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Chapter 1

Introduction

Both environmental and genetic factors have roles in the development of any disease.

As a risk behavior, tobacco smoking has been found to be associated with many diseases

including heart attacks, strokes, emphysema, lung cancer and pancreatic cancer (Sasco

et al. 2004). About 443, 000 U.S. deaths are attributable each year to tobacco smoking

(CDC 2011). Vegetable and fruit consumption is protective against coronary heart disease

(Dauchet et al. 2006), diabetes (Ford and Mokdad 2001), stroke (He et al. 2006), and

cancer (Steinmetz and Potter 1996).

Unlike those factors that can change, genetic factors are usually unchangeable and

can also alter risks for disease incidences. Substantial efforts have been made to identify all

common genetic variations in humans, including single nucleotide polymorphisms (SNPs),

deletions and insertions (Brookes 1999). For example, researchers have found that the

genes BRCA1 and BRCA2 promote breast (Miki et al. 1994; Ford et al. 1998), ovarian

(Miki et al. 1994) and pancreatic cancers (Venkitaraman 2002). On occasion, some genetic

factors may be beneficial in a given environment. For example, Sullivan et al. (2001) found

that CCR5 protect against HIV infection.

A genome-wide association study (GWAS) is an approach that identifies common

genetic factors associated with a particular disease. GWAS is usually useful in finding

genetic variations that contribute to common and complex diseases. SNP is a single

nucleotide change in the DNA sequence. Such common genetic variation occurs in both

coding and non-coding regions of genome when a single nucleotide, such as an A, replaces
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one of the other three nucleotide, C, G, or T (Brookes 1999; Vignal et al. 2002; NIH

2011). For a base position to be considered as a SNP, the least frequent allele should have

a frequency of 1% or greater among the specific population. Mutations, on the other hand,

are changes in the DNA or RNA sequence. Types of mutation include substitution of a

single nucleotide (no 1% restriction), insertation of extra base pairs, deletion, and frame

shift. Compared with SNP, mutation is relatively rare and new in population but may

directly cause disorder. The human genome has about 3 billion base pairs of nucleotides.

On average SNPs occur once in every 300 nucleotides, which means there are about 10

million SNPs in the human genome (NIH 2011). SNPs are believed to alter the risk for

developing particular diseases. It is, however, very unlikely that individual SNP plays an

important role in the development of complex diseases. Instead, high-order interactions of

SNPs are thought to explain the differences between low and high-risk population groups.

A simple and plausible way to examine the association between SNPs and disease is

to apply logistic regression to identify potential strong predictors in case-control studies.

One issue with this, however, is that the number of gene expression profiles is often

overwhelmingly large, in the tens of thousands, far exceeding the number of subjects.

This imposes problems in terms of both theory and computation. The usual multivariate

regression methods break down because matrix inversion is not feasible. A statistical

computational method which can achieve feature selection and estimation is needed.

The lasso penalty has been developed and used as a powerful tool yielding regression

estimates with many coefficients set to zero (Claerbout and Muir 1973; Taylor et al. 1979;

Santosa and Symes 1986; Tibshirani 1996; Chen et al. 1999). In signal processing, the lasso

is also known as basis pursuit (Chen et al. 1999). Consider an ordinary regression data

set {y, x1, . . . , xn} where y = (y1, . . . , yn)t is the response vector and xi = (xi1, . . . , xip)
t is
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the predictor vector for the i
th

subject. Let θ = (µ, β1, . . . , βp)
t be the parameter vector;

µ is the intercept. The lasso penalty is the L1 norm of coefficients,
p∑
j=1

|βj|, which is

constrained to be smaller than a given positive value. Equivalently, in ordinary linear

regression the lasso estimate is the solution to

min
θ

{
n∑
i=1

(yi − µ− xtiβ)2 + λ

p∑
j=1

|βj|

}
, (1.1)

where λ is a tuning constant chosen by the statistician. It works very well as a variable

selection tool, especially in cases with a large number of predictors. Unlike ridge regres-

sion, a similar variable selection method, lasso can determine an easy-to-interpret model

by forcing some coefficients strictly to 0. Several authors have explored lasso penalized

ordinary regression. Fu (1998) gave the Shooting Algorithm for the lasso by studying

the structure of the bridge estimators; Knight and Fu (2000) proved some asymptotic

properties for lasso-type estimators. Fan and Li (2001) studied the penalized likelihood

methods in linear regression, of which the lasso is a special case. Daubechies et al. (2004)

proposed an iterative shrinkage/thresholding (IST) algorithm which also could deal with

optimizing f(θ). Osborne et al. (2000) developed a new algorithm based on the consid-

eration of primal and dual problems. Another possible method is gradient lasso, which

is computationally more stable than quadratic program based algorithms (Kim and Kim

2004; Kim et al. 2008). The papers of Friedman et al. (2007) and Wu and Lange (2008)

chose coordinate descent to solve the lasso penalized ordinary regression. Some possible

extensions of the lasso penalty to generalized linear models haven been discussed (Fu 1998;

Park and Hastie 2007, 2008). Competing algorithms for lasso penalized regression include

non-negative quadratic programming (Sha et al. 2007), quadratic approximations (Lee

et al. 2006), interior point methods (Koh et al. 2007) and coordinate descent methods
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(Wu and Lange 2008; Friedman et al. 2007). Friedman et al. (2010) concluded that coor-

dinate descent performs the best. Wu et al. (2009) further explored the cyclic coordinate

ascent in logistic regression, where the penalized likelihood can be quickly maximized for

a given tuning constant.

n∑
i=1

(yi − µ− xtiβ)2 + λ1

p∑
j=1

|βj|+ λ2

p∑
j=2

|βj − βj−1| (1.2)

The fused lasso, first proposed by Tibshirani et al. (2005), is an improved instrument

for variable selection with ordered features. It minimizes the criterion (1.2). However,

the coordinate descent and its extensions may not converge to the desired solution when

applied to the fused lasso problem. Because the fused lasso problem is not separable and

coordinate descent works well in separable problems. Friedman et al. (2007) modified

the coordinate-wise descent procedure into fused lasso signal approximator (FLSA) for

solving a special case of (1.2). Rinaldo (2009) modified the fused lasso estimator in a signal

estimation problem. Another adaptive form, weighted fusion, was proposed allowing the

selection of more than the number of observations (Daye and Jeng 2009). Liu et al.

(2010) solved the fused lasso problem, combining Nesterov’s optimal first-order method

(Nesterov 1983, 2003)and procedure developed by Friedman et al. (2007).

In this thesis, we will consider the linear structure of SNPs. Variation in SNPs only

explains a small fraction of disease; most of the detectable odds ratios are between 1.1 and

1.3 (Goldstein 2009). It is likely that there are many more common variants that have

not been detected by GWAS because they alter the risk by smaller values, perhaps as low

as 1% (Cantor et al. 2010). In addition, incorporation of linear structures aim to increase

the chance of detecting the SNPs with weak association. We will mimic the procedure

nested between Nesterov’s strategy and FLSA, used in paper of Liu et al. (2010)
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Chapter 2

Background

In GWAS, we compare regions of the genome between cohorts and try to tease out

the irrelevant and redundant SNPs. We are unable to interpret the model if all the SNPs

are considered. On the other hand, it’s not feasible to solve the unrestricted problem due

to the computation difficulties. Feature selection, therefore, is needed. The remaining

subset of predictors, usually thought to be selected, are used to explain the different

prevalences of disease between cases and controls.

2.1 The Lasso Penalty

The Least Absolute Shrinkage and Selection Operator (lasso) proposed by Tibshirani

(1996) is a powerful technique for model selection and estimation in linear regression

models. Adding an L1 type penalty on the regression coefficients to the sum of squared

residuals tends to produce sparse models. Consider the common Gaussian linear regression

model

yi = µ+

p∑
j=1

xijβj + εi, i = 1, . . . , n

where ε = (ε1, . . . , εn)t ∼ N(0, σ2In) is the random error vector. The lasso estimate is the

solution to

min
θ

{
n∑
i=1

(yi − µ− xtiβ)2 + λ1

p∑
j=1

|βj|

}
, (2.1)

where θ = (µ, β1, . . . , βp)
t and λ > 0 is a tuning parameter.

As shown by Tibshirani (1996), lasso gives a sparse interpretable model and has
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excellent prediction accuracy. In linear regression with lasso penalty, when positive tuning

parameter λ increases, the penalty term λ
∑p

j=1 |βj| will be more and more dominant.

When λ = 0, the lasso penalty has no effect on estimation and full least square estimate

will be the solution. When λ becomes larger and goes to ∞, even a small shift of certain

βj from 0 will add a great value to the objective function. Given the fact that we’re

minimizing the objective function, the penalty will force more βj to be 0 to achieve the

minimum. Tibshirani (1996) also discussed the sparsity via geometry. One can write lasso

penalized linear regression as

min
θ

n∑
i=1

(yi − µ−
p∑
j=1

xijβj)
2

s.t.

p∑
j=1

|βj| ≤ t,

(2.2)

where t > 0 is a positive parameter that can control how many predictors to be selected.

For any given t > 0, there exists a λ > 0 such that (2.1) and (2.2) have the same solutions,

and vice versa.
∑n

i=1(yi −
∑

j=1 xijβj)
2 equals the quadratic form (β − β̂)tX tX(β − β̂)

(plus a constant), which is an elliptical contour centering at the ordinary least square

(OLS) estimate β̂. In the case when p = 2, the feasible region
∑p

j=1 |βj| ≤ t is a rotated

square with vertices on coordinate axes. There are four vertices in this case, each of

which corresponds either β1 or β2 equals zero. The lasso solution is the first place that

the contour touches the rotated square. When t is large enough, the ellipse will be

entirely contained within the square and then the lasso solution will be the same with

OLS. However there is a chance that, as provided by (a) in Fig 1.1, the elliptical contour

touches the square at a vertex, corresponding to a zero coefficient. This zero coefficient

usually don’t occur in ridge regression, where the penalty is
∑p

j=1 β
2
j ≤ t. In (b) of Fig

1.1, there’s no corner to touch. Therefore in ridge regression when t is small enough,
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Figure 2.1: Estimate picture for (a) the lasso and (b) ridge regression (Tibshirani 1996)

coefficients could be compressed into small values but may never reach zeros.

2.2 The Lasso Estimate

One problem with lasso is that the objective function (2.2) is not differentiable

and special optimization techniques are necessary. The lasso problem may be solved

using quadratic programming or more general convex optimization methods, as well as

by specific algorithms such as the least angle regression algorithm (Efron et al. 2004). Fu

(1998) gave a shooting algorithm for lasso. The iteration starts with the OLS estimate

and at step m the estimate is β̂(m). At step m+ 1 each component is updated as

β̂
(m+1)
j =


[(λ− ∂g(θ))/∂βj] /(2x

t
jxj) if ∂g(θ)/∂βj > λ

[(−λ− ∂g(θ))/∂βj] /(2x
t
jxj) if ∂g(θ)/∂βj < −λ

0 if |∂g(θ)/∂βj| 6 λ

.

It can be shown that β̂
(m)
j converges to the lasso estimate. However, Fu did not apply

this algorithm to situations when the number of predictors far exceeded number of cases.

One should note that this algorithm might not be applicable in situations where p� n. In
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that case the starting point, the OLS estimate, may not be easy to calculate. Daubechies

et al. (2004) re-discovered Fu’s work by proposing an IST algorithm which could also be

used to handle (2.2). IST only requires matrix-vector multiplications involving X and

X t; convergence of IST algorithms was established by Daubechies and colleagues. Both

Fu and Daubechies explicitly suggest coordinate descent for (2.2).

Wu and Lange (2008) applied a very fast and stable algorithm called cyclic coor-

dinate descent for (2.2). The idea is to apply a coordinate-wise descent procedure for

each value of the regularization parameter, varying the regularization parameter along

a path. Each solution is used as a warm start for the next problem. This approach is

attractive whenever the single-parameter problem is easy to solve. The update of the

intercept parameter µ can be written as

µ̂ =
1

n
(yi − xtiβ) = µ− ∂

∂µ
g(θ).

For the parameter βk, the update formulation depends on the direction:

β̂k,+ = max

{
0, βk −

∂
∂βk

g(θ) + λ∑
i x

2
ik

}

β̂k,− = min

{
0, βk −

∂
∂βk

g(θ)− λ∑
i x

2
ik

}
.

At the same time, Friedman et al. (2007) also adopted the coordinate descent for lasso

and fused lasso.

Later, Wu et al. (2009) discussed the cyclic coordinate ascent algorithm in logistic

regression for variable selection in analysing case-control studies using SNPs. A score

criterion was used to pre-select a working set of predictors to accelerate the search pro-

cedure. The tuning parameter λ can be selected for a fixed number of predictors using

bracketing and the golden section search. In each update of βk, Newton’s method was
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applied because the explicit maximum is not available. The lasso penalization proceeded

in two stages. In the first stage, SNPs with strong main effects were identified; in the

second stage, they looked for the interactions among the supported predictors.

2.3 Fused Lasso and Linear Structure of SNPs

As a generalization of lasso, fused lasso is designed for problems with features that

can be ordered in some meaningful way (Tibshirani et al. 2005). The fused lasso problem

is to solve

min
θ

n∑
i=1

(
yi − µ− xtiβ

)2
s.t.

p∑
j=1

|βj| 6 t1 and

p∑
j=2

|βj − βj−1| 6 t2,

(2.3)

where positive parameters t1 and t2 determine the strength of the two penalty term. We

can always represent (2.3) in Lagrange form,

min
θ

{
n∑
i=1

(
yi − µ− xtiβ

)2
+ λ1

p∑
j=1

|βj|+ λ2

p−1∑
j=1

|βj+1 − βj|

}
. (2.4)

which is a strictly convex function. The first constraint is the usual lasso constraint

encouraging sparse coefficients, as discussed above. Similar things will happen in fused

lasso and the second encourages sparsity in their differences, that is, local constancy of

the coefficient profile. When λ2 increases, the fused lasso penalty λ2
∑p−1

j=1 |βj+1− βj| will

be more and more dominant. To minimize the objective function, we have to set more

and more βj+1−βj to 0 which means that the adjacent predictors are forced to be selected

or dropped simultaneously.

The term “fusion” is borrowed from Land and Friedman (1997), which proposed

the use of a penalty of the form
∑
j

|βj+1 − βj|α 6 t2 for various values of α, especially
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α = 0, 1, 2. They did not consider the simultaneous use of both penalties
p∑
j=1

|βj| and

p−1∑
j=1

|βj+1 − βj| as in (2.3).

Coordinate-wise descent, however, does not work for the fused lasso (Friedman et al.

2007). For example, Proposition 2.7.1 of Bertsekas et al. (1999) shows that every limit

point of successive coordinate-wise minimization of a continuously differentiable function

is a stationary point for the overall minimization, provided that the minimum is uniquely

obtained along each coordinate. Note that (2.4) is not continuously differentiable, im-

plying that coordinate-wise descent can get stuck. Friedman et al. (2007) considered a

variant of (2.4), called FLSA. For one-dimensional signals, they minimize

1

2

p∑
i=1

(yi − βi)2 + λ1

p∑
j=1

|βj|+ λ2

p−1∑
j=1

|βj+1 − βj|. (2.5)

A modified coordinate-wise algorithm was given for (2.5), which can be extended to the

general fused lasso programs, but Friedman et al. (2007) don’t guarantee the exact solution

for general fused lasso problems. Liu et al. (2010) provided another possibility to solve

fused lasso problems. Details are given in the next chapter.

2.4 Selection of Tuning Parameters

(Wu et al. 2009) adopted bracketing and golden section search. A pre-determined

number of predictors could be selected with a given value of the tuning constant λ. Let

r(λ) be the number of predictors selected. If one reduces λ, the penalty will be relaxed,

and more predictors can then enter the model. For every integer s 6 p, one could assume

that there is an interval Is on which r(λ) = s. A point in Is can be found quickly by

bracketing and bisection.

One can start with an estimate of λ in bracketing. If r(λ) = s, it’s done. If r(λ) < s
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and a ∈ (0, 1) then there’s a positive integer j such that r(ajλ) > s. If r(λ) > s and

b > 1, then there’s a positive integer k such that r(bkλ) 6 s. One can set a = .5 and b = 2

and take the smallest integer j or k yielding the second bracketing point. Once one has

a bracketing interval [λl, λu], bisection is employed. This involves testing the midpoint

λm = (λl + λu)/2. There are three possibilities: if r(λm) = s, it’s done; if r(λm) < s, one

replaces λu by λm; otherwise, one replaces λl by λm. In either of the latter two cases, one

bisects again and continues. The process is complete once we hit a point in Is.

This method targeting a single tuning parameter works well to predetermine the

number of selected predictors (Wu et al. 2009). In our problem we have two tuning

parameters, hence this predetermined strategy is not that straightforward in our case.

Instead we will select tuning variables based on validation method and BIC, as described

in the following subsections.
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Chapter 3

Method

SNPs do not function alone; it’s very likely that adjacent ones function together

and increase or decrease the likelihood of getting a particular disease. To incorporate

such linear structures of SNPs, we include the map distance in the objective function. In

addition to the lasso penalty, we also penalize on the fused lasso term weighted by the

distance between adjacent SNPs. This double penalty forces the sparsity in solutions and

the smoothness in adjacent SNPs with closer map distances as well. As a result, we expect

to see those predictors altering risk because both high and low values can be selected.

In case-control samples, the response yi is usually coded as 1 for cases and 0 for

controls. The probability pi = P (yi = 1) of getting a certain disease can be predicted by

SNPs vector xi. We model the logit function of pi as

logit

(
pi

1− pi

)
= µ+

p∑
j=1

xijβj.

Usually we estimate the parameter vector θ = (µ, β1, . . . , βp)
t by maximizing the loglike-

lihood function

L(θ) =
n∑
i=1

[
yi log pi + (1− yi) log(1− pi)

]
.

To incorporate the linear structure of genetic networks, we add a lasso and weighted

fused lasso penalty on −L(θ). Usually the predictor xij is set to 0, 1, 2, corresponding to

the three SNPs genotypes aa, Aa and AA, respectively. One can always centralize xij by

subtracting 1, so in the model we use xij taking values on {−1, 0, 1}.

With the double penalty, our objective function is (3.1), where ωj is defined as
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1/(dj+1 − dj), given that dj is the local positions of SNP j. ω puts more weight between

SNPs with closer distances. Biologically, SNPs from the same gene tend to cluster together

and have closer distances between each other. SNPs from the same gene, therefore, tend

to have similar function and should be present in the model at the same time (or to be

discarded as the same time).

f(θ) = −L(θ) + λ1

p∑
j=1

|βj|+ λ2

p−1∑
j=1

ωj|βj+1 − βj| (3.1)

The penalty part is not differentiable and not separable. Hence solving (3.1) is

not straightforward. We will mimic the procedure used in the paper of Liu et al. (2010)

to minimize (3.1). The procedure is combined from two algorithms: Nesterov’s method

which is searching the estimate sequence and FLSA which can deal with a special case of

fused lasso problem.

3.1 Nesterov’s Method

Nesterovs method is an optimal first-order black-box method for smooth convex

optimization (Nesterov 2003). It has been shown to improve the convergence properties

of standard gradient-descent algorithms (Nesterov 1983). “Optimal” comes from the

optimal convergence rate O(1/k2). In a classical gradient method, we take iteration

x(k+1) = x(k) − tkg′(x(k)) (3.2)

or equivalently,

x(k+1) = argmin
x

{
g(x(k)) + (x− x(k))tg′(x(k)) +

1

2tk
‖x− x(k)‖2

}
(3.3)

with chosen x(0) and {tk} to minimize a convex differentiable function g. Here tk is called

the step size. Different step-size strategies include constant step, full relaxation and
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Goldstein-Armijo rule (Nesterov 2003). The convergence rate of scheme (3.2) is O(1/k)

and Nesterov (1983) proved that there is room to improve 1/k rate of gradient method

to 1/k2. Choosing x(0), set s(0) = x(0) and a−1 = a0 = 1, one can repeat the following

Nesterov’s improved steps (3.4) until convergence.

bk = (ak−2 − 1)/ak−1, s
(k) = x(k) + bk(x

(k) − x(k−1))

x(k+1) = argmin
x

{
g(s(k)) + (x− s(k))tg′(s(k)) +

1

2tk
‖x− s(k)‖2

}
ak+1 =

(
1 +

√
1 + 4a2k

)/
2

(3.4)

This scheme (3.4) has the optimal convergence rate O(1/k2). {x(k)} is the sequence of

guessed solution. The novelty in (3.4) is that the sequence {s(k)} “remembers” the previ-

ous iterations through properly chosen ak, bk. And this s(k) makes the difference between

standard gradient method and Nesterov’s first-order method. Note that in standard gra-

dient method (3.3) at k
th

step, updating x(k+1) only depends on the current estimate

x(k), while in the improved strategy by Nesterov it depends on s(k) which is the affine

combination of current estimate x(k) and previous estimate x(k−1).

Nesterov’s method has been further developed to deal with non-smooth function

including lasso problem (Nesterov 2007). To our knowledge, it’s still not able to deal with

fused lasso problem.

3.2 Fused Lasso Signal Approximator

Friedman et al. (2007) modified the coordinate-wise descent procedure to minimize

(3.5). Such modification is due to non-separable |βi+1 − βi|.

g(θ) =
1

2

p∑
i=1

(yi − βj)2 + λ1

p∑
j=1

|βj|+ λ2

p−1∑
j=1

|βj+1 − βj|. (3.5)
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Here we use notation g again. This modified procedure can be summarized into three

nested cycles:

• Descent cycle. Coordinate-wise descent for each βj. Set ∂g(β)/∂βj = 0. Update βj

as the solution. If cannot find the solution, examine 0, βj−1, βj+1 and update βj as

the one giving the smallest value of f(β).

• Fusion cycle. Enforce |βj − βj−1| = 0. That is, set βj = βj−1 = γ and reduce the

problem to one with p − 1 parameters. At the end of descent and fusion cycles,

identify adjacent non-zero and equal parameters, then collapse the data. Set βj−1 =

βj = γ and ∂g(β)/∂γ = 0. If the solution decreases g(β), update βj−1 and βj as γ.

• Smoothing cycle. Fix λ1, increase λ2 from 0. δ is a small positive number.

1. Start with λ2 = 0.

2. λ2 = λ2 + δ. Run descent cycle and fusion cycle, till no further changes occur

(terminate when change is less than certain threshold). After convergence,

identify equal and non-zero neighbouring parameters and collapse the data.

3. Repeat 2 until a target value of λ2 is reached.

After updating the objective function, repeat descent and fusion cycles. The updat-

ing will be generally the same.

Collapsing data is to combine adjacent non-zero and equal parameters, assign weight

to the observations averages and the contributions to the lasso penalty. After m fusions,

the objective function has the form

g̃(β) = Cm +
1

2

p−m∑
i=1

wi(yi − βi)2 + λ1

p−m∑
j=1

wj|βj|+
p−1−m∑
j=1

|βj+1 − βj|.
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Initially, m = 0, wi = 1, C0 = 0, g̃(β) = g(β). Cm is irrelevant to β, we don’t need to

update it. If (m+ 1)
st

fusion is between βi−1 and βi, update the objective function as

• ȳ = (wi−1yi−1 + wiyi)/(wi−1 + wai), w̄ = wi−1 + wi

• yi−1 = ȳ, wi− 1 = w̄

• Discard observation i. Update i′ = i′ − 1 if i′ > i.

3.3 Nested Procedure of Nesterov’s Method and FLSA

Friedman et al. (2007) clearly stated that FLSA cannot guarantee a desired solution

for general fused lasso problem. Therefore to use FLSA, we should at least reform our

objective function. On the other hand, Nesterov’s scheme (3.4) provides an optimal first-

order strategy in finding the sequence of solution while doesn’t take care of the non-smooth

parts
∑p

j=1 |βj| and
∑p−1

j=1 ωj|βj+1 − βj|. Note when applying this strategy to minimize

(3.1), the second step in (3.4) happens to be a fused lasso problem that could be solve by

FLSA.

Specifically in each iteration, we use Nesterov’s idea to update seach point s(k) as

the affine combination of current and previous estimates of coefficients. Then we jump

to FLSA algorithm to update estimate based on s(k) which is a minimization problem

argmin
θ

fR,s(k)(θ), where

fR,γ(θ) = −
[
L(γ) + (θ − γ)tL′(γ)

]
+ λ1

p∑
j=1

|βj|+ λ2

p−1∑
j=1

|βj+1 − βj|+
R

2
‖θ − γ‖2. (3.6)

Constant R is chosen in each iteration according to the Goldstein-Armijo rule so that it

should be appropriate for s(k). After updaing the estimate, we then go back to Nesterov’s

scheme to update some constants and search next affine combination s(k+1). The whole
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procedure is nested between Nesterov’s method in dealing with smooth part and FLSA

algorithm in non-smooth part. The whole procedure can be implemented in the following

steps:

• Input: λ1, λ2, γ0, R0

• Initialize γ1 = γ0, a−1 = 0, a0 = 1, R = R0

• Loop and update

1. bi = (ai−2 − 1)/ai−1, si = γi + bi(γi − γi−1)

2. Find the smallest R = Ri−1, 2Ri−1, . . . such that

f(γi+1) ≤ fR,si(γi+1)

where γi+1 = argmin
θ

fR,si(θ)

3. Set Ri = R, ai+1 =
(

1 +
√

1 + 4a2i

)/
2

4. End loop if

f(γk)− f(γk+1) ≤
2 max(2R̃, R0)‖γ0 − γk+1‖2

k2

where R̃ is the Lipschitz continuous gradient of the negative loglikelihood func-

tion −L(·).

• γk+1 is the optimal solution to (3.1).

3.4 Selection of Tuning Variables

3.4.1 Validation Method

Tuning parameters (λ1, λ2) can be selected based on validation method. We perform

an exhaustive search through (a subset of) the space of (λ1, λ2). The goal is to find the
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optimal pair of (λ1, λ2) for the dataset. After selection on training data, we re-estimate

the predictors without penalty. With estimation applied on tuning data, we record L(·),

the loglikelihood function. The best pair (λ1, λ2) is determined following the greatest

value of L(·). However, it may be possible that L(·) will continue to increase by adding

more parameters into the model.

3.4.2 BIC Method and Its Extensions

One may also want to search the tuning parameters based on the Bayesian infor-

mation criteria (BIC), which was introduced by Schwarz (1978) as a model selection tool.

BIC is defined as (3.7), where n is the number of observations and k is the number of

parameters. In part based on likelihood function, BIC also adjusts for the model size and

prevents from overfitting. A smaller value represents a better fit. One drawback of BIC

is that it tends to select a model with many spurious covariates.

BIC = −2L+ k × ln(n) (3.7)

There are some extensions of BIC. BICC, defined as (3.8), is one modification. Here

p is the number of potential predictors.

BICC = −2L+ k × ln(n)×max
(
1, log(log(p))

)
(3.8)

Another option is the extended Bayesian information criteria (EBIC), defined as

(3.9). First proposed by Chen and Chen (2008), EBIC can tightly control the false

discovery rate in GWAS.

EBIC = −2L+ k ×
[

ln(n) + 2 log(p)
]

(3.9)

In simulation studies, each of these four measurements will give one pair of (λ1, λ2).

We will see how they perform in simulation studies.
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Chapter 4

Analysis of Simulated Data

4.1 Input Setting of Simulated Data

We evaluate the performance of doubly penalized regression with linear structure

with a focus on an underdetermined problem where p far exceeds n. We focus on the

simulation model (4.1)

log

(
pi

1− pi

)
= µ+

p∑
j=1

xijβj (4.1)

Each predictor vector Xi, representing the DNA sequence variations, is generated from

a realization of a multivariate normal vector Zi whose margin is normal with mean 0,

variance 0.1 and whose covariances are

Cov(Zij, Zik) =



0.1 j = k

0.1× ρ|j−k| j, k ≤ 5, j 6= k

0.1× ρ|j−k| 6 ≤ j, k ≤ 10, j 6= k

0.1× ρ|j−k| 11 ≤ j, k ≤ 20, j 6= k

0 otherwise.

which means that the predictors can be considered as four groups: predictors 1−5, 6−10,

11 − 20, and the rest. We set xij equal to −1, 0, or 1 when Zij < −c, −c < Zij < c, or

Zij > c, respectively, where c = 0.41, the 2/3 quantile of the standard normal distribution.

In every simulation, µ = 1, (β1, β2, β7, β9, β21, β22) = (1, 2,−1.5,−1, 1,−1), βj = 0 for

other j.

The value of ωj = 1/(dj+1−dj) is used if the model incorporates the linear structure,
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where dj is the local position of SNP j. If all the entries of ω are equal, that means

the model is without linear structure and locations of SNPs are equally spaced on the

chromosome. In the model with linear structure to mimic the real situation, d is set in

the following way,

dj =


U1 + dj−1 j ≤ 4 or 6 ≤ j ≤ 9, or 11 ≤ j ≤ 19

U2 + dj−1 otherwise

(4.2)

where U1 ∼ U(0.5, 1), U2 ∼ U(5, 10). It implies that for first three groups, the SNPs

within the same group are located closely. While the distances in last group and inter

groups are relatively larger.

We carry out three penalties: and (1) lasso penalty, (2) double penalty without linear

structure and (3) double penalty with linear structure. (1) only focuses on sparsity in

SNPs; (2) treats SNPs equally located on chromosomes; (3), our proposed method, takes

the distances between adjacent SNPs into consideration. The tuning parameters will be

determined in a grid search based on the performance returned by greatest unpenalized

loglikelihood in the validation, smallest BIC, BICC and EBIC. On the one hand, we are

trying to determine which penalty is doing a better job selecting variables while on the

other hand, we are comparing the four measurements in the grid search to decide which

one is best for real data analysis.

4.2 Simulation Study Results

Results of 100 random samples are as demonstrated in Table 1 to Table 12 in the

Appendix. Table 1 to Table 4 are generated from uncorrelated simulation data with ρ = 0,

Table 5 to Table 8 from correlated data with ρ = 0.5, and Table 9 to Table 12 from ρ = 0.9.

LS is short for “linear structure”. In each table, the first column (n, p) represents number
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of observations and number of SNPs; the “Distance” column indicates the penalty setting;

the third column is the average of determined tuning parameters; and column βj shows

the frequency of being selected in the 100 replications. For each distance setting, there

are two rows of N and quantiles characterizing how “well” the corresponding distance

setting is performing in selecting potential predictors. Ntrue refers to selected number of

true predictors and Nnon-zero indicates the number of selected predictors. Monte Carlo

sampling errors are in parenthesis. The last three columns record the training, tuning

and testing error, separately. For example, in Table 1, when (n, p) = (100, 50) with lasso

penalty, the determined tuning parameters are (0.039, 0). β9 has the smallest frequency

of 24 among 100 random samples. The average number of true positives is 2.6, which is

not a very acceptable value. On average, about 4 predictors are selected.

When comparing results across the three penalties, we are looking for large true

positives and smallest false positives because we would like to include as many true pre-

dictors into the model as possible and keep selection as clean as possible. We also prefer

less testing error. In doing such comparison, one can do a simple test with data given in

tables. Standard error
√
S2
N̂

is given in parenthesis. Here the Monte Carlo sampling error

S2
N̂

=
∑R

r=1(N̂r − ˆ̄N)2/R, given R random samples. When comparing two situations N1

and N2, Var( ˆ̄N1 − ˆ̄N2) ≈ (S2
N̂1

+ S2
N̂2

)/R = V̂D is the estimated variance of the difference.

We can draw the conclusion by looking at

z =
ˆ̄N1 − ˆ̄N2√

V̂D
≈ N(0, 1), (4.3)

where large value of |z| suggests significance. For example in the last block in Table 10

when comparing without linear structur and the proposed method, we have |z| = |4.1 −

3.9|/
√

(0.0122 + 0.0122) ≈ 11.9. This large |z| value indicates the significant difference
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between the two methods, indicating a significant larger correctly number of selected true

predictors.

When data is not correlated, EBIC is the most conservative method with the least

predictors selected. Across all cases, the numbers of false positive are zero or close to

zero but this doesn’t mean that the results are acceptable since the total selected is

always kept at a very low value. Under the validation method, BIC, there are one or two

cases when (3) double penalty with linear structure is the best in terms of true positives.

Specifically, when data is not correlated or when ρ = 0.5, the proposed method does not

show advantage over the other two methods in our simulation studies. The proposed

method, in a few cases, is doing as good as without linear structure. When data is

correlated with ρ = 0.9, the proposed method is doing the best in all blocks of Table 10

and 12, in last two blocks of Table 11. On the other hand, we should notice that BIC tend

to generate larger false positives. This may due to relatively small sample size. When

sample size increases, false positives generated by BIC are almost the same with other

three criteria.

Overall, the results of simulated data analysis do not give solid evidence that (3) is

a better method in selecting SNPs. The differences between (1)–(3) are not very obvious.

Higher correlation may increase the number of selected SNPs and the number of true

positive as well. It’s notable that lasso penalty seems to be robust against the four

measurements of the validation, BIC, BICC and EBIC. The selection results of lasso do

not change much in all cases. Among the four measurements, BIC may be a reasonable

way to determine tuning parameters in the next step, the real data analysis.
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Chapter 5

Real Data Analysis

Coeliac disease is an immune-mediated, chronic digestive disease that primarily

affects the gastrointestinal tract and interferes with absorption of nutrients from food

(Losowsky 2008). It can be triggered by gluten ingestion while gluten is a protein that

can be found in wheat, rye, and barley. Symptoms include chronic diarrhoea, failure to

thrive (in children), and fatigue (Rodrigo 2006). Among U.S. adults, the prevalence of

coeliac disease is about 1% (Fasano et al. 2003; Rewers 2005). Several genetic factors

combined with an environmental trigger are necessary for the disease to develop.

The purpose of real data analysis is to apply the proposed method on coeliac data

and evaluate the feasibility and performance of the proposed method in real data. Though

the association between HLA region and coeliac disease has been well established (van

Heel and West 2006), van Heel et al. (2007) estimated that HLA region only contributes to

35% genetic variation. Wolters and Wijmenga (2008) also claimed that there should exist

other non-HLA regions contributing to coeliac development. Both van Heel et al. (2007)

and Wu et al. (2009) found that there are other strongly significant SNPs outside the HLA

region. Besides the well known HLA-DQ2 and HLA-DQ8 located on chromosome 6p21,

KIAA1109-TENR-IL2-IL21 block (van Heel et al. 2007), TNFAIP3 and REL (Trynka et al.

2009) were found to be new susceptibility factors for coeliac disease. Wu et al. (2009)

identified some significant SNPs located on other chromosomes including chromosome 8.

The coeliac disease data, therefore, is a good option to validate our proposed method.

Due to the computation speed, we only look at chromosome 8.
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5.1 Data Description

In the British coeliac data of van Heel et al. (2007), a number of 310637 SNPs

were typed on n = 2200 subjects (938 males and 1262 females). The number of controls,

defined as without coeliac disease, is 1422 while the number of cases, defined as with

coeliac diseases, is 778. We only examined chromosome 8, which has a SNP number of

17904. Response is 1 if the subject is with coeliac disease and 0 otherwise. xij is set to

−1, 0, 1, corresponding to the three SNPs genotypes aa, Aa and AA, respectively. All the

SNPs are ordered; missing genotypes are imputed. The BP position as a measurement

of local position will be used to calculate ω in the double penalty with linear structure.

SNPs with closer BP position gain a greater weight in the double penalty.

We applied BIC to select tuning parameters because it showed a slight advantage

over the lasso and double penalty without mapping distance across all the sample sizes

and correlation settings in simulated data analysis. First we employed grid search to

determine the tuning variables using BIC; next, with the selected λ1 and λ2, 17904 SNPs

as potential predictors were thrown into the model and the strongest predictors were

selected. We identified those selected SNPs are the most “important” predictors. The

selected SNPs, with the gender covariate, were then estimated again in logistic regression.

P-values were recorded.

5.2 Results of Real Data Analysis

Table 13 summarizes the real data analysis results. The first column is the SNP

marker name, except for the first row which shows information for gender; BP position

indicates the base pair location on the chromosome. The column p-value is copied from
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the logistic regression analysis after selection; the columns of gene and function record the

gene name that the corresponding SNP belongs to and its related functions, if applicable.

The proposed method reduced the number of potential predictors on chromosome

8 from 17904 to 28. Among the 28 selected SNPs, 13 are intergenic SNPs between other

genes. Occasionally, intergenic regions act to control genes nearby, but most of them have

no currently known function. There are 13 SNPs belonging to 12 genes. We were unable

to find any information for SNP rs10503561 and rs7386962.

Specifically, both SNPs rs6995469 and rs6991080 are from gene CSMD1, which is a

potential suppressor of squamous cell carcinomas (Lau and Scholnick 2003). CSMD1 has

been found to be a potential risk factor of schizophrenia (H̊avik et al. 2011) and chemical

dependency (Rose et al. 2010). SNP rs3943520 is included in gene SLC39A14, which is

zinc transporter (Taylor et al. 2005). Zinc is an important cofactor for many enzymes.

SNP rs1485750 locates in gene EBF2. As a protein-coding gene, EBF2 is a transcription

factor that, in osteoblasts, activates the decoy receptor for RANKL, TNFRSF11B, which

in turn regulates osteoclast differentiation and acts in synergy with the Wnt-responsive

LEF1/CTNNB1 pathway (Wang et al. 2002). SNP rs2347501 is from gene NRG1 encoding

one of four proteins in the neuregulin family that act on the EGFR family of receptors.

It is important for the normal development of the nervous system and the heart (Peles

et al. 1992; Plowman et al. 1993). NRG1 may also be an important factor in developing

schizophrenia (Zhao et al. 2004) and breast tumors (Huang et al. 2004). Gene C80rf72,

which rs10504244 belongs to, may play certain role in tumor progression (Hauge et al.

2007).

SNPs rs1445401, rs648119, rs10096287, rs4871072, rs10505604 and rs2896714 belong

to gene EYA1, NCALD, RIMS2, SNTB1, TG and ST3GAL1 separately. These genes also
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have their biological functions. EYA1 encodes a member of the eyes absent (EYA) family

of proteins. The encoded protein may play a role in the developing kidney, branchial

arches, eye, and ear. Mutations of this gene have been associated with branchiootorenal

dysplasia syndrome, branchiootic syndrome, and sporadic cases of congenital cataracts

and ocular anterior segment anomalies (Cook et al. 2009). NCALD may be involved in

the calcium-dependent regulation of rhodopsin phosphorylation (Alexanian et al. 2001).

RIMS2 is a rab effector involved in exocytosis and may act as scaffold protein (Wang and

Südhof 2003). SNTB1 encodes a large, rod-like cytoskeletal protein found at the inner

surface of muscle fibers, Dystrophin. The protein encoded by this gene is a peripheral

membrane protein that has been found to be associated with dystrophin and dystrophin-

related proteins. This gene is a member of the syntrophin gene family, which contains

at least two other structurally-related genes (Ahn and Kunkel 1995). It’s reported that

TG is working as a thyroid hormone precursor, storage of iodine, and storage of inactive

thyroid hormones (Boat et al. 1989, p. 1854-1861). The protein encoded by ST3GAL1

is normally found in the Golgi but can be proteolytically processed to a soluble form.

Correct glycosylation of the encoded protein may be critical to its sialyltransferase activity

(Kitagawa and Paulson 1994). The association between ST3GAL1 and bipolar disorder

have been reported (Zandi et al. 2008; Zhang et al. 2010). We were not able to collect any

biological function of gene SAMD12 or confirmed function on absorption and digestion of

selected genes.

Looking into our results, our findings and the current literature do have some over-

lapping results. In GWAS of Wu et al. (2009) using the same data set, two intergenic

SNPs rs736191 and rs1499447, and SNP rs10505604 in gene TG were reported to be

strongly associated with coeliac disease. On the other hand, Trynka et al. (2009) found
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there is no association between coeliac disease and the gene CSMD1, C8orf72, EYA1 and

TG. To our knowledge, there is no other literature on association between the other genes

and digestion (or absorption).
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Chapter 6

Conclusion

Penalized logistic regression is applied to model selection to handle “large p, small

n” gene mapping problems. The proposed method explicitly incorporates a measure of

linear structure of adjacent SNPs to encourage smoothness of the effects of those with

close local positions.

The simulation analysis shows that this double penalty with linear structure is

superior to that without linear structure and the lasso penalty in SOME cases in terms of

both the numbers of true positives and false positives. By forcing the fusion of adjacent

SNPs weighted by difference of their local positions, the proposed method can identify

the strongest associated SNPs among the candidate pool. The other two methods, either

fail to consider the smoothness of the adjacent SNPs or don’t take the linear structure

into account. Thus, the variants raising the risk by small values may not be detected. By

imposing the linear structure, two adjacent SNPs with closer local position are fused with

a greater weight and are simultaneously more likely to be selected or to be dropped.

The proposed method, however, is not always an ideal option as there is certain

chance that relatively weak associated predictors may not be chosen. Another thorny

issue in handling large number of SNPs simultaneously is computation. We borrowed

the Nesterov method to solve the objective function, but the computation speed is under

expectations especially when the sample size is large. Simulation studies also show that

the discrepancies between our proposed method and the other two methods are not very

obvious. Originally we proposed to apply coordinate descent to this problem (with some
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modifications by replacing the fused lasso term with a total variation norm). Coordinate

descent is applicable when the problem is separable. Our modification did not avoid the

non-separability thus coordinate descent did not work in our problem.

In the coeliac data analysis, we focused on chromosome 8. The whole procedure can

therefore be generalized to the whole genome. With the 28 selected SNPs, we identified

12 genes, including the gene TG. In GWAS of Wu et al. (2009) using the same data

set, two intergenic SNPs rs736191 and rs1499447, and SNP rs10505604 in gene TG were

also reported as the significant markers on chromosome 8. On the other hand, Trynka

et al. (2009) found that TG was not associated to coeliac disease. Our proposed method

detected statistically significant predictors related to coeliac disease but due to computa-

tional speed, our analysis was restricted within chromosome 8. A similar procedure using

our proposed method on the whole genome may be able to identify more biologically

significant genes.
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Table 13: Selected predictors in chromosome 8 for coeliac disease

SNP BP position P-Value Gene Function

gender 0.00000
rs6995469 3510038 0.00010 CSMD1 Potential suppressor of squamous cell

carcinomas
rs6991080 4612685 0.02649 CSMD1 Potential suppressor of squamous cell

carcinomas
rs2924750 4902851 0.00228 intergenic
rs10503561 15843279 0.00361
rs13265570 20230308 0.00045 intergenic
rs3943520 22338677 0.02305 SLC39A14 May be able to transport iron (by similarity)

and acts as a zinc-influx transporter
rs1485750 25864862 0.00036 EBF2 Belongs to the conserved Olf/EBF

family of helix-loop-helix transcription
factors

rs2347501 32413693 0.00191 NRG1 Important for the normal development
of the nervous system and the heart

rs2317630 57748410 0.00097 intergenic
rs10106681 58428893 0.00243 intergenic
rs10504244 59147328 0.01308 C8orf72 May be involved in tumor progression
rs10808759 69314054 0.00394 intergenic
rs2726312 71622060 0.00137 intergenic
rs3919902 72184730 0.01504 intergenic
rs1445401 72411576 0.00200 EYA1 Encodes a member of the eyes absent (EYA)

family of proteins. The encoded protein
may play a role in the developing kidney,
branchial arches, eye and ear

rs2977330 76857217 0.00044 intergenic
rs894153 96301923 0.00144 intergenic
rs736191 99264380 0.00159 intergenic
rs648119 103207221 0.00005 NCALD May be involved in the calcium-dependent

regulation of rhodopsin phosphorylation.
Binds three calcium ions

rs10096287 104864059 0.00064 RIMS2 Rab effector involved in exocytosis. May act
as scaffold protein

rs4559272 119595143 0.00136 SAMD12
rs4871072 121662368 0.00162 SNTB1 Adapter protein that binds to and probably

organizes the subcellular localization of
a variety of membrane proteins. May link
various receptors to the actin cytoskeleton
and the dystrophin glycoprotein complex

rs7386962 124149521 0.00067
rs2122835 128347495 0.00065 intergenic
rs10505604 134096770 0.00002 TG A thyroid hormone precursor, storage

of iodine, and storage of inactive
thyroid hormones.

rs2896714 134564796 0.00204 ST3GAL1 Complex and appears to produce several
proteins with no sequence overlap

rs7460819 136804688 0.00254 intergenic
rs1499447 138051471 0.00000 intergenic
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