
Identifying Aggregates
in Hypertext Structures

Rodrigo A. Botafogo1 and Ben Shneiderman2

Human-Computer Interaction Laboratory &
Department of Computer Science
University of Maryland
College Park, MD 20742

ABSTRACT

Hypertext systems are being used in many applications because of their flexible
structure and the great browsing freedom they give to diverse communities of users.
However, this same freedom and flexibility is the cause of one of its main problem:
the “lost in hyperspace” problem. One reason for the complexity of hypertext
databases is the large number of nodes and links that compose them. To simplify
this structure we propose that nodes and links be clustered forming more abstract
structures. An abstraction is the concealment of all but relevant properties from an
object or concept.

One type of abstraction is called an aggregate. An aggregate is a set of distinct
concepts that taken together form a more abstract concept. For example, two legs, a
trunk, two arms and a head can be aggregate together in a single higher level object
called a “body.” In this paper we will study the hypertext structure, i.e., the way
nodes are linked to each other in order to find aggregates in hypertext databases.
Two graph theoretical algorithms will be used: biconnected components and strongly
connected components.

KEYWORDS

Hypertext, structural analysis, graph theory, abstraction, aggregation, generalization.

INTRODUCTION

Hypertext systems are used in many applications because of their flexible structure
and the great browsing freedom they give to users. However, this same freedom and
flexibility is the cause of one of its main problem: the “lost in hyperspace” problem.
Previous attempts to solve this problem have concentrated in improving the user
interface by having multiple windows [Mar89], maps [Nie90a,b][Bro89], and tours or
path mechanisms [Tri88][Zel89]. Unfortunately, these techniques do not scale up
nicely. Multiple windows help only in a very localized way, maps lose their appeal
when hypertexts have more than a few dozen nodes, and path mechanisms are very
hard to author and maintain.

1 Partially supported by the Brazilian National Research Council (CNPq) under
grant 201008/88.2 and NCR Corporation. Currently at NEC Corporation, Tokyo.

2 Address correspondence to Ben Shneiderman.

2

One reason for the complexity of hypertexts is the large number of nodes and links
that compose them. Halasz [Hal88] suggested that composition will be an important
mechanism in future generations of hypertext systems. A composition mechanism is
a way of dealing with a set of nodes and links as a single object. A similar notion
was also introduced by Smith & Smith [Smi77a,b] in the database field: the
formation of abstraction.

An abstraction is the concealment of all but relevant properties of an object or
concept. Only information relevant to the task being performed is shown in an
abstract object. Smith & Smith claim that abstraction allows for the intellectual
manageability of highly structured objects. Since hypertext systems are very
complex structured objects which suffer severely from a lack of intellectual
manageability (“lost in hyperspace”), they can profit from abstraction. Smith &
Smith define two types of abstraction: aggregation and generalization.

Aggregation is an operation that clusters related objects and forms a higher level
object. For example, two legs, a trunk, two arms and a head can be aggregated
together in a single higher level object called a “body.” Halasz, in his paper, only
identifies aggregation as a composition mechanism. However, generalization seems
to be a very important property to simplify hypertexts. Generalization happens when
a set of similar objects are regarded as a generic object. A hummingbird, a hawk, an
eagle, etc., can be generalized to a single concept: that of “bird.”

Developers of future generations of hypertext systems will face two important
challenges: how to deal with abstraction and how to help authors to create
comprehensible structures. The first challenge was described by Halasz [Hal88] and
some systems such as NLS/Augment [Eng68] or IGD [Fei82; Fei88] already have
preliminary solutions to it. The second issue is the one of interest in this paper.
Botafogo, Rivlin, and Shneiderman [Bot91] studied hypertext structures to provide
authors with different views and with useful metrics. Brown [Bro90] stresses the
importance of analytical tools and metrics to assess hypertext quality. In this paper
structural analysis will be used to help authors find abstractions in hypertexts.

Section 1 introduces some preliminary concepts and section 2 shows how to use two
graph theoretical algorithms, biconnected and strongly connected components, to
create aggregates. The interested reader is directed to [Bot90] [Bot91] for a
complete discussion of generalization and metrics.

In this paper the word “hypertext” does not refer to every type of hypertext system.
We focus on a card-based hypertext systems where nodes and links are untyped, or
systems which can be represented by a directed graph. All the hypertexts that were
used for testing our ideas were created in Hyperties (a hypertext system developed
by the Human-Computer Interaction Laboratory; it has been expanded and distributed
by Cognetics Corporation, Princeton Junction, NJ). We believe, however, that the
ideas presented here could be extrapolated to other hypertext systems with a more
complex structure.

1 PRELIMINARIES

1.1 Index and Reference nodes

Intuitively index nodes are nodes that can, as the name implies, be used as an index
or guide to many other nodes. For example, an article that points to all the other
articles in a hypertext is an index. In a hypertext about a computer science
department an article pointing to all the professors that work in human factors is also
an index. Formally, an index node is a node whose outdegree is greater than the
mean outdegree of all nodes, plus a threshold value.

3

Reference nodes are in a certain way the converse of index nodes. For example, in a
hypertext about animals, all birds might link to an article about “feathers,” dogs to
an article about “sharp teeth,” etc. It is possible to make reference to the birds by
saying that they are animals that have feathers. Formally, a reference node is a node
whose indegree is greater than the mean indegree of all nodes, plus a threshold
value. Since index and reference nodes usually point to or are pointed by whole
classes of nodes it is natural to define index and reference nodes as a function of
their out and in-degrees respectively.

Definitions

• Let µ be the mean of the outdegrees of the nodes in the hypertext and let µ' be the
mean of the indegrees of the nodes in the hypertext. Note that µ = µ ' since every
link that leaves a node has to reach another node. For this reason we will use µ for
both means.

• Let σ be the standard deviation of the outdegrees of the nodes.

• Let σ’ be the standard deviation of the indegrees of the nodes.

• Let τ be a threshold value.

• An index node is a node whose outdegree is greater than µ + τ.

• A reference node is a node whose indegree is greater than µ + τ.

We usually define τ as been equal to 3 * σ (σ’) . The motivation for this choice is as
follows: if the number of links follow a normal distribution, then a node that has in or
out-degree exceeding three standard deviations will occur less than one percent of
the time making them special in the context of the hypertext.

1.2 Metrics

Since hypertexts are composed of two main components, nodes and links, it is
helpful to the author to have knowledge of the number of nodes and links in the
hypertext. Many systems do provide the first piece of information, but few consider
the number of links. With that information at hand the author can start forming an
idea of the complexity of the hypertext. However, the number of nodes and links and
possibly their ratio gives only a rough idea of the complexity. In order to better
capture the notion of how complex a hypertext is the compactness metric will be
developed. The compactness indicates the interconnectedness of a hypertext.

From a reader’s point of view a too high compactness means that each node has
many links and that consequently there are potentially many cycles. Traversing
many cycles can disorient users. Too many links might also indicate a poorly
organized hypertext. For example, a hypertext that is fully connected is equivalent
to a hypertext that is fully disconnected but where the user can access any node by
using an index. In a fully connected hypertext the user has no clue to which article
should be read next, which is equivalent to choosing the next article to be read from
a general index. On the other hand, a too low compactness indicates insufficient
links and that possibly parts of the hypertext are disconnected. For our purposes the
following facts about the compactness are of importance [Bot90a,b]:

(a) The compactness (Cp) is a value in the range 0 to 1. It is 0 when the hypertext
is disconnected and 1 when the hypertext is fully connected.

(b) Any graph has a unique compactness associated to it.

4

(c) From experience, appropriate compactness is in the range 0.3 to 0.8.

5

Formally the compactness is defined as:

• Cp = (Max - ∑i ∑j Cij) / (Max - Min)

Cij is the distance from node i to node j. If node i is not connected to node j the
distance between them is infinite. However, in order to be able to calculate
efficiently, when two nodes are not connected the distance Cij is set equal to a
constant K. This constant is called the converted distance (see [Bot91] for more
detailed information about the constant K). Max is a parameter that depends only on
the number of nodes in the graph and the converted distance. It is the distance from
every node to every other node when the graph is completely disconnected. We note
that:

• Max = (n2 - n) K, where n is the number of nodes in the hypertext. The distance
from a node to itself is always zero.

Min is defined in a similar way than Max, but in this case the graph is completely
connected. Again we note that:

• Min = (n2 - n). When the graph is completely connected, the distance of a node to
any other node is equal to 1.

2 CLUSTERING BY INTERRELATIONS: AGGREGATION

Aggregation was defined previously as an operation that clusters related objects and
forms a higher level object. In order to help authors in the formation of aggregates,
the notion of related objects (or related articles in our case) must be formally
defined. In information retrieval there is a long history of multi-dimensional
clustering algorithms based on text analysis [Cro89]. By contrast, hypertexts are
explicitly structured by links between articles which establish that there is a
semantic relation. Assuming that the semantic relation is a transitive one, a path
between two nodes also indicates a semantic relation. However, as the distance
between two nodes in the path increases, the strength of the relation diminishes. On
the other hand, the more paths there are between any two nodes the stronger their
relation.

The compactness is then a good measure of how related a set of nodes is. The higher
the compactness the more related they are. A semantic cluster – a set of related
objects appropriate for aggregation – will be defined as:

Definition:

• A semantic cluster of a hypertext is a set of nodes and links that have the following
two properties:

(a) they are a subgraph of the hypertext graph.

(b) the compactness of the subgraph is higher than the compactness of the whole
graph.

With a formal mathematical definition of related objects, it becomes possible to
apply graph theoretical algorithms to help in the formation of aggregates.
Unfortunately, hypertexts are written in a way that does not always make our
assumptions true. For example, the aggregate “body,” made of two legs, a trunk,
two arms, a head, etc., will be represented in a hypertext as in figure 1. Note that
the links between the parts is not present, since the abstract notion has already been

6

formed. When one sees a leg it is usually followed by another leg, both of them are
seen with a trunk; unless you are seeing a cartoon or a horror movie, all the previous
part are crowned by a head. figure 2 is then a more realistic, although less
structured, representation for the hypertext. This suggests that the more unstructured
the hypertext is, with all relevant links present, the more it will profit from the use of
semantic clusters.

body

legs trunk arms head

Figure 1

legs

trunk

arms

head

Figure 2

In order to make hypertexts intelligible for readers, authors remove links as explained
above, but in many cases they also add extra links. Figure 3 shows a hypertext in
which all the birds seem to be highly related, since there are many paths between
them (if direction of links is not considered).

Introduction

South american
birds

North american
birds african birds

small large large largesmall small

b2 b3 b4 b5 b6 b7 b8 b9 b10 b11

Birds in the hypertextHow to treat a bird

Figure 3 Hypertext where the removal of links is very important for identifying
aggregates.

However, a close analysis shows that the relationship between those birds is mainly
limited to two facts:

7

• They are birds. But this is the topic of the hypertext and thus is not a relevant
property for clustering, and

8

• The techniques to treat them are the same. Again, since they are birds it is not
surprising that one should use the same process for treating them and no special
clustering should come from this fact.

Observe that in this example the nodes “how to treat a bird” and “birds in the
hypertext” are reference and index nodes respectively. Those links do not contribute
at all in the formation of aggregates and will consequently not be considered when
forming aggregates.

In the two subsections that follow two graph theoretic algorithms that identify
semantic clusters in a hypertext will be presented. An example showing how they
perform in an actual hypertext will also be shown.

2.1 Biconnected components

Definitions:

• An articulation point in a connected graph is a vertex “a” for which there exists
two other vertices “v” and “w” such that any path between “v” and “w” does
include “a”.

• If a graph has no articulation points then the graph is said to be biconnected.

• The removal of all the articulation points of a graph will split the graph into
biconnected components.

Biconnected components in a graph have then the property that there are at least two
paths between any two nodes in this component. Finding biconnected components
is a quite simple task and can be implemented in O(V+E) [Sed83]. Bicomponents,
by the way they are defined, are only applicable to non-directed graph. In the
algorithms presented below, the graphs are considered non-directed. A directed
graph can easily be made undirected by adding for each link a link in the opposite
direction.

Since at least two paths exists between two nodes in a biconnected component, it is
likely that bicomponents will be semantic clusters of the hypertext. Using the
notions described above, a clustering algorithm by interrelation of nodes can be
developed:

Cluster 1:

Step 1) Find the index and reference nodes in the hypertext. If none exist and the
algorithm has run at least once then return.

Step 2) Remove outgoing edges from index nodes and incoming edges to reference
nodes.

Step 3) Treating the graph G as undirected, find the biconnected components.

Step 4) Build the reduced graph G’ from G.

Step 5) For each of the bicomponents go back to step 1.

Some important features of this algorithm should be observed. First, the algorithm is
recursive (step 5). This implies that every bicomponent found will be treated as an
independent graph (with fewer nodes than the original graph) and consequently it
will be possible to find new index and reference nodes. Finding those nodes and

9

removing their links will allow for a more precise clustering of the hypertext with the
intrinsic relationship between nodes assuming an important role.

The second important property of this algorithm lies in step 4. The reduced graph G'
of G is a tree. This simplifies enormously the structure of the hypertext that goes
from a complex graph to a very simple tree structure. And each new iteration of the
algorithm will take a complex graph and reduce it to a tree. Since trees are an easy
structure to show to an author, this might help the author have an idea of the contents
of the hypertext being created.

Finally the reduced tree G' created has an interesting structure with one level formed
by biconnected components (with many nodes in it), the next level formed by
articulation points, then again biconnected components, followed by articulation
points, and so on. Figure 4 gives an example of this property where the “blobs”
represent bicomponents and the “dots” are articulation points. It is possible for a
“blob” (a bicomponent) to degenerate and have only 1 node. This will happen for
example when the structure is already a tree.

a

b

c

d

e

f

g

il

mn

introduction
article

o p

Figure 4(a) Unrooted tree obtained after the bicomponent algorithm has been applied
and the reduced graph formed.

introduction
article

Bird

c

a i

db
e

f l m

ng
o

p

Figure 4(b) To reach the node labeled "Bird" the reader has to read articles "a" and "f."

Figure 4 emphasizes the fact that the reduced tree G' is an unrooted tree. However,
we could make it a rooted tree by taking as the root the bicomponent that contained

10

the introduction article or any other article that might qualify as a good root (see
[Bot91]). Let T be a rooted tree generated from G'. Given any article in the
hypertext it is possible to locate which node of T contains this article, call this node
N. By following the path that links the root of T to N, we will pass trough many
articulation points. Those articulation points are articles whose reading is required
before we are able to read the selected article. Figure 4(b) shows the same structure
as figure 4(a), but in it, node “c” was taken as the root of the tree. In this case, to
read the article “birds,” readers will have to read articles “a” and “f” before. They
will also be required to read some article in “blob” “b.” If this blob deals with a
certain subject in particular, the author of the hypertext will know that readers that
have reached the article “bird” will have at least some notion of this subject.

It is important for the author to know the articulation points in the hypertext, since in
some cases it might not make sense to require the reading of some text before others,
while in other cases it might be desired. For instance, suppose an author wants to
write a book where at the end of each chapter there is a test that the reader must
pass before going on reading. If the test is not an articulation point of the hypertext,
then this constraint will not be enforced by the hypertext structure. However, if the
node is an articulation point, then there is no way the reader will be able to go on
reading without passing the test.

2.2 Strongly connected components

In the previous section, direction were not considered, but many systems such as
Hyperties have directional links. Although some researches argue that links should
always be bidirectional it seems that in many cases directional links might be useful.
In this section we make use of the direction of the links to further enhance the
aggregation of nodes.

Definition

• Two nodes “a” and “b” are in the same strongly connected component if there is a
path from node “a” to node “b” and a path from node “b” to node “a”

We will improve our previous algorithm by adding step (6):

Cluster 2:

Step 1) Find the index and reference nodes in the hypertext. If none exist and the
algorithm has run at least once go to step 6.

Step 2) Remove outgoing edges from index nodes and incoming edges from
reference nodes.

Step 3) Treating the graph G as undirected, find the biconnected components.

Step 4) Build the reduced graph G’ from G.

Step 5) For each of the bicomponents go back to step 1.

Step 6) For each bicomponent left, decompose it in strongly connected components.

Several hypertexts ranging in size from 100 nodes and 400 links to 250 nodes and
1600 links were analyzed in order to check the effects of the algorithm presented.
The results were similar in all of them and we will focus our discussion on the
Hypertext Hands-On! book (HHO) because it is widely available [Shn89]. HHO is
the first electronic book commercially published. It has 243 nodes and 803 links.

11

This book was carefully crafted and extensively reviewed to help ensure clear
structure and ease of reading. It covers the basic concepts of hypertext, typical
hypertext applications, and currently available authoring systems. It also describes
design and implementation issues such as user interface, performance and networks.
The first iteration of the algorithm decomposed the hypertext into 85 biconnected
components and articulation points. Two of those bicomponents are large, with 146
and 31 nodes, while the majority of them are composed of just a few nodes.
However, those small bicomponents are parts of separate trees.

Figure 5 shows a picture of part of the reduced graph of the HHO hypertext, when
only the first iteration of the algorithm was performed. The central core contains the
unbroken 146 nodes and connected to it are three branches of the tree. Although
almost all the biconnected components drawn contain only one article, subtrees
focus on the same subject. The whole hypertext was subdivided by the algorithm
into a large core and 8 subtrees: Tours, Travel Guide, The Interactive Fiction,
Resumes, Contracts, Job Aids, Blueprints, and Jokes.

Tour Example of
		a Tour

Pascal's
		Pascaline

Leibnitz

Babbage's
		analytical engine

Ada Lovelace

Hollerith
 Herman

The Harvard
		Mark I

Travel Guide

Example of a Travel Guide

Great Golfing
Places to Stay
Restaurants
San Diego Beaches

Sea World The San Diego Zoo

Interactive fiction

Main characters of
			the novel

31
Nodes

146
Nodes

Figure 5 Part of the reduced graph of HHO.

In this first iteration 40% of the hypertext was separated from the core. Even though
no experiments were performed to check users understanding of the hypertext it is
expected that they will grasp it much more easily when dealing with 9 subparts,
where the larger has 146 nodes, than when dealing with a single hypertext of 243
nodes.

HHO comes in two versions: a hypertext disk and a paper book. The two versions
although similar are not identical. For example, the interactive fiction appears only
in the hypertext version. The book version contains mainly the central core of the
hypertext while the subtrees appear only in the hypertext version. This reflects the
actual construction process in which the authors first wrote the core of the hypertext
and later finished building the disk version by including examples and extra

12

information.

The two larger bicomponents, the core and the interactive fiction, had their
compactness measured. For the interactive fiction it was found that: Cp = 0.86. A
compactness index of 0.86 is very high. This strong linkage was intended by the
author, Robin Platt, whose clever story depends on tight interweaving across nodes.
For the core of the hypertext the indices were: Cp = 0.78. Again a very high
compactness index. This degree of linkage was debated by the authors. Although
redundant links from several points in an article were eliminated, there is still a high
level of interconnection. From these examples we see that the core and the
interactive fiction are semantic clusters of the hypertext. The compactness of HHO
as a whole is Cp = 0.55 indicating that the two pieces are semantic clusters of the
hypertext.

The algorithm treated recursively the two large pieces of the hypertext: the
Interactive Fiction and the core. No further clustering was done in the interactive
fiction or in the core. Since no further breaking was possible with the biconnected
algorithm the strongly connected algorithm was run in those two pieces. The
Interactive Fiction part was further subdivided in 9 parts. Eight of them have only
one article and the ninth has the rest of this subgroup. Almost the same thing
happens with the core. It was subdivided in 34 parts, 33 of them containing one or
two nodes and the last part containing 103 nodes. While the first iteration
decomposition reflects the high level structure as perceived by authors, the second
iteration did not so clearly produce the chapter organization that the authors
intended. On reflection, emphasizing links within chapters might have been a
worthwhile goal. In summary, the clustering algorithm succeeded in revealing the
hypertext structure and raised legitimate questions for the authors.

CONCLUSION

By analyzing the structure of a hypertext, i.e., how the nodes are linked, it was
possible to identify groups of nodes that had a high semantic relation. We suggested
that those nodes should be aggregated to form a more abstract node. With the
formation of abstraction it may be possible to simplify the hypertext structure,
making it easier for readers and authors to understand the hypertexts and find useful
information in them. We believe that structural analysis methods may provide
potentially useful ways of giving authors a better understanding of their hypertext so
that they can revise it to reduce the “lost in hyperspace” problem. However, our
study of three modest-sized hypertexts needs to be repeated with many other
hypertexts, and tested with much larger hypertexts to see what adjustments are
needed to support scaling up.

DIRECTIONS FOR FUTURE WORK

• We concentrated our analysis on hypertext systems that have a simple underlying
structure. Will the ideas that we presented work in more complex hypertext
systems? For instance, dealing with typed links may make the analysis more
complex, but the additional information has the potential of supporting more
effective clustering methods. Another source of relationship information would be
textual analysis of article contents.

• Since the hypertexts we studied were authored with Hyperties, one can argue that
the system induced authors to produce similarly structured hypertexts. The results
need to be replicated on hypertexts created with other systems such as Interleaf,
HyperCard, or Guide.

• Authoring should be an interactive activity, with the computer suggesting the
formation of abstraction and authors deciding exactly how this process should

13

happen. However, for that to be feasible a good user interface is a must. Showing
abstractions over a network is still a difficult problem.

• Only two algorithms for forming aggregation were considered. New algorithms
should be studied in order to improve aggregation and verify that it is effective and
rapid enough with much larger networks.

14

REFERENCES

[Bot90] Botafogo, R. A. (1990). Structural Analysis of Hypertexts. Unpublished
master’s thesis, University of Maryland, College Park.

[Bot91] Botafogo, R. A., Rivlin, E., & Shneiderman, B. (1991). Structural analysis of
hypertexts: Identifying hierarchies and useful metrics. A C M
Transactions on Information Systems (In Press).

[Bro89] Brown, P. J. (1989). Do we need maps to navigate round hypertext
documents? Electronic Publishing, 2 (2), 91-100.

[Bro90] Brown, P. J. (1990). Assessing the quality of hypertext documents.
Hypertext: Concepts, Systems and Applications; Proceedings of the
European Conference on Hypertext, 1-12, Cambridge University Press,
Cambridge, UK.

[Cro89] Crouch, D. B., Crouch, C. J., & Andreas, G. (1989). Proceedings of the
Hypertext 89 Conference, 225-237, ACM, New York, NY.

[Eng68] Englebart, D. C. (1968). Authorship provisions in Augment. Proceedings of
FJCC, 395-410. San Francisco, CA.

[Fei82] Feiner, S., Nagy, S., & van Dam, A. (1982). An experimental system for
creating and presenting interactive graphical documents. A C M
Transactions on Graphics 1 (1), 59-77.

[Fei88] Feiner, S. (1988). Seeing the forest for the trees: Hierarchical display of
hypertext structure. Proceedings of the Conference on Office Information
Systems, 205-212, ACM, New York, NY.

[Hal88] Halasz, F. G. (1988). Reflections on NoteCards: Seven issues for the next
generation of hypermedia systems. Communications of the ACM, 31 (7),
836-852.

[Mar89] Marshall, C. C. (1989). Guided Tours and on-line presentations: How
authors make existing hypertext intelligible for readers. Proceedings of
the Hypertext 89 Conference, 15-26, ACM, New York, NY.

[Nie90a] Nielsen, J. (1990). The art of navigating through hypertext,
Communications of the ACM, 33 (3), 296-310.

[Nie90b] Nielsen, J. (1990). Hypertext & Hypermedia. Academic Press, Inc., New
York, NY

[Sed83] Sedgewick, R. (1983). Algorithms. Addison-Wesley Publishing, Reading,
MA.

[Shn89] Shneiderman, B., & Kearsley, G. (1989). Hypertext Hands-On!. Addison-
Wesley Publishing, Reading, MA.

[Smi77a] Smith, J. M., & Smith, D. C. P. (1977). Database abstraction:
Aggregation. Communications of the ACM, 20 (6), 405-413.

15

[Smi77b] Smith, J. M., & Smith, D. C. P. (1977). Database abstractions: Aggregation
and generalization. ACM Transactions on Database Systems, 2 (2), 105-
133.

[Tri88] Trigg, R. (1988). Guided tours and tabletops: Tools for communicating in a
hypertext environment. ACM Transactions on Office Information
Systems, 6 (4), 398-414.

[Zel89] Zellweger, P. T. (1989). Scripted documents: A hypermedia path
mechanism. Proceedings of the Hypertext 89 Conference, 1-14, ACM,
New York, NY.

