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Chapter 1

Introduction

In this thesis we are going to use U.S. Census data to study median household

income distribution for 13 U.S. counties and seven U.S. states. Over the years, re-

searchers have fitted income data with various probability distributions. During our

review of the literature, we saw that researchers do not agree on any one best distri-

bution. This is a good thing for us, because it allows us to choose the distribution

that best fits our data.

We will be looking at lognormal, gamma and Weibull, each of which has two

parameters. We will also investigate the Singh-Maddala, which has three parame-

ters. Finally, we will introduce the Generalized Beta II, which has four parameters.

These distributions will be tested using Mean Squared Error, Mean Absolute

Error and Chi-square Goodness-Of-Fit. We explore QQ plots to make determina-

tions as to which distribution best fits our observed data. We also use Akaike’s

Information Criterion, or AIC, and Bayesian Information Criterion, or BIC, for

distribution selection.

1.1 Survey

In the following section, we survey some of the major results discovered in the

study of income distributions.
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1.1.1 Pareto

The study of income distributions began in earnest in the early 20th Century.

H.L. Moore [14] argued for a statistical complement to the pure economics that had

begun about 130 years earlier with the work of Adam Smith. It was around that

time that new income and property tax laws in several countries began to provide

statisticians and economists with rich sources of data.

Pareto [15] was one of the earliest researchers to take advantage of the wealth

of new data. He plotted the cumulative distributions of income for several cities

throughout Europe on double logarithmic paper, and he discovered that in each case

the result was a straight line with about the same slope. Refering to Figure 1.1, we

see the same effect with data from three U.S. counties.

Pareto argued that these distributions could be characterized by the curve

logN = A− α(log x),

where N is the number of households with incomes greater than x, A is a parameter

and α is the absolute value of the slope. The law says that for x = x1, x2, . . . that

the logarithm of the number of incomes exceeding x is a linear function of log x.

Pareto’s law is not obeyed for low incomes. In Figure 1.1, we did not include the

lower incomes, as they do not form the nice downward sloping lines predicted by

Pareto’s equation. Pareto defined a minimum income h = (A/P )1/α, where P is

total population, as the cutoff for including the lower incomes.

Pareto studied data from many different populations, as diverse as ancient

Peru, the Cherokee Indians, and Prussia, and he noticed that they all had quite
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Figure 1.1: Pareto’s Law

similar distributions of income. The same principle will be observed in the data used

in this study from U.S. counties and states in the year 2000. In fact, Pareto claimed

that this curve is the equilibrium position, and that wealth is always distributed in

the same proportions across societies.

Pareto’s claim of equilibrium convinces us that it is appropriate to use the

measure of income provided by the Census, that is, the median household income

by block group. We have this data per county and per state, and in both cases, we

see the same results for the best fit.
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1.1.2 The Mid 20th Century

Champernowne [2] suggests a cumulative distribution function of

F (t) =
N

θ
tan−1

{
sin θ

cos θ + (t/t0)α

}
and the probability density function is

f(t) =
αN sin θ

θt {(t/t0)α + 2 cos θ + (t/t0)
α}

where F (t) is the number of incomes exceeding t, N is the value of F (0), which can

be interpreted as the total number of people with any income at all. The parameter

t0 is the median income, and α can be shown to equal the slope of the high-income

asymptote to the curve y = F (t) when plotted on log-log paper.

The problem is with the parameter θ. In [3], Champernowne suggests that no

simple economic interpretation can be given to the fourth parameter θ. This is a

problem, as we like our mathematical equations to be interpretable.

Champernowne says that this form is especially well suited for high incomes,

and that it follows the form predicted by Pareto’s Law. Champernowne [2] writes

the following, which is an idea brought up by many authors who study income

distribution:

The forces determining the distribution of incomes in any community

are so varied and complex, and interact and fluctuate so continuously,

that any theoretical model must either be unrealistically simplified or

hopelessly complicated.
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Champernowne chooses the former, but then goes on to say in Section 3 of [2] that

certain assumptions in his example model do not approach reality at all. Neverthe-

less, the author believes that his assumptions will lead to a better understanding of

the actual distributions of income.

Rutherford [17] says that researchers want to produce an explanation of the

factors determining the distribution of income. We want our parameters to have

a clearly interpretable economic relevance. This means that we can’t just have a

model with many parameters, but one that fits the empirical data well, if we can’t

find a real world explanation for those parameters.

1.2 An Example Of The Problems With Fitting Income Distributions

Majumder and Chakravarty [8] state that in applied work, the models most

frequently used are the Pareto, lognormal and gamma distributions. All three of

these distributions are parsimonious with respect to the number of parameters, and

those parameters are easily interpretable into real life meanings.

The authors describe four characteristics that income distributions should sat-

isfy. They are (1) The Weak Pareto Law by Mandelbrot [9], (2) parametric parsi-

mony, (3) generality, and (4) computational simplicity.

The authors admit some shortcomings of each distribution, such as the fact

that the lognormal and gamma distributions do not satisfy the Weak Pareto Law,

and that none of the three distributions accurately model the whole range of incomes.
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1.2.1 Weak Pareto Law

To understand the Weak Pareto Law, we must first consider the Strong Pareto

Law. Let P (u) be the percentage of individuals with an income U exceeding some

number u, where u is assumed to be continuous. The Strong Pareto Law says that

P (u) =


(u/u0)−α, when u > u0

1, when u < u0

Then the density p(u) = −dP (u)/du satisfies

p(u) =


α(u0)αu−(α+1), when u > u0

0, when u < u0

This distribtuion is fully specified by two state variables, u0, a scale factor, and α

which is an index of inequality of income distribution. Graphically, this strong law

tells us that the log-log graph of y = logP as a function of v = log u is a straight

line.

The Strong Pareto Law is acknowledged to be unjustified by the empirical

data, so Mandelbrot [9] suggests this Weak Pareto Law,

P (u) behaves like (u/u0)−α, as u→∞.

or

P (u)

(u/u0)−α
→ 1, as u→∞

Graphically, this means that the curve (log P , log u) is asymptotic to the

straight line which represents the Strong Pareto Law.
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1.2.2 Majumder and Chakravarty

The authors Majumder and Chakravarty [8] go on to propose the following

model which is represented by the following probability density function

f(x; a, b, c, d) =
bda/bc(b/d)−ax(b/d)−a−1

B((1/d)− (a/b), a/b)
((cx)b + d)−1/d,

for x > 0 and b > ad, and where B(·, ·) denotes the beta function, and the parame-

ters a, b, c, d may be thought of as the Pareto constant for high income, the rate of

convergence of the distribution to the Pareto distribution, the scale parameter, and

the flexibility parameter respectively.

The authors Majumder and Chakravarty claim this model provides a better

fit to some income data than the lognormal, gamma, Singh-Maddala, Dagum, and

the generalized beta of the second kind (GB2) distributions, and they go on to back

up their findings with empirical results.

This distribution proposed by Majumder and Chakravarty also contains the

Singh-Maddala as a special case. The Singh-Maddala distribution can be obtained

by setting

• a = a2a3

• b = a2

• c = (a1/(a3 + 1))1/a2

• d = 1/(a3 + 1).

A few years after Majumder and Chakravarty claimed to have created a distri-

bution which fits the data better than all other distributions, the authors McDonald
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and Mantrala [11] gave dispute to those findings. They go on to show that the

model proposed by Majumder and Chakravarty is actually a reprameterization of

the Generalized Beta II, and that Majumder and Chakravarty’s analysis of the data

is flawed. The Generalized Beta II is defined by the probability density function

GB2(x; a, b, p, q) =
|a|xap−1

bapB(p, q)(1 + (x/b)a)p+q

where the parameters b, p, and q are positive. We will speak of the Generalized Beta

II again in Section 2.4.2.

The authors McDonald and Mantrala show that the Majumder and Chakravarty

model and the Generalized Beta II model can be related as follows:

M&C → GB2 : (|a|, b, p, q) = (β, δ1/β/γ, 1/δ − α/β, α/β)

GB2 →M&C : (α, β, γ, δ) = (|a|q, |a|, (p+ q)−1/|a|/b, 1/(p+ q))

The authors McDonald and Mantrala explain the flaws in Majumder and Chakravarty’s

analysis of data by saying that the different studies they compare against their find-

ings are based on different intervals of income data, different groupings, different

base years, and different estimation procedures.

This is just one example of how there is not much agreement on the best density

to use to fit to income distribution. In many of the references in the bibliography

of this thesis, we find that the authors admit that it is hard to agree on the best fit,

and they go on to say that there is often a trade off between getting a good fit and

hitting all four of the characteristics listed above.
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1.2.3 Parametric Models

The authors Fesser and Ronchetti [22] have a few criticisms about parametric

models. They state that many studies on income data have come to the conclu-

sion that the model does not fit the data well. They mention several sources for

deviations from the models, including outliers, grouping effects and other general

misspecifications of the model. By grouping effects, the authors are referring to

grouping the data into bins for histograms.

These deviations can affect the maximum likelihood estimators for the param-

eters of our models, and that can cause the model to become biased and inefficient.

This could then affect income inequality measures used by economists, such as the

Gini coefficient. The authors state that a few extreme observations could impact

the inequality measure, causing the measure to no longer represent the inequality

for the whole population.

1.3 The Data

The data we will use in the analysis of our distributions come from the 2000

Decennial Census. The United States Census Bureau conducted the census and

published the data.

We downloaded our data from American FactFinder on the U.S. Census Bu-

reau’s website www.census.gov [1].

The data come from Table P53 of the SF3 file from the 2000 Decennial Cen-

sus. The title of the table is Median Household Income in 1999 (Dollars). Median
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household income is defined as the amount which divides households into two equal

groups, one having incomes above that amount and the other having incomes below

that amount. The universe for our data are households, which the U.S. Census

Bureau defines as all people who occupy a housing unit. So for our data, the value

reported is that which divides all the households in a particular block group into

two equal groups.

The U.S. Census Bureau conducts a full census every ten years in order to

enumerate the people so that seats in the U.S. House of Representatives may be

apportioned according to state population. The U.S. Constitution demands that a

full census be taken every ten years in Article I Section 2.

The information contained in Table P53 is actually from survey data, not a

full census. In the 2000 Census, the “long form” was used to collect extra data other

than number of people in the household. This form was sent to approximately one

out of every six households.

Since the long form is a sample survey and not a census, the data collected

are not the same. For instance, in a survey, each household interviewed is given a

weight greater than one, whereas in a census each household would have a weight

of exactly one.

The data are reported in units as small as Census Block Groups and as large

as the entire United States. Our data are reported as the median income Xi for each

block group i in a county or state. According to www.census.gov, a block group is

the smallest geographic unit for which the Census Bureau tabulates sample data.

In Figure 1.2 we see what block groups look like. There are 426 block groups
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with valid data in the District of Columbia. By valid data we are speaking of data

points which are not NA. We occasionally encounter block groups which are NA, an

example of which is the block group that contains the National Mall in Washington,

DC. Refer to Table 2.2 to see the number of block groups N in each data set.

Figure 1.2: District of Columbia Census Block Groups

There is another thing to note about the data. For reasons related to data

privacy and confidentiality, the very top incomes are masked in the reported data.

If the median household income of a block group is above $200,000, then that block

group is reported as $200,001. This practice is known as top-coding. The U.S.

Census Bureau defines top-coding as method of disclosure limitation in which all

cases in or above a certain percentage of the distribution are placed into a single
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category.

This data masking affects the data in small ways. If there are many block

groups with median household income greater than $200,000, then that causes a

small bump in the histogram to appear near the end of the right hand tail of our

data, which could affect the parameter estimates for our fitted models. To guard

against this, we truncated the data to only include values less than $200,001.

1.3.1 Assumptions About the Data

We make two assumptions about the data. The data are top-coded, so we

truncate the data. Our data are of the form X|X < 200001. Our first assumption

is that we are using density functions of the form

f(x; θ)

P (X < 200001)
, where 0 < x < 200001.

This cutting point for the truncation is very large. In every county or state we

investigate, the amount of trucated data are less than 1% of our total amount

of our total number of observations per county or state. In many cases, no data

are truncated. The probability P (X < 200001) is very close to 1 in every case.

Therefore, for practical considerations, we are fitting data to density functions of

the form

f(x; θ), where x > 0.

To see how many observations get truncated in each data set, refer to Table 1.1.

The columns PreN and PostN refer to the number of observations before truncation

and after truncation, respectively. The column Percent refers to the percentage of

12



observations that were truncated.

We will also assume independence of the data, even though it is reasonable to

believe that the data is not truly independent. Two neighboring block groups are

more likely to have the same median household income than a block group on the

other side of the county. Since we are not concerned with the spatial aspects of the

data, this assumption seems reasonable.

We did not consider mixed distributions as they are not mentioned in the

literature of income distributions. That is because we only considered positive

income x where x > 0.

1.4 The Counties and States

Refer to Figures 1.3 through 1.9 to see the histograms for the data we are

investigating. The vertical line in each figure shows the mean of our data for each

histogram. Of special interest is the histogram for New York County, which is

coextensive to the New York City Borough of Manhattan, in Figure 1.5. We will see

later that the New York County data do not stand up against our conclusions for

the best probability density model to use, and we suggest a way to make the data

agree with our conclusions.
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Table 1.1: Number of truncated data per county or state.

County/State Truncated Pre N Percent Post N

Los Angeles 25 6268 0.399 6243

San Francisco 1 573 0.175 572

Denver 0 468 0.000 468

District of Columbia 1 427 0.234 426

Fulton 3 446 0.673 443

Cook 13 4184 0.311 4171

Suffolk 0 629 0.000 629

Baltimore City 0 701 0.000 701

New York County 5 850 0.588 845

Multnomah 0 508 0.000 508

Philadelphia 2 1775 0.113 1773

Dallas 10 1675 0.597 1665

Richmond City 1 163 0.613 162

Georgia 3 4775 0.063 4772

Massachusetts 8 5032 0.159 5024

Maryland 6 3648 0.164 3642

New Jersey 19 6447 0.295 6428

Virginia 5 4722 0.106 4717

Kansas 1 2288 0.044 2287

Utah 0 1472 0.000 1472
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Figure 1.3: Three Counties Median Household Income Distribution
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Figure 1.4: Three Counties Median Household Income Distribution, 2
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Figure 1.5: Three Counties Median Household Income Distribution, 3
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Figure 1.6: Three Counties Median Household Income Distribution, 4
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Figure 1.7: One County, Two States Median Household Income Distribution, 5
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Figure 1.8: Three States Median Household Income Distribution, 6
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Figure 1.9: Two States Median Household Income Distribution, 7
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Chapter 2

Four Densities

We will now investigate four probability density functions and try to find the

best one that fits our data. Our data are median household incomes for block groups

in several US counties and states. The data has been truncated so we have data x

such that x ≤ 200, 000.

A household income distribution gives us a variability which can be interpreted

as income inequality. This is a useful measure for economists and demographers.

Fonseca and Tayman [6] state that there are three ways to estimate income distri-

bution.

First, one can use sample surveys, such as the Current Population Survey

(CPS). The CPS is a national level survey, and is not useful for substate areas such

as counties or cities.

Next, one can analyze income tax data, which can be useful for smaller, sub-

state areas, but income tax data also has both postive aspects and drawbacks. It

represents a complete count and not a survey, but some states do not have an income

tax, and therefore cannot be studied at the substate level.

Finally, we have the method of mathematical modeling. Mathematical models

are useful because they provide a way to describe income distribution without having

to conduct a survey or collect data. Instead the model is formulated through a series
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of assumptions and underlying processes and then tested against existing empirical

data.

Different researchers have come up with different factors to relate to income

distributions, such as age and educational level, but Fonseca and Tayman [6] state

that there is no agreement about the underlying generation processes that lead to

income distributions.

It makes sense to relate our income distributions to known densities, because

that allows statisticians, economists and demographers to use all the knowledge

about those densities in the analysis of our data.

Next we will review at some characteristics of four different densities that we

will be looking at in the analysis of our data. Looking at a histogram of our data

suggests that we study certain kinds of distributions, that is, distributions with a

long right hand tail. We are going to study the Lognormal, Gamma, Weibull and

Singh-Maddala. We will also introduce the Generalized Beta II distribution and

relate it to the previous four distributions.

2.1 The Lognormal Density

A variable X has a lognormal distribution if Y = logX has a normal distri-

bution. Suppose Y is N(µ, σ2). Then we have

E(X) = eµ+σ2/2,

Var(X) = e2µ+σ2

(eσ2 − 1).
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The lognormal cumulative distribution function (cdf) is defined as

F (x) =
1

2
+

1

2
erf

[
ln(x)− µ

σ
√

2

]

where erf is the error function

erf(x) =
2√
π

∫ x

0

e−t2dt.

The lognormal has a probability density function (pdf)

f(x;µ, σ) =
1

xσ
√

2π
exp

[
−(ln(x)− µ)2

2σ2

]
, x > 0.

It is interesting to note that even though all moments exist and are given by

E(Xs) = esµ+s2σ2/2,

there is no moment generating function for the lognormal distribution.

According to the Encyclopedia of Statistical Sciences by Kotz & Johnson [7],

the lognormal distribution is often used as a model for the distribution of income

and wealth, and it should be considered as a possible model any time a model with

positive skewness is needed. Positive skewness means that the right hand tail is

longer, and that is the case with our data.

2.1.1 Choosing Between X and logX

How do we know we should use lognormal instead of the more common and

more familiar normal density? Let’s look at some of the literature. Sclove [19]

compares the maximum likelihood method of Box and Cox to the method of using

correlation coefficients to make a choice between Y = α+ βX and log Y = α+ βX.
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Figure 2.1: The Lognormal Distribution for various values of σ2.

Sclove goes on to show that the likelihood method ends up being preferable since it

it based on a probability model which lets us give a confidence statement about the

choice of the model.

In our case, Y represents the median household income in 1999, the full year

prior to the 2000 Census. The Box and Cox transformation is defined for all real λ

by

y(λ) =


(yλ − 1)/λ, if λ 6= 0

log y, if λ = 0

for y > 0. To find the correct λ to use in the Box-Cox transformation, we need to

maximize the log likelihood function,

l(λ) = −n
2

log σ̂2(λ) + (λ− 1)
n∑

i=1

log yi
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with respect to λ. The maximum likelihood estimate of λ is the value λ̂ which

maximizes l(λ). The 100(1− α)% confidence interval for λ is

{
λ : l(λ) > l(λ̂)− 1

2
χ2

1−α(1)

}

where χ2
p(f) denotes the 100 · p-th percentile of the chi-square distribution with f

degrees of freedom.

We can use the software package R [16] to graph λ so we can find the maximum.

We graph λ versus l(λ) using the R command boxcox [21]. The command boxcox

computes the log-likelihoods for the parameter of the Box-Cox power transformation

within the framework of a normal error model. We see in Figure 2.2 that the 95%

confidence interval contains 0, so we will choose λ = 0 and we will log transform our

data Y . Therefore, it is correct to use the lognormal density instead of the normal

distribution for the District of Columbia data. Refer to Table 2.1 to find out if it is

appropriate to use lognormal for each of our data sets. As we see in Table 2.1, it is

not always appropriate to consider each of our data sets to be lognormal.

Another way of discovering whether to use Y or log(Y ) is to look at the Q-Q

plot. We notice in Figure 2.3 that the left figure is not a good fit and that the right

figure shows a better fit. We can see that the log transform renders the distribution

closer to normal, although the fit is only really good in the middle. The fit in the

tails is a little bad, but that was expected from reading the literature.
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Table 2.1: Values of λ for Box Cox transform

County/State λ Does 95%CI contain 0?

Los Angeles County 0.07 Yes

San Francisco County 0.58 No

Denver County 0.14 Yes

District of Columbia 0.11 Yes

Fulton County 0.12 Yes

Cook County 0.38 No

Suffolk County 0.49 No

Baltimore City 0.12 Yes

New York County 0.11 Yes

Multnomah County 0.18 Yes

Philadelphia County 0.29 No

Dallas County 0.08 Yes

Richmond City 0.02 Yes

Georgia 0.12 No

Massachusetts 0.37 No

Maryland 0.30 No

New Jersey 0.33 No

Virginia 0.02 Yes

Kansas -0.17 No

Utah 0.09 Yes
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Figure 2.2: When deciding whether to use normal or lognormal, we find the maxi-

mum log likelihood for λ. District of Columbia median household income per block

group data.

2.2 The Gamma Density

The gamma cdf is defined as

F (x; k, θ) =

∫ x

0

f(u; k, θ) du =
γ(k, x/θ)

Γ(k)

where γ(k, x/θ) is called the lower incomplete gamma function and is defined as

γ(a, x) =

∫ x

0

ta−1 e−t dt.

The gamma distribution has a probability density function of

f(x;α, λ) =
λα

Γ(α)
xα−1e−λx for x > 0 and α, λ > 0
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Figure 2.3: Choosing between normal and lognormal models. Comparing the Q-Q

plots of X vs. log(X), District of Columbia data

where α and λ are the shape parameter and scale parameter, respectively, and

Γ(α) =

∫ ∞

0

e−uuα−1du

is the gamma function. The mean is given by α/λ and the variance is given by

α/λ2. Note that when α = 1, the gamma distribution reduces to the exponential

distribution. To see this and other values of α refer to Figure 2.4.

The moments for the gamma distribution exist and are given by

E(Xs) =
Γ(α+ s)

λsΓ(α)

and the moment generating function is given by

(
λ

λ− t

)r

for t < λ.

The maximum likelihood estimators of λ and α may be derived by solving the
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Figure 2.4: The Gamma Distribution for various values of α

following two equations,

λ̂ = α̂/X̄,

log α̂− ψ(α̂) = log X̄ − log X̃ = log X̄/X̃,

where X̄ =
∑

iXi/N is the arithmetic mean, X̃ = (
∏

iXi)
1/N is the geometric mean,

and ψ(α) is the digamma function, which is available in R. The digamma function

is defined as ψ(x) = Γ′(x)/Γ(x). We want to estimate λ̂ and α̂ so we can use them

as initial values for the R function fitdistr() which we will use in our analysis of

the data.

Note that log α̂−ψ(α̂) is a strictly decreasing function of α̂. So, given log α̂−

ψ(α̂), we can find α̂ visually by looking at Figure 2.5.

30



Figure 2.5: Finding α̂ for the Gamma Distribution, District of Columbia data

For the District of Columbia median household income data, log X̄/X̃ =

0.1738, so we can look at Figure 2.5 and see that α̂ = 3.034 approximately. That

gives us λ̂ = 6.2956× 10−05.

Salem and Mount [18] assert that income distribution density functions should

provide reasonably close approximation to the true distribution and have parameters

that are easy to estimate and to interpret in an economically meaningful way. In

practice, these criteria often compete with each other. For example, the lognormal

distribution has parameters that are easy to estimate and to relate to inequality

measures, but it doesn’t fit the full range of income data very well.

According to Salem and Mount [18], the shape parameter can be associated

with the concept of proportionate growth in income, while the scale parameter can be
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thought of as a measure of income inequality. The two parameters of the lognormal

distribution can be interpreted in the same way, in fact, the authors assert that

lognormal is the closest alternative to gamma in terms of the ease of interpretation

of the parameters. However, the authors claim that the gamma fits income data

better than lognormal.

2.3 The Weibull Density

Our final two parameter probability density is the Weibull distribution.

The Weibull distribution has a cdf defined as

F (x; k, λ) = 1− e−(x/λ)k

for x ≥ 0.

The Weibull distribution has a pdf of

f(x; k, λ) =
k

λ

(x
λ

)k−1

e−(x/λ)k

, x ≥ 0

where k > 0 is the shape parameter and λ > 0 is the scale parameter. Note that

when k = 1 the Weibull reduces to the exponential, and when k = 3.4 the Weibull

appears similar to the normal distribution. The mean and variance of the Weibull

are given by the following

E(X) = λΓ(1 + 1/k)

V ar(X) = λ2[Γ(1 + 2/k)− Γ2(1 + 1/k)] .

The Weibull distribution has moments of

E(Xs) = (1/λk)−s/kΓ
(
1 +

s

k

)
.
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Figure 2.6: The Weibull Distribution for various values of k

The authors of the Weibull article in [7] state that the Weibull density is

generally compared to the lognormal, gamma and exponential distributions. This

means it is appropriate for us to include Weibull in our investigation of the proper

model to fit to income distributions.

2.4 Distributions With More Than Two Parameters

Now we can look at other distributions that have more than two parameters.

In some cases, it might not be appropriate to compare the fit of these distributions

with our previous three distributions. Particularly, see the comment on the Singh

Maddala paper by Cramer [4]. Cramer points out that Singh and Maddala report
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the Sum of Squared Errors between observed and calculated frequencies, and they

compare their results to Salem and Mount [18], who favor the Gamma density when

fitting income distributions. Cramer criticizes Singh and Maddala for failing to

point out that they are estimating three parameters while Salem and Mount use

two parameters.

2.4.1 Singh-Maddala

The authors Singh and Maddala [20] suggest a cdf for the Singh-Maddala

function given by

F (x; a, b, c) = 1− 1

(1 + ayb)c

The pdf is then given as

f(x; a, b, c) =
abcxb−1

(1 + axb)c+1

and the authors McDonald and Ransom [13] derived the following mean

E(X) =
Γ(1/b+ 1)Γ(c− 1/b)

(a1/b)Γ(c)

The help files for the software Stata give the variance for the Singh-Maddala density

as

V ar(X) =
Γ(2/b+ 1)Γ(c− 2/b)

(a2/b)Γ(c)
− (E(X))2.

Singh and Maddala compare their distribution to the work done by Salem and

Mount [18] on the gamma distribution, and the authors find that their distribution

fits Salem and Mount’s data better than either lognormal or gamma.
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Note that the Weibull distribution is a special case of the Singh-Maddala

distribution where we take the limit as c → ∞ and let a = 1/βbc. Therefore we

should expect the Singh-Maddala to fit our data at least as well as the Weibull in

every case.

2.4.2 Generalized Beta Of The Second Kind

In this section, we will introduce the Generalized Beta of the Second Kind, or

GB2. We noted that the Majumder and Chakravarty [8] model was actually shown

to be a re-parameterization of the GB2. McDonald and Mantrala [11] define the

four parameter GB2 pdf by the expression

f(x; a, b, p, q) =
axap−1

bapB(p, q)(1 + (x/b)a)p+q

for x ≥ 0 and B(·, ·) is the Beta function.

According to the authors of the VGAM library [23] for the software R [16], the

GB2 has a mean of

E(X) =
bΓ(p+ 1/a)Γ(q − 1/a)

Γ(p)Γ(q)

when −ap < 1 < aq.

2.4.3 Relationship to other three distributions

McDonald [12] has a figure that shows how all our distributions are actually

special cases of the GB2. Starting with the four paramter GB2 distribution, we can

get the three parameter Singh-Maddala distribution by setting p = 1.

35



We can derive our other two parameter distributions as well. We must first

introduce an intermediate distribution called Generalized Gamma (GG) which can

be found by letting q →∞ and b = q1/aβ in the GB2. Thus, the pdf for the GG is

f(x; a, β, p) =
axap−1e−(x/β)a

βapΓ(p)

for x ≥ 0. From this equation for GG, we can get the lognormal distribution by

letting βa = σ2a2 and p = (aµ + 1)β−a. To get the gamma distribution, we let

a = 1, and to get the Weibull distribution we let p = 1.

Since the three distributions lognormal, gamma, and Weibull are all special

cases of the GB2, we would expect GB2 to always fit an income size distribution at

least as well as those. But consideration must be given to the difference between

having four parameters and the simpler, more parsimonious distributions which have

only two parameters.

2.5 Estimating The Parameters

We use the R function fitdistr() to fit the Lognormal, Gamma and Weibull

density models to our data. To fit the Singh-Maddala model, we use the VGAM

library in R. The values for the estimated parameters for each distribution are in

Table 2.2 and Table 2.3. We can look at the standard errors for the estimates of the

parameters of each distribution in Table 2.4 and Table 2.5.
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Table 2.2: Parameters for each county or state and each distribution

County/State N ln.mean ln.sd g.scl g.shp

Los Angeles 6243 10.66 0.49 11277 4.28

San Francisco 572 10.95 0.45 10676 5.83

Denver 468 10.60 0.44 8154 5.39

District of Columbia 426 10.61 0.60 15884 3.03

Fulton 443 10.58 0.72 22838 2.19

Cook 4171 10.67 0.51 10908 4.43

Suffolk 629 10.53 0.48 8209 5.05

Baltimore City 701 10.26 0.47 6808 4.58

New York 845 10.63 0.68 20771 2.48

Multnomah 508 10.64 0.39 6399 7.03

Philadelphia 1173 10.22 0.51 7252 4.28

Dallas 1665 10.67 0.51 12165 4.01

Richmond City 162 10.29 0.51 8328 4.02

Georgia 4772 10.51 0.50 9512 4.34

Massachusetts 5024 10.79 0.47 10519 5.09

Maryland 3642 10.81 0.51 12697 4.39

New Jersey 6428 10.89 0.48 12136 4.93

Virginia 4717 10.69 0.50 12188 4.09

Kansas 2287 10.55 0.39 6476 6.40

Utah 1472 10.71 0.37 6441 7.45
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Table 2.3: Parameters for each county or state and each distribution, continued

County/State w.shp w.scl sm.log(a) sm.log(scl) sm.log(q)

Los Angeles 2.05 54205 1.20 10.75 0.19

San Francisco 2.62 70671 1.27 11.30 0.88

Denver 2.27 49322 1.44 10.58 -0.04

District of Columbia 1.70 53879 1.12 10.60 -0.02

Fulton 1.48 55273 0.80 10.78 0.30

Cook 2.18 54812 1.12 11.01 0.72

Suffolk 2.46 47087 1.09 11.06 1.15

Baltimore City 2.03 35760 1.22 10.45 0.43

New York 1.62 57347 0.67 11.41 1.13

Multnomah 2.55 50278 1.63 10.61 -0.11

Philadelphia 2.09 35093 1.07 10.61 0.80

Dallas 1.93 54717 1.29 10.63 -0.08

Richmond City 1.90 37507 1.27 10.31 0.03

Georgia 2.04 46325 1.24 10.58 0.16

Massachusetts 2.36 60542 1.17 11.12 0.75

Maryland 2.17 62976 1.08 11.17 0.73

New Jersey 2.32 67548 1.16 11.19 0.65

Virginia 1.99 55868 1.31 10.62 -0.15

Kansas 2.28 46085 1.73 10.41 -0.45
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Table 2.4: Standard errors for estimated parameters

County/State ln.mean ln.sd g.scl g.shp

Los Angeles 0.0063 0.0044 203 0.0729

San Francisco 0.0189 0.0134 631 0.3302

Denver 0.0204 0.0145 522 0.3302

District of Columbia 0.0290 0.0205 1221 0.2119

Fulton 0.0343 0.0242 2937 0.2320

Cook 0.0079 0.0056 264 0.1002

Suffolk 0.0191 0.0135 477 0.2791

Baltimore City 0.0179 0.0127 367 0.2393

New York 0.0232 0.0164 1301 0.1356

Multnomah 0.0171 0.0121 411 0.4350

Philadelphia 0.0122 0.0086 246 0.1372

Dallas 0.0125 0.0089 419 0.1302

Richmond City 0.0398 0.0282 909 0.4143

Georgia 0.0072 0.0051 197 0.0848

Massachusetts 0.0066 0.0047 206 0.0952

Maryland 0.0084 0.0059 317 0.1030

New Jersey 0.0059 0.0042 242 0.0926

Virginia 0.0073 0.0052 264 0.0831

Kansas 0.0082 0.0058 193 0.1838

Utah 0.0097 0.0069 246 0.2746
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Table 2.5: Standard errors for estimated parameters, continued

County/State w.shp w.scl sm.log(a) sm.log(scl) sm.log(q)

Los Angeles 0.0184 320 0.0187 0.0232 0.500

San Francisco 0.0789 1269 0.0570 0.0972 0.2405

Denver 0.0733 993 0.0710 0.0623 0.1661

District of Columbia 0.0575 1261 0.0741 0.0904 0.1754

Fulton 0.0514 1551 0.0690 0.1365 0.1975

Cook 0.0245 458 0.0214 0.0388 0.0807

Suffolk 0.0727 727 0.0532 0.1291 0.2770

Baltimore City 0.0510 706 0.0540 0.0745 0.1671

New York 0.0415 1099 0.0460 0.1686 0.2359

Multnomah 0.0780 912 0.0690 0.0484 0.1557

Philadelphia 0.0347 389 0.0326 0.0648 0.1302

Dallas 0.0372 1250 0.0379 0.0377 0.0869

Richmond City 0.1031 1704 0.1192 0.1282 0.2899

Georgia 0.0208 355 0.0215 0.0252 0.0563

Massachusetts 0.0248 463 0.0195 0.0340 0.0748

Maryland 0.0265 561 0.0229 0.0432 0.0871

New Jersey 0.0212 939 0.0174 0.0289 0.0624

Virginia 0.0210 463 0.0229 0.0215 0.0503

Kansas 0.0319 424 0.0350 0.0191 0.0668

Utah 0.0510 563 0.0386 0.0354 0.1019
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2.6 QQ Plots

The QQ plot allows us to see how closely our median household income data

fits our distribution models. We use the estimated parameters from Table 2.2 and

compare each of the four distribution models to the Census household income data.

Let us look at the QQ plots of each distribution in Figure 2.7 and Figure 2.8.

This is one of the first diagnostics we use to figure out which distribution we want

to use in our models. We pick the distribution that follows the red line y = x the

closest.

In Figure 2.7, we can choose the Singh-Maddala distribution. In Figure 2.8, our

choice is a little harder. We can eliminate the Gamma and Weibull distributions, and

we recommend more investigation before choosing between Lognormal and Singh-

Maddala.

2.7 Error Measures

Now we must also make use of some statistics, since relying on graphs and

other pictures isn’t always the most accurate way of determining a good fit. First

let us look at the statistic Mean Squared Error, where MSE is defined as

1

n

n∑
i=1

(Yi − Ŷi)
2

and Yi are our observed quantiles and Ŷi are the corresponding estimated values,

obtained using the parameters from Tables 2.2 and 2.3. The term (Yi − Ŷi) is

considered our error. Refer to Table 2.6 to see the results. We have taken the

square root of our mean squared error in order to improve readability. We see that
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Figure 2.7: QQ Plots of 4 Distributions, Cook County

Singh-Maddala is the best model to choose most of the time, with 10 counties or

states having Singh-Maddala as the best fit model. Lognormal is the next best with

7, and Gamma is chosen 3 times. Weibull is never the best fitting model.

Also, we can look at the Mean Absolute Errors. They are defined by the

formula

1

n

n∑
i=1

|Yi − Ŷi|,

where Yi are our observed quantiles and Ŷi are the corresponding estimated values,

obtained using the parameters from Tables 2.2 and 2.3. Look at Table 2.7 to see
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Table 2.6: Square root of the Mean Squared Error

County/State Lognormal Gamma Weibull Singh-Maddala

Los Angeles 1295.79 3299.68 4985.75 5046.90

San Francisco 7025.52 4796.05 6097.75 3924.31

Denver 2099.19 3841.60 5278.01 2465.58

District of Columbia 2777.29 6596.33 7615.75 6140.72

Fulton 7344.58 5315.55 6022.01 10804.72

Cook 4351.72 2989.59 4852.30 1548.53

Suffolk 4218.00 1174.32 2143.22 981.89

Baltimore City 3937.69 5216.36 5999.05 3605.28

New York 8637.42 3331.11 4132.38 4205.14

Multnomah 2506.75 3880.01 5508.92 1719.07

Philadelphia 2652.03 2871.53 3820.77 1872.08

Dallas 2151.36 5449.13 6863.01 6100.50

Richmond City 4001.82 5684.01 6278.84 2757.36

Georgia 1209.30 3732.73 5152.00 2848.62

Massachusetts 3902.16 1868.62 3993.05 1028.03

Maryland 4188.71 2174.44 4444.04 1467.73

New Jersey 4299.70 1496.85 4142.29 2327.27

Virginia 2301.33 4087.44 5583.02 11283.97

Kansas 3553.73 5047.00 6355.15 3037.27

Utah 669.98 1867.53 3783.88 2118.59
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Figure 2.8: QQ Plots of 4 Distributions, Dallas County

the values of Mean Absolute Error. Once again, Singh-Maddala usually is the best

fit for our data, having the least error 14 of our 20 counties or states.
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Table 2.7: Mean Absolute Errors

County/State Lognormal Gamma Weibull Singh-Maddala

Los Angeles 394 1840 3347 1101

San Francisco 5799 4090 4652 2766

Denver 1469 2272 3952 1203

District of Columbia 1854 3981 5328 1923

Fulton 1992 3702 4428 2870

Cook 3202 1943 3345 997

Suffolk 2563 930 1712 711

Baltimore City 1780 1637 3231 1029

New York 4081 2628 2846 2786

Multnomah 1889 2445 4244 1039

Philadelphia 1805 1085 1995 707

Dallas 1470 3133 4880 1207

Richmond City 1574 2371 3641 1150

Georgia 947 1949 3524 646

Massachusetts 2627 1292 2840 547

Maryland 2485 980 2942 432

New Jersey 2250 1023 3111 614

Virginia 1274 2879 4334 2207

Kansas 1801 2737 4521 786

Utah 398 1080 2701 852
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2.8 Measures of Goodness Of Fit and Distribution Selection

2.8.1 Chi Squared Test

Now let us look at how the distributions compare using Chi Squared values.

χ2 =
k∑

i=1

(Oi − Ei)
2

Ei

,

where Oi are our observed counts and Ei represent our expected counts, which we

computed using our estimated parameters from Table 2.2. The value k is the number

of bins we use in our histogram. In this case, we let k = 6, and the breaks are at 0,

20000, 40000, 60000, 80000, 100000 and 200000.

The smaller the chi squared value, the better the model fit. In Table 2.8, we

see that Singh-Maddala is the best fitting distribution model 16 out of 20 times.

2.8.2 Akaike Information Criterion

Now let us look at the measure Akaike Information Criterion, or AIC. The

AIC is a measure that is used for distribution selection. The distribution with the

lowest AIC is the distribution we want to select. The AIC is defined by

AIC = −2 ln(L) + 2k

where k is the number of parameters in our model, and ln(L) is the maximized

log-likelihood value.

Refer to Table 2.9 to see the AIC values. AIC helps us select the Singh-

Maddala distribution 15 times, and lognormal is selected the other five times.
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Table 2.8: Chi-squared values for each county or state and distribution

County/State Lognormal Gamma Weibull Singh-Maddala

Los Angeles 12.44 178.97 788.40 16.02

San Francisco 5144.18 64.62 93.95 46.40

Denver 22.07 44.32 419.41 0.91

District of Columbia 17.31 43.91 78.36 12.69

Fulton 6.83 22.02 34.26 11.43

Cook 33193.07 90.69 432.68 28.14

Suffolk 3009.26 0.99 13.48 1.48

Baltimore City 47.20 2019.22 102295.90 17.67

New York 62.01 17.99 25.27 19.62

Multnomah 136.97 19.06 69.21 4.73

Philadelphia 3241.18 292.99 167219.30 16.64

Dallas 17.28 106.25 275.25 8.35

Richmond City 1357.98 138.07 1222.92 4.88

Georgia 131478.80 230.26 1353.51 10.98

Massachusetts 215.72 71.17 329.15 18.62

Maryland 425.36 19.93 182.57 2.67

New Jersey 2391.94 28.37 300.07 10.33

Virginia 492.37 320.07 795.62 76.18

Kansas 578.07 287.79 596.65 18.48

Utah 290.79 20.27 137.29 15.79
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Table 2.9: AIC values for each county or state and distribution

County/State Lognormal Gamma Weibull Singh-Maddala

Los Angeles 142118.8 142274.4 142961.6 142175.0

San Francisco 13245.89 13178.63 13187.00 13139.97

Denver 10485.45 10489.74 10551.92 10467.90

District of Columbia 9814.028 9825.554 9867.802 9802.96

Fulton 10342.05 10350.16 10373.95 10346.08

Cook 95236.22 94939.83 95181.16 94808.38

Suffolk 14112.36 14059.34 14068.10 14051.84

Baltimore City 15329.56 15343.59 15456.39 15303.40

New York 19711.07 19719.68 19756.10 19739.38

Multnomah 11290.10 11290.44 11371.53 11250.44

Philadelphia 38910.44 38840.75 38983.82 38801.58

Dallas 38015.62 38071.12 38286.66 37968.00

Richmond City 3577.563 3585.53 3609.473 3575.632

Georgia 107123.5 107194.3 107769.2 107007.7

Massachusetts 115065.5 114800.6 115088.1 114724.8

Maryland 84110.1 83965.78 84193.1 83940.35

New Jersey 148763.9 148476.2 148868.9 148435.2

Virginia 107788.7 107977.4 108529.2 107798.7

Kansas 50460.9 50632.4 51148.1 50346.7

Utah 32804.4 32822.3 33009.3 32819.2
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2.8.3 Bayesian Information Criterion

Finally, we can look at the measure Bayesian Information Criterion, or BIC.

The BIC is another measure that is used for distribution selection. The BIC is

similar to the AIC, but it has an extra penalty for the number of observations in

the dataset being studied. The distribution with the lowest BIC is the distribution

we want to select. The BIC is defined by

BIC = −2 ln(L) + k ln(n)

where k is the number of parameters in our model, ln(L) is the log-likelihood value,

and n is the number of observations in our dataset.

Refer to Table 2.10 to see the BIC values. The BIC helps us select the Singh-

Maddala distribution 14 times, and lognormal is selected the other six times.
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Table 2.10: BIC values for each county or state and distribution

County/State Lognormal Gamma Weibull Singh-Maddala

Los Angeles 142132.3 142287.9 142975.1 142195.2

San Francisco 13254.59 13187.33 13195.70 13153.02

Denver 10493.75 10498.03 10560.22 10480.34

District of Columbia 9822.136 9833.663 9875.911 9815.123

Fulton 10350.23 10358.35 10382.14 10358.36

Cook 95248.9 94952.5 95193.84 94827.39

Suffolk 14121.25 14068.22 14076.99 14065.17

Baltimore City 15338.67 15352.69 15465.49 15317.05

New York 19720.55 19729.16 19765.58 19753.59

Multnomah 11298.57 11298.90 11379.99 11263.13

Philadelphia 38921.4 38851.71 38994.78 38818.02

Dallas 38026.45 38081.96 38297.50 37984.25

Richmond City 3583.738 3591.705 3615.648 3584.895

Georgia 107136.5 107207.2 107782.2 107027.1

Massachusetts 115078.5 114813.7 115101.2 114744.4

Maryland 84122.5 83978.18 84205.5 83958.95

New Jersey 148777.5 148489.7 148882.4 148455.5

Virginia 107801.6 107990.4 108542.1 107818.0

Kansas 50472.4 50643.9 51159.6 50363.9

Utah 32814.9 32832.9 33019.8 32835.1
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Chapter 3

Conclusions

We have studied four different density functions, Lognormal, Gamma, Weibull

and the Singh-Maddala. We used a graphical technique called QQ Plots in order

to choose between our distributions. We also studied several measures of fit and

distribution selection:

• Mean Squared Errors

• Mean Absolute Errors

• Chi Squared Values

• AIC

• BIC

There does not exist a clear winner among the three distributions with two parame-

ters. When we include the three parameter Singh-Maddala, there is a clear winner.

In each of these measures, almost every county or state takes the Singh-Maddala as

the best fit. The Singh-Maddala is a good density to use for several reasons. It only

has three parameters, one more than our other densities, but not so many more that

we would be accused of over-fitting.

Also, there is readily available software to deal with the Singh-Maddala dis-

tribution. In the literature, especially by McDonald [12], it is asserted that the
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Generalized Beta II is an even better model for income data. This would be ex-

pected, since Singh-Maddala has been shown to be a special case of the GB2. The

only problem with using GB2 to estimate a distribution for our data is that there

is not much functionality in software packages like R to deal with the GB2. This is

definitely something to consider when choosing the proper density function to fit to

our data.

3.1 New York City

We notice that New York County never fits well against the Singh-Maddala

density. We see in Figure 1.5 that the histogram for New York County does not

look like all the other county and state histograms. New York County is coextensive

with the Borough of Manhattan. New York City itself is composed of five boroughs:

Manhattan, Bronx, Queens, Brooklyn, and Staten Island.

In all the other counties that we tested, each county contained one large United

States city. In the case of New York County, we are actually only seeing one subdi-

vision of the much larger New York City.

When we only tested New York County, we noticed that Singh-Maddala was

not the best fitting distribution. This might be because Manhattan is so expensive

to live in compared to the rest of the counties we considered, and therefore median

household income per block group is higher. When we take into account all five

boroughs, the data are more in line with what we expect, which is that the Singh-

Maddala gives the best fit. Figure 3.1 compares the histogram and mean of our
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data for New York County only versus all of New York City.

Figure 3.1: Comparing New York County and New York City histogram and mean

We can look at the QQ plots of New York County and all of New York City

when fitting the Singh-Maddala model using estimated parameters. In Figure 3.2,

we can see that the Singh-Maddala fits the data better for the whole of New York

City.

Figure 3.2: Comparing New York County and New York City QQ plots using the

Singh-Maddala

Table 3.1 has a summary of our measures now that we have included all five

boroughs of New York City. As in Table 2.6, we have taken the square root of the
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Table 3.1: Measures For All Five New York City Boroughs, N = 5597.

Measure Lognormal Gamma Weibull Singh-Maddala

Mean Square Error 3435.5 2883.0 4316.0 1393.7

Mean Absolute Error 2109 931 2299 506

Chi Squared 107.23 31.22 177.40 20.44

AIC 126359.1 126162.1 126550.5 126098.6

BIC 126372.4 126175.3 126563.7 126118.5

mean squared error in order to improve readability.

McDonald [12] writes that “it is interesting to note that the Singh-Maddala

distribution function provides a better fit to the data than any of the distribution

functions except for the GB2 regardless of the criterion used for comparison”. While

Singh-Maddala was not the best fit for every one of our counties or states, we agree

with this McDonald’s statement.

For the counties and states for which we have investigated median household

income by block group, and under our assumptions, including the truncating of our

data at the level x ≤ 200000, we recommend that Singh-Maddala is the best choice

to fit to the income data.

3.2 Future Research

It would be interesting to perform likelihood ratio tests using the Generalized

Beta II or other high parameter distributions. This has the potential of reducing
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the distribution to a distribution with fewer parameters.

McDonald and Butler [10] suggest using mixture distributions to fit models

to income distribution. This seems appropriate as some of our histograms appear

to have two modes. Also of interest is the work of Drăgulescu and Yakovenko [5],

who use ideas from physics and thermodynamics to argue that the distribution of

income follows a two part regime, with exponential distribution for the low income

values and a power-law tail for high income values.
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