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1 INTRODUCTION :

We consider the Ito stochastic model:

dr, = g(t,&) dt + o(t) dw
dy, = h(t,z) dt + p(t) dv, (1)
:::(O) = To

where g, h, o and p are smooth functions of their arguments, {v, }, {w; } are independent
Wiener processes, 4 a random variable independent of {v, }, {w; }. Given this model one is
interested in computing least squares estimates of functions of the signal 2; given
o{y ,0<s <t} the o-algebra generated by the observations, i.e., quantities of the
form E [é(z;) | 0 {y, ,0<s <t }]. In many applications this computation must be
done recursively. This involves the conditional probability density p¥(¢,2) which satisfies
a nonlinear stochastic partial differential equation, the Kushner-Stratonovich equation [1]. By
considering an unnormalized version of p?¥, the above problem can be reduced to the study

of the Duncan-Mortenson-Zakai (DMZ) equation which is linear ([6)).

The filtering problem was completely solved in the context of finite dimensional linear Gaus-
sian systems by Kalman and Bucy [2], [3] in 1960-61, and the resulting Kalman filter (KF) has
been widely applied. Apart from a few special cases [4], [5] the nonlinear case is far more
complicated; the evolution of the conditional statistics is, in general, an infinite dimensional

system.

Although progress has been made using the DMZ equation, optimal algorithms are not gen-
erally available. The performance of suboptimal designs, however derived, may be based on
lower and upper bounds on the minimum mean square error {optimal MS-error) p(¢). This
approach is used here to investigate the asymptotic behavior of a class of nonlinear filtering

problems.



Two aspects are treated in detail:
(1)  the long time behavior, that is, the asymptotic behavior of the filter as ¢ — oo (this
paper).

(2) the asymptotic behavior as ¢ — 0, with ¢ a small parameter in the model (in a com-

panion paper [7]).

To illustrate the ideas, consider the one-dimensional version of the model where g and

k  have continuous bounded derivatives satisfying

oft) < g.(te) < aft) (2-2)
é(t) S. h,(t,:l’) _<_ E(t) (2'b)
Let
p() = B o~ Bl | Yo) I "
p (t) == E (% — 2 )°
where y:) = o0{y ,0<s <t} and & isgivenby:

dz," = g (t,z," )dt + ‘Q—g(t—)— u(t)dy, — h(t,s )dt] ; °(0) = 0

pH(t)
i(t) = aQ(t)—i—QE(t)u(t)—‘f—Q((:—;—uQ(t) ;w(0) = of (BOF)
(2o ~ N(0,08) assumed)

Clearly the BOF (bound optimal filter) is readily implementable, with precomputable gain. It
coincides with the Kalman filter if ¢ and h are linear. In section 2 it is shown by apply-
ing results from [8], [9] that the BOF is a ““ best bound” filter in the sense that the associated
upper bound u(t) of p“(¢) is the tightest over a class of nonlinear Kalman-like filters

and that p(¢) is bounded as follow:
0 < () < p(t) < () < u(t)

where [(t) satisfies another Riccati equation.



In section 3 these bounds are used to address the long time behavior of asymptotically

time invariant systems. In the particular case where

g(t;z)=a$+>\(t)f(t,27) ------------- > a2

and

h(t,z) = ¢ o +v(t)k(t,g) ---mmmommmmm- > ¢

it is shown that the BOF is asymptotically optimal in the sense that

lim (p"(¢)-p(t)) = 0 and that as far as the long time performance is concerned,

t — o0
the nonlinearities f and k can be ignored in the original model. In other words the “
KF” and even the “ SSKF” (steady state) formally designed for the underlying linear system

are asymptotically optimal.

In section 4 examples with simulation results are given.

2 LOWER AND UPPER BOUNDS ON THE A PRIORI OPTIMAL MS-

ERROR

Since the explicit solution of nonlinear filtering problems is impossible in general, one is
naturally interested in suboptimal solutions, the performance of which may be avaluated

using upper and lower bounds on the (unknown) optimal MS-error.

In fact, the structural complexity which arises is also present at the level of performance test-
ing in the sense that simple and tractable bounds are not generally available for suboptimal

estimators unless one puts further restrictions on the type of nonlinearities considered.

Consider the one dimensional [td stochastic differential equation



dr, = g(t,x)dt +o(t)dw, , t >0
dy, = h(t,x) dt + p(t) dv, (1)
o ™~ pﬂ(x) » E Ty — 0 s E (L'Ozg' == 0'02

where {w;} and {v,} are independent standard Wiener processes, z, is a random vari-
able (generally taken to be Gaussian) independent of {w;} and {v,}; ¢ and h are such
that (1) has a unique solution [10], differentiable with continuous partial derivatives. Given

this model one is interested in finding bounds on the optimal MS-error :

¢
p(t)=E [(= —E(z | Yo) )] (2)
¢
where Yo = o{y, ,0<s <t} isthe o- algebra generated by the observations up

to time t, i.e., find functions /(¢), »(¢) such that :

0 < I(t) < p(t) < u(t) (3)

In this section, existing results are applied to one dimensional systems for which the
nonlinearities have bounded derivatives to obtain lower and upper bounds involving ordinary
differential equations of the Riccati type. The upper bound is obtained in section 2-2 by con-
sidering a class of nonlinear, Kalman-like suboptimal filters. To each such filter is associated

an upper bound on the corresponding mean square error (MSE) and the BOF (bound optimal

filter) is defined as the one with the tightest upper bound. The latter is used in inequality (3).

2-1 Lower bound:

The following additional assumptions make it possible to derive a simple, tractable lower

bound in the one dimensional case :

H,: | e.(tz) - oft) |

IA
g
2

H,: | A (t,x) - Bt) | < Apt) , Bt) = Bt)-ABt) > 0

We will denote this by :



g € <[oft), Aaft)]

he <[At), ap(t)]

Proposition 2-1:

¢
Assume H,, H, hold and let p(t):=E (z, - E (g, [ Yo)) % then p(t) islower
bounded by I(t),ie, 0 < I(t) < p(t) where I(t) satisfies the following Ric-

cati equation :

[(6) = () 4 200 (0) ~ s [ () + 450 (aatt)) ) 0
1(0) = of
with the notation: o =a+ Aa , a=a- A«a

Remark:

The above proposition says that the optimal MS-error p (t) corresponding to the nonlinear

filtering problem (1) is lower bounded by the optimal MS-error corresponding to the following

Kalman filtering problem:

dZt - Q(t )Zt dt + a'(t )dwt

dy,' = B(t)z dt + p' (t)dv,
g (t)= p(t)
AAt) Ad%t) 3
Uy ) )

It is indeed easily seen (e.g. [1]) that:
Elg -E (% |of{y' :0<s<t})P=1(t)
Proof :

Using the Bobrovsky-Zakai lower bound ([8]) we obtain L(t)y<p(t) where



L(t)=ot)+ 2a(t)L(t)—;2i((:)lL2(t)

L(0) = of
a(t) = E gz(t)xt)

21\ 2 p(t)
cHt)=FE h*(t,x)+ A1) var (g, (¢ ,2))

Thus, L (¢ ) satisfies a Riccati equations, the coefficients of which are unknown in general.

Clearly H, implies : «ft) < g, < @) as., and hence, oft) < a(t) < a(t).
Thus

| g.(t,a)—a(t) | < 2A0at) a.s
and

Similarly H, implies: 0 < B(t) < h(t,z) < Bt)
hence, E rA(t ) < FYt)
Therefore:

) < )+ 4 HE) (dale)y

Since L (t) satisfies a Riccati equation with strictly positive initial condition, then L (¢) > 0

([16)) and the right hand side of L (¢) is hence greater than

1
(t)

() + 1 28) (aa(r)?] L2

o%(t) + 2a(t)L (t) - 20)

By the comparison theorem (see Appendix) we obtain:  {(¢) < L(¢t)

2.2 Upper bound and bound optimal filter (BOF):

Let z, and y, be asin (1) and assume that



(A
=]
-

H, : g, (t,x) 1iscontinuousand ¢, (t,r)

H, : h(t,x) iscontinuousand h,(t,x) > B(t) > 0

Proposition 2-2:

The optimal MS-error p(t) is upper bounded by wu(f) where wu(¢) satisfies the

Riccati equation :

Note: This says that the optimal MS-error in the nonlinear filtering problem (1) is upper

bounded by the optimal MS-error in the following linear one :

dyy, = a(t) z dt + o(t) dw,
dy' ¢+ = B(t) z dt + p(t) dv,

Proof :

¢
The conditional mean #, := E (2, | o) and the conditional optimal MS-error

are given by [1]:

d(it == j(t,xt)dt—i————dwt 5 fO:O
P(t)
dpe = [o®(t)+ 2( (2 9:) " — % §) - 21 (& )] dt + ——?—dwt
P(t) p(t)
Po = G’02
where * denotes conditional expectation and
g = g(t,m) 5 h = h(t,z)
& = (wh) " - i't’;t

A

Ty — (a%h) " — oy — 28 (2 by ) * + 23 Yhy



t

dy, ~ i;(t ,% )dt is the innovation process which is a Wiener process on ¥, .

and dw, =
Since the expectation of Ité integrals is zero and E pr = E (2, — £,)° = p(t), taking the

expectation on both sides of (6), we find

p(t) = o%(t) + 2E( (2 0:) "~ & s )"E/EQ%))
p(0) = of

The smoothing property of conditional expectations [10] implies

E((2g:)" -%§ ) = E(% -% ) g -g(t,8))

= E % (!Iz —9('5:@))

Therefore,
| N NEITY.
P) = ) 2B (g - g(d)) - g
p(0) = of

Now

Hence

H, implies that Yy > B(t) as
Eé > Bt)E =" = Bt)p(t) ®)
E (&) = (Ee ) > QQ(t)Pz(t)
Similarly H , implies that
E% (g -9g(t#)) = E ¢, %" < a(t)E%® = at)p(t) (9)
p(t) < u(e)



An alternate and more constructive approach to getting the same result, due to A. S. Gilman
and I. B. Rhodes ([9]), is outlined below. The upper bound is derived by considering the fol-

lowing family of parametrized nonlinear suboptimal filters, the structure of which is suggested

by the kalman filter :

dr®) = g(t,2®) ) dt + k(¢) [dy —h(t,2®)) dt |

§ — o (10)

z

where k(t) is a non random, continuous non-negative bounded function.

To each gain k(t) is associated a suboptimal filter given by (10) and denoted {z };. It can

be shown ( [9], [11] ) that:

(1) Corresponding to each {z }; there exists a function u(t) satisfying the linear o.d.e:

w (t) = o(t) + p%(¢) K2(t) +2[a(t) - k(6)8(t) ] w(t) ; w(0) = o (1)
such that

p*(t):=E (o - o) < w(t) (12)

(2) The suboptimal filter  {z},. obtained for  the particular choice

i — g(t,n')dt + 2L w(e) [dy, —h(t,3')dt] 5 wg = O (13)

p(t)

where u(t) satisfies the Riccati equation :

. - 2 — ﬁg(t) 2
u(t) = o(t)+ 20(t)u(t) - A0) w¥(t)

is such that wu(¢) < u*(t) for every continuous nonnegative function k (¢). More impor-

; u(0) = of (14)

tantly, we have the following inequalities:

p(t) = B (B | Yo) < p°(t) = B (n -a'f < u(t)  (15)

The nonlinear filter given by (13)-(14), subsequently referred to as the bound optimal filter
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(BOF), will turn out to be near optimal in many situations of practical importance as it will

be seen in the next section and in [7].

In the next subsection we combine results from the previous two subsections in a single state-

ment ready to be used subsequently.

2-3 Summary :

For systems modeled by one dimensional [t6 SDE’s of the form :

doy, = g(t,) dt + of
dy, = h(t,2)dt + p(
Ezy =0 , Ezf = of

with ¢ and h satisfying

H, : |g(,x)-c(t)] <Aa(t) denotedby ¢ € <[a(t), Aa(t)]
H, : |h(t,x)-pt)| < AB(t) denotedby k € <[A(t), AB(t)]
define
a(t) == a(t)+ Ac(t) ; aft) = oft)- Aa(t)
ple) == B(t)+Ap(t) 5 Bt) = p¢)-sB(t) >0

where 2,” is the BOF and is given by

dr — g(t,a’)dt + 2w (o) [y —h(t,a )it ]

P(t)
2 =0
i(t) — o¥(t)+ 2a(t)u(t) - figg W) 5 u(0) = o

(19)

(23)

(24)

Then by combining the results from the previous two sections we readily get the following

bounds on the optimal MS-error:
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0 < I(t) < p(t) < p(t) < u(t) (25)

where

o¥(t) (26)

and wu (t) satisfies (24).

3 ASYMPTOTICALLY LINEAR SYSTEMS

In this section we discuss systems that are asymptotically time invariant, i.e.,

dry, = g(t,z;) dt + o dw,
dy, = h(t,x)dt + pdv, (1)
where
9(t>x) = g(x)+)\(t)f(t,a:) (2)
R(t,x) = h(z)+ o(t)k(t,z)
g E<[a,Ae] ; [ e<[ult),Aunt)] 3)
he<[e,Ac] ; ke<[dt),Adt)]
and
Jim M), v(2)] = [0,0] (4)

In the particular case where g(z) and k(z) are linear (the limiting system is linear), one is
interested in knowing whether the Kalman filter (KF) designed formally for the limiting linear
system and driven by (the nonlinear observations) g, in (1) is asymptotically optimal as ¢
becomes large. This situation arises when the nonlinearities are neglected during the modeli-
zation process. The nonlinear filter resulting from this scheme will be referred to (wrongly) as

the “ KF”.

More specifically, let
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de, = a z, dt + \Nt) f (¢t,2) dt + o dw,
dy, = ¢ =z, dt + () k(t,z,) dt + p dv, (5)
Exzgy=0 , Ezf =o0of >0

Then the “ KF” designed for the limiting system is

def = a afdt + S r(t)[dy —cofdt] ; 2¥(0) =0 (6)
P
: 2 ¢® o 2
r(t):a—l—Zar——pTr ;o r(0) = o5 (7)

and the questions of interest are:

- under what conditions is & (or the BOF :tt‘) asymptotically optimal as ¢ — oo,

ie. lim (p*(t)-p(t)) = 0 ( lim (p'(t)—p(t)) = 0) ¢

where
p(t) = E (& - &) (8)
p'(t) = E (2 -2 ) (9)
p(6) = B (2 - B | Yo) P (10)

- would the same result hold for the steady state ‘“ KF” (¢ SSKF”), obtained by set-
ting r(t) = r(oco) in (6) ?
The bounds on the optimal MS-error derived in the previous section are used to answer these
questions in the linear limiting case. However, the bounds on the ﬁrsf derivatives do not con-
«

tain “ enough information” to treat similar questions in the general case where ¢(z) and

h(z) are nonlinear.

Consequently, we will only consider the class of nonlinear filtering problems (5) with the
assumptions :
Hy  fe<ut),dut)] ;5 ke<[dt), Adt)]
H, : X¢) and u(t) are continuous, vanishing functions
on [0,00[ and nonnegative (for simplicity)

H; : p(t), ap(t), «(t) and A¢¢) are bounded continuous



functions on [0,00]

Hy . c¢+uv(t)dt) = & > 0 ¢ % 0.

In the next two subsections we show that :

lim (p(t)-p(t)) = 0 and lim (p*(t)-p(t)) = 0

t — o0 t -

this is done by bounding p (¢) as

(=)
A
~
—_
o~
~—
IA
=
—_—
o~
~—
(A
3
*
—_
o~
~—
A
=4
—_
o~
~—

and showing that

lim (u(¢)-1(t)) = 0 and lim (gq(t)-I(t)) =0

t — oo t — o0

The result is then generalized to the case

which in turn can be applied to treat cases where a and ¢ are time varying functions.

3-1 Asymptotic optimality of the BOF:

In the case of ( 5 ), we note that H; and H, imply:

g(t,g) = ax + Nt)f (t,x) € <la + Nt)u(t), Nt )Ap(t)
B(t,x) = cx +u(t)k(t,z) € <[e + v t)t), v(t)Adt)
Thus the results in section 2-3 apply with
a = a + MNt)u(t) + Xt)Au(t) = a + Net)a(t)
o = a -+ MOu(t)

B = ¢ +ut)dt)

13



B = ¢+ ut)dt)
and the BOF is given here by:

de," = az,"dt + \(t)f (¢, )dt + At) w(t) [ dy, — ez dt — vtk (t,2)dt ]

pe

x():()

d(t)=02+2c—vu(t)—'i—zu2(t) ; u(0) =of

The asymptotic optimality of the BOF is a direct consequence of the following lemma:

Lemma 3-1 :
Let 6y, 05, v, and v, be continuous functions on [0, +oo [ such that

- lim 6;(¢t) = a

t — o0

- lim 4%t) = ¢ ; t >0 ; =12

t =00

and consider the Riccati equations :

. M
v, = o®+20v, - — v ; vy(0) = of
p
9
. V2
by = 0°+ 20wy - — vy ; vy0) = of
p

If v,(t) > wvy(t) and if one of the assumptions given below holds then:

tlimwvl(t) = tlimm vyt)
A, : a < 0
Ay © wy(t) > r(t), t >0 and 4 > 6 > 0 forsomes
Recall that :
r(t) = o+ 2ar ";_227'2 , r(0) = of

14
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Proof:

Let w(t) = wvy(t) - ve(t) > 0. Then a straightforward computation yields

1 27 o0
w = 2(0, - bg)vy + = (’122 - ’712)')22 + 206, - — vow - — w?
e P pE (28)
w(0) = 0
which we rewrite as
’712
w(t) = i(t)+25(t)w - —w® , w() =0 (29)
p
where
1
Z(t) — 2(01 et 02)'02 + p—2(’722 — "/12)'022 (30)
2
4!
j(t) '—91“7”2 (31)
(29) clearly implies:
w < i(t)+ 25(t)w. (32)

Depending on the assumption used ( A; or A, ) we will bound w(¢) differently using the

comparison theorem.
(1) Assumption A, :

Since !(¢) and w(t) are nonnegative, w(¢) can be bounded as

w < i(t)+ 20w (33)

thus 0 < w(t) < z(t) where
z(t) = i(t)+ 26,z ; z(0) = 0O (34)

Similarly wv(t) < Vy(t) where
Vi = o+ 20V, , Vi(0) = og (35)

If ¢ < 0 then lim 6, = a« < 0 and Perron’s theorem ( see the Appendix ) can be

t — o0

applied to (34) and (35). We get
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Since wy(t) < wy(t) < Vy(t) forevery t > 0,(36) implies

lim i(t) = 0

t — oo
Re-applied to (34) Perron’s theorem yields

lim 2(t) = 0  that s lim w(¢t) = 0

t — oo t — o0
(2) Assumption A, :

8 12

Since wy(t) > r(t), j(t) < 0y - — r(t), (32) then implies that w(t) < 2(t),
p

where:
I
g =) +2(0,-—r())z(t) ; 20 =0 (37)
p
o 2
lim (0, - —r(t)) = @ ——6—2— r(co0); but r{co) is the positive root of
t — o p P
2 ¢ 5
o0°+ 20z ~ — 2% = 0 (38)
p
le.
P2 2 o* 2\1/2
r(o0) = :7[“ + (a +p—20) ]
c? o’ .
and ¢ - — r(0) = ~(a®+ — c?)2, Thus lim 2(t) = 0 provided
p p t — 00

lim ¢(¢) = 0. For this to happen it suffices that v,(¢) be bounded ( v(¢) be bounded ).

t — 00
Using the assumptions and the comparison theorem we immediately get v, (t) < V(t)

where

82

Vi = o>+ 20, V, - = VZ 5 V(0 = of (39)

and 6y is a nonzero upper bound of 6,(¢). V(t) is clearly bounded. We conclude that

lim z(t) = 0,ie., lim w(t)=0.
t = t = 00



Note:
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We can conclude in particular that v (co) = vy(co) = r(c0) provided one of the following

holds:

(1) n(t) 2 wlt) > r(t) ; £ 20
(2) () = r(t) = vy(t) and @ <O
(8) r(t) = vi(t) > vyt) and @ <0

This last assertion is obtained by applying the above Lemma to the pair (r,v,) .

Proposition 3-2 :

It H,—H, and Hg; or H, hold, where

then the BOF given by (23)-(24) is asymptotically optimal as ¢ — co.

Proof:

We have that : 0 < [(t) < p(¢t) < p"(t) < wu(t) where {(t) and u(t) are given by

(19), (20), (24) and (26) in section 2-3. Lemma 3-1 can then be applied to u (¢) and [(¢) by

taking :

0i(t) = a(t) = o + Nt)a(t)
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It is readily checked that all hypotheses in Lemma 3-1 are satisfied and the result follows.

d* ok Wk

Remark :

(1) Tt follows directly from lemma 3-1 that if Hg is replaced by

H' 5 : e <0 and either u(t) > r(t) or wu(t) < r(t)

* P’ 2 o> 1/2
then p(o0) =1p (oo)=r(oo)=?[a+(a +7c) ]
= 2 2
(2) A sufficient condition for Hg to hold is g > 0 and (1 + lli)2 + 4)\2'0—2 (A/;)— < 1 for
c o c

every t > 0.

Assuming that c >0 and rewriting the last inequality as

” 2 2
oS 4 1/212 + 4)\2p—2 (A—l;) < 0, it can be seen that a necessary condition for this last ine-
¢ ¢ o ¢

quality to hold is ¢ < 0. It turns out that Hg holds in many cases if f and k lie in the
first/third quadrant ( & > 0 ) and second/fourth quadrant ( ¢ < 0 ) respectively (e.g. see

example (2)).

In general hypotheses such as H ¢ must be checked numerically.

Next we generalize proposition 3-2 to nonlinearities of the following type:

n

g(t,x) = ez + 3 N()f:(t,r)

f =1

m (44)
h(t,g) = ¢z + >, v;(t)k;(t,x)
i=1
with the assumptions H,, H, and H; holding foreach ¢ = 1,...n ; j =1,....,m .
Using a vector notation, e.g., Au = (Apy, - ,Ap, )T , and < , >, to denote

the inner product in R™ , the nonlinearities above can be written in the more condensed

form:
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g(t,z) = az + <Nt), f(t,2) >, (45)

h(t,g) = ca + < oft),k(t,2) >,
and we clearly have
[ €<[a + <X, u>, <)‘7Al‘>n]
(46)
hE€<|[c+<v,n ; <v,A>, |
Thus if we make the additional hypothesis
H/ : B = ¢+ <v,f>, = 6 > 0 then the same results hold. More precisely
the BOF is given by
dz," = az,’dt +<\(t),f (t,xt‘)>dt+Lg)u2(t)[dyt—cz,*dt—<u(t),k(t,x;)> dt] (47)
p
z"(0)=0
with the corresponding MSE p *(t) and the optimal MS-error p (t) satisfying
0 < I(t) < p(t) < p'(t) < u(t) (48)
where [(t) and u (t) are given in section 2-3 with
a(t) = a + <\¢t), m(t)> (49)
oft) = a + <X\t), ult)> (50)
Aa = <\(t), Ap> (51)
B(t) = ¢ + <y(t),dt)> (52)
Bt) = ¢ + <Ut),dt)> (53)

The corollary below is now a direct application of lemma 3-1.

Corollary 3-3 :

If Hi— H, and Hy; or H; stated below are satisfied then the BOF (47) is asymptoti-

cally optimal as ¢ — oco.

Hg . 1(¢t) > r(t) ; r(t) given by (27).

* k%
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The corollary above can be used to treat the more general cases where ¢ and ¢ are

time varying, i.e.,

where lim a(t) = a and lim ¢(t) = ¢
t —~ oo t — o0

As an illustration, assume that a (¢) and ¢ (¢) are monotonous and continuous, then (54) may

be rewritten as

g(t,z) = az +(a(t)-a)z + <X, [ >,

h{t,g) = ez +(c(t)—¢c)z + <v, k>, (55)
By letting:
M(t) = e(t)-a]
Umai(t) = |e(t)-c |
Sawlt,e) = sign(a(t) - a)e
kpia(t,2) = sign(c(t)-c¢)z
(55) becomes:
g(tw) = az + <N, f >4
(56)

hit,g) = ez + <v, k>pyp

and we are in position to apply the above Corollary since A\, ,; and v,, ,; are continuous van-
ishing nonnegative functions with f,,; and k,,,; belonging to <|[sign(\,,), 8] and

<[ sign(Vy, 41) , 6 ] respectively, where § > 0 is arbitrary.

3-2 Asymptotic optimality of the KF :

For the nonlinear filtering problem (5), it is clear that (6)-(7) correspond to a regular
Kalman filter designed for the underlying linear system obtained when one ignores the non-
linear terms in (5). It should be noted however that (6)-(7) is driven by observations from a

nonlinear system. We will, nevertheless, continue to refer to it as the *“ KF * and “ SSKF ”

(steady state) when r(t) is replaced by r(co).



In addition to H; — H 4, we make the following assumption:

H, : f (¢,0) and k(t,0) are continuous, bounded on [0, +oo |.

Proposition 3-4:

21

If ¢ < 0 then both the ““ KF ” and the * SSKF ” are asymptotically optimal as ¢ — oo.

Moreover :
2
ploo) = pH(oo) = rloo) = Ly la +(a® + G et
¢ p
%k Kk ok
Proof:
We first derive an upper bound on p¥(¢) := E (2, — z})? where & is given by (6)-(7).

Let 7, = =, — 2 ; then (5) and (6) yield

ix, = [§ - G(t)h]dt + o dw, —p G(t) dy,
where
Gy = —r()  (or —zr())
7o = az + Me)f (¢,2)
h, = ¢z, + v(t)k(t,1,)

Applying [té' s chain rule ([1]) gives

d5,> = [o® + p? G¥(t)] dt + 27, dz,

Taking the expectation on both sides yields :

4B 7 = 54() = o + PGN) + 28R (7 - G (1))
de 2 22 —= = =7 k
ar = o+ p G°+2F T Gt -2G E Tt ht s Y4 (0)

p* = P +p?Q%2a-cQ )p" +2NE T, f (t,2,)-2vGE T k(t ,z)

Clearly

(57)

(63)
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2E aT,f(t,x,) < E Etz’l‘E f2(t,1‘t) = Pk(t)+E fg(t,xt) (64)
2F Tk(t,e) < p*(t)+ E k¥(t,z,) (65)
By the comparison theorem :  p*(¢) < ¢(¢t) ; q(0) = of where
i(t) = o>+ p°G*+ 2(a—cG)qg + \Ngq + Ef )+ vG (¢ + Ek?

= ® + p*G? + \Ef %+ vGEK® + [ 2(a~cG) + X + vG | ¢ (66)

which we rewrite as

¢ = i(t)+5(t)e , q(0) = of (67)
2 2
Now, tlim i(t) = 2(a ~c—2r(oo)) = —2(a? + ¢)/2 < 0. Thus if
— oo p p
tlim NOE f¥t,x) = tlim Wt)E k*(t,) = 0 (68)
2
then lim i(t) = o®+ S5 r%(c0) .
t — o0 p

Applying Perron’s theorem to (67) would give:

2
i (00) o’ + rl r%(oco)
g(o0) = - = = - (69)
7 (o) ¢’
2 (e T (o))
But r(oco) satisfies the algebraic Riccati equation:
2
o2+ 2a r( )——2—1'2(00) =0
p
It follows that :
2 2
0? + 2a r(oo0) — ol r¥o0) - 2(a - e 7 (00))r (00)
g(o0) = - - = r(o0) (70)
¢
2o - 5 r(oo)

3-1 we conclude that {(co) = r(co0) = ¢ (co) and hence p(oco0) = p*(c0) = r(c0).

If [(t) is not less or equal than r(¢) for every t then we can always find a lower bound
I' (t) which is less or equal than both [(¢) and r(¢) (see the next remark). Thus we can

apply the same lemma with vo(t) = 1" (t) and conclude that
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I' (00) = r(c0) = q(c0) (= (c0)) and hence p(00) = p*(c0) = r(c0).
We now show that (68) holds if ¢ < 0 and H, hold.

[ € < [p(t), Ap(t)] implies

u(t)e + f(£,0) < f(t,z) < E(t)e + [ (¢,0) (71)
where the time functions u(t), p(t) and f (¢,0) are all bounded continuous for ¢ > 0. (71)

implies in turn that:

f¥tx) < A¥t)2® + B(t) (72)
for some continuous bounded functions A and B. Therefore, tlim MOEf4t,r,) = 0
holds if
‘ 2 _
thﬂrno0 Nt)Ex,* = 0 (73)

Ex,? satisfies the following ode ([1]):

dit E 5?2 = 14+ 2\t)E =, f (t,2) + 2¢E z,° (74)

2F o, f (t,2,) < E 2>+ E f¥t,x) (75)

Using (73) and (72) in (74), we conclude by the comparison that E z,2 is bounded by V(¢)

where :
Vo= 14+ Xt)B2(t) + (20 + \(t) + Me)AXt))V(¢t)
Perron’s theorem applies and V(oco) = — —217 . Therefore tlim XNE)E [ty =0.

Clearly the same thing is also true for  1(t) Ek*(t,2,) .

%k k%

Remark :

Let f € <[p(t),Ap(t)] and k € < [dt), Adt)] 1e.

fo €lu(t), /()] , k €[dt), )] (*)

The lower bound is then given by :
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(1) = o)+ 20(0) 1) - 5 [P+ 42 8aP 1 40) 5 10) = o8
where ot ) = a +X\(¢t)u(t) , Aa(t) = Nt )Ap(t) and B(t) = ¢ +1(t )qt).

Clearly 1(t) < r(t) if wu(t) <0 and ¢(¢t) > 0 where

F(t) = o®+2a r(t)- = r¥t) ; r(0) = of
If u(t) <0 and (t)> 0 does not hold, we can always choose a worse lower bound
I"(t) such that ' (¢)<r(t). This is possible since (*¥) implies that

fo el (¢),8(t)] ; kel¢,¢" Jwith o/ (¢)<0 and ¢' (t)>0.

* ok ok

Let us now turn to the case where g and h are again given by (54). Then under the
same assumptions and notations of Corollary 3-3 and the additional obvious additional
assumptions introduced by H, (namely that it holds for each f;, k;), it can be shown ([11])

that the following holds:

Corollary 3-5 :

If a < O then both the “ KF ” and the “ SSKF ” are asymptotically optimal as

t — oco. Moreover

po0) = pH(o0) = rloo) = 50+ (af G ey
c p

4 EXAMPLES AND SIMULATION RESULTS :

Example (1) :

Let 2, and y, be given by:



25

dz, = az, dt + e ' sin¥(wt )th (2, )dt + odw,
1
t*+1

g ~~ N(mo;UOQ)

g2
d:(/t = ¢ dt + Ty € o dt -+ pd’Ut

Thus

Nt)=e'sinfwt) ; f(z)=th(x)
1

Ut) = ——
(t) t24+1

Simulation resuls were made with the following numerical data:

a =-1, w=50, o=p=02

c =1, my=00, ofd =02

for which it is readily obtained that fe<| —;— , %] and
_3 3
1-2¢ 2 1+2 % ..
k .
€ < | 5 , 3 | i
1 1
—0  m=1 — X Ay — —
I3 y M y M 5 M B
3 _3 _3
3 9. 2 B
.§.=_26 : ’ §=1 ) S‘:%e— ’ Ag:.}i;_e_

The simulations results, obtained using Monte Carlo simulations, are summarized in the plots

of fig. 1 and 2 corresponding to the BOF and “ KF” respectively. In fig. 1, the upper and

t
lower bound (u(t) , /(¢)) on the optimal MS-error p(¢t):=E [z - E (=, | Yo )
together with the MSE corresponding to the BOF are plotted. Fig. 2 contains similar results
for the “ KF” except that instead of u (¢), r (¢) is plotted. (Recall that while « was shown to

be an upper bound on the BOF MSE p “(t), neither v nor r are known to be upper bounds

for the “ KF” MSE p* (¢)).

It can be seen that the BOF and the ‘“ KF” are indeed both asymptotically optimal in the

sense that lim (p(¢t)-p (¢)) =10 and tlim (p(t)-p*(t)) = 0 respectively. Moreover:
— X

t — oo

p (00) — p “(00) — pF(o0) = r(o0) = f—’; [a + (a%”—i ¢2)? ] = 0.017

¢ p
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Example (2) :

According to proposition 3-2, the asymptotic optimality of the BOF does not require

a < O provided {(¢t) > r(t) for every t > 0.
In this example we consider such a case. Here, {z; } and {y } are given by:

dr, = az, dt + ¢ (a7, + sin(agy,) ) dt + odw,
dy, = cz, + ¢t ( P2y + arctg(Boz;) ) dt + pdy,
Ty~ Nn (m0,002)

Thus:

f(z) =z + sin(ayz)
k(z)= Bz + arctg (Box)

The numerical data for this example 1s

e =05>0, ;=04 , =02 , c =02
C:1,ﬁ1:—0.5,ﬁ2:0.25,p:0.2
m0=0.0,0'0=0.1

from which it easily follows that f € < [0.4,0.2] and k¥ € < [-0.375,0.125] so that f and k
belong to different quadrants. The simulation results are summarized in figures 3 and 4. Con-~

clusions similar to the ones in example (1) can be deduced.

5 CONCLUSION

We investigated the asymptotic behavior question of one dimensional nonlinear filtering
problems involving drifts with bounded derivatives using an upper and lower bound approach
to show that the a priori mean square error associated with some suboptimal filters
approaches the optimal one asymptotically. The upper and lower bounds satisfy ordinary

differential equations of the Riceati type.
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In particular, it is shown that in the case of asymptotically time invariant systems for which
the limiting system is linear, the “ KF ” and ““ SSKF ” ( designed for the limiting linear sys-
tem ) are asymptotically optimal as ¢ — oo ( section 3 ). In other words the nonlinearity

can be ignored as far as the long time behavior is concerned.

This approach proved that significant information relevant to this type of filtering problems
can be infered from the knowledge of the derivative bounds (i.e., of the cone in which the
nonlinearities reside), and the main point is that, tractable bounds on the optimal MS-error,
when

available, can be used (in addition to performance testing of sub-optimal designs) as a study

approach to tackle some questions arising in nonlinear filtering.

APPENDIX :

Theorem (1) : (comparison theorem [12])
Let F{z,y) and G(z,y) be continuous in the rectangle
D: Jz-2¢9| <@a , |y-yol] <
and suppose that F(z,y) < G(z,y) everywhere in D. Let y(z) and z(z) be
the solutions of
y = F(z,y) , ylw)=«

: = G(z,y) , z(zy) =«
Let I be the largest subinterval of (29— a , 29+ @ ) where both y(z) and z(z)

are defined and continuous ; then for = € [

@) < vlz) =<
z(‘t) > y(:t) > r > 9
Theorem (2) : (Perron [13])
It F(t), f:(t), to € [0,00], ¢« =1,..,n, are real continuous functions of

t having finite limits lim F(t) = b, tlim f; = a;, if the roots
t — 00 — 00
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A, ¢ =1,.,n of the equation

are real, distinct, and different from 0, then the equation

:t"n y(t)+f1(t)§tin__ily(t)+ ....... +f () y(t) = F(t) *)

has at least one solution y(¢) with

lim y(t) = a(; , lim ;t"; y(t) = 0.
ItXN <0, 1=1,.... ,n , then all solutions of (*) have these properties.
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program tasop

Program ''tasop" carries out Monte Carlo simulations
for one dimensional filtering problems of the form:

dxt = a xt dt + lambda(t) * f(xt) dt + sig*dwt , 0<=t<=ziT
= c xt dt + nu(t) * k(xt) dt + rho*dvt
x0 “ N ( xm0 , sig0 ** 2 )

where the nonlinearities have bounded derivatives

xmuu <= fx(x) <= xmub
dzetau <= kx(x) <= dzetab

Program tasop generates E [ ( xt - zt )**2 ] together with
the upper and lower bounds u(t) and 1(t) on the optimal

MS error.

If ioption=1 then zt is the "KF" filtered estimate.

If ioption=2 then zt is the BOF filtered estimate.

When ioption=0, two sample paths for xt and zt are generated;
where zt is either from "KF'" (iflag=l) or BOF (iflag=2).

INPUT DATA:

iT = time horizon

N = number of subdivisions in the time interval [ 0, ziT ]
(should be large enough in order for the discretized
stochastic differential to yield a good approximation) .
N<=5000, unless the array dimensions are changed.

(ii) xm0,sig0,sig, a,c,rho,dseed0l, dseedl, dseed2:
xm0,sig0,sig,a,c,rho: parameters of the model
dseed0,dseedl,dseed2: initializations for the random number
generator. These could be any (distinct) numbers between 0
and 1.0e20, preferably as large as possible.

(iii) M, NS

M = number of values to be printed out.
NS = number of sample paths used to compute expectations.

(iv) ioption, iflag : already described.

(v) xmuu, xmub, dzetau,dzetab : derivative bounds.

An array of 2N values is generated. The first set of N numbers
corresponds to the (simulated) true state; i.e.:

x (i*dT), i=0,1,...,N-1, where dT = ziT/N.

The other N values are those of the filtered estimate zt (either
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"KE" or BOF, depending on iflag).
ioption > 0 :

An array of 3N numbers is obtained the first N values of which
are those of p(t) = E [(xt - zt)**2] (zt being either "KF'" or

BOF, depending on ioption), namely:

p(i*dT), i=0,1,....,N-1, where dT=ziT/N.

Similarily, the second and third set of values are those of u(t)
and 1 (t) respectively.

remark: in the case of the "KE'", no computable upper bound exists.

Instead of u(t), the solution of the riccati equation
associated with the limiting linear system r (t) is printed

(2)

()

(c)

Progam tasop uses the IMSLS library for random number
generation. E.g. low could be run as follows:

% £77 -o runlow low.f -limsls

% runlow <inputfile >outputfile

where inputfile is a file in which the data is prealably
stored.

The nonlinearities f and k may be changed by modifying fk and
gk accordingly in the subroutines observy, kalfilt and bofilt.
To change the time functions lambda(t) and nu(t), additional
modifications should be made in the Riccati subroutine (ric)
to the quantities gltt, alp and bet.

Currently, these functions are f(x)=tanh(x), k(x)=x*exp (-x**2),
lambda (t) =exp (-t) *sin (50*t) and nu(t)=1/(t*t+1) .

The quality of the simulation results depends strongly on

how large N and NS are. Typically, N=1000 and NS>=500.

dimension er (5000) ,xx (5000),xxf (5000)

dimension u(5000),x(4).dx(4)

double precision dseed0O, dseedl, dseed2

common /const/deltat,sqd,xm0,sig0,siqg,c,rho,N,iT
common /param/a,xmuu, xmub, dzetau, dzetab

read *,iT,N

read *,xm0,sig0,sig,a,c,rho,dseedl, dseedl, dseed2
read *,M,NS

read *,ioption,iflag

read *,xmuu, xmub,dzetau,dzetab

deltat=1.0*iT/N
sqd=sqrt (deltat)

if (ioption.eq.0) go to 63

do 50 i=1,N
er (i)=0.
continue

if (ioption.eq.2) go to 29

ioption=1 ---> N values of u(t) (=r (t) here) are computed
and used to compute the mmse for the "kf'" applied to
the w.n.l filtering pb.
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37
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o000 00Q0

119

121

65

kswitch=0
kr=0
call ric(kswitch, kr,u)

do 60 j=1,NS
call kfsub (dseed0, dseedl, dseed2, xx, xxf, u)

do 70 k=1,N
er (k) =er (K) + (xx (k) ~xxf (k) ) **2
continue

continue
go to 22

ioption=2
upper bound (N values:u(0)...u(iT)) are computed
and used to compute the BOF mmse error next

kswitch=0

kr=1

call ric(kswitch,kr,u)

do 37 j=1,NS

call bofsub (dseed0,dseedl, dseed2, xx, xxf, u)
do 38 k=1,N

er (k) =er (k) + (xx (K) -xxf (k) ) **2

continue

continue

M (<=N) values of the mmse error are printed next

er (1) =sig0**2
print *,er (1)
do 80 k=2,M

er (k) =er (k) /NS
print *,er (k)
continue

go to 67

ioption=0
two sample paths of the true and (*-) filtered state are
computed.

iflag=l ----> kf-filtered ; 1iflag=2 ----> bof-filtered
if (iflag.eq.2) go to 119

kswitch=0

kr=0

call ric (kswitch, kr,u)
call kfsub (dseed0, dseedl, dseed2, xx, xxf,u)
go to 121

kswitch=0

kr=1

call ric(kswitch, kr,u)

call bofsub (dseed0, dseedl, dseed2, xx, xxf, u)

do 65 k=1,M

print *,xx (k)
continue

do 66 k=1,M



print *,xxf (k)
66 continue

do 141 i=1,M

print *,xxf (i)
141 continue

go to 137

c
c print upper bound u(t)

c in the case of "KF" , i.e. ioption=1, this is just r(t)
c which is not an upper bound for neither pk(t) nor p(t).
c

67 do 135 i=1,N
135 print *,u(i)

c

c compute and print lower bound 1 (t)
kswitch=1
kr=1

call ric (kswitch, kr,u)
do 136 i=1,N

136 print *,u(i)

137 stop
end

kkhkkkkhhkhhkkkkkhk
SOUBROUTINE KESUB

Ahkkhkhkkhkhkhkhkhkkkkkhkkk

aoo00Qa

subroutine kfsub (dseed0, dseedl, dseed2, xx, xxf, u)

0]

real xk,xfk,yk,yyk

double precision dseedl, dseedl, dseed2

dimension xx(5000) ,xxf (5000)

dimension u(5000)

common /const/deltat, sqd,xm0,sig0,sig,c,rho,N,iT
common /param/a,xmuu, xmub, dzetau, dzetab

do 10 k=1,N
kml=k-1
call kalfilt (kml, dseed0, dseedl, dseed2, xk, xfk, yyk, u)
xx (k) =xk
xxf (k) =xfk
10 continue

return
end

khkkkkkhkhkkkhkkkhkikhkkkkk

SUBROUTINE BOESUB

hkhkkhkkkhkhkhkhkhkhkhkhkkhkhkkx

Qaa0na

subroutine bofsub(dseedo,dseedl,dseedz,xx,xxf,u)

Q

real xk,xfk,yk,yyk

double precision dseed0,dseedl, dseed2

dimension xx (5000) ,xxf (5000)

dimension u(5000)

common /const/deltat,sqd,xm0,sig0,sig,c,rho,N,iT
common /param/a,xmuu,xmub,dzetau,dzetab
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do 10 k=1,N

kml=k-1

call bofilt (kml, dseed0, dseedl, dseed2, xk, xfk, yyk,u)
xx (k) =xk

xxf (k) =xfk

continue

return
end

AKkAkAKkKKKAKKXKKkAkAkhkkkkhkkkkkk

SOUBROUTINE OBSERVY

khkkkhkhkkkhkhkkhkhkkhkhkhkkhkhkkhkhkkhkkk

subroutine observy (kml, dseed0,dseedl, dseed2, xk, yk)

khkkhkkhkhkhkkhkhkhkhkkhkhkhkhkhhkhkkhkhhkhhkhhkkhkdkhhhkhhkhkhhkhkhkhkhkhkhkhkihhhkkkhx

observy generates the observation yk=y (k*deltat)

and xk=x (k*deltat) from the model

dx (t)=f(x(t)) .dt + sig.aw(t) , x(0)=x0 N(mO,sig0~2)

dy (kK)=g(x(t)) .dt + rho.dv(t) , y(0)=0

w(t),v(t) standard N(0,t) , deltat=iT/N , sqd its sqrt
ggngf (dseed) generates a N(0, 1) -variate Zk (dseed)

the value of dseed is internally changed by ggnqf for

a future call.
AAKAAAARKAARAKAAKRAAAAKRAAA KA AR AA A A AR AR A KR ARA A A ARk AR A A Ak ARk Ak xk

real xk,xfk,vyk,yyk

real ggnqf, Zk, Qk

double precision dseedl,dseedl, dseed2
common /const/deltat,sqd,xm0,sig0,sig,c,rho,N,iT
common /param/a,xmuu, xmub, dzetau, dzetab
if(kml.gt.0) go to 98

xk=sig0*ggngf (dseed0) +xm0

vk=0.

go to 99

Zk=ggngf (dseedl)

Qk=ggnqf (dseed2)

tk= (kml-1) *deltat
fk=a*xk+exp (-tk) *sin (50*tk) *tanh (xk)
gk=c*xk+xk*exp (-xk*xK) / (tk*tk+1)
xkpl=xk+fk*deltat+sig*sqd*Zk
vkpl=yk+gk*deltat+rho*sqd*Qk

xk=xkp1l

yk=ykpl

gfg=0.

return

end

khkkhkhkkkhkhkkhkhkkhkkhkhkkkhkkkk

SOUBROUTINE KALFILT

khkkkkhkkhkhhkhkhkkhkhkkkikk

subroutine kalfilt(kml,dseedo,dseedl,dseedz,xk,xfk,yyk,u)

khkkhkkkkhkkkhkhhkhkhhhhkhkhhkhhkhhkhkhhhdhhkhhkhhkhhhkhkkkhrkhhhkkhhhx

Using observations from from the model in subroutine
observy this subroutine generates xfk=xf (k*deltat)



Q000000

aaQaQaa00a0

aoaoaoaaaaonaa00n

78

79

78

where xf(t) is the kalfilt (constant gain filter)
dxf(t)=f(xf(t)) .dt + sig/rho[dy(t) - c.xf(t) .dt]

xf (0) =E (x0) =m0

kalfilt is asymptotically optimal as rho--->0, f cone
bounded and observations linear.

(kalfilt also returns the true state xk)
IEE R RS R RS EEEE SRS RS EESEREREEEEEEEEELESELEREEEEEEESSS

real xk,xfk,vyk,yyk

real gagnqf, Zk,Qk

dimension u(5000)

double precision dseed(,dseedl, dseed2
common /const/deltat, sqd,xm0,sig0,siqg,c,rho,N,iT
common /param/a,xmuu, xmub, dzetau, dzetab
if(kml.gt.0) go to 78

x fk=xm0

yyk=0.

call observy (kml, dseed0,dseedl, dseed2, xKk, yK)
go to 79

fk=a*xfk

call observy (kml, dseed0, dseedl, dseed2, xk, yk)
yykpl=yk

dyyk=yykpl-yyk

gain=c*u (kml) / (rho**2)
xfkpl=xfk+fk*deltat+gain* (dyyk-c*xfk*deltat)
xfk=xfkpl

yyk=yykpl

return

end

khkkhkkkhkhkkhkkkhkkkkkk

SUBROUTINE BOFILT:
khkkhhkhhkkhkkhkkhk*

subroutine bofilt (kml, dseed0,dseedl, dseed2, xk, xfK, yyK, u)

khkkhkhkhkhkhkhhkhkhkhkhhkhkhkhkhhkhkhkhkhhkkhkhkhhhkhhkhdhkhhhkhhhhkhkhkhkkhhkhkhhk

Using observations from from the model in subroutine
observy this subroutine generates xfk=xf (k*deltat)
where xf (t) is the kalfilt (constant gain filter)

dxf (t)=f(xf(t)) .dt + sig/rho[dy(t) - c.xf(t).dt]

xf (0) =E (x0) =m0

kalfilt is asymptotically optimal as rho--->0, f cone
bounded and observations linear.

(kalfilt also returns the true state xk)
khkhkhkkhkkhkkdhhhkhkhkhhhhkkkhkhkhhkkhAAhkdhhhkkhkhkhhkhkkkhkkhkkhhkkhhdkhx

dimension u(5000)

real xk, xfk,yk,yyk

real ggngf, Zk, Qk

double precision dseed0, dseedl, dseed2
common /const/deltat, sqd,xm0,sig0,sig,c,rho,N,iT
common /param/a,xmuu, xmub, dzetau, dzetab
if(kml.gt.0) go to 78

x fk=xm0

yyK=0.

call observy (kml, dseed0,dseedl, dseed2, xk, yKk)
go to 79

tk= (kml-1) *deltat
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fk=a*xfk+exp (-tk) *sin (50*tk) *tanh (xfk)
gk=c*xfk+xfk*exp (-xfk*xfKk) / (tk*tk+1)

call observy (kml, dseed0, dseedl, dseed2, xk, yk)
yykpl=yk

dyyk=yykpl-yyk

bofgain=c*u (kml) / (rho**2)
xfkpl=xfk+fk*deltat+bofgain* (dyyk-gk*deltat)

xTk=xfkpl
yyk=yykpl
return
end

kkkhkhkhkhkhkhkhkhkkkkk

SUBROUTINE RIC:

kkhkkkkhkkkhkkhkhkkkkx

subroutine ric (kswitch, kr,u)

dimension u(5000),x(4),dx(4)

common /const/deltat, sqd,xm0,sig0,siqg,c,rho,N,iT
common /param/a,xmuu, xmub, dzetau, dzetab
h=deltat

delmu= (xmub-xmuu) /2

if (kswitch.eq.0) goto 17

pl=xmuu

pi2=dzetab

goto 18

pl=xmub

p2=dzetau

m=1

x(1)=sig0**2

u(l)=x(1)

t=0.0

k=0

m=0

write the ode

gltt=4* (rho*exp (-t) *sin (50*t) *delmu/sig) **2
alp=atkr*exp (-t) *sin (50*t) *pl
bet=ct+kr*p2/ (t*t+1)

r2=rho**2

dx (1) =sig**2+2.0*alp*x (1) - (bet**2+kswitch*qltt) * (x (1) **2) /r2
call runta(nn,k,ii,x,dx, t, h)

go to (1,2),1ii

m=m+1

u (m+1) =x (1)

if (t.le.iT) go to 1

return

end

subroutine runta(nn,k,ii,x,dx,t, h)
dimension y (4),z (4),x(4) ,dx(4)
k=k+1

go to (1,2,3,4,5).k

do 10 j=1,mn

2 (1)=d% ()

Yy (3)=x(J)

x(3)=y (J) +0.5*h*ax (J)

t=t+0.5*h

ii=1



return

do 15 j=1,mn

z (3) =z (j) +2.0*ax (3)

x (3)=y (3) +0.5*h*ax (3)
ii=1

return

do 20 j=1,mn

z (j)=z(3) +2.0%dx (3)
x(3) =y (J) th*dx (3)

go to 25

do 30 j=1,nn
x(3) =y (3) +(z (3) +ax (3) ) *h/6.0
ii=2

k=0

return

end



