n−2
∏

i=1

(sin(αi))
(n−i−1). (5.4.8)

Let us now represent (5.2.3) as an integral in hyperspherical coordinates. Let

Θ = {(α1, · · · , αn−1) | y(α) ∈ K∗} ⊆ [0, π]n−2 × [0, 2π),

where y(α) is the Cartesian point corresponding to the hyperspherical point (1, α1, · · · , αn−1) =:

(1, α). The characteristic function, its gradient, and its Hessian, expressed as integrals in

hyperspherical coordinates, are then

ϕ(x) =

∫

Θ

J(1, α)

(xT y(α))n
dα,

∇ϕ(x) = −n
∫

Θ

J(1, α)y(α)

(xT y(α))n+1
dα,

∇2ϕ(x) = n(n+ 1)

∫

Θ

J(1, α)y(α)y(α)T

(xT y(α))n+2
dα.

We then use estimates of these quantities to obtain estimates of F ′(x) and F ′′(x) via (5.4.5).

Our Monte Carlo sample now consists of points in the set Θ. Such points are found by first

generating a random sample of points uniformly distributed in the box [0, π]n−2×[0, 2π), and

then rejecting those points whose Cartesian equivalents lie outside K∗. The Monte Carlo

estimates of ϕ(x) and its derivatives are the same using either Cartesian or hyperspherical
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coordinate systems, if the same Cartesian points {yk} are used in each case. (That is, the

hyperspherical points in Θ are generated by converting the {yk} using (5.4.7a)–(5.4.7c).)

However the variance and other moments of the respective integrands, considered as random

variables, will be different.

One may also ask if it would be better to apply a Monte Carlo method to (5.2.6),

in which ϕ(x) is written as a one-dimensional rather than a multi-dimensional integral.

Given x ∈ int(K) and a sample {yk}, we can estimate h(t, x) in (5.2.6) as a function of

t, and use this estimate to estimate the integral in (5.2.6). The result is the same as that

in (5.4.1), but again, the variance and other moments of the integrand, considered as a

random variable, will be different. Due to the complicated nature of the integrals involved,

it appears inconclusive as to whether one representation is always superior to another,

i.e., is superior for every full cone and at every x ∈ int(K). Finally, we point out that the

hyperspherical representation of the domain of integration allows for the use of quasi-Monte

Carlo methods to estimate ϕ(x) and its derivatives: sampling now takes place from a box

rather than from on a sphere.

5.4.1 Properties of the Monte Carlo estimate of the universal barrier

function

As we have already discussed, the universal barrier function F has several desirable proper-

ties that make it suitable for use in an interior-point method. In this section, we will show

that the estimate F̂ inherits some of these properties. In particular, we show that it satisfies

the assumptions made on our barrier function estimate at the beginning of Section 4.5: F̂

is twice continuously differentiable on int(K), is nondegenerate and convex on int(K), and

satisfies the logarithmic-homogeneity relation. For all x ∈ int(K) and positive integers k,

xT yk > 0, so ϕ̂(x) > 0, and F̂ is well defined on int(K). It is clear from the definition

(5.4.4) that F̂ is smooth on int(K). We now show that (4.5.1) holds.

Lemma 5.4.1. The barrier estimate F̂ given in (5.4.4) satisfies the logarithmic-homogeneity

relation (4.5.1) with parameter ν.
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Proof. From the definition of ϕ̂(x), we see that for all x ∈ int(K) and t > 0, ϕ̂(tx) = ϕ̂(x)/tn.

Hence F̂ (tx) − F̂ (x) = ν
n log 1/tn = −ν log t.

We now prove F̂ ′′ is almost surely positive definite on int(K).

Lemma 5.4.2. For all x ∈ int(K),

F̂ ′′(x) º ν

n(n+ 1)

Ĥ(x)

ϕ̂(x)
. (5.4.9)

Furthermore, F̂ ′′(x) is almost surely positive definite on int(K).

Proof. Applying the Cauchy-Schwarz inequality (Lemma 2.4.1(b)) with ak = 1/(xT yk)n/2

and bk = hT yk/(xT yk)n/2+1, we have for all h ∈ Rn and all x ∈ int(K),

( N
∑

k=1

hT yk

(xT yk)n+1

)2

≤
( N
∑

k=1

|hT yk|
(xT yk)n+1

)2

≤
N
∑

k=1

1

(xT yk)n

N
∑

k=1

(hT yk)2

(xT yk)n+2
.

Hence

(

V
−n
N

N
∑

k=1

hT yk

(xT yk)n+1

)2

≤ n

n+ 1

[

V
1

N

N
∑

k=1

1

(xT yk)n

] [

V
n(n+ 1)

N

N
∑

k=1

(hT yk)2

(xT yk)n+2

]

.

In light of (5.4.1), (5.4.2), and (5.4.3), this inequality may be written as

(hT ĝ(x))2 ≤ n

n+ 1
ϕ̂(x) hT Ĥ(x)h.

Since (hT ĝ(x))2 = hT ĝ(x)ĝ(x)Th, the inequality amounts to

ĝ(x)ĝ(x)T ¹ n

n+ 1
ϕ̂(x) Ĥ(x).

127



It follows from (5.4.5) that

F̂ ′′(x) =
ν

n

ϕ̂(x)Ĥ(x) − ĝ(x)ĝ(x)T

ϕ̂(x)2

º ν

n

ϕ̂(x)Ĥ(x) − n
n+1 ϕ̂(x)Ĥ(x)

ϕ̂(x)2

=
ν Ĥ(x)

n(n+ 1)ϕ̂(x)
.

This proves (5.4.9). Now from (5.4.3), Ĥ(x) can be written as the matrix product Y DY T ,

where Y ∈ Rn×N is the matrix whose columns are y1, · · · , yN , and D is a positive definite

diagonal matrix. Since the points {yk} almost surely span Rn, then Y almost surely has

full row rank, and hence Ĥ(x) is almost surely positive definite on int(K). It follows from

(5.4.9) that the same is true of F̂ ′′(x).

Note that the inequality in (5.4.9) is similar to that proven for F ′′(x) in (5.2.11). We now

show that each yk ∈ K∗ ∩ Sn−1 almost surely lies in int(K∗) rather than in bnd(K∗).

Consider the following result of Ewald, Larman, and Rogers regarding the measure of the

boundary of a convex body. A convex body is a nonempty compact convex set.

Lemma 5.4.3 ([5, Theorem 1]). Let K ′ ⊆ Rn be a convex body. The set of directions on

the unit sphere Sn−1 that are parallel to a line segment in the boundary of K ′ has σ-finite

(n− 2)-dimensional Hausdorff measure.

We first remark that a set having σ-finite measure can be written as a countable union of

sets having finite measure. Hence the set of directions in Lemma 5.4.3 has zero (n − 1)-

dimensional Hausdorff measure. Now in Euclidean space endowed with the usual Eu-

clidean distance function, (n−1)-dimensional Hausdorff measure is proportional to (n−1)-

dimensional Lebesgue (outer) measure, where the constant of proportionality depends only

on n; see e.g., [45, Theorem 30]. Let K ′ be the intersection of the full cone K∗ with the unit

ball Bn in Rn. Clearly, K ′ is a convex body, so Lemma 5.4.3 implies that set of directions

on the unit sphere Sn−1 that are parallel to a line segment in the boundary of K∗ ∩ Bn

has zero (n− 1)-dimensional Lebesgue measure. Since all points in the set bnd(K∗)∩Sn−1
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lie in Sn−1 and are parallel to a line segment in the boundary of K∗ ∩ Bn, then the set

bnd(K∗) ∩ Sn−1 also has zero (n − 1)-dimensional Lebesgue measure. On the other hand,

the set K∗ ∩ Sn−1 has positive (n− 1)-dimensional Lebesgue measure. We conclude that a

point randomly generated in K∗ ∩ Sn−1 will almost surely lie in int(K∗).

We now show that F̂ ′(x) almost surely maps int(K) into −int(K∗).

Lemma 5.4.4. For any x ∈ int(K), −F̂ ′(x) ∈ int(K∗) almost surely.

Proof. Observe from (5.4.5) together with (5.4.1) and (5.4.2), that for every x ∈ int(K),

F̂ ′(x) is a negative linear combination of the {yk}. Hence F̂ ′ maps int(K) to the cone

generated by the points {−yk}, which is a subset of the cone −K∗. From the discussion

preceding this lemma, each yk almost surely lies in int(K∗), so almost surely any finite

negative linear combination of the {yk} also lies in int(K∗).

Finally, it is worth noting that F̂ almost surely fails to satisfy the barrier property. In

order for the barrier property to hold, it is necessary that for every feasible boundary point

x′ of K, one of the {yk} is orthogonal to x′. Necessarily such a yk must lie in bnd(K∗), but

from the considerations above, this will almost surely fail to be the case. Since F̂ almost

surely fails to satisfy the barrier property, F̂ almost surely fails to approximate F well close

to bnd(K).

5.4.2 Relationships among the errors in ϕ̂(x), ĝ(x), and Ĥ(x)

We now use the probabilistic error bounds on the Monte Carlo estimates in Section 5.3 to

bound the errors in the estimates ϕ̂(x), ĝ(x), and Ĥ(x). We then proceed to bound the errors

in the estimates F̂ ′(x) and F̂ ′′(x). For consistency, we will now denote the exact gradient

∇ϕ(x) and Hessian ∇2ϕ(x) of the characteristic function by g(x) and H(x) respectively,

since we have denoted estimates of these quantities by ĝ(x) and Ĥ(x) respectively. Given
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x ∈ int(K), define the absolute errors

δϕ(x) = ϕ(x) − ϕ̂(x),

δg(x) = g(x) − ĝ(x),

δH(x) = H(x) − Ĥ(x).

Denote the components of the vector δg(x) by δgi(x) and the components of the matrix

δH(x) by δHij(x). Likewise gi(x), ĝi(x), Hij(x), and Ĥij(x) refer to the i-th or (i, j)-

components of the relevant vector or matrix.

Since F and F̂ satisfy the logarithmic-homogeneity property (3.3.1), it is immediate from

the formulas for the characteristic function and its gradient and Hessian ((5.2.3), (5.2.7),

and (5.2.8)) and for their estimates ((5.4.1), (5.4.2), and (5.4.3)), that

g(x)Tx = −nϕ(x), H(x)x = −(n+ 1)g(x),

ĝ(x)Tx = −nϕ̂(x), Ĥ(x)x = −(n+ 1)ĝ(x).

It follows that the absolute errors in the estimates of the characteristic function, its gradient,

and its Hessian, are related by

δg(x)Tx = −n δϕ(x), (5.4.10)

δH(x)x = −(n+ 1) δg(x),

xT δH(x)x = n(n+ 1) δϕ(x). (5.4.11)

Now it follows from (5.4.10) that

(

F ′′(x)−1/2δg(x)
)T (

F ′′(x)1/2x
)

= −nδϕ(x),
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and taking the absolute value of each side while using Lemma 3.3.2(d) gives

‖δg(x)‖∗x,F ν1/2 ≥ n|δϕ(x)|. (5.4.12)

From (5.4.11) we have

(

F ′′(x)1/2x
)T (

F ′′(x)−1/2δH(x)F ′′(x)−1/2
)(

F ′′(x)1/2x
)

= n(n+ 1) δϕ(x).

Taking the absolute value of each side and again using Lemma 3.3.2(d) gives

‖F ′′(x)−1/2δH(x)F ′′(x)−1/2‖2 ν ≥ n(n+ 1)|δϕ(x)|. (5.4.13)

We now present deterministic bounds on the “relative errors” in the Monte Carlo estimates

of F ′(x) and F ′′(x) under the condition that the relative error in the estimate ϕ̂(x) is not

too large. This will pave the way for probabilistic bounds, because the relative error in ϕ̂(x)

is a random variable.

Lemma 5.4.5. Let x ∈ int(K) and let F and F̂ be defined as in (5.2.9) and (5.4.4). Let

E1(x) = F ′(x) − F̂ ′(x) and E2(x) = F ′′(x) − F̂ ′′(x) be the absolute errors in the gradient

and Hessian estimates, and suppose that the relative error in ϕ̂(x) is less than one. Then

the following bounds hold:

(a)

‖E1(x)‖∗x,F ≤ 2ν‖δg(x)‖2

n
√

λmin(F ′′(x))(ϕ(x) − |δϕ(x)|)
, (5.4.14)

(b)

‖F ′′(x)−1/2E2(x)F
′′(x)−1/2‖2 ≤ 2ν‖δH(x)‖2

nλmin(F ′′(x))(ϕ(x) − |δϕ(x)|)
+
n

ν

(

‖E1(x)‖∗x,F
)2

+
2n

ν1/2
‖E1(x)‖∗x,F . (5.4.15)
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Proof. To reduce clutter, we shall omit the argument x from the quantities ϕ(x), g(x), and

H(x), their estimates ϕ̂(x), ĝ(x), and Ĥ(x), and the errors δϕ(x), δgi(x), and δHij(x).

The assumption on the relative error implies that |δϕ(x)| < ϕ(x), so 0 < 1
ϕ(x)−δϕ(x) ≤

1
ϕ(x)−|δϕ(x)| . By (5.2.10) and (5.4.5),

E1(x) =
ν

n

(

g

ϕ
− g − δg

ϕ− δϕ

)

=
ν

n

(

ϕ(δg) − (δϕ)g

ϕ(ϕ− δϕ)

)

=
1

ϕ− δϕ

(

ν

n
(δg) − (δϕ)F ′(x)

)

.

Now take the ‖·‖∗x,F norm of each side. The inequality in (5.4.16a) follows from (5.4.12) and

Lemma 3.3.2(e), and (5.4.16b) follows from (3.2.4). The equality in (5.4.16c) follows from

the relation ‖M−1‖2 = λmax(M
−1) = 1/λmin(M) for a symmetric positive definite matrix

M , and the equality in (5.4.16d) follows from the relation λmin(M
1/2) = (λmin(M))1/2.

(These eigenvalue relations were proven in Section 2.1.)

‖E1(x)‖∗x,F ≤ 1

ϕ− |δϕ|

(

ν

n
‖δg‖∗x,F + |δϕ|‖F ′(x)‖∗x,F

)

≤ 1

ϕ− |δϕ|

(

ν

n
‖δg‖∗x,F +

‖δg‖∗x,F ν1/2

n
ν1/2

)

(5.4.16a)

=
2ν‖δg‖∗x,F
n(ϕ− |δϕ|)

≤ 2ν‖F ′′(x)−1/2‖2 ‖δg‖2

n(ϕ− |δϕ|) (5.4.16b)

=
2ν‖δg‖2

nλmin(F ′′(x)1/2) (ϕ− |δϕ|) (5.4.16c)

=
2ν‖δg‖2

n
√

λmin(F ′′(x)) (ϕ− |δϕ|)
. (5.4.16d)

This proves the bound on ‖E1(x)‖∗x,F . We now prove the bound on ‖F ′′(x)−1/2E2(x)F
′′(x)−1/2‖2

in (5.4.15). Observe that the Hessians of F and F̂ (given in (5.2.10) and (5.4.5)) can be
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written as

F ′′(x) =
ν

n

H

ϕ
− n

ν
F ′(x)F ′(x)T , F̂ ′′(x) =

ν

n

Ĥ

ϕ̂
− n

ν
F̂ ′(x)F̂ ′(x)T . (5.4.17)

Hence

E2(x) =
ν

n

(

H

ϕ
− H − δH

ϕ− δϕ

)

+
n

ν

(

F̂ ′(x)F̂ ′(x)T − F ′(x)F ′(x)T
)

=
ν

n

(

ϕ(δH) − (δϕ)H

ϕ(ϕ− δϕ)

)

+
n

ν

(

F̂ ′(x)F̂ ′(x)T − F ′(x)F ′(x)T
)

,

giving

F ′′(x)−1/2E2(x)F
′′(x)−1/2 =

ν

n
Υ1(x) +

n

ν
Υ2(x), (5.4.18)

where

Υ1(x) := F ′′(x)−1/2

(

ϕ(δH) − (δϕ)H

ϕ(ϕ− δϕ)

)

F ′′(x)−1/2,

Υ2(x) := F ′′(x)−1/2
(

F̂ ′(x)F̂ ′(x)T − F ′(x)F ′(x)T
)

F ′′(x)−1/2.

In order to obtain a bound on ‖F ′′(x)−1/2E2(x)F
′′(x)−1/2‖2, let us bound Υ1(x) and Υ2(x)

in the 2-norm. The inequality in (5.4.19a) follows from |δϕ| < ϕ. The relation in (5.4.19b)

follows from (5.2.12) and the inequality in (5.4.19c) follows from (5.4.13). The relation in

(5.4.19d) follows from Lemma 2.1.1(a)(ii) and (5.4.19e) follows from the relation ‖M−1‖2 =
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λmax(M
−1) = 1/λmin(M) for a symmetric positive definite matrix M .

‖Υ1(x)‖2 ≤ 1

ϕ− |δϕ|

∥

∥

∥

∥

F ′′(x)−1/2

(

δH − (δϕ)H

ϕ

)

F ′′(x)−1/2

∥

∥

∥

∥

2

(5.4.19a)

≤ 1

ϕ− |δϕ|

(

‖F ′′(x)−1/2δHF ′′(x)−1/2‖2 +
|δϕ|
ϕ

‖F ′′(x)−1/2HF ′′(x)−1/2‖2

)

≤ 1

ϕ− |δϕ|

(

‖F ′′(x)−1/2δHF ′′(x)−1/2‖2 + |δϕ|n(n+ 1)

ν

)

(5.4.19b)

≤ 1

ϕ− |δϕ|

(

‖F ′′(x)−1/2δHF ′′(x)−1/2‖2 + ‖F ′′(x)−1/2δHF ′′(x)−1/2‖2

)

(5.4.19c)

≤ 2‖F ′′(x)−1‖2 ‖δH‖2

ϕ− |δϕ| (5.4.19d)

=
2‖δH‖2

λmin(F ′′(x))(ϕ− |δϕ|) . (5.4.19e)

We now prove a bound on ‖Υ2(x)‖2. First observe that

F̂ ′(x)F̂ ′(x)T − F ′(x)F ′(x)T = (F ′(x) − E1(x))(F
′(x) − E1(x))

T − F ′(x)F ′(x)T

= E1(x)E1(x)
T − E1(x)F

′(x)T − F ′(x)E1(x)
T .

Hence

Υ2(x) = F ′′(x)−1/2
(

E1(x)E1(x)
T − E1(x)F

′(x)T − F ′(x)E1(x)
T
)

F ′′(x)−1/2

=
(

F ′′(x)−1/2E1(x)
)(

F ′′(x)−1/2E1(x)
)T −

(

F ′′(x)−1/2E1(x)
)(

F ′′(x)−1/2F ′(x)
)T

−
(

F ′′(x)−1/2F ′(x)
)(

F ′′(x)−1/2E1(x)
)T
.

Taking the norm of each side and using Lemma 3.3.2(e), we obtain

‖Υ2(x)‖2 ≤ ‖F ′′(x)−1/2E1(x)‖2
2 + ‖F ′′(x)−1/2E1(x)‖2 ‖F ′′(x)−1/2F ′(x)‖2

+‖F ′′(x)−1/2F ′(x)‖2 ‖F ′′(x)−1/2E1(x)‖2

≤
(

‖E1(x)‖∗x,F
)2

+ ‖E1(x)‖∗x,F ν1/2 + ν1/2‖E1(x)‖∗x,F .

Combining this with (5.4.18) and the bound on ‖Υ1(x)‖2 in (5.4.19e) establishes (5.4.15).
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We next study the relationship between the size of our Monte Carlo sample, i.e., the number

of points generated in the set K∗ ∩ Sn−1, and the errors in the Monte Carlo estimates of

ϕ(x), g(x), and H(x). We use these relationships to relate the size of our Monte Carlo

sample to the errors in our estimates of F ′(x) and F ′′(x).

5.4.3 Error estimates in terms of the sample size

For a fixed x ∈ int(K), let f(y) = 1/(xT y)n where the vector y is uniformly distributed in

K∗ ∩ Sn−1. Consider the random variable

f(y) − E(f) =
1

(xT y)n
− 1

V

∫

K∗∩Sn−1

1

(xT y)n
dy =

1

(xT y)n
− ϕ(x)

V

defined on K∗ ∩ Sn−1. Let us denote the second moment and third absolute moment of

f(y) − E(f) at x by σ2
0(x) and ρ0(x) respectively. To reduce clutter, denote ∂f

∂xi
(y) by

f1i(y) and ∂2f
∂xi∂xj

(y) by f2ij(y). Let us also denote the second moment and third absolute

moment of f1i(y) − E(f1i) by σ2
1i(x) and ρ1i(x) respectively, and the second moment and

third absolute moment of f2ij(y) − E(f2ij) by σ2
2ij(x) and ρ2ij(x) respectively.

From the definitions in (5.3.1), (5.3.2), and (5.3.4), and exploiting the positivity of f ,

hence E(f), we have:

E(fp) =
1

V

∫

K∗∩Sn−1

1

(xT y)pn
dy, p ≥ 1,

σ2
0(x) = E(f2) − E(f)2, (5.4.20)

ρ0(x) = E(|f − E(f)|3)

=
1

V

∫

K∗∩Sn−1

f(y)≥E(f)

(f(y) − E(f))3 dy +
1

V

∫

K∗∩Sn−1

f(y)≤E(f)

(E(f) − f(y))3 dy

≤ 1

V

∫

K∗∩Sn−1

f(y)≥E(f)

f(y)3 dy +
1

V

∫

K∗∩Sn−1

f(y)≤E(f)

E(f)3 dy

≤ E(f3) + E(f)3. (5.4.21)
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We wish to apply the bound (5.3.7) resulting from the Berry Esséen theorem to the random

variable f−E(f). Before doing so, we check that the hypotheses of this theorem are satisfied.

First, the points yk are generated independently, and as already noted, the expected value

of the random variable f − E(f) is zero. We now show that the third absolute moment is

finite. Recall from (5.2.5) the quantity

γ(x) = min
y∈K∗∩Sn−1

xT y

‖x‖2
> 0

For p ≥ 1 we have the bound

E(fp) =
1

V

∫

K∗∩Sn−1

1

(xT y)pn
dy

≤ 1

V

∫

K∗∩Sn−1

1

(γ(x)‖x‖2)pn
dy

=
1

(γ(x)‖x‖2)pn

< ∞.

It follows from (5.4.21) that the absolute third moment ρ0(x) is finite. Now fix ` > 0 to

be the number of standard deviations separating the estimate ϕ̂(x) from its expected value

ϕ(x). From (5.3.7) and the definitions of δϕ(x), σ0(x), and ρ0(x), we have

Prob

( |δϕ(x)|
V σ0(x)/

√
N

≤ `

)

≥
∫ `

−`

1√
2π
e−t

2/2 dt−1.531ρ0(x)

σ0(x)3
√
N
. (5.4.22)

Let us now bound the errors in our estimates ĝi(x) of the first partial derivatives gi(x)

of ϕ(x). In light of (5.2.7) we now need to study the random variables f1i(y) − E(f1i) on
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K∗ ∩ Sn−1. (By definition, f1i(y) = −nyi/(xT y)n+1.)

E(fp1i) =
1

V

∫

K∗∩Sn−1

( −nyi
(xT y)n+1

)p

dy, p ≥ 1,

σ2
1i(x) = E(f2

1i) − E(f1i)
2, (5.4.23)

ρ1i(x) = E(|f1i − E(f1i)|3)

= E(|f3
1i − 3E(f1i)f

2
1i + 3E(f1i)

2f1i − E(f1i)
3|)

≤ E(|f1i|3) + 3|E(f1i)|E(f2
1i) + 3E(f1i)

2|E(f1i)| + |E(f1i)|3. (5.4.24)

Note that when obtaining a bound on the third absolute moment of each f1i − E(f1i), we

were unable to assume positivity of the f1i(y). We showed above that ρ0(x) is finite for

each x. We can also show that E(|f1i|p) is finite for all p ≥ 1 and all x, so that ρ1i(x) is also

finite for each x. Therefore, from (5.3.7) and the definitions of δgi(x), σ1i(x), and ρ1i(x),

we have

Prob

( |δgi(x)|
V σ1i(x)/

√
N

≤ `

)

≥
∫ `

−`

1√
2π
e−t

2/2 dt−1.531ρ1i(x)

σ1i(x)3
√
N
. (5.4.25)

Finally we obtain error bounds for the estimates Ĥij(x) of the second partial derivatives

Hij(x). In light of (5.2.8) we now need to study the random variables f2ij(y) − E(f2ij) on

K∗ ∩ Sn−1. (By definition, f2ij(y) = n(n+ 1)yiyj/(x
T y)n+2.) We obtain

E(fp2ij) =
1

V

∫

K∗∩Sn−1

(

n(n+ 1)yiyj
(xT y)n+2

)p

dy, p ≥ 1,

σ2
2ij(x) = E(f2

2ij) − E(f2ij)
2, (5.4.26)

ρ2ij(x) = E(|f2ij − E(f2ij)|3)

= E(|f3
2ij − 3E(f2ij)f

2
2ij + 3E(f2ij)

2f2ij − E(f2ij)
3|)

≤ E(|f2ij |3) + 3|E(f2ij)|E(f2
2ij) + 3E(f2ij)

2|E(f2ij)| + |E(f2ij)|3. (5.4.27)

(A better bound, analogous to that in (5.4.21), can be obtained for ρ2ij in the case that

i = j, since f2ii(y) ≥ 0 for each i.) We can show that for all i and j, ρ2ij(x) is finite for
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each x, so from (5.3.7) and the definitions of δHij(x), σ2ij(x), and ρ2ij(x), we have

Prob

(

|δHij(x)|
V σ2ij(x)/

√
N

≤ `

)

≥
∫ `

−`

1√
2π
e−t

2/2 dt−1.531ρ2ij(x)

σ2ij(x)3
√
N
. (5.4.28)

5.4.4 How large need the sample size be?

We now find a lower bound on the probability that the estimates of ϕ, gi, and Hij all lie

within ` standard deviations of their expected value. Let {Xi} denote a countable sequence

of events, and denote the negation of the event Xi by X̄i. We will apply the Bonferroni

inequality

Prob(∩iXi) ≥ 1 −
∑

i

Prob(X̄i), (5.4.29)

with each Xi being the event that the absolute error in one component of δϕ(x), δg(x), or

δH(x), is no larger than ` standard deviations. Using also the symmetry of the matrix δH,

we obtain the following lower bound on the probability that all components of the errors

lie within ` standard deviations.

q∗ := Prob

( |δϕ(x)|
V σ0(x)/

√
N

≤ `,
|δgi(x)|

V σ1i(x)/
√
N

≤ ` ∀ i, |δHij(x)|
V σ2ij(x)/

√
N

≤ ` ∀ i, j
)

≥ 1 − Prob

( |δϕ(x)|
V σ0(x)/

√
N

≥ `

)

−
n
∑

i=1

Prob

( |δgi(x)|
V σ1i(x)/

√
N

≥ `

)

−
n
∑

i,j=1

Prob

( |δHij(x)|
V σ2ij(x)/

√
N

≥ `

)

= 1 − Prob

( |δϕ(x)|
V σ0(x)/

√
N

≥ `

)

−
n
∑

i=1

Prob

( |δgi(x)|
V σ1i(x)/

√
N

≥ `

)

−
∑

1≤i≤j≤n
Prob

( |δHij(x)|
V σ2ij(x)/

√
N

≥ `

)

= 1 −
[

1 − Prob

( |δϕ(x)|
V σ0(x)/

√
N

≤ `

)]

−
n
∑

i=1

[

1 − Prob

( |δgi(x)|
V σ1i(x)/

√
N

≤ `

)]

−
∑

1≤i≤j≤n

[

1 − Prob

( |δHij(x)|
V σ2ij(x)/

√
N

≤ `

)]

.
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Therefore, in light of the bounds in (5.4.22), (5.4.25), and (5.4.28), we may write

q∗ ≥ 1 − ξ(x)√
N

−ζ(`), (5.4.30)

where

ζ(`) =

(

1 + n+
n(n+ 1)

2

) ∫

|t|≥`

1√
2π
e−t

2/2 dt, (5.4.31)

ξ(x) =
1.531ρ0(x)

σ0(x)3
+

n
∑

i=1

1.531ρ1i(x)

σ1i(x)3
+

∑

1≤i≤j≤n

1.531ρ2ij(x)

σ2ij(x)3
. (5.4.32)

We now give a definition that is important in light of the probabilistic statements we

will make throughout this chapter.

Definition 5.4.6 (High probability). Let t0 > 0. An event Ut is said to occur with high

probability (with respect to the parameter t) if there exist positive constants α1 and α2

such that

t ≥ t0 =⇒ Prob(Ut) ≥ 1 − α1

tα2
.

Throughout the rest of this chapter we will also make the following assumption.

Assumption 5.4.7. (a) The number of variables n in the primal problem (4.1.1) is at least

three.

(b) For every x ∈ int(K), suppose that the Monte Carlo sample size N satisfies N ≥ dNξ(x)e

where

Nξ(x) :=
(

2n4`(n,Ω)ξ(x)
)2
. (5.4.33)

If n = 1 or 2, then (4.1.1) and (4.1.2) are trivial linear optimization problems. The reasoning

behind Assumption 5.4.7(b) is as follows. The lower bound on the Monte Carlo sample size

ensures that with high probability the relative error in ϕ̂ is less than one, so Lemma 5.4.5

can be applied. Furthermore, it ensures that the term ξ(x)/
√
N in (5.4.30) decreases to

zero as n → ∞, so that with high probability, the estimates of ϕ(x), g(x), and H(x) are
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sufficiently accurate. Here and throughout this chapter, “high probability” is with respect

to the problem size n of (4.1.1), where according to Assumption (5.4.7), n ≥ 3.

We wish to find the probability that the estimates of ϕ, gi, and Hij lie within `(n,Ω)

standard deviations of their expected values, where

`(n,Ω) = 0.08Ω(log(n))1/2, (5.4.34)

and Ω ≥ 50 is a constant. As was explained in the discussion preceding Lemma 5.3.1, Ω is

proportional to an upper bound on the number of iterations of our interior-point method

that uses F̂ ′ and F̂ ′′ as estimates of the gradient and Hessian of a suitable barrier function.

Using the symmetry of the Gaussian probability density function, we have from (5.4.31)

ζ(`(n,Ω)) =

(

1 + n+
n(n+ 1)

2

) ∫

|t|≥`(n,Ω)

1√
2π
e−t

2/2 dt

=

(

1 + n+
n(n+ 1)

2

)

2

∫ ∞

`(n,Ω)

1√
2π
e−t

2/2 dt

= (n+ 1)(n+ 2)

∫ ∞

`(n,Ω)

1√
2π
e−t

2/2 dt

<
11

Ωn6
,

where the inequality follows from Lemma 5.3.1. Now under Assumption 5.4.7, `(n,Ω) ≥

0.08Ω(log(3))1/2 and

ξ(x)√
N

≤ ξ(x)
√

Nξ(x)
≤ 1

2n4`(n,Ω)
≤ 1

0.16(log(3))1/2
1

Ωn4
<

6

Ωn4
.

So from (5.4.30), the probability q∗ that the estimates of ϕ, gi, and Hij all lie within `(n,Ω)

standard deviations of their expected values is bounded by

q∗ > 1 − 6

Ωn4
− 11

Ωn6
. (5.4.35)

Hence with high probability the estimates of ϕ and each gi and Hij all lie within `(n,Ω)
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standard deviations of their expected values.

Using the bounds on ‖E1(x)‖∗x,F and ‖F ′′(x)−1/2E2(x)F
′′(x)−1/2‖2 in Lemma 5.4.5, we

will give an upper bound on the Monte Carlo sample size in order that with high probability

these quantities are bounded above by ε1 and ε2 respectively, as required by our interior-

point method; cf. (4.5.3) and (4.5.4). First we show that if N is large enough, i.e., satisfies

Assumption 5.4.7, so that with high probability our Monte Carlo estimates of ϕ(x), g(x),

and H(x) lie within `(n,Ω) standard deviations of their expected values, then with high

probability the relative error in the estimate of ϕ(x) is less than one, as was assumed in

Lemma 5.4.5.

Lemma 5.4.8. Let x ∈ int(K). Under Assumption 5.4.7, with high probability the relative

error in the estimate ϕ̂(x) is less than one.

Proof. We have already shown in Section 5.4.3 that the third absolute moment of f is

finite, where f(y) = 1/(xT y)n for y ∈ K∗ ∩ Sn−1 (and x is fixed). It follows that the first

absolute moment is also finite. Therefore we may apply the Cauchy-Schwarz inequality

(Lemma 2.4.1(a)) with a1(y) = 1
V 1/2 |f(y) − E(f)|1/2 and a2(y) = 1

V 1/2 |f(y) − E(f)|3/2:

E(|f − E(f)|3)
E(|f − E(f)|2)1.5 =

1
V

∫

K∗∩Sn−1 |f(y) − E(f)|3 dy
(

1
V

∫

K∗∩Sn−1 |f(y) − E(f)|2 dy
)1.5

≥
(

1
V

∫

K∗∩Sn−1 |f(y) − E(f)|2 dy
)0.5

1
V

∫

K∗∩Sn−1 |f(y) − E(f)| dy
. (5.4.36)

A simple upper bound on the first absolute moment of f − E(f) is

1

V

∫

K∗∩Sn−1

|f(y) − E(f)| dy ≤ 1

V

∫

K∗∩Sn−1

f(y) dy +
1

V

∫

K∗∩Sn−1

E(f) dy

=
ϕ(x)

V
+ E(f)

=
2ϕ(x)

V
. (5.4.37)
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It now follows from (5.4.32), (5.4.36), and (5.4.37) that

ξ(x) ≥ 1.531ρ0(x)

σ0(x)3

= 1.531
E(|f − E(f)|3)

E(|f − E(f)|2)1.5

≥ 1.531

(

1
V

∫

K∗∩Sn−1 |f(y) − E(f)|2 dy
)0.5

1
V

∫

K∗∩Sn−1 |f(y) − E(f)| dy

≥ 1.531
σ0(x)

2ϕ(x)/V
. (5.4.38)

In the discussion preceding Lemma 5.4.8 it was shown under Assumption 5.4.7 that

with high probability, the estimates of ϕ and each gi and Hij all lie within `(n,Ω) standard

deviations of their expected values. It follows that with high probability the estimate of

ϕ alone lies within `(n,Ω) standard deviations of its expected value. That is, with high

probability the absolute error |δϕ(x)| in ϕ̂(x) satisfies

|δϕ(x)| ≤ V `(n,Ω)σ0(x)√
N

. (5.4.39)

In the following, (5.4.40a) follows from (5.4.39), and (5.4.40b) and (5.4.40c) follow from

Assumption 5.4.7(b). Finally, (5.4.40d) follows from (5.4.38). With high probability,

|δϕ(x)| ≤ V `(n,Ω)σ0(x)√
N

(5.4.40a)

≤ V `(n,Ω)σ0(x)
√

Nξ(x)
(5.4.40b)

=
V `(n,Ω)σ0(x)

2n4`(n,Ω)ξ(x)
(5.4.40c)

≤ 1

1.531n4
ϕ(x). (5.4.40d)

(To be precise, the first inequality holds with high probability; the other inequalities and

equality are true with probability one.) Since n ≥ 3 (Assumption 5.4.7) we conclude that

with high probability |δϕ(x)| < ϕ(x), i.e., the relative error |δϕ(x)|/ϕ(x) is less than one.
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Now for fixed x ∈ int(K) and ε ∈ (0, 1), define

α1 :=
2ν`(n,Ω)V ‖σ2(x)‖2

nλmin(F ′′(x))
+

2n

ν1/2

(

2ν`(n,Ω)V ‖σ1(x)‖2

n
√

λmin(F ′′(x))

)

, (5.4.41)

α2 :=
n

ν

(

2ν`(n,Ω)V ‖σ1(x)‖2

n
√

λmin(F ′′(x))

)2

, (5.4.42)

N1(x, ε) :=

(

2ν`(n,Ω)V ‖σ1(x)‖2

nεϕ(x)
√

λmin(F ′′(x))
+
`(n,Ω)V σ0(x)

ϕ(x)

)2

, (5.4.43)

N2(x, ε) :=

(

α1 +
(

α2
1 + 4εα2

)1/2

2εϕ(x)
+
`(n,Ω)V σ0(x)

ϕ(x)

)2

. (5.4.44)

The quantities N1(x, ε) and N2(x, ε) represent “critical” values of the Monte Carlo sample

size. If N exceeds N1(x, ε1), then with high probability the “relative error” in F̂ ′ (cf. (4.5.3))

is less than ε1. Similarly, if N exceeds N2(x, ε2), then with high probability the “relative

error” in F̂ ′′ (cf. (4.5.4)) is less than ε2. Denote by σ1(x) and σ2(x) the vector and matrix

whose components are σ1i(x) and σ2ij(x) respectively.

Lemma 5.4.9. Let ε1, ε2 ∈ (0, 1) and x ∈ int(K). Then with probability exceeding 1 −
6

Ωn4 − 11
Ωn6 , the following statements hold:

(a) If N ≥ N1(x, ε1) then ‖E1(x)‖∗x,F ≤ ε1.

(b) If N ≥ N2(x, ε2) then ‖F ′′(x)−1/2E2(x)F
′′(x)−1/2‖2 ≤ ε2.

Proof. Let x ∈ int(K). It follows from Lemma 5.4.8 that with high probability the relative

error in ϕ̂(x) is less than one. Hence the results in Lemma 5.4.5 hold. We now determine

how large N might be in order that the bounds on the “relative errors” in (5.4.14) and

(5.4.15) be no greater than ε1 and ε2 respectively. In the discussion preceding Lemma 5.4.8

(see (5.4.35)) it was established that with probability exceeding 1 − 6
Ωn4 − 11

Ωn6 , the errors

δϕ(x) ∈ R, δg(x) ∈ Rn, and δH(x) ∈ Sn lie in the set

T :=

{

(δϕ, δg, δH)

∣

∣

∣

∣

|δϕ|
V σ0(x)/

√
N

≤ `(n,Ω),
|δgi|

V σ1i(x)/
√
N

≤ `(n,Ω) ∀ i,

|δHij |
V σ2ij(x)/

√
N

≤ `(n,Ω) ∀ i, j
}

.

143



We will now determine the largest possible magnitude of each of these errors. Specifically,

we seek the maximum values of |δϕ|, ‖δg‖2, and ‖δH‖2 over all triples (δϕ, δg, δH) belonging

to T . The maximum value of |δϕ| is clearly V `(n,Ω)σ0(x)√
N

and the maximum value of ‖δg‖2

over (δϕ, δg, δH) ∈ T is clearly V `(n,Ω)‖σ1(x)‖2√
N

. So for all (δϕ, δg, δH) ∈ T ,

2ν‖δg(x)‖2

n
√

λmin(F ′′(x))(ϕ(x) − |δϕ(x)|)
≤

2ν V `(n,Ω)‖σ1(x)‖2√
N

n
√

λmin(F ′′(x))(ϕ(x) − V `(n,Ω)σ0(x)√
N

)

≤ 2νV `(n,Ω)‖σ1(x)‖2

n
√

λmin(F ′′(x))(
√
Nϕ(x) − V `(n,Ω)σ0(x))

=: r1(x,N).

So in light of (5.4.14), a sufficient condition for ‖E1(x)‖∗x,F ≤ ε1 is that r1(x,N) ≤ ε1, and it

can be verified from (5.4.43) that the latter inequality is equivalent to N ≥ N1(x, ε1). This

proves (a). Now by Lemma 2.1.2, the maximum value of ‖δH(x)‖2 over (δϕ, δg, δH) ∈ T

is V `(n,Ω)‖σ2(x)‖2√
N

. So for all (δϕ, δg, δH) ∈ T ,

2ν‖δH(x)‖2

nλmin(F ′′(x))(ϕ(x) − |δϕ(x)|) +
n

ν

(

‖E1(x)‖∗x,F
)2

+
2n

ν1/2
‖E1(x)‖∗x,F

≤
2ν V `(n,Ω)‖σ2(x)‖2√

N

nλmin(F ′′(x))(ϕ(x) − V `(n,Ω)σ0(x)√
N

)
+
n

ν
r1(x,N)2 +

2n

ν1/2
r1(x,N). (5.4.45)

Now gathering powers of 1/(
√
Nϕ(x) − V `(n,Ω)σ0(x)), and using the definition of α1 and

α2 in (5.4.41) and (5.4.42), it can be verified that the quantity on the right-hand side of

(5.4.45) is

r2(x,N) :=
α1√

Nϕ(x) − V `(n,Ω)σ0(x)
+

α2
(√
Nϕ(x) − V `(n,Ω)σ0(x)

)2 .

So in light of (5.4.15), a sufficient condition for ‖F ′′(x)−1/2E2(x)F
′′(x)−1/2‖2 ≤ ε2 is that

r2(x,N) ≤ ε2, and the latter inequality is equivalent to

ε2
(
√
Nϕ(x) − V `(n,Ω)σ0(x)

)2 − α1

(
√
Nϕ(x) − V `(n,Ω)σ0(x)

)

− α2 ≥ 0.
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It is easily verified this quadratic inequality holds when N ≥ N2(x, ε2), proving (b).

In Lemma 5.4.9 we indicated how much work is sufficient to ensure that at each itera-

tion the Monte Carlo estimates of the gradient and Hessian of the universal barrier function

are accurate enough for use in our interior-point method. We now show how much work

is required for the algorithm to generate an ε-optimal solution. We will assume that the

parameters θ, τ, ε1, and ε2 satisfy the conditions in Remark 4.5.6, so that by Theorem 4.5.4,

Algorithm short step is globally convergent and has iteration complexity O(ν1/2 log(µ0/ε)).

We will explain in Section 5.4.5 how an upper bound on the order constant can be de-

termined. Since the complexity parameter of the universal barrier function is given by

ν = O(n) (Lemma 4.1.2), the iteration complexity of Algorithm short step can be writ-

ten as O(ν1/2 log(µ0/ε)) = Ωn1/2, where the constant Ω depends on θ, τ, ε1, ε2, ε, and µ0,

but not (directly) on n or ν. In other words, Ωn1/2 is the maximum number of iterations

required by the algorithm in order to generate an ε-optimal solution.

Theorem 5.4.10. Suppose that the parameters θ, τ, ε1, and ε2 satisfy the conditions in

Remark 4.5.6. Let ε ∈ (0, 1) and suppose that the constant Ω = Ω(θ, τ, ε1, ε2, ε, µ0) in the

discussion preceding this theorem satisfies Ω ≥ 50. Let µ0 be the duality measure of the

initial primal-dual point in Algorithm short step. Define

N∗ := sup
x∈X (θ,ε,µ0)

max {N1(x, ε1), N2(x, ε2), Nξ(x)},

where X (·) was defined in (4.5.2). Note that N∗ depends on θ, ε1, ε2, µ0, ε, ν, and n. Sup-

pose that the Monte Carlo estimates in (5.4.5) of the gradient and Hessian of the universal

barrier function, with N = N∗ points, are used in Algorithm short step. With high probabil-

ity, this algorithm generates an ε-optimal solution in no more than O(n2.5N∗Ω) arithmetic

operations, in addition to the work required to generate N∗ points in the set K∗ ∩ Sn−1.

Proof. It follows from Lemma 5.4.9 that if the Monte Carlo sample size is at least

max {N1(x, ε1), N2(x, ε2), Nξ(x)},
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then with probability exceeding 1 − 6
Ωn4 − 11

Ωn6 , the “relative errors” in F̂ ′ and F̂ ′′ are

no greater than ε1 and ε2 respectively. We now derive a lower bound on the probability

that this will be the case at every iteration of Algorithm short step. Suppose that the

algorithm actually runs for Ω0n
1/2 iterations, where Ω0 ≤ bΩc. Using (5.4.29), where Xi is

the event that at iteration i the “relative errors” in F̂ ′ and F̂ ′′ are no greater than ε1 and

ε2 respectively, we obtain

Prob

(Ω0n1/2

⋂

i=1

Xi

)

≥ 1 −
Ω0n1/2

∑

i=1

Prob(X̄i)

≥ 1 −
Ω0n1/2

∑

i=1

[

1 −
(

1 − 6

Ωn4
− 11

Ωn6

)]

= 1 − Ω0n
1/2 1

Ωn1/2

(

6

n3.5
+

11

n5.5

)

≥ 1 − 6

n3.5
− 11

n5.5
. (5.4.46)

Therefore with high probability, the “relative errors” in F̂ ′ and F̂ ′′ will be small enough at

every iteration of Algorithm short step.

Since θ, τ, ε1, and ε2 are assumed to satisfy the conditions in Remark 4.5.6, then with high

probability Algorithm short step will produce iterates lying in the neighborhood N (θ), and

the associated sequence of duality measures will be strictly decreasing. Since the algorithm

terminates once µk ≤ ε, all iterates except the last lie in the neighborhood X (θ, ε, µ0). So if

a Monte Carlo sample size of N∗ points is used at each iteration, then with high probability

Algorithm short step will generate an ε-optimal solution to (4.1.1)–(4.1.2).

It is necessary to generate N∗ points lying in K∗ ∩ Sn−1, and this may be done before

running the interior-point method, i.e., can be considered as a one-off cost. The generation

of such points first requires the generation of a sufficiently large number, say Ñ , of points

in Sn−1. Then the membership oracle for K∗ must be called for as many of the Ñ points

as is needed to produce N∗ points in K∗ ∩ Sn−1. The cost of generating the Ñ points in

Sn−1 includes that of generating nÑ standard Gaussian variates in addition to the cost of
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normalization, which is O(nÑ) arithmetic operations; see the first paragraph of Section 5.4.

Assuming that the {yk} are generated before running the interior-point method, the cost

of performing one iteration of Algorithm short step is dominated by the cost of computing

ϕ̂(x), ĝ(x), and Ĥ(x).7 From (5.4.1), (5.4.2), and (5.4.3) we see that these quantities

require O(nN∗), O(nN∗), and O(n2N∗) arithmetic operations respectively. So the total

number of arithmetic operations required to compute F̂ ′ and F̂ ′′ over all Ω0n
1/2 iterations

is O(n2.5N∗Ω0) = O(n2.5N∗Ω).

5.4.5 Comments on Theorem 5.4.10

In this section we discuss several issues relating to Theorem 5.4.10, some of them practical

in nature.

1. Why can we assume Ω ≥ 50, where the upper bound on the number of iterations

of Theorem 5.4.10 is given by Ωn1/2? In the proof of Lemma B.0.5 (see Appendix B), we

derived an upper bound

δ̄ ≤ 1 − κ− κ2/4

ν1/2

on the ratio of successive duality measures, where κ is related to the centering parameter τ

via τ = 1 − κ/ν1/2. It then follows from Lemma 2.4.2 that the algorithm will generate an

ε-optimal solution in at most

1

κ− κ2/4
log

(

µ0

ε

)

ν1/2

iterations. How small can 1
κ−κ2/4

log(µ0/ε) be? Examining the conditions in Remark 4.5.6,

we see that for fixed θ, the largest value of κ occurs when ε1 = ε2 = 0. This case was

studied in Section 4.4, since it corresponds to the case that the exact gradient and Hessian

of F are used in Algorithm short step. It can be shown that κ < 0.1, and with more

effort, a tighter upper bound can be obtained. Figure 4.6 indicates that κ / 0.07. The

7From (5.4.5) we can show that the cost of computing the estimates F̂ ′ and F̂ ′′ from ϕ̂(x), ĝ(x), and
Ĥ(x) is only O(n2) at each iteration.
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quantity log(µ0/ε), which measures the number of digits of accuracy gained by running the

algorithm, is generally between 5 and 10 in practice, depending on the accuracy requirement

and the quality of the initial point in the algorithm. Hence a reasonable lower bound for

1
κ−κ2/4

log(µ0/ε)ν
1/2 is 50ν1/2. Recall from Lemma 4.1.2 that ν = O(n) for the universal

barrier function. We will assume that ν = Cn, where C ≥ 1. This assumption holds for the

nonnegative orthant, the positive semidefinite cone, and the second-order cone, which are

all self-scaled cones, and also the cone fitted to the `∞ ball, which is not a self-scaled cone.

(These facts were noted in Section 5.2.3.) Thus we may bound the worst-case iteration

complexity by 50n1/2.

2. In practice there is dependence between the errors in F̂ ′ and F̂ ′′ at each iteration

of Algorithm short step, because the same Monte Carlo sample is used to compute these

estimates. We already expressed in Lemma 4.5.1 this relationship: E2(x)x = −E1(x),

indicating that if E2(x) is small in norm, then E1(x) will be also. Numerical experiments

indicate that this is generally the case.

3. The quantity N∗ is finite since the set X (θ, ε, µ0) is bounded away from the boundary

of K.

4. The number of arithmetic operations given in Theorem 5.4.10 is extremely pessimistic,

since it assumes that the Monte Carlo sample size N∗ used at the final iteration is also used

in earlier iterations. However, since x is further from the boundary of K in earlier iterations,

the moments in Section 5.4.3 will be smaller, so a smaller sample size suffices. (Closeness to

the boundary is measured by the quantity γ(x) in (5.2.5).) A better bound on the complexity

of Algorithm short step can be obtained by studying how max {N1(x, ε1), N2(x, ε2), Nξ(x)}

varies as x approaches the boundary of K. Alternatively, if one uses N∗ points at each

iteration, the expected errors in F̂ ′ and F̂ ′′ at the beginning iterations of the interior-point

method are much smaller—something we have not taken into account.

5. We have assumed that the N∗ points are generated only once, rather than having

to generate a new sample at each iteration. This requires much less computational effort,

but the errors from iteration to iteration will no longer independent. Our analysis did not
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require independence of the errors between iterations.

6. The lower bound on the probability of Algorithm short step generating an ε-optimal

solution is pessimistic, because the worst-case complexity is usually significantly worse than

what is achieved in practice, and the Bonferroni inequality (5.4.29) and Gaussian tail bound

(Lemma 5.3.1) are weak bounds.

7. A procedure for estimating a positive lower bound on λmin(F
′′(x)) is required in order

to estimate N1(x, ε1) and N2(x, ε2).

8. In the proof of Lemma 5.4.5, we used the bounds

‖F ′′(x)−1/2δg(x)‖2 ≤ ‖F ′′(x)−1/2‖2 ‖δg(x)‖2,

‖F ′′(x)−1/2δH(x)F ′′(x)−1/2‖2 ≤ ‖F ′′(x)−1‖2 ‖δH(x)‖2.

These bounds may be very loose. To strengthen them, we need to determine at each interior-

point iterate x = xk, (reasonable upper bounds on) the smallest values of χ1(x) and χ2(x)

such that

|δgi(x)|
V σ1i(x)/

√
N

≤ `(n,Ω) ∀ i =⇒ ‖F ′′(x)−1/2δg(x)‖2
2 ≤ χ1(x),

|δHij(x)|
V σ2ij(x)/

√
N

≤ `(n,Ω) ∀ i, j =⇒ ‖F ′′(x)−1/2δH(x)F ′′(x)−1/2‖2 ≤ χ2(x).

The problem of finding the smallest values χ∗
1(x) and χ∗

2(x) of χ1(x) and χ2(x) respectively,

can be formulated as semidefinite optimization problems, the second of which has an infinite
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number of constraints:

χ∗
1(x) = min

{

χ1(x)

∣

∣

∣

∣

χ1(x)F
′′(x) º δg(x)δg(x)T

∀ δg(x) ∈ Rn such that |δgi(x)| ≤
`(n,Ω)√

N
σ1i(x) ∀ i

}

, (5.4.47)

χ∗
2(x) = min

{

χ2(x)

∣

∣

∣

∣

χ2(x)







F ′′(x)

F ′′(x)






º







δH(x)

−δH(x)







∀ δH(x) ∈ Sn such that |δHij(x)| ≤
`(n,Ω)√

N
σ2ij(x) ∀ i, j

}

. (5.4.48)

However these problems cannot be solved directly since (5.4.47) and (5.4.48) involve the

exact Hessian F ′′(x), which is assumed unknown.
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Chapter 6

Conclusions and future directions

Convex optimization problems have numerous applications, so it is of interest to study

algorithms that can solve such problems efficiently. We have stated and analyzed an interior-

point method for convex optimization. One of the main ingredients of interior-point methods

is a self-concordant barrier function. Assuming that the convex problem has been written in

conic form, so that the objective function is now linear, Newton’s method can be applied to

the problem of minimizing this linear objective function plus a multiple of a self-concordant

barrier function for the underlying cone. Newton’s method requires the evaluation of the

gradient and Hessian of this combined function, but in some cases these quantities cannot

be computed exactly. Our interior-point algorithm makes use of inexact barrier gradient

and Hessian information, hence our algorithm is said to be an inexact interior-point method.

We gave conditions on the inexactness in our estimates of the exact gradient and Hessian,

under which our algorithm is globally convergent and has polynomial worst-case iteration

complexity.

Practically speaking, the most efficient interior-point methods are primal-dual meth-

ods. In these methods, a given (primal) optimization problem is solved together with its

Lagrangian dual, which is also a convex optimization problem. Intuitively, such methods

need barrier information for the primal cone as well as the dual cone. Even if an easily

computable barrier function for the primal cone is known, it may be difficult or impossible

to determine an easily computable barrier function for the dual cone. This limits the class

151



of conic problems for which a practical interior-point method can be applied. One contri-

bution of our primal-dual algorithm is that evaluation of the dual barrier function and its

derivatives is not required. In fact it is not even necessary to know estimates of such func-

tions. Therefore our algorithm requires less barrier information than other interior-point

methods for conic optimization in the literature.

Our feasible-point path-following algorithm might be generalized in various ways. For

example, it may be of interest to study the effect of varying the allowable errors in the

gradient and Hessian estimates as the algorithm progresses. Since the maximum allowable

errors are constrained by the size of the neighborhood of the central path as well as the

centering parameter, it may be helpful to consider whether these quantities should also be

adaptively chosen. Another generalization is to infeasible-point algorithms, in which the

iterates are not required to be feasible. Such methods may perform better in practice, since

they can search more of the space of variables, and do not require the computation of a

feasible starting point, which may take some effort.

In our inexact interior-point method, a means of computing estimates of the exact

barrier gradient and Hessian is required. In general, such a means depends on the specific

form of the exact barrier gradient and Hessian. For some cones, only two self-concordant

barriers are known; both are written in terms of a multidimensional integral called the

universal barrier function. On the plus side, the universal barrier function can be computed

for any full cone, hence the name “universal”. Unfortunately the multidimensional integral

defining the universal barrier function is sometimes difficult to evaluate accurately. By

proposing a Monte Carlo method to estimate this integral, we have given a systematic

means of computing inexact barrier gradient and Hessian information for conic optimization

problems. We gave an upper bound on the size of the Monte Carlo sample required in order

to guarantee that our inexact algorithm generates a near-optimal primal-dual solution to a

pair of dual conic optimization problems with high probability. It is not necessary to know

an algebraic description of the cones K and K∗; membership oracles for these cones and

their interiors is sufficient. This allows for the study of many problems that might otherwise
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be intractable using other classes of convex optimization algorithms. For example, even

for some linear optimization problems, our inexact algorithm may be useful, because the

polyhedral feasible set and its dual may not have a simple algebraic description, making

the task of finding a suitable barrier function difficult. (An example of a simple algebraic

description would be an explicit list of halfspaces whose intersection is the feasible set.) Such

linear optimization problems may result from relaxations of discrete optimization problems.

A future direction is to implement our algorithm with the above-mentioned Monte Carlo

estimates of the barrier gradient and Hessian. At the time of writing we have conducted

numerical experiments to observe the relationship between the size of the Monte Carlo

sample and the relative errors in the gradient and Hessian estimates. (In this work we

only gave an upper bound on how large the sample size must be.) The experiments were

performed in the cases that the cone K is the nonnegative orthant and the second-order

cone. In both cases the exact barrier function and its derivatives are cheap to compute,

so the relative errors are also. The results show promise, and it is likely that significant

improvements will be possible once sophisticated sampling strategies are incorporated.

As the primal iterate x approaches an optimal solution (on the boundary of K), the

Hessian of the characteristic function becomes singular, so ill-conditioning is an issue. Such

ill-conditioning needs to be better understood insofar as it affects our Monte Carlo estimates.

According to the standard Monte Carlo error estimates, for a given x, one can obtain a

sufficiently small expected error in the Monte Carlo estimate of the gradient and Hessian

of F (x) by using a sufficiently large sample, but this sample size increases significantly as

x approaches a primal optimal solution.

Some Monte Carlo sampling strategies for the estimation of F ′ and F ′′ merit further

investigation. Given a sample that is uniformly distributed over the domain of integration,

we may consider the integrand of the characteristic function as a random variable. Due to

the nature of the integrand, its variance can be large. This is undesirable, because a large

sample size is then required in order for the expected error to be small. Variance reduction

techniques are common in statistical sampling, and they will surely be of assistance to us
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here. Specifically, we may use importance sampling by recognizing that a small part of the

domain of integration contributes much to the Monte Carlo estimate of the characteristic

function. As our interior-point progresses, this “region of importance” becomes smaller,

and it becomes necessary to sample this shrinking region accurately. This motivates adap-

tive sampling techniques. Instead of computing the Monte Carlo sample before running

the interior-point method, it may be better to compute additional points as the method

progresses. The cost in computing additional points may be outweighed by the fact that

these points can be generated in the most important region of the domain of integration.

There are several ways in which additional points could be added. For example, we might

add random perturbations to existing points in order to generate new points. One way

of doing this is via random walks. Although our domain of integration is the intersection

of the dual convex cone K∗ and the unit sphere, hence is nonconvex, we may perform a

random walk inside the intersection of K∗ with the unit ball, which is a convex set, and

then project each point on the random walk onto the unit sphere. Provided the random

walk is performed in an appropriate way, this results in a uniform distribution of points in

our domain of integration.

Finally, we mention an important question regarding the complexity parameter of the

universal barrier function for a particular full cone K. It is known that this parameter is of

the order of the number of variables in the primal problem. Moreover there exists a universal

order constant that is valid for all K. However, as far we know, the only known bounds on

this universal constant are very large. This is unfortunate, since for several cones for which

the optimal complexity parameter is known, it is quite reasonable. One direct approach

for finding a bound on this universal constant is to manipulate inequalities involving multi-

dimensional integrals; we refer to the inequalities defining a self-concordant barrier function.

By using Monte Carlo approximations of these integrals, it may be possible to instead

manipulate inequalities involving summations, which is generally easier. This would result

in probabilistic rather than deterministic bounds on the complexity parameter, but such

bounds may be an acceptable price to pay if the resulting estimate is of good quality. One
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may ask whether it is necessary to find a universal order constant that holds for all full

cones K, when we might only be interested in solving conic problems for a specific class of

full cones. It may be easier to find a bound on the order constant for a specific class of full

cones, but it is of more interest to find a bound that holds for all cones, since such would

obviously have universal applicability.
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Appendix A

Proof of Lemma 4.3.10

In this appendix we give a proof of Lemma 4.3.10. We restate here the parameter values

and bounds in (4.3.27), as well as Lemma 4.3.10 itself, for ease of reference.

θ = 0.1, τ = 1 − 1

47ν1/2
, 0 ≤ ε1 ≤ 0.01, 0 ≤ ε2 ≤ 0.071. (A.0-1)

Lemma A.0.1. Let θ, τ, ε1, and ε2 satisfy (4.3.27). Then for all ν ≥ 1,

β1 < 0.1416, β2 < 0.1569, δ > 1 − 0.0642

ν1/2
> 0, δ̄ < 1 − 0.00124

ν1/2
< 1.

Proof. Rather than giving the simplest proofs of the desired bounds, we shall give longer

but more general proofs showing how β1, β2, δ, and δ̄ depend on the specific values of the

parameters in (4.3.27). We will develop general bounds on these quantities in terms of θ,

κ, and the largest allowable values of ε1 and ε2, which we will call ε̄1 and ε̄2 respectively.

It will be assumed that ε̄1, ε̄2 ∈ [0, 1). (For ε1 and ε2 given in (4.3.27), ε̄1 = 0.01 and

ε̄2 = 0.071.) In addition, we will develop the proof in such a way that it can be easily

adapted if additional information about ν, i.e., an upper bound or a superior lower bound
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(to 1), is known. Suppose that

τ = 1 − κ

ν1/2
(A.0-2)

for some constant κ ∈ (0, 1). For τ given in (4.3.27), κ = 1/47.1 From (4.3.15) we have the

following bound that is uniform with respect to ε1, ε2, and ν:

β1 =
θ + ε1 + κ

ν1/2 (ν1/2 + ε1)

1 − ε2

≤ θ + ε1 + κ+ κε1
1 − ε2

≤ θ + ε̄1 + κ+ κε̄1
1 − ε̄2

< 0.1416 .

Also

β2 = β0 max

{

(1 + ε2)
1/2

1 − θ
,

(

1

1 − ε2

)1/2}

=
θ + ε1 + κ

ν1/2 (ν1/2 + ε1)

(1 − ε2)1/2
max

{

(1 + ε2)
1/2

1 − θ
,

(

1

1 − ε2

)1/2}

≤ θ + ε̄1 + κ+ κε̄1

(1 − ε̄2)1/2
max

{

(1 + ε̄2)
1/2

1 − θ
,

(

1

1 − ε̄2

)1/2}

< 0.1569,

proving the bound on β2. We now prove the lower bound on δ. Using (4.3.19) together

with the definition of β0 in (4.3.15) and the relation (A.0-2) linking τ and κ, we have

δ = τ − τε1

ν1/2
− β0

(1 − τ)(ν1/2 + ε1) + ε1 + ε2ν
1/2

ν(1 − ε2)1/2
− 1

ν
β2

0

= 1 − f1

ν1/2
− f2

ν
− f3

ν3/2
− f4

ν2
,

1In order to guarantee convergence of Algorithm short step, it is necessary to assume τ ∈ (0, 1). Since
we do not assume that any information about ν is known (other than ν ≥ 1), we restrict κ to the interval
(0, 1). If more information about ν is known, larger values of κ may be possible.
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where

f1 = κ+ ε1 +
ε2(θ + ε1 + κ)

1 − ε2
≤ κ+ ε̄1 +

ε̄2(θ + ε̄1 + κ)

1 − ε̄2
=: f̂1,

f2 = −κε1 +
1

1 − ε2

(

(θ + ε1 + κ)(θ + 2ε1 + 2κ) + κε1ε2
)

≤ −κε̄1 +
1

1 − ε̄2

(

(θ + ε̄1 + κ)(θ + 2ε̄1 + 2κ) + κε̄1ε̄2
)

=: f̂2,

f3 =
κε1

1 − ε2
(3θ + 4ε1 + 4κ) ≤ κε̄1

1 − ε̄2
(3θ + 4ε̄1 + 4κ) =: f̂3,

f4 =
2(κε1)

2

1 − ε2
≤ 2(κε̄1)

2

1 − ε̄2
=: f̂4.

(The inequality in the relation f2 ≤ f̂2 follows from the fact that the coefficient of κε1 in

the formula for f2 is nonnegative.) Since f2, f3, and f4 are nonnegative, we see that the

ratio of successive duality measures is bounded below by

δ ≥ 1 − f

ν1/2
, (A.0-3)

where

f = f̂1 + f̂2 + f̂3 + f̂4

= κ+ ε̄1 − κε̄1 +
θ + ε̄1 + κ+ κε̄1

1 − ε̄2

(

2κ+ 2κε̄1 + 2ε̄1 + θ + ε̄2
)

. (A.0-4)

Using the values and bounds in (4.3.27), this gives

δ > 1 − 0.0642

ν1/2
.

Finally we prove the bound on δ̄. Suppose that ε2 > 0, hence ε̄2 > 0. (The case ε2 = 0

will be handled later by taking the limit as ε2 → 0.) Noting the complicated behavior

of φ as a function of ν in (4.3.21), we consider separately the cases φ = β0 and φ =

(1−τ)(ν1/2+ε1)+(ε1+ε2ν1/2)

2(1−ε2)1/2 . For each case we will obtain a bound of the form δ̄ ≤ 1 − d
ν1/2
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for some positive constant d over a certain range of ν values. We then combine these two

bounds into one bound that holds for all ν ≥ 1. The final bound will be independent of ε1

and ε2, i.e., it holds uniformly over all ε1 ∈ [0, ε̄1] and ε2 ∈ [0, ε̄2], as does the lower bound

in (A.0-3).

Let us first find the critical value(s) of ν where φ switches between the two above-

mentioned cases. That is, we seek ν such that

(β0 ≡)
θ + ε1 + (1 − τ)(ν1/2 + ε1)

(1 − ε2)1/2
=

(1 − τ)(ν1/2 + ε1) + (ε1 + ε2ν
1/2)

2(1 − ε2)1/2
, (A.0-5)

where we have expressed β0 in terms of the parameters θ, τ, ε1 and ε2 using (4.3.15). Writing

τ in terms of κ via (A.0-2), it can be verified that (A.0-5) is equivalent to the following

quadratic equation in ν1/2:

ε2ν − (2θ + ε1 + κ)ν1/2 − κε1 = 0.

This equation has a unique (positive) solution

ν+ =

(

(2θ + ε1 + κ) +
(

(2θ + ε1 + κ)2 + 4κε1ε2
)1/2

2ε2

)2

, (A.0-6)

giving

ε2ν
1/2
+ =

(2θ + ε1 + κ) +
(

(2θ + ε1 + κ)2 + 4κε1ε2
)1/2

2
.

Since the complexity parameter ν is at least 1, we are only interested in solutions satisfying

ν+ ≥ 1. As ε2 → 0+, we see from (A.0-6) that ν+ → ∞. So bearing in mind our desire to

obtain uniform bounds over all ε1 ∈ [0, ε̄1] and ε2 ∈ [0, ε̄2], we see that regardless of ε̄2 > 0,

for some pairs (ε1, ε2) it will be the case that ν+ > 1.

Taking the infimum and supremum of ε2ν
1/2
+ over ε1 ∈ [0, ε̄1] and ε2 ∈ (0, ε̄2], we obtain

α1 := 2θ + κ ≤ ε2ν
1/2
+ ≤ (2θ + ε̄1 + κ) +

(

(2θ + ε̄1 + κ)2 + 4κε̄1ε̄2
)1/2

2
=: α2. (A.0-7)
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It can be verified using (A.0-5) and (A.0-6) that φ in (4.3.21) is given by

φ =















(1−τ)(ν1/2+ε1)+(ε1+ε2ν1/2)

2(1−ε2)1/2 : ν ∈ [1, ν+],

β0 : ν ∈ (ν+,∞).

(A.0-8)

Now suppose ν>ν+, so that φ = β0. Using (4.3.20), together with the relation (A.0-2)

linking τ and κ, and the definition of β0 in (4.3.15), we have

δ̄ = τ +
τε1

ν1/2
+ β0

(1 − τ)(ν1/2 + ε1) + ε1 + ε2ν
1/2

ν(1 − ε2)1/2
− β2

0

ν

= 1 − g1

ν1/2
− g2
ν

− g3

ν3/2
,

where

g1 = κ− ε1 −
ε2(θ + ε1 + κ)

1 − ε2
,

g2 = κε1 +
θ(θ + ε1 + κ) − κε1ε2

1 − ε2
,

g3 =
κε1θ

1 − ε2
.

Since g2 and g3 are nonnegative, we have

δ̄ ≤ 1 − g1

ν1/2
≤ 1 − b1

ν1/2
, (A.0-9)

where

b1 := κ− ε̄1 −
ε̄2(θ + ε̄1 + κ)

1 − ε̄2
. (A.0-10)

Since ν ≥ 1, the only other possibility is that ν ∈ [1, ν+]. Therefore let us assume

that ν+ > 1. (For the parameters in (4.3.27), we have ν+ > 9.7.) From (A.0-8) we have

φ = (1−τ)(ν1/2+ε1)+(ε1+ε2ν1/2)

2(1−ε2)1/2 , so the upper bound on the ratio of successive duality measures
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in (4.3.20) is given by the following, where we have again used (A.0-2).

δ̄ = τ +
τε1

ν1/2
+

(

(1 − τ)(ν1/2 + ε1) + ε1 + ε2ν
1/2
)2

4ν(1 − ε2)

=

(

1 − κ

ν1/2

)

+

(

1 − κ

ν1/2

)

ε1

ν1/2
+

(

κ
ν1/2 (ν1/2 + ε1) + ε1 + ε2ν

1/2
)2

4ν(1 − ε2)

≤
(

1 − κ

ν1/2

)

+

(

1 − κ

ν1/2

)

ε1

ν1/2
+

(

κ+ κε1 + ε1 + ε2ν
1/2
)2

4ν(1 − ε2)

= 1 − b(ν)

ν1/2
,

where

b(ν) := κ− ε1 +
κε1

ν1/2
−
(

κ+ κε1 + ε1 + ε2ν
1/2
)2

4ν1/2(1 − ε2)
.

Let us now find the minimum value of b(ν) in the interval [1, ν+]. The derivative of b is

given by

b′(ν) =
−ε22ν + (κ+ κε1 + ε1)

2 − 4κε1(1 − ε2)

8ν3/2(1 − ε2)
.

Hence b has a unique stationary point at ν = νopt where

νopt =
(κ+ κε1 + ε1)

2 − 4κε1(1 − ε2)

ε22
,

assuming νopt ∈ [1, ν+]. However νopt is a local maximizer since

b′′(νopt) =
−ε22

8ν
3/2
opt (1 − ε2)

< 0.

Hence the minimum of b(ν) on [1, ν+] is min(b(1), b(ν+)). Let us now obtain bounds on b(1)
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and b(ν+) in terms of θ, κ, ε̄1 and ε̄2. Firstly,

b(1) = κ− ε1(1 − κ) − (κ+ κε1 + ε1 + ε2)
2

4(1 − ε2)

≥ κ− ε̄1(1 − κ) − (κ+ κε̄1 + ε̄1 + ε̄2)
2

4(1 − ε̄2)

=: b2. (A.0-11)

(The inequality holds since b(1) is a decreasing function of ε1 and ε2.) We now obtain a

bound on b(ν+) by writing b as a function of z = ε2ν
1/2
+ :

b(ν+) = κ− ε1 +
κε1

ν
1/2
+

− (κ+ κε1 + ε1 + ε2ν
1/2
+ )2

4ν
1/2
+ (1 − ε2)

= κ− ε1 +
ε2κε1

ε2ν
1/2
+

− ε2(κ+ κε1 + ε1 + ε2ν
1/2
+ )2

4ε2ν
1/2
+ (1 − ε2)

= κ− ε1 +
ε2κε1
z

− ε2(κ+ κε1 + ε1 + z)2

4z(1 − ε2)

= κ− ε1 −
ε2[−4κε1(1 − ε2) + (κ+ κε1 + ε1 + z)2]

4z(1 − ε2)
(A.0-12)

=: b̄(z).

Let us now find the worst (minimum) possible value of b̄(z) over the interval of possible

z values. In view of (A.0-7), this interval is [α1, α2]. Since the functions b and b̄ have a

similar form, the procedure for minimizing b̄ is similar to that above for minimizing b. We

find that the minimizer again lies at an endpoint, in this case, α1 or α2. The resulting lower

bound on b̄ is

b̄(z) ≥ min(b̄(α1), b̄(α2)) ≥ min(b3, b4),

where

b3 := inf{b̄(α1) | ε1 ∈ [0, ε̄1], ε2 ∈ (0, ε̄2]},

b4 := inf{b̄(α2) | ε1 ∈ [0, ε̄1], ε2 ∈ (0, ε̄2]}.
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Now the term in the square brackets in (A.0-12) can be written as

−4κε1(1 − ε2) + (κ+ κε1 + ε1 + z)2 = (κ+ κε1 + z)2 + ε21 + 2ε1(−κ+ κε1 + z) + 4κε1ε2.

Regardless of whether z = α1 or z = α2, −κ + κε1 + z is positive, so the term in square

brackets is an increasing function of ε1 and ε2. It follows that b̄(z) is a decreasing function

of ε1 and ε2, so

b3 = κ− ε̄1 −
ε̄2[−4κε̄1(1 − ε̄2) + (κ+ κε̄1 + ε̄1 + 2θ + κ)2]

4(2θ + κ)(1 − ε̄2)
, (A.0-13)

b4 = κ− ε̄1 −
ε̄2
[

− 4κε̄1(1 − ε̄2) +
(

κ+ κε̄1 + ε̄1 + (2θ+ε̄1+κ)+[(2θ+ε̄1+κ)2+4κε̄1ε̄2]1/2

2

)2]

4
( (2θ+ε̄1+κ)+[(2θ+ε̄1+κ)2+4κε̄1ε̄2]1/2

2

)

(1 − ε̄2)
.

(A.0-14)

Therefore, when ε2 > 0 and ν ∈ [1, ν+], a bound on δ̄ is given by

δ̄ ≤ 1 − min(b2, b3, b4)

ν1/2
. (A.0-15)

If the parameters were such that ν+ ≤ 1, then the bound in (A.0-15) would be vacuous.

However, as already noted, ν+ → ∞ as ε2 → 0+, so for any ε̄2 > 0, ν+ > 1 for some

(sufficiently small positive) values of ε2. Combining (A.0-9) and (A.0-15), we have the

following upper bound on δ̄ over ν ∈ [1,∞):

δ̄ ≤















1 − b1
ν1/2 : ε2 > 0, ν ∈ (ν+,∞)

1 − min(b2,b3,b4)

ν1/2 : ε2 > 0, ν ∈ [1, ν+].

(A.0-16)

Since δ̄ from (4.3.20) is a continuous function of ε2 for ε2 small enough, and the bounds on

δ̄ in (A.0-16) are independent of ε2, these bounds are also valid when ε2 = 0, and hence

when ε̄2 = 0. We conclude that

δ̄ ≤ 1 − min(b1, b2, b3, b4)

ν1/2
∀ ν ∈ [1,∞), ε1 ∈ [0, ε̄1], ε2 ∈ [0, ε̄2]. (A.0-17)
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Of course the bound in (A.0-17) is only meaningful when the bi are positive, and this restricts

the values of θ, κ, ε̄1, and ε̄2. For the parameters and bounds in (4.3.27), min(b1, b2, b3, b4) =

b1 > 0.00124, hence δ̄ < 1 − 0.00124
ν1/2 . This upper bound on δ̄ is clearly less than one for all

ν ≥ 1.
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Appendix B

Proof of some intermediate results for

structured perturbations

In this appendix we state and prove some results used in Section 4.5, where it is assumed

that an estimate F̂ (x) of a ν-normal barrier function F is used. Recall that F̂ (x) is assumed

to satisfy the three properties stated at the beginning of Section 4.5. Many of the results

in this appendix are similar to—or special cases of—analogous results for the more general

case of unstructured perturbations. We first bound the quantities ‖∆xk‖xk,F̂ and ‖∆sk‖∗
xk,F̂

.

The proof is similar to that of Lemma 4.3.5.

Lemma B.0.1. For each k,

µ2
k‖∆xk‖2

xk,F̂
+
(

‖∆sk‖∗
xk,F̂

)2 ≤ µ2
kβ

2
0 .

Proof. The proof is mostly the same as that of Lemma 4.3.5, except that F1 and F2 are

replaced by F̂ ′ and F̂ ′′ respectively. In fact the proof is the same up to (4.3.18a):

‖F̂ ′′(x)−1/2(−τµF̂ ′(x) − s)‖2 ≤ (1 − ε2)
−1/2

(

‖s+ µF ′(x)‖∗x,F + µε1
)

+ µ(1 − τ)‖F̂ ′′(x)−1/2F̂ ′(x)‖2.

Since F̂ satisfies the logarithmic-homogeneity property, we can appeal to Lemma 3.3.2(e)

to obtain ‖F̂ ′′(x)−1/2F̂ ′(x)‖2 = ν1/2. This is seen to be an improvement over ν1/2+ε1
(1−ε2)1/2 ,

which is the bound we obtained for the case of unstructured perturbations; cf. (4.3.10). We
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conclude that

‖F̂ ′′(x)−1/2(−τµF̂ ′(x) − s)‖2 ≤ µβ0,

where β0 is defined in (4.5.5). The rest of the proof imitates that of Lemma 4.3.5.

Corollary B.0.2. For each k,

‖∆xk‖xk,F̂ ≤ β0,

‖∆sk‖∗
xk,F̂

≤ µkβ0,

‖∆xk‖xk,F ≤ β1,

‖∆sk‖∗xk,F ≤ (1 + ε2)
1/2µkβ0,

where β0 and β1 are defined in (4.5.5).

Proof. Similar to that of Corollary 4.3.6.

Let us study the convergence of Algorithm short step. First we show that under a

condition on the parameters θ, τ, ε1, and ε2, a full primal-dual Newton step is not only

strongly feasible, thereby verifying the validity of step (2) in the algorithm, but the new

iterate remains in the N (θ, ε, µ0) neighborhood of the central path, except at the final

iteration, when the duality measures first falls below ε. Then we show that the sequence of

duality measures {µk} decreases linearly to ε.

Lemma B.0.3. Let θ, τ, ε1, and ε2 be such that β2 < 1 where β2 is defined in (4.5.5),

and let (xk, wk, sk) ∈ N (θ, ε, µ0). Then the point (xk+1, wk+1, sk+1) generated by Algorithm

short step is a strongly feasible primal-dual point.

Proof. Similar to that of Lemma 4.3.7.

We now study the behavior of the sequence of duality measures {µk}.
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Lemma B.0.4. Let (xk, wk, sk) ∈ N (θ, ε, µ0) be the k-th iterate generated by Algorithm

short step. The duality measure µk+1 of the next iterate (xk+1, wk+1, sk+1) satisfies

δµk ≤ µk+1 ≤ δ̄µk,

where

δ = τ − 1

ν1/2
(1 − τ)β0 −

1

ν
β2

0 , (B.0-1)

δ̄ =
(1 + τ)2

4
. (B.0-2)

Proof. For ease of notation, we will write x, s, µ for xk, sk, µk, and x+, s+, µ+ for xk+1, sk+1, µk+1.

Recalling that ∆x is orthogonal to ∆s, we have

νµ+ = xT+s+

= (x+ ∆x)T (s+ ∆s)

= xT (s+ ∆s) + (∆x)T s. (B.0-3)

From the third block equation in (4.2.1), we have s+ ∆s = −τµF̂ ′(x) − µF̂ ′′(x)∆x, so

xT (s+ ∆s) = −xT (τµF̂ ′(x) + µF̂ ′′(x)∆x)

= ντµ+ µF̂ ′(x)T∆x, (B.0-4)

where we have used Lemma 3.3.2(b),(c). Since (∆x)T∆s = 0, it also follows from the third

block equation in (4.2.1) that

(∆x)T s = (∆x)T (−µF̂ ′′(x)∆x− τµF̂ ′(x))

= −µ‖∆x‖2
x,F̂

− τµF̂ ′(x)T∆x. (B.0-5)
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Combining (B.0-3), (B.0-4), and (B.0-5), we have

νµ+ = ντµ+ (1 − τ)µF̂ ′(x)T∆x−µ‖∆x‖2
x,F̂
.

Now

|F̂ ′(x)T∆x| = |
(

F̂ ′′(x)−1/2F̂ ′(x)
)T

(F̂ ′′(x)1/2∆x)|

≤ ‖F̂ ′′(x)−1/2F̂ ′(x)‖2 ‖F̂ ′′(x)1/2∆x‖2

= ν1/2‖∆x‖x,F̂ ,

where the last equality follows from Lemma 3.3.2(e). So we have the following bounds on

the ratio of successive duality measures:

µ+

µ
≤ τ +

1

ν1/2
(1 − τ)‖∆x‖x,F̂−

1

ν
‖∆x‖2

x,F̂
, (B.0-6)

µ+

µ
≥ τ − 1

ν1/2
(1 − τ)‖∆x‖x,F̂−

1

ν
‖∆x‖2

x,F̂
. (B.0-7)

By maximizing the upper bound in (B.0-6) over 0 ≤ ‖∆x‖x,F̂ ≤ β0 (see Corollary B.0.2),

we obtain the best upper bound

µ+

µ
≤ (1 + τ)2

4
,

which is (B.0-2). To obtain the best lower bound on µ+/µ, we minimize the lower bound

in (B.0-7) over 0 ≤ ‖∆x‖x,F̂ ≤ β0. The result is that

µ+

µ
≥ τ − 1

ν1/2
(1 − τ)β0−

1

ν
β2

0 ,

which is (B.0-1).

We can now give a proof of Lemma 4.5.3. Due to the logarithmic homogeneity of F̂ , the

analysis is simpler than that in the proof of Lemma 4.3.10. For ease of reference, we restate

here the values of the parameters and bounds in Section 4.5, in addition to Lemma 4.5.3
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itself.

θ = 0.1, τ = 1 − 1

47ν1/2
, 0 ≤ ε1 ≤ 0.015, 0 ≤ ε2 ≤ 0.12.

Lemma B.0.5. Let θ, τ, ε1, and ε2 satisfy (4.5.6). For all ν ≥ 1,

β1 < 0.1534, β2 < 0.1692, δ > 1 − 0.0451

ν1/2
> 0, δ̄ < 1 − 0.0211

ν1/2
< 1.

Proof. For the sake of generality, let

τ = 1 − κ

ν1/2
(B.0-8)

for some constant κ ∈ (0, 1), and let ε̄1(= 0.015) and ε̄2(= 0.12) denote the largest allowable

values of ε1 and ε2 respectively. The following uniform bound on β0 over [1,∞) follows from

(4.5.5):

β0 =
θ + ε1

(1 − ε2)1/2
+ κ (B.0-9)

≤ θ + ε̄1

(1 − ε̄2)1/2
+ κ.

We now prove the bound on β1:

β1 =

(

1

1 − ε2

)1/2

β0

≤ θ + ε̄1
1 − ε̄2

+
κ

(1 − ε̄2)1/2

< 0.1534.
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Also

β2 = β0 max

{

(1 + ε2)
1/2

1 − θ
,

(

1

1 − ε2

)1/2}

≤
(

θ + ε̄1

(1 − ε̄2)1/2
+ κ

)

max

{

(1 + ε̄2)
1/2

1 − θ
,

(

1

1 − ε̄2

)1/2}

< 0.1692,

proving the bound on β2. We now prove the lower bound on δ. Using (B.0-1) and (B.0-8),

we have

δ = τ − 1

ν1/2
(1 − τ)β0 −

1

ν
β2

0

= τ − 1

ν
β0(ν

1/2(1 − τ) + β0)

=

(

1 − κ

ν1/2

)

− 1

ν

[

θ + ε1

(1 − ε2)1/2
+ κ

][

κ+
θ + ε1

(1 − ε2)1/2
+ κ

]

≥ 1 − κ

ν1/2
− 1

ν1/2

[

θ + ε1

(1 − ε2)1/2
+ κ

][

θ + ε1

(1 − ε2)1/2
+ 2κ

]

= 1 − 1

ν1/2

(

κ+

[

θ + ε1

(1 − ε2)1/2
+ κ

][

θ + ε1

(1 − ε2)1/2
+ 2κ

])

≥ 1 − 1

ν1/2

(

κ+

[

θ + ε̄1

(1 − ε̄2)1/2
+ κ

][

θ + ε̄1

(1 − ε̄2)1/2
+ 2κ

])

.

Substituting θ = 0.1, κ = 1/47, ε̄1 = 0.015, and ε̄2 = 0.12 gives the required lower bound

on δ. Finally, from (B.0-2) and (B.0-8), we have

δ̄ =
(1 + τ)2

4

= 1 − κ

ν1/2
+
κ2

4ν

≤ 1 − κ

ν1/2
+

κ2

4ν1/2

= 1 − 1

ν1/2

(

κ− κ2

4

)

< 1 − 0.0211

ν1/2
.

Lemma B.0.6. Let θ, τ, ε1, and ε2 satisfy (4.5.6), and let (xk, wk, sk) ∈ N (θ, ε, µ0). Ex-

170



cept at the final iteration, the primal-dual point (xk+1, wk+1, sk+1) generated by Algorithm

short step also belongs to N (θ, ε, µ0).

Proof. The proof is similar to that of Lemma 4.3.11. In that proof we assumed that the

parameter values were such that β2 < 1, τ > 0, and δ > 0 for all ν ≥ 1. We see from

Lemma B.0.5 that these assumptions do indeed hold. Given (xk, wk, sk) ∈ N (θ), we showed

in the proof of Lemma 4.3.11 that a sufficient condition for (xk+1, wk+1, sk+1) ∈ N (θ) was

1

1 − f

[

ε̄1(1 − κ) + β∗
1(ε̄2 + κ)

1 − β∗
1

+ f − κ+ (1 − κ)

(

2 log(1 − β∗
1) +

2β∗
1

1 − β∗
1

)]

≤ θ, (B.0-10)

where β∗
1 is the maximum of β1 over all ν ≥ 1, ε1 ∈ [0, ε̄1] and ε2 ∈ [0, ε̄2]. In obtaining this

condition it was assumed that f ≥ κ, where f is such that δ ≥ 1− f
ν1/2 is a lower bound on

the ratio of successive duality measures. From Lemma B.0.5 we see that a valid f is 0.0451,

which exceeds κ = 1/47. Also from Lemma B.0.5 we have β∗
1 < 0.1534, so the left-hand

side of (B.0-10) is less than 0.0999, which is less than θ. Hence (xk, wk, sk) ∈ N (θ, ε, µ0)

implies that (xk+1, wk+1, sk+1) ∈ N (θ). Since {µk} is a strictly decreasing sequence, and

at all iterations except the last, µk+1 > ε, then (xk+1, wk+1, sk+1) lies inside the restricted

neighborhood N (θ, ε, µ0).
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[22] M. Koecher. Positivitätsbereiche im Rn. Amer. J. Math., 79:575–596, 1957.

[23] M. Koecher. The Minnesota Notes on Jordan Algebras and their Applications, volume
1710 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1999.

[24] J. Korzak. Convergence analysis of inexact infeasible-interior-point algorithms for solv-
ing linear programming problems. SIAM J. Optim., 11(1):133–148, 2000.

[25] S. Lang. Undergraduate Analysis. Undergraduate Texts in Mathematics. Springer-
Verlag, New York, second edition, 1997.

[26] Z.-Q. Luo, J. F. Sturm, and S. Zhang. Conic convex programming and self-dual em-
bedding. Optim. Methods Softw., 14(3):169–218, 2000.

[27] O. L. Mangasarian. Nonlinear Programming, volume 10 of Classics in Applied Math-
ematics. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1994.
Reprint of the 1969 original.

[28] S. Mizuno and F. Jarre. Global and polynomial-time convergence of an infeasible-
interior-point algorithm using inexact computation. Math. Program., 84(1, Ser. A):105–
122, 1999.

173



[29] M. E. Muller. A note on a method for generating points uniformly on n-dimensional
spheres. Commun. ACM, 2(4):19–20, 1959.

[30] Yu. Nesterov. Long-step strategies in interior-point primal-dual methods. Math. Pro-
gramming, 76(1, Ser. B):47–94, 1997.

[31] Yu. Nesterov. Constructing self-concordant barriers for convex cones. Technical Report
: CORE Discussion Paper 2006/30, Center for Operations Research and Econometrics,
Catholic University of Louvain, March 2006.

[32] Yu. Nesterov. Towards nonsymmetric conic optimization. Technical Report : CORE
Discussion Paper 2006/28, Center for Operations Research and Econometrics, Catholic
University of Louvain, March 2006.

[33] Yu. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algorithms in Convex
Programming, volume 13 of SIAM Studies in Applied Mathematics. Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, 1994.

[34] Yu. Nesterov, M. J. Todd, and Y. Ye. Infeasible-start primal-dual methods and in-
feasibility detectors for nonlinear programming problems. Math. Program., 84(2, Ser.
A):227–267, 1999.

[35] Yu. E. Nesterov and M. J. Todd. Self-scaled barriers and interior-point methods for
convex programming. Math. Oper. Res., 22(1):1–42, 1997.

[36] Yu. E. Nesterov and M. J. Todd. Primal-dual interior-point methods for self-scaled
cones. SIAM J. Optim., 8(2):324–364, 1998.

[37] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods, vol-
ume 63 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.

[38] G. Pataki. On the closedness of the linear image of a closed convex cone. Research
Report TR-02-3, Department of Operations Research, University of North Carolina,
Chapel Hill, 2003. To appear in Mathematics of Operations Research.

[39] J. Peng, C. Roos, and T. Terlaky. New primal-dual algorithms for second-order conic
optimization based on self-regular proximities. Technical Report AdvOl-Report No.
2000/5, McMaster University, Ontario, Canada, October 2000.

[40] W. P. Petersen and A. Bernasconi. Uniform sampling from an n-sphere. Technical
report, ETHZ, Switzerland, February 2001.

[41] F. A. Potra. The Kantorovich Theorem and interior point methods. Math. Program.,
102(1, Ser. A):47–70, 2005.

[42] J. Renegar. A polynomial–time algorithm, based on Newton’s method, for linear pro-
gramming. Mathematical Programming, 40:59–93, 1988.

174



[43] J. Renegar. A Mathematical View of Interior-Point Methods in Convex Optimization.
MPS/SIAM Series on Optimization. Society for Industrial and Applied Mathematics,
Philadelphia, PA, 2001.

[44] R. T. Rockafellar. Convex Analysis. Princeton Landmarks in Mathematics. Princeton
University Press, Princeton, NJ, 1997. Reprint of the 1970 original.

[45] C. A. Rogers. Hausdorff Measures. Cambridge University Press, London, 1970.

[46] R. Schneider. Convex Bodies: the Brunn-Minkowski Theory, volume 44 of Encyclopedia
of Mathematics and its Applications. Cambridge University Press, Cambridge, 1993.

[47] S. P. Schurr, D. O’Leary, and A. Tits. A polynomial-time interior-point method for
conic optimization, with inexact barrier evaluations, 2006. In preparation.

[48] S. P. Schurr, A. Tits, and D. O’Leary. Universal duality in conic convex optimization.
Math. Prog., June 2006. Online Edition, DOI: 10.1007/s10107-005-0690-4.

[49] A. Shapiro and A. Nemirovski. Duality of linear conic problems. Technical report,
School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta,
GA, 2003.

[50] I. S. Shiganov. Refinement of the upper bound of the constant in the central limit
theorem. Journal of Soviet Mathematics, 35(3):2545–2550, 1986.

[51] N. Z. Shor. Cut-off method with space extension in convex programming problems (in
Russian). Kibernetika, 13:94–95, 1971. English translation: Cybernetics 13(1), 94–96.

[52] M. Todd. Semidefinite optimization. Acta Numerica, 10:515–560, 2001.

[53] M. J. Todd. Potential-reduction methods in mathematical programming. Math. Pro-
gramming, 76(1, Ser. B):3–45, 1997.

[54] M. J. Todd, K. C. Toh, and R. H. Tütüncü. On the Nesterov-Todd direction in
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