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Although contemporary neural models excel in a surprisingly diverse range of application

domains, they struggle to capture several key qualities of human cognition that are considered

crucial for human-level artificial intelligence (AI). Some of these qualities, such as compositional-

ity and interpretability, are readily achieved with traditional symbolic programming, leading some

researchers to suggest hybrid neuro-symbolic programming as a viable route to human-level AI.

However, the cognitive capabilities of biological nervous systems indicate that it should be possible

to achieve human-level reasoning in artificial neural networks without the support of non-neural

symbolic algorithms. Furthermore, the computational explanatory gap between cognitive and neu-

ral algorithms is a major obstacle to understanding the neural basis of cognition, an endeavor that

is mutually beneficial to researchers in AI, neuroscience, and cognitive science. A viable approach

to bridging this gap involves “programmable neural networks” that learn to store and evaluate

symbolic expressions directly in neural memory, such as the recently developed “Neural Virtual



Machine” (NVM). While the NVM achieves Turing-complete universal neural programming, its

assembly-like programming language makes it difficult to express the complex algorithms and

data structures that are common in symbolic AI, limiting its ability to learn human-level cognitive

procedures.

This dissertation presents an approach to high-level neural programming that supports hu-

man-like reasoning using only biologically-plausible neural computations. First, I introduce a

neural model that represents graph-based data structures as systems of dynamical attractor states

called attractor graphs. This model serves as a temporally-local compositional working mem-

ory that can be controlled via top-down neural gating. Then, I present a programmable neu-

ral network called NeuroLISP that learns an interpreter for a subset of Common LISP. Neu-

roLISP features native support for compositional data structures, scoped variable binding, and

a shared memory space in which programs can be modified as data. Empirical experiments

demonstrate that NeuroLISP can learn algorithms for multiway tree processing, compositional

sequence manipulation, and symbolic unification in first-order logic. Finally, I present Neuro-

CERIL, a neural model that performs hierarchical causal reasoning for robotic imitation learn-

ing and successfully learns a battery of procedural maintenance tasks from human demonstra-

tions. NeuroCERIL implements a cognitively-plausible and computationally-efficient algorithm

for hypothetico-deductive reasoning, which combines bottom-up abductive inference with top-

down predictive verification. Because the hypothetico-deductive approach is broadly relevant to a

variety of cognitive domains, including problem-solving and diagnostic reasoning, NeuroCERIL

is a significant step toward human-level cognition in neural networks.



A NEUROCOMPUTATIONAL MODEL OF
CAUSAL REASONING AND COMPOSITIONAL

WORKING MEMORY FOR IMITATION LEARNING

by

Gregory Patrick Davis

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2022

Advisory Committee:
Professor James A. Reggia, Chair
Professor Rodolphe J. Gentili
Professor Yiannis Aloimonos
Professor Dana S. Nau
Professor Donald Perlis



© Copyright by
Gregory Patrick Davis

2022



Mystery of life

May we one day see you shine

Through eyes of machines
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1

Introduction

Recent advancements in machine learning have renewed interest in artificial neural networks,

propelling neurocomputational methods such as “deep learning” to the forefront of artificial in-

telligence (AI) research. Despite remarkable progress in areas as diverse as natural language

production and visual scene understanding, deep neural networks struggle to capture several im-

portant hallmarks of human cognition that are recognized as key ingredients for human-level AI

[113, 124, 144]. Furthermore, concerns have been raised about their opacity and dependence on

massive data sets and computing resources [37, 123, 138, 186], both of which are also at odds with

the efficiency and explainability of human learning and reasoning.

Several recently proposed strategies for developing human-level AI share a number of com-

mon elements, including a focus on causal reasoning, compositionality, meta-learning, and internal

modeling of the physical environment and the mentality of other agents [113, 124, 144]. Many of

these qualities are more readily expressed in symbolic algorithms than artificial neural networks,

motivating proposals for further work in hybrid neuro-symbolic models that integrate neural and

non-neural components, such as neural-guided search algorithms [5, 23, 32, 34, 92, 103, 124,

179]. Although there is a long-standing debate in the AI community about the relative merits of

symbolic and sub-symbolic methods [61], the recent successes of hybrid systems demonstrate
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the complementarity of both approaches by leveraging their unique benefits: neural networks

offer their capacity for learning and generalization in exchange for the reliable and interpretable

algorithmic control provided by traditional symbolic computations.

The difficulty of capturing human-level cognitive control in artificial neural networks is

somewhat puzzling given the cognitive capabilities of biological nervous systems. This discrep-

ancy illustrates a computational explanatory gap between cognitive and neural computations that

impedes development of human-level AI and stifles efforts to understand the neural basis of cog-

nition [157, 159]. Although hybrid systems are reasonable and effective from an engineering

standpoint, they fail to address this issue because they do not explain how symbolic procedures

can be implemented in neural networks. Bridging the computational explanatory gap requires the

development of purely neural architectures capable of carrying out the high-level cognitive control

that is characteristic of human intelligence.

One possible solution to this problem is to encode symbolic information as dynamical at-

tractors in recurrent neural networks [3, 169, 210]. This approach allows purely neurocomputa-

tional systems to reliably learn cognitive procedures such as top-down control of working memory,

attentional direction, and motor engagement [191, 193]. Although their current domain of appli-

cation merely scratches the surface of human-level cognition, recent work on universal neural

programming demonstrates that attractor neural networks can capture the full breadth of compu-

tational capabilities spanned by symbolic programming methods [97], making them particularly

promising for further development.

This dissertation is motivated by the hypothesis that attractor neural networks can capture key

qualities of human cognition that exceed the capabilities of existing neurocomputational systems.

Specifically, I consider the following features:
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• Compositionality refers to the storage and manipulation of structured representations made

up of reusable parts [82, 111, 119, 133]. This ability promotes generalization and underpins

the productivity of thought that is evident in domains as diverse as language comprehension

[2, 12, 145], behavioral planning and imitation [12, 31, 164], visual perception [25, 166,

206], and concept learning [21, 93, 148].

• Causal reasoning refers to reasoning about logical relationships between causes and their

consequential effects, which may be chained together into causal networks that describe

complex situations [37, 113, 123, 144, 177]. This is the case in many real-world problem-

solving domains, including scientific inquiry, which requires the construction and manipula-

tion of causal explanations that yield experimentally verifiable predictions.

• Interpretability means that outside observers can make sense of an agent’s behavior, allowing

them to diagnose and correct mistakes [36, 68, 117, 118, 165]. One way to achieve inter-

pretability in machine learning is to build models that provide meaningful explanations that

justify their actions.

• Meta-learning, or learning to learn, involves learning general-purpose skills that accelerate

learning across domains [79, 199, 204]. This typically involves generalizing knowledge so

that it can be recycled across tasks and applied to novel situations.

• Intuitive physics and psychology refers to the capacity for reasoning about the dynamics of

physical objects and mental states such as goals and beliefs [51, 109, 113]. This is especially

critical for robotic systems that interact with the physical environment and collaborate with

humans and/or other machines.
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To explore this hypothesis, I consider the domain of imitation learning, in which new skills

are learned by observing demonstrations. The ability to imitate emerges in humans at an early age

and plays a crucial role in early cognitive development, but remains a natural and intuitive method

for acquiring new skills throughout the lifespan [90, 129]. Importantly, human-level imitation

involves not only replicating observable motor behavior, but also inferring the underlying goals

and causal intentions of the demonstrator and relating them to changes in the physical environment.

This allows learners to generalize demonstrated skills to novel environments by abstracting away

details that are circumstantial to the demonstration.

Robotic imitation learning has been proposed as a solution to the complexity and limited

accessibility of robotic programming [26, 83, 155, 176]. Despite recent progress, it remains

difficult to develop systems that generalize well to novel circumstances and adapt learned behavior

to situations that deviate from the demonstration environment. Furthermore, contemporary robotic

imitation learning systems suffer from the limitations of deep learning, including a lack of in-

terpretability, which makes it difficult to diagnose and debug errors and creates barriers in trust-

worthiness and explainability. Safe and effective robotic imitation learning requires human-level

algorithms for understanding demonstrated actions, adapting learned skills to novel environments,

and constructing explanations of planned behavior that can be understood by end-users.

A recently developed causal imitation learning system called CERIL learns by inferring

the underlying intentions of the demonstrator and generalizing them to novel environments [95].

CERIL reasons about the causal implications of plausible intentions to construct an interpretable

hierarchical explanation that is consistent with observed behavior and its environmental conse-

quences. While effective and provably correct, CERIL’s algorithms are implemented with tra-

ditional non-neural symbolic programming and have a limited degree of cognitive plausibility.
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Specifically, CERIL’s inference algorithm involves exhaustive enumeration of plausible causal ex-

planations, which places unrealistic demands on working memory. It also processes demonstra-

tions in an offline fashion, rather than iteratively as humans do. However, CERIL provides useful

target behavior for a neurocomputational model of compositional causal reasoning.

In this dissertation, I present NeuroCERIL, a purely neural system capable of composi-

tional causal reasoning for robotic imitation learning. Unlike deep neural networks, NeuroCERIL

is composed of attractor neural networks that learn to produce interpretable explanations using

fast local learning rules. NeuroCERIL captures CERIL’s ability to perform hierarchical causal

inference, but does so using a novel hypothetico-deductive algorithm that combines bottom-up

abductive inference with top-down predictive verification, which more closely resembles human

problem-solving. This is made possible by novel methods that I developed for representing compo-

sitional data structures and learning high-level algorithmic procedures in attractor neural networks.

More specifically, this work was guided by the following three objectives:

1. Develop a neurocomputational model of compositional working memory that can be con-

trolled by internal cognitively-directed signals. This model should be capable of storing hi-

erarchical behavioral plans and environmental models for causal inference during imitation

learning. In addition, it should be based on biologically-plausible neural processes such as

attractor dynamics, local learning, and multiplicative gating.

2. Develop a programmable attractor neural network that can learn algorithms expressed in

a high-level programming language. This network should make use of the compositional

working memory described above, and be suitable for implementing the cognitive proce-

dures necessary for causal imitation learning.
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3. Develop a cognitively-plausible causal reasoning algorithm for intentional inference during

imitation learning that parallels the functionality of CERIL. This algorithm should be im-

plemented in the programmable neural network described above, and achieve computational

efficiency to respect the constraints of human working memory.

The remainder of this dissertation is organized as follows.

Chapter 2 surveys relevant prior research. Section 2.1 covers robotic imitation learning and

details the functionality of CERIL, which provides the target functionality for NeuroCERIL, the

model developed in this dissertation. Section 2.2 covers neural network models of algorithmic

learning, including a recently developed Neural Virtual Machine capable of universal neural pro-

gramming.

Chapter 3 presents a neural model of working memory that represents compositional data

structures as systems of itinerant attractors called attractor graphs. This model uses a novel combi-

nation of multiplicative gating and asymmetric associative learning to establish transitions between

attractors that depend on contextual gating signals. This makes it possible to encode a general class

of data structures based on labeled directed multigraphs, including linked lists, trees, and associa-

tive arrays. Empirical experiments evaluate the model’s memory capacity and show that it can

be effectively controlled by a programmable neural network that implements a basic hierarchical

planning algorithm, satisfying the first objective described above.

Chapter 4 presents NeuroLISP, a programmable neural network that can represent and eval-

uate programs written in a subset of Common LISP, a high-level programming language with an

extensive history in AI research. NeuroLISP uses attractor graphs to store nested program expres-

sions, and implements several high-level programming constructs such as scoped variable binding,
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recursion, and the ability to manipulate programs as data. Empirical results demonstrate that Neu-

roLISP can learn algorithms for multiway tree traversal, compositional sequence manipulation,

and symbolic pattern matching, and thus satisfies the second objective.

Chapter 5 presents NeuroCERIL, a purely neural system that implements a novel hypothet-

ico-deductive algorithm for hierarchical causal inference during imitation learning. NeuroCERIL’s

architecture extends NeuroLISP to support classes and exception handling, which ease the imple-

mentation of complex data structures and algorithms. NeuroCERIL successfully learned the same

battery of procedural tasks that was used to validate CERIL, demonstrating that it successfully

reproduces CERIL’s capacity for causal inference. Additional analysis of NeuroCERIL’s memory

usage demonstrates its computational efficiency, supporting its plausibility as a model of human-

level reasoning and satisfying the third and final objective of this dissertation.

Chapter 6 concludes with a brief discussion of NeuroCERIL’s implications for AI research,

as well as its limitations and directions for future work.
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2

Background

This section reviews some past research that is relevant to the work presented in this disser-

tation. Section 2.1 provides an overview of imitation learning and details on CERIL, an imitation

learning system based on cause-effect reasoning. Section 2.2 describes neurocomputational meth-

ods for algorithmic learning, highlighting an architecture for universal neural programming based

on gated itinerant attractor dynamics.

2.1 Imitation Learning

Humans readily teach and learn using demonstration and imitation. Although its origin

remains unclear, cognitive-level imitation emerges in early childhood and plays a crucial role

in human cognitive development, but remains a natural and intuitive method for acquiring new

skills throughout the lifespan [15, 17, 90, 128, 195]. Imitation is thought to be supported by

neural mechanisms that establish shared representations for perceptually observable behavior and

cognitive-motor control processes (i.e., the mirror neuron system), facilitating perspective-taking

and interpersonal collaboration [62, 85, 107, 140].

Imitation can take on a variety of forms depending on the degree to which the imitator

understands the demonstrated behavior. The simplest form of imitation involves directly repli-
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cating the motor trajectories of the teacher, and requires only a superficial understanding that is

relatively inflexible. However, humans are capable of a higher form of imitation that involves

reasoning about the demonstrator’s goals and intentions. This form of “cognitive-level” imitation

allows an imitator to grasp the underlying purpose of the demonstration and isolate factors that

are essential to the task from those that are circumstantial to the demonstration environment. As

a result, the imitator can generalize the learned skill to perform the task in a novel environment.

Cognitive-level imitation is therefore far more flexible and adaptive than lower-level imitation that

focuses on concrete motor actions rather than than abstract goals and intentions.

Programming robots to carry out complex tasks in a human-like fashion is difficult and

typically requires laborious programming by an experienced roboticist. One promising solution

to this problem is to develop robots that learn from demonstrations (i.e., robotic imitation learning)

[26, 83, 155, 176]. This eases the burden of teaching robots and makes it accessible to domain

experts without experience in robotic programming. Despite recent progress, it remains difficult

to develop systems that generalize well to novel circumstances and adapt learned behavior to

situations that deviate from the demonstration environment [27, 139]. Much past work has focused

on low-level tasks such as manual coordination [20, 59, 207] and mobile navigation in simple en-

vironments [1, 6, 49]. Because these models primarily address low-level motor control, they do

not generalize well to novel environments. This requires higher-level cognitive abilities such as

planning and reasoning that are qualitatively more complex than motor reproduction.

Symbolic approaches to cognitive-level imitation learning incorporate explicit planning pro-

cedures that operate on symbolic models of goals and behaviors and relate them to changes in

the environment [40, 50, 87]. However, these models have mostly employed domain-specific

procedures and knowledge for constrainted tasks such such as manipulation of objects on two-
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dimensional surfaces and virtual grid-worlds. In addition, they often produce plans with limited

hierarchical structure, and do not address unbounded composition of structured knowledge.

Another approach to imitation learning is reinforcement learning, in which agents learn

policies for selecting behaviors to reach reward states. This is most effective in models that

introduce hierarchical structure for planning at multiple timescales [64, 108, 116]. However,

learning policies that generalize well requires significant training data that captures environmental

variability, and traditional reinforcement learning requires an explicit reward signal that reflects

the demonstrator’s goals. When a reward signal is not available, the imitator must infer the goals

directly from observed behavior. This is done in inverse reinforcement learning models, which

infer a cost function that the demonstrator might be using to plan behavior [76, 120, 139]. While

this eliminates the need for explicit reward signals, these models still require substantial training,

and they typically have limited or no hierarchical structure.

When demonstrations are treated as execution traces of “behavioral programs”, imitation

learning can be approached as a problem of program synthesis or induction. Because algorithmic

procedures can be expressed as hierarchies of functional routines, this approach naturally addresses

the compositionality of intentional behavior. Although there is significant prior work using sym-

bolic methods [72], recent work has shown some success with machine learning models. For ex-

ample, Sun et al. [189] present a neural achitecture that is trained end-to-end using target programs

as training labels. This architecture contains an internal “summarizer” modulate that aggregates

encodings of multiple demonstrations into a compact representation that is used to sequentially

generate an output program. Similarly, Xu et al. [208] present a Neural Task Programming (NTP)

architecture that uses an external program stack and key-value memory to execute hierarchical

programs. NTP models learn to interpret “task specifications” that describe the task procedure and
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may be in the form of sequential demonstrations, permitting one-shot imitation at test time. How-

ever, NTP requires extensive pre-training using rich execution traces that are not typically available

during imitation learning. Both of these approaches therefore share limitations with reinforcement

learning: they require a substantial amount of training data that includes explicit indications of the

task in the form of target programs or execution traces.

One way to alleviate the data intensity of machine learning algorithms is by incorporating

them into hybrid systems with non-neural components. For example, Balog et al. [16] train a deep

neural network to infer program attributes, such as the presence of specific primitives operations,

from input/output examples. Predicted attributes are then used to guide a variety of search methods

to produce a final program. Similarly, Bunel et al. [32] generate programs using beam search

guided by the predictions of a model trained with reinforcement learning. Verma et al. [203]

combine reinforcement learning and search in an imitation learning paradigm: demonstrations

are generated by sampling a policy learned via deep Q-learning, and Bayesian optimization is

used to synthesize a program that produces similar outputs. These approaches demonstrate the

value that symbolic algorithms provide to machine learning, but still fall short of the data-efficient

generalization of human imitators.

2.1.1 CERIL: Cause-Effect Reasoning for Imitation Learning

Inferring intentions during imitation learning can be viewed as a process of causal reason-

ing, in which observable behaviors are treated as the effects of hidden causal intentions. These

intentions can be inferred using abductive inference, which proceeds from observed effects to

plausible causes by inverting causal relations. Abduction is a difficult and powerful procedure
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because of its inherent uncertainty. In contrast to deductive methods, abductive inference yields

defeasible hypotheses that may be subject to verification via experimental testing. In addition,

because it can result in a mutually-exclusive set of possible causes, abductive inference requires a

method for resolving conflict among competing hypotheses. While challenging to model, abduc-

tion is suitable for real-world applications because it accommodates the uncertainty of complex

environments and provides a principled method for navigating compositional search spaces.

Abductive inference has been explored in various areas of artificial intelligence such as

concept learning [91], program synthesis [48, 60, 150, 184], and diagnostic reasoning [146].

Most closely related to cognitive imitation learning is plan recognition, which has mostly been

approached using probabilistic methods such as Bayesian inference that become computationally

intractable with large models [39, 69, 152, 153, 180] (but see [135]).

Recently, a novel cause-effect reasoning framework called CERIL (Cause-Effect Reasoning

for Imitation Learning) has been developed specifically for robotic imitation learning [95]. CERIL

focuses on the role of high-level cognition in imitation and uses causal reasoning to infer the

intentions governing the demonstrator’s behavior and assemble plans for achieving them in similar

circumstances. CERIL generalizes complex skills by breaking them down into a hierarchy of

intentions at multiple levels of abstraction. Intentions at the bottom of the hierarchy guide concrete

behaviors that are adapted to the particulars of the demonstration environment, while those at the

top of the hierarchy correspond more generally to the goals of the task. By isolating these high-

level goals from demonstrations, CERIL is able to learn generalizable skills that can be adapted to

novel environments during planning.

CERIL focuses on the use of existing causal knowledge during imitation, and is agnostic

to the source of this knowledge, which may be programmed by a domain expert or learned from
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data using inductive methods. However, because CERIL makes use of causal chaining to construct

explanations and plans, this knowledge-base need only contain elementary causal relationships,

such as simple specifications of how abstract intentions are realized by sub-intentions and concrete

actions. For example, relocating an object can be accomplished by grasping the object, moving

the grasping hand to the desired location, and releasing the grasp. This elementary skill may be

used to implement more abstract skills, such as swapping the locations of two objects, and may

be achievable by alternative means such as pushing the object without grasping. This redundancy

promotes generalization because abstract goals can be satisfied in various ways according to the

demands of the imitation environment.

Imitation begins with a demonstration of the target skill (Figure 2.1, left side). Because ex-

tensive prior work has addressed action recognition in computer vision [57, 200, 205], CERIL pro-

cesses transcripts of demonstrations recorded in a virtual environment called SMILE (Figure 2.2).

These transcripts contain sequences of parameterized primitive actions such as grasping objects

and simple interactions with control components such as switches and knobs. CERIL constructs

an explanation for the demonstration out of causal relations with effects that match subsequences

of demonstrated actions. Using abductive causal chaining, CERIL matches actions with increas-

ingly abstract intentions in a hierarchical fashion, often resulting in competing alternative expla-

nations. CERIL evaluates explanations using parsimony criteria that favor minimal complexity,

often referred to as “Occam’s razor” [94, 158]. Thus, inference results in the simplest plausible

explanation that covers the observed behavior. This explanation is generalized by extracting the

intentions at the top of the hierarchy, which capture the abstract goals of the task that are furthest

removed from the particular demonstration environment.

During the next stage of imitation, CERIL uses the inferred top-level intentions to plan a
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Figure 2.1: Overview of CERIL’s cause-effect reasoning framework for imitation learning. Demonstrations of a

procedural skill are recorded in a virtual environment (SMILE, bottom left) and interpreted to construct a hierarchical

causal explanation for observed behavior (left side, A). This explanation is then adapted during imitation to construct

a robot-specific plan that implements the learned skill (right side, B and C). CERIL issues low-level motor commands

that manipulate objects identified in the environment using visual processing (bottom right). Figure reproduced from

[95].

novel sequence of actions to carry out the task in an imitation environment (Figure 2.1, right side).

Planning proceeds deductively from top-level goals to concrete effects using the same knowledge-

base that was used to construct explanations during abductive inference. In order to successfully

reproduce these goals, the plan must be tailored to the imitation environment, which may differ

from the demonstration environment (Figure 2.3). For example, objects may be placed in different

locations, or there may be additional irrelevant obstacles that must be removed. CERIL accom-

plishes this with low-level visual processing to match objects in the environment to objects that

were manipulated during the demonstration. Adapting behavior to this environmental model may
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Figure 2.2: Virtual 3D environment used for recording procedural demonstrations for imitation learning (SMILE:

Simulator for Maryland Imitation Learning Environment). The environment contains a tabletop with various objects

that can be manipulated, as well as an avatar for a bimanual robot, Baxter (Rethink Robotics). The user can pick up,

rotate, move, and release objects on the tabletop to create a sequential demonstration to be used for imitation learning.

Figure reproduced from [80].

require constraining action selection (e.g. pushing rather than grasping an object) or inserting

additional actions (e.g. removing obstacles).

CERIL’s reuse of causal knowledge for inference and planning has an important conse-

quence: plans can be used to generate explanations for behavior using the same principles that

are used for inference [96]. When prompted for an explanation for an action during imitation,

CERIL can consult the generated plan to extract causal chains that justify the action in the context

of the goals of the task. promotes transparency and trustworthiness that is crucial for effective

human-robot collaboration, and significantly eases the burden of debugging faulty behavior.

CERIL is a significant step forward in cognitive imitation learning for several reasons.
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Figure 2.3: Real-world imitation of a virtually demonstrated procedure. The demonstration is generalized to the

imitation environment by taking into account its differences from the demonstration environment. Here, Baxter

(Rethink Robotics) learns to replace a broken disk drive located in different slots in the demonstration (top) and

imitation environment (bottom). Figure from [95].

1) By using domain-general causal reasoning algorithms, CERIL is broadly applicable and can

seamlessly integrate tasks across domains using common causal knowledge. This has important

implications for transfer learning, which is a significant challenge in machine learning [196]: new

skills can be learned more efficiently if they can be broken down into previously learned skills,

which is achieved in CERIL’s knowledge-base of elementary causal relations. 2) Causal chaining

with compositional knowledge allows CERIL to construct hierarchical plans and explanations with

arbitrary depth. The exponentially increasing size of compositional search spaces makes several

approaches such as Bayesian inference intractable. 3) CERIL is agnostic to the source of its

causal knowledge, which can be provided by a human domain author or learned from data using

inductive methods. In addition, this knowledge can be provided incrementally without disturbing

the integrity of prior knowledge, which is a significant limitation in machine learning [63, 104].

However, CERIL’s correspondence with human imitation learning is limited in two ways. 1)

CERIL’s algorithms for intention inference rely on dynamic programming methods that may not
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be cognitively plausible. While this approach is effective and reasonably efficient, it is unlikely

that they can be supported by human working memory, which has significant capacity limitations.

CERIL also requires multiple passes through a demonstration, whereas human imitators reason

about demonstrated behavior as it occurs to construct partial explanations before a demonstration

is complete. 2) Although CERIL is compatible with neurocomputational methods for sensorimotor

processing, it is currently implemented using only symbolic programming. A neurocomputa-

tional implementation of comparable cognitive behaviors would benefit from the powerful learning

techniques available to artificial neural networks, and would contribute to research on the neuro-

computational basis of cognition and consciousness [160, 161].

This dissertation addresses these limitations with NeuroCERIL, a purely-neural imitation

learning system that reproduces CERIL’s ability to explain demonstrated behavior during imitation

learning (Chapter 5). NeuroCERIL implements a novel causal inference algorithm based on the hy-

pothetico-deductive approach, an influential model of diagnostic and scientific reasoning [114, 115,

122, 158, 181]. Hypothetico-deductive reasoning involves a combination of bottom-up abductive

inference and top-down predictive verification, which obviates the need for exhaustive search by

focusing cognitive processing on relevant causal knowledge. This approach also allows Neuro-

CERIL to process demonstrations in an online fashion by iteratively constructing efficient data

structures in memory that can be used to generate plausible explanations for observed behavior.

In other words, NeuroCERIL’s cognitive processes are much more human-like than CERIL’s, and

they are supported by neurocomputational mechanisms that more closely resemble those used by

people during cause-effect reasoning. These mechanisms are inspired by prior work on algorithmic

learning in neural networks that is reviewed in the next section below.

17



2.2 Algorithmic Learning in Neural Networks

Recent progress in artificial intelligence has largely been driven by advances in machine

learning, particularly in neurocomputational methods such as deep learning. As demonstrated in

the previous section, deep neural networks have achieved modest success in program synthesis and

induction. However, significant limitations complicate deep learning approaches to human-level

artificial intelligence, including dependence on large labeled datasets, architectural constraints

(differentiability, restricted recurrence, etc), and the difficulty of interpreting and debugging trained

models. Furthermore, while deep neural networks are remarkably effective at learning low-level

sensory processing and motor control, they struggle to capture critical aspects of high-level cogni-

tion such as compositionality and causal reasoning [113, 123, 144]. For example, Neural Turing

Machines [70, 71] are able to learn simple algorithms such as copying and sorting, but induced

programs have a limited capacity for generalization, and it is unclear to what degree they exhibit

compositionality, in part because of their lack of interpretability.

Many of these limitations are alleviated by integrating neural networks with symbolic meth-

ods in hybrid systems such as neural-guided search algorithms [5, 23, 32, 34, 92, 103, 124, 179].

The success of hybrid approaches demonstrates that neural networks benefit from robust symbolic

control and memory structures that are difficult to capture in neurocomputational systems, which is

puzzling given that cognitive control is carried out in the human brain. This discrepancy between

artificial and biological neural networks illustrates a computational explanatory gap between cog-

nitive and neurocomputational algorithms that impedes development of human-level artificial in-

telligence as well as efforts to understand the neural basis of cognition [157, 159]. Bridging this

gap requires the development of neural architectures capable of carrying out high-level cognitive
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control processes that are more readily captured by symbolic methods [160, 161].

One promising approach to neurocognitive control involves recurrent neural networks that

encode symbolic information in discrete dynamical attractors [3, 169, 210]. Dynamical attractors

are regions of state space toward which a dynamical system tends to evolve (e.g. patterns of

activation states in a recurrent neural network). Importantly, systems occupying attractor states

resist minor perturbations and remain near the attractor.

Dynamical attractors share several desirable properties with symbolic representations. 1)

Because they are stable by definition, they resist perturbations that may compromise the integrity

of information processing. However, their stability may be contingent upon conditions that can be

controlled, making them suitable for computation. 2) Attractors are discrete entities that emerge

in continuous systems. This makes them easy to distinguish from within the system (during

internal computations) and from outside of the system (during inspection, input/output, etc). 3)

The underlying representation (e.g. the specific pattern of activity) can be arbitrary and acquire

meaning solely from its relationship with other attractors. This means that computational pro-

cesses operating in attractor spaces are not constrained by the particular encoding of the symbols,

which may be flexibly configured as necessary.

At the same time, the neurodynamical substrate of attractors provides unique advantages over

traditional symbolic encodings. Most notably, attractor-based memory retrieval is noise tolerant,

and memories can be effectively recovered from partial or degraded input patterns. This built-in

error correction makes attractor networks robust to perturbations that can compound in dynamical

systems, and provides an inherent capacity to generalize across similar inputs. In addition, attractor

spaces need not be fixed or predetermined, and can evolve over time during learning. This may be

necessary to reliably implement complex computational procedures that are sensitive to specific
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activation patterns, such as the famous exclusive-or problem.

Most past work on attractor networks has focused on storage and retrieval of individual

memories or sequences of memories. However, recent work has explored using cognitively-

directed multiplicative gating signals to control attractor-based memory. This principle has been

successfully used to program neural networks to carry out tasks requiring cognitive control of

working memory, such as running memory span, n-back, card matching, and the Wisconsin Card

Sorting Task [190, 191, 192, 193]. These networks are based on a framework called GALIS

(“Gated Attractors Learning Instruction Sequences”) that is inspired by three prominant neuro-

scientific hypotheses about cortical control of working memory. The first is that the cerebral cortex

is organized as a distributed network of interacting regions encoding task-relevant information and

procedures. This makes behavior dependent on the activity patterns stored in the network’s mem-

ory and permits reprogramming without architectural modifications. Second, regions are recurrent

neural networks that learn sequences of dynamical attractors using temporally asymmetric learn-

ing, which can be used to encode sequential programs and data structures. Finally, cortical regions

can not only exchange information with one another, but can also control each others’ functionality

via region-level gating. GALIS networks use gating to transiently reconfigure their own connectiv-

ity by opening and closing pathways between regions, much like modern computer architectures

control multiplexers based on instruction opcodes. In addition, adaptive gates can control the

plasticity of regions, allowing the network to decide when to learn and update working memory.

The GALIS framework offers a number of benefits over contemporary neurocomputational

methods. In contrast to deep learning, attractors can be rapidly constructed using biologically

plausible one-shot Hebbian learning rules rather than slow iterative gradient descent. The discrete

nature of attractors makes them ideal for encoding interpretable symbolic information, including
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sequential programs that capture serial procedures. Because function is separated from architec-

ture, attractor networks can be reprogrammed without reconfiguring their structure, much like

digital computers. The representation of programs as data makes it possible for GALIS networks

to dynamically modify their own behavior and provides an opportunity for autonomous program-

ming. Finally, in contrast to hybrid approaches, GALIS networks can capture symbolic proce-

dures in a purely neural architecture that does not rely on non-neural symbolic components such

as external stacks and memory systems. This makes the GALIS framework relevant not only to

artificial intelligence, but also to computational studies of the brain and mind [160, 161].

2.2.1 A Programmable Neural Virtual Machine

Building gated attractor networks that carry out specific tasks requires non-trivial design of

neural “hardware” and “software”. The network’s architecture must be suitable for its application

environment, and it must implement a programming language capable of expressing the task as a

sequence of neural gating operations. This process could be greatly simplified by an architecture

for universal neural programming that is compatible with a broad range of peripheral components

for environmental interaction (e.g. visual processing and embodied sensorimotor control). We

have recently addressed this with a programmable Neural Virtual Machine (NVM) that captures

the functionality of conventional computer architectures in a purely neurocomputational system

[97].

The NVM deviates from previous neurocognitive models in its use of distributed represen-

tations and local learning rules. Rather than assigning variables or symbols to individual neurons,

the NVM uses dynamical attractors to store discrete symbolic information. As in GALIS net-
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works, these attractors are chained into itinerant sequences that encode sequential programs and

data structures, and are controlled by internally generated multiplicative gating signals. Attrac-

tors and their connective links are learned using a novel variant of Hebbian learning called the

“Fast Store-Erase Learning Rule”. In contrast to gradient-based learning, this rule can form robust

associations in a single timestep using spatially and temporally local information. In addition, this

rule encompasses both Hebbian and anti-Hebbian learning to overwrite old associations with new

ones (hence the term “store-erase”).

The workflow for building, programming, and running NVM instances is shown in Figure

2.4. First, the user specifies values for architectural parameters such as layer sizes and activation

functions that are used during a one-time construction process. This produces a blank NVM

instance that implements a universal programming language, akin to hardware and firmware in a

conventional computer. Next, human-authored programs are assembled and loaded into the NVM

instance using local learning. Importantly, new programs can be loaded without reconfiguring the

architecture, and without retraining with previously stored programs. Finally, stored programs

can be executed by running neural dynamics. To interface with the outside world, a “codec” is

maintained that stores mappings between attractors and their assigned symbols. This allows users

to translate symbolic input into activation patterns that the NVM understands, and to decode the

NVM’s output into human-readable form. However, the NVM operates independently of this

codec, which is only used for interface and interpretation.

The NVM emulates symbolic processing in a Harvard computer architecture, which main-

tains separate storage locations for instructions and data [171]. Figure 2.5a shows the components

of the symbolic machine with labels for some neural regions (opc, co, r1, etc). Interface with

the external environment is provided through general-purpose registers that maintain activation
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Figure 2.4: Neural Virtual Machine (NVM) workflow. Following user-configurable one-time construction (left), an

NVM instance can be programmed with code written in an assembly-like language. New programs are assembled

and loaded into the NVM using local learning rules without erasing previous stored programs (center). A “codec”

is maintained for translating input/output symbols to/from their corresponding activation patterns during program

execution (right). Figure from [97].

Figure 2.5: (a) Symbolic machine emulated by the NVM. External input/output runs through registers that are

connected with a contiguous long-term memory resembling the tape of a Turing machine. Instructions encode

sequential gating operations that control the flow of information between regions. (b) Sequential memory model

depicting read/write, increment/decrement, and reference/dereference operations. Figure from [97].
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patterns encoding symbols. Programs that use I/O must be written to handle asynchronous register

interactions, which can be done using mutual exclusion principles. Registers also interact with a

long-term contiguous memory resembling the tape of a Turing machine, as shown in Figure 2.5b.

Interactions between registers and memory are mediated by instructions stored in the instruction

registers. These instructions encode sequential gating operations that control information flow

between regions and implement read/write and reference/dereference operations. Additional in-

structions increment/decrement the active memory location, simulating movement of a tape head.

The full neural architecture of the NVM is shown in Figure 2.6. Regions and pathways are

indicated by small labeled squares connected by arrows. The control flow regions function as a

control unit that opens and closes connection gates based on program instructions and the results

of computations. During one-time construction of the NVM instance, these regions are “flashed”

with “firmware” that implements the instruction set architecture. Instructions are encoded in the

program memory regions, which are updated during assembly and loading. Each instruction is

encoded as an attractor in the ip (“instruction pointer”) layer that is linked to attractors encoding

its opcode and operands in the opc, op1, and op2 layers. Instruction execution begins by opening

the gates on outgoing connections from ip, which “unpacks” the instruction by activating the

corresponding attractors in the op layers. The opcode is then sent to the gh (“gate hidden”)

layer to begin the control sequence appropriate for the instruction. For example, read and write

operations involve gating different pathways between registers and heap memory. Which operation

to perform is indicated by the opcode, while the source/destination register is indicated by the first

operand. The dynamics of gh are initialized by the opcode, but are also informed by operands to

ensure that the appropriate gates are controlled to execute the instruction. Upon completion of an

instruction, gh advances ip to the next instruction attractor and prepares to unpack it for the next
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execution cycle.

Figure 2.6: Full architecture of the NVM. Small labeled squares depict neural regions that are interconnected with

gated pathways (arrows). Dashed pathways are initialized and fixed during one-time construction, whereas solid

pathways may change via learning during program loading and execution. Bold squares indicate regions with recurrent

connectivity. Pathways are gated by activation in the go (“gate output”) region. For simplicity, these gates are omitted

from the diagram, along with interconnections between registers. Figure from [97].

Program execution typically proceeds sequentially through instructions, which are chained

together as an itinerant attractor sequence in ip. However, several instruction opcodes cause

branching of program execution using associations between op1 and ip that are learned during

program assembly and loading. For example, a jump instruction includes an operand that refers to

another target instruction, and can be executed by opening the pathway from op1 to ip after the

jump is unpacked. Jumps can be contingent on the results of prior comparison operations, which

are used to compare the contents of two registers, or to compare the contents of one register with

an “immediate” value encoded in the comparison instruction itself. The result of the comparison is
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encoded in co (“compare output”) and is available to gh via a gated pathway. When a conditional

jump instruction is executed, gh follows one of two activity trajectories based on the contents of

co: if the comparison was true, the target instruction is loaded from op1, otherwise ip is simply

advanced to the next instruction in the program sequence.

In addition to jumps, the NVM uses stack memory to support sub-routine execution. Like

jumps, these instructions encode target instructions using associations between op1 and ip. How-

ever, calling a sub-routine involves stashing the current instruction in stack memory so the sub-

routine can return to it when it completes. Like heap memory, stack memory is implemented as

a bidirectional chain of attractor states that emulates a tape with a read/write head. Pushing an

instruction onto the stack involves advancing the head and binding the resulting attractor to the

contents of ip using gated learning. The learned association can then be used to recover the in-

struction by opening the pathway to ip, and the head is moved back to its prior location. Stack

memory supports nested sub-routine calls by storing a record of trace of calls that have not yet

been returned from, providing a principled mechanism for managing compositional procedures.

The NVM stands out from prior work on universal neural computation in a number of ways.

As a purely neural system, it differs from hybrid systems that augment neural networks with

auxiliary components (e.g. stacks and memory units), which do not address how neurocomputation

can support symbolic processing. In contrast, all of the NVM’s modules are implemented using

a common set of biologically-plausible neurocomputational principles, including multiplicative

gating, distributed representation, and fast local learning. Each of these principles has played

a significant role in both machine learning and neuroscience, but only limited prior work has

explored their combination.

A notable limitation of the NVM is that it is constrained to the linear structure of itinerant
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attractor sequences. This is overcome by introducing additional pathways through the architecture

that enable alternative transitions between attractors. For example, program memory represents

programs as linear sequences of instructions using the recurrent connectivity of the ip layer,

and branching (jumps and sub-routine calls) requires additional links between instructions that

are established in a separate pathway through the op1 layer. Similarly, bidirectional links in

linear stack and heap memory are encoded in separate forward/backward pathways that can be

individually controlled by the gating mechanism during increment and decrement operations. Ad-

ditional links between memory addresses are supported by reference/dereference operations that

establish pointers using additional pathways through register regions.

While jumps and pointers can be used to construct complex algorithms and data structures,

their current implementation in the NVM incurs significant computational costs. Complex con-

ditional behavior (e.g., branching based on several possible conditions) requires a sequence of

binary conditional operations encoded in a chain of comparison and jump instructions. Similarly,

compound objects can be stored in heap memory using contiguous chains of pointers that refer

to object attributes. In both cases, the cost of reaching the target state increases with the number

of elements (conditions/attributes) because access depends on iteration through linear memory.

Jumps and pointers also require additional memory use: jump targets are encoded in op1, and

pointer targets (memory addresses) are encoded in register regions.

An exception to this limitation is the attractor space of the gh control flow region, which

branches to different gating sequences according to the instruction being executed. The dynamics

of this layer can be understood as an emulation of a finite state machine, where transitions between

attractors are guided by external input from program memory regions (for details, see Appendix E

in [97]). Although each transition requires a unique intermediate activation pattern, similar to the
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auxiliary representations required for conditional jumps and heap memory pointers, transitioning

to one of various targets can be done in constant time without substantial iteration through linear

memory. However, this attractor space is learned during one-time construction of the NVM using

a linear solver rather than local learning, and because gating behavior is program-independent, it

need not be modified during program loading and execution.

In this dissertation, I address these limitations with a generalization of itinerant attractor

sequences called attractor graphs (Chapter 3). Unlike linear sequences, attractor graphs can

represent arbitrary directed graphs in neural memory, and support storage of compositional data

structures with only local learning rules. This method makes it possible to represent higher-level

programming languages with nested program expressions, making it easier to implement complex

algorithms like those that are common in traditional symbolic AI. This possibility is realized in

NeuroLISP, a programmable neural network that implements a subset of Common LISP (Chapter

4). NeuroLISP provides a neurocomputational foundation for learning causal reasoning algorithms

for imitation learning, demonstrated with NeuroCERIL (Chapter 5).
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3

Compositional Working Memory

Compositionality refers to the ability of an intelligent system to construct representations

out of reusable parts. The principle of compositionality states that “the meaning of a complex

expression is determined by its structure and the meanings of its constituents” [61, 133, 194].

Despite widespread debate over the precise definition and interpretation of compositionality, there

is substantial evidence that structured representation plays a critical role in human reasoning. Com-

positional representations are useful because they can be systematically generalized and reorga-

nized to facilitate rapid comprehension in novel circumstances. For example, a person who knows

how to prepare tea can learn to prepare coffee with minimal difficulty by decomposing the process

and recognizing familiar behaviors (e.g., boiling water). Compositional reasoning is considered

crucial in domains as diverse as language comprehension [2, 12, 145], behavioral planning and

imitation [12, 31, 164], visual perception [25, 166, 206], and concept learning [21, 93, 148].

Compositionality is readily achieved in cognitive systems capable of symbolic manipula-

tion, but is much more challenging for sub-symbolic systems such as artificial neural networks.

This has fueled a long-standing controversy over whether neural networks can represent compo-
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sitional structures [61, 113, 123]. Recent advances in neural machine translation and sequence-

to-sequence modeling have demonstrated remarkable progress toward compositional learning in

neural systems. This is due to several innovations that improve short term memory in neural net-

works, including recurrent processing units [41, 77], attention mechanisms [81, 201], and external

memory resources [70, 147, 188]. These techniques are often combined because they provide

complementary benefits, allowing neural networks to maintain activation states over time and

model dependencies between distant representations [14, 112].

Despite this progress, and although there are disagreements about how compositionality

should be evaluated in neural models [82, 133], empirical studies demonstrate that state-of-the-art

deep neural networks struggle to learn systematic rules that permit generalization beyond training

data [82, 111, 119]. This is in stark contrast to the ease with which such rules can be implemented

in symbolic programs. This discrepancy may be due to a lack of compositional working memory in

neural networks and an inability to encode structured representations. Working memory is a form

of short term memory containing information that is actively manipulated by cognitive processes

[10, 137]. Although its capacity is limited, working memory is capable of storing structured or

“chunked” representations that provide access to a broad range of information [35, 44].

One way to provide neural networks with compositional working memory is to integrate

them into hybrid systems with non-neural symbolic algorithms that manipulate compositional data

structures [5, 23, 34, 103, 124]. For example, some neural-guided search algorithms maintain

compositional data structures in non-neural symbolic memory and use neural processing to inform

their construction [32, 92, 179]. From an engineering standpoint, this is a reasonable and effective

approach, but it does not address how compositional structures can be encoded in purely neural

models. An alternative approach is to develop purely neural computers with general-purpose mem-
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ory arrays that incorporate key aspects of symbolic computation [70, 71]. While these systems have

an impressive ability to learn algorithmic procedures from data, they require unconstrained access

to large sets of activation patterns maintained in external memory, which is considered highly

implausible from a biological perspective.

Many purely neural models of working memory employ spatially localized representations,

such as localized attractors of Dynamic Field Theory [55, 174], and minimally overlapping cell

assemblies in neural blackboard architectures [198]. Localist representations introduce an undesir-

able correspondence between memory and architecture that limits representational flexibility, and

often requires task-specific circuitry. In contrast, vector-space approaches employ fully distributed

representations that can be composed using superposition and binding operations [66, 149]. For

example, recursive auto-associative memory (RAAM) networks can learn fixed-length represen-

tations of tree data structures that can be iteratively decoded to sub-trees and leaf nodes [151].

More recently, the Semantic Pointer Architecture uses symbol-like vector representations that

can be recursively composed to store structured information [28, 54]. Notably, operations for

composing semantic pointers can be learned using biologically-plausible learning rules in spiking

neural networks [183]. However, a significant disadvantage to this approach is that the encodings

of structured representations are semantically related to their constituent elements. This means

that additions to a compositional data structure involve changes to its representational encoding

(e.g., semantic pointer), as well as any encodings for super-structures that it is contained in. For

example, adding a leaf node to a tree would require reconstruction of the representations for each

ancestor of the new node. This makes semantic encodings of data structures effectively immutable,

as modifications involve constructing new encodings.

Performance on working memory tasks is correlated with measures of general intelligence
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[42, 43, 86], and working memory operations are considered to be consciously reportable [11, 13].

For these reasons, biologically-plausible models of compositional working memory may lead to

significant advances in AI systems and contribute to a deeper understanding of consciousness and

cognition [161, 162], including cognitive-motor control [73, 74]. Substantial evidence indicates

that activity-silent mechanisms such as rapid synaptic plasticity play a critical role in working

memory [19, 121, 132, 170, 185]. This suggests that persistent activity maintenance alone is not

sufficient for modeling the complexities of human working memory, and may explain in part why

compositional learning is difficult for artificial neural networks.

Contemporary neural networks typically undergo a training phase during which weights are

updated via iterative gradient descent and fixed during task performance. Recent exceptions to this

demonstrate that fast associative learning greatly improves short-term memory in neural networks

because it permits storage without active maintenance [8, 45, 130]. Furthermore, models based

entirely on fast associative learning and itinerant dynamical attractors can learn to perform com-

plex working memory tasks [191, 193], and can simulate Turing machines without the need for

consistent maintenance of memory activation [97]. However, such models have focused on storage

of individual memories and temporal sequences of memories. To my knowledge, fast associative

learning has not yet been applied to explicit encoding of hierarchical compositional structures (e.g.,

trees) in working memory as is done here.

This chapter introduces a neural model of compositional memory based on context-depen-

dent itinerant attractors in recurrent neural networks. This model is referred to as an attractor graph

network or AGN. Attractor graphs are composed of fixed-point dynamical attractors (vertices) and

transitions between attractors (edges) that are learned using a combination of multiplicative gating

and one-step associative learning. The use of multiplicative gating is motivated by evidence that
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it contributes to functional grouping in neural populations [9, 38, 126, 167, 202]. In an AGN,

contextual gating signals select learned associations to govern the dynamics of the network over

time, directing a traversal through the attractor graph that is analogous to the operation of a

finite state machine. This chapter shows how compositional data structures such as associative

arrays (i.e., dictionaries or maps), linked lists, and trees can be encoded in AGNs and retrieved by

programmatic procedures that control sequential iteration through attractor graphs. In contrast to

semantic pointers and other vector space representations, structured representations in AGNs are

made up of learned associations between activity states, and can therefore be freely modified by

changing synaptic weights without changing activity states.

AGNs are inspired by neurobiological studies of working memory and are based on several

biologically-inspired principles. Representations in attractor graphs are composed of distributed

activation patterns (dynamical attractors) that are supported by learned connection weights, and

can be reactivated as needed without persistent activity maintenance. This means that the capacity

of working memory is not directly limited by network architecture, and is instead determined by

the organization of both the underlying attractor model and the control signals used for mem-

ory retrieval. This suggests that the phenomenon of “chunking” is supported by compositional

structuring, which organizes the contents of working memory according to systematic procedures

for top-down control.

3.1 Methods

This section describes a novel method for representing compositional data structures as

systems of dynamical attractors in recurrent neural networks. This is illustrated with a small
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multi-region model shown in Figure 3.1. The core memory region (mem) is a recurrent neural

network with attractor states that represent general-purpose elements in short-term working mem-

ory. These elements are referred to as memory states. Memory states are linked together with

context-dependent transitions that are controlled by inputs from the context region (ctx). Patterns

of activity in the lexicon region (lex) represent symbolic tokens that can be “stored” in memory

states and used as names for variable pointers to memory states.

mem ctx

autohetero

lex

Figure 3.1: Neural model with compositional memory. Each box is a neural region and solid lines indicate connectiv-

ity between regions. Each connection is controlled by a binary gate (not shown) that determines whether it contributes

to neural dynamics during each timestep. The memory region (mem, bottom left) is an attractor graph network with

dense hetero-associative and auto-associative connectivity (bold looped arrows). Patterns of activity in mem represent

general-purpose memory states that “store” symbolic tokens represented by distributed activity patterns in the lexicon

region (lex, top left). Associations between memory states and symbolic tokens are learned in the pathway from mem

to lex. Transitions between attractors in mem are contextualized by activity in the context region (ctx, bottom right)

via a pathway from ctx to mem. The open circle at the end of this pathway indicates that it provides contextual gating

inputs to mem. Activity patterns in ctx may be derived from mem or lex patterns, and serve as labels for relations

between memory states that are used to construct compositional data structures. Finally, lex patterns can represent

variable names that point to memory states via the pathway from lex to mem.

Compositional data structures are encoded in the mem region as systems of itinerant dynami-

cal attractors called attractor graphs. Vertices in these graphs are fixed-point dynamical attractors,
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and edges are context-dependent transitions between attractor states. Recurrent networks with

attractor graph dynamics are referred to as attractor graph networks, or AGNs. Section 3.1.1

describes the structure and dynamics of AGNs in detail. Section 3.1.2 shows how compositional

data structures can be represented as attractor graphs, and describes the interactions between the

mem, ctx, and lex regions of the model. Section 3.1.3 shows how the model shown in Figure 3.1

can be embedded into a larger programmable neural network that constructs and manipulates data

structures according to learned programmatic procedures.

3.1.1 Attractor Graph Networks

Attractor graphs are systems of itinerant dynamical attractors with context-dependent tran-

sitions. Attractor itinerancy refers to a temporal process in which a dynamical system undergoes

transitions through a sequence of attractor states, settling momentarily at each state before rapidly

transitioning to its successor [78, 131]. In an AGN, each attractor state (vertex of graph) may

have multiple outgoing transitions (edges of graph) with unique successors, and activity evolves

according to contextual inputs (edge labels) that select which learned transition governs dynamics

at each timestep. In the model shown in Figure 3.1, the mem region is an AGN that receives

contextual inputs from the ctx region.

The branched organization of sequential attractors in AGNs makes it possible to represent a

broad range of graph-based data structures, including compositional data structures such as linked

lists, associative arrays (dictionaries, maps), and trees. Because attractor transitions depend on

contextual inputs, data structures represented in the network’s memory can be accessed via top-

down control of contextual inputs over time (as shown in Section 3.1.2.1). This makes AGNs
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effective general-purpose models of compositional working memory that may be integrated into

larger neural systems, such as the one shown in Figure 3.5.

Let r denote a particular region in a neural architecture, such as mem or ctx in Figure 3.1.

A region r is used as an AGN by equipping it with two types of recurrent connectivity that play

distinct roles in attractor itinerancy. A dense auto-associative weight matrix Ar encodes patterns

of activation as fixed-point attractor states that represent retrievable memories, as in a Hopfield

network. Each learned attractor resides in a unique orthant of activation space. Transitions between

attractor states are encoded in a dense hetero-associative weight matrix Hr. Errors introduced by

transition dynamics are corrected by auto-associative dynamics, which bring activity into the target

orthant. Errors in attractor convergence are corrected by self-connectivity that saturates activation

within the current orthant. Thus, as long as the transition brings activity into the correct orthant,

the target pattern can be perfectly recalled.

The dynamics of the model are controlled by a set of binary gates that determine which con-

nections are active at each timestep. For example, when gate gAr = 1, activity evolves according

to the auto-associative matrix Ar, which causes convergence to the nearest attractor state. A

temporal sequence of connection gate values implements the multi-step procedure of attractor

itinerancy described above (i.e., hetero-associative transition, auto-associative convergence, sat-

uration). These gate values may be provided by a dedicated region of binary threshold neurons,

such as a controller in a programmable neural network [97, 191], as discussed in Section 3.1.3.

In addition to recurrent connectivity, AGNs receive two types of extrinsic inputs: additive

and multiplicative. Additive inputs Ir contribute to the summation of synaptic inputs and can be

used to initialize the activity state of the network. In contrast, multiplicative inputs c are binary

signals that enable or disable specific neurons by gating cumulative synaptic activity. These signals
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enable functional branching in attractor transitions by modulating hetero-associative dynamics, as

described below, and are distinct from connection gates (e.g., gAr ).

The following equations describe the dynamics of an AGN region such as mem over time.

Section 3.1.2 returns to the neural circuit shown in Figure 3.1 to explain how these dynamics

contribute to compositional working memory. Here the subscript r refers to a generic region. First,

synaptic input is aggregated from gated recurrent connectivity and external inputs:

sr(t) = gSr (t) ωr vr(t)︸ ︷︷ ︸
saturation

+ gAr (t) Ar vr(t)︸ ︷︷ ︸
convergence

+ gHr (t) Hr vr(t)︸ ︷︷ ︸
transition

+ Ir(t) (3.1)

where

• sr(t) is a vector of cumulative synaptic input to region r at time t.

• vr(t) is a vector of neural activity of region r at time t.

• ωr is a scalar self-weight that causes saturation and maintenance of neural activity in region

r when gSr (t) = 1.

• Ar is an auto-associative weight matrix for region r that causes convergence to a nearby

fixed-point attractor when gAr (t) = 1.

• Hr is a hetero-associative weight matrix for region r that causes a transition between attractor

states when gHr (t) = 1.

• Ir(t) is a vector of external (non-recurrent) synaptic input to region r at time t. This input

may be provided by other neural regions, as described in Section 3.1.2, or from outside the

model for initialization purposes, as shown in Section 3.1.1.1.
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Next, multiplicative activation is determined based on gated contextual input:

xr(t) =

{
cr(t), if gCr (t) = 1

1, otherwise
(3.2)

where

• cr(t) is a vector containing the net multiplicative input to region r at time t. This input may

be provided by other neural regions such as ctx in Figure 3.1.

• 1 is a vector of ones of the same size as cr(t).

• xr(t) is a vector of active multiplicative input to region r at time t. When gCr (t) is enabled,

xr(t) = cr(t). Otherwise, xr(t) defaults to 1, and synaptic input sr(t) passes into the

activation function regardless of cr(t).

Finally, neural activation is computed for the next timestep by combining synaptic and multiplica-

tive input:

vr(t+ 1) = σr

(
xr(t)� sr(t)

)
(3.3)

where

• σr is a sign-preserving neural activation function in region r (i.e., sgn(σr(x)) = sgn(x)).

For the experiments reported in Section 3.2, the hyperbolic tangent activation function is

used for the mem AGN shown in Figure 3.1.

• � is the Hadamard (element-wise) product.

An attractor transition is carried out in four stages, starting with an activity pattern that

may be initialized by Ir(t), or by a previous transition. 1) The transition begins with applica-

tion of a context pattern c, which disables a subset of neurons and “masks” the source activation
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Table 3.1: Connection gate values for each stage of an AGN attractor transition

Stage gSr gCr gHr gAr
1. Mask 1 1
2. Transition 1 1
3. Converge 1
4. Saturate 1

pattern. This is done by enabling saturation and context gates (gCr (t) and gSr (t)) for one timestep.

2) Next, while context gate gCr (t) remains enabled, hetero-associative gate gHr (t) is enabled for

one timestep, and activity transitions to a new pattern of non-zero activation in the participating

neurons. 3) Once the initial transition is complete, gAr (t) is enabled, causing auto-associative

dynamics across the entire network. Over several timesteps, activity converges to the nearest

fixed-point attractor. Note that because context gate gCr (t) is disabled, all neurons participate in

auto-associative dynamics. 4) Finally, saturation gate gSr (t) is enabled, causing activity to saturate

within the current orthant of activity space over several timesteps. This makes up for any errors in

convergence, and is successful as long as auto-associative dynamics resulted in an activity pattern

in the correct orthant. Note that saturation dynamics are only necessary for continuous models

(e.g., when σr is the hyperbolic tangent), and can be omitted in models with a threshold activation

function (e.g., the sign/signum function). The connection gate values for each stage of an attractor

transition are shown in Table 3.1. Stages 1 and 2 take one timestep each, while Stages 3 and 4 each

occur over several timesteps.

Each attractor state learned by the AGN may have multiple hetero-associative transitions to

several other attractor states. Each of the transitions from a given state must be learned in the con-

text of a unique multiplicative input pattern cr(t). During attractor transition dynamics, the choice

of cr(t) determines which learned association will govern the transition. This process is depicted
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in Figure 3.2, which shows the activation space for an AGN with three neurons. Trajectories are

shown for two transitions from an attractor state m(0) using unique context patterns c(1) and c(2).

m(0)

m(1)

m(2)m(0)
⊙c(1)

m(0)
⊙c(2)

c(1)

c(2)

Figure 3.2: Visual depiction of context-dependent attractor transitions in the activation space of an AGN with three

neurons. Each axis represents the activation level of one neuron (from -1 to +1). Two transitions from state m(0) (left

side) are shown, each with a distinct context pattern (c(1) or c(2)). Each context pattern is a binary vector that selects

subsets of neurons to participate in hetero-associative dynamics, and corresponds to a subspace in activation space

(shaded planes labeled c(1) and c(2)). Transitions are executed over several steps. 1) First, a context pattern is used

to “mask” the source activation pattern, disabling a subset of neurons and collapsing activity into the context-specific

subspace (arrows leaving m(0) to m(0) � c(1) or m(0) � c(2), left side). 2) Next, while the context masking remains

active, hetero-associative dynamics cause activation to transition into a new orthant of the subspace (center arrows

within shaded planes). 3) Then, the context masking is disabled, and auto-associative dynamics cause convergence

to the nearest fixed-point attractor state over several timesteps (curved arrows, right side). 4) To correct any errors

in convergence, saturation dynamics push activity to the corner of the current orthant of activation space over several

timesteps (straight arrows to m(1) and m(2), right side).

Learned attractor states are patterns in {−ρr,+ρr}Nr , where Nr is the number of neurons

in the AGN, and ρr is a parameter that determines the magnitude of learned activity states. These

activation patterns are randomly generated using a Bernoulli process with equal probabilities (i.e.,

a fair coin toss). For models using a threshold activation function, activation patterns are discrete
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and bipolar, and ρr = 1. When the hyperbolic tangent activation function is used, 0 << ρr < 1

(typically 0.9999) because σ−1r (1) = ∞. Once ρr is set, the value of the saturation self-weight ωr

is determined according to the following relation:

ρr = σr(ωrρr)

This ensures that ±ρr is a stable fixed-point when saturation dynamics are enabled (gSr (t) = 1).

Multiplicative gating patterns cr(t) that contextualize transitions are in {0, 1}N , where N is

the number of neurons in the network. The density of these patterns is an important parameter that

determines how many neurons participate in each transition. This parameter is referred to as λ, the

probability used in the Bernoulli process that generates context patterns.

The auto-associative weight matrix for a region r (Ar) is learned using traditional Hebbian

learning, starting with an initial matrix with zero entries, and updating the weights for each learned

pattern:

∆Ar =
1

ρ2rNr

σ−1r (v)v> (3.4)

where v is the pattern to be learned, σr is the neural activation function, ρr is the stable activation

level of learned attractor patterns, and Nr is the number of neurons in the region. When the

sign/signum activation function is used (σr = sgn(x)), its inverse is defined as:

sgn−1(x) =


+1, if x > 0

−1, if x < 0

0, if x = 0

The hetero-associative weight matrix for a region r (Hr) is also learned using local one-step

learning. However, because transitions are context-dependent, they must be learned with the

corresponding contextual gating pattern. Each transition is learned with the following update rule,

starting with a zero matrix:

∆Hr =
1

λρ2rNr

σ−1r (c� v)(c� u)> (3.5)
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where u is the source pattern, v is the target pattern, c is the context pattern, λ is the density of

contextual gating patterns, and σr, ρr, and Nr are as defined above. Note that the normalization

factor λρ2rN is approximately equivalent to the squared Euclidean length of c� u.

Other associative learning rules can be used to learn Ar and Hr. To adapt a learning rule

for gated hetero-associative learning, it must 1) only update weights connecting neurons that

participate in the transition, as determined by contextual gating pattern c, and 2) renormalize

weight updates according to λ, the density of c. This chapter considers both traditional Hebbian

learning (Equations 3.4 and 3.5) and the fast store-erase learning rule [97]:

∆Ar =
1

ρ2rNr

(
σ−1r (v)−

(
Arv

))
v> (3.6)

∆Hr =
1

λρ2rNr

σ−1r (c� v)− (c�Hr (c� u))︸ ︷︷ ︸
masked target delta

(c� u>
)︸ ︷︷ ︸

source

(3.7)

where c is a binary contextual gating pattern, u is the initial source activity pattern, v is the final

target activity pattern, and λ, σr, ρr, andNr are as defined above. The additional context masking in

the target delta of Equation 3.7 (just beforeHr) ensures that weights with deactivated post-synaptic

neurons are not updated.

The store-erase learning rule contains an anti-Hebbian component that erases previously

stored associations. This makes it particularly advantageous for neural working memory, as it

can be used to overwrite relations between memories and modify learned data structures. How-

ever, this learning rule has not been evaluated with auto-associative memory, and has not been

systematically compared with traditional Hebbian learning. This is addressed in Section 3.2, where

empirical results are presented that compare memory storage and retrieval in AGNs learned with

either traditional Hebbian or store-erase learning.
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3.1.1.1 Contextual Gating Supports Functional Branching

Contextual gating signals in AGNs make it possible to store multiple transitions from an

attractor state using a single hetero-associative weight matrix. This branching of attractor transi-

tions is referred to as functional branching because it depends on functional multiplicative inputs.

This is in contrast to structural branching, in which each branch in the attractor sequence is

stored in a distinct hetero-associative weight matrix. Structural branching imposes an undesir-

able correspondence between network architecture and memory because the number of outgoing

transitions from any given attractor state (i.e., its out-degree or branching factor) is limited by

the number of hetero-associative weight matrices. In contrast, functional branching requires only a

single hetero-associative weight matrix, and does not impose constraints on the structure of learned

associations. This novel aspect of AGNs makes it possible to represent arbitrary directed graphs

as systems of functionally-branched itinerant attractor sequences.

The following simple toy example clarifies how AGNs work, and illustrates how contextual

gating signals support functional branching. Consider an AGN with N = 4 neurons that use the

sign/signum activation function (ρ = 1 and ω = 1). Learned attractor states are bipolar patterns in

{−1,+1}4. The network, shown in Figure 3.3a, learns two attractor transitions (Figure 3.3b) that

make up a simple attractor graph (Figure 3.3c). The learning procedure and transition dynamics

are described in detail below, with the subscript r omitted for ease of presentation.

Three activity patterns are learned as attractors in auto-associative matrix Ar using Equation

3.4: v(0) = [+1,−1,+1,−1]>, v(1) = [+1,+1,−1,−1]>, and v(2) = [−1,+1,−1,+1]>. For
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Figure 3.3: (next page) Toy example of transitions in an AGN (see text for details). (a) AGN with four neurons

(center circles). Bold looped arrows indicate auto-associative (A) and hetero-associative (H) recurrent connectivity

matrices. Dashed lines on the left indicate multiplicative gating signals (c(t)) that contextualize attractor transitions.

Solid lines on the right indicate external synaptic input (I(t)) that initializes activation patterns (v(t)). Binary gates

(gA(t) and gH(t), top) determine which connections are active at each timestep (gS(t) and gC(t) not shown). (b)

Two contextual transitions learned in the network. Each transition begins with activity pattern v(0) and transitions to a

unique successor (v(1) or v(2)) in the context of a unique context pattern (c(1) or c(2)). (c) Graphical depiction of the

learned attractor graph. Gating patterns (circles in left rectangle) contextualize transitions between distributed activity

states in the AGN (circles in right rectangle).
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simplicity, the normalization term 1
ρ2N

is omitted from the learning rule.

A =
∑
i

v(i)v(i)> = v(0)v(0)> + v(1)v(1)> + v(2)v(2)> =


+3 −1 +1 −3
−1 +3 −3 +1
+1 −3 +3 −1
−3 +1 −1 +3


Note that these patterns were chosen for illustration purposes, and that AGNs are not restricted to

learning orthogonal/complementary activation patterns.

Two attractor transitions are learned in hetero-associative matrix H using Equation 3.5:

v(0) to v(1), and v(0) to v(2). Each of these transitions is contextualized by a distinct context

pattern that selects a subset of neurons in the network. The first transition is contextualized by

c(1) = [1, 1, 0, 0]>, which enables the first and second neurons, while the second transition is

contextualized by c(2) = [0, 0, 1, 1]>, which enables the third and fourth neurons. As above, the

renormalization term 1
λρ2N

is omitted for simplicity.

H = (c(1) � v(1))(c(1) � v(0))> + (c(2) � v(2))(c(2) � v(0))> =


+1 +1 0 0
−1 −1 0 0
0 0 −1 +1
0 0 +1 −1


The resulting weight matrix H encodes two transitions from v(0) that are segregated to

different sub-populations of neurons and weights. The disjoint context patterns used in this ex-

ample are solely for illustrative purposes; in general, context patterns can be randomly generated

and can enable overlapping sets of neurons, introducing interference between weight updates for

different context patterns. Empirical results presented in Section 3.2 demonstrate successful tran-

sitions despite this interference.

When a transition is executed, the corresponding context pattern (c(1) or c(2)) is presented

to select the subset of neurons that learned the transition. Consequently, only one quadrant of

H governs the first step of transition dynamics, updating activity in the context-specific subset
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Table 3.2: Timing of example attractor transition dynamics

Timestep gS(t) gC(t) gH(t) gA(t) I(t) c(t) x(t) s(t) v(t)

Initialization (t=0) v(0) 1 v(0) σr(v
(0)) =


+1
−1
+1
−1


Masking (t=1) 1 1 c(1) c(1) v(0) σr(c

(1) � v(0)) =


+1
−1
0
0


Transition (t=2) 1 1 c(1) c(1) Hv(1) σr(c

(1) �Hv(1)) =


+1
+1
0
0


Convergence (t=3) 1 1 Av(2) σr(Av(2)) =


+1
+1
−1
−1


of neurons associated with the transition. To complete the transition, auto-associative dynamics

cause convergence to the nearest attractor, completing the target activity pattern. This process is

illustrated in Table 3.2 for the transition from v(0) to v(1) using context signal c(1) (blank cells

indicate zero values).

This procedure is carried out in an AGN using a temporal sequence of inputs and connection gate

values shown at the top of each timestep block (e.g., I(0) = v(0)). The second transition from v(0)

to v(2) can be executed by substituting context pattern c(2) for c(1). Note that saturation dynamics

are omitted after convergence because the sign activation function has discrete outputs. The sat-

uration connection is, however, necessary for activity maintenance during timestep 1. Although

this simple example only requires one timestep of auto-associative dynamics to recover the final

pattern, in general, several timesteps will be necessary.
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3.1.2 Compositional Memory

The AGN model outlined in the previous section describes the dynamics of the mem region

of the model shown in Figure 3.1. This section describes the interactions between the mem, ctx,

and lex regions of this model, and explains how they encode compositional data structures.

Attractor states in the mem region represent discrete generic memory states, and are orga-

nized into structured representations with context-dependent attractor transitions. For example, a

linked list is represented by a sequence of memory states connected by transitions with a shared

list-specific context. Each memory state may be associated with a pattern of activity in the lexicon

region (lex) via the pathway from mem to lex. Patterns in lex represent symbolic tokens that are

“stored” in memory states using associative learning. These tokens may represent words, for ex-

ample, and a sentence could be represented as a linked list of memory states, each associated with

the lex pattern representing the corresponding word in the sentence.

Transitions between memory states are contextualized by activity patterns in the context

region (ctx). The ctx region uses the heaviside activation function, and provides the binary context

signals that select subsets of mem neurons to participate in attractor transitions (c(t) in Equation

3.2). Patterns in ctx may be derived from mem and lex patterns via pathways from those regions

to ctx. This makes it possible for memory states or symbolic tokens to indirectly contextualize

memory transitions through an intermediate associated ctx activity pattern.

While the mem region is an AGN with multiple recurrent pathways and attractor dynamics,

the ctx and lex regions have no recurrent connectivity, and only include internal saturation dynamics

that maintain activity patterns over time. With the exception of the pathway from ctx to mem,

which provides unweighted contextual gating signals for attractor transitions in mem, inter-regional
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pathways (solid lines with arrows in Figure 3.1) have dense connectivity matrices that are learned

using one-step associative learning.

Activity in the mem region evolves according to Equations 3.1 - 3.3. External multiplicative

input to the mem region cmem(t) comes from neural activation in the ctx region:

cmem(t) = vctx(t)

where vctx(t) is the neural activation of the ctx region at time t. When the context gate for mem

region dynamics is enabled (gCmem = 1), activity in mem is contextualized by activity in ctx. All

other inputs to mem from other regions are absorbed into the Imem(t) term:

Imem(t) =
∑
q

gmem,q(t)Wmem,q(t)vq(t)

where vq(t) is the neural activation of region q at time t, Wmem,q(t) is the connectivity matrix from

region q to mem at time t, and gmem,q(t) is a binary connection gate on the pathway.

Activity in the ctx and lex regions evolves according to the following equations, which are

simplified versions of Equations 3.1 and 3.3 that do not include contextual gating:

sr(t) = gSr ωrvr(t) + Ir(t) +
∑
q

gr,q(t)Wr,q(t)vq(t) (3.8)

vr(t+ 1) = σr (sr(t)) (3.9)

where

• sr(t) is a vector of cumulative synaptic input to region r at time t.

• gSr (t) is a binary gate that enables or disables activity saturation and maintenance in region

r at time t. As in Equation 3.1, ωr is a scalar self-weight that establishes the fixed-point of

saturated neural activity.

• Ir(t) is a vector of external synaptic input to region r at time t.
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• Wr,q(t) is a weight matrix for the pathway from region q to region r at time t, which is

controlled by a binary connection gate gr,q(t).

• vr(t) is a vector of neural activity in region r at time t.

• σr is the neural activation function for region r. The ctx region uses the Heaviside activation

function, while the lex region uses the sign/signum activation function.

Inter-regional weight matrices in the model (Wr,q) are learned with one-step associative

learning. As noted in Section 3.1.1, both traditional Hebbian learning (Equation 3.10) and the

store-erase rule (Equation 3.11) are considered:

∆Wr,q =
1

ρ2qNq

σ−1r (v)u> (3.10)

∆Wr,q =
1

ρ2qNq

(
σ−1r (v)−Wr,qu

)
u> (3.11)

where u is the source (initial) pattern in region q, v is the target (final) pattern in region r, Wr,q is

the associative weight matrix for the pathway from q to r, σr is the neural activation function of r,

ρq is the activation magnitude of neurons in q, and Nq is the number of neurons in q. The context

region (ctx) must use the heaviside activation function, and learn binary patterns (ρ = 1), while

the lex region may use any sign-preserving activation function such as the hyperbolic tangent or

sign/signum function.

The pathway from mem to lex (Wlex,mem) learns associations between memory states and

lexical symbols stored in those states. This pathway is used to “read” the contents of the currently

active state in the mem region. The pathways from mem and lex to ctx (Wctx,mem andWctx,lex) learn

associations with patterns that contextualize memory transitions. Each memory state and lexical

symbol corresponds to a unique randomly generated context state. These associations are critical

for construction of compositional data structures in attractor graphs, as described below.

50



3.1.2.1 Representing Compositional Data Structures

The graph-organized memory represented by the mem region attractor graph is suitable for

encoding compositional data structures. This section focuses on associative arrays, linked lists,

and trees, each of which can be represented by a particular organization of attractors. Several

instances of these data structures may be encoded simultaneously as sub-graphs of a single attractor

graph. Individual elements of a compositional data structure are accessed by sequences of attractor

transitions resembling iteration through data structures in conventional computer memory. Each

memory state can be associated with a lex activity pattern that represents the symbolic token stored

in that memory state.

Representation of associative arrays (dictionaries, maps) in attractor graphs is straightfor-

ward. A map is represented by a dedicated memory state, and each entry in the map is represented

by a transition to a target memory state (value) that is contextualized by a ctx pattern (key). Keys

may be derived from patterns in other regions via pathways into ctx (e.g., lex or mem). To access the

value associated with a key, the key pattern is initialized in ctx, and the memory pattern representing

the map is initialized in mem. Then the attractor transition is executed using the ctx pattern as con-

text. The resulting activity pattern in mem represents the memory state (value) associated with the

key, which may be a complex data structure or a single memory state with a corresponding symbol

that is retrieved via the pathway from mem to lex.

Accessing a map with a key that has no corresponding value results in undefined behavior.

When erroneous lookups are possible, the data structure must be modified to allow validation. One

possibility is to learn self-transitions for each value that use the key as a context pattern. Thus, to

validate a map lookup, an additional transition can be executed after the lookup, and the resulting
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activity state can be compared with the value state. If they do not match, the lookup was not

successful.

A linked list is encoded as a trajectory through the attractor graph, as shown in Figure 3.4a.

The trajectory begins with a mem pattern that represents the list object (referred to as the head),

and includes zero or more additional mem patterns that represent the list elements. The end of the

list is marked by a self-loop transition in the final memory state in the sequence. Although a list

cannot contain repeat memory states, two states in a list may be associated with the same activity

pattern in lex via the pathway from mem to lex, representing storage of the same symbolic token in

two positions of the list. Each transition in the trajectory is contextualized by a shared ctx pattern

that is specific to the list, and is associated with the head pattern in mem via the pathway from

mem to ctx. To iterate through a list, the head pattern is first initialized in mem and used to retrieve

the list-specific pattern in ctx. This context pattern is then used to contextualize a sequence of

attractor transitions that terminates when the post-transition state is identical to the pre-transition

state indicating a complete traversal of the sequence. Note that an empty list is represented by

a head pattern in mem that transitions directly to itself (i.e., a self-loop trajectory), and therefore

terminates after a single transition.

Because transitions in a linked list are contextualized by a list-specific context pattern, a

memory state may be contained in several lists. In this case, the shared memory state has distinct

transitions to list-specific successors. This means that memory states are reusable components that

may be used in multiple compositional data structures. This approach is similar to [29] in that a

list-specific context signal resolves ambiguities in sequence recall that occur when an element is

contained in more than one sequence. However, context signals in AGNs are multiplicative masks

that select subsets of the neural population to participate in sequence transitions. As a result, the
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Figure 3.4: (next page) Graphical depiction of compositional data structures. Each gray rectangle represents the

activity space of a region of the neural model (ctx, mem, and lex), and each circle represents a unique activity pattern

(distributed representation). (a) A linked list representing the sentence “the dog chased the cat”. The list is represented

by a trajectory through memory states (middle gray rectangle) that terminates with a self-loop transition. Each

transition in the trajectory is contextualized by a list-specific context state (c(head), top left) that is associated with

a list head memory state (m(head), middle left). Each element in the list is represented by a unique memory state

(m(1) through m(5), center) that is associated with a pattern of activity in lex representing the corresponding word in

the sentence (bottom). (b) A parse tree for “the dog chased the cat” represented as a list of lists. Each internal node of

the tree is represented by a memory state that serves as the head of a list containing its child nodes (trajectories in top

rectangle). The context patterns for these trajectories are omitted for clarity. Each node is associated with a pattern in

lex representing its symbolic content (S for “sentence”, NP for “noun phrase”, VP for “verb phrase”, or a word in the

sentence).
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transitions for distinct sequences are learned in distinct but overlapping sets of connection weights.

Trees can be encoded in attractor graphs by recursive composition of either associative arrays

or linked lists, each with distinct advantages. Tree nodes represented by associative arrays have

direct parent-child relations that are labeled by ctx patterns, which must be provided during tree

traversal. However, this organization permits random access of child nodes during traversal. Trees

represented by linked lists, on the other hand, can be traversed without external provision of context

patterns. This is because each node is associated with a unique ctx pattern that contextualizes

the trajectory through its children and can be retrieved during traversal. However, child nodes

cannot be accessed in arbitrary order, and parent-child relations do not have associated labels. This

organization is shown in Figure 3.4b.

3.1.3 Programmatic Control of Compositional Memory

The compositional data structures described in the previous section can be constructed and

manipulated via top-down control of the mem, ctx, and lex regions over time. Figure 3.5 shows a

programmable neural network with additional regions that provide this control. This section first

describes the functionality of these control mechanisms, including the representation and execution

of learned programs that make use of compositional memory. Then follows a description of a

planning task that the model learns to perform, which involves constructing and modifying com-

plex hierarchical data structures in memory.

The complete model depicted in Figure 3.5 is a programmable neural network with program-

independent circuitry that is based on the Neural Virtual Machine (NVM) [97], but has several key

differences. Most notably, the sequential tape-like memory of the NVM is replaced by attractor
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Figure 3.5: (next page) Programmable neural network with compositional memory. Neural regions (boxes) are

interconnected with gated pathways (solid lines). The architecture of the model resembles a stack machine, and

includes three subnetworks. Controller: The controller subnetwork (top right) controls model execution based on

learned programs. Neurons in the gate output region (top right) determine which pathways are active during each

timestep of model execution. This region is controlled by the gate sequence region, which encodes a sequence of

gating operations that control the flow of information through the model over time. These gate sequences correspond to

instruction opcodes for programs encoded in the program region. Instruction operands are represented in the lex region

(center), which encodes a lexicon of recognized symbols as activity patterns. This region serves as a bridge between the

controller and memory subnetworks, and is used to pass symbolic information into and out of the model (left center).

Memory: The core region of the memory subnetwork is the mem region (bottom center), which is an attractor graph

network with dense hetero-associative and auto-associative connectivity (bold looped arrows). Patterns of activity in

mem represent general-purpose memory states that “store” symbolic tokens represented in lex. Associations between

memory states and symbolic tokens are learned in the pathway from mem to lex. Transitions between attractors in

mem are contextualized by activity in the context region (ctx, bottom right) via a pathway from ctx to mem. The open

circle at the end of this pathway indicates that it provides multiplicative contextual gating inputs to mem. Activity

patterns in ctx may be derived from mem or lex patterns, and serve as labels for relations between memory states that

are used to construct compositional data structures. Stack: The stack subnetwork (left) contains two regions with

bidirectionally associated activity patterns that represent stack frames. The runtime stack region stores and retrieves

pointers to program instructions, memory states, and context states. These are stashed when program subroutines are

called, and retrieved upon return to the caller. The data stack region stores pointers to memory states that are used for

operations involving multiple memory states, and is used to pass arguments between subroutines.
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graph memory (mem and ctx), permitting storage of compositional data structures via direct con-

text-dependent associations between memory states. In addition, the model presented here func-

tions as a stack machine rather than a register machine, simplifying its instruction set and program

circuitry. Symbols are represented in a single region (lex) rather than multiple register and operand

regions as in the NVM, and a data stack region is used for operations with multiple operands.

The model presented here includes three major subnetworks, shown as large gray rectangles

in Figure 3.5. The memory subnetwork contains the mem and ctx regions, which implement com-

positional memory with attractor graphs, as described in Sections 3.1.1 and 3.1.2. The lex region is

contained in the controller subnetwork, and serves as a bridge between several model components.

Patterns in the lex region serve several functions, some of which were described in Section 3.1.2.

They represent symbolic tokens that can:

• be stored in memory states (mem to lex)

• be variable names that refer to data structures in memory (lex to mem)

• label transitions in mem attractor graphs that represent key-value relations in associative

arrays (lex to ctx)

• be used as program instruction operands (program to lex)

• refer to program subroutines (lex to prog)

• be printed to or read from the environment (lex to/from environment)

The controller subnetwork also contains several regions that control connection gates based

on learned programs. Neurons in the gate output region determine which pathways in the model

are active during each timestep (one neuron per connection gate). This region is controlled by
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the gate sequence region, which encodes sequences of gating operations that control the flow of

information through the model over time, much like in conventional computer architectures. These

gate sequences correspond to instruction opcodes for programs encoded in the program region,

while instruction operands are represented by lex activity patterns.

The compare region encodes true and false patterns that are used to perform conditional

jumps in programs based on comparisons between memory states or lexical symbols. For ex-

ample, an instruction might jump to a subroutine if two memory states store the same symbol.

If the comparison yields the true state, the model jumps to the subroutine specified by the jump

instruction’s operand. Otherwise, it advances to the next instruction in the sequence.

The stack subnetwork contains two regions with bidirectionally associated activity patterns

that represent stack frames. The runtime stack region stores a call-stack that maintains pointers

to program instructions, memory states, and context states. These are pushed when program

subroutines are called, and popped upon return to the caller. The data stack region maintains

pointers to memory states that are used for operations involving multiple memory states. For ex-

ample, when a transition is learned, the target memory state is assumed to be currently active in

mem, and a pointer to the source memory state is stored on the top of the data stack. These stacks

are explained further in the following section.

3.1.3.1 Program Storage and Execution

As mentioned above, programs are represented by sequences of activity patterns in the

program region. Each activity pattern represents an individual instruction with an opcode and

optional operand. Each opcode corresponds to a sequence of patterns in the gate sequence region
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that implements the operation as a temporal sequence of connection gates. Each instruction is

associated with the first pattern in the corresponding opcode sequence via the pathway from pro-

gram to gate sequence. Similarly, an instruction with an operand is associated with a lex activity

pattern representing the operand value.

Gating operations and program sequences are established during a one-time associative

learning procedure that is analogous to firmware “flashing” in a non-volatile microcontroller mem-

ory. The model architecture supports operations that can be expressed as temporal sequences of

active connection gates, such as the attractor transition procedure specified in Table 3.1. Each

timestep of an operation is represented by a randomly generated activity pattern in the gate se-

quence region, and is associated with a gate output pattern that specifies the active connection

gates. The final pattern of most operation sequences is associated with a common gating sequence

that advances the program region to the next instruction, and opens the pathway from program

to gate sequence, initiating the gating sequence for the next instruction. The exception is jump

instructions, which have conditional behavior that depends on comparison operations (explained

in Section 3.1.3.3).

In addition to the above associations, the “flashing” procedure also establishes associations

in the stack regions (runtime stack and data stack). Activity patterns in these regions represent

individual stack frames that can be associated with activity patterns in other regions. Each stack

frame is associated with the frame above and below it in the stack using distinct recurrent hetero-

associative matrices (push and pop loops in Figure 3.5).

Finally, the model is “flashed” with a lexicon of recognizable symbols in the lex region. Each

symbol pattern is associated with a unique ctx pattern, allowing the symbol to serve as an attractor

transition label (i.e., an associative array key).
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3.1.3.2 Online Learning

Program execution involves online updating of connectivity matrices. These updates are

determined by distinct gates that control plasticity:

Wr,q(t+ 1) = Wr,q(t) + g`r,q(t)∆Wr,q(t) (3.12)

where Wr,q(t) is a weight matrix connecting region q to region r at time t, and g`r,q(t) is a learn-

ing gate that determines when this matrix is updated. For pathways connecting distinct regions,

∆Wr,q(t) can be computed using the store-erase learning rule with the active patterns in r and q:

∆Wr,q(t) =
1

ρ2qNq

(
σ−1r (vr(t))−Wr,q(t)vq(t)

)
vq(t)

> (3.13)

where Wr,q(t) is a weight matrix connecting region q to region r at time t, vr(t) and vq(t) are the

activation patterns of r and q, σr is the activation function of neurons in r, ρq is the stable activation

level of neurons in region q, and Nq is the number of neurons in region q.

The recurrent auto-associative matrix in mem is also updated using the currently active

pattern:

∆Ar(t) =
1

ρ2rNr

(
σ−1r (vr(t))− Ar(t)vr(t)

)
vr(t)

> (3.14)

where Ar(t) is the auto-associative weight matrix for region r at time t, and all other terms are as

defined above.

Online learning of recurrent hetero-associative matrices involves distinct source and target

patterns that cannot be simultaneously active. This is addressed with an eligibility trace εr(t) that

stores a target activity pattern for subsequent learning:

εr(t+ 1) =

{
cr(t)� sr(t), if gεr(t) = 1

εr(t), otherwise
(3.15)
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where εr(t) is the eligibility trace of region r at time t, gεr(t) is a gate that determines when the

eligibility trace is updated, and cr(t) and sr(t) are synaptic and multiplicative inputs at time t

(defined in Equations 3.1 and 3.2). When gεr(t) = 1, the current gated inputs are stashed in the

eligibility trace. To learn a transition to the stashed pattern, a source pattern is activated, and the

hetero-associative learning gate is opened:

∆Hr(t) =
1

λrρ2rNr

(
εr(t)−

(
cr(t)�Hr(t)vr(t)

))
vr(t)

> (3.16)

whereHr(t) is the hetero-associative weight matrix for region r, εr(t) is the eligibility trace defined

above, cr(t) is the multiplicative input to region r, λr is a context density for multiplicative gating

of region r, and all other terms are as defined above. Note that the contextual gating is already

applied to the source pattern vr(t) (Equation 3.1).

3.1.3.3 Comparisons

The comparison region has unique dynamics that allow it to memorize an input pattern from

another region for subsequent recognition. When an input pattern is memorized, it is associated

with a cmp activity pattern representing true (vtruecmp ). Unlike other connectivity updates, this

overwrites the corresponding weight matrix rather than incrementally updating it:

∆Wcmp,q(t) =
1

ρ2qNq

σ−1cmp

(
vtruecmp

)
vq(t)

> −Wcmp,q(t) (3.17)

where Wcmp,q(t) is a weight matrix connecting region q to the compare region at time t, vq(t)

is the activation pattern of region q, σcmp is the activation function of neurons in cmp, ρq is the

stable activation level of neurons in region q, and Nq is the number of neurons in region q. This

learning rule resembles Equation 3.13, except that it completely overrides the existing weights and

associates the input pattern with a fixed pattern (vtruecmp ).
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The cmp region has an input bias toward a false activity pattern (vfalsecmp ) that can be overcome

by the memorized input. Thus, if an input pattern is close enough to the memorized pattern, the

resulting cmp activation pattern is vtruecmp ; otherwise it is vfalsecmp The following equation describes the

synaptic input term for the cmp region:

scmp(t) = gScmp(t) ωcmp vcmp(t)︸ ︷︷ ︸
saturation

−
(

1− gScmp(t)
)
θ ωcmpv

false
cmp︸ ︷︷ ︸

bias to false pattern

+
∑
q

(
gcmp,q(t) Wcmp,q(t) vq(t)

)
︸ ︷︷ ︸

inter-regional input

(3.18)

where vfalsecmp is the false activity pattern in cmp, θ is a comparison similarity threshold (typically

> 0.95), and all other terms are as defined for Equation 3.8 (with r = cmp). The synaptic input

scmp(t) is transformed to neural activation vcmp(t) by Equation 3.9 (again with r = cmp). The

threshold θ determines how similar an input pattern needs to be to the memorized input pattern

in order to activate the true pattern (vtruecmp ). Specifically, a value of θ = 0.95 means that an input

pattern must have a cosine similarity exceeding 0.95 in order to activate vtruecmp .

The true and false states in cmp are associated with distinct sequences in the gate sequence

region. When a jump instruction is executed, the pathway from cmp to gate sequence is opened,

and the program region is advanced according to the result of the most recent comparison. The

true gate sequence activates the first instruction of the subroutine indicated by the jump instruction

operand. This is done by opening the pathway from program to lex, followed by the pathway

from lex back to program. The false gate sequence simply opens the recurrent hetero-associative

connection gate in the program region, advancing it to the next instruction in the current subroutine.
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3.1.3.4 Generating Memory States

The model’s instruction set includes operations that allocate memory for construction of data

structures. Memory states are learned attractors in the mem region’s auto-associative connectivity.

A gated noise term is included in the mem and ctx regions. When a noise gate is opened, a random

pattern of activation is established in the corresponding region:

vmem(t+ 1) = σmem

(
xmem(t)� smem(t) + gNmemωmemnmem(t)︸ ︷︷ ︸

gated noise

)
(3.19)

vctx(t+ 1) = σctx

(
sctx(t) + gNctxωctxnctx(t)︸ ︷︷ ︸

gated noise

)
(3.20)

nmem(t) ∼ Bernoulli(0.5) nctx(t) ∼ Bernoulli(λ)

where gNmem and gNctx are noise gates for the mem and ctx regions, and nmem(t) and nctx(t) are

random vectors. All other terms are as defined in Equation 3.3 (for mem) and Equation 3.9 (for

ctx). Random vectors are generated by a Bernoulli process with probabilities 0.5 and λ (context

density, defined in Section 3.1.1). Random patterns in mem are in {−ρmem,+ρmem}Nmem , where

Nmem is the number of neurons in mem, and ρmem is the steady-state magnitude of saturation

dynamics in mem (ρmem = σmem(ωmem)). Random patterns in ctx are binary patterns.

3.1.3.5 I/O

Environmental inputs to the model are provided to the lex region via the external input vari-

able Ilex (Equation 3.8). The model indicates when it is ready to receive input by activating a

dedicated read gate gRlex. Environmental input is specified as a sequence of symbols from an

alphabet that the model is pre-trained to recognize. Each alphabet symbol is mapped to a unique
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activity pattern. When the environment detects that gRlex(t) = 1, Ilex(t) is set to the activation

pattern corresponding to the next unread symbol in the input sequence.

Similarly, a dedicated write gate gWlex indicates to the environment when the model is ready to

provide output. When gWlex(t) = 1, the environment captures the current lex activity pattern vlex(t)

and translates it into a symbol by identifying the closest activity pattern in the alphabet mappings.

3.1.3.6 Planning Task

Planning is a high-level executive task that involves reasoning about actions and organizing

them to achieve goals [56, 67]. Behavioral plans are often hierarchically structured and require

compositional reasoning [31, 47]. To further test the model’s ability to construct and maintain

compositional data structures in memory, it was trained to perform an automated planning task

using hierarchical task networks (HTNs) [56, 67]. An HTN is a tree representing the decomposi-

tion of a high-level compound task (root node) into concrete primitive actions (leaf nodes). Each

internal node is broken down into sub-actions (compound or primitive) according to learned rules

in a knowledge-base that may depend on environmental states. For example, opening a door may

involve different motor behaviors depending on what type of door it is (e.g., pushing, pulling,

sliding, etc). During planning, an agent recursively decomposes a top-level task to produce a

sequence of primitive actions that is appropriate for the given environment.

A version of HTN planning was implemented with the following restrictions. The envi-

ronment is represented by an associative array of named feature bindings (e.g., “door type” =

“sliding”). Each compound action is decomposed according to the value of a specific environmen-

tal feature (e.g., “open door” is decomposed according to the value of “door type”). When there is

65



no rule for a given action and feature value, the action is treated as a primitive action, and is not

further decomposed. The task is performed as follows. First, the model reads in the knowledge-

base rules and environmental bindings and stores them in memory. Then, it reads in a sequence of

top-level actions for planning. An HTN is constructed by recursively decomposing each top-level

action into primitive actions based on the knowledge-base and environmental bindings. Once the

plan is complete, the model performs a pre-order traversal of the HTN and prints out the action for

each node.

The knowledge-base is stored in attractor graph memory as a nested map (associative array).

The keys of the top-level map are compound actions, and the values are inner maps containing

decomposition rules for each action. As mentioned above, each action is decomposed according to

the value of a specific environmental binding. The key for this binding is stored in the inner map

memory state, and is used to query the environment for the binding’s value. This value is then used

as a key for the inner map to retrieve the corresponding decomposition rule, which is represented

as a linked list of sub-actions. During decomposition, knowledge-base lookups are validated as

described in Section 3.1.2, and actions are only decomposed if a rule is successfully retrieved.

For testing purposes, a planning domain was designed to simulate a simple repair task in-

volving a mechanical assembly unit (see Appendix A.1 for details). The unit has a door on the

front, an indicator for the status of the unit, and an interaction point for performing repairs. The

full task involves opening the door according to its type, performing a repair according to the

status indicator, and closing the door. Each stage of the task is performed based on a set of en-

vironmental bindings describing a specific unit, including the type of door, status indicator, and

repair interaction point (e.g., sliding door, LED indicator, keypad interaction point).
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3.2 Results

The model outlined above was implemented in Python using the NumPy scientific computing

library, and was tested in several stages. The first three stages evaluated the memory capacity of the

AGN model, and involved learning attractor graphs in the mem region. Specifically, experiments

were designed to empirically determine 1) the number of attractor states that can be learned and

reliably retrieved from partial patterns, 2) the number of unique context-dependent transitions from

a single source pattern that can be learned (i.e., the branching factor of attractor graphs), and 3) the

total number of transitions that can be learned in an attractor graph.

The fourth and fifth stages of testing evaluated storage and retrieval of compositional data

structures, and included learning in the inter-regional pathways of the model. First, the model

was trained with attractor graphs representing linked lists to determine whether errors in attractor

transitions compound during traversal, and whether memory states can be effectively reused in

multiple distinct list structures. Then, the model was trained with attractor graphs representing

sentence parse trees. Each node in a tree was represented as a pattern of activity in mem, and each

symbol stored in the node was represented by a pattern in lex. The associations between nodes and

symbols were learned in the pathway from mem to lex.

In the final stage of testing, the model was evaluated on its ability to manipulate composi-

tional data structures using the HTN planning task described in Section 3.1.3.6. Each test involved

learning a knowledge-base of decomposition rules, a set of environmental bindings, and a sequence

of top-level compound actions. These top-level actions were decomposed into HTNs according to

the knowledge-base and environmental bindings. Runtime complexity was evaluated by varying

the top-level action sequence to vary the size of the constructed HTN. Three conditions were
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evaluated: 1) a baseline condition using a small knowledge-base (9 rules spread across 5 com-

pound actions) and small environment (4 bindings), 2) an extended knowledge-base of 15 rules

across 7 compound actions, and 3) an extended environment containing 8 bindings. For each test,

the model’s constructed HTN was validated, and the number of timesteps taken to complete the

task was measured. The specific knowledge-bases, environments, and top-level sequences used are

listed in Appendix A.1.

In all stages of testing, performance was evaluated by comparing patterns of activity with

learned target patterns. For example, to evaluate a learned attractor transition from memory pattern

mA to memory pattern mB, the trained model would be initialized with mA in the mem region,

the transition would be executed (including attractor convergence), and the resulting mem activity

pattern would be compared with mB. Because saturation dynamics can correct any convergence

errors within an orthant of activity space, two patterns are considered identical if they reside within

the same orthant (i.e., the sign of each neuron’s activation matches). For each experiment, results

are reported as the percentage of activity patterns that matched their corresponding targets.

Experiments in Sections 3.2.1 - 3.2.5 evaluated the model shown in Figure 3.1 using either

traditional Hebbian learning or the fast store-erase learning rule. Pathways with context-dependent

dynamics were learned with the gated versions of these rules (Equations 3.4 - 3.7). All other

pathways were learned with non-gated versions of these rules (Equations 3.10 and 3.11. Each

region of the model contained N = 1024 neurons. The mem region used the hyperbolic tangent

activation function and learned activity patterns with magnitude ρ = 0.9999. The ctx and gate

output region used the heaviside activation function, and learned binary patterns (ρ = 1). The

lex region used the sign/signum activation function (ρ = 1). The experiment in Section 3.2.6

evaluated the full programmable network shown in Figure 3.5. In this experiment, regions were
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sized according to the number of patterns to be learned for the planning task described in Section

3.1.3.6. Regions not present in Figure 3.1 used the sign/signum activation function (ρ = 1).

3.2.1 Attractor Convergence

Attractor transitions are carried out in multiple steps, starting with contextually-gated hetero-

associative dynamics, followed by auto-associative attractor convergence and activity saturation.

Because the hetero-associative step results in a partial pattern of activity (some neurons have zero

activation), successful transitions depend on accurate auto-associative pattern completion. Thus,

the first experiment reported here was designed to determine the number of activity patterns that

can be learned as attractors and successfully recovered from partial patterns.

The density of partial patterns (i.e., the number of non-zero elements) encountered during

attractor transitions depends on the parameter λ, the probability used to generate context patterns

(Section 3.1.1). This parameter indicates the number of neurons in the mem region that participate

in hetero-associative dynamics, and consequently the number of active neurons prior to attractor

convergence.

The mem region AGN was trained with sets of randomly generated memory states, and

evaluated for pattern completion. One trial of testing involved learning a set of M memory states

generated by a Bernoulli process with probability 0.5 (i.e., a fair coin toss for each neuron’s

activation). Each learned memory pattern was evaluated by initializing the network with a partial

version of the pattern, running auto-associative dynamics and saturation, and comparing the result-

ing activity pattern with the original learned pattern. The number of timesteps for auto-associative

dynamics was set to 10, which was found to be sufficient for attractor convergence in preliminary
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testing. Partial patterns were produced by randomly setting N(1− λ) elements to zero, simulating

contextual gating. This process was repeated 8 times for each memory state, and the value of λ

was varied experimentally.

Results are shown in Figure 3.6. Each plot shows results for networks trained with a com-

mon learning rule (store-erase or traditional Hebbian learning) and various values of λ. Each line

shows accuracy of attractor convergence as the number of learned memory states M increases.

Accuracy deteriorated as the density of the context pattern (λ) was decreased and the masked

partial patterns became sparser. Results for the two learning rules were comparable, but the store-

erase rule showed slightly more gradual degradation with increasing numbers of stored patterns.

Perfect accuracy can be achieved with the store-erase rule when M = 64 memory patterns are

stored. In subsequent experiments, the number of learned attractors was limited to 64 to avoid

errors in attractor convergence.

3.2.2 Transition Branching

Functional branching is a novel aspect of AGNs that makes it possible to learn multiple

transitions from a single attractor state using a single hetero-associative weight matrix (Section

3.1.1.1). The number of transitions from an attractor is referred to as the attractor’s branching

factor. The experiment reported here evaluated learning of attractor graphs with various branching

factors to determine how many transitions can be learned from a single source attractor. Specif-

ically, AGNs were trained with attractor graphs organized as directed stars, where one attractor

serves as an internal node with transitions to several leaf nodes.

The results for attractor convergence above indicate that a network ofN = 1024 neurons can
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Figure 3.6: Accuracy of attractor convergence (pattern recovery/completion). Each plot shows the recall accuracy

(y-axis) of an AGN with N = 1024 neurons trained with either the fast store-erase learning rule (left) or traditional

Hebbian learning (right). The network was trained with sets of memory patterns of various sizes (M , x-axis). Each

learned memory pattern was tested 8 times by initializing the network with a partial version of the pattern, running

auto-associative dynamics for 10 timesteps, and comparing the resulting activity pattern with the learned pattern. The

density of the partial version was determined by the parameter λ, and each line indicates results for a single value of

λ. Each data point indicates the percentage of convergence trials resulting in perfect pattern recall, for a total of 8M

trials per data point.

reliably learn M = 64 attractors. Thus, attractor graphs were generated with M = 64 attractors

and varying numbers of transitions. One attractor was designated as the internal node, and each

transition targeted an attractor randomly chosen from the remaining 63 attractors. Each transition

was learned with a unique context pattern generated by a Bernoulli process with probability λ

(varied experimentally). Note that there may be multiple transitions from the internal node to the

same leaf node.

Results are shown in Figure 3.7. Each data point indicates the percentage of transitions that
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were successfully executed after learning. In contrast to the pattern recovery results, accuracy was

higher with smaller λ. This is likely due to decreased weight sharing across contexts. The store-

erase rule significantly outperformed traditional Hebbian learning, yielding high accuracy (over

97%) for branching factors up to 1024 for λ = 1
4

and λ = 1
8
.
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(b) Hebbian
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Figure 3.7: Accuracy of attractor graphs with various branching factors. Each plot shows the transition accuracy for an

AGN withN = 1024 neurons trained with either the fast store-erase learning rule (left) or traditional Hebbian learning

(right). The network was trained with attractor graphs containing M = 64 memory attractors and various numbers

of transitions (x-axis). The attractor graphs were organized as directed stars, where one internal node transitions to

several leaf nodes in different contexts. Multiple transitions to the same leaf node in different contexts were allowed,

making it possible to test branching factors larger than the total number of leaf nodes. Each line indicates results

for one value of λ, the density of context patterns used for transitions. Each data point indicates the percentage of

successful transitions.
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3.2.3 Random Graphs

The above results establish that AGNs can learn attractor graphs with high branching factors.

The following experiment was designed to determine how many transitions can be stored when the

transitions do not share a source node. To do so, an AGN was trained with randomly generated

graphs of M = 64 attractors and varying numbers of transitions (T ). Graphs were generated by

randomly selecting a source attractor (vertex), target attractor (vertex), and context pattern (edge

label) for each transition (edge). The number of available context patterns was set to the maximum

branching factor of nodes in the graph, ensuring that no two transitions shared the same source and

context patterns. Transitions from different source patterns were allowed to share context patterns.

Results are shown in Figure 3.8. Store-erase learning was more reliable than traditional

Hebbian learning, with less variable accuracy. With λ = 1
4
, both learning rules yielded high

accuracy with T = 1024 transitions. In subsequent experiments, the number of learned attractor

transitions was limited to 1024.

3.2.4 Linked Lists

The above results evaluate the integrity of individual attractor transitions and convergence

events in an AGN. Iteration through attractor graphs representing compositional data structures

involves sequences of transitions in which errors might compound. The following experiment

therefore evaluated retrieval of linked lists with itinerant traversals, allowing any errors in transi-

tions to compound.

The model was trained with attractor graphs of M = 64 attractors encoding linked lists

(Section 3.1.2). Each attractor served as the head of a unique list containing E elements (varied
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(b) Hebbian
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Figure 3.8: Accuracy of randomly generated attractor graphs. Each plot shows the transition accuracy for an AGN

with N = 1024 neurons trained with either the fast store-erase learning rule (left) or traditional Hebbian learning

(right). The network was trained with attractor graphs containing M = 64 memory attractors and various numbers

of transitions (x-axis). Each transition in the graph connected two randomly selected attractors using a randomly

generated context pattern. Each line indicates results for one value of λ, the density of context patterns used for

transitions. Each data point indicates the percentage of successful transitions.

experimentally) drawn from the remaining 63 attractors. Each list is encoded as a trajectory

containing E+ 1 transitions, for a total of 64(E+ 1) transitions in the graph. Note that an attractor

(memory state) may be contained in more than one list, as each list’s transitions use a unique list-

specific context pattern. These context patterns were learned in the pathway from the mem to ctx

regions (Figure 3.1), and were retrieved at the beginning of each traversal at testing time.

Results are shown in Figure 3.9. Accuracy drops sharply after E = 15 elements, or a total

of T = 1024 transitions. This corresponds to the point at which accuracy declines in Figure 3.8.

The drop in accuracy after E = 15 is therefore likely due to limits in transition capacity. These

results show that below this capacity, traversals through attractor graphs can be executed without
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compounding errors. In addition, large numbers of linked lists can be encoded in attractor graphs,

and memory states can be successfully shared between lists.
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(b) Hebbian
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Figure 3.9: Accuracy of attractor graphs encoding multiple linked lists. Each plot shows the transition accuracy for an

AGN withN = 1024 neurons trained with either the fast store-erase learning rule (left) or traditional Hebbian learning

(right). The network was trained with attractor graphs containing M = 64 memory attractors, each representing the

head of a linked list containing E elements (x-axis). Each list contained a random permutation of E attractors (not

including the list’s head attractor), and was encoded as a trajectory through the attractor graph. The total number

of transitions in the attractor graph is 64(E + 1). Performance was evaluated by executing traversals through each

list starting with the head pattern, and errors in transitions were allowed to propagate during traversal. Each line

corresponds to a unique context density λ, and each data point indicates the percentage of successful transitions.

3.2.5 Parse Trees

The results above show that list traversals can be successfully carried out without compound-

ing errors when the total number of attractors is limited to M = 64. That experiment did not eval-

uate storage and retrieval of symbolic information via the pathway from mem and lex, and did not

involve retrieval of context patterns in ctx using memory states that may contain minor errors. To
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address these limitations, the model was evaluated on storage of parse trees with a symbol stored

at each node.

Parse trees were randomly selected from the Penn Treebank corpus1. Each tree was encoded

as an attractor graph using lists of lists, where each node is represented as a list of its children.

Each node in the tree was assigned to a memory attractor, and each symbol in the parse tree was

assigned to a randomly generated pattern of activity in the lex region using a Bernoulli process

with probability 0.5. Associations between nodes and symbols were learned in the pathway from

mem to lex using either the store-erase learning rule or traditional Hebbian learning.

The model learned one tree at a time, and weights were reset after learning and evaluating

each tree. Each tree was evaluated with a traversal starting with initialization of mem with the root

node pattern. As with list testing, errors were allowed to propagate during traversal, and context

patterns were retrieved using the pathway from mem to lex. After each transition, the symbol stored

in the current node was retrieved using the pathway from mem to lex, and results are reported as

the percentage of symbol patterns in lex that were correctly recovered. An external queue was used

to store and retrieve intermediate activity patterns and perform a breadth-first traveral. Note that

this queue is not considered part of the model, and is only used for evaluation purposes.

Results are shown in Figure 3.10. A total of 100 randomly selected trees were learned. Each

mark indicates the percentage of perfectly recalled symbol patterns across all nodes in a single

tree (y-axis), and the x-axis (log-scale) indicates the number of nodes in the tree. In accordance

with the results in Section 3.2.1, accuracy begins to deteriorate with trees containing more than

64 nodes. Past this point, accuracy degrades more gradually with the store-erase rule than with

1Parse trees were retrieved from the Penn Treebank Sample dataset of the Python Natural Language Toolkit, found
at http://www.nltk.org/nltk data/
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traditional Hebbian learning.
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Figure 3.10: Accuracy of attractor graphs encoding parse trees. Each plot shows the accuracy for an AGN with

N = 1024 neurons trained with either the fast store-erase learning rule (left) or traditional Hebbian learning (right).

The network was trained with attractor graphs representing sentence parse trees drawn from the Penn Treebank. Each

node was represented by an attractor in the mem region, and contained a symbol represented by a pattern of activity in

the lex region. Each data point indicates the percentage of lex patterns successfully retrieved (y-axis) during traversal of

a tree withM nodes (x-axis). Errors in attractor transitions were allowed to propagate during traversal, and an external

queue was used to maintain and retrieve intermediate mem activation patterns to perform a breadth-first traversal.

The store-erase learning rule contains an anti-Hebbian component that erases previously

learned associations. To evaluate this unique contribution, a second experiment was performed

with parse trees of at most 64 nodes each. In this experiment, the model weights were not reset

in between learning each tree. A set of M = 64 attractors was learned and made available for

construction of each tree, which contained a unique set of transitions between attractors, as well as

associations between attractors and context/lexicon patterns.

Results are shown in Figure 3.11 for 30 trials. The left plot shows accuracy of lex pattern
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recovery for the two learning rules with λ = 1
4
. Accuracy for Hebbian learning (dashed line)

drops to zero after the first trial, as learned associations compound and interfere with one another.

Because the store-erase rule allows overwriting of associations via controlled erasure, accuracy

remains fairly high across the trials, but dips to as low as 75% (solid line).

(a) Perfect Recall

5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

trial number

ac
cu

ra
cy

Store-Erase
Hebbian

(b) Similarity

5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

trial number

ac
cu

ra
cy

Store-Erase
Hebbian

Figure 3.11: Learning parse trees without weight resets. The plot shows the performance an AGN with N = 1024

neurons trained with either the fast store-erase learning rule (solid lines) or traditional Hebbian learning (dashed lines),

reported as the average similarity for lex activity patterns representing symbols stored in tree nodes. Each trial involved

learning a single parse tree, and evaluating symbol recall. Attractor states were recycled between trees, but each tree

was represented by a unique set of attractor transitions and inter-regional associations (from mem to ctx and lex). In

between trials, the weights of the model were not reset. The size of randomly selected parse trees was limited to 64

nodes to prevent errors in attractor convergence.

To determine the extent of pattern deterioration, patterns in lex representing stored symbols

were compared with a fine-grained similarity metric rather than all-or-nothing comparison. This

similarity metric measured the percentage of lex neurons with activation matching the target sym-

bol’s activation pattern. Results are shown in the right plot of Figure 3.11 for λ = 1
4
. Each data
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point indicates the average similarity of lex activity patterns retrieved from tree nodes. The solid

line shows that the average similarity with the store-erase rule is nearly perfect (average similarity

of 0.9998 across trials) despite the dips in overall accuracy in the left plot. This indicates that errors

in pattern retrieval are minimal, and involve very small numbers of neurons with activation that did

not match the target pattern. In contrast, the average similarity with Hebbian learning drops rapidly

to around 50%, which is the expected similarity for two randomly generated patterns.

3.2.6 Planning Task

To evaluate autonomous construction, access, and manipulation of compositional data struc-

tures, the model was tested using the HTN planning task outlined in Section 3.1.3.6. First, the con-

troller regions of the model were “flashed” using the store-erase rule with an instruction set and set

of program subroutines that implement the task [97]. During testing, the model was provided with

a sequence of inputs encoding a knowledge-base, environmental bindings, and top-level actions

for planning. After decomposing these actions, the model performed a pre-order traversal, printing

out the resulting HTN tree.

The model was tested with top-level action sequences that corresponded to HTNs of various

sizes. In the baseline condition, these tests were performed with a small knowledge-base (9 rules

across 5 compound actions) and small environment (4 bindings). To determine the impact of these

data structures on planning runtime, two additional conditions were considered: one with a larger

knowledge-base (extended KB, 15 rules across 7 compound actions), and one with a larger set of

environmental bindings (extended env, 8 bindings). Constructed HTNs were checked to ensure

that they did not differ across these conditions.
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The size of each network region was set according to the number of patterns to be represented

in that region. The mem region contained Nmem = 9216 neurons to ensure successful storage of

task-relevant data structures. The context density λ was set to 0.5, and the store-erase rule was

used for online learning (Section 3.1.3.2).

The model successfully performed the task in all cases, and produced the sequence of outputs

corresponding to the correct HTN tree. Figure 3.12 shows the number of timesteps taken during

each test (multi-timestep attractor convergence events are collapsed into individual timesteps).

These results show that the computational complexity of planning scales linearly with the size of

the constructed HTN, independently of the size of the knowledge-base or environmental binding

set. This demonstrates that associative arrays represented in attractor graph memory can be ef-

ficiently accessed, as lookups require a constant number of timesteps that is independent of the

number of learned key-value pairs.

3.3 Discussion

This chapter presented a recurrent neural network model that represents compositional data

structures as systems of itinerant attractors called attractor graphs. This model learns context-

dependent attractor transitions using a novel combination of top-down gating and one-step associa-

tive learning. Notably, this training method makes it possible to learn multiple outgoing transitions

from a single attractor state using a single hetero-associative matrix. These transitions are selected

during model execution by multiplicative contextual gating signals that control memory retrieval

and iteration through learned data structures. This is referred to as functional branching, as the

branches in attractor sequences are determined by patterns of activity and are not stored in distinct
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Figure 3.12: HTN planning runtime. The full programmable neural network was pre-trained to perform the HTN

planning task, and evaluated on inputs representing a simple repair task domain (Section 2.3.6). Each line shows the

number of timesteps taken to parse the domain knowledge-base and environment bindings, and perform decomposition

of a sequence of high-level actions (y-axis). The x-axis indicates the number of actions in the target HTN (including

internal and leaf nodes). Three conditions were evaluated. The baseline condition involved a small knowledge-base

and environment. The “extended KB” condition involved a knowledge-base that was roughly twice the size of the

baseline knowledge-base. The “extended env” condition involved twice the environmental bindings as the baseline

condition. The results show that the computational complexity of the planning stage of the task is independent of the

size of the knowledge-base and environmental bindings, and depends only on the resulting HTN tree.

connectivity matrices.

Empirical results demonstrate that attractor graph networks can reliably store and retrieve

attractor graphs representing compositional data structures such as associative arrays, linked lists,

and trees. While the number of learned attractor states is limited, the model can learn attractor

graphs with large numbers of transitions (edges), and with very high branching factors (vertex

degrees), and individual attractors may be used as components of several data structures. Two

forms of one-step associative learning were evaluated: traditional Hebbian learning and the fast

store-erase learning rule [97]. While the two learning rules yielded similar memory capacities,
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the store-erase rule significantly outperformed Hebbian learning on attractor graphs with very high

branching factors. This reflects a reduction of interference across contexts that is likely due to the

anti-Hebbian component of the store-erase rule, which also enables controlled erasure of learned

associations. The ability to erase and overwrite transitions permits rapid reorganization of attractor

graphs, making the network an effective model of reusable working memory.

Results also show that compositional data structures can be efficiently manipulated via pro-

cedural gating control in a programmable neural network. The network successfully performed a

hierarchical planning task involving rule-based decomposition of action sequences. A significant

limitation of this model is that it does not leverage compositional memory to store programmatic

procedures, and instead relies upon a comparably simple assembly-like language with linear pro-

gram sequences [97]. Because attractor graphs can represent tree data structures, these processes

may instead be represented as abstract syntax trees for programs written in a high level pro-

gramming language. In addition, a unified program/data memory would allow implementation of

homoiconic programming languages such as LISP and Scheme, making it possible for the model

to modify learned programs and synthesize new ones. These limitations are addressed in Chapter

4, which presents a programmable neural network that implements a LISP interpreter and uses

attractor graphs to store programmatic expressions.

Another significant limitation of the model presented here is that it does not identify op-

portunities to reuse existing memory structures, and does not have a stable long-term memory.

As mentioned at the beginning of this chapter, the limited capacity of human working memory is

offset by the ability to organize and store structured representations that afford access to a broad

range of information. The results presented here show how representations in working memory

can be structured or “chunked” according to learned programmatic procedures. The capacity of
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working memory would be greatly enhanced by a long-term memory containing structures that

can be integrated with the contents of working memory. Structures in working memory could then

be replaced by pointers to existing long-term memory structures, effectively “chunking” them into

compressed units to reduce working memory load.

Attractor graph networks differ from contemporary machine learning approaches to com-

positionality in several ways. Most notably, individual representations are fixed-point dynamical

attractors learned with one-step associative learning rather than the error-based gradient descent

learning methods common in deep learning. These attractor states are composed into complex

structures with context-dependent transitions that represent relations between discrete elements in

memory. Because these relations are stored in connectivity weights, AGNs do not rely on persistent

maintenance of multiple activity patterns. Instead, memories are retrieved as needed via top-down

control of attractor transitions. This “activity-silent” form of working memory has a strong basis in

neuroscientific theory [19, 121, 132, 170, 185], and has not previously been used for compositional

learning in artificial neural networks.

AGNs do not require specialized operations for compressing elements into structured rep-

resentations, such as circular convolutions. Instead of creating summary vectors, as in recursive

auto-associative memory (RAAM) [151] or the Semantic Pointer Architecture (SPA) [54], AGNs

learn direct relations between elements with arbitrary encodings (activity patterns) using one-step

associative learning. Because structure is learned in connectivity weights, compositional data

structures can be modified without changing any activity state encodings. This is particularly

advantageous for nested structures: modifications to a sub-structure do not require modifications

to encapsulating structures. For example, a leaf may be added to a tree without modifying the

encodings of the leaf’s ancestor nodes. In contrast, semantic pointers are semantically related to
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the content they represent, and cannot be modified without creation of new semantic pointers [28].

Attractor graphs are capable of representing any labeled directed multigraph that does not

contain two edges with a shared source node and edge label. This represents a very general class

of possible data structures, including associative arrays, linked lists, and trees, but also graphs

with cycles that cannot be represented as semantic pointers due to recursive dependencies. This

expressive capability exceeds that of other attractor-based models that focus on sequence learning

[88, 154, 209], or that have architecturally separated representations of each hierarchical level, as

in Dynamic Field Theory [53]. In contrast, attractor graphs in the mem region of the HTN planning

model can represent arbitrarily nested hierarchical structures without distinct regions for each level

of the hierarchy.
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4

High-Level Neural Programming

As previously mentioned, limitations in the cognitive abilities of artificial neural networks

are often addressed in hybrid models that combine neural networks with symbolic algorithms,

leveraging the unique benefits of both methods. This indicates that neural networks lack the cog-

nitive control provided by symbolic programming, which is puzzling given that human nervous

systems can reliably perform a wide array of high-level cognitive tasks. This computational

explanatory gap between cognitive and neurocomputational algorithms hinders development of

human-level neurocognitive models.

The previous chapter presented a neural model of compositional working memory based

on attractor graphs, as well as a programmable neural network that performs basic hierarchical

planning. While this is a significant step toward bridging the computational explanatory gap, this

network, like the NVM (Chapter 2), is limited by its use of low-level assembly-like programming

that makes it difficult to express the high-level programs that are common in symbolic AI. In

addition, it features segregated regions for representing programs and data, making it difficult to

implement cognitive procedures that involve reasoning about behavior (e.g., planning, imitation,

The research presented in this chapter was previously published by Elsevier in the journal Neural Networks:
https://doi.org/10.1016/j.neunet.2021.11.009
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metacognition, etc). These procedures are more readily implemented in high-level languages that

treat programs as “first-class citizens” that can be programmatically manipulated, such as LISP or

Scheme.

This chapter presents NeuroLISP, an attractor neural network that can represent and execute

programs written in the LISP programming language. NeuroLISP implements the core function-

ality of a LISP interpreter using only neural computations, and demonstrates how high-level sym-

bolic structures can be reliably constructed and manipulated by sub-symbolic neural processes.

As such, this model contributes to bridging the computational explanatory gap, and may inform

studies on the neural basis of cognition and consciousness [161]. In addition, NeuroLISP serves as

a purely neural replacement for the top-down control provided by symbolic algorithms in hybrid

models, and has the potential to carry over the unique advantages of neural computation to high-

level cognition, such as adaptive learning, improved generalization abilities, fault tolerance, and

seamless integration with low-level neural models of sensory and motor processing.

To my knowledge, this is the first effort to implement a high-level functional programming

language in a fixed neural architecture with distributed representations. NeuroLISP is based on

the same core principles as the NVM; namely, itinerant attractor dynamics, fast associative learn-

ing, and top-down gating. However, it implements several features of high-level symbolic pro-

gramming that are absent in the NVM and other programmable neural networks, such as native

support for compositional data structures, scoped variable binding, and the ability to construct,

manipulate, and execute programmatic expressions (i.e., programs can be treated as data). These

features facilitate implementation of high-level cognitive processes by improving both the static

and dynamic components of working memory.

Empirical results are presented that demonstrate the breadth of NeuroLISP’s capabilities.
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After verifying the correctness of the implemented interpreter with a suite of handwritten tests,

the network’s memory capacity was evaluated with basic programs involving list storage and vari-

able binding. Results show that the network’s memory capacity scales linearly with the size of its

memory regions. Next, NeuroLISP was trained with a small library of multiway tree processing

algorithms, including depth-first traversal and substitution, demonstrating its ability to learn pro-

cedures that manipulate complex data structures. Then, NeuroLISP was evaluated using programs

with greater relevance to artificial intelligence. Specifically, tests were conducted with a library

of sequence manipulation functions that solves the PCFG SET task, a benchmark for composi-

tionality in machine learning models [82], and a first-order unification algorithm that performs

symbolic pattern matching, a key component of automated reasoning. With sufficiently sized neu-

ral regions, NeuroLISP achieved perfect performance on test cases with significant memory and

processing demands. Finally, runtime and memory usage was evaluated to show that the model

can be simulated efficiently, and that it scales well on parallel computing hardware. Overall, re-

sults indicate that NeuroLISP is an effective neurocognitive controller that can replace the sym-

bolic components that provide robust top-down control in hybrid models, and serves as a proof of

concept for further development of high-level symbolic programming in neural networks.

4.1 Methods

LISP is a family of high-level programming languages with an extensive history of use in

artificial intelligence [127, 136]. Today, active communities of developers exist for several dialects

of LISP, including Common Lisp [178], Clojure [75], and Racket [58]. LISP is celebrated for the

simplicity and consistency of its syntax and underlying data structures: the contents of memory
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are made up of “s-expressions” (symbolic expressions), each of which is either an atomic sym-

bol or a pair containing two s-expressions (referred to as a “cons cell”). This recursive definition

permits expression of compositional structures such as lists and trees. Notably, s-expressions are

used to represent both programs and the data they manipulate, which facilitates programmatic

modification and generation of programs (i.e., programs as data). LISP also includes operators that

allow programs to influence their own evaluation and switch between treatment of s-expressions

as programs or data: the “quote” operation prevents evaluation of a sub-expression in the program,

and instead returns it directly as data, while the “eval” operation explicitly induces evaluation of an

s-expression that was returned as data from evaluation of a program sub-expression. Altogether,

the ability to interchange programs and data makes LISP a valuable language for modeling high-

level cognitive functions that include reasoning about behavior, such as planning, imitation, and

metacognition, which are difficult for neural networks to learn. More generally, high-level sym-

bolic programming provides a number of useful tools for cognitive modeling, such as scoped

variable binding and compositional data structures.

NeuroLISP1 is a purely neural model that emulates an interpreter for a dialect of LISP that

includes the core functionality of Common Lisp, and serves as a proof of concept for further

development of high-level symbolic programming in neural networks. The operators supported in

NeuroLISP are listed in Table 4.1 and described in more detail in Table 4.2. NeuroLISP represents

discrete symbols as distributed patterns of neural activation that are organized into complex data

structures by learned associations in neural pathways. The high-level workflow of NeuroLISP is

shown in Figure 4.1. The model is constructed by a one-time user-configurable procedure that

involves learning the underlying “firmware” of the LISP interpreter using a one-step associative

1https://github.com/vicariousgreg/neurolisp
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Table 4.1: Operators supported in NeuroLISP

Lists (Cons Cells) cons, car, cdr, cadr, list
Hash Maps (Assoc. Arrays) makehash, checkhash, gethash, sethash, remhash
I/O read, print
Function Definition defun, lambda, label
Variable Binding let, setq
Conditional Statements cond, if
Logical Statements eq, atom, listp, not, and, or
Evaluation eval, quote
Control progn, dolist, error, halt

Controller     Memory

Architecture
Specifica"on 

(car (cons
   (quote A)
   (quote B)))

Ini�alize model

A

Read input program Evaluate program Print result

Firmware

Figure 4.1: NeuroLISP workflow. Graphs depict learned distributed activity states and transitions in neural memory.

First, the model is constructed and initialized by a one-time procedure (left) that constructs the neural components and

“flashes” the interpreter firmware (dashed graph in left Controller half of model). Then, the model begins execution in

a read-eval-print-loop that begins by parsing a sequence of inputs representing a program to be executed (center left).

The program depicted here (top center) constructs a cons cell containing two symbols, (A B), and retrieves the car

(first) element. The program is fed into the model as a sequence of activation states over time, each representing one

symbol in the program. During parsing, the model modifies its memory to create a representation of the program in

neural memory (dashed graph in right Memory half of model). Once the program is parsed and learned in memory,

it is evaluated, which may involve construction of new memories (dashed circle and arrows, center right). Upon

completion, the result (A) is printed as output of the model (right) via a sequence of activation states representing the

symbols in the output stream. Finally, the model returns to the beginning of the loop to parse the next program. The

previously learned programs remain in memory as new programs are learned.
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Table 4.2: Full specification of the NeuroLISP language operators

(cons x y) creates a cons cell containing two values
(car x) returns the first value in a cons cell
(cdr x) returns the second value in a cons cell
(cadr x) equivalent to (car (cdr x))
(list x ...) creates a list containing the supplied elements

(zero or more arguments), represented by a chain
of cons cells, terminated by the NIL symbol
(empty list)

(makehash) creates a hash map (associative array)
(checkhash key map) checks whether a key is contained in a map

(returns true or false)
(gethash key map) returns the value associated with a key in a map

(undefined if key not contained in map)
(sethash key val map) associates a key and value in a map
(remhash key map) removes the key/value pair for a key in a map
(read) reads an input expression and stores it in memory.

Parentheses-delineated sequences are recursively
parsed as lists, and the quote symbol (‘) is parsed
as an encapsulating quote operation (e.g., ’x
becomes (quote x))

(print x) prints an expression as output. Nested expres-
sions made of cons cells are printed recursively,
while functions and hash maps are printed as
#FUNCTION and #HASH

(defun name (args ...)
body)

defines a function with a name, zero or more
arguments, and a body expression

(lambda (args ...) body) creates an anonymous function with zero or more
arguments and a body expression

(label name (args ...)
body)

like lambda, except the function closure contains
a binding from the given name to the anonymous
function, permitting recursion

(let ((var val) ...) body) binds a series of one or more variable/value pairs,
and executes a body expression with the bindings
in scope. After completion, the bindings fall out
of scope.

(setq var val ...) binds a series of one or more variable/value pairs
in the current environment namespace. If bind-
ings for any variable exist in the current scope,
they are updated. Otherwise, new bindings are
created in the default environment.
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(cond ((clause body) ...) conditionally evaluates expressions based on test
clauses. Each test clause is evaluated in se-
quence until one returns true or the end of
the list is reached. If a clause returns true, its
corresponding body expression is evaluated

(if clause true-body
false-body)

if clause evaluation returns true, the true-body is
evaluated. Otherwise, the false-body is evaluated

(eq x y) returns true if x and y are identical. Does not
check for structural equivalence in non-atomic
data structures (i.e., different cons cells with the
same contents are not considered equal)

(atom x) returns true if x is an atomic symbol
(listp x) returns true if x is a cons cell
(not x) returns true if x is false or NIL
(and x y ...) returns true if none of the arguments evaluate to

false or NIL. Evaluation is short-circuited if
an argument evaluates to false or NIL

(or x y ...) returns true if all of the arguments evaluate to
false or NIL. Evaluation is short-circuited if
any argument evaluates to something other than
false or NIL

(eval expr) evaluates the return value of evaluating an expres-
sion

(quote expr) returns an expression without evaluating it
(progn expr ...) evaluates a sequence of expressions and returns

the return value of the last expression
(dolist (var list ret-val)
body)

iterates through a list, binding each element to a
variable, and evaluating a body expression with
the binding in scope. Upon completion, returns
either NIL or evaluates an optional ret-val
expression and returns the result

(error msg) prints an error with an optional message, and
halts the interpreter

(halt) halts the interpreter
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learning rule. Subsequently, the model executes a cycle of activity that 1) reads a sequence of

input activity patterns specifying a program to be executed, 2) evaluates the program according

to the implemented language by modifying its memory, and 3) prints the result as a sequence of

output activity patterns. Programs are read in as temporally-extended sequences of neural inputs,

and stored in memory as attractor graphs (Chapter 3) in a recurrent neural region that represents a

shared program/data memory space. During evaluation, new memories are constructed based on

the interpreted programmatic expressions, and the final result is printed via sequential activation

of neural patterns that represent a stream of output symbols. The neurocomputational procedures

involved in parsing, evaluation, and printing are discussed in Section 4.1.3.

The following first outlines the mechanisms that govern model execution and the various

types of dynamics that they support (Section 4.1.1). Then, Section 4.1.2 describes the fundamental

data structures of the virtual interpreter, their representation as systems of attractors, and the

basic operations that are performed on them via algorithmic control of top-down gating. This is

followed by an explanation of the virtual interpreter, including expression evaluation, comparison

operations, input/output, scoped variable bindings, function definitions, and function applications

(Section 4.1.3). Finally, experimental methods are outlined in Section 4.1.4, along with empirical

results that demonstrate that NeuroLISP properly implements the LISP programming language and

can successfully execute high-level programs (Section 4.2).

4.1.1 Neural Architecture

NeuroLISP is a multi-region recurrent neural network with gated inter-connections that

implements a virtual LISP interpreter. The architecture of the model (shown in Figure 4.2 and
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Figure 4.2: (next page) NeuroLISP architecture, inspired by the Neural Virtual Machine [97] and the stack machine

architecture of traditional LISP machines [106]. The model is made up of several neural regions (boxes) with recurrent

and inter-regional connectivity (looped and straight arrows with solid lines). Connections are controlled by neurons

in the gate output region of the Controller sub-network (bottom left), which determine the components of the model

that are active at each timestep (regional gating, dashed lines). Each gate (g(t) with subscripts in Equations 4.1 -

4.6) is assigned to a unique neuron in the gate output region, and its activation level is used to determine whether

the gate is open or closed at each timestep. Activation of the gate output region is guided by a cascade of regions

with recurrent dynamics (gate sequence and op) that implement the core functionality of a virtual LISP interpreter.

Together, the Controller regions translate learned LISP programs to temporally-extended sequences of regional gating

that specify pathways for information processing over time, much like the control unit of a conventional computer

architecture. The lexicon region (lex, center) serves as a bridge between model components, and its activity patterns

represent discrete symbols that may correspond to interpreter functions (i.e., LISP operators) or arbitrary symbols

that can be read from or written to an external environment (dashed input/output lines, center left). Data structures,

including LISP programs, are represented by systems of attractors in the core memory region (mem, center), which

store symbolic contents via the pathway from mem to lex. The remaining components support interpretive functions:

the environment region (env, top) stores a tree structure containing namespaces of variable bindings that are modified

and accessed during program execution, and the Stack sub-network regions (runtime stack and data stack, right)

store stack sequences made up of pointers to various activation states in the model, making them accessible without

persistent maintenance.
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described in more detail in Appendix A.2) is inspired by the Neural Virtual Machine [97] and

the stack machine architectures used for early LISP machines [106]. A Controller sub-network

(bottom left) controls the flow of information processing through the model over time by translating

patterns of activation into temporally-extended gating of model components. These activation

patterns represent learned programs that are evaluated by the underlying virtual interpreter, and can

be modified during program evaluation (i.e., programs can be treated as data). Discrete symbols

are represented by patterns of activation in a lexicon region (lex, center of Figure 4.2) that can be

exchanged as input and output with an external environment, allowing the model to be programmed

via environmental interactions. Unlike contemporary deep neural networks, NeuroLISP uses a one-

step local learning rule that permits rapid modification of associative networks within and between

regions. This learning rule is used for both one-time initialization of interpreter functions and

online learning during program execution (e.g., when modifying variable bindings, creating new

data structures, and modifying runtime/data stacks).

Regions in NeuroLISP represent symbolic information as distributed patterns of activation,

and function according to a shared set of rules for activation dynamics and learning. Neurons in a

region r receive inputs from a variety of sources, each with a unique gate that determines when it

is active during model execution:

sr(t) =
∑
q,`

gr,q[`](t) Wr,q[`](t) vq(t)︸ ︷︷ ︸
weighted connectivity

+ gbiasr (t) br︸ ︷︷ ︸
bias

+ gnoiser (t) nr(t)︸ ︷︷ ︸
noise

+ greadr (t) Ir(t)︸ ︷︷ ︸
external inputs

+ gsaturater (t) σ−1r (vr(t))︸ ︷︷ ︸
maintenance

(4.1)

where sr(t) is a vector of cumulative synaptic input to region r at time t that is aggregated from

several sources:

• weighted inputs from connected regions (solid lines with arrow heads in Figure 4.2). Wr,q[`]
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is a weight matrix for the connection from region q to region r that is active when gr,q[`](t) =

1, ` is a label that distinguishes between weight matrices that share source and target regions,

and vq(t) is a vector of neural activity in source region q at time t. When r = q, the

connection is recurrent (looped arrows in Figure 4.2).

• bias vector. br is a bias vector for region r that is active when gbiasr (t) = 1. The bias term is

used by the gate sequence region during comparison operations (Section 4.1.3.2).

• random noise. When gnoiser (t) = 1, a vector of random inputs nr(t) generates a random

activity pattern in region r at time t. The random vector nr(t) is produced by a Bernoulli

process with probability λr. For regions with recurrent dynamics, λr = 0.5 to maintain

balance between positive and negative activation levels. For context regions (labeled ctx in

Figure 4.2), λr is a variable parameter (for details on the implications of this parameter on

contextualized attractor dynamics, see Chapter 3).

• external inputs. When greadr (t) = 1, region r “reads” an input pattern Ir(t) from the external

environment. The dashed line entering the lex region in Figure 4.2 indicates external inputs.

The adjacent dashed line labeled output indicates gated outputs that are “printed” to the

environment when gwriter (t) = 1. Unlike other gates in the model, these gates signal to the

external environment to interact with the activity in the lex region. In principle, input and

output processes could be implemented by gated pathways with additional sensory and motor

networks that control continuous behavior in a simulated or real environment. Instead, the

model presented here focuses on cognitive control of such processes, and it omits the low-

level networks involved with sensorimotor processing.
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• activity maintenance. When gsaturater (t) = 1, activity vr(t) in region r is cycled back into the

region’s inputs to maintain it over time. σ−1r is the inverse of the region’s activation function.

For simplicity, it is assumed that gsaturater (t) = 1 whenever all of the above gates are closed

(i.e., a region maintains its activation pattern whenever it is not receiving synaptic input).

A region may also receive gated inputs that contextualize its dynamics via multiplicative modula-

tion:

xr(t) =
∏
q

{
vq(t) > 0, if gcontextr,q (t) = 1

1, otherwise
(4.2)

where xr(t) is a vector of cumulative multiplicative inputs to region r at time t, 1 is a vector all

ones, and
∏

indicates the Hadamard product of a set of vectors. xr(t) is aggregated from the

activity state vq(t) of each region q that provides multiplicative inputs when the corresponding

gate gcontextr,q (t) = 1. These connections are depicted by solid lines with circular heads in Figure

4.2. When none of these gates are active (or if region r has no contextual inputs), xr(t) = 1. Note

that in NeuroLISP, there is a single dedicated context region for each recurrent region that receives

contextual input (mem and env), but the mathematical model presented here does not impose such

constraints.

These two types of inputs are combined and passed into the neural activation function:

vr(t+ 1) = σr

(
xr(t)� sr(t)

)
(4.3)

where vr(t) is a vector of neural activity in region r at time t, σr is the activation function of

neurons in region r, and � is the Hadamard product. The synaptic inputs sr(t) are gated by

multiplicative inputs xr(t) before being passed into the activation function. When xr(t) contains

zeroes, the corresponding neurons receive no net input. Note that recurrent regions with contextual

dynamics must use a sign-preserving bipolar activation function (e.g., sign/signum or the hyper-
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bolic tangent). This ensures that deactivated neurons function differently from neurons receiving

strong negative input.

Learning in the model occurs in two stages, each controlled by a different type of gate. The

first stage involves updating a regional eligibility trace to store the current pattern of activation as

a target for subsequent learning:

εr(t+ 1) =

{
σ−1r

(
vr(t+ 1)

)
, if gεr(t) = 1

εr(t), otherwise
(4.4)

where εr(t) is the eligibility trace for region r at time t, vr(t + 1) is the most recently computed

activity pattern in region r for timestep t+1 (Equation 4.3), and σ−1r is the inverse of the activation

function for region r. When gεr(t) = 1, εr(t) is updated such that σr (εr(t+ 1)) = v(t + 1).

εr(t) is referred to as an eligibility trace, a term borrowed from reinforcement learning, because

it temporarily stores an activity state for use in the second stage of learning, in which a pathway-

specific weight matrix is updated with the store-erase learning rule [97]:

∆Wr,q[`](t) =
1

||vq(t)||︸ ︷︷ ︸
norm

(
εr(t)−

(
xr(t)�Wr,q[`](t) vq(t)

)︸ ︷︷ ︸
target delta

)
vq(t)

>︸ ︷︷ ︸
source

(4.5)

Wr,q[`](t+ 1) = Wr,q[`](t) + glearnr,q[`] (t) ∆Wr,q[`](t) (4.6)

where Wr,q[`](t) is the weight matrix for connection ` from region q to region r at time t. Weight

updates are distributed across the weight matrix and are normalized according to the magnitude

of the source pattern. When glearnr,q[`] (t) = 1, weights are updated such that the current inputs will

produce the eligibility trace in the future:

xr(t)�Wr,q[`](t+ 1) vq(t) = εr(t)

This equality is only guaranteed to hold for the most recently learned association, which may

deteriorate as additional associations are learned. This was investigated empirically in Chapter 3,
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in which practical memory capacities were established for networks that learn using contextually-

gated store-erase learning.

The mathematical model outlined above affords a diverse set of dynamics that depend on

top-down control of regional gating over time (e.g., gr,q[`](t), gnoiser (t), etc). In NeuroLISP, these

gates are controlled by neurons in the gate output region (one neuron per gate) based on learned

sequences of activation patterns in the Controller sub-network (Figure 4.2). This allows the model

to be “programmed” with new computational procedures that specify pathways through which

activation flows, much like opcodes in the instruction set of a conventional computer architecture.

These procedures make up the core functionality of the implemented language interpreter that are

established using one-step learning during model construction, and remain fixed during model

execution. Among these procedures are the core functions for constructing and accessing compo-

sitional data structures, which are implemented as systems of attractors linked by contextualized

transitions (Section 4.1.2).

Connection gating is used for both inter-regional and recurrent connectivity. Inter-regional

gating allows the model to control the spread of activation between neural regions, initializing a

target region to a state that is specified by learned associations via weighted inputs from a source

region. Recurrent dynamics within a region fall into one of two categories: attractor convergence

and sequential transitions. By interleaving these dynamics, a region can be made to iterate through

a sequence of attractor states, settling at each attractor before advancing to the next state in the

sequence (i.e., itinerant attractor dynamics, [78, 131]). Inter-regional and recurrent dynamics can

be combined into complex behavior that is orchestrated by the gate controller according to learned

“programs”. For example, inter-regional gating may be used to initialize a region to the start of an

attractor sequence that can be traversed with subsequent recurrent gating.
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Attractor itinerancy is typically limited in that each state has a single successor state in the

sequence. This is overcome by the addition of “contextual” multiplicative gating (Equations 4.2

and 4.3), which permits context-dependent recurrent transitions that depend non-linearly on inputs

from another region. These inputs differ from weighted inter-regional inputs in that they do not

drive the target region toward a particular pattern directly; instead, they contextualize its recurrent

dynamics, selecting among multiple learned associations to govern each transition. Thus, when a

region executes a transition in this regime, the consequent state depends on both the initial state of

that region and the pattern of activation that is used to contextualize the transition. This “functional

branching” makes it possible to learn directed graphs of attractors and transitions through which a

region may traverse. Chapter 3 shows that attractor graphs can efficiently represent compositional

data structures such as linked lists, associative arrays, and trees. Such structures can be traversed

via temporally-extended top-down control of regional and contextual gating.

Previous programmable attractor networks have relied primarily on itinerant attractor se-

quences without contextual gating, which restricts the space of possible programming languages

that may be implemented. For example, the Neural Virtual Machine implements an assembly-

like language, with programs represented as linear sequences of instructions [97]. This makes it

difficult to encode complex programs that are much more easily expressed in higher-level languages

as abstract syntax trees, which can be represented directly in neural memory as attractor graphs.

Section 4.1.2 shows how the “cons cells” of the LISP programming language can be represented

by simple attractor graphs and composed into nested expressions to represent complex programs

(stored in the mem region). These expressions can then be recursively evaluated by other regions

with simpler non-contextualized dynamics (Controller regions) that implement an assembly-like

language suitable for defining LISP interpreter functions (e.g., evaluation, variable lookups, in-
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put/output, etc), as described in Section 4.1.3.

4.1.2 Compositional Data Structures

Compositional data structures are implemented in NeuroLISP as systems of attractors (dis-

tributed representations) with gated transitions, called attractor graphs. The details of the dynamics

underlying attractor graphs can be found in Chapter 3. This section describes how they are used

to implement cons cells and associative arrays (maps), two fundamental data structures that serve

as building blocks for NeuroLISP’s memory system (Figure 4.3). These data structures can be

constructed and accessed in neural memory via computationally-efficient gating operations with

constant time and linear memory requirements.

4.1.2.1 Cons Cells

Cons cells are ordered pairs of elements that may be atomic symbols or other cons cells.

Atomic symbols are represented as attractor states in the memory (mem) region that are associated

with a corresponding pattern of activation in the lexicon (lex) region (Figure 4.3a). Cons cells are

also represented as mem attractor states (Figure 4.3b), but they differ from atomic symbols in three

ways. First, they are associated with a reserved lex pattern that identifies the memory state as a cons

cell. Second, each cons cell serves as the source state for a unique sequence of transitions from the

cons cell through the two elements of its ordered pair. Third, each cons cell mem state is associated

with a unique state in the memory context region (ctx region adjacent to mem) that contextualizes

the transitions linking the cons cell with its elements. This organization allows memory states to

be contained as elements in several cons cells without duplication, as the transitions linking the
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Figure 4.3: Graphical depiction of attractor graph representations of fundamental data structures (see Chapter 3). Each

gray rectangle represents the activity space of a region (mem, lex, or ctx), and each circle represents a unique distributed

neural activity pattern in that region. Solid lines indicate learned associations between states, either between or within

regions. Dashed lines indicate contextual dependencies for recurrent mem transitions, which can only be executed

when the corresponding ctx pattern is present. (a) Atomic symbols are represented by pairs of states in the lex and

mem region. The mem state allows the symbol to participate in compositional structures, while the lex state allows

the symbol to be read from or written to the environment, and interpreted as a variable name, function name, or

LISP operator. (b) Cons cells are represented by a unique activity state (labeled “cons”) that serves as the head of a

trajectory through the elements contained in the cell (labeled “car” and “cdr”). These transitions are contextualized by

a unique ctx state (circle within ctx rectangle). (c) Associative arrays (maps) are represented similarly, except that there

are multiple trajectories from the head state (labeled “map”) that run through each key/value pair in the map. Each

transition to a key is contextualized by a unique ctx state associated with the key (lower right circle in ctx rectangle).

This permits verification that a key is contained in the map prior to value lookups (see Appendix A.4). Each key state

is associated with the corresponding value in the map by a unique map context state (top right circle in ctx rectangle).

This allows the same memory state to serve as a key in multiple maps, each with a unique corresponding value. For

clarity, only the context states for a single key/value pair are shown, and the remaining pairs are abbreviated (bottom

of mem rectangle).
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elements of a cons cell are contextualized by a unique multiplicative pattern (see Appendix A.3).

The car and cdr operations retrieve the first and second elements of a cons cell, respectively.

These operations can be performed by iterating through the mem attractor sequence, starting with

the cons cell attractor, and stopping at the desired element. This sequence is contextualized by

the unique ctx state associated with the cons cell, which must be retrieved prior to iteration. To

construct a cons cell, a mem attractor sequence must be constructed using several gates, including

the noise (Equation 4.1), eligibility trace (Equation 4.4), and plasticity gates (Equation 4.6). This

sequence links together a newly created cons attractor with the two elements that will be contained

as car and cdr elements. The details of these operations are included in Appendix A.3.

4.1.2.2 Associative Arrays (Maps)

Associative arrays, or maps, are collections of key/value pairs. The fundamental operations

of maps include addition, modification, and removal of key/value pairs, checking whether a key/

value pair exists for a given key, and retrieving that value if it exists. Maps are generally imple-

mented as hash tables in conventional computers, which use a hashing function to transform keys

into unique offsets for indexing an array in linear memory. In lieu of such a hashing function,

neural attractor transitions are used to uniquely associate keys with values, similarly to the above

implementation of cons cells. Several unique features of maps, however, make their underlying

implementation more involved than cons cells.

The organization of maps in neural memory is shown in Figure 4.3c. Each key/value pair in

a map corresponds to a pair of attractor states linked by a contextualized transition. Unlike cons

cells, the first element of a pair (the key) is provided during operations performed on the map (e.g.,
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lookups). To retrieve the value for a given key, the context state for the map is used to execute a

transition from the key’s memory state to the value’s memory state, much like the cdr element of

a cons cell is retrieved from the corresponding car element. However, unlike with cons cells, the

corresponding transition from the map to the key state is not contextualized by the map’s context

state, as a map may contain multiple key/value pairs. Instead, a context state associated with the

key memory is used for the transition, making it possible to check whether a key is contained in a

map (see Appendix A.4 for details).

4.1.3 Virtual Interpreter

NeuroLISP implements a virtual interpreter that evaluates programmatic expressions stored

as nested cons cells in neural memory (Section 4.1.2.1). Interpreter functions are orchestrated by

sequential activation in the Controller sub-network, which controls model functionality by opening

and closing gates on model components over time (Equations 4.1 - 4.6). Much like a conventional

computer, the Controller specifies pathways through the architecture for information processing

based on learned instructions. This includes manipulation of memory, runtime/data stacks, in-

put/output pathways, and environmental variable bindings, but also the functionality of the Con-

troller itself. For example, conditional statements require the Controller to execute different proce-

dures based on the result of operations performed on the contents of memory (e.g., comparisons,

logical operations). Interpreter functionality in the Controller (i.e., interpreter firmware) is learned

with fast associative learning (Equations 4.4 - 4.6) during a one-time initialization procedure.

The design of the Controller and Stack sub-networks is inspired by the Neural Virtual Ma-

chine, which implements an assembly-like language and represents programs using temporal se-
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quences of distributed neural activity patterns [97]. Sequences in the op region represent programs

in a low-level assembly-like language that implement interpreter functions for the higher-level

LISP language. These low-level programs are referred to as op-sequences to distinguish them

from LISP programs. The relationship between these two levels is discussed in more detail in

Appendix A.5.

4.1.3.1 Evaluation

In LISP, eval is a core interpreter function that recursively evaluates a LISP expression and

returns the result. The eval function contains conditional logic that determines how an expression

is to be evaluated based on its contents and structure, and invokes other necessary interpreter

functions. For example, an atomic expression is interpreted as a variable name to be looked up in

the environment, while a list is interpreted as an application of a function or built-in operator.

The eval function is implemented in NeuroLISP as a central op-sequence of the Controller

that branches off into one of several other op-sequences based on the currently active pattern of

activity in mem, which represents the LISP expression to be evaluated. This begins a cascade of

op-sequence calls that implements the expression’s operator via top-down control of gated neural

computations, and may include recursive evaluation of sub-expressions. During recursive evalua-

tion, the Controller uses the stack regions to temporarily store op, mem, and env activity states by

learning associations in the corresponding pathways (see Figure 4.2). For example, evaluation of a

cons expression (e.g., (cons ’a ’b)) begins with recursive evaluation of the sub-expressions

for the car and cdr elements, which are stored temporarily on the data stack and retrieved during

construction of the cons cell attractor sequence (Section 4.1.2.1). Further details on recursive eval-
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uation are included in Appendix A.5.

Compound expressions are stored in memory as lists represented by chains of cons cells. The

first element of the list represents either a built-in operation (Table 4.1) or a sub-expression that

can be evaluated to retrieve a function (e.g., a function name or lambda expression). To distinguish

between these cases, all patterns in the lex region representing symbols for built-in operators are

learned as attractors in a recurrent lex matrix. These patterns are recognizable via comparison

(Section 4.1.3.2): if the pattern remains stable following recurrent dynamics, it represents a built-

in operator. Each built-in operator has a corresponding op sequence that implements its operation

and can be retrieved via the pathway from lex to op. When the first element of a compound

expression is not a built-in operation, it must evaluate to a function, and may either be a variable

naming a function that can be retrieved from the environment (Section 4.1.3.4), or a cons cell

representing a lambda function (Section 4.1.3.5). In either of these cases, the operator is recursively

evaluated, and the parent expression is interpreted as a call to the returned function, with the

remaining elements of the list interpreted as expressions for the values of the function’s arguments.

When evaluating non-compound expressions (i.e., individual symbols), built-in symbols are simply

returned, and other symbols are interpreted as variable names, and looked up in the environment.

Two special LISP operators provide programmatic control of evaluation: quote and eval.

The quote operator instructs the interpreter to skip evaluation of sub-expressions and return them

directly as data. Conversely, the eval operator instructs the interpreter to evaluate the value

that was returned from evaluation of the sub-expression. These two operators allow seamless

interchange of programs and data (i.e., programs as data), and make it straightforward to im-

plement programs that generate other programs. The quote operator is implemented in Neu-

roLISP by an op-sequence that simply retrieves the memory state representing the expression’s
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argument (e.g., evaluating (quote x) returns the memory state representing the symbol x). The

op-sequence implementing the eval operator recursively evaluates the argument sub-expression,

then performs a second round of recursive evaluation on the resulting memory state, and returns

the final result.

4.1.3.2 Conditional Evaluation

Conditional evaluation involves comparisons that are initiated by branching instructions in

the op region. A comparison is performed on two activity states that occur in the same region

(one of mem, lex, or env) at different timesteps. The result of the comparison causes the gate

sequence region to initiate one of two operations for advancing the op region, analogous to the jump

operations that occur in conventional computer architectures. If the compared states are within a

threshold of similarity, op is advanced to a new sequence designated by the branch operation’s

operand. Otherwise, op is simply advanced to the next instruction in the current op-sequence.

Comparisons are performed in two stages. For illustrative purposes, consider a comparison

performed between two mem states to determine whether a key is contained in an associative array

/ map (Section 4.1.2.2). First, the key memory state is retrieved, and an association is learned

in the pathway from mem to gate sequence that links the key memory state with a designated

gate sequence state corresponding to the jump gate procedure. Next, the key is used to execute

a transition from the map state in mem, which yields the key state if the key is contained in the

map, or a random state otherwise. The comparison is performed to determine which of these two

cases occurred. At this point, two gates are opened in the gate sequence region: one that controls

the pathway from mem, and another that activates a bias input that pushes gate sequence toward a
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designated sequence that corresponds to a false comparison. If the current mem state matches the

memorized state (i.e., the key memory state), then the net input to gate sequence will match the

jump sequence state. Otherwise, the net input will be dominated by the bias term. The resulting

gate sequence activity performs the appropriate operation for advancing op according to the result

of the comparison: jump to the operand if the result was true, or advance to the next instruction in

the current op-sequence if false. The details of the comparison operation are discussed in Appendix

A.6.

4.1.3.3 Input/Output

As mentioned in Section 4.1.1, symbols represented by lex activity patterns can be read from

or printed to the environment via control of special input/output gates. Each of these patterns is

also reciprocally associated with a unique activity pattern in mem, which allows the symbol to

serve as a component of compositional structures (Figure 4.3a). The bi-directional associations

between mem and lex representations of a symbol make it possible for the model to recognize that

a symbol has never been seen before, and to construct a new mem state to represent it. This is done

by reading the symbol to lex, memorizing it, executing an inter-regional transition from lex to mem

and back to lex, and comparing the resulting lex activity pattern to the memorized pattern (Section

4.1.3.2). If they match, the symbol has a mem representation already. If not, one is created, and

the bi-directional associations are created. Thus, NeuroLISP’s lexicon is automatically expanded

as it encounters new input symbols.

A read operation parses a sequence of symbolic inputs into a data structure in memory. Two

special symbols representing open and closed parentheses indicate delimiters of nested expres-

108



sions, which can be parsed recursively. When the open symbol is encountered, the interpreter

enters a loop, recursively parsing each symbol until a close symbol is encountered. Each parsed

memory, besides the close symbol, is placed in a chain of cons cells representing a list. An ad-

ditional quotation symbol streamlines expression quotation; when it is encountered, the result of

parsing the next symbol(s) is appended to a list containing the quote symbol. A read operation is

completed when the expression is closed (or immediately after reading a non-delimiting symbol),

and the resulting memory structure is returned to the caller. Conversely, a write operation performs

a pre-order traversal of a memory structure, printing an open parenthesis upon entry to a cons cell,

a close parenthesis upon exit of a cons cell, and the corresponding symbol when a leaf node is

reached.

NeuroLISP begins operation in a read-eval-print-loop, in which an expression to be evaluated

is read in as input, constructing a program in memory to be evaluated. The memory state that is

returned from evaluation is then printed, and the loop repeats. Thus, once the model is initialized

with interpreter functions, it can be programmed via environmental interactions that prompt the

model to control its own plasticity, rather than by direct manipulation of the weight matrices in the

model.

4.1.3.4 Environment Management

In high-level programming languages, variable bindings are maintained and updated in an

environment that is accessible during program evaluation. Environments are typically composed of

distinct namespaces that manage different bindings for the same variable name that are relevant to

different execution contexts. For example, if a function f(x) calls another function g(x), two distinct
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bindings are maintained for x that may contain different values. When a lookup is performed, the

evaluator must retrieve the correct binding based on the current execution context. This can be

done dynamically, in which the most recent binding is retrieved, or lexically, in which the correct

binding is determined based on the location of the expression being executed within the program.

Lexical scoping is more complex than dynamic scoping because variable lookups are relative to

the code being executed, and several bindings for a given variable must be maintained separately.

The organization of environments is described in detail in Appendix A.7. NeuroLISP supports

both dynamic and lexical scoping because the procedures for environment organization and access

are determined by learned interpreter functions. Lexical scoping was used for the experiments

described below.

4.1.3.5 Function Definitions and Applications

In lexically-scoped languages, function definition involves creation of a closure that binds

together the body of the function, its argument list, and a namespace containing variable bindings

that were accessible at the time of definition. In NeuroLISP, closures are stored as cons cells in the

mem region (Section 4.1.2.1) that have special learned associations with namespaces represented in

the env region (Section 4.1.3.4), and are associated with a reserved “function” symbol in lex. When

a function is called, the corresponding namespace is retrieved, and a new namespace is constructed

from it to store the bindings of the function’s arguments. This namespace is then used for variable

lookups during execution of the function body, and it contains both the argument bindings and the

extant bindings from when the function was first defined (see Appendix A.8 for details). When

dynamic scoping is used, the closure namespace is ignored, and the new namespace is branched
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off of the caller’s namespace.

4.1.4 Experimental Methods

Experiments were performed on NeuroLISP using several different programs: 1) To verify

its correctness, NeuroLISP was first tested with a suite of 37 simple handwritten test cases that eval-

uate the various functions of the implemented language. 2) To determine the relationship between

region sizing and memory capacity, the network’s memory capacity was evaluated with basic

programs involving list storage and variable binding. 3) To demonstrate that it can successfully

execute basic LISP programs that manipulate complex data structures, NeuroLISP was tested with

a small library of multiway tree processing functions. 4) To demonstrate that NeuroLISP is capable

of compositional processing, it was tested with a library of sequence manipulation functions that

solves the PCFG SET task described in Hupkes et al. [82]. 5) Finally, to show that NeuroLISP

can perform high-level procedures that are relevant to traditional symbolic AI, it was tested with

a first-order unification algorithm [173], a key component of automated reasoning, type checking,

and logic programming. Empirical results from these experiments are presented in Sections 4.2.1

- 4.2.5.

To distinguish between bugs in the interpreter firmware and neurocomputational errors (i.e.,

corruption of learned neural associations), a non-neural emulator for the NeuroLISP architecture

was implemented that faithfully reproduces the flow of information that occurs through regions

in the architecture, but uses explicit symbols and lookup tables in lieu of activation patterns and

weight matrices. This allowed determination of the number of associations in various pathways

that would be learned during correct execution of a program, which is referred to as the program’s
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complexity, without the possibility of interference from neurocomputational errors. Because the

memory capacity of simple attractor networks is relative to the number of neurons in the network

[4, 97], experiments were designed to determine the relationship between the size of Neuro-

LISP regions and the complexity of programs that it can successfully execute. Specifically, these

experiments examined the number of generated memory states (attractors in the mem region) and

the number of variable bindings (associations between env and mem states), relative to the size of

the mem, lex, and env regions. In addition, these experiments examined the impact of the context

density parameter λenv−ctx, which determines how many env neurons participate in each variable

binding.

Each experiment included several trials in which the NeuroLISP architecture was instantiated

with a particular set of model parameters, initialized with the interpreter firmware, and executed

with a particular set of inputs encoding a test program. The output of the model was compared

to the correct reference output for the trial inputs to determine if the trial was successful or not.

Experiments were performed in blocks with shared model parameters and inputs with a shared

property that were not necessarily identical (e.g., testing retention of different lists of the same

length). Each block contained 20 trials, and results are reported as the percentage of trials in each

block that produced correct outputs (each datapoint in the plots in Section 4.2.1 - 4.2.5 corresponds

to one block of 20 trials). Each model parameter was systematically varied one at a time in order

to determine its impact on model performance (e.g., how does the size of the mem region impact

list retention?). The remaining parameters were set in order to avoid degradation of performance

(e.g., a large mem region size was used when testing the impact of env region sizing on variable

binding). The details of model parameters used during experiments can be found in Appendix A.9.

The computational experiments presented here address the following questions:
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• Correctness: Does the NeuroLISP firmware correctly implement the language interpreter?

Can NeuroLISP successfully execute high-level programs, including multiway tree process-

ing functions, the string manipulation functions of the PCFG SET task, and a first-order

unification procedure used in automated reasoning?

• Memory capacity: How do the sizes of the mem and lex regions impact program/data mem-

ory storage capacity?

• Binding capacity: How does the size of the env region and its context density parameter

λenv−ctx affect a) the number of variable bindings that can be stored in a single namespace,

and b) the number of namespaces that can store separate bindings for the same variable

name?

It was hypothesized that correct performance would require sizing the mem, lex, and env

regions according to the complexity of the executed program. Based on results reported in Chapter

3, the following results were predicted:

• Region sizing: a linear relationship between a) mem region size and program/data memory

storage capacity capacity, and b) env region size and the number of bindings stored for the

same variable name in different namespaces.

• Context density: a larger env context density λenv−ctx would facilitate storage of bindings

with the same variable name in different namespaces, but interfere with storage of several

variables in one namespace. Thus, a balanced context density would lead to the best perfor-

mance on complex programs involving multiple bindings across multiple namespaces.
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Finally, the scalability of the model was investigated in parallel computing environments

with additional experiments that evaluated runtime performance and memory usage. Experiments

were performed on a 3.5GHz 10-core Xeon E5-2687W v3 with two NVIDIA RTX 3060 GPUs.

The model was implemented in the Python programming language using the numpy library for

multi-dimensional arrays and the pyCUDA library for GPU processing. Model computations that

involved matrix operations (e.g., input activation and learning) were performed on GPU(s), while

those that did not (e.g., neural activation functions) were performed on the CPU. The results of

these experiments are presented in Section 4.2.6. Experiments were designed to investigate several

approaches to improving both the runtime and memory efficiency of model simulation without

affecting the accuracy of its symbolic behavior, as described below.

A significant advantage of the gated region-and-pathway paradigm is that only a subset of the

model (corresponding to active regions and connections) must be computed during each timestep,

greatly reducing the computational cost of model execution. This also means that scaling up the

number of neurons in a specific region only incurs performance penalties for computations that

involve that region and its associated connectivity matrices. For example, the size of the env

region does not affect operations that do not involve variable bindings or namespaces, such as

parsing inputs and constructing programs in memory. This is illustrated by separate measurements

of the runtime for program parsing and execution.

Because each timestep of simulation only involves a subset of model computations, the

theoretical performance benefits from distributing kernels among multiple compute devices is

limited. A more effective strategy would be to split up individual regions, divvying up neurons to

separate devices for distributed computation of individual kernels. This possibility is not pursued

here, but it is feasible due to the locality of associative learning. Instead, weight matrices were
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distributed among GPUs to take advantage of their available memory. When the size of the model

exceeds available GPU memory, matrices must be shuttled between the host and GPU as they are

needed during kernel execution, incurring a significant runtime performance penalty called mem-

ory thrashing. Thus, the use of multiple GPUs therefore provides additional memory and allows

larger models to be simulated without intractable increases in runtime. In addition, the use of half-

precision floating points for weight matrices reduces their memory footprint by 50%, allowing

further increases in model size.

When a region is contextually gated, a subset of its neurons do not participate in computa-

tions, as their output is guaranteed to be zero and their corresponding weights will not be affected

by learning. Thus, a naive implementation of matrix operations involves unnecessary computations

when contextual gating is active, as compute threads are allocated to deactivated neurons. The

percentage of wasted computations depends on the context density parameter, which is typically

less than 1
2

(i.e., more than half of the computations are wasted). Thus, efficient versions of

the matrix operation kernels were implemented that perform preprocessing to determine which

neurons are active and assign them to compute threads accordingly.

Overall, it was hypothesized that runtime would be significantly improved by the use of ef-

ficient kernels that avoid unnecessary computations for deactivated neurons. In addition, runtime

was hypothesized to scale roughly with model size until GPU memory is exceeded, at which point

runtime would rapidly increase due to memory thrashing. Thus, the use of half-precision weights

and distribution of the model across GPUs would increase the maximum model size possible

without intractable increases in runtime.
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4.2 Results

4.2.1 Interpreter Test Suite

NeuroLISP was first tested with 37 simple handwritten test cases, listed in Table 4.3, that

exercised the various components of the implemented language to verify the correctness of the

virtual interpreter firmware. These tests include constructing and navigating s-expressions and

associative arrays, reading and printing s-expressions, logical and conditional operations, function

definitions, and variable bindings in nested namespaces. For each test, NeuroLISP was constructed

with mem, lex, and env region sizes of 2048, 2048, and 1024, respectively, and an env context

density parameter λenv = 1
4
. With these parameters, the model successfully passed all tests.

4.2.2 Memory and Variable Binding Capacity

To examine the relationship between program/data memory capacity and the size of the mem

and lex regions, simple tests were performed involving storage and retrieval of lists containing

between 10 and 100 symbols randomly drawn from a set of 10 possible symbols. During each

trial, a list of symbols was read in as input using the read operation, stored in memory, then

printed back as output. First, the size of the mem region was systematically varied from 300 to

1500 neurons while keeping the lex region size constant at 2048 neurons. Then, the opposite was

done, testing variations of the lex region size from 300 to 1500 while keeping the mem region

size constant at 2048. In both cases, λenv−ctx was fixed at 1
4
. The results are shown in Figure

4.4, where each data point indicates the percentage of successful trials (y-axis) involving lists of a

specific length (x-axis). Each line indicates results for instantiations of the model with the same
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Table 4.3: Basic test suite for the NeuroLISP interpreter. The left column contains test programs, and the right column

contains the corresponding expected outputs. Note that because NeuroLISP executes a read-eval-print-loop, the return

value of each expression is printed alongside any outputs provided by explicit print commands. Lists (cons cells) are

printed as parenthesis-enclosed expressions, while function closures and hash maps (associative arrays) are printed as

#FUNCTION and #HASH, respectively.

(cons (quote A) (cons (quote B) NIL)) (A B)
(list (quote A) (quote B)) (A B)
(quote (A B)) (A B)
(car (cons (quote A) NIL)) A
(car (cdr (cdr (list

(quote A) (quote B) (quote C))))) C
(car (cdr

(car (cdr (quote (A (B C) D)))))) C
(cadr (quote (A (B C) D))) (B C)
(eq ’x ’x) true
(eq ’x ’y) false
(eq ’x (list ’x)) false
(atom ’x) true
(atom (list ’x)) false
(listp ’x) false
(listp (list ’x)) true
(print (read)) A A A
(print (list (read) (read) (read))) A B C (A B C) (A B C)
(progn (print ’foo) (print ’bar) ’baz) foo bar baz
(dolist (x ’(A B C) x) (print x)) A B C C
(eval (quote (print (quote x)))) x x
(eval (cons ’print

(cdr (list ’foo ’(quote x))))) x x
(if true ’foo ’bar) (if false ’foo ’bar) foo bar
(if (or false (and true true)) ’foo ’bar) foo
(cond (false ’a)

((or false false) ’b)
((and true false) ’c)
((not true) ’d)
((eq ’x ’y) ’e)
(true ’f)) f

((lambda (x y) (list x y)) ’foo ’bar) (foo bar)
((lambda (f x y) (f x y))

(lambda (x y) (list x y)) ’foo ’bar) (foo bar)
((label f (lambda (x)

(if x
(progn (print (car x)) (f (cdr x))))))
(list ’foo ’bar)) foo bar NIL
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(defun f (x y) (list x y))
(defun g (x y) (f x y))
(g ’foo ’bar)

#FUNCTION
#FUNCTION
(foo bar)

(let ((x ’foo))
(progn (print x)
(let ((x ’bar)) (print x)) x)) foo bar foo

(let ((x ’foo) (y ’bar)) (list x y)) (foo bar)
(let ((x ’foo) (y ’bar))

(progn (defun f (x) (print (list x y)))
(f ’baz) x)) (baz bar) foo

(progn (setq x ’foo) x) foo
(let ((x ’foo)) (progn (setq x ’bar) x)) bar
(let ((x ’foo))

(progn (let ((x ’bar)) (setq x ’baz)) x)) foo
(let ((x ’foo))

(progn (defun f (x) (setq x ’bar))
(f ’baz) x)) foo

(defun f () (setq x ’foo)) (f) x #FUNCTION foo foo
(let ((hash (makehash))) (progn

(sethash ’key1 ’val1 hash)
(sethash ’key2 ’val2 hash)
(print (and
(checkhash ’key1 hash)
(checkhash ’key2 hash)
(not (checkhash ’key3 hash))))

(print (list
(gethash ’key1 hash)
(gethash ’key2 hash)))

(remhash ’key1 hash)
(print (checkhash ’key1 hash))
(sethash ’key1 ’foo hash)
(print (checkhash ’key1 hash))
(print (gethash ’key1 hash))
hash))

true (val1 val2)
false true foo
#HASH

(progn
(((lambda (le)
((lambda (g) (g g))
(lambda (h)
(le (lambda (x) ((h h) x))))))

(lambda (f)
(lambda (x) (cond
(x (progn
(print x)
(f (cdr x))
(print (car x)))

(true x))))))
’(a b c))

’complete)
(a b c) (b c) (c)
c b a complete
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(a) Variable Memory Region Size
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Figure 4.4: Results for list storage and retrieval with varying mem and lex region sizes. During each trial, NeuroLISP

read in a randomly generated list of symbols of a specified length (x-axis) and stored it in memory, then traversed and

printed its contents. A trial was considered successful if the printed list matched the input list. Each datapoint indicates

the percentage of successful trials (y-axis) out of 20 for a specified list length (x-axis). (a) With the lex region size

fixed at 2048 neurons, varying the size of the mem region reveals a roughly linear relationship with storage capacity

(i.e., successful storage and retrieval of longer lists requires correspondingly larger mem region sizes). (b) With the

mem region size fixed at 2048 neurons, the lex region size does not show a linear relationship with storage capacity,

but a sufficient lex size is necessary for reliable storage. Note that because perfect accuracy is achieved for lex sizes of

900 and above, some lines are stacked and are not visible in the plot.

parameters. Figure 4.4a shows that, as predicted, the memory capacity of the model scales roughly

linearly with the size of the mem region, with larger lists requiring a larger mem size to be reliably

stored and retrieved. This can be seen by noting the gaps between the lines, and the points at which

each line diverges from 100% accuracy, indicating the maximum storage capacity for a given mem

region size (e.g., 600 neurons suffices for a list of 20 elements, 900 neurons for 50 elements, 1200

neurons for 70 elements, and 1500 neurons for 100 elements). This linear relationship is not found

in Figure 4.4b, which nevertheless shows that a sufficiently large lex region is necessary to learn the
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associations between mem states and the corresponding lex patterns representing stored symbols.

Variable binding was tested in two ways, referred to as breadth and depth testing. In breadth

testing, NeuroLISP was tested with a program that created many bindings with different variable

names in the same namespace (Figure 4.5a). In contrast, depth testing involved a recursive function

that creates many bindings with the same variable name in different namespaces (depth refers to

depth of recursion; see Figure 4.5b). These two situations were tested separately because they

involve different neurocomputational demands: depth requires learning many attractors with the

same context masking pattern, and breadth involves learning many attractors with the same activity

pattern, but with different context masks. It was hypothesized that λenv−ctx would affect these

two situations differently. Specifically, a higher λenv−ctx would improve depth performance by

allowing a greater percentage of the namespace pattern to participate in attractor dynamics, but

would reduce breadth performance by increasing the overlap and interference between learned

attractors for different variables in the same namespace. This tradeoff was explored in Chapter

3, in which it was shown that a moderate λenv−ctx balanced performance for auto-associative and

hetero-associative learning. For both breadth and depth testing, the experiment was repeated for

λenv−ctx values of 1
8
, 1
4
, and 1

2
.

The results for breadth testing are shown in Figure 4.6. The size of the lex and mem regions

was fixed at 2048 neurons and 5000 neurons, respectively, while the size of the env region was

varied from 100 to 600 neurons. For each test, a unique program was generated to create a specific

number of variable bindings in the same namespace (using the setq operation) before accessing

them to print the corresponding values (Figure 4.5a). Each variable had a unique name, and was

bound to a random symbol drawn from a set of 10 possible symbols. As predicted, a higher λenv−ctx

greatly reduced performance, presumably by increasing interference between learned attractors
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(a) Sample Breadth Testing Program

(setq v0 ’B)
(setq v1 ’G)
(setq v2 ’F)
(setq v3 ’A)
v0
v1
v2
v3

(b) Depth Testing Program

(progn
(defun f (x)
(if x
(progn
(f (cdr x))
(print (car x)))))

(f (read))
’NIL)

Figure 4.5: Programs for variable binding capacity testing. (a) Breadth testing involves binding several variables with

different names in the same namespace. The sample program shown here binds four variables to random symbols

using the setq operation, then retrieves them sequentially. NeuroLISP prints the result of evaluating each expression,

providing an output sequence to verify correct evaluation. (b) Depth testing involves binding several variables of the

same name in different namespaces. The program shown here includes a recursive function that prints a list in reverse.

The input list is read in using the read operation, and the printed output is compared with the input list to verify

correct evaluation.

due to greater overlap.

The results for depth testing are shown in Figure 4.7. The size of the lex and mem regions was

fixed at 2048 neurons each, while the size of the env region was varied from 1000 to 5000 neurons.

The test program passed a random list of symbols (drawn from a set of 10 possible symbols)

into a recursive function that printed the list in reverse order (Figure 4.5b). Importantly, the last

symbol in the list was printed by the deepest recursive function call, and variable retrievals were

only performed after all bindings were created. The results match the predicted linear relationship

between env region size and the number of bindings that can be successfully stored and retrieved.

This can be seen by noting the gaps between the lines in Figure 4.7a, and the points at which each

line diverges from 100% accuracy, indicating the maximum binding capacity for a given env region

size (e.g., 1000 neurons suffices for 10 bindings, 2000 neurons for 20 bindings, 3000 for 50, 4000

for 60, and 5000 for 80). In addition, the results corroborate the prediction of higher performance
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Figure 4.6: Results for breadth testing of variable binding with varying env region size and λenv−ctx. Each test

involved binding several variables with unique names in the same namespace using the setq operation, then retrieving

and printing their values (Figure 4.5a). The x-axis indicates the number of stored variable bindings, and the y-axis

indicates the percentage of successful trials (20 per datapoint). (a) Better performance is achieved with a low λenv−ctx

of 1
8 , which minimizes the interference between associative learning of distinct variable bindings in the same name-

space. (b) Performance deteriorates with a higher λenv−ctx of 1
4 . (c) With a high λenv−ctx of 1

2 , the model struggles

to store large numbers of bindings in the same namespace, even with larger env region sizes. Note that some lines in

the plots are stacked and are not visible.

with a higher λenv−ctx.

4.2.3 Multiway Tree Processing

Given the rough guidelines for sizing the regions of the model established above, NeuroLISP

was next tested with a small library of multiway tree processing functions to demonstrate that the

model can successfully execute basic LISP programs that manipulate complex data structures2.

A multiway tree is represented as either an atom (leaf node), or a list containing an atom (node

2The multiway tree data structure representation is thanks to Werner Hett’s “Ninety-Nine Prolog Problems”, and
the processing functions are inspired by binary tree processing functions found in the Appendix to Paul Graham’s
“ANSI Common Lisp” textbook.
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Figure 4.7: Results for depth testing of variable binding with varying env region size and λenv−ctx. Each test involved

execution of a recursive function with a single variable, and required storing several bindings with the same variable

name in different namespaces (Figure 4.5b). Because the function uses head recursion, the model was required to

store all bindings before retrieving and printing them. The x-axis indicates recursive depth (number of namespaces),

and the y-axis indicates the percentage of successful trials (20 per datapoint). (a) With a low λenv−ctx of 1
8 , a linear

relationship can be seen that resembles that of Figure 4.4a: more env neurons are required to store more bindings.

(b) Unlike with breadth testing (Figure 4.6), a higher λenv−ctx of 1
4 improves binding capacity across namespaces by

increasing the number of neurons that participate in env region attractor dynamics and improving the discriminability

of masked namespace patterns. (c) Increasing λenv−ctx to 1
2 further improves performance. Note that some lines in

the plots are stacked and are not visible.

label) and one or more multiway trees (children). The implemented functions are listed in Table

4.4. The full implementation and test cases for the is-tree? function are listed in Figure 4.8

(see Appendix A.10 for remaining functions). Each function was tested with several test cases.

For each test, NeuroLISP was constructed with mem, lex, and env region sizes of 6000, 2048, and

1024, respectively, and an env context density parameter λenv = 1
4
. With these parameters, the

model successfully passed all tests.
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Table 4.4: Multiway tree processing functions implemented in NeuroLISP.

(expr-equal? x y) Recursively determines whether two s-expressions are
equivalent.

(tree? expr) Determines whether an expression is a valid multi-
way tree. A multiway tree is either an atom, or a list
containing an atom and 1 or more multiway trees.

(copy-tree tree) Creates a deep copy of a tree.
(tree-member elm tree) Determines whether an atomic element is contained in

a tree as a node label.
(tree-prefix tree) Returns a list containing the node labels of a tree in

prefix traversal order. The implementation is memory
efficient, and only allocates the memory necessary for
the final list.

(tree-subst new old tree) Returns a tree that is equivalent to the input tree,
except any subtrees matching old are replaced with
new. The implementation is memory efficient: mem-
ory is only allocated for ancestors of replaced subtrees.

(tree-sublis subs tree) Performs substitutions on the input tree using a list of
old/new pairs (subs). As with tree-subst, the imple-
mentation minimizes memory allocation.

(a) Implementation of is-tree? Function

(defun is-tree? (expr)
(or (atom expr)

(and (listp expr)
(atom (car expr))
(cdr expr)
(is-forest? (cdr expr)))))

(defun is-forest? (expr)
(or (not expr)

(and (is-tree? (car expr))
(is-forest? (cdr expr)))))

(b) Test Cases for is-tree? Function

(is-tree? ’a)
(is-tree? ’(a b))
(is-tree? ’(a (b c)))
(is-tree? ’(b d e))
(is-tree? ’(a (f g) c (b d e)))
(is-tree? ’(x y z))
(is-tree? ’(a))

(is-tree? ’(a (b c) (d) e))
(is-tree? ’((a b c) (d e)))

Figure 4.8: (a) Implementation of the is-tree? function, which tests if an expression represents a valid multiway

tree. (b) Test cases for is-tree?. The first seven test cases evaluate valid trees, while the last two evaluate invalid

trees.
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4.2.4 PCFG SET Compositionality Task

The PCFG SET task is a sequence processing task designed to evaluate compositional learn-

ing in machine learning models [82]. The task involves input sequences that specify nested

operations performed on strings of symbols. For example:

append swap F G H , repeat I J −→ H G F I J I J

where the left side of the arrow indicates the input sequence, and the right side indicates the

expected output sequence. This task is particularly challenging because it requires learning several

operations that can be arbitrarily composed into complex expressions. Notably, Hupkes et al.

[82] report empirical results demonstrating that several state-of-the-art artificial neural networks

struggle to learn the task, including recurrent, convolution-based, and transformer neural net-

works. These models learn the task in a data-driven fashion, and are trained using large datasets of

generated input/output pairs. In contrast, NeuroLISP was trained with one-step learning on LISP

functions that implement each operation of the task (Figure 4.9a), and show that it can successfully

compose these functions to solve input sequences encoding nested operations like the example

listed above.

The NeuroLISP emulator was used to determine the complexity of PCFG SET test cases, and

drew a sample covering a range of memory demands. Because tests with high memory demands

require very large models, tests were filtered to include only those requiring between 250 and

350 memory states, up to 128 namespaces, and up to 64 runtime/data stack states. From the

remaining tests, two samples were created. The first included 20 tests from each bin of required

memory states (i.e., 20 tests requiring 250-259 memory states, 20 requiring 260-269 states, etc).

The second included tests with varying numbers of variable bindings from 20-120 (i.e., 20 tests
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(a) PCFG SET Functions

(defun append (x y)
(if x

(cons (car x)
(append (cdr x) y))

y))
(defun prepend (x y) (append y x))
(defun remove_first (x y) y)
(defun remove_second (x y) x)

(defun last (x) (dolist (e x e)))
(defun copy (x) x)

(defun reverse (pre)
(let ((post NIL))

(dolist (x pre post)
(setq post

(cons x post)))))

(defun shift (x)
(append (cdr x) (list (car x))))

(defun swap-helper (first mid)
(if (cdr mid)

(cons (car mid)
(swap-helper first

(cdr mid)))
(list first)))

(defun swap_first_last (x)
(cons (last x)

(swap-helper (car x) (cdr x))))

(defun repeat (x) (append x x))
(defun echo (x)

(append x (list (last x))))

(b) Unification Functions

(defun var? (x)
(and

(listp x)
(eq (car x) ’var)))

(defun match-var (var pat subs)
(cond

((and (var? pat)
(eq var (cadr pat))) subs)

((checkhash var subs)
(unify (gethash var subs)

pat subs))
(true (sethash var pat subs))))

(defun unify (pat1 pat2 subs)
(cond

((not subs) subs)
((var? pat1)

(match-var (cadr pat1)
pat2 subs))

((var? pat2)
(match-var (cadr pat2)

pat1 subs))
((atom pat1)

(if (eq pat1 pat2) subs NIL))
((atom pat2) NIL)
(true

(unify (cdr pat1) (cdr pat2)
(unify (car pat1)

(car pat2) subs)))))

Figure 4.9: LISP functions implementing the PCFG SET sequence manipulation operations (a) and first-order uni-

fication algorithm (b). During testing, these expressions were broken into sequences of symbols, each of which was

translated into the corresponding neural activation pattern in the lex region, and fed into NeuroLISP one at a time

(Section 4.1.3.3). These functions were invoked by additional test code (e.g., an expression encoding a PCFG SET

or unification test case) that was also fed into NeuroLISP as sequential activation patterns, stored in neural memory,

and executed by the virtual interpreter. Finally, the results were printed as a sequence of neural activation patterns,

translated back to symbols, and compared with the ground truth of the corresponding test case to determine if the test

was successful.
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requiring 20-29 bindings, 20 requiring 30-39 bindings, etc). Although NeuroLISP is capable of

implementing a parsing procedure, for simplicity, each test input sequence was preprocessed into a

LISP expression by converting it to prefix form and adding quote operations for element sequences

(e.g., "append swap F G H , repeat I J" becomes (append (swap ’(F G H))

(repeat ’(I J)))).

The results for the first PCFG SET tests are shown in Figure 4.10. The size of the lex and env

regions was fixed at 2048 and 1024, respectively, and the λenv−ctx was set to 1
4
. The mem region

size was varied from 3000 to 5500. As expected, tests requiring greater numbers of mem states

required a larger mem region size. With a sufficiently sized mem region, the model was able to

successfully pass all of the tests. Figure 4.11 shows the results of the second set of PCFG SET

tests with varying numbers of variable bindings. Here, the lex and mem region sizes are fixed at

2048 and 5500, respectively, while the env region size was varied from 100 to 600, and λenv−ctx

was tested at 1
8
, 1

4
, and 1

2
. The best results were achieved with a moderate λenv−ctx of 1

4
(middle

plot), which permitted a surprisingly large number of bindings with a small env region size: perfect

performance was achieved for up to 120 bindings with only 500 neurons. These results support the

hypothesis that a moderate λenv−ctx balances between depth and breadth requirements for variable

binding, providing a reasonable capacity for many variables bound across many namespaces.

4.2.5 First-Order Unification

First-order unification is a symbolic matching process that is an integral component of

automated reasoning systems such as theorem provers [173]. Two expressions containing unbound

variables can be unified if there exists a set of substitutions for the variables that makes the ex-
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Figure 4.10: Results for PCFG SET testing with varying mem region size. Each test involved reading in an s-

expression indicating a composition of symbolic sequence manipulations, executing the indicated functions, and

printing the resulting sequence. We labeled and binned each test according to the number of memory states (mem

attractors) it required based on an emulator for the NeuroLISP architecture, and sampled 20 tests per bin (i.e., 20

tests requiring 250-259 memory states, etc). The x-axis indicates the bin, and the y-axis indicates the percentage of

successful trials for tests in each bin. As expected, model performance is contingent upon adequate mem region sizing;

with a sufficient size, the model achieved perfect performance.

pressions equivalent. For example, unifying expressions P and Q below yields the listed set of

substitutions:

P: (f (var x) (g b))

Q: (f a (g (var y)))

Substitutions: {x −→ a, y −→ b}

where (var x) indicates a variable named x, and the substitution set contains mappings from

variables to values that unify the expressions. Previous work has shown that neural networks can

be incorporated as components in automated reasoning systems [18, 84, 168], and that expression-

specific neural networks with local representations can perform unification with error-correction

learning [105]. This section shows that NeuroLISP can learn to perform first-order unification on
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Figure 4.11: Results for PCFG SET testing with varying env region size and env context density. As in Figure 4.10,

each test involved reading in an s-expression indicating a composition of symbolic sequence manipulations, executing

the indicated functions, and printing the resulting sequence. We labeled and binned each test according to the number

of variable bindings it required based on an emulator for the NeuroLISP architecture, and sampled 20 tests per bin (i.e.,

20 tests requiring 20-29 variable bindings, etc). The x-axis indicates the bin, and the y-axis indicates the percentage

of successful trials for tests in each bin. The best performance is achieved with a moderate context density of 1
4

that balances the differing demands of storing several variable bindings within (Figure 4.6) and across (Figure 4.7)

namespaces.

arbitrary expressions using a fixed architecture and distributed representations. NeuroLISP was

trained with a unification algorithm (Figure 4.9b) based on that presented in Russell and Norvig

[173], and show that it works on test cases with randomly generated nested expressions.

Unification test cases were produced by randomly generating trees and converting them to

s-expressions (see Appendix A.11 for details). The complexity of these expressions was experi-

mentally varied by varying the number of nodes in the randomly generated trees from 6 nodes to

14 nodes. Although the stochastic process introduced variations in the size of the final trees due

to variable substitutions, the number of starting nodes provides a rough estimate of the complexity
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of a test case. Twenty test cases were generated per initial tree size (expression complexity), and

tested the model as above with a) varying mem region sizes and b) varying env region sizes and

λenv−ctx. In 20% of the test cases, one input expression was mutated to induce a mismatch during

unification, and the model was expected to indicate that the expressions could not be unified.

Figure 4.12 shows the results of unification testing with variable mem region sizes. The lex

and env region sizes were fixed at 2048 and 1024 neurons, respectively, and λenv−ctx was set to

1
4
. The mem region size was varied from 3000 to 4500 neurons. Perfect results were achieved

with 4500 neurons. Figure 4.13 shows the results with variable env region sizes (100-600 neurons)

and env context densities (1
8
, 1

4
, and 1

2
). Here the lex and mem region sizes were fixed at 2048

and 5500 neurons. As with the PCFG SET tests, a relatively small env size was sufficient for

accurate performance on relatively complex test cases. However, the best results were achieved

with a smaller λenv−ctx of 1
8
. This may be caused by differences in the PCFG SET and unification

programs: the string manipulation functions of the PCFG SET required deeper recursion, and

therefore suffered more from smaller λenv−ctx. These results highlight the trade-off involved with

λenv−ctx: the optimal parameter value depends on the demands of the programs that the model is

running.

4.2.6 Runtime Performance and Scalability

While the above experiments specifically address model performance in terms of symbolic

behavior, experiments in this section evaluate how region sizing affects runtime and memory usage,

and investigate approaches to improving the efficiency of its implementation. The model was

tested with varying mem and env region sizing using a program that includes a simple recursive
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Figure 4.12: Results for first-order unification testing with varying mem region size. Each test involved reading in two

s-expressions representing patterns with variables, performing unification on the patterns, and printing the resulting

substitutions if the unification was successful. The expressions for each test case were randomly generated using an

initial complexity parameter (x-axis; see Appendix A.11). The y-axis indicates the percentage of successful trials for

each complexity parameter setting (20 trials per datapoint). Successful execution required a sufficiently sized mem

region to meet the memory demands of unifying complex expressions.

function (Figure 4.14). This program is first parsed in its entirety, requiring no modifications to

variable bindings or namespaces, and therefore no computations that involve the env region and

its connectivity. After parsing, the program is executed, which involves both memory access and

the utilization of variable bindings and namespaces. These two runtimes are reported separately to

show that scaling a region only affects the runtime performance of relevant model computations.

Tests were performed using mem region sizes varying from 10,000 to 60,000 (env size fixed

at 10,000) and env region sizes varying from 10,000 to 70,000 (mem size fixed at 10,000). The

lex region size was fixed at 2048, and the context density parameters for the mem and env regions

was set to 1
4
. These tests were repeated using different implementation configurations:

• One or two GPUs. For two GPUs, the weight matrices for the model were distributed

between GPUs using a greedy algorithm, in which the next largest matrix is assigned to
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Figure 4.13: Results for first-order unification testing with varying env region size and env context density. As in

Figure 4.12, each test involves performing unification on randomly generated expressions and printing substitutions

if unification succeeds. The x-axis indicates the complexity of the test expressions (see Appendix A.11), and the

y-axis indicates the percentage of successful trials per complexity parameter setting (20 trials per datapoint). Unlike

with PCFG SET testing, slightly better performance is achieved with a low context density of 1
8 . Because low context

densities favor larger numbers of bindings within a namespace (Figure 4.6), this may be caused by differences between

the PCFG SET and unification algorithms: the former requires deeper recursion with fewer variables per namespace

than the latter.

(progn
(print ’executing)
(defun f (x)

(if x (f (cdr x))))
(f ’(a b c d e f g h i j))
’complete)

Figure 4.14: Program used to evaluate runtime and memory performance. NeuroLISP first parses the entire pro-

gram and stores it in memory, which requires no modifications to variable bindings or namespaces, and therefore no

computations that involve the env region. Then, it evaluates the program, executing a recursive function that creates

several namespaces and variable bindings. The timing of the printed outputs (“executing” and “complete”) indicates

the runtimes of parsing and execution, respectively.
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the GPU with the most available memory. Matrix operations for a connection were executed

on the GPU holding its weight matrix, and connections were computed one at a a time.

• Single (four byte) or half (two byte) floating-point precision for connection weights. Half-

precision weights did not noticeably impact the symbolic behavior of the model, but cut

memory usage in half. Thus, larger models could be executed without memory saturation.

• Simple (slow) or efficient (fast) kernels for contextually-gated connection computations. Fast

kernels use preprocessing to assign only active neurons and synapses to compute threads,

while slow kernels use a naive implementation that does not skip deactivated neurons and

synapses.

Raw runtime and memory usage is reported in Figure 4.15. Program parsing and execution

are reported separately in the first and second rows. Runtime scales with the size of the model until

GPU memory is saturated, at which point runtime spikes significantly due to memory thrashing.

This can be seen in the parsing runtime plot (top left); runtime spikes at different points depending

on the number of available GPUs and the floating-point precision used, as these affect the maximum

available memory and the total memory used by the model. As expected, parsing runtime was

not affected by env region sizing (top right), as the corresponding neurons and weights are not

needed during parsing. Thus, although memory for env region connections exceeds the maximum

available GPU memory, it is not accessed during parsing, and does not affect runtime. During

execution, however, runtime scales with both mem and env region sizing (middle row). The third

row indicates memory usage, which only differs with floating-point precision. The total available

GPU memory is indicated by the dotted horizontal lines (12000 megabytes (MB) for one GPU and

24000MB for two GPUs). The points where memory usage crosses these lines correspond to the

133



(a) Variable Memory Region Size

25

210

pa
rs
e
ru
n
ti
m
e

(s
ec

)
(b) Variable Environment Region Size

GPUs, Prec.
one single
two single
one half
two half

25

210

ex
ec
u
te
ru
n
ti
m
e

(s
ec

)

10000

20000

30000

40000

50000

60000

211

213

215

mem size

m
em

or
y

(M
B

)

10000
20000
30000
40000
50000
60000
70000

env size

Precision
single
half

Figure 4.15: Model runtime and memory usage (y-axes) with increasing mem and env region sizing (x-axes). Each

line indicates performance for a particular combination of GPU count and floating-point precision for connection

weights. Solid lines indicate single-precision weights (four bytes per weight) and dashed lines indicate half-precision

weights (two bytes per weight). Each precision configuration is tested with both a single and dual GPU setup. The first

row shows runtime for program parsing, which does not involve env region computations. Thus, as the env region

is scaled, parsing runtime does not change, as the corresponding weights are not needed in GPU memory. The second

row indicates runtime for program execution, which involves both mem and env region computations. Runtime scales

relative to model size until GPU memory is saturated, at which point runtime increases significantly due to memory

thrashing (see Figure 4.16). Total available GPU memory is indicated by dotted horizontal lines in the third row plots

(12000MB for one GPU or 24000MB for two GPUs).
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spikes in runtime in the top two rows; runtime spikes at 12000MB with single GPU configurations

and 24000MB with dual GPU configurations.

Figure 4.16 shows total runtime (parsing and execution combined) relative to memory usage,

reported as seconds per MB. Relative runtime slightly decreases as model size increases, likely
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Figure 4.16: Model runtime relative to memory usage (y-axis) with increasing mem and env region sizing (x-axes).

As in Figure 4.15, each line indicates performance for a particular combination of GPU count and floating-point

precision for connection weights. Here the total runtime, including both program parsing and execution, is reported

relative to memory usage (seconds per MB). Relative runtime decrease slightly as the overhead of CPU computations

and CUDA kernel dispatch is washed out by increasingly large sizes for connection weight matrices. Once GPU

memory is saturated (see third row of Figure 4.15), performance degrades significantly, and each weight incurs a more

significant penalty on runtime.

because the overhead of CPU computations and CUDA kernel dispatch is washed out by increas-

ingly large kernel execution times. The rate of decrease is more significant with env region scaling

(right plot) because env region computations are much less common than mem region computa-

tions. Once memory is saturated, relative runtime increases sharply in both plots. Although relative

performance appears to level off, single-precision performance for high env region sizing (right
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side) indicates that the plateau does not persist; once the model becomes large enough, the relative

performance quickly reaches intractable levels, and the GPUs spend most of their time performing

memory transfers.

Finally, Figure 4.17 show the performance benefits gained by the use of fast kernels for

contextually-gated connection computations. Results are reported for single-GPU configurations

with either single or half precision weights and either slow or fast kernels. The first row shows

the total runtime (top left) and the corresponding speedup gained from using fast kernels over

slow kernels (top right). Because not all computations involve contextual gating, the overall per-

formance gain is relatively low, and peaks near 2x for moderately sized models. Thus, results

are also reported for hetero-associative recurrent computations of the mem region, which involves

contextual gating. The second row shows runtime (middle left) and speedup (middle right) for

learning in this connection, which involves both reads and writes for weights. Speedup peaks

near 4x with half-precision weights, which corresponds to the fraction of neurons activated by

contextual gating. The third row shows runtime (bottom left) and speedup (bottom right) for in-

put activation in this connection, which only involves reads for weights. Here the peak speedup

reaches just over 8x for half-precision weights. These results indicate that memory access is a

major bottleneck for performance, and that contextual gating provides significant performance

increases. This suggests that more widespread use of contextual gating in the model would pro-

vide greater increases in performance.
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Figure 4.17: (next page) Performance benefits from using efficient matrix computation kernels for contextually-gated

connection computations. As in Figures 4.15 and 4.16, each line indicates performance for a particular combination

of GPU count and floating-point precision for connection weights. Solid lines indicate simple kernels that naively

allocate deactivated neurons and weights to compute threads, while dashed lines indicate efficient kernels that perform

preprocessing to assign only active neurons and weights (see Section 2.4 for details). Note that the context density

parameter for these tests was set to 1
4 , and contextually-gated connection computations therefore involve only 1

4 of the

neurons in the target region, and 1
16 of the total incoming weights. The first row indicates the overall runtime (top left)

along with the relative speedup gained by using efficient kernels (top right). Because only a subset of connection com-

putations involve contextual gating, the overall speedup remains relatively low, peaking near 2x for moderately sized

models. The second row indicates the cumulative runtime for learning in the hetero-associative recurrent connection

of the mem region (middle left) and the corresponding speedup (middle right). Speedup peaks near 4x for moderately

sized models. Finally, the third row indicates cumulative runtime for activation in the hetero-associative recurrent

connection of the mem region (bottom left) and the corresponding speedup (bottom right). Unlike learning, which

involves both reading and writing of connection weights, activation only involves reads, and is therefore less intensive.

As a result, speedup peaks just above 8x for moderately sized models.
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4.3 Discussion

This chapter presented NeuroLISP, a multi-region recurrent neural network that implements

a virtual interpreter for a dialect of the LISP programming language. The network’s architec-

ture is composed of program-independent circuitry that learns both interpreter functions and LISP

programs using one-step associative learning, and is capable of flexible reprogramming without

architectural changes. To my knowledge, this is the first effort to implement a high-level functional

programming language in a fixed neural architecture with distributed representations. NeuroLISP

is most closely related to previous programmable attractor neural networks like the Neural Virtual

Machine [97] and GALIS [191], which include program-independent circuitry, distributed repre-

sentations, and local one-step associative learning. However, NeuroLISP includes several novel

features that improve its computational capabilities. Most significantly, NeuroLISP implements an

interpreter for a high-level programming language (LISP) that supports nested expressions rather

than an assembly-like language with sequential instructions. This makes it easy to express com-

plex algorithms like those used in traditional symbolic AI. The network’s shared program/data

memory region stores compositional data structures as attractor graphs (Chatper 3) that can be

constructed, manipulated, and accessed via top-down gating during program execution. Notably,

this includes programs themselves; programs can be treated as data, and generated in memory by

other programs or by sequential inputs that represent code. Finally, NeuroLISP supports function

definitions and variable binding with scoping rules that are determined by the learned interpreter

firmware, facilitating program modularity and reuse.

Compared with other programmable neural networks, NeuroLISP is highly flexible and

extensible due to its program-independent architecture and fully distributed representations. New
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programs and interpreter functions can be learned with fast associative learning without adding

new neurons/connections or retraining the model on previously learned behaviors. This is in

contrast to approaches that involve compiling programs into specialized neural circuits with local

representations [33, 134], storing programs in segregated sub-populations of a RAM-like memory

matrix [30, 156], or performing neural program induction with iterative gradient descent learn-

ing [70, 71, 211]. NeuroLISP also features purely neural mechanisms for procedures that are

sometimes performed by non-neural components in hybrid systems, such as call-stack management

[156], storage and manipulation of structured memories [32, 179], and coordinating the flow of

information through and between neural circuits [5]. All of these mechanisms in NeuroLISP

are controlled by learned activity in the Controller regions of the model, and can therefore be

reprogrammed in various ways to modify the virtual interpreter without architectural changes.

NeuroLISP also differs from prior models in that its working memory is based on learned

attractor dynamics rather than persistent activity patterns, and it achieves temporal locality without

specialized RAM-like memory matrices. Models based on neural attention are typically provided

with simultaneous access to a sequence of input patterns (temporal non-locality) [24, 201], and/or

selectively read and write to a large array of neurons that maintain activity patterns in segregated

neural “addresses” [71, 156, 175], neither of which is considered biologically plausible. In contrast,

NeuroLISP processes inputs one at a time, stores them in memory using fast associative learn-

ing, and retrieves them through top-down control of attractor dynamics. This means that Neu-

roLISP’s working memory does not require copying activity patterns between neural regions, or

complex mechanisms for memory allocation, garbage collection, or indexing schemes for data

structures (e.g., usage vectors, temporal link matrices; Graves et al. [71]). Instead, new mem-

ories are created by randomly generating activity patterns, establishing them as attractors using
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one-step auto-associative learning, and linking them directly to other memories using one-step

hetero-associative learning (i.e., attractor graphs). The organization of data structures in memory

is based on learned algorithmic behaviors contained in the interpreter firmware. Thus, NeuroLISP

features improvements to both the static and dynamic aspects of working memory: its memory

region natively supports attractor graphs, and its Controller regions learn specific procedures for

organizing them into compositional data structures.

The computational experiments reported here demonstrate the correctness of the NeuroLISP

interpreter and show that it can learn to successfully execute several non-trivial programs, includ-

ing functions that operate on complex derived data structures (multiway trees). The results for

the PCFG SET task show that NeuroLISP readily learns string manipulation operations that can

be composed into nested expressions, a significant challenge for state-of-the-art neural networks,

including recurrent, convolution-based, and transformer networks [82]. Results also show that

NeuroLISP can successfully implement first-order unification, a high-level symbolic AI task that

is an integral component of automated reasoning systems [173]. To my knowledge, unification

with neural networks has only previously been attempted using expression-specific architectures

and local representations [105], whereas NeuroLISP learns to unify arbitrary expressions using a

fixed architecture and distributed representations. In accordance with prior work on the memory

capacity of attractor neural networks [4, 97], the results show that the model’s storage capacity for

data structures and variable bindings is linearly dependent upon the size of its memory regions.

Performance testing with parallel processors indicates that simulation runtime scales with

memory usage until penalties are introduced by memory thrashing, which occurs when available

device memory is exceeded. Because NeuroLISP’s architecture is modular, its components can

be effectively distributed to different compute devices. In addition, the use of half floating-
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point precision over single-precision reduces memory usage without affecting symbolic behavior,

allowing larger region sizes to be simulated on the same hardware. Finally, contextually-gated

connections can be computed more efficiently by allocating only active neurons and synapses

to compute threads, and improves runtime efficiency in a way that is similar to architectural

modularity. This suggests that more widespread use of contextual gating might lead to further

performance gains by reducing the computational load of each simulation timestep.

NeuroLISP is not meant to be a veridical model of the human brain, but several aspects of its

architecture and dynamics are inspired by neuroanatomy. Its “region-and-pathway” architecture

[191] is inspired by the organization of the cerebral cortex, and includes several recurrent regions

with heterogenous functions. Interactions among these regions are controlled by top-down gating

signals that are reciprocally dependent upon regional dynamics. This resembles the functional

dynamics of the basal ganglia, which are guided in part by cortical activity and provide top-down

control of cortical interactions via modulation of the thalamus [52, 142]. In particular, the gate se-

quence and gate output regions of NeuroLISP’s Controller subnetwork might represent striatal and

pallidal circuitry, while the remaining regions represent various subregions of the prefrontal cortex.

Although NeuroLISP does not include sensory or motor circuitry, it could be readily extended to

include regions representing sensory and motor cortices, along with corresponding subcortical

regions such as the tectum, cerebellum, and motor thalamus.

4.3.1 Limitations and Future Work

NeuroLISP is limited by its short-term memory capacity and lack of long-term memory. If

memory becomes overloaded, learned programs are prone to corruption as memory is updated
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during program execution and subsequent learning of new programs. This phenomenon, known as

catastrophic forgetting, is a pervasive issue in artificial neural networks that affects both short-term

and long-term memory [100, 143, 163]. Although NeuroLISP is subject to catastrophic forgetting,

its memory retention may be improved by enrichment of synaptic structure and behavioral strate-

gies. For example, memories may be refreshed via rehearsal [7] and subject to representational drift

to reduce interference between memories [172]. On a structural level, synapses may be augmented

with history-dependent transitions in plasticity, as in cascade models [65], or multiple interacting

weights with heterogeneous time constants and learning rates [22, 104].

Another limitation of NeuroLISP is that it currently deals exclusively with symbolic process-

ing, and lacks circuitry for low-level perception and action. Prior work has shown that sensory-

motor circuits are readily incorporated into programmable neural networks [46, 191], which pro-

vide the top-down control typically afforded by non-neural symbolic algorithms in hybrid models.

Future work might therefore involve the addition of sensory and motor networks that allow the

model to run on robotic hardware that interacts directly with realtime multi-modal environments.

The flexibility of the model makes such an extension straightforward, as it only requires additional

gating neurons for new regions and pathways, as well as new learned interpreter functions for

sensory attention and motor control.

Finally, NeuroLISP currently only learns to execute human-authored programs, and does

not learn directly from input/output examples (i.e., program induction). However, its shared pro-

gram/data memory space makes it possible to learn algorithms for inducing and synthesizing

programs directly in neural memory, and more generally suggests future work on alternative learn-

ing paradigms such as neuroevolution [182, 187], reinforcement learning [98, 99], and imitation

learning [34, 95, 116, 139]. These approaches may benefit from the addition of sensory and motor
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circuitry, and contribute to stabilizing memory and resolving catastrophic forgetting.

Despite its limitations, NeuroLISP provides a promising framework for future research.

Its implementation of a high-level programming language with compositional expressions makes

it much easier to encode complex behaviors that are difficult to express in low-level assembly

languages. Thus, NeuroLISP can replace the non-neural components of hybrid models to create

purely neural systems that integrate high-level cognitive reasoning with the low-level processing

that traditional neural networks excel at. Such hybrid models include neural-guided search al-

gorithms as well as hybrid robotic learning systems that use symbolic reasoning to guide neural

sensory-motor processing [95, 160]. Conversion to purely neural modeling facilitates future work

on leveraging neural learning to adapt and refine cognitive algorithms based on experience.

4.3.2 Conclusions

In conclusion, this chapter demonstrates that high-level programming constructs can be

incorporated into neural models to significantly advance their cognitive abilities. NeuroLISP

presents a proof of concept that neural networks can implement cognitive algorithms that are

typically implemented using symbolic programming techniques, including compositional logical

reasoning. This model is therefore an effective neurocognitive controller that can replace the

non-neural components of hybrid models, promoting seamless integration of top-down cogni-

tive control with the strengths of contemporary machine learning. NeuroLISP’s working memory

system is based on biologically-inspired principles such as temporally-local control of dynamical

attractors (distributed representations), fast associative learning, and top-down gating, and is there-

fore also relevant to interdisciplinary researchers in neuroscience and cognitive science as well
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as artificial intelligence. Future work should address the control of sensory-motor dynamics in

cognitive-robotic systems, as well as experience-based adaptation and refinement of cognitive pro-

cedures using methods such as reinforcement learning, program synthesis, and imitation learning.

The last of these is addressed in the following chapter.
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5

Hypothetico-Deductive Causal Imitation Learning

The previous two chapters presented a principled framework for implementing high-level

cognitive algorithms with attractor neural networks. Chapter 3 showed how compositional data

structures can be stored as attractor graphs, systems of interconnected dynamical attractors in

recurrent neural networks. This compositional working memory was incorporated into a program-

mable neural network that performs basic hierarchical planning. Chapter 4 presented NeuroLISP,

a purely neural interpreter for a subset of Common LISP that is capable of learning algorithms

for compositional sequence manipulation and symbolic pattern matching. These abilities are key

ingredients for causal imitation learning, which is addressed in this chapter.

As previously mentioned, imitation learning is a fundamental human ability that emerges

early in life but remains a natural and intuitive method for acquiring new skills throughout the

lifespan [90, 129]. Human-level imitation learning involves not only replicating observable motor

behavior, but also inferring the underlying goals and intentions of the demonstrator. This allows

learners to generalize demonstrated skills to novel environments by abstracting away details that

are circumstantial to the demonstration environment.

Programming robots to carry out complex tasks in a human-like fashion is difficult and

typically requires laborious programming by an experienced roboticist. Robotic imitation learn-
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ing provides a solution to this problem, and makes robotic programming easy and accessible to

non-experts [26, 83, 155, 176]. However, most work in robotic imitation learning focuses on

reproducing overt motor activity, which affords only limited generalization [155]. Developing

more human-like imitation in robots requires algorithms for reasoning about observed actions to

construct a deeper understanding of the demonstrator’s goals and intentions that can be adapted to

novel environments. This approach also provides a common framework for reasoning about hu-

man and robot behavior, which facilitates an understanding of roles and perspectives that promotes

seamless human-robot collaboration [197].

As discussed in Chapter 2, CERIL is a previously developed robotic imitation learning

system that uses abductive inference to construct causal interpretations of demonstrated motor

behavior and generalizes them for imitation in novel environments [95]. While effective and

provably correct, CERIL’s algorithms are implemented with traditional non-neural symbolic pro-

gramming and have a limited degree of cognitive plausibility. To infer intentions, CERIL uses

a bottom-up dynamic programming algorithm that exhaustively enumerates plausible causal ex-

planations, which places unrealistic demands on working memory. It also requires multiple passes

through a demonstration, whereas human imitators reason about demonstrated behavior as it occurs

to construct partial explanations before a demonstration is complete. Finally, it is unclear how this

approach might be implemented using neural networks to leverage the unique advantages of neu-

ral computation, such as its capacity for learning and generalization, and provide insight into the

neurobiological foundations of human imitation learning.

To explore whether it is viable to develop purely neural controllers for social robotic systems

that behave in a human-like manner, this chapter presents NeuroCERIL, a programmable neural

network that learns human-like algorithms for causal inference during imitation learning (left side
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of Figure 2.1). NeuroCERIL is evaluated using CERIL as a target system, as it has been demon-

strated to be an effective cognitive controller for bimanual robots. To address CERIL’s limitations

in cognitive plausibility, NeuroCERIL implements a novel causal inference algorithm based on

the hypothetico-deductive approach, an influential model of diagnostic and scientific reasoning

[114, 115, 122, 158, 181]. Hypothetico-deductive reasoning involves a combination of bottom-up

abductive inference and top-down predictive verification, which obviates the need for exhaustive

search by focusing cognitive processing on relevant causal knowledge. NeuroCERIL’s cognitive

processes are therefore much more human-like than CERIL’s, and they are supported by neuro-

computational mechanisms that more closely resemble those used by people during cause-effect

reasoning.

Empirical results show that NeuroCERIL is potentially an effective neurocognitive controller

for robotic imitation learning systems, as it is able to reproduce CERIL’s performance on a battery

of demonstrations of procedural maintenance tasks. Examination of NeuroCERIL’s runtime and

memory usage during causal inference shows that they scale roughly linearly with the length of

the demonstration. Further, many of its memories have very short lifetimes, and are only accessed

during a narrow window of processing. Thus, like human working memory, many of its short-term

memories are rapidly abandoned, and only a small fraction of its memories need to be maintained

through the duration of a demonstration.

5.1 Methods

NeuroCERIL1 is a brain-inspired cognitive model that learns procedural skills from demon-

strations using cause-effect reasoning. The model’s architecture is an extension of NeuroLISP,
1https://github.com/vicariousgreg/neuroceril

148

https://github.com/vicariousgreg/neuroceril


a programmable neural network that can store and evaluate programs written in a subset of the

Common LISP programming language (Chapter 4). NeuroCERIL is programmed with a novel

causal inference algorithm based on hypothetico-deductive reasoning, which combines bottom-up

abductive inference with top-down deductive prediction and verification. This approach allows

NeuroCERIL to anticipate future behavior and focuses cognitive computations on plausible expla-

nations for observed behavior.

Although NeuroCERIL is implemented using attractor neural networks, its distributed neural

computations represent algorithmic procedures performed on symbolic data structures. It is there-

fore convenient to begin by describing its behavior in terms of symbolic information processing,

beginning with the robotic imitation learning domain in which NeuroCERIL operates (Section

5.1.1), and the algorithms and data structures that it uses to implement hypothetico-deductive

causal inference (Section 5.1.2). Then follows a presentation of the neurocognitive architecture

that learns to represent and evaluate these algorithms and data structures using only neural com-

putations (Section 5.1.3). Finally, Section 5.1.4 describes the empirical experiments conducted to

validate NeuroCERIL, including a battery of test demonstrations that was used to validate CERIL.

Results show that NeuroCERIL performs comparably to CERIL, but that its iterative hypothetico-

deductive approach is memory efficient and scales well to long demonstrations.

5.1.1 Robotic Imitation Learning Domain

NeuroCERIL operates in the robotic imitation learning domain designed for CERIL, which

involves a bimanual robot (Baxter) learning procedural maintenance tasks [95]. As previously

mentioned, a teacher demonstrates these tasks using SMILE, a simulated 3D environment that
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allows users to interact with virtual objects such as blocks, drawers, switches, and screw valves

[80]. SMILE also includes a simulation of the Baxter robot, shown in Figure 2.2 with a variety

of simulated objects. SMILE greatly simplifies the low-level sensory processing involved in

recognizing and segmenting actions and objects, allowing focus on the higher level cognitive pro-

cessing that occurs during imitation. When a user is finished recording a demonstration, SMILE

produces a transcript containing the sequence of recorded actions, along with a record of changes

that occur in the environment, such as changes in object state or location.

Actions are encoded as discrete events with free parameters that refer to objects or locations

in the environment. For example, grasping a red-block with the left-gripper is encoded

as:

grasp<red-block, left-gripper>

The identifier left-gripper refers to the demonstrator’s left hand, and red-block refers to

an object in the environment, which is encoded as a collection of named properties:

{id:red-block, type:block, color:red, location:loc}

Once the block is grasped, its location property is updated to left-gripper to indicate

that it is currently located in the demonstrator’s left hand. This change is represented as a record

containing the object identifier, property name, and the new property value:

(red-block location left-gripper)

Once the block is moved and placed, this property is updated again to reflect its new location.

Although locations are encoded as discrete symbols, they can be associated with representations

of 3D points in continuous space for use in low-level motor planning.
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Like CERIL, NeuroCERIL is pre-programmed with a knowledge-base of cause-effect rela-

tions that describe the implementation of abstract intentions. These causal relations are used during

learning to infer a demonstrator’s intentions (goals, on left side of arrow) from the demonstrator’s

actions (right side of arrow). For example, the intention to relocate an object (obj) to a target

location (loc) causes a sequence of concrete motor actions: grasp the object, move it to a target

location, and release the grasp. This is encoded as a template or schema that can be matched to

observed behavior:

relocate<obj,loc>→

grasp<obj, gripper>,

move<gripper, loc>,

release<gripper>

Here, the right arrow represents causation, and indicates that the intention on the left side of the

arrow can cause the ordered sequence of actions on the right side. It is important that parameter

names (obj, loc, gripper) are repeated in this schema, because this indicates correspondences

between the parameters of the intention and the actions that it causes (e.g., the same gripper is

used for each action). NeuroCERIL verifies these correspondences when it infers casual intentions

in a demonstration. In addition, each schema may include explicit logical predicates that must be

satisfied for a cause-effect relation to be plausible. For example, the intention to open a drawer

may cause a sequence of grasping, moving, and releasing, but the grasped object must be a drawer

handle, and the drawer must be closed prior to opening. These constraints can be encoded as

logical statements that NeuroCERIL must verify while inferring causal intentions.

The effects of a causal intention may include other abstract intentions, allowing causes to be
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chained together to create hierarchies of cause-effect relations. For example, the intention to swap

the location of two objects may be implemented as a sequence of relocate intentions:

swap<obj1, obj2>→

relocate<obj1, temp>,

relocate<obj2, loc1>,

relocate<obj1, loc2>

A concrete demonstration of this swapping behavior would involve a sequence of grasp, move,

and release actions that are caused by intermediate relocate intentions. Thus, inferring

the causes of demonstrated actions requires a recursive inference process: when an intention is

recognized as a plausible cause, it is treated as the effect of plausible higher-level causal intentions.

NeuroCERIL’s causal knowledge-base may contain multiple schemas describing different

implementations of the same intention. For example, the location of two objects may be swapped

without placing one in an intermediate location, by instead keeping one object in hand while

relocating the other:

swap<obj1, obj2>→

grasp<obj1, gripper>,

move<gripper, temp>,

relocate<obj2, loc1>,

move<gripper, loc2>,

release<gripper>

Here, temp refers to a location in the air to which the demonstrator lifts obj1 to, holding it there
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while obj2 is relocated to the original location of obj1 (loc1). A key feature of NeuroCERIL’s

knowledge-base is that causal relations are agnostic to the implementation of their effects: a higher-

level intention that is implemented using swap does not specify which implementation of swap

to use. This flexibility affords generalization during imitation; a demonstration involving one

implementation of swap can be imitated using the other implementation. Thus, causal inference

allows the imitator to abstract away circumstantial details of the demonstration environment and

adapt learned skills to novel circumstances. This may also be necessary if the embodiment of the

imitator differs from that of the demonstrator (e.g., number of arms, dexterity, range of motion),

requiring the imitator to implement learned skills in a different but equivalent way.

Finally, a sequence of demonstrated actions may have more than one plausible explana-

tion. This may occur if two sequences of cause-effect relations share the same sequence of

effects. For example, given the following three cause-effect relations (shown without parameters

for simplicity):

X → A, B

Y → C

Z → A, B, C

a sequence of actions (A, B, C) may be caused by the sequence of intentions (X, Y), or the

single intention Z. In this case, the most parsimonious (i.e., simplest or shortest) explanation is

usually preferred: (A, B, C) was caused by Z.

The next subsection describes the new hypothetico-deductive causal inference algorithm that

NeuroCERIL uses to identify the most parsimonious explanation for a demonstration. Neuro-

CERIL is provided with a pre-programmed knowledge-base of cause-effect relations with optional
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logical constraints, as described above. The initial state of the virtual environment is provided as

a list of objects encoded as collections of named properties, which may change during the demon-

stration (e.g., location). The demonstration is encoded as a sequence of parameterized actions,

each paired with a list of changes that occur to objects in the environment. The output of this algo-

rithm is a sequence of top-level intentions identified as causes of the demonstrated actions, which

serves as an explanation of the demonstration as well as an encoding of the demonstrated skill.

5.1.2 Hypothetico-Deductive Causal Inference

NeuroCERIL’s approach to causal inference differs from CERIL’s in a way that is more

cognitively plausible and memory efficient. Whereas CERIL conducts an exhaustive bottom-up

search that makes multiple passes through an entire demonstration, NeuroCERIL uses a more

human-like hypothetico-deductive approach that involves a combination of bottom-up and top-

down reasoning to iteratively construct a causal explanation for a demonstration as it occurs.

When an action is observed, NeuroCERIL consults its cause-effect knowledge-base to generate

explicit hypotheses about the demonstrator’s causal intentions (bottom-up), and uses them to

deduce testable predictions about subsequent actions (top-down). NeuroCERIL’s cognitive pro-

cessing is focused on evaluating these predictions to verify or falsify hypotheses. By organizing

active hypotheses based on their predictions, NeuroCERIL can efficiently access those that are

relevant to an observation, and avoid considering those that are not. When all of the predictions

of a hypothesis are verified by observations, the hypothesized causal intention is treated as an

observation and processed recursively to identify plausible higher-level intentions that may have

caused it. In this way, NeuroCERIL constructs hierarchies of cause-effect relations that are sup-
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ported by observations, and that represent plausible explanations for sequences of demonstrated

behavior. As plausible intentions are identified, NeuroCERIL updates parsimony pointers that

indicate the shortest sequence of intentions that covers the actions observed so far. At the end of

the demonstration, these pointers are traced back to identify the most parsimonious explanation

for the entire demonstration. This process is illustrated in Figure 5.1, outlined as pseudocode in

Algorithm 1, and described in more detail below.

NeuroCERIL uses several different data structures to keep track of observed actions, their

relative timing, and hypotheses about their causal explanations. These data structures are orga-

nized around a timeline, represented in memory as a chain of discrete time-points that delimit

observed actions (circles connected by solid arrows in Figure 5.1). Each action contains pointers

to the timepoints immediately before and after it (i.e., start and end points). For concrete primitive

actions that are directly observed (e.g., grasping and releasing), these timepoints are adjacent in

the timeline (Action: A in Figure 5.1a). However, inferred high-level causal intentions can be im-

plemented with multiple lower-level actions, and can therefore span several timepoints (Intention:

X in Figure 5.1c).

Hypotheses originate from a bottom-up abductive reasoning process referred to as evocation;

when an action/intention is observed, NeuroCERIL consults its causal knowledge-base to identify

relevant cause-effect schemas that might explain it (top right of Figures 5.1a and 5.1c, and first

loop of PROCESS ACTION procedure in Algorithm 1). These schemas are stored in an associative

array that maps each action/intention type to a list of schemas that predict it as their first effect.

For example, the knowledge-base may contain a schema describing a cause-effect relation between

the relocate intention and a sequence of grasp, move, and release actions. This schema

is stored in the grasp list of the knowledge-base, and can be retrieved to evoke a hypothesis
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Figure 5.1: (next page) Hypothetico-deductive process for inferring hierarchical intentions during imitation learning.

(a) An action of type A is observed at timepoint t1 and added to a chain of timepoints in memory (bold box and

circles, left). The knowledge base (top right) is consulted to evoke plausible hypotheses about the action’s cause.

These hypotheses are added to timepoint t1 (bottom right) and stored according to their subsequent predictions (B1

and B2). (b) An action of type B1 is observed at t2 (center), and matched to the hypothesis that predicted it, generating

a plausible causal intention of type X (bottom right). (c) This intention is processed recursively as an observation

spanning t0 to t2 (left). A hypothesis is evoked that predicts an intention of type Y at t2 (bottom right).
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Algorithm 1: Pseudocode for hypothetico-deductive causal inference algorithm

procedure EXPLAIN(demo, init env) . infers causal explanation for demonstration
curr env← init env . initial environment state
prev time← create timepoint with init env . initial timepoint
for each action and record of environment changes in demo do

curr env← new environment with changes chained off prior curr env
curr time← new timepoint with curr env chained off prev time
set action start and end timepoints to prev time and curr time
PROCESS ACTION(action)
prev time← curr time

end for
return TRACE(curr time) . reconstruct top-level explanation from timeline

end procedure

procedure PROCESS ACTION(action) . updates timeline and hypotheses
if action has shorter path to initial timepoint then . compare with parsimony pointer

update parsimony pointer for action’s end timepoint
end if
for each schema predicting action type as first effect do . new hypotheses

hypothesis← generate hypothesis from schema . abductive evocation
VERIFY HYPOTHESIS(hypothesis, action)

end for
for each hypothesis predicting action type at action end timepoint do . old hypotheses

VERIFY HYPOTHESIS(hypothesis, action)
end for

end procedure

procedure VERIFY HYPOTHESIS(hypothesis, action) . verifies a hypothesis for cause of
action

if action matches hypothesis prediction then . unification and constraint checking
if hypothesis is fully matched then . all predictions verified

intent← generate causal intention from hypothesis
PROCESS ACTION(intent) . process inferred intention as an observed action

else
update hypothesis prediction
add hypothesis to action’s end timepoint . advance hypothesis in timeline

end if
end if

end procedure
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procedure TRACE(curr time) . traces top-level explanation using parsimony pointers
intent← parsimony pointer of curr time
prev time← start timepoint of intent
if prev time is initial timepoint then

return list containing intent . first intention in top-level sequence
else

prior intents← TRACE(prev time) . recursion
append intents to prior intents
return prior intents

end if
end procedure

that an observed grasp action was caused by the intention to relocate the grasped object.

This hypothesis must be evaluated to determine if the observed action satisfies the constraints of

the schema, including correspondences between parameters with shared names as well as explicit

logical predicates that must be true for the causal relation to be plausible (VERIFY HYPOTHESIS

procedure in Algorithm 1). Corresponding parameters are matched with a symbolic pattern match-

ing procedure (unification) that was previously implemented using neural computations (Chapter

4). If these constraints are not satisfied, the hypothesis is immediately abandoned. Otherwise, it is

added to the timeline and used to make predictions about subsequent actions, as described below.

In Figure 5.1a, the knowledge-base contains two schemas indicating causal relations that might

explain the observed action of type A (top right). The evoked hypotheses predict a subsequent

action of type B1 and B2, respectively (bottom right).

Each timepoint contains a set of hypotheses that make predictions about actions or causal

intentions that might occur immediately after it. Like cause-effect schemas in the knowledge-

base, these hypotheses are stored in an associative array that maps the predicted action/intention

type to the hypotheses that predict it at that timepoint. When an action/intention is observed,

the hypothesis set for its starting timepoint is consulted to retrieve the hypotheses that predicted it
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(second loop of PROCESS ACTION procedure in Algorithm 1). For the relocate example above,

the evoked hypothesis predicts that the demonstrator will move the grasping arm immediately after

the grasp action occurred. When move is observed, this hypothesis is retrieved and evaluated to

determine if its prediction was satisfied. This involves verifying the schema’s logical constraints,

as described above. If these constraints are satisfied and the hypothesis predicts further actions,

the next prediction is retrieved, and the hypothesis is advanced to the next timepoint. When all

of the predictions for a hypothesis are verified, it is used to generate a plausible causal intention

that is added to the timeline. This intention is then processed recursively in order to generate and

verify further hypotheses about its underlying cause (call to PROCESS ACTION procedure within

VERIFY HYPOTHESIS procedure of Algorithm 1). In Figure 5.1b, the observed action of type B1

matches the prediction of a hypothesis at t1, and the corresponding causal intention of type X is

generated (bottom right). This intention is then processed as an observation in Figure 5.1c, and

a new hypothesis is evoked proposing that an intention of type Z is the underlying cause. This

new hypothesis predicts an intention of type Y at time t2, and is added to the timeline accordingly

(bottom right).

Each timepoint also contains a representation of the state of the environment that is consulted

during hypothesis verification (Figure 5.2). The environment contains several objects with named

properties that can change over the course of a demonstration. At the beginning of the demonstra-

tion, NeuroCERIL is provided with a full specification of the initial state of the environment. When

an action is observed, NeuroCERIL is also provided with a list of changes to object properties

that were caused by the action. Rather than maintaining full copies of the environment state at

each timepoint, which would require substantial memory, NeuroCERIL stores a record of these

changes that can be consulted to determine the state of the environment at a given timepoint
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Figure 5.2: Representing a changing environment in memory during a simple demonstration, in which a hard drive

(drive1) is moved from an initial location (loc1) to a slot (slot1), and an adjacent switch (switch1) is toggled on with the

right hand. Each action is stored in a timeline of discrete timepoints (circles connected by solid arrows, top; see Figure

5.1). The initial timepoint (t0, top left) stores a representation of the initial environment as a nested associative array

(“Initial Environment”, left). Each entry in the array maps a symbolic name to an object (drive1 or switch1, bottom

left). Objects are stored as inner associative arrays, which map symbolic names of properties to their corresponding

values (e.g., the location of drive1 is initially loc1). Subsequent timesteps store records of changes that occur in the

environment (“Change1” and “Change2”, center and right). Like timepoints, these records are chained together in

reverse chronological order, and each record is stored like the initial environment as a nested associative array. The

inner associative arrays of corresponding objects are also chained together (dotted lines). This compact representation

uses minimal memory, but affords access to the state of the environment at each timepoint.

(or its initial value if it was not changed). To query the state of an object property at a given

timepoint, NeuroCERIL retrieves the most recent change that occurred to that property prior to

that timepoint. To support this operation, each timepoint stores a nested associative array, where

the outer array stores entries for changed objects, and each inner array stores entries for a particular

object’s changed properties. Importantly, the inner arrays representing changes to the same object

at different timepoints are chained together to allow an efficient search for the most recent change
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to a specific property (dotted lines in Figure 5.2).

Finally, NeuroCERIL maintains pointers in memory that can be used to retrieve the most

parsimonious explanation for the actions observed so far. The best explanation is the shortest se-

quence of intentions that covers all directly observed primitive actions without gaps or overlaps.

This is represented by a chain of alternating timepoints and intentions that leads from the last

timepoint to the first timepoint. Thus, each timepoint maintains a parsimony pointer to the intention

that provides the shortest path back to the first timepoint in the demonstration. Whenever a

plausible intention is identified, it is compared with the current best intention for the intention’s

end timepoint (beginning of PROCESS ACTION procedure in Algorithm 1). NeuroCERIL performs

this comparison by iterating through the paths simultaneously until the initial timepoint is reached.

If the newly identified intention provides a shorter path to the initial timepoint, it is replaced as

the current best intention for the end timepoint. When the demonstration is complete, the best

explanation for the full sequence of observed actions can be reconstructed by following the chain

of parsimony pointers from the final timepoint back to the initial timepoint (TRACE procedure in

Algorithm 1).

5.1.3 Neural Implementation

NeuroCERIL’s architecture (shown in Figure 5.3) is an extension of NeuroLISP, a program-

mable neural network that learns to store and evaluate programs written in a subset of the Common

LISP programming language. Many of the details of NeuroCERIL’s functionality are shared with

NeuroLISP and can be found in Chapter 4. This section provides a brief overview and highlight

the novel features of NeuroCERIL’s architecture that extend its computational capabilities beyond
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Figure 5.3: NeuroCERIL’s neurocognitive architecture that learns to perform hypothetico-deductive causal inference.

This architecture is an extension of NeuroLISP (Chapter 4), and is made up of several recurrent neural regions (boxes)

with inter-regional connections (solid arrows) that are divided into sub-networks (grey background boxes). Like

NeuroLISP, NeuroCERIL implements an interpreter for a LISP-like programming language that is used to implement

high-level algorithms. Programs and other data are stored as systems of learned attractors in the mem region (center),

and are evaluated via top-down control of connection gates (regional gating, bottom left). Inputs and outputs to

the model are mediated by the lex region (center), which represents symbols as distributed patterns of activity that

can be dynamically associated with activity patterns in adjacent regions (e.g., data structures in mem). NeuroCERIL

implements a new class system using existing circuitry for variable bindings (connectivity between the mem and env

regions, top), and also includes a new exception stack region (bottom right) that supports exception handling.

These new features allow for efficient implementation of the causal inference algorithms described in this chapter (see

text for details).

NeuroLISP.

Like NeuroLISP, NeuroCERIL represents programs and other symbolic data structures as
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learned systems of dynamical attractor states and associative transitions between attractor states

(attractor graphs; Chapter 3). Programs are evaluated via top-down control of gated connectiv-

ity between and within neural regions. This guides the flow of activity according to instructions

retrieved from neural memory, much like a conventional computer architecture controls data flow

according to instruction opcodes. Importantly, NeuroCERIL also controls its own learning in this

way, allowing it to construct, access, and modify data structures stored in memory during program

evaluation. Inputs and outputs are mediated by gated connectivity between the outer environment

and a special region that represents discrete symbols as unique patterns of activity (lex, center

of Figure 5.3). These connections allow NeuroCERIL to read symbolic inputs, including repre-

sentations of programs, and output the results of program evaluation. During imitation learning, a

demonstration recorded in SMILE is provided as a sequence of symbolic inputs, and NeuroCERIL

outputs a sequence of symbolic outputs that encodes the inferred causal explanation.

NeuroCERIL is initialized with a learned program-independent virtual machine composed

of procedures that implement the primitive operations of its programming language [97]. After ini-

tialization, NeuroCERIL is programmed with the causal inference algorithm described in Section

5.1.2, which is expressed in the language of NeuroCERIL’s virtual machine. The details of initial-

ization and program learning can be found in Chapter 4.

NeuroCERIL’s virtual machine supports two major innovations that extend its computational

capabilities beyond NeuroLISP and ease the implementation of its causal inference algorithm: a

class system and an exception handling system. The class system allows specification of reusable

programs (i.e., class methods) for initializing and modifying instances of complex data structures

such as causal hypotheses, cause-effect knowledge, and observed actions. Instances of classes,

called objects, are stored as collections of named pointers to other memories (i.e., class attributes).
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The underlying implementation of objects makes use of the existing mechanisms for variable

binding in NeuroCERIL’s virtual machine; objects have corresponding lexical namespaces that

store attributes as variable bindings (see Chapter 4 for details on variable binding in NeuroLISP).

Exceptions are errors that occur during program evaluation, and are triggered by events such

as attempted access to undefined variables, attributes, or class methods. The exception handling

system provides a mechanism for specifying dynamic responses to exceptions. This obviates the

need for excessive program expressions that perform checks on data before access; a program

instead can specify what should be done if retrieval fails. For example, when evoking hypotheses

to explain an observed action, NeuroCERIL consults its causal knowledge-base to retrieve cause-

effect recipes that are relevant to the observed action (see Section 5.1.2). If the knowledge-base

does not contain any entry for the observed action type, retrieval will result in an exception that

can be easily handled by skipping the evocation process.

Exception handling is supported by the exception stack region (bottom right of Figure

5.3), which maintains pointers to activity states in other regions that represent the state of the

virtual machine. This region functions like the runtime and data stack regions (shared with

NeuroLISP), which represent stack frames as distributed patterns of activity that have learned

associations with activity patterns in other regions. Responses to exceptions are specified in

programs with “try” expressions that include a primary sub-expression to evaluate, and an addi-

tional sub-expression representing the response. When a “try” expression is evaluated, the virtual

machine first stashes its state on the exception stack, which involves learning associations in the

pathways exiting the exception stack region. Then, the virtual machine attempts to evaluate

the primary sub-expression. If an exception occurs, the virtual machine retrieves its prior state

from the exception stack, and evaluates the response sub-expression. Upon completion, the top of

165



the exception state is popped, and evaluation of the program continues.

5.1.4 Experimental Evaluation

Empirical experiments were conducted to evaluate NeuroCERIL using a battery of test de-

monstrations that was used to test CERIL. These tests include procedural maintenance tasks in-

volving replacing, swapping, and discarding mock hard drives in a docking assembly, as well as

toy block stacking tasks (see [95] for details). NeuroCERIL’s output was compared with CERIL’s

to confirm that it performs comparably, and carried out additional analysis on its memory usage

and runtime to determine how well it scales with the length of demonstrations.

Runtime was measured as the number of timesteps in model simulations, and memory usage

was evaluated by monitoring each simulation to count the number of associations that were learned

during causal inference. Specifically, learning of attractor states and transitions was monitored in

the underlying neural networks (stored in the recurrent connectivity of the mem region in Figure

5.3), as well as associations between namespaces and memory states that represent variable bind-

ings for both local variables and object attributes (stored in the connection from env to mem

in Figure 5.3). These associations represent the core data structures used during causal infer-

ence, such as observed actions, hypotheses, and inferred causes. The reported results include the

associations formed specifically during the inference process, and exclude those that represent the

causal inference programs and cause-effect knowledge that is shared across demonstrations.

NeuroCERIL’s memory access patterns were further examined to gain a better understanding

of its memory usage. This was guided by the hypothesis that the majority of memories constructed

during inference would be highly transient memories that are only accessed across brief intervals
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of time, such as abandoned causal hypotheses. This would indicate that NeuroCERIL might benefit

from a functionally distinct short-term memory system in which memories rapidly fade if they are

not refreshed by retrieval, much like human working memory. To test this hypothesis, instances

of memory construction and access were recorded during inference, excluding memories such as

program representations and cause-effect knowledge that are shared across demonstrations. For

each recorded memory, its “lifespan” was determined as the interval between its initial learning

and the final time it was retrieved during the simulation (i.e., a memory is “born” when it is first

learned, and “dies” after its last retrieval during the simulation). This was then used to calculated

the number of “living” memories over the course of the inference process and compared it to the

total number of memories constructed. This provides a metric for the proportion of memories that

are being actively utilized for causal inference.

5.2 Results

Table 5.1 shows the results for the same benchmark battery of procedural maintenance task

demonstrations that were used to verify CERIL’s functionality. For each task, the following

quantities are reported: the number of actions recorded in the demonstration (Act), the number

of top-level intentions in NeuroCERIL’s causal interpretation (Interp), the number of timesteps of

neural network simulation required for causal inference (Timesteps), and three measurements of

learned associations that indicate model memory usage: the number of learned attractors (Attr)

and attractor transitions (Transit) in the mem region, and the number of learned variable bind-

ings (Bindings). NeuroCERIL produced causal interpretations (sequences of top-level intentions)

equivalent to the minimum cardinality explanations identified by CERIL for each of the tests.
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Figure 5.4 shows an example of the causal interpretation inferred for the replace red with spare (1)

task.

Table 5.1: NeuroCERIL performance on battery of robotic imitation learning tasks

Demonstrated Task Act Interp Timesteps Attr Transit Bindings
Remove red drive (1) 7 3 353825 197 362 661
Remove red drive (2) 10 4 490085 250 468 917
Replace red with spare (1) 14 6 653758 341 642 1243
Replace red with spare (2) 14 6 653758 341 642 1243
Replace red with green (1) 15 7 668955 356 670 1276
Replace red with green (2) 15 7 668955 356 670 1276
Swap red with green (1) 16 8 668889 357 672 1278
Swap red with green (2) 16 8 668981 361 680 1285
Toy blocks (IL) 24 8 1224377 591 1150 2326
Toy blocks (AI) 30 10 1524253 735 1434 2905
Toy blocks (UM) 39 13 1975927 945 1848 3763

Runtime and memory usage results provide an empirical estimate of the complexity of

NeuroCERIL’s hypothetico-deductive causal inference algorithm. Figure 5.5 shows runtime and

memory usage relative to the length of input demonstrations (Act in Table 5.1). Each datapoint

corresponds to a row in Table 5.1, and the dashed lines show the results of linear regression

computed for each metric. These results can be compared to Table 1 in [95]2, as well as the

theoretical analysis of CERIL’s complexity. Whereas CERIL exhibits a super-linear scaling of

runtime and memory usage (indicated by the number of recognized top-level covers), Neuro-

CERIL’s runtime and memory usage scale linearly with the length of the demonstration. This

is due to its online processing of demonstrations and incremental updating of data structures in

memory that implicitly represent possible explanations.

Further analysis of memory usage focused on learned memory attractors, as they are a
2The experiments reported here used slightly more complex versions of the IL and AI block stacking tasks that

include more blocks and actions than those reported in [95].
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Figure 5.4: (next page) Causal interpretation produced by NeuroCERIL for the replace red with spare (1) task, which

involves replacing a broken disk cartridge (cart2) in a mock disk drive drawer with a fresh cartridge (cart5). Actions

and causal intentions are represented by rectangles that indicate the type of action/intention along with its parameters.

Each action/intention points to its start and end timepoints, represented by circles (left side), which delineate concrete

observed actions (leftmost column of boxes). The top-level explanation, composed mostly of abstract intentions, is

indicated by bold boxes. NeuroCERIL reconstructs this explanation by following the shortest path from the final (t14)

to initial (t0) timepoints using parsimony pointers (bold arrows, shown only for relevant timepoints; see Section 5.1.2).
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Figure 5.5: NeuroCERIL’s memory usage and runtime during causal inference. Each data point corresponds to an

individual imitation learning test task (rows in Table 5.1). Dashed lines are lines of best fit computed with linear

regression, and show that memory usage and runtime scale linearly with the length of the demonstration (x-axis).

(a) Memory usage is reported as the number of learned attractor states, attractor transitions, and variable bindings

generated during causal inference (see text for details). (b) Runtime is reported as the number of timesteps of neural

model simulation required for causal inference.

bottleneck for neural attractor memory (Chapter 3). The results for the replace red with spare

(1) demonstration are reported here, but the results for other demonstrations are comparable.

Figure 5.6a shows the “lifespans” of memory attractors constructed during causal inference for

this demonstration, computed as the interval between initial learning and final retrieval. The x-axis

indexes timesteps in which a memory attractor is constructed or retrieved, and each horizontal line

indicates the lifespan of one memory attractor, indexed along the y-axis. Some memories remain

alive through the majority of the inference process, such as representations of the environment and

inferred causes that make up the final top-level cover. Others have relatively short lifespans, such

as falsified causal hypotheses. The “living memories” at a given timestep refers to the set of mem-
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Figure 5.6: “Lifespans” of memory attractors constructed during causal inference on the replace red with spare (1)

task, reported as the interval between initial learning and final retrieval. The x-axis indexes model simulation timesteps

in which an attractor is learned or retrieved. (a) Each horizontal line represents the lifespan of one memory attractor,

indexed along the y-axis. Shorter lines indicate that a memory attractor is only accessed over a brief interval, while

longer lines indicate memories that are utilized over longer periods of time. (b) Memory load, reported as the total

number of memories learned over time compared to the number of “living” memory attractors (i.e., attractors that

have been learned at or before a given time and will be retrieved at a later time). While the total number of memories

steadily increases over time, the majority of these memories are rapidly abandoned, and are only accessed over a brief

period of time.

ories that have been learned prior to that timestep, and that will be accessed at a later timestep (i.e.,

a memory “dies” after the final timestep in which it is accessed). Figure 5.6b shows the total num-

ber of memory attractors learned over the course of the inference process, along with the number
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of “living” memories at each timestep, which corresponds to the number of overlapping horizontal

lines at each point along the x-axis in Figure 5.6a. Although the total number of learned memories

increases steadily over time, the majority of these memories have relatively short lifespans. As a

result, the number of “living” memories remains fairly stable over time, and never exceeds 20% of

the total learned memories.

5.3 Discussion

This chapter presented NeuroCERIL, a brain-inspired neurocognitive controller for social

robots that learn procedural tasks from human-provided demonstrations (i.e., robotic imitation

learning). NeuroCERIL infers the intentions underlying demonstrated behavior using a novel

causal inference algorithm based on human-like hypothetico-deductive reasoning, which combines

bottom-up abductive inference with top-down predictive verification. This approach allows Neuro-

CERIL to iteratively construct plausible interpretations of demonstrated behavior as it is observed,

make verifiable predictions about subsequent behavior, and generate compact explanations in terms

of abstract intentions that can be generalized to novel environments. NeuroCERIL was evaluated

on a benchmark battery of procedural maintenance and toy block-stacking tasks recorded in a

virtual environment, demonstrating that it works effectively in robotic imitation learning domains.

Empirical results also show that the model scales well with the length of demonstrated action se-

quences, and that the majority of its memory usage during causal inference is dedicated to transient

short-term memories, much like human working memory.

NeuroCERIL is distinguished from prior approaches to robotic imitation learning by its use

of neural computations to understand demonstrated behavior in terms of causal relations that
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are directly related to high-level planning and cognitive-motor control. This not only affords

generalization during imitation, but also facilitates an understanding of roles and perspectives that

is critical to human-robot collaboration [197]. In addition, NeuroCERIL maintains a model of

the external environment in memory and tracks changes that are induced by demonstrated motor

activity. NeuroCERIL’s understanding of demonstrations therefore provides an awareness of the

physical consequences of behavior that is critical for safe and effective deployment of robots in

sensitive environments.

Causal reasoning and compositionality are widely considered to be critical components of

human cognition that are challenging for contemporary neural models to learn [82, 111, 113,

119]. NeuroCERIL performs causal reasoning with compositional models in working memory

that represent the external environment and encode high-level behavioral plans, and is therefore

a significant step toward developing neural networks with human-like reasoning capabilities. In

addition, it has previously been proposed that neural models of working memory control, par-

ticularly in humanoid robots, provide a promising avenue to understanding conscious cognitive

processing and its underlying basis in neural computations [160, 161]. NeuroCERIL is there-

fore also relevant to investigations of consciousness in machines and biological agents because it

implements human-like cognitive algorithms in a brain-inspired neural architecture.

NeuroCERIL has several important limitations that suggest directions for future research.

This chapter has focused on the causal inference component of imitation learning (left side of

Figure 2.1), and did not address the generation of motor plans to implement learned skills during

imitation. Prior work has shown that programmable neural networks can implement basic hier-

archical planning (Chapter 3), and can perform adaptable motor control in simulated robots [99].

It is therefore feasible to integrate NeuroCERIL with low-level neural models of perception and
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motor control to create a complete neurocognitive imitation learning system that performs both

causal inference and plan generation.

The hypothetico-deductive causal reasoning algorithm proposed here relies on constraints in

demonstrated behavior. In particular, implementations of abstract intentions must be performed

in a fixed order as specified in the causal knowledge-base, and cannot be broken up by unrelated

actions. In reality, procedural tasks might involve interleaved action sequences performed with

both hands, and may include steps that can be performed in arbitrary arrangements. Thus, future

work might involve modifying the causal inference algorithm to support these variations. This

might also permit generalization to additional cognitive domains in which hypothetico-deductive

reasoning is relevant, such as visual scene understanding and linguistic processing.

Finally, NeuroCERIL uses a unified memory system that does not include functionally dis-

tinct short-term and long-term memory. This means that long-term memories such as programs

and causal knowledge may be gradually degraded as new short-term memories are constructed

during program evaluation. Empirical results show that the majority of memories constructed

during causal inference are only accessed during a narrow window of time, and are therefore highly

transient short-term memories. This suggests that NeuroCERIL would benefit from a functional

separation of short-term and long-term memory to protect the latter from interference.
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6

Discussion

6.1 Summary

Despite recent progress, contemporary machine learning models struggle to capture key

qualities of human cognition that are considered crucial for human-level machine intelligence.

Many of these systems include deep neural networks, which are difficult to interpret and require

data-intensive and computationally expensive training procedures. These issues are partially al-

leviated by the use of hybrid models that combine neural networks with traditional symbolic

algorithms to leverage the unique advantages of both approaches. However, the cognitive capa-

bilities of biological nervous systems indicate that human-level intelligence should be possible in

artificial neural networks without the support of non-neural symbolic algorithms. Furthermore,

the computational explanatory gap between cognitive and neural algorithms is a major obstacle to

understanding the neural basis of cognition, an endeavor that is mutually beneficial to researchers

in both AI and neuroscience.

Although prominent AI researchers disagree on specific strategies, they agree on several

qualities of human cognition that are necessary for human-level AI, but exceed the capabilities

of existing neurocomputational models. This dissertation was motivated by the hypothesis that

these qualities can be captured in recurrent neural networks that represent symbolic information
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as dynamical attractor states. This hypothesis is supported by the work presented in Chapters 3-5,

which addresses the specific features outlined in Chapter 1:

• Compositionality is readily achieved in attractor graph networks, presented in Chapter 3.

These models are capable of representing key data structures of symbolic programming, such

as lists, trees, and associative arrays. Programmable neural networks can utilize attractor

graphs to represent hierarchical plans (Chapter 3), programmatic and logical expressions

(Chapter 4), and structured models of the environment and behavior of other agents (Chapter

5).

• Causal reasoning is supported by the high-level programmability of attractor neural net-

works. NeuroCERIL, presented in Chapter 5, implements a hypothetico-deductive causal

reasoning algorithm that combines bottom-up abductive reasoning with top-down predictive

verification. This procedure is effective for robotic imitation learning, but is more broadly

relevant to problem-solving domains such as diagnostic and scientific reasoning.

• The behavior of programmable attractor neural networks corresponds to symbolic algorithms

and data structures, and is therefore interpretable. NeuroCERIL illustrates how such net-

works can provide structured explanations to end-users, promoting transparency that eases

the diagnosis of errors.

• NeuroCERIL learns the causal inference algorithm that it uses to learn from demonstrated

behavior, and therefore exhibits a form of meta-learning. Notably, this skill is not built into

NeuroCERIL’s architecture; instead, it is represented in a shared program/data memory, and

is therefore subject to improvement via learning without architectural changes. In addition,
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NeuroCERIL recycles learned causal relations to construct explanations for various demon-

strated skills, and is therefore capable of generalizing its knowledge to new situations.

• NeuroCERIL represents structured causal models of the environment and the intentions of

human demonstrators, and therefore demonstrates intuitive physics and psychology. Al-

though NeuroCERIL’s grasp of physical and psychological dynamics is simple in compari-

son to humans, it illustrates how attractor neural networks provide a principled framework

for embedding “start-up” software in neural models.

This dissertation therefore contributes to bridging the computational explanatory gap by

presenting effective neural models of high-level cognitive abilities that are typically implemented

with non-neural symbolic programs. This was accomplished by incorporating several important

aspects of high-level symbolic programming into programmable neural networks, such as composi-

tional data structures and scoped variable binding. Importantly, these models rely on biologically-

plausible neurocomputational processes such as itinerant attractor dynamics, fast local learning,

and multiplicative gating.

A significant benefit of programmable neural networks is that their behavior is supported by

learned virtual machines that can be reconfigured without changes to their underlying architecture.

This contrasts with most deep learning research, in which functionality is rigidly determined by

structure. Instead, programmable neural networks are made up of general-purpose components

that are flexibly combined via top-down control of neural gates, much like conventional computer

architectures implement instruction opcodes by gating the flow of information through their un-

derlying circuitry. This is in line with the suggestion that neural networks might benefit from

integrating microprocessor-like operations [123, 125].
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Unlike previous programmable neural networks, NeuroLISP and NeuroCERIL feature shared

program/data memory, in which programs can be constructed and modified by other programs.

These models are therefore capable of learning algorithms for reasoning about reasoning (i.e.,

metacognition). As discussed in Chapter 2, causal imitation learning resembles program synthesis

in that it requires reasoning backwards from outputs to infer the algorithmic procedures that might

have generated them. Thus, NeuroCERIL is a precursor to purely neural program synthesis, an

important direction for future research.

6.2 Contributions

This dissertation makes the following specific contributions to the field.

• The first contribution is a method for representing compositional data structures as systems

of dynamical attractors in recurrent neural networks. These systems, called attractor graphs,

are capable of representing a diverse set of data structures based on labeled directed multi-

graphs, including linked lists, trees, and associative arrays. Unlike many neural models of

working memory, attractor graphs do not rely on persistent activity maintenance in slot-like

neural populations. Instead, they are composed of learned associations that are established

with fast local learning rules. This allows structured memories to be created, retrieved, and

modified as needed in a shared neural population.

• The second contribution is a neural architecture called NeuroLISP that learns to store and

evaluate programs written in a subset of Common LISP. NeuroLISP supports a variety of

high-level programming constructs, including native support for compositional data struc-

tures, scoped variable binding, recursion, and the ability to manipulate programs as data.
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Notably, this functionality is supported by a virtual machine that is learned with the same

associative learning rules that are used to modify data in memory. NeuroLISP’s imple-

mented language can therefore be modified without changes to its underlying architecture,

and potentially modified with experience.

• The third contribution is a hypothetico-deductive algorithm for compositional causal rea-

soning during imitation learning. This approach combines bottom-up abductive inference

with top-down predictive verification in a way that resembles human problem-solving. By

focusing cognitive processing on plausible explanations and their testable predictions, this

algorithm avoids exhaustive enumeration of potential solutions and is computationally effi-

cient.

• The fourth and final contribution is a neural architecture called NeuroCERIL that learns to

perform intentional inference for imitation learning. This architecture extends NeuroLISP to

support classes and exception handling, allowing it to learn the hypothetico-deductive rea-

soning algorithm described above. NeuroCERIL successfully learns a battery of procedural

maintenance tasks that demonstrate its viability as a neural controller for cognitive robots

that learn via imitation.

6.3 Limitations and Future Work

The models presented in this dissertation have a number of limitations that suggest avenues

for future research.

A major bottleneck for attractor-based models is memory capacity, which scales linearly

with the number of neurons in the network, but sub-linearly with respect to the number of weights
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(Figure 3.6). This might be addressed in a number of ways, including the use of very sparse

attractor states [141], alternate connectivity schemes (e.g., localized or patchy connectivity instead

of full connectivity) [89], and allowing attractors to drift to reduce interference in memory [172].

A related issue is catastrophic forgetting, in which old memories are degraded as new mem-

ories are learned [143, 163]. For example, as NeuroLISP constructs new memories during evalua-

tion, learned programs gradually deteriorate. While this is a desirable quality for working memory,

it is a significant limitation for long-term memory, which has an extraordinary capacity in human

beings. Future research should address methods for integrating short-term and long-term mem-

ory. One possibility is to include multiple weights per connection with varying learning rates

[22, 65, 104, 110]. This might allow long-term memory to be updated gradually with repeated

activation of representations in working memory, as in rehearsal-based methods [7].

NeuroLISP and NeuroCERIL currently require human-authored programs, and do not im-

plement algorithms for discovering such programs on their own. However, because their shared

program/data memory allows manipulation of programs as data, they are theoretically capable of

implementing algorithms for program induction and synthesis, an important direction for future

work. In addition, NeuroCERIL uses causal reasoning to infer behavioral plans from observations,

which resembles program synthesis from program outputs. Thus, its hypothetico-deductive algo-

rithm might be adapted for use with general programming languages such as Common LISP.

NeuroCERIL’s causal reasoning might also be generalized for use in other cognitive domains

beyond procedural learning, such as language processing and visual scene understanding, both of

which require reasoning about the hidden structure underlying perceptual observations. Adapting

to these domains requires loosening the constraints imposed by NeuroCERIL’s inference algo-

rithm, such as the requirement that effects are ordered and contiguous in time. In addition,
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the predictive verification component of the hypothetico-deductive approach might be adapted

to include explicit actions that gather new information (e.g., controlling eye movements based on

predicted objects in the visual field). More ambitiously, this process might be adapted for use in

general scientific experimentation [101, 102].

Finally, NeuroCERIL focuses on the causal inference component of imitation learning, and

does not address plan generation. Although Chapter 3 presents a simple model of hierarchical

planning, CERIL is capable of identifying objects in the environment, matching them to abstract

intentions, and generating sophisticated motor sequences that are sensitive to obstacles in the envi-

ronment. Accomplishing this in a neural model requires the integration of high-level cognitive pro-

cesses with low-level perception and motor control. The latter are readily learned by conventional

machine learning methods such as deep neural networks, which can be integrated with program-

mable attractor networks [46, 99, 191]. An integrated model that includes these components might

benefit from learning methods beyond those discussed in this dissertation, such as reinforcement

learning [98].
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Appendix

A.1 Planning Task Domain

The hierarchical planning task described in Section 3.1.3.6 involves rule-based decomposi-

tion of sequential behaviors according to environmental conditions. This appendix section provides

the decomposition rules, environmental bindings, and sequences of top-level actions used for the

experiments in Section 3.2.6.

Rules in the knowledge-base specify how compound actions can be decomposed into se-

quences of sub-actions according to properties of the environment. For example, opening a door

involves different actions that depend on the type of door being opened (e.g., a sliding door is

opened by grasping the handle, sliding the door open, and releasing the handle). The following

notation is used to express these rules:

compound action(env value) =


(sub actiona1, sub action

a
2, ...) if env val = vala

(sub actionb1, sub action
b
2, ...) if env val = valb

...

where compound action is the action to be decomposed, env value is the value of the environ-

mental binding that determines the applicable decomposition rule, (sub actiona1, sub action
a
2, ...)

is a sequence of sub-actions for rule a, and vala is the required environmental binding value to

apply rule a. The full set of rules is enumerated below. Rules marked with a ? are only learned in
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the “extended knowledge-base” condition in Section 3.2.6, and are not used during decomposition

of the top-level sequences that were tested.

open door
(door type) =


(grasp, slide open, release) if door type = sliding

(enter passcode, enter open) if door type = electronic

? (unlatch, grasp, pull open, release) if door type = latch

close door
(door type) =


(grasp, slide closed, release) if door type = sliding

(enter close) if door type = electronic

? (grasp, push closed, release, latch) if door type = latch

check component
(indicator) =


(check led) if indicator = led

? (check pressure gauge) if indicator = pressure gauge

? (check display) if indicator = display

check led
(led color) =


(report working) if led color = green

(repair component) if led color = yellow

? (report broken) if led color = red

check display
(display reading) =


? (report working) if display reading = ok

? (repair component) if display reading = warning

? (report broken) if display reading = error

check pressure gauge
(pressure reading) =


? (report working) if pressure reading = high

? (repair component) if pressure reading = medium

? (report broken) if pressure reading = low

repair component
(interaction point) =


(flip switch) if interaction point = switch

(press button) if interaction point = button

? (screw valve) if interaction point = valve

Environmental bindings are stored in an associative array, and each binding takes the form

of a simple key-value pair. The full environment is listed below. Items marked with a ? are only

learned in the “extended environment” condition in Section 3.2.6, and are not accessed during
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decomposition of the test top-level sequences.

door type : electronic

indicator : led

led color : yellow

interaction point : button

? weather : cloudy

? pants : jeans

? time : evening

? mood : tired

Four different top-level action sequences were used for testing. These sequences are listed

below, along with the total number of actions contained in the resulting HTN (including internal

and leaf nodes):

2 actions : (repair component)

5 actions : (open door, close door)

7 actions : (open door, press button, report repaired, close door)

10 actions : (open door, check component, close door)

A.2 NeuroLISP Architecture Details

Table A.1 lists the neural regions in NeuroLISP and the region-specific gates utilized by

the flashed interpreter firmware. The gconverger gate (last column) is a special gate that simplifies

attractor convergence in the mem region. When this gate is active, recurrent dynamics are run

repeatedly using the auto-associative matrix until activity converges to a stable attractor, or until

a pre-specified number of timesteps has elapsed (10 was used for testing). The meaning of each

other gate can be found in Section 4.1.1 (see Equations 4.1 - 4.4).

Table A.2 lists the connections between and within regions in NeuroLISP and their func-

tional purpose in model execution. Each connection links a source region to a target region, and
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Table A.1: Neural regions in NeuroLISP (see Figure 4.2) and their implemented region-specific gates.

Region gbiasr gnoiser greadr gprintr gsaturater gεr gconverger

data stack X
runtime stack X
op X X
gate sequence X
gate output
lex X X X X X
mem X X X X
mem-ctx X X X
env X X X
env-ctx X X X

connections with shared source/target regions are distinguished by unique labels. Some connec-

tions (marked in the “Lrn” column) have learning gates that allow them to be updated during model

execution (glearnr,q[`] (t); see Equation 4.5). Connections from context regions (marked with a *) are

unweighted one-to-one multiplicative connections (see Equation 4.2). All other connections are

weighted all-to-all connections (see Equation 4.1).

A.3 Cons Cell Implementation

A cons cell is stored in neural memory as a trajectory from a unique memory state through

the elements stored in the cons cell. Because the trajectory runs through the memory states stored

in the cell, constructing a cons cell only requires the addition of a single attractor, and a data

structure can be stored in more than one cons cell without being copied. For example, if a memory

state is stored as the car element of two cons cells, it has two outgoing transitions linking it to

the corresponding cdr elements (shown in Figure A.1). Each of these transitions is differentially

accessible because it is contextualized by the unique state of the corresponding cons cell.
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Table A.2: List of connections in NeuroLISP and their functions.

Target Source Label Lrn Function
data stack

data stack fwd pushing data stack
data stack bwd popping data stack

runtime stack
runtime stack fwd pushing runtime stack
runtime stack bwd popping runtime stack

op
lex associating op sequences with symbolic labels
op advancing through operation sequences
runtime stack X returning from an operation sub-call

gate sequence
op associating gate sequences with op sequence states
gh advancing through gate sequences
lex X comparisons on lexicon patterns
mem X comparisons on memory patterns
env X comparisons on namespace patterns

gate output
gate sequence retrieving gate patterns from gate sequence states

lex
lex checking if a symbol is built-in
op associating symbolic arguments with op sequence states
mem X retrieving the symbol stored in a memory state

mem
mem auto X memory state attractor convergence
mem hetero X memory state hetero-associative transitioning
*mem-ctx multiplicative contextual gating of mem dynamics
lex X retrieving the dedicated memory state for a lexicon symbol
env X binding memory states to variables in namespaces
runtime stack X temporary storage during operation sequence execution
data stack X temporary storage during operation sequence execution

mem-ctx
mem X cons cell and associative array key-value associations
lex X associative array map-key associations

env
env auto X binding-specific namespace attractor convergence
env hetero X namespace nesting
*env-ctx multiplicative contextual gating of env dynamics
mem X closure binding
runtime stack X temporary storage during operation sequence execution

env-ctx
lex X variable binding associations
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Figure A.1: Graphical depiction of nested cons cells stored in neural memory, illustrating state recycling for

lists with repeat elements. Each circle represents a distributed activity pattern, and solid arrows represent learned

associations/transitions between these patterns. The represented list contains two copies of the symbol “x”, and can

be constructed by the expression (cons ‘x (cons ‘x NIL)). Two mem states representing cons cells can be

identified by their associations with the reserved “#CONS” symbol, represented by a unique activity state in lex

(bottom left). In addition, each cons cell memory state has an associated context state (top) that contextualizes the

transitions linking it with its corresponding car and cdr elements (see Figure 4.3b). Because both cons cells contain

the same car element, the mem state associated with the “x” symbol contains two outgoing transitions with unique

contexts (center circle in mem rectangle). Thus, in the context of the outer cons cell, this state transitions to the inner

cons cell, and in the context of the inner cons cell, it transitions to the mem state for the null symbol (bottom of mem

rectangle, associated with “nil” pattern in lex).

The car and cdr operations that can be performed on cons cells are implemented as follows.

First, the cons cell memory state is activated, and the corresponding context state is retrieved via

the pathway from mem to ctx. This state is then used to contextualize a transition from the cons

cell to the car (first) element, which completes the car operation. To complete a cdr operation,

an additional transition is then executed from the car element to the cdr (second) element. These
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operations can be nested: if the car or cdr element is also a cons cell, its context state can be

retrieved in order to access one of its elements.

Construction of a cons cell is carried out using several gates, including the noise (Equation

4.1), eligibility trace (Equation 4.4), and plasticity gates (Equation 4.6). The memory states to

be linked as car and cdr elements are computed by sub-expressions during program evaluation,

and pushed onto the data stack for retrieval during cons cell construction. Once these states are

available, the cons cell context state is generated in ctx, and the transitions are constructed in

reverse order. First, the cdr element is retrieved, masked by the context state (via multiplicative

gating; see Equation 4.2), and stashed in the mem eligibility trace (εmem(t)). Then, the car element

is retrieved and masked, and the transition from car to cdr element is learned. Next, a new mem state

is generated to represent the cons cell, and the process is repeated to link the cons cell state to the

car state. Finally, the cons cell mem state is linked to the generated ctx state, making it accessible

for subsequent car and cdr operations. A similar process is used for the “list” operation, which is

equivalent to nested cons operations (i.e., (list a b c) == (cons a (cons b (cons c

NIL))), where NIL is a reserved symbol for the null state that serves as a list terminator).

A.4 Associative Array Implementation

The organization of associative arrays in memory makes it possible to check whether a key

is contained in a map: if the transition from the map yields the key memory state, then the key is

contained in the map (Figure A.2a), and the corresponding value can be retrieved via a transition

from the key state (Figure A.2b). This can be confirmed with a comparison operation (Section

4.1.3.2). Adding or updating a key/value pair involves learning the transitions described above
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Figure A.2: Graphical depiction of the neural operations for checking for a key and retrieving its value from an

associative array / map (see Figure 4.3c). Circles represent distributed activity patterns. Arrows entering mem states

from below represent inputs from other regions that are not shown in the image (i.e., lex or data stack). The depicted

operations are agnostic to the source of these inputs. (a) To check if a key is contained in a map, the key memory

state (labeled “key”) is retrieved and memorized for subsequent comparison (Section 4.1.3.2), and the corresponding

context state in ctx is retrieved (bottom right circle in ctx rectangle). Next, the map state (labeled “map”) is retrieved,

and the key context state is used to execute a transition. If the key is contained in the map, this transition will yield

the key memory state, which can then be recognized via comparison. Otherwise, a random state will be retrieved,

producing a false comparison (i.e., failed recognition). Memorization and recognition occur in the pathway from mem

to gate sequence. (b) Assuming the key is contained in the map, its value can be retrieved as follows. First the map

state is retrieved, along with its corresponding context state (top left circle in ctx rectangle). Then, the key state is

retrieved, and the context state is used to execute a transition to the value state (labeled “value”, bottom right of mem

rectangle).
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(from map to key and key to value), and deleting a key/value pair involves changing the transition

from the map state such that it targets a state other than the key state (e.g., the NIL state), thereby

causing a mismatch that can be detected via comparison. Note that the above operations can be

performed with constant-time complexity, as they do not require iteration through key/value pairs

in memory. This is possible because of the underlying implementation of maps as attractor graphs

with context-dependent transitions, rather than unbranched attractor sequences.

A.5 Organization of Interpreter Memory

The relationship between LISP programs and interpreter operation sequences can be seen

in Figure A.3, where a LISP expression is represented by a cons cell in the mem region (top),

and the low-level assembly op-sequences are represented as sequences of activity in the op region

(bottom right). Each pattern of activity in op represents an assembly instruction that is associated

with an opcode and an optional operand via the pathways from op to gate sequence and lex, re-

spectively. The opcode corresponds to a sequence of states in the gate sequence region, each of

which is associated with a pattern of activity in the gate output region that specifies which model

components are active or inactive in a given timestep (bottom left of Figure A.3). The operand

corresponds to a pattern of activity in the lex region that represents a discrete symbol (center right).

These symbols serve various functions in the model; for example, they can be printed to the envi-

ronment as output, used to contextualize environment lookups (Section 4.1.3.4), or used to retrieve

a new op sequence during recursive evaluation (i.e., an op-sequence call). Retrieval and usage of

the optional operand is directed by the gating sequence specified by the opcode. For example, an

instruction that prints a symbol involves opening the pathway from op to lex to retrieve the instruc-
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Figure A.3: Relations between states in various regions of the NeuroLISP architecture that implement interpreter

functions. Circles represent distributed activity patterns, and arrows represent learned transitions between activity

patterns within or between regions. A LISP expression is represented as a cons cell in the mem region (see Figure 4.3b),

and its first element represents a LISP operator. This operator can be used to retrieve the corresponding sequence in

the op region that implements the operation (bottom right op rectangle). Each op state has an opcode that corresponds

to a unique sequence of activity in the gate sequence region, which specifies a temporal sequence of gating values

via associations with gate output states (bottom left). These sequences control the behavior of the relevant model

components, including the recurrent dynamics of the gate sequence and op regions themselves. Some op states are

associated with an optional operand via the pathway from op to lex (center right). The corresponding opcode sequence

determines what is to be done with this operand; for example, it may be used to retrieve an atomic memory state (top

center state labeled “atom” in the mem rectangle), or to retrieve a new op sequence during recursive evaluation (right

side arrow from lex state to op state). During recursive op-sequence evaluation, states in the runtime stack region are

temporarily associated with the calling op state, which allows the model to return to the calling op-sequence instruction

upon completion. For clarity, some associations are omitted from the diagram, including associations between runtime

stack and mem states, as well as associations between some op, gate sequence, and gate output states.
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tion operand, and then opening a special lex output gate that signals to the environment that an

output is ready to be printed (see Section 4.1.3.3 for further details on input/output operations).

Stack regions are initialized with a bi-directional chain of associated states, each of which

serves as a pointer that can be dynamically bound to activity states in other regions (mem, env,

or op). Pushing onto a stack involves advancing its activity to the next pointer in the chain, and

learning an association between the stack pointer state and an activity state in a target region.

The associated activity state can be retrieved as needed during program execution by opening the

activity gate from the stack region to the target region, and popped off the stack by advancing the

stack region to the previous pointer state in the chain.

During recursive program evaluation, the Controller stores the current memory state and

op state on the runtime stack, advances to the sub-expression memory state, and jumps to the

beginning of the eval op-sequence. Upon completion of sub-expression evaluation, the Con-

troller retrieves the op state from the stack, returning to the operation that initiated recursive

evaluation. At this point, the current memory state represents the return value from evaluating

the sub-expression, and the parent expression’s memory state is available for retrieval from the

runtime stack. If the parent expression contains multiple sub-expressions, the calling op-sequence

can then stash the return value on the data stack, retrieve the parent expression, and advance to

the next sub-expression for another round of recursive evaluation. Once all of the return values

of sub-expressions are stored on the data stack, the parent expression’s operation can then be

performed. For example, the cons operation described in Section 4.1.2.1 will retrieve the memory

states representing elements of the new cons cell, link them together in memory, and return the

generated cons cell state upon completion. The returned cons cell is then passed up for use in the

calling expression (e.g., another cons operation may use it as an element in another cons cell).
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To evaluate an expression with a built-in operator, the lex pattern associated with the car

element of the expression is retrieved, the head of the cons cell in mem is recovered, and the lex

pattern is used to retrieve the operator’s op sequence. Retrieval of the cons cell memory state

makes the remainder of the expression available for access during execution of the operation.

A.6 Comparison Operations

Formally, comparisons are accomplished in the following manner. Unlike with other weight

matrices, learning that occurs on the comparison pathways completely overrides the previous

weight matrix, leaving only the most recently learned association for recognizing the memorized

pattern. The eligibility trace of the gate sequence region is initialized to an activity state vgs[true],

which is the start of the jumping gate sequence that occurs when a comparison is successful.

Thus, memorizing an activity pattern in a source region (src) at time t for later comparison can be

expressed as:

∆Wgs,src(t+ 1) =
1

||vsrc(t)||︸ ︷︷ ︸
norm

vgs[true]︸ ︷︷ ︸
jump state

vsrc(t)
>︸ ︷︷ ︸

source

−Wgs,src(t) (A.1)

where Wgs,src(t) is the weight matrix for the pathway from a source region (src) to the gate se-

quence region (gs) at time t, vsrc(t) is the src activity pattern to memorize, and vgs[true] is the

gate sequence activity state for op-sequence jumping. The updated weight matrix can then be used

to determine if another activity pattern in src is similar enough to the memorized pattern to yield

a successful comparison. This is done by presenting a new input pattern to gate sequence while

attempting to drive gate sequence activity away from the “true” state toward an alternative “false”
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state that corresponds to a false comparison:

vgs(T + 1) = σgs

(
Wgs,src(T ) vsrc(T )︸ ︷︷ ︸

recognition

− θ vgs[false]︸ ︷︷ ︸
bias

)
(A.2)

where vgs(T+1) is the post-comparison activity state in the gate sequence region (gs) at time T+1,

σgs is the activation function in gs, Wgs,src(T ) is the weight matrix described above, vsrc(T ) is the

activity pattern in src that is compared to the memorized pattern, θ is the similarity threshold, and

vgs[false] is the gate sequence activity state for non-jumping operation advancement that occurs

when a comparison fails. Equation A.2 is a special form of Equations 4.1 - 4.3, where the bias term

bgs = θ vgs[false]. The comparison threshold θ determines how similar the two src activation

states must be to yield a successful comparison (typically θ = 0.95). Note that when a non-

threshold activation function such as the hyperbolic tangent is used, the activity pattern resulting

from Equation A.2 will require saturation to match the magnitude of vgs[true] or vgs[false].

A.7 Lexical Environments

The organization of environments in neural memory is graphically depicted in Figure A.4.

Environment namespaces are represented as activity states in the env region of the model (top

of Figure 4.2). Each variable binding is maintained as a context-dependent association between a

namespace and an activity state in the mem region that represents a variable’s value (arrow labeled

“binding” in Figure A.4a). This association is contextualized by activity states in the ctx regions

(one for mem and one for env) that are derived from a lex pattern that represents the variable name

(“var name” on left side of Figure A.4a). Thus, to retrieve a variable, an inter-regional transition is

performed from env to mem in the context of the variable name. As with associative arrays / maps

(Section 4.1.2.2), it is necessary to validate that a namespace contains a binding for a particular
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Figure A.4: Graphical depiction of various components of environment management in NeuroLISP. Circles represent

distributed activity patterns, and arrows represent learned associations/transitions between activity patterns. (a) Vari-

able bindings are stored as contextualized associations between activity states in the env and mem regions (arrow

labeled “binding”, center). The env state represents an environmental namespace that may store bindings for several

variables. A lex activity pattern representing the variable name (“var name”, left) is associated with unique patterns

in the context regions for env and mem that are each used to contextualize the corresponding region during variable

retrieval (dashed lines connected to “binding” line). In addition, the context state for the env region also contextualizes

an auto-association of the env state with itself (looped arrow in env circle, top). This makes it possible to determine if

there is a binding for a particular variable in a particular namespace: if the namespace’s env state is stable under

contextualized auto-associative dynamics, a binding exists. This can be determined via a comparison operation

(Section 4.1.3.2). (b) For dynamically scoped variable binding, environment namespaces are chained together into

a sequence that terminates with the global environment (“global env”, right side). When looking up a variable, the

namespaces are inspected in order until a binding is found, or until a transition is executed from the global environ-

ment back to itself (i.e., no environments contain a binding for the variable). (c) For lexically scoped variable binding,

namespaces are organized into an inverted tree, where different branches are created and maintained for function

closures. When a function is defined, a namespace is created and bound to the memory state representing its closure

(Section 4.1.3.5, Figure A.5). When the function is called, this namespace is retrieved and a new namespace is created

to store argument bindings (Section 4.1.3.5).
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variable name before retrieving it. This is done using context-dependent auto-associative learning:

namespaces that contain a binding for a variable are stable attractors under recurrent dynamics

when the variable name’s context pattern is present. Formally, this is expressed as:

venv[binding] = vctx−env[var]� venv[namespace]

vmem[binding] = vctx−mem[var]� vmem[value]

σenv

(
vctx−env[var]�

(
Wenv,env[auto] venv[binding]

) )
= venv[binding] (A.3)

σmem

(
vctx−mem[var]� (Wmem,env venv[binding])

)
= vmem[binding] (A.4)

where:

• venv[namespace] is the activity state in the env region representing the namespace.

• vctx−env[var] and vctx−mem[var] are the variable-specific activity patterns in the ctx regions

for env and mem, respectively.

• vmem[value] is the activity state in the mem region representing the value of the binding.

• venv[binding] and vmem[binding] are the contextually-masked activity patterns in the env

and mem regions. The binding is stored as an association between these states (Equation

A.4).

• σenv and σmem are the activation functions for neurons in the env and mem regions, respec-

tively.

• Wenv,env[auto] is an auto-associative recurrent weight matrix in the env region that is updated

when new bindings are created.

• Wmem,env is an inter-regional weight matrix from the env region to the mem region that is

updated when new bindings are created.
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The relation expressed in Equation A.3 makes it possible to determine whether a binding exists for

a given variable in a given namespace: the activity states before and after auto-associative dynamics

can be compared (Section 4.1.3.2). If they match, the binding exists, and the relation expressed

in Equation A.4 can be used to retrieve the corresponding value in mem. Because bindings are

stored as context-dependent associations, a namespace may contain bindings for several different

variables, much like an associative array can contain multiple key/value pairs.

Namespaces are organized in a nested fashion: when a variable is looked up, and no binding

exists for the innermost namespace, the lookup proceeds to the encapsulating namespace. Once

the outermost namespace is reached (referred to as the “global environment”) and no binding is

found, the lookup fails and the program returns an error. For dynamic scoping, namespaces can

be maintained in a sequential chain (Figure A.4b), similar to those of the stack regions. Lexical

scoping requires a branched organization (Figure A.4c) because function closures maintain the

bindings that existed during function definition. Thus, lexical scoping allows access to bindings

that would otherwise fall out of a dynamic scope and become inaccessible.

Operations that create new variable bindings evaluate sub-expressions and store the result-

ing values (mem states) on the data stack. Once all the values are computed, a new environment

namespace (env state) is created to store the new bindings, and is associated with the prior name-

space (arrows between env states in Figures A.4b and A.4c). Each binding is created by retrieving

the variable/argument name (lex state), retrieving the corresponding value from the data stack, and

learning the associations outlined above to create the binding (Equations A.3 and A.4). These bind-

ings are then available during subsequent evaluation (i.e., the sub-expression of a let operation,

or the body of a function). Upon completion, the newly created namespace is abandoned by

advancing env to the prior namespace. However, if a function was defined before completion (i.e.,
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a defun within a let expression), the abandoned namespace may be retrievable via a closure, as

described in the following section.

A.8 Function Closures

Figure A.5 shows the associations making up a closure stored in memory, as well as the en-

vironmental bindings created during a function call. Closures for anonymous functions (lambdas)

are stored similarly, but do not include a binding for a function name (arrow from “defun env”

to “closure” in Figure A.5, top left). When a function is called, a new namespace is created to

store argument bindings (“call env”), and is associated with the namespace that was active when

the function was defined (“defun environment”). The caller’s argument expressions are evaluated

and bound to the variables listed in the function definition, which are retrieved from the closure

memory structure (“args list”). The body expression is then retrieved and evaluated with the bind-

ings in scope. Upon completion, the resulting mem state is returned to the caller, and the caller’s

namespace is retrieved from the stack (not shown).

A.9 Model Parameters for NeuroLISP Testing

The model parameters used for the tests outlined in Section 4.2 are listed in Table A.3.

Cells labeled “variable” were experimentally varied (see Sections 4.1.4 and 4.2). The sizing of

the stack regions was set according to the demands of the test, as determined by the NeuroLISP

emulator. Either 256 or 1024 neurons was used (four times the number of orthogonal patterns

representing stack frames, for stability purposes). The op and gate sequence regions were sized

according to the number of states necessary for the interpreter firmware sequences (four neurons
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Figure A.5: Graphical depiction of the learned associations that make up closures and argument bindings for function

calls. A closure is a cons cell (center top state labeled “closure”) containing a list of argument names (“args list”,

center), and an expression for the body of the function (“body”, top right). The closure state is also associated with the

environmental namespace that was active when the function was defined (“defun env”, top left). In return, the closure

is bound to the function name within this environment; a lex state representing the function name contextualizes this

binding (“func name”, bottom). For simplicity, the context states are omitted from the diagram, and are abbreviated

in the bottom left (“ctx states”, see Figure A.4 for details). When the function is called, the interpreter creates a

new environment to store argument bindings (“call env”, left), evaluates sub-expressions for argument values, and

binds them with their associated argument name (“arg bindings”, center). Each binding is contextualized by the

corresponding lex pattern representing the argument name (“arg” names, bottom right), which can be retrieved from

the argument list contained in the closure.
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Table A.3: Model parameters used for testing. “Size” refers to the number of neurons contained in a region. “Learning

Type” refers to the source of learned patterns and associations (“flashed” memories are established during the one-time

initialization process, and “combo” refers to a combination of flashed memories and memories learned online during

model execution). “Pattern Type” refers to the organization of learned representations: “ortho” patterns are orthogonal

vectors established during one-time initialization for high efficiency, “local” patterns are one-hot vectors (used in the

gate output region to refer to individual model gates), and “random” patterns are generated with a Bernoulli process.

“Activ Func” refers to the activation function used for neurons in the region. “Lambda” refers to the density parameter

used for random pattern generation, and determines the probability of generating an individual neural activation value

of 1.

Region Size Learning Type Pattern Type Activ Func Lambda
runtime stack 256 / 1024 flashed ortho sign N/A

data stack 256 / 1024 flashed ortho sign N/A
op 1536 flashed ortho sign N/A

gate sequence 496 flashed ortho sign N/A
gate output 70 flashed local heaviside N/A

lex variable combo random sign 0.5
mem variable combo random sign 0.5

mem-ctx =size(mem) combo random heaviside 0.25
env variable combo random sign 0.5

env-ctx =size(env) combo random heaviside variable
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per orthogonal state pattern). These regions use orthogonal patterns because orthogonality reduces

the required region sizes ([97]), and because the learned states are only established during one-

time initialization. Cells in Table A.3 labeled “flashed” indicate regions that learn solely during

the one-time initialization process, which flashes the interpreter firmware. Cells labeled “combo”

indicate regions that learn associations in an online fashion during model execution in addition to a

small set of flashed associations (e.g., patterns for NIL, true, and false are flashed in the mem

region, and a pattern is created for the default environment in the env region).

A.10 Multiway Tree Library

The code implementing the multiway tree functions (including helper functions) is listed in

Figure A.6. The corresponding test cases are listed in Figure A.7.

A.11 Unification Test Case Generation

Unification test cases were produced by randomly generating trees and converting them to

s-expressions as follows. First, a random tree is generated using the random tree function in the

Python networkx package1. The size of the initial tree is the expression complexity parameter

described in Section 4.2.5 (x-axis of Figures 4.12 and 4.13). The tree is rooted by selecting the node

with the greatest number of edges, the leaf nodes are labeled with randomly generated symbols,

and the tree is copied to produce an identical pair. Then, a set of variable substitutions is generated,

each mapping a variable name to a small randomly generated subtree representing the value of that

variable. These substitutions are introduced to the pair of trees by randomly selecting a leaf node,

1https://networkx.org/documentation/stable/reference/generated/networkx.generators.trees.random tree.html
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(defun expr-equal? (x y)
(cond ((or (atom x) (atom y)) (eq x y))

((and (listp x) (listp y))
(and (expr-equal? (car x) (car y))

(expr-equal? (cdr x) (cdr y))))
(true false)))

(defun tree? (expr)
(or (atom expr)

(and (listp expr) (atom (car expr))
(cdr expr) (forest? (cdr expr)))))

(defun forest? (expr)
(or (not expr)

(and (tree? (car expr))
(forest? (cdr expr)))))

(defun copy-tree (tree)
(if (atom tree) tree

(cons (car tree)
(copy-forest (cdr tree)))))

(defun copy-forest (subtrees)
(if (not subtrees) NIL

(cons (copy-tree (car subtrees))
(copy-forest (cdr subtrees)))))

(defun tree-member (elm tree)
(cond ((atom tree) (eq elm tree))

(true (or (eq (car tree) elm)
(forest-member elm (cdr tree))))))

(defun forest-member (elm forest)
(and forest

(or (tree-member elm (car forest))
(forest-member elm (cdr forest)))))

(defun tree-prefix (tree)
(tree-prefix-helper tree NIL))

(defun tree-prefix-helper (tree seq)
(if (atom tree)

(cons tree seq)
(cons (car tree)

(forest-prefix-helper
(cdr tree) seq))))

(defun forest-prefix-helper (subtrees seq)
(if subtrees

(tree-prefix-helper
(car subtrees)
(forest-prefix-helper

(cdr subtrees) seq))
seq))
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(defun tree-subst (new old tree)
(let

((ret (tree-subst-helper new old tree)))
(if ret ret tree)))

(defun tree-subst-helper (new old tree)
(cond

((expr-equal? tree old) new)
((atom tree) NIL)
(true

(let ((subtrees (forest-subst-helper new old (cdr tree))))
(if subtrees
(cons (car tree) subtrees)
NIL)))))

(defun forest-subst-helper (new old subtrees)
(if (not subtrees) NIL

(let ((curr (tree-subst-helper new old (car subtrees)))
(rest (forest-subst-helper new old (cdr subtrees))))

(if (or curr rest)
(cons (if curr curr (car subtrees))

(if rest rest (cdr subtrees)))
NIL))))

(defun tree-sublis (subs tree)
(let ((ret (tree-sublis-helper subs tree)))

(if ret ret tree)))
(defun tree-sublis-replace (subs tree)

(if subs
(if (expr-equal? (car (car subs)) tree)

(cadr (car subs))
(tree-sublis-replace (cdr subs) tree))

NIL))
(defun tree-sublis-helper (subs tree)

(let ((replacement
(tree-sublis-replace subs tree)))

(cond
(replacement replacement)
((atom tree) NIL)
(true

(let ((subtrees (forest-sublis-helper subs (cdr tree))))
(if subtrees

(cons (car tree) subtrees)
NIL))))))

(defun forest-sublis-helper (subs subtrees)
(if (not subtrees) NIL

(let ((curr (tree-sublis-helper subs (car subtrees)))
(rest (forest-sublis-helper subs (cdr subtrees))))

(if (or curr rest)
(cons

(if curr curr (car subtrees))
(if rest rest (cdr subtrees)))

NIL))))

Figure A.6: Library of multiway tree processing functions.
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(defun test (expr target)
(if (not (eq (eval expr) target))

(error (list target ’NOT_EQUAL expr))))

(test ’(expr-equal? ’a ’b) false)
(test ’(expr-equal? ’a ’a) true)
(test ’(expr-equal? ’(a (b c)) ’(a (b c))) true)
(test ’(expr-equal? ’(a (b (c))) ’(a (b c))) false)

(setq tree1 ’a)
(setq tree2 ’(a b))
(setq tree3 ’(a (b c)))
(setq tree4 ’(b d e))
(setq tree5 ’(a (f g) c (b d e)))
(setq tree6 ’(x y z))
(setq nottree1 ’(a))
(setq nottree2 ’(a (b c) (d) e))
(setq nottree3 ’((a b c) (d e)))

(test ’(is-tree? tree1) true)
(test ’(is-tree? tree2) true)
(test ’(is-tree? tree3) true)
(test ’(is-tree? tree4) true)
(test ’(is-tree? tree5) true)
(test ’(is-tree? nottree1) false)
(test ’(is-tree? nottree2) false)
(test ’(is-tree? nottree3) false)

(test ’(tree-contains? ’a tree1) true)
(test ’(tree-contains? ’d tree5) true)
(test ’(tree-contains? ’h tree5) false)

(test ’(expr-equal? (tree-prefix tree1) ’(a)) true)
(test ’(expr-equal? (tree-prefix tree2) ’(a b)) true)
(test ’(expr-equal? (tree-prefix tree3) ’(a b c)) true)
(test ’(expr-equal? (tree-prefix tree4) ’(b d e)) true)
(test ’(expr-equal? (tree-prefix tree5) ’(a f g c b d e)) true)

(test ’(expr-equal? (tree-subst ’z ’a tree1) ’z) true)
(test ’(expr-equal? (tree-subst ’(z a b) ’a tree1) ’(z a b)) true)
(test ’(expr-equal? (tree-subst ’z ’(b c) tree3) ’(a z)) true)
(test ’(expr-equal? (tree-subst ’z ’g tree5) ’(a (f z) c (b d e))) true)

(setq subs ’((a (x y z)) ((b d e) y) (c z)))
(test ’(expr-equal? (tree-sublis subs tree1) ’(x y z)) true)
(test ’(expr-equal? (tree-sublis subs tree5) ’(a (f g) z y)) true)
(test ’(expr-equal? (tree-sublis subs tree6) tree6) true)

(test ’(expr-equal? (copy-tree tree1) tree1) true)
(test ’(expr-equal? (copy-tree tree5) tree5) true)

Figure A.7: Test cases for multiway tree processing functions.
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and replacing it with a variable name in one tree, and the corresponding value subtree. In 20% of

the test cases, a mismatch was introduced to the pair by randomly mutating a node in one tree such

that they can no longer be unified. Below is an example of a randomly generated test case with an

initial tree size of 10 nodes, leaf symbols drawn from a-j, variable names drawn from V-Z, up to 3

variable substitutions, and a maximum variable value size of up to 5 nodes.

Initial expression:

(((c) (f h)) (b) i)

Substitutions:

V −→ ((g) j i)

W −→ i

Y −→ (g a)

Expression pair with substitutions:

((((var W)) (f ((g) j i))) (b) (var Y))

(((i) (f (var V))) (b) (g a))

Mismatch mutation (optional):

((((var W)) (f ((g) j i))) (b) (var Y))

(((i) (f (var V))) (d) (g a))

207



Bibliography

[1] Pieter Abbeel, Adam Coates, and Andrew Y Ng. Autonomous helicopter aerobatics through
apprenticeship learning. The International Journal of Robotics Research, 29(13):1608–
1639, 2010.

[2] Kenneth Aizawa. The productivity of thought. In The Systematicity Arguments, pages 43–
55. Springer, 2003.

[3] Daniel J Amit. Modeling brain function: The world of attractor neural networks. Cambridge
university press, 1992.

[4] Daniel J Amit, Hanoch Gutfreund, and Haim Sompolinsky. Storing infinite numbers of
patterns in a spin-glass model of neural networks. Physical Review Letters, 55(14):1530,
1985.

[5] Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
39–48, 2016.

[6] Brenna Argall, Brett Browning, and Manuela Veloso. Learning mobile robot motion control
from demonstrated primitives and human feedback. In Robotics Research, pages 417–432.
Springer, 2011.

[7] Craig Atkinson, Brendan McCane, Lech Szymanski, and Anthony Robins. Pseudo-
rehearsal: Achieving deep reinforcement learning without catastrophic forgetting.
Neurocomputing, 428:291–307, 2021.

[8] Jimmy Ba, Geoffrey E Hinton, Volodymyr Mnih, Joel Z Leibo, and Catalin Ionescu. Using
fast weights to attend to the recent past. In Advances in Neural Information Processing
Systems, pages 4331–4339, 2016.

[9] Joris Baan, Jana Leible, Mitja Nikolaus, David Rau, Dennis Ulmer, Tim Baumgärtner,
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