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An image can only be as good as the optics of a camera or any other imaging system 

allows it to be.  An imaging system is merely a transformation that takes a 3D world 

coordinate to a 2D image plane.  This can be done through both linear/non-linear 

transfer functions.  Depending on the application at hand it is easier to use some 

models of imaging systems over the others in certain situations.  The most well-

known models are the 1) Pinhole model, 2) Thin Lens Model and 3) Thick lens model 

for optical systems.  Using light-field analysis the connection through these different 

models is described.  A novel figure of merit is presented on using one optical model 

over the other for certain applications. 

After analyzing these optical systems, their applications in plenoptic cameras for 

adaptive optics applications are introduced.  A new technique to use a plenoptic 



  

camera to extract information about a localized distorted planar wave front is 

described.  CODEV simulations conducted in this thesis show that its performance is 

comparable to those of a Shack-Hartmann sensor and that they can potentially 

increase the dynamic range of angles that can be extracted assuming a paraxial 

imaging system. 

As a final application, a novel dual PTZ-surveillance system to track a target through 

space is presented.  22X optic zoom lenses on high resolution pan/tilt platforms 

recalibrate a master-slave relationship based on encoder readouts rather than 

complicated image processing algorithms for real-time target tracking.  As the target 

moves out of a region of interest in the master camera, it is moved to force the target 

back into the region of interest.  Once the master camera is moved, a precalibrated 

lookup table is interpolated to compute the relationship between the master/slave 

cameras.  The homography that relates the pixels of the master camera to the pan/tilt 

settings of the slave camera then continue to follow the planar trajectories of targets 

as they move through space at high accuracies. 
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1 Introduction 

1.1 Brief History 

Too often in computer vision applications optical models for lens systems are over 

simplified to a common pinhole model.  These models project a point in the world along 

a straight line to the imaging plane preserving the angle the ray makes with the optic axis 

at the input and output planes of a lens.  In such systems, linear and angular 

magnifications are fixed to unity.   

Complex lens structures, specifically large magnification zoom lenses are finding their 

way more and more into many applications in the computer vision field.  PTZ camera 

networks for tracking objects at long rages, target identification, and handoff are the next 

step in camera network systems.  Often in a camera system the more expensive parts are 

the optics involved to minimize aberrations and provide larger fields of views as well as 

angular magnifications.  It then seems too rudimentary to model such structures as simple 

pinholes for the mapping between world to image coordinates.   

Common papers in the area of PTZ camera networks claim that (1) (2) the cameras can 

be modeled as pinholes at each specific zoom setting.  A look-up-table is formed and then 

interpolated for real time applications.  But the question then arises as to how good their 

target localization accuracies actually are?  Rarely do we find papers that compare the 

accuracies of their vision systems to the accuracies of a laser range finder for example.  

Since the models work, and are claimed to work reasonably well, is there any figure of 

merit that can provide a detailed look into the transformation of the rays that are coming 

into the camera system entrance pupil and leaving out at the exit pupil?   
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A figure of merit between these optical systems gives better insight into the different 

models that need to be used for various applications.  For instance, FSO communications 

call for realignment at micro radian accuracies.  Could vision systems aboard UAVs 

acting as a base station track multiple ships at sea to provide the accuracies for these 

links?  If so, what accuracies are expected from the pointing errors due to a chosen 

optical model for the vision system?  Is there a best possible pointing limit that can be 

achieved once a specific model is chosen? 

This thesis explores these questions using the future of cameras, the Light Field or 

Plenoptic camera.  Extending the model of image formation within these cameras to 

complex lens structures provides an insight into how optical models compare with one 

another.  It provides the measurement criterion to be able to compare apples to apples. 

1.2 Light Field Analysis 

Adelson and Wang (3) in their paper introduce the plenoptic function as a periodic table 

for vision systems.  The plenoptic function is a measure of irradiance along a light ray as 

it travels from a radiating source to a point of interest.  Cameras that capture such light 

fields are only recently hitting the market via a small startup company called Lytro 

Technologies, founded by Ren Ng of Stanford University.  Earlier work at Stanford 

captured light fields using an array of webcams that were synchronized to all take images 

of an object at the same time.  Ng retrieved this ray information that is lost in 

conventional cameras by placing a micro lens array, whose f/# matches that of the 

objective lens of the camera, in front of the image sensor plane.  A diagram of his camera 

is shown in Figure 1. 
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Figure 1: Plenoptic Camera schematic (4) 

Retrieving the ray information of the incoming light coming into the camera system 

allows for multiple focus points by a simple mathematical change of bases in a post 

processing algorithm that can be run after the image is taken.  That is, the image capture 

retrieves multiples depth of focus from a single image.  In a conventional camera this 

would have required the photographer to take an image, change his zoom/focus, take 

another image, change zoom/focus, take another image, etc. 

Wang (5) extended the work of light field analysis using simple paraxial optics to model 

image formation from a Lambertian object as it travels a distance d and passes through a 

thin lens of focal length f.  He showed that by a simple change of basis, the light field at 

the sensor plane can be put in terms of the light field at the object using the paraxial 

optics matrices that are derived for simple systems.  In addition, any apertures within the 

optical system simply modulate the light field as it passes through the structure. 

This thesis extends the work of Wang to model image formation using paraxial optics for 

any complex lens structure.  Vendors often do not provide the prescription of the lens that 

is used within their device.  By modeling the lens as a black box and using the effective 
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focal length, back focal length, and front focal length, which are all parameters that must 

be provided by the vendor, one can model image formation for a light field as it travels 

through the lens structure.  In addition, using such an analysis of the light field as it 

enters/exits a complex lens structure, a figure of merit is provided to compare that lens 

system to any other model for a camera.  It finally resolves the issue of the optical 

equivalence of the pinhole model’s usage for any lens system.   

Applications for such systems are in adaptive optics for astronomical measurements of 

distortions in wave fronts as they travel along multiple channels from the source to image 

sensor; as well as surveillance applications for accurate tracking of a target as it moves 

through the field of view of a control camera.  Simulations and experiments are 

conducted in both of these areas and are summarized in coming sections. 

1.3 Adaptive Optics 

Adaptive optics is a field that is primarily concentrated in astronomy to measure 

degradations in the wave fronts that are incident on optical systems and use structures 

such as deformable mirrors to correct for the distortions in wave fronts.  Shack Hartmann 

sensors are constructed by micro lens arrays placed in front of a sensor plane to locally 

measure the distortions of incident waves from planar wave fronts.  A wave is sampled 

through an array of pinholes before hitting a sensor plane and the micro lens elements 

simply add up the bundle of rays traveling into the sensor to provide a brighter image.  

Shack Hartmann sensors are limited to the angular resolution given by the f/# of the 

micro lens array that is used to sample the wave front at the aperture plane.  Methods for 

increasing their angular resolution are of great interest in adaptive optics (6) (7) (8). 
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The principle of operation behind Shack Hartmann sensors is to be able to sample the 

input wave front and measure the distortions in the local wave front by measuring the 

energy vector normal to the curvature (9) of the wave at the point.  The light field camera 

follows a very similar principle of operation.  The micro lens array placed in the back of a 

plenoptic camera is meant to retrieve the ray information that is lost by a conventional 

camera.  The major difference between these two (Shack Hartmann sensors and Light 

Field cameras) are the price where the former is on the order of $1,500, while the latter is 

on the order of $400 (depending on the size of memory).  Could the Light Field camera 

then be used for applications in adaptive optics? 

After a thorough literature review it was found that there is only one group (in Spain) that 

is looking into measuring wave front distortions using a Light Field camera.  CAFADIS 

(9)is a plenoptic camera with interchangeable object lenses that achieves focal ratios on 

the order of f/1.4 and f/2.8 without being forced to place the micro lens array only 

micrometers from the image sensor plane.   

 

Figure 2: Plenoptic wave front sensor measuring beams from LGS passing through six turbulent 

atmosphere layers (9) 

Sodium artificial laser-guide stars (LGS) at 90km ranges are used to obtain the system’s 

reference wave front phase and optical transfer function.  This is a dual to the Shack 
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Hartmann sensor by placing the micro lens array at the focal plane rather than at the 

aperture plane.  The authors classify CAFADIS to be where Shack Hartmann and 

pyramid sensors meet. A pyramidal sensor consists of a lens relay and an oscillating 

pyramidal shaped prism to control the gain and sampling of the wave front sensor.  In the 

pyramidal sensor, a prism is placed in front of an objective to form four images of the 

entrance pupil on the sensor plane.  Adding these images together provides a brighter 

image for measurements, exactly like the plenoptic camera.  In this particular case 

though, rays of light are not used for the measurements but more blurs measured from the 

oscillations of the prism.    

Preliminary simulations for a novel technique using paraxial imaging to retrieve the input 

wave front using CodeV are presented in this thesis.  Applying the same idea of light 

field analysis proposed in the previous section, knowing the light field at the image 

sensor plane can be inverted to find the input light field at the entrance pupil of the 

optical system.  It is shown in this thesis that such a wave front reconstruction retains the 

accuracies of a Shack Hartmann sensor.  Lytro has only recently released its Light Field 

camera (late February 2012) and experiments are going to be conducted to verify these 

simulations once a plenoptic camera is fabricated or a Lytro camera is obtained. 

1.4 Surveillance Systems 

As mentioned earlier, another application of light field analysis is in surveillance.  

Surveillance systems can be categorized into three areas: 

1. Stationary object tracked by a stationary camera (no fun).  This just amounts to 

finding the 3D position of an object from stereoscopy. 
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2. Stationary camera tracking a moving object, or, equivalently, a dynamic camera 

tracking a stationary object.  The former is a surveillance system while the latter 

can be used as an inertial navigation unit. 

3. Dynamic camera tracking a dynamic object (this is extremely difficult and the 

focus of this research).   

Zoom lenses would increase the accuracy in any one of the three scenarios by focusing 

on an object of interest to allow it to take more pixel-space within the image.  By 

increasing the focal length, we are thereby increasing the zoom, and will be able to track 

objects at far distances, or for that matter, objects that move to far distances, thereby 

keeping them within the field of view of the camera system over a long period of time.   

A simple solution to the third scenario of a surveillance system is provided by Badri et al, 

where a hybrid system consisting of a static camera with a wide field of view is used to 

look at a scene, which then sends coordinates of objects to a zoom camera that is free to 

pan, tilt, and zoom to focus in on the object of interest caught by the static camera. In 

other words, two cameras are used, one static and the other dynamic, with the dynamic 

one obtaining its target information from the static one, thereby adjusting the pan-tilt and 

zoom to focus on the object. In this paper, an automatic and autonomous solution is 

presented for a non-calibrated pair of cameras, by forming a look-up table (LUT) of static 

camera position with respect to zoom setting, of another LUT of zoom setting with 

respect to camera parameters.  To determine the LUT to use for an object located in a 

specific region of the static image, use the first LUT to determine the zoom setting, and 

once that is achieved, use the second LUT (or an extension of the second LUT) to 

determine the parameters (intrinsic and extrinsic) to use for the camera.  The goal is to 

find a function f, that maps 
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(pZ, tZ) = f(xs, ys, Zj) 

where (pZ, tZ) are the pan and tilt settings at a specific zoom Z, and (xs, ys, Zj) are the 

static image coordinates in pixel units at zoom Zj.  The paper found the homography 

mapping between a number of feature points matched between the static dynamic images 

and set the pan/tilt of each node point in the static camera to the point at which it centers 

that pixel coordinate in the image of the dynamic camera.  The experiment used 704 x 

576 resolution, 42deg FOV, 26x optical zoom dynamical camera, and a 640 x 480, 90 

degree static camera.  Their gimbal resolution was 0.11 degrees.  They were able to show 

that their accuracy was limited by this mechanical factor and received the following 

errors for their pan/tilt angles from tracking points on three different ellipse locations of 

which the angles were known (1): 

 

Figure 3: Error normalized to mechanical step for (a) pan and (b) tilt parameters for several zooms 

using (light gray) triangle (mid gray) diamond and (black) square to segment features 

The paper does not provide any information on the depth of the target and the system  is 

limited to the FOV of the static camera. 

In contrast, Chen, Yao and Page interpolate a function that maps each pixel coordinate in 

the static image to a specific setting of the pan-tilt-zoom camera.   
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Figure 4: Typical setup for dual-camera surveillance system (10) 

That is, they find functions 

θP = fP(xi,yi)         θT = fT(xi,yi)         fZ = fZ(xi,yi) 

so that when the target is in a particular region of the wide-field of view camera, the 

functions set the motors of the pan-tilt-zoom to focus in on that particular object.  Once 

again, the area of interest is solely determined by the field of view of the static camera 

and once the target is out of sight from that image, then these functions will be rendered 

useless.  Using an IQeye3 omnidirectional camera paired with a Pelco PTZ Spetra III SE 

dome camera, targets were placed between 0.2-5m from the cameras.  Eight images at 

resolutions of 820x720 were taken of a planar 7x7 checkerboard.  The results obtained 

showed that the larger the tilt angle, the higher the errors for the two calibrations methods 

that they tested, however the pan angle did not affect calibration errors (10).  
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Figure 5: Comparison between methods based on relative errors in the estimated tilt angle (10) 

An extension to this work is that of Chen, Yao, and Driria in which they calibrate two 

zoom cameras and interpolate a function between the two cameras parameters.  Thus, 

from then on, all they need to do is calibrate one camera and send the coordinates of that 

camera to the function which will output the coordinates of the second camera.  A block 

diagram of their system is shown below: 

 

Figure 6: Cooperative mapping of multiple zooms block diagram (2) 
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They tested their results with two Pelco PTZ cameras of 640x480 resolution with 825 

image samples uniformly distributed over their scene.  The object is located at most 18m 

from the camera and as close as 3m (2).   

 

 

Figure 7: Error in Pan Angle and Zoom position using the mapping from one camera to the other (2) 

Errors were retrieved by comparing their algorithm to that of Chen and Wang, who 

calibrate each camera independently by using known fixed objects within a scene. 

This thesis explores an extension of the work by Chen and Wang for two dynamic 

cameras tracking a moving object.  A similar transformation is found but accuracies are 

increased by using machine vision cameras that output uncompressed images, high 

resolution rotary platforms up to 0.00001 degrees, and zoom lenses with preset 16 bit 

encoders to accurately map the trajectory of a known target.  A master/slave setup allows 

the master camera to keep the target within the center of its image and control the slave 

camera for accurate measurements at long ranges.  Simulations show that by 

understanding the optics within the lens model increase the accuracies of target 

localization. 

This thesis is organized as follows: Chapter 2 provides a complete background that 

covers all the different lens models that are used in optics.  Chapter 3 uses light field 

analysis to compare the models presented in Chapter 2.  Chapter 4 extends the use of 
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light field cameras in adaptive optics, while Chapter 5 talks about their use in 

surveillance systems.  Chapter 6 then concludes the thesis with a summary of the 

novelties presented as well as future work that is to be conducted.
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2 Review of Imaging Systems 

2.1 Introduction 

In this chapter we will introduce the different models that exist for imaging systems.  

An imaging system is a system that takes a 3D world coordinate to a 2D image plane.  

This can be done through both linear and non-linear transfer functions.  In certain 

situations one is often preferable over the other.  The most well-known models are the 

1) Pinhole model, 2) Thin Lens Model and 3) Thick lens model of optical systems.   

The novelty presented in this chapter is the evolution of these models from one to the 

next.  The thin lens model is an extension of the pinhole model and the thick lens is 

an extension of the thin lens model .  Reduction to a small angle approximation 

involves linear transforms using Snell’s Law of refraction.  The pinhole model for an 

optical system is a linear transformation from homogeneous world to image 

coordinates, while the thin lens uses the radius of curvature and index of refraction of 

the material to bend the light towards the focal plane of the lens.  The thick lens is an 

array of “thin lenses” all concatenated together to form any complex optical system 

that is desired. 

We will derive all of the necessary equations that are consequences of each 

assumption and discuss the effect and applications of each model.  The models 

include: 1) pinhole model of a camera 2) thin lens imaging system 3) thick/compound 

lens model. 
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2.2 Pinhole Model for Optical System 

The most well-known model used in computer vision for camera calibrations is the 

pinhole model of the camera.  This model assumes that the camera acts as a pinhole, 

which allows the rays coming from the object to pass through it and preserves the 

angle the ray makes with the optical axis.  

2.2.1 Introduction 

The perspective model of the camera is the simplest model to understand the 

formation of an image from an object.   

 

Figure 8: Pinhole model for an imaging system that maps a world point P to an image point P' 

This model maps a point in space with coordinates P(x, y, z) in a straight line passing 

through the pinhole of the camera (the origin shown above) to its corresponding point 

in the image plane.  From Figure 8, it seems that the image of the world will be 

inverted, but without loss of generality, the coordinate system can be moved behind 

the image plane at a distance f, and the mathematics remains unchanged. 

The third coordinate in the image plane is always fixed to the focal length of the 

camera, and therefore provides no useful information and can be ignored.  By use of 
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similar triangles and the preservation of the angle θ between the ray and the optical 

axis, it can be seen that the equation that relates the world point P to the two 

dimensional image point P’ can be given by: 

 

2.1 

In matrix form, these equations can be written as in : 

 

 

2.2 

 

where s is a constant that is adjusted (and depends on the distance z) to force the third 

coordinate to be equal to one.  From the matrix equation above, the notion of 

homogeneous coordinates is introduced to define the mapping between world and 

image coordinates.   

As the camera is translated and rotated about the world frame, the way it perceives 

the world coordinates changes.  In addition, the model above ignored any skew that 

could be present in the CCD, the real image center, and any distortion that arise from 

the properties of the camera.  The former rotations and translations are known as the 

extrinsic parameters of the camera, while the latter properties are known as the 

intrinsic properties of the camera.  
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To complete this calibration, a mapping is first found from the world coordinates to 

the camera coordinates.  This mapping uses the extrinsic parameters to provide the 

world coordinates in the reference frame of the camera as its pose and movement are 

adjusted.  The intrinsic matrix is then applied to the point that is now in camera 

coordinates to give the pixel coordinates of the point.  This is outlined in Equation 

2.3: 

x = K [R|t] X = PX 2.3 

x are the image-pixels, and X the world in homogenous coordinates, K represents the 

intrinsic matrix of the camera given by Equation 2.4: 

 

2.4 

and [R|t] is a 3x4 matrix composed of a 3x3 rotation around the three camera axes 

and t its translation.  Calibration therefore calls for finding the matrix P, a 3x4 matrix 

that is the product of these two matrices.  There are 11 degrees of freedom (focal 

length, pixel spacing, CCD skew, image x/y center, three rotations, and three 

translations), and thus 11 unknowns must be found, which means the matrix P is only 

found up to a scale factor, eliminating one of the unknowns.  The two ways primarily 

used to find the matrix P are known as the planar homography and infinite 

homography solutions.  The infinite homographies are beyond the scope of this thesis 

but follow the same principles after calibration. 
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2.2.2 Calibration of Imaging System Using the Pinhole Model 

Camera calibration is defined as finding the extrinsic (rotation, translation) and 

intrinsic parameters (focal length, sensor skew, and distortion) of the camera that 

yield the mapping of the world coordinate to the image-pixel coordinates. 

Planar calibration uses a planar target, like a chessboard, to form the world-image 

point correspondences to extract the necessary unknowns from the calibration.  Well-

developed toolboxes like OpenCV (11) and the Matlab toolbox by Bouget (12) find a 

chessboard within a scene based on Harris corners.  The size of the chessboard is 

given to the algorithms to extract all corners that lie on a line in the pattern of a 

chessboard.  Each corner is found and a 360 degree revolution of intensity variations 

around a region R of the gray scale image is analyzed.  If there are four “adequate” 

intensity changes, then the corner is the corner of a chessboard.  The toolbox then 

seeks to find MxN such variations that are collinear in the horizontal and vertical 

directions to identify the chessboard.  Once the MxN pattern is found, a logic one is 

returned and the corners are saved in a matrix of image points.   

A flexible technique for camera calibration is one that only requires the camera to 

observe a planar pattern in at least two different orientations; the motion need not be 

known (13).  A checkerboard is used with its plane in the real world set to Z=0, 

forcing the 4x3 K[R|t] matrix into a 3x3 matrix H, which is known as the 

homography (14).  The X and Y coordinates of the world points as shown in Figure 8, 

are determined by spacing the corners of the chessboard in a way where they lie from 

(0,N-1) on the y-axis, and from (0,M-1) on the x-axis.  Note that OpenCV arranges its 

points in a way where the board is a parallelogram as shown in Figure 9. 
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Figure 9: OpenCV corner arrangements of chessboard 

   

Matlab’s toolbox however differs slightly in that the world points are all equally 

spaced and kept within the grid [0,1]x[0,1].  In addition, all corners found by the 

Matlab toolbox are affine normalized to find the homographies.   

After point correspondences are made between the world and the image domains, 

without loss of generality, we can set the Z=0 axis to be at the checkerboard, and thus 

eliminate three unknowns of the P-matrix (i.e. the third column of the matrix P) from 

our list of unknowns.  We can call this new matrix H, and write Equation 2.5: 
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where x’ = x1/x3 and y’=x2/x3.  Rearranging these equations yields Equation 2.6: 

 2.6 

which can then be written as the matrix equation in 2.7 : 
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2.7 

where Hi is the ith row of the matrix H.  These image to world pair coordinates are 

manually selected in the image, and since we know the grid spacing between 

consecutive patterns, we can map a standard grid with corners (0,0), (1,0), (1,1), and 

(1,0) to those pixel coordinates.  With four of these correspondences, we would have 

enough equations to solve the system for the homography.   

After finding the SVD of the corresponding matrix, the last column of V is the 

eigenvector that has eigenvalue equal to zero, which is the only vector in the null 

space of this matrix (up to a scale factor). Therefore, by imposing the condition that 

the third row of H must have a magnitude of unity, defines the unique homography 

that maps the world’s coordinates to the image’s coordinates.  

Finally after finding the mapping between the world to image points, we will need to 

extract the camera parameters (the aforementioned intrinsic and extrinsic) from the 

matrix. To do so, we make note of the fact that images of orthogonal vanishing points 

are mutually orthogonal and thus can derive 2.8.   

 

 2.8 

x ' (−H3−)XW − (−H1−)XW = 0

y ' (−H3−)XW − (−H2−)XW = 0

(K −1
v1)' (K

−1
v 2) = 0
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where v1 and v2 are known as vanishing points.  A vanishing point is a point that is the 

image of an ideal point in the world (the point of intersection between parallel lines in 

homogeneous coordinates), where the ideal points are given by (1,0,0), (0,1,0), 

½(1,1,0) and ½(1,-1,0).  These ideal points are orthogonal and thus their images in the 

camera domain are also mutually orthogonal.  To find these vanishing points, we 

simply multiply the aforementioned orthogonal ideal points to the matrix H that we 

have found form the world-image correspondences.  It turns out that for these specific 

ideal points chosen, the vanishing points are simply linear combinations of the 

columns of H.  

Assume first a skew and initial distortion of zero, and the principal point (intersection 

of the optical axis with the sensor plane) is in the center of the image.  Denoting the 

vanishing points by vi = (ai , bi , ci) gives the following two equations: 

 

2.9

 

which gives the initial settings of the horizontal and vertical focal lengths.  If the 

spacing between pixel coordinates in the horizontal and vertical directions is the 

same, then the fx and fy will be the same.   

These provide the initial guesses for the intrinsic matrix.  Multiplying the inverse of 

the K matrix to the imaged corners of the chessboard gives us the chessboard in the 

camera reference frame.  We compare this to a chessboard whose normal is parallel to 

the optical axis (the previously defined source points) to extract the initial rotation 

matrix.   
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With 11 unknowns, only six points are needed from a single image.  But to choose the 

best matrix that fits the data, an optimization of the cost function 2.10. 

 
2.10 

 

provides more accurate results.  Matlab’s toolbox minimizes the cost function using 

the Gradient Descent method, while OpenCV uses a Levenberg Marquadt 

optimization to minimize the function.  The standard deviations between the results 

provided reduce as you use more images, but as with all optimizations, their results 

do not change much after passing a certain threshold of images used, which was 

simulated to be about 30 images.   

 

Figure 10: Relative percent error of intrinsic and extrinsic matrices vs. number of images used 

for each calibration 

The OpenCV handbook recommends using at least 10 images of an 8x9 chessboard 

whose views take up over 50% of the image and views are not too similar to one 

another.  This becomes rather difficult in calibrating a lens at far distances, as will be 

seen in Chapter 5. 
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2.3 Thin Lens Model of Optical System 

Expanding the pinhole model to include more light rays gives the thin lens model of 

an imaging system.  To be put plainly, the thin lens is the most simplistic lens whose 

index of refraction and radii of curvature determine the focal length of the lens.   

2.3.1 Introduction 

The thin lens is the simplest optical system that forces light rays to bend towards a 

focal point.  The thickness of the lens is assumed to be infinitesimal so that light rays 

which hit the center of the lens and make an angle θ, with the optical axis has its 

angle preserved. 

 

Figure 11: Thin lens ray tracing diagram showing chief (centered) and marginal (edge) rays 

In all imaging systems, we have light travelling from one point to another.  A ray of 

light is defined as a trajectory or path the light will take to go from Point A to Point 

B.  As light travels from one medium to another, the speed of the wave changes, and 

as a consequence, the light ray bends at an angle dependent on the angle to which it 

enters the system.  This is a consequence of phase matching in superposition of waves 

and also Fermat’s principle for optical paths.   The input and output bend angles are 
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related by Snell’s Law of refraction which can be derived from Fermat’s principle 

and is given by 2.11: 

 2.11 

where the angles are measured from the normal of the surface that the light ray 

intersects.  Let’s take a close look at the principle of refraction at a curved surface so 

that we can derive the paraxial equation for a thin lens. 

 

Figure 12: Derivation of thin lens equation by ray tracing at a spherical surface of radius R 

First, by assuming that the angles are small enough to linearize the sine function, we 

can write Snell’s Law as: 

 2.12 

From the diagram above it is clear that the angles can be written as shown in 2.13. 

 

 

2.13 

 

Assuming the distance v, the distance from the lens to the image plane, to be small 

enough so that it can be ignored, we can write: 

n1 sin(θ1) = n2 sin(θ2)

n1θ1 = n2θ2

θ1 = α + ϕ

θ2 = −α '−(−ϕ) = ϕ − α '



 

 24 

 

  

   

   

2.14 

Plugging all of the relationships given in 2.14  into Snell’s Law gives, 

 2.15 

R is the radius of curvature of the surface, s is the object distance, and s’ is where the 

ray will hit the optical axis.  Every lens has to interfaces between itself and air, so if 

we were to model the opposite side of the lens with a radius of –R (standard sign 

convention dictates that concave bends have positive radii while convex ones are 

negative) and interchanging the places of n1 and n2 gives: 

 2.16 

Finally, using the property of a thin lens that says the image point from the first radius 

of curvature is the negative of the object distance to the second radius of curvature 

yields 2.17. 

 2.17 

 

 

and combining equations 2.16 and 2.17 gives: 
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2.18 

This is the famous lens maker’s equation that describes rays coming from an object at 

a distance of u, and creating an image at v after passing through a thin lens whose 

focal length is f.  Note that f can be negative depending on the signs of R. 

2.3.2 Extension to the Pinhole Model 

As a consequence of the lens maker’s equation, we see two immediate differences 

between the thin lens model and the pinhole model of a camera. 

Multiple light rays can now be considered from leaving a source point rather than 

only the light ray that passes through the center of the lens. 

The point of image generation depends on the depth of the object.  In the pinhole 

model, all points along a line, regardless of depth, would all image to the same point. 

The second difference is of particular interest since now a source point can map to 

more than one image point.  This will happen if all rays do not hit the sensor plane at 

the same location and will cause a blur in the image.  Therefore, if the sensor plane 

can be set at the position where the image is in perfect focus, we can derive the depth 

of the point by solving the lens maker’s equation.   

Subbarao and Surya (15) were able to extend this concept further and use the blur of 

the image to extract a depth of field for the scene.  Suppose the optical setup is the 

one shown in Figure 13. 
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Figure 13: Thin lens ray tracing diagram used to derive depth u from blur radius R 

One of the major challenges with depth from defocus is measurement of the blur 

within an image (16).  Suppose the blur radius could be found using techniques 

described in (17) (18) (19).  Using similar right triangles equation 2.19 gives an 

expression for θ1: 

 2.19 

Solving the expression for i2 yields: 

 2.20 

Again from similar triangles, we can write an expression for i1: 

 2.21 

 

Using expressions 2.19, 2.20, and 2.21 we can define the blur radius R and solve for 

the depth u in terms of the blur radius R as shown in 2.22. 
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 2.22 

Writing all of the expressions in terms of known quantities, u can now be solved for 

in terms of depth: 

 2.23 

2.3.3 Positive and Negative Thin Lenses 

To complete the discussion on thin lenses and their differences with the pinhole 

model, let’s take a look at two primary types of thin lenses (positive power and 

negative power lenses) whose sign depends on the curvature, R, of the lens, see 

Figure 7.   Biconcave lenses are lenses with a negative radius, and thus a negative 

focal length, while biconvex ones have positive radii and thus have a positive focal 

length. The index of refraction of the material of which they are made  is always 

higher than that of air. For operation in the visible and near infrared regions of the 

spectrum they are primarily made from glasses or plastic whose indices vary between 

1.4 and 1.8.  A thin lens’s power is measured in diopters and is the reciprocal of the 

focal length.  
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(c) 

 

(d) 

Figure 14:  Ray tracing diagram for concave thin lenses with object (a) inside and (b) outside 

focal length, and  convex lenses with object (c) inside and (d) outside focal length. 

The ray diagrams in the figure are all derived from the lens maker’s equation.  We 

focus on three primary rays: 

1. Any ray coming from infinity that is parallel to the optical axis (u=∝) will 

have its ray pass through f on the imaging side.  Most rays from distant 

objects fall into this category. 

2. Any ray that passes through the point f on the object side (u=f) will 

emerge parallel to the optical axis on the imaging side (v=∝) 

3. Any ray coming from the object that hits the center of the lens, since we 

are assuming a thin lens, does not have its angle changed and thus is 

unperturbed on the imaging side.  This is called the “chief ray.”   
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Figure 15: Combining thin lenses together to form an optical system 

The last most simple thin lens setup we can look at is a combination of two thin 

lenses as seen in Figure 15.  Often thick or compound lens systems such as zoom 

lenses can be modeled by varying the spacing between these two thin lenses. The 

light rays pass through lens A and an image is formed, which acts as the object that is 

imaged through lens B.  The image of lens B is the image of the overall system.  

From the first half of this section, depending on the focal lengths of these lenses, we 

can have a combination of real and virtual images simply by changing the spacing in 

between the lenses.  In addition, as with a zoom lens, the magnification is also 

changed based on the spacing between lenses.      

The lens maker’s equation for each lens can be written as: 

 

 

2.24 
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The object distance u2 and the image distance v1 can be related together with the 

distance d between the two lenses as: 

u2 = d – v1  2.25 

We are looking for a thin lens analog to this system, so we will assume that the 

distance between the two lenses is very small compared to the focal length, then the 

above expressions can be written as shown in 2.26: 

 2.26 

From this we can see that at short distances the optical powers of the lenses simply 

add and the equivalent system can be modeled with a thin lens of that optical power.  

The lenses work together to keep the focus position unchanged as the magnification is 

varied.  The change in the field of view results in a change of the magnification, 

which changes the intrinsic parameters of the camera.  The goal is now to minimize 

the variations in aberrations and distortions over a range of settings rather than 

minimizing them for a single, fixed set of parameters.  To do so, a new lens model 

needs to be analyzed, that of a thick or compound lens system, which provides the 

zoom capabilities.
 

2.4 Thick/Compound Lens Model 

In the previous sections we saw the first extension of the pinhole model of a lens to a 

thin lens and were witness to a number of different properties in the model.   The 

biggest factor was the fact that the thin lens model incorporated more than a single 

ray from an object point to the imaging plane.  Thin lenses, however, condense all 

planes and points of interest in one location, namely, the location where the lens is 
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located.  But thick/compound lens systems include more lenses all of which may not 

be categorized as a “thin” lens.  This calls for a further extension of the model to 

incorporate the fact that our lens systems may be more complex and not include all 

thin lenses.    

2.4.1 Introduction 

In an imaging system, particularly one with a number of lenses as shown below: 

 

Figure 16: Telephoto zoom lens Patent 2906173 YZ-plane view 

A number of questions arise: 

1. What limits the amount of light that enters the system? 

2. Since light is hitting a number of interfaces, how do we define focal 

length, object distance, and image distance?   

Telephoto - U.S. Patent 2,906,173 Scale: 2.20 ORA  08-Feb-12 

11.36   MM   
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3. Now that light is passing through a number of interfaces, it experiences 

many more bends, are there analogs to the rays that were described for 

thin lenses?   

For a thin lens model, the answer to all of the questions above is, “The Thin Lens.”  

All planes, distance measurements, rays, and amount of light entered, exited, and 

limited are all results of the thin lens.  With thick/compound lenses, we are going to 

open up the model to find new entrance and exit planes, points of interest, and 

apertures. 

 

Figure 17: Black box representation of optical system 

Every lens system can be analyzed as a black box where inside the box there are a 

number of different lens elements.  The element within the black box that limits the 

amount of light the system gathers is known as the aperture stop.  The image of this 

aperture stop through all elements that lead to the object is called the entrance pupil 

and the image of the aperture stop through all elements towards the image screen is 

known as the exit pupil.  The two pupils are thus the two ends of the black box and 
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are the primary parameters that characterize the input-output relationship of the 

system.   

In between the entrance and exit pupils, which define the input/output of the lens 

system, are two principal planes.  These principal planes are the “front” and “back” of 

the lens, respectively.  They are labeled P1 and P2 in the figure.  These are the planes 

where the light rays bend towards the focal point if they are coming in parallel to the 

optical axis.  They are hypothetical planes for refraction of light rays through the lens 

system. The locations of the principal planes are determined by the focal lengths of 

the system. 

There are three focal lengths associated with every thick/compound lens system: a) 

Front Focal Length b) Back Focal Length c) Effective focal length.  The front and 

back focal lengths are found by finding the intersection of the rays parallel to the 

optical axis as they come from the left/right hand sides of the optical system, and are 

measured from the left/right most lens intersection with the optical axis, respectively.   

The effective focal length of the system is the distance from the each principal plane 

to its respective focal length.  That is, the principal planes are placed in a way where 

they are equidistant to the front/back effective focal points.  Namely, the distance 

between PP1 and F1 is equal to the distance between PP2 and F2.  This distance is 

known as the effective focal length of the system and is what is found by the 

calibrations of the pinhole model.  Expressions for each of these focal lengths are 

derived in the next section using matrix optics. 
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2.4.2 Matrix Optics 

We want a way to deal with more complicated optical systems.  The law of refraction 

described in the previous section at surface interfaces is true for all surfaces and 

interfaces but it is too complex to analyze for each surface.  Note that ray tracing 

program like CodeV or Zemax do exactly that to find the ray trajectories of an optical 

system.  But in a paraxial ray analysis, where the angles of the incoming light are 

small enough to approximate Snell’s law as 2.12 there is a linear system relationship 

between the input height/angle and the output height/angle.   This section will derive 

a number of the common trajectories that take place. 

First, denote the input rays as a 2D vector
yi

θi

 

 
 

 

 
 , where i ∈[0,1,...,N], denoting the 

surface height of incidence y measured from the optical axis, and the angle it makes 

with the normal as θ.  Thus the linear system can be written as: 

yN

θN

 

 
 

 

 
 = M

y i

θi

 

 
 

 

 
 =

A B

C D

 

 
 

 

 
 

y i

θi

 

 
 

 

 
  2.27 

Consider these matrices for two situations: a) Traveling through a medium of 

refractive index n and b) hitting a refractive surface of curvature R, can be used to 

describe any lens system.  Then from these matrices, we can derive all the optical 

parameters discussed in the previous section (effective focal length, principal plane 

locations, front/back focal lengths).   

A ray traveling in a space of refractive index n, as shown in Figure 18,  



 

 35 

 

 

Figure 18: Ray traveling a distance d through media with refractive index n 

forms a right triangle whose output height and angle is related to the input height and 

angle as: 

yout = y in + d sin(θin )

θout = θ in

 2.28 

Linearizing the above equations and writing them as a system gives: 

yout

θout

 

 
 

 

 
 =

1 d

0 1

 

 
 

 

 
 

y in

θin

 

 
 

 

 
  2.29 

A ray that hits a refractive surface of radius of curvature R should be analyzed right at 

the surface as shown in Figure 19.   
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Figure 19: Refracting of a ray at boundary between materials of two different indices of 

refraction 

The height immediately after the refractive surface remains unchanged: 

yout = yin 2.30 

The angles, on the other hand are related by Snell’s Law, which from Figure 19 is 

given by: 

nα1 = nα2  2.31 

where, α1 = θin + φ1 and α2 = θout + φ2 .  It is clear that φ1 = φ2 , since they are alternate 

angles, and we can approximate it to be: 

R

y

R

y inout ==φ  2.32 

Substituting all of the above into Snell’s Law an solving for θout, gives: 

θout =
1

R
(

n1

n2

− 1)y +
n1

n2

θin  2.33 

Putting the expressions for the height and angle in a linear matrix system gives: 

yout

θout

 

 
 

 

 
 =

1 0
1

R
(

n1

n2

−1)
n1

n2

 

 

 
 

 

 

 
 

y in

θ in

 

 
 

 

 
  2.34 

The radius R follows the same sign convention from the derivation of the thin lens 

equation.  

These ray transfer matrices can now be used to derive equivalent optical matrix of 

any thick/compound lens system.  Therefore, for the thick lens system shown in 

Figure 20,  
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Figure 20: Thick lens system with radii  and  and thickness t 

the matrix formulation is: 

M tot = MR2
Md MR1

 2.35 

where the rightmost matrix is the interface that the ray hits first and the matrices 

follow in order of incidents so that the final matrix can be given as: 

yout

θout
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 = M tot

y in

θin
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 
  2.36 

Combining all of the expressions above for a thick lens yields: 
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 2.37 

If we define,  

€ 

D1 =
n1 − n0

R1

  

D2 =
n0 − n1

R2

 

2.38 

 

as the optical power of the refracting surface then the matrices multiply out to 2.39: 
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 2.39 

 

Assume n0=1 for free space and d�0 to give a thin lens.  The C-element of the matrix 

(2,1) yields: 

−(D1 + D2) = −(n1 −1)(
1

R1

−
1

R2

) = −
1

f
 2.40 

Considering the appropriate sign convention taken, this is the exact expression of the 

focal length of a thin lens that was derived in the previous section.  This yields that 

the transformation matrix of a ray traveling through a thin lens is given by: 

MThinLens =
1 0

−
1

f
1

 

 

 
 

 

 

 
 

 2.41 

As a matter of fact, any optical system can be defined by: 

 

Figure 21: Black box of optical system used to find the ray transfer matrices between Rays 1 and 

2 from input to output planes 
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The ray transfer matrix from the input to output plane can be written: 

yN

θN
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  2.42 

where hi is the location of each principle plane and the primed letters denote the ray 

transfer matrix of the black-box optical system in between the input and output 

planes.  From this expression we can derive the relationship between the black-box 

optical system and the overall ray transfer matrix to be: 

A' B'

C' D'
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0 1
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0 1
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C D − h1C
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 
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 
  2.43 

Since the system above holds true for any input ray, Ray 2 does not have its height 

change as it travels through h1 therefore 1=′A .   Therefore, the location of the second 

principal plane with reference to the entrance pupil is given by: 

h2 =
A − 1

C
 2.44 

In addition, we know that for Ray 1, the height should not change depending on the 

input angle, therefore B’=0.  For the ray transfer matrices derived for refraction and 

translation we note that: 

det(
1 d

0 1
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Thus any multiplicative combination of these should have their determinants all 

multiply.  It is clear then that if an imaging system is placed in a medium where the 

refractive index is the same on both sides, then when their determinants are all 

multiplied, the product should be 1.  With the lens system in Figure 10 placed in air, 

we can derive the expression for the location of the first principle plane as: 

h1 =
D − 1

C
 2.47 

Lastly, from the paraxial ray analysis, Ray 2 has the property that  

−θout =
y1

f2

 →  C'= −
1

f2

 2.48 

Using Ray 1, this is shown to be: 

−θout =
y2

f1

 →  C'= −
1

f1

 2.49 

Since C’=C, we say that f1=f2, which is the effective focal length of the system.  This 

completes the derivation of all of the unknowns from the previous section using 

Matrix optics. 

2.4.3 Other Optical Considerations 

After developing a complete set of models for lenses, it should be clear now that as 

light rays leave a source object and hit the lens system at different heights and angles, 

they may not all converge to the same point in the image plane, particularly if the 

image sensor is not placed at the location of best focus. The quantitative measure of 

spread of the ray intercepts on the image plane is known as the aberration.  This 

spread of rays limits the spatial resolution of objects that can be captured with an 

optical system. In addition to the blur, rays coming from a line may not all converge 
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to a line in the image.  These two problems bring forth the two primary aberrations of 

an optical system: Spherical Aberration and Radial Distortion. 

In many optical systems, including the pinhole model, planar objects are projected as 

curved surfaces on the image plane (20).  Mathematically (14), this can be written as 

 2.50 

where LI is the distortion factor, r is the distance from the image origin to the pixel 

coordinate,  are the coordinates as would be obtained if there were no distortions, 

and xd and yd  are the distorted pixel coordinates as seen by the camera sensor array.   

A Taylor series of LI  gives, 

 2.51 

where ki are the first five distortion parameters. Zisserman provides a method of 

correcting for the distortion by, 

 

2.52 

where xc and yc are the camera center coordinates. Using the MATLAB toolbox (12) 

the five distortion parameters that are provided are the coefficients of this Taylor 

series. 

In addition to radial and tangential distortion, the response of an imaging system can 

add blur to an image of a scene.  The imaging system can be described by its point 

spread function, or PSF.  The PSF is the impulse response of the imaging system at 

hand since it describes what happens to a point source as it is image through the 

system.  Every object can be thought of as multiple point sources that are imaged 

through a linear system, given the lens system has no nonlinear optical elements 

x1

' = xc + L(r)(xd − xc )

x2

' = xc + L(r)(yd − yc )
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within it, that do not form a point on the sensor plane.  With additive noise, η(x,y), 

any image g(x,y) can be described as: 

g(x,y) = h(x,y;X,Y ) f (X,Y)dXdY + η(x,y)∫∫  2.53 

where h(.) represents the PSF, and f(X,Y) is the object intensity at spatial coordinates 

(X,Y).  With a pinhole model of a camera, every point maps to a point, so h(.) is 

simply the delta function.  With a  thin lens model, the radius blur that was derived is 

analogous to the PSF, where  a point in space created a blur on the image that was 

due to the different rays from the source focusing at different locations on the image 

plane.  The PSF for the telephoto lens in Figure 22 is shown below. 

 

(a) 
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(b) 

(c) 

Figure 22: Point spread function of telephoto zoom lens at (a) 0, (b) 7, and (c) 10 degrees 
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In general imaging system, the PSF is the linear response of the imaging system and it 

can be used to remove blur from the image.  As is clear from Figure 15, the response 

is highly dependent on the input angle of the ray that hits the input surface, a fact 

overlooked by both thin lens and pinhole models.  Its Fourier transform is known as 

the Modulation Transfer Function (MTF).  The MTF describes the spatial resolution 

limits of an imaging system.  It is the variation of contrast or visibility with spatial 

scale in the object.  That is: 

MTF =
Imax − Imin

Imax + Imin

 2.54 

where Imax and Imin are the maximum and minimum intensities of the image, 

respectively.  Because of diffraction, if the entrance pupil diameter is similar in size 

to the wavelength of the light, fringe patterns are created on the sensor rather than a 

solid point.  Thus every imaging system has a “diffraction limit” as shown in the 

MTF plots in Figure 23. 
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Figure 23: Modulation Transfer Function (MTF) of telephoto zoom lens 

As an applicable example, a chessboard whose contrast changes from white to black 

for every check looks like a gray board depending on how it is imaged.  The inability 

of the imaging system to describe such fine spatial resolutions of the object is 

described by the MTF. 

2.5 Closure 

This chapter summarized the evolution of different imaging systems.  Vision 

problems can be divided into three parts.   

1. 3D-world to 3D-camera coordinate transformations. 

2. 3D-camera to 2D sensor transformations. 
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3. Algorithms performed to identify/classify certain features and/or objects 

within the 2D image. 

The first part merely puts the camera’s orientation as the reference frame and is not 

too interesting.  The third part is where much of computer vision research is 

concentrated in finding different algorithms to identify certain features within an 

image: SIFT, SURF, HOG, Optic Flow, are all post-processing algorithms that only 

deal with the image and changes/features within it.   

This chapter has focused on the development of the second part of the vision 

problems - a problem that is commonly overlooked and oversimplified, but is the 

bridge between the real world and the image.  Accurately mapping pixels to real 

world metrics through these different imaging systems is of the utmost importance in 

surveillance and tracking systems.  By understanding the evolution of these models 

new calibration procedures and mappings can be developed to provide  better 

accuracy.   
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3 Light field Analysis 

3.1 Introduction 

The light field or plenoptic function is derived from the words in Latin plenus and 

optic, which means the complete optic function.  The goal that Adelson and Wang (3) 

set out to accomplish was to form a periodic table where all compounds can be found 

as a combination of these vision elements.  For example, a black and white image 

from a pinhole camera describes the intensity of a scene as viewed from a single 

point, at a single time, averaged over all the wavelengths of the visible spectrum.   

The function in its complete form can be described as a 6D function where any 

sample of this function is a photograph from a scene at a particular viewing direction.  

The plenoptic function is given by, 

 

where (x,y) are the pixel coordinates on the sensor, λ the wavelength/color of the 

light, t the time of incidence on the sensor, and the triplet (Vx, Vy, Vz) the viewing 

direction the ray from the object makes with the normal of the viewer.   

 

Figure 24: Conceptual look at Plenoptic function.  Eyes represent sensor, rays are viewing angle 

to object. (3) 

P = P(x, y,λ, t,Vx,Vy ,Vz )
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In its complete form, the plenoptic function describes a scene in space, viewed from 

any viewing angle, over all time and colors, at a 2D specific point on the sensor.  Any 

sample of this function is a point on a color image at a specific view of the scene.  

Averaging over all colors, holding the scene static, and without loss of generality, 

always placing the viewer to be pointing along the z-axis, reduces the 6D domain of 

this function to a 4D function that can be described as, 

 

The quadruple (s,t,u,v) represents two points in space located on parallel planes 

separated by a normalized distance of unity.  There exist different parameterizations 

of this function that are discussed later in the chapter. 

This chapter focuses on deriving and capturing the light field as it travels through 

space and is incident on the three imaging system models described in Chapter 2.   As 

far as the author has determined, only the pinhole and thin lens models have been 

used to find light fields (21) (5).  Ren Ng (4) (22) has provided one of the most 

comprehensive works in capturing light fields with his plenoptic camera and has 

motivated their capture with complex/compound lens imaging systems but has not 

provided a clear derivation for modeling image formation with such lenses.  Lian (5) 

has modeled image formation for pinhole and thin lens systems with matrix optics as 

derived in Chapter 2. 

This chapter will expand on the concept of modeling image formation for more 

complex lens systems. Clearly, as light rays travel through different components of a 

complex lens systems with varying thicknesses and radii of curvature, the light rays 

bend in a number of different directions before actually hitting the image sensor 

P = P(s,t,u,v)
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plane.  In other words, the angle between the object and the optical axis is only 

preserved for the chief ray as it travels through the imaging system.  This begs the 

question that often arises: Can complex lens structures be modeled as pinhole 

cameras?  Kolb et al. have investigated this question by bringing to light a ray tracing 

algorithm to provide a camera model for computer graphics and have claimed that the 

pin-hole, thin, and thick lenses all differ in their optical properties and thus differ in 

the 3D to 2D coordinate transformations (23).  However, in his thesis, Tordoff shows 

there are only minor differences between pinhole and zoom lens systems and uses a 

pinhole camera at each zoom to model his surveillance system (24). Using light field 

analysis, this chapter provides a figure of merit for the approximation that is often 

made to model complex lens systems as pinholes.  

3.2 Mathematical Formulation 

Light rays exist throughout all of space surrounding an object and if captured by a 

sensor without being occluded provide all the visual information that exists about the 

object.  Light can only do one of two things: 

• Refract: Bend as it passes from one medium to another leading to many 

illusions about the visualization of an object, like a bent straw as viewed 

from air to water. 

• Reflect: Bounce off an object at the exact same angle of incidence to the 

local normal of the object.   

If light is travelling in space and there are no occlusions, then there is no loss in 

electromagnetic energy as the light travels through space and all loss is only governed 

by the reflection coefficient of the object it hits. 
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3.2.1 Describing a Light Source and Reflecting Surface 

The radiance of light is the amount of power per area radiated into a cone having unit 

solid angle and is measured in Watts/m2/steradian.  Note that the area here is the area 

of the surface as seen by the source.  The irradiance is the sum over the radiance 

provided by all sources and reflecting surfaces in a unit sphere, namely over all solid 

angles.  This is measured by a CCD or CMOS sensor and digitized to assign the 8 or 

16-byte value to a gray scale image.   

Davis et al (8) provide the radiance analysis, when they look at coupling light from a 

source to an aperture.  An object can be modeled as a series of point sources, where 

the image of the full object is the sum over all radiances from these point sources.  In 

optics this property is also known as étendue, which characterizes the spread of light 

energy over a solid angle.  A perfect optical system with reflective coatings to allow 

all light energy to pass, which most commercial camera lenses approximate, preserve 

the radiance as it travels through the optical system. This can be seen as a special case 

of the brightness theorem (8), which states the brightness of an image cannot be 

greater than the brightness of the object that was imaged.  This is a consequence of 

the law of conservation of energy. 

The light from a source and its trajectory to the camera sensors can be modeled as 

shown in Figure 25. 
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Figure 25: Geometry of an extended source and collection aperture used to describe the etendue 

(25) 

The solid angle subtended by the source is: 

 

where θ1, is the angle the normal of the source makes with the edge of the object.   

For long ranges that are much greater than the entrance pupil of the lens, a circular 

aperture of radius a can have a solid angle approximation of: 

 

where a is the entrance pupil diameter, and u is the range of the object to the entrance 

pupil.  If the radiant power of the source is P watts then by the law of conservation of 

energy, the power at the receiver should be TP watts, where T is the transmission 

coefficient of the system between 0 and 1.   

By its definition the radiance of this source can be given by, 

 

∆Ω1 = 2π (1− cosθ1)

∆Ω =
πa

2

u
2

L =
P

A∆Ω



 

 52 

 

where A is the area of the source.  Suppose we have an source that is not faced with 

any occlusions all the way through the sensor plane.  In other words, it is visible by 

the image sensor and is part of the image on the sensor plane.  From the 

aforementioned conservation law of energy, we can write the powers in terms of 

radiance by, 

 

where the primes indicate the radiance on the sensor plane.  Areas are solid angles are 

second order terms, thus they can be related to the source area/solid angle by the 

linear and angular magnifications as follows: 

 

where, m and ma, are the linear and angular magnifications respectively.  From 

geometrical optics, it is known that the product of the linear and angular 

magnifications is unity, and as a result we derive the brightness theorem to be, 

 

When the light travels through a space where there are no occlusions, the 

brightness/radiance is preserved and there are no attenuations between the light 

source and the sensor, T=1, and thus L’=L. 

The brightness theorem is of utmost importance in describing the plenoptic function 

and its application in image formation.  The light source is described in terms of its 

radiance, where after traveling through any one of the lens models from Chapter 2, 

the final radiance pattern can be found simply by parameterizing the original 

plenoptic function as it is imaged through the lens system in the new basis of the 

plane of interest. 

L'(A'∆Ω') = T(LA∆Ω)

L'(m2A)(ma

2∆Ω) = T(LA∆Ω)

L'= TL
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3.2.2 Parameterization of Light Fields 

In this section we look at the different ways to describe the condensed 4D plenoptic 

function. 

There are three common forms to describe a ray in space: 1) Plane Sphere 

Parameterization, 2) Two plane parameterization, 3) Two points on a unit sphere, all 

shown in Figure 26.  

 

Figure 26: (Left) Plane angle and (right) Plane-plane parameterization of light field 

The first describes a 2D point on some reference plane (without loss of generality, 

this can be assumed to be the xy-plane) and the pan/tilt angle that the ray makes with 

the normal of the plane.  The 4D plenoptic function is then described by: 

 

The two plane parameterization, which is more commonly used, and will be used 

throughout this thesis, describes the point of intersection of a ray on two planes that 

are separated by a distance of unity between their normal vectors.  The ray intersects 

the first plane at (s,t), which represent the lens coordinate of the lens on the lens 

plane, and the second one at (u,v), which represents the pixel locations on the sensor 

plane, to have the plenoptic function described as: 

P = P(x,y,θ,φ)
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The third parameterization is not used as often as the previous two, but for the sake of 

completeness is mentioned here.  The parameterization is like longitude and latitude 

coordinates on a unit sphere and is given by:    

� � ����, 
�, ��, 
�� 
Depending on the application, it may be useful to use a certain parameterization.  For 

instance, to describe a point light source, the initial trajectory is described by the 

plane-sphere parameterization, while the two-plane parameterization is used to 

describe the trajectory of the ray as it hits the camera system.  As a look back, the 

two-plane parameterization can be scaled and modified to be thought of as a 

compound/thick lens system from the entrance to the exit planes of a camera system.  

Lastly, the points on the unit sphere are primarily used for stochastic process 

modeling to be able to uniformly choose two points along a unit sphere thereby 

forming a uniform probability distribution for any ray to be selected. 

The Stanford Multi-camera Array, which will be discussed later in capturing light 

fields, uses the two-plane parameterization to build a camera array system making use 

of an array of pinhole cameras.  Essentially, the two plane parameterization can be 

thought of as a series of pinhole cameras placed at the first plane whose pinhole 

coordinate is given by (s,t), each of which having an MxN pixel array sensor given by 

coordinates (u,v). Clearly, the quadruple (s,t,u,v) defines two points in space, and thus 

a unique ray that travels through the both of them, as shown in Figure 27.  

P = P(s,t,u,v)
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Figure 27: Light rays traveling through camera (s,t) and hitting pixel (u,v) (26). 

As shown by Liang, et al (5), these parameterizations combined with the geometrical 

optics principles can be used to model image formation on a sensor plane.  Most 

papers on light fields (21) (27) only assume pinhole models to simplify the (s,t,u,v) 

parameterization for modeling image formation.  Liang (5) and Ng (28) expanded that 

to include different size apertures and thin lenses in their work with geometrical 

optics.  Lastly, Ren Ng (4) of Stanford University began an analysis of more 

complicated imaging systems used as the main lens but did not incorporate matrix 

optics in their formulation.  The next section will expand on their formulation for 

modeling image formation. 

3.2.3 Modeling Image Formation 

Liang and Shih (5) in their work have provided a unified framework in light field 

analysis for modeling image formation.  Their work, as mentioned before, was 

motivated by Ren Ng who completed his image formation analysis by brute force, 

which is tracing each ray individually and following the radiance pattern along that 

ray (4).  Liang and Shih used the basic principles of matrix optics in evaluating thin 
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lenses and traversing distances to evaluate the transfer of the light field through 

imaging systems as a whole rather than ray-by-ray.   

From the brightness theorem, if there are no occlusions between the observer and the 

source, the radiance at the sensor plane must be equal to the initial radiance leaving 

the source, only different by the transformation between parameterizations.  

Mathematically, for a 2D slice of the 4D hyper plane that describes the plenoptic 

function, this is written as, 

 

where the subscripts indicate the stage in the imaging system.  For an imaging system 

with N stages, from the associative property of the multiplication of matrices this can 

be extended to the following result: 

 

The key to this analysis is to identify the transformation Ti from one side of the 

imaging system to the next.  It is easily recognizable that this is merely a change of 

basis for the coordinates of the plenoptic function.  This fact is a direct consequence 

of the brightness theorem discussed in the previous section.  From this, we can 

formulate the following theorem: 

Theorem (5): The plenoptic function at any point in space from any viewing angle 

can be put in terms of the plenoptic function at the object with a change of basis of its 

arguments to reparameterize its coordinates to the coordinates of interest. 

Proof:  It is clear that an imaging system with one stage satisfies: 
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where T1 is the ray transfer matrix between stage 0 and stage 1.  Assume it is true that 

for an N stage system: 

 

For stage N+1, we can write 

�
�� � �
 ��
�� ��
��
�
���� 

Combining the equations above yields 

�
�� � �� ����� …�
�
�� ��
��
�
���� 

which is the proof of the theorem by the induction principle. � 

As a simple example, the transformation for a ray traversing a distance d is given by: 

 

which for a paraxial analysis is equivalent to the two-plane parameterization given 

by: 

 

To find the radiance pattern at the output plane (subscript 1) in terms of the input 

radiance requires an inverse of the previous equation and yields: 

 

so that the plenoptic function at the sensor plane is now: 
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Suppose a cosine squared texture pattern is modeled as a Lambertian object (a model 

used commonly to describe diffuse reflections of normal objects) the radiance pattern 

is defined to be constant from any viewing angle and is given mathematically by: 

���� � �� 

where θ is measured from the normal of the object is reparameterized in terms of the 

two plane parameterization as: 

���, �, �, �� → ���, �� � ������ 
which scatters a constant radiance at all angles and is modulated by any function in 

the spatial domain .  In a 2D horizontal slice (s,u) of the 4D hyper plane (s,t,u,v), a 

100mW source of this type gives the plenoptic function P0 shown in Figure 4. 
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Figure 28: 2D slice of irradiance P0 of a Lambertian Object. 

The cosine squared texture pattern chosen for f simply shows that the center of the 

object is bright and becomes dark as it reaches the edge of the object.  The 

transformed radiance pattern at distance d is then given by P1, which is shown in 

Figure 29: 
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Figure 29: Plenoptic function P1 has the same overall form as figure 4, but its coordinates are 

changed to a new basis by the change of basis coordinates derived from the optical matrix 

transformation 

The slope of constant contours is equal to the distance traversed by the light field. 

As another example, in the two stage system shown in Figure 30, after traversing a 

distance d and hitting a thin lens of focal length f,  
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Figure 30: Ray traversing a distance d and striking lens with focal length f 

the plenoptic function immediately after the thin lens shown in Figure 31 and 

 

Figure 31: plenoptic function immediately after the thin lens from Figure 6 

is given by: 
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Modeling image formation in this manner can now clearly identify the differences 

between the different models that were outlined in Chapter 2 for imaging systems. 

3.2.4 Using Image Formation to Compare Imaging System Models 

In the last section, as a consequence of the brightness theorem, a matrix optics 

formulation was derived for the calculation of the plenoptic function through various 

imaging systems in the paraxial range.  This method can be expanded to provide a 

clear comparison between the models of the different imaging systems in Chapter 2. 

Beginning with the pinhole model of the camera, it was shown that it is equivalent to 

the thin lens model, where the focal length of the thin lens was simply the spacing 

between the sensor and the pinhole, and an infinitesimal aperture stop is placed in 

front of the lens only allowing rays of light to travel through the center of the lens.  

This can be modeled as a modulation of the light field (5) by P1, 
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where the δ-function represents a pinhole in the horizontal direction at the aperture 

stop, and d is the distance of the ray traversed from the object.  After the thin lens, the 

light ray travels an extra distance of dsensor,, which is the distance traveled after hitting 

the pinhole to the focal plane.  The new plenoptic function is given by: 
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This shows that rays only from one point in the reference plane will enter the system 

and only one image point will be formed from each point in space.  The change in the 

plenoptic function is shown in Figure 32: 

 

(a) 

 

(b) 

(c) (d) 

Figure 32: Plenoptic function for (a) original cosine squared texture pattern (b) traveling a 

distance of d=200mm (c) modulated by a finite aperture width of 100mm and (e) traveling to the 

sensor plane a distance of f=66.7mm 

Notice that the values in Figure 32 for the distance is different from that used in the 

end of the previous in Figure 29 and Figure 31.  The reason for doing this is to 

illustrate the effect of using the pinhole model as it is compared to the thin lens 

model.  The object in Figure 32 is placed within the focal length of the lens, and from 
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Chapter 2, this was shown to create a virtual image, namely diverging rays on the 

image plane but a virtual image on the object side of the lens.  The pinhole model 

does not take that into account as it simply traces the plenoptic function a distance 

d=10mm to the aperture of the pinhole, which was given a width of 5mm to modulate 

the light field, and lastly traveling the focal plane distance f=30mm.  Ideally a pinhole 

should have infinitesimal thickness instead of a modulation width of 5mm, but there 

are no such practical systems and so a common aperture width for cameras that are 

modeled as pinholes was used in this simulation.  

Removing the modulation aperture from the pinhole model, on the other hand, allows 

the light rays to hit different parts of the lens, and therefore take into account the 

refractive properties of the lens.  For a perfectly focused image, namely, a point in 

space that satisfies the thin lens equation: 

1
� � 1

� !" #$
� 1

� 

The rays undergo three stages as they travel from the object to the image plane: 1) 

Travel a distance d to the lens, 2) refract through a thin lens of focal length f and be 

modulated by its entrance pupil diameter, and 3) travel a distance dsensor to the image 

plane.  From Chapter 2, this was shown to have four scenarios as shown in Figure 14. 

If the sensor plane is located exactly at the paraxial focus plane, then all of the light 

fields from the various optical setups shown in Figure 14 would simply reconstruct 

the light field at the object on the sensor with the appropriate magnification.  This is 

shown for a thin convex lens of unit magnification in Figure 33. 
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(a) (b) 

(c) (d) 

 

 (e) 

Figure 33: Light fields of (a) cosine squared texture pattern (b) traveling a distance d (c) being 

modulated by the lens aperture (d) refracting through a CONVEX thin lens and (e) traveling to 
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the paraxial plane of focus.  Note that the s-axis limits on the sensor and original planes are the 

same due to the magnification of dsensor/d=1/3. 

The thick lens model, the final extension to imaging systems as seen in Chapter 2, 

extended the thin lens model to account for thickness in the optical prescription of the 

lens.  Recall that the thick lens model had light enter from the entrance pupil, travel a 

distance through an optical prescription given by a ray transfer matrix that was 

derived based on a number of optical properties of the imaging system such as 

principal plane locations, focal lengths, radii of curvature, and indices of refraction of 

the various lens components present, and finally hit the sensor after leaving the exit 

pupil of the lens system.  It was shown that the input/output relationships of the rays 

is given by, 

 

where the matrix M describes the optical system.  In addition, formulas for each of 

the elements in this matrix were derived based on the various optical parameters.  

With the availability of software tools like Zemax and CodeV, paraxial ray transfer 

matrices can be derived for even the most complex of optical systems.   

As a simple example, the ray transfer matrix for a single thick lens is given by, 
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The plenoptic function at the entrance pupil is modulated by the entrance pupil 

diameter and then travels through the optical system with ray transfer matrix given by 

Mtot, the plenoptic function becomes:

 

 

Lastly, upon leaving the exit pupil, it is again modulated by the exit pupil diameter, 

which is: 
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The following algorithm determines the plenoptic function for all types of optical 

systems: 

Algorithm to determine plenoptic function: 

1. Modulation by the entrance pupil. 

2. Travel through optical matrix M. 

3. Modulation by exit pupil. 

As an example, let’s implement the algorithm with the telephoto lens from Chapter 2, 

shown again here in Figure 34.  
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Figure 34: Telephoto zoom lens Patent 2906173 YZ-plane view 

Clearly the lens designers put in quite a bit of work to have the complex lens structure 

of a telephoto zoom lens simply modeled as a pinhole.  A light field analysis provides 

a better appreciation of the optics of such a system and for an image plane placed at 

the focal plane of the complex lens system, the light field was similar to that of the 

thin lens. 

The question then remains as to when/how an optical setup can be modeled as a 

pinhole system.  Computer vision uses the pinhole model very loosely to provide the 

transformation from the 3D world to a set of 2D image coordinates, so there must be 

some inherent error in ignoring the optics.  As the distance to the object increases, the 

light fields show much more shallow slopes than those that were seen in Figure 33.   

Telephoto - U.S. Patent 2,906,173 Scale: 2.20 ORA  08-Feb-12 

11.36   MM   
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Figure 35: Comparison of light field between complex lens system (Patent 2,906,173) and pinhole 

system 

With the small finite apertures of the optical setup compared to the distance of the 

objects, Figure 35 shows the errors by assuming the different models.  At larger 

distances, the models are indeed comparable.   The small finite aperture compared to 

both the distance and object size that is being imaged only allows the chief ray to pass 

through the optical setup.  Basically, the angular span of rays that reach the entrance 

pupil decreases as the object moves to further away from the lens, which is shown in 

Figure 36. 
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Figure 36: Angular span (in degrees) of rays that reach the entrance pupil diameter for objects 

at height h (in meters) and distance D (in meters) 

By making that assumption, all optical systems preserve the angle between the ray 

and optical axis before and after the lens model. 

3.3 Computational Cameras 

Now that different lens systems have been analyzed and methods have been derived 

to simulate the different light fields for various imaging systems, we must now see 

how to practically capture the light field.   The field of computational cameras is the 

next step in the evolution from conventional cameras (29). 

3.3.1 Camera and Cluster Arrays 

Stanford’s Computer Graphics Lab built a 16x8 array of tiny little webcams that are 

networked in a way where they combine images taken by each camera at the same 

time to form a new image.  Their hardware setup is shown in Figure 37. 
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Figure 37: Stanford Camera Array 

The optics, physical spacing, and arrangement are all reconfigurable.  This setup 

theoretically simulates pinholes placed at the (s,t) plane, while their image pixels are 

at the (u,v) plane.  By adding up different pixels from each image to recreate a new 

image, the focus position and viewing position/angle can be digitally changed from 

capturing “one” synthetic image, as well as, imaging through occlusions by changing 

the focus.  As it was seen earlier, this setup can be modeled by the setup in Figure 27. 

The spatial resolution of the array dictates the application that it is used for.  If the 

spacing between the cameras is low, then the cameras act as if they have a single 

center of projection as shown in Figure 27.  If the spacing is high, then the multi-

baseline approach can be used to capture light fields and extract more accurate depth 

of fields.  Lastly, if the spacing is not too high or too low, then they function as a 
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single camera with a large synthetic aperture and can vision through 

occlusions/digitally refocus images. 

To understand the low, middle, and high spatial resolutions of the arrangement of the 

camera array calls for a study in plenoptic sampling.  The most comprehensive 

framework provided for this area is by Chai, et al in “Plenoptic Sampling” (30).  They 

showed that spectral support of the plenoptic function only depends on the minimum 

and maximum depths of the object that is being imaged.  The minimum sampling 

curve that is analytically derived for the plenoptic function in this paper shows the 

minimum number of images and resolution needed for anti-aliased light field 

rendering.  Given the minimum and maximum depths of the maximum camera 

spacing that is allowed for a given rendering quality was shown to be: 
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where D is the rendering quality, namely the distance between two adjacent cameras, 

d is the size of the smallest resolvable feature on the image plane, f is the focal length 

of the thin lenses in the micro lens plane, and z are the minimum and maximum 

distances of the object from the thin lens. 

3.3.2 Plenoptic Camera 

The idea of placing multiple cameras in an M x N array configuration was to create 

two points, namely the pixel and the pinhole of the camera, to define a ray for each 

pixel.  Thus, the intensity measured by a single pixel can only be defined by one ray, 

and unlike a conventional camera that averages over all rays that hit the pixel, the 

new image preserves the information that is on each ray that leaves the object.  



 

 73 

 

Another way of dedicating each pixel to a specific ray is to refocus the rays that hit 

the plane of focus to its own pixel, as shown in Figure 38. 

 

Figure 38: Plenoptic camera model (4) 

A conventional camera uses a lens system to focus light onto a sensor plane 

which averages the radiance from each ray to determine the intensity of the 

pixel.  In other words, by averaging all intensities from all rays that hit that pixel, 

information that is carried by each ray is lost.  The plenoptic camera preserves 

the information from each ray by placing a lenticular lens array in front of the 

sensor plane to refocus the light onto different areas of the sensor plane.  The 

intensities now recorded on the sensor plane are the intensities of each ray 

entering the field of view of the camera. 

As the lens array becomes more dense, they capture a number of different views 

of the object thus approximating the plenoptic function.  By choosing a different 

pixel from each image created, different views of the object can be generated and 

brought into focus.  That is, a single shot of the plenoptic camera produces that 

which a conventional camera produces with a number of different shots at 

different focuses.  In other words, the lens elements placed at the focal distance 
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of the main lens forms tiny little images on the sensor plane.  The sharpest micro 

lens image is thus created when it is focused on the principal plane of the main 

lens.   

 

Figure 39: (Left) Planar wave front striking main objective f/4 lens and being to a micro lens 

array of the same f/#.  The focal length of the thin lens is 20mm with a 5mm EPD.  (Right) 

Zoomed in view at the focal point and micro lens. 

The camera is designed with cameras that are easily detachable from their 

sensor arrays.  Once detached, a lens array is placed in front of the sensor array 

whose f/# matches that of the main lens to avoid overlap and missing pixels, as 

shown in Figure 39 (28).  These little lenses each create an image of the main lens 

and thus instead of one image being created, there are MxN images created 

where, MxN is the size of the lens array.   

Using a lens array gives rise to one important tradeoff with the camera/image 

resolution.  Suppose the lens array is of size 10x10 and the camera is a high 

resolution camera at 1920x1080.  This means that the maximum resolution of 

each image that is created by the lens is 192x108.  Different points in these low 

resolution images are then combined to create what a conventional camera 

New lens from CVMACRO:cvnewlens.seq Scale: 9.20      10-Jan-12 

2.72    MM   
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could only do with multiple snapshots such as, digital refocusing and multiple 

viewpoints, but in the end, resolutions are those achieved from small, cheap 

cameras.  

As an application to generating a number of images on a single sensor array, one 

can begin to think of single lens stereo.  Adelson and Wang in their paper use the 

plenoptic camera and the least squares gradient technique from (31) (32) to 

extract information about both the horizontal and vertical parallax.  This avoids 

the single aperture problem, as well as the correspondence problem that is 

present in stereovision.  Furthermore, with measurements of parallax in both 

directions, the depth can be computed more accurately.  It is like having multiple 

views of the object with a single camera.  The only limitation is the maximum 

disparity is defined by the entrance pupil of the imaging system.  In their paper, 

Adelson and Wang generated low confidence depth maps of close objects, but 

unfortunately no ranges/metrics were provided. 

3.4 Closure 

Light fields and their applications are only currently used for computer graphics 

models of texture maps and digital refocusing to name a few applications.  There is 

much that can be done if a function can be accurately estimated whose samples are 

images of a scene from any viewing direction, color, and time.  Lytro Technologies 

Inc. is a new startup company that is bringing the plenoptic camera out of the research 

laboratory and onto consumer shelves.  More importantly, by accurately modeling the 

lens, the prototype for long range light field measurements can become a reality.   
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The change in the different light field patterns with respect to the different optical 

prescriptions shows that simplistic lens models cannot be used to approximate the 

detail that must be taken into account for imaging a scene in general.  High resolution 

images can be obtained for scenes by advancing such technologies and using better 

models.  Depending on the application, simplifications can be made.  This chapter 

focused on the comparison of these models in a paraxial analysis, which is again a 

good assumption for objects at far distances compared to the size of the lens.  A more 

precise comparison could be made by using the ray tracing function in CodeV to find 

exactly where these rays hit the image plane.   

Applications of such technologies could then be used in imaging systems to 

reconstruct the wave fronts that are entering the camera system.  Soon Adelson and 

Wang’s vision periodic table may even become a reality, and much of the post 

processing image feature extraction and classification can be simply identified if 

certain patterns are found in the light field (33).  The remaining chapters will 

investigate two such applications in astronomy and surveillance systems. 
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4 Plenoptic cameras and Adaptive Optics 

4.1 Introduction 

In Chapter 3, the plenoptic camera was described as a system that is able to retrieve 

the ray information that is lost by a conventional camera.  As stated, conventional 

cameras integrate over all possible rays that strike a particular pixel on the surface 

and provide the intensity value in usually an 8-bit format.  The plenoptic camera, 

however, has each pixel dedicated to a particular ray that arrives within the system.   

Then by applying the change of bases described in Chapter 3 for the respective 

optical systems that are being used, different rays are chosen to create an image.  

These rays are from light that has come from objects that are in focus at different 

depths and thus the plenoptic camera is a system that has multiple depths of focus 

within a single capture of its light field. 

In this chapter a closer look will be taken at the technology used by a plenoptic 

camera to retrieve the directional information of the light ray that strikes a particular 

pixel.  As described at the end of Chapter 3, micro lens arrays are placed before the 

sensor plane to sample the light rays that strike the sensor plane.  These lenslet arrays 

can be used to provide information of rays that are traveling in a certain direction 

towards the camera.   

Light is a wave, but locally, each point on the wave front can be given a direction by 

its k-vector.  The light ray is defined as a ray that points in the direction of the local k-

vector of the wave.  Ray transfer matrices and ray traces all translate the Helmholtz 

wave equation to a geometric problem by analyzing the light rays to determine the 

properties of the system.  CodeV, as will be seen later, primarily focuses its analysis 
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with the ray definition of light by tracing rays through the optical system and finding 

where they land on the image sensor plane.  Its diffraction analysis, on the other hand, 

defines an FFT grid to use Fourier transforms to solve the wave equation so that if the 

user chooses to define differential phases on the wave front the wave properties of 

light are available to do so.  All spot diagrams, which match the FFT Image formation 

outputs, are found with ray traces, while all image sensor simulations are found by 

solving the wave equation.  In light field analysis, both will be used to show the 

consistency between the ray and wave nature of light. 

Regardless of the definition of light, devices that capture these light fields, like 

conventional cameras, simply add together the intensities of rays of light traversing 

from the object to give an irradiance pattern on the image plane given by the 

equation: 

∫ ∫=
2

0

2

0

),,,(),(

y x
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where ρ is the responsitivity of the detectors, L(x,y) is the irradiance of the ray, and 

the pixel resolution is Nx x Ny.  With lenslet arrays in front of the image plane 

however, we can identify each pixel as the intensity of a single ray, as will be seen. 

4.1.1 Micro lens Arrays 

Micro lens arrays are, as the name suggests, arrays of micro lens elements that have 

either been grown on a substrate or cut into thin glass sheets that are epoxied together 

(34) (35).  Use of such devices evolved from the original design of the Hartmann 

Screen Test which samples apertures of an optical system.  A screen with a series of 

holes in an array was placed in front of an 80cm refracting telescope known as the 
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“Great Refractor” (36).  It was first used to identify the problem in the optics of this 

telescope by sampling the aperture to only allow certain rays to pass through and 

reach the pixels behind the hole.   

As mentioned, conventional cameras integrate over all ray bundle intensities striking 

the pixels and thus the ray information is lost.  Ideally, far away, a wave front should 

have rays whose directions are parallel to the optical axis and thus should effectively 

be sampled by the Hartmann screen to only allow light that travels through the 

specific hole to strike the screen.  If, on the other hand, a wave is distorted, it is no 

longer a plane wave and will have different k-vectors (rays)  traveling at different 

angles along the wave front, as shown in Figure 40 and Figure 41.  The goal of the 

Hartman screen test is to measure the displacements these points undertake to be able 

to reconstruct the wave front that was initially incident on the Hartman screen.  If that 

is known, things like deformable mirrors and other optical elements can be used to 

refocus the distorted ray to its appropriate position. 

 

Figure 40: Planar wave front and its image as it passes through a Hartmann Screen (37) 
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Figure 41: Distorted wave front as it travels through a Hartmann Screen (37) 

The issue that arose with the Hartmann screen test was that the image was not bright 

enough to measure these displacements and thereby reconstruct the wave front.  To 

increase the optical power of the image, micro lenses whose apertures were about the 

size of the holes with small focal lengths (i.e. large optical powers) were placed in 

front of an imaging screen inside the holes of the Hartmann screen.  These lenses thus 

focused the small bundle of rays that would pass through the hole to an even finer 

point, adding their intensities, thus brightening the image as shown in Figure 42.  The 

apertures of the micro lenses are small enough to be considered as pinholes and only 

allow a small solid angle coverage to pass through them.   

 

Figure 42: 3D Rendering of 3x3 Rectangular Lenslet Array from CodeV 
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As a side note, intensities defined along a ray are somewhat of an ill-posed statement.  

Intensities are defined over areas and the area of a ray is zero.  Thus the pixels of a 

CCD placed behind a Hartman screen are actually measuring bundles of rays whose 

angles of trajectories are close-enough to be approximated as the same ray.   

To increase the amount of light striking each pixel the micro lens elements focus the 

bundle of rays by adding their intensities.  Similarly modeled is the coupling of light 

to an aperture of the optical fiber shown in Figure 25.  Clearly from the brightness 

theorem the brightness of the pixel cannot exceed the brightness of the source.  If the 

radiant power of the source is P watts then the power collected by the aperture is: 

�% � 2'(�) #*$+!�1 , cos����� 
where B1 is the brightness of the source with area Ssource, and maximum aperture 

angle of θ1.  For a finite aperture, as seen in Chapter 2, the power collected by the 

finite aperture would be spread over the image plane located a distance f from the 

finite aperture.  By placing a thin lens of small focal length f in the aperture, the 

power of the light is focused to a smaller area on the image plane and therefore 

produces a much brighter image which is shown in Figure 43. 
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(a)  (b) 

Figure 43: Source of 100mW with a Lambertian radiance profile placed far away from (a) 

Hartman Screen (b) Shack Hartmann Sensor 

The Hartmann screen gives a maximum irradiance of .0332 Watts/m2, while inserting 

thin lenses of the appropriate focal length in the holes of a Hartmann screen increases 

it by over a factor of 10.  From Figure 43 it is very clear that the lenses focus the light 

that is sampled by the apertures to a much smaller area to achieve the higher 

brightness.  The pinhole of the Hartman screen and the pixel coordinate form a 

unique line in 3D space which defines the trajectory of the ray, and thus the intensity 

measured by the pixel of a CCD is the intensity that was traveling in a certain 

direction of the wave front.   

The Shack Hartmann Sensor and Plenoptic (Light field) Camera, are technologies of 

two different generations that used in completely different applications.  The Shack-

Hartmann sensor was developed over 30 years ago and the plenoptic camera is only 

now beginning to enter the market.  From two different times, these devices are both 

used to divide a wave front up into its individual ray components for analysis, only 
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the plenoptic camera focuses the incoming wave front before it reaches the micro lens 

array.  

4.2 Shack Hartmann Sensor 

The Shack Hartmann sensor is used to measure the degradation in a wave front as it 

travels through space.  These degradations are results of either instabilities in the 

channel, such as turbulence (38) , that perturbs the wave as it makes its way to the 

optical system, or the optical system itself whose imperfections in manufacturing the 

lenses or mirrors used cause aberrations within the image (39).  The Shack Hartmann 

sensor was first used in space telescopes where a test was conducted by poking many 

tiny holes in a surface and placing that mask over a telescope to force the wave front 

to pass through many different entrance pupils.  By placing lenses within each of 

these holes to create a lenslet array on the Hartmann Screen, the light passing through 

the apertures is concentrated to a focal spot, which would allow the Hartmann screen 

to increase the photon density and thus work in places of limited light (36).    

 

Figure 44: Principle of Shack Hartmann Sensor (40) 
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An undistorted, collimated laser beam is sent in and used as the reference to measure 

the displacements of the focused light from the distorted wave as it comes into a 

focus at a different point depending on the channel and optical imperfections it 

passes.  These displacements are used to measure the imperfections to correct the 

image for better quality, as shown in Figure 40 and Figure 41. 

4.2.1 Principles of Operation 

On its website, Thor Labs, provides a nice description of the derivation of the Shack-

Hartmann sensor, shown below: 

 

Figure 45: One Lenslet from the array of a Shack-Hartmann Sensor (37) 

From paraxial optics, we know that rays coming in parallel to the lens will be focused 

at the focal point, which in this case is the intersection of the sensor plane and the 

optic axis.  Any wave front travelling at an angle α with respect to the normal of the 
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lens will be moved δy on the sensor plane.  From similar triangles in a 2D domain, we 

can relate the angle of trajectory to the point displacement by, 

( )
MLf

y

D

z δ
α =

∆
=tan  

Using this equation gives the angle of trajectory as: 
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The maximum angle that can be detected then depends on the EPD of the lenslet, and 

is given by: 


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D 2/
tan 1

maxα  

Angles larger than the maximum will still form patterns on the sensor plane, however, 

there will be a cross talk between areas in the lens system that correspond to each 

micro lens element and thus the light from lens 1 for example will fall in the pixel 

region of lens 2.  The minimum measureable angle depends on the pixel pitch of the 

sensor plane.  These deviations are measured through Zernike polynomials whose 

coefficients represent the order and amount of a specific aberration (tilt, defocus, 

coma, astigmatism, etc…).  

4.2.2 CodeV Simulation Results 

Using CodeV, a 3x3 region of the Shack-Hartman sensor WFS150-5C from Thor 

Labs was simulated via the Paraxial Ray tracing function.  CodeV inputs the angles of 

rays that are coming from an object placed at infinity.  These angles are measured 
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between the normal of the sensor array, which in this case at the front-end is planar, 

and the local k-vector of the wave striking the surface.   

For this sensor, the maximum angle deviation that can be detected is: 

o8321.
2/

tan 1

max =







= −

MLf

D
α  

As it can be seen in Figure 46, any angle larger than the maximum differentiable 

angle, even to the extent of a slight offset to an angle of 0.9 degrees, the rays from 

separate regions begin to overlap: 

 

(a) 

 

 (b) 

Figure 46: (a) Shack Hartmann Sensor WFS150-5C  from Thor Labs with light rays incident at 

(red) -0.9, (green) 0, and (blue) 0.9 degrees.  (b) The blue and red rays from separate lenses 

overlap, thus having cross talk in the image plane. 

Sampling the range input angles at .1 degrees produced the images in Figure 47.  

These angles are then compared to the displacements of the centroid of the beam on 

the image beam.   

New lens from CVMACRO:cvnewlens.seq Scale: 29.00      07-Feb-12 

0.86    MM   
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(a) 

 

(b) 

 

(c) 

Figure 47: Image sensor with input as point source hitting lens array at (a) (0,0) deg (b) (0,0.9) 

deg and (c) (0.6,0.9) deg.  Note the shift in (x,y) coordinates of the centroid. 

Computing the relative error between the CodeV simulation and its input yields an 

exponential drop off as the angle reaches the maximum angle.  All angles measured 

in Figure 48 are in degrees: 
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Figure 48: Error in Measured Input Angle versus Input Angle for Shack-Hartmann Sensor 

Using adaptive optics with the Zernike coefficients, the aberrations can be corrected 

to achieve the best focused image. 

4.2.3 Zernike Polynomials and Wave Front Corrections 

Although not a focus of this thesis, for the sake of completeness, this section 

describes the mathematical formulation for describing aberrations and their 

applications in adaptive optics from the inputs of a Shack Hartmann sensor.   

The quantitative measure of spread of the ray intercepts on the image plane is known 

as the aberration (41).   In optics there are two types of monochromatic aberrations – 

Siedel aberrations and Wave front aberrations.  Siedel aberrations are those that are 

produced by the optical system used to image the light coming into the system and 
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consist of 1) Spherical Aberration 2) Coma 3) Astigmatism 4) Field of curvature 5) 

Distortion. 

The spread of the intercept of rays travelling parallel to the optical axis on the focal 

plane is known as spherical aberration.  It is one of the most important aberrations in 

a lens (42).  This aberration is particularly important when objects are far away from 

the camera and it is assumed that rays coming from the objects are nearly parallel to 

the optical axis.  Spherical aberrations are analyzed through spot diagrams and can 

cause focal length shifts of several millimeters for a common singlet lens.  Coma is 

the aberration in which the image of an off-axis point varies for rays passing through 

different regions of the entrance pupil.  In many optical systems, planar objects are 

projected as curved surfaces on the image plane (43).  These effects are due to 

curvature of field and astigmatism.  Distortion can be classified into two categories; 

1) Pin cushion distortion: shrinks the image towards the optic axis and 2) Barrel 

distortion: stretches the image away from the optic axis.  Astigmatism arises from the 

inability of the optics to focus a point object into a focused image on the sensor plane. 

Wave front aberrations are those that are produced by the channel to distort a planar 

wave front into one with different k-vectors at a point of common phase.  

 Zernike polynomials are a group of polynomials that used to describe these 

aberrations in mathematical form.  The aberrations that reach the image plane are 

given in terms of the Zernike polynomials by: 

0�1, �� � 23"45"4�1, ��
4,"

 

Where 3"4is the Zernike coefficient for Zernike polynomial Z with radial mode m and 

angular mode n.  Tables and catalogs of these polynomials are used to describe the 
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aforementioned distortions (44).  For instance, any polynomial with mode with m=0 

describes some sort of defocus or spherical aberrations present within the wave since 

it does not depend on the angle θ.  This information is then fed to a deformable 

member via some control mechanism to force the deformable mirror to assume a 

shape that is conjugate to the aberration profile. 

4.3 Plenoptic Camera 

The plenoptic camera is very similar to the Shack Hartmann sensor in its use of micro 

lens arrays to retrieve ray information with subtle differences.   

 

Figure 49: Schematic of plenoptic camera 

As it can be seen from the figure above, the lenslet array is placed at the focal point of 

the main lens and thus light incident onto the array is ideally in focus rather than 

collimated through a beam expander or eyepiece.  In addition, the lenslet array is 

chosen so that its f/# matches that of the main lens whose focus is at the lenslet array.  

In the Shack Hartmann sensor the lenslet array is mounted on a C-mount of the lens 

so that it will take a collimated source rather than a focused one.  In addition, most 

Shack Hartmann sensors are designed for high bandwidth applications (UV-Infrared) 

while the plenoptic camera is focused in the visible domain.  But with a micro lens 
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array, could the plenoptic camera, which is much cheaper, provide any information 

about aberrations? 

4.3.1 Principles of Operation 

Liang and Shih (5) used the principals of matrix optics to evaluate the transfer of the 

light field through imaging systems as a whole rather than ray-by-ray.  The light field 

analysis was shown in Chapter 3 where the paraxial/ray optics assumptions were 

compared to the ray traces from CodeV.  To analyze the intensities of a plenoptic 

camera amounts to tracing the intensities along a bundle of rays that strike a micro 

lens that focus a thin bundle of rays to form a brighter image.   The primary    

 

Figure 50: (Left) Planar wave front striking main objective f/4 lens and being to a micro lens 

array of the same f/#.  The focal length of the thin lens is 20mm with a 5mm EPD.  (Right) 

Zoomed in view at the focal point and micro lens. 

rule in the choice of micro lens arrays is that the f/# of the objective and micro lens 

array must match.  That is, the angle must be preserved so that there will be no 

samples missed or overlap, as is seen in Figure 50.  The ray input-output relationship 

can be given by the paraxial matrix approximation as: 

New lens from CVMACRO:cvnewlens.seq Scale: 9.20      10-Jan-12 

2.72    MM   
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Where fML (fL) is the focal length of the micro lens (objective lens) and EPDL is the 

entrance pupil diameter of the objective lens. Using the f/# equality that: 
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the output characteristics of the ray can be found as: 
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which is exactly what is seen in the figure.  It can be concluded from this that any ray 

that undergoes aberrations will result in an image that will not be concentrated in the 

center of the image sensor because it will have components that do not pass through 

the focal point of the system, and thus pass through other micro lenses within the 

array as well. 

The primary use, thus far, of a plenoptic camera is in digital refocusing.  Without loss 

of generality, using the thin lens model from Chapter 2, it can be seen that objects at 

different depths are brought into focus simply by moving the image sensor plane.  

Mathematically, rearranging the thin lens equation at a particular focal length shows 

that objects at different depths u are focused at different v. 

� � ��
� , � 

If each pixel represents a ray, then sampling different pixels will provide different 

depths of objects in focus with a single image.  Recall, that the light field, without any 
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occlusions can be found from knowing one light field and applying a change of basis 

to the parameters.   

 

Figure 51: If light field LF(u,x) is known at, then light field at LF'(u',x')=LF(u,x).   Note that this is 

a 2D slice of the 4D hyper plane. 

That is, if an image plane is placed at F, as shown in Figure 51, and then moved to F’, 

the light field at F’ is given by, 

 

 

By moving the image plane to F’, and recomputing the light field, by a simple change 

of basis focuses objects at a different distance than those focused at F.   

To now produce a photograph, an integral projection given by: 
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where I(u,v) is the pixel irradiance at pixel (u,v).  Ren Ng generalized the Fourier 

Slice Theorem (22) to show that it would be easier to compute the Fourier Transform 
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of the light field and apply the change of basis and integral imaging in the Fourier 

domain rather than in the spatial domain.  The advantage of this method lies in the 

simplicity of computing an integral image in the Fourier domain.  The Fourier Slice 

Theorem states that a 1D slice of a 2D function’s Fourier spectrum is the Fourier 

Transform of the orthographic integral projection of the 2D function.  That is, instead 

of taking the integral to generate the image above, if the Fourier transform of the light 

field is found, and the slicing operator defined by, 

 

is applied to the Fourier Transform of the light field, then the Inverse Fourier 

Transform of that new function will be the image that is computed by the camera.  

This is schematically shown in Figure 52. 

 

Figure 52: Fourier Slice Photography schematic for light field L.  FT = Fourier Transform, S = 

Slice, IFT = Inverse Fourier Transform, IP = Integral Projection 
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4.3.2 Simulation Results 

As was discussed in the previous section, the light field camera gives the intensity of 

a ray with two-plane coordinates (s,t,u,v) – (s,t) the coordinates on the first plane, and 

(u,v) the coordinates on the second, separated by a normalized gap of one.   

 

Figure 53: Two Plane Parameterization of Light field (26) 

Essentially, the plenoptic camera takes the bundle of rays that a conventional camera 

adds together at the sensor plane and retrieves the ray information by focusing all 

angles that hit a particular microlens element to a single point.  Objects located at 

larger distances from the plenoptic camera are always in focus, but as the object 

moves closer, the lenslets will focus the bundle of rays to the sensor plane so that the 

ray information from the coordinates (s,t,u,v) can be obtained, where (s,t) is the local 

coordinate of the lenslet that is used and (u,v) is the pixel coordinate.   

Take the doublet as an example depicted in Figure 54.  A doublet is the next simplest 

lens after the singlet (or regular thin lens) that is designed to reduce aberrations: 
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(a) 

 

 (b) 

Figure 54: Doublet with height inputs between 0-20cm located at (a) infinity and (b) 1m from the 

first surface 

The spot diagrams in Figure 55 show that as the object approaches the lens, the image 

gets very blurry. 

 

(a) 

 

 (b) 

Figure 55: Spot diagrams using doublet lens for object distance of (a) Infinity and (b) 1m from 

the first surface 

Note the 8x scale increase in Figure 55(b) to represent a blurred image.  In both 

Figure 55(a) and Figure 55(b), the sensor plane was brought into focus by placing an 

object at infinity and using the Paraxial Solve command in CodeV.  The object then 

moves closer to the lens until it is at a distance of one meter from the first surface and 

Doublet P2 Scale: 1.80

Position:  2
ORA  07-Feb-12 

13.89   MM   

Doublet P1 Scale: 1.80

Position:  1
ORA  07-Feb-12 

13.89   MM   
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that results in the blurred spot diagram.  In addition, the larger object heights of 15 

and 20cm have their heights shrunk to add further distortions to the image.  

To now model the plenoptic camera for the doublet, a lens array must be placed at the 

focal plane of the lens.  The lens array, as mentioned before, must have its f/# match 

that of the doublet, which is an f/3 lens.  A lens array having an entrance pupil 

diameter of .15mm and a focal length of .45mm was designed and optimized to meet 

this requirement.  The design followed that of the same micro lens array that was used 

in the Shack-Hartmann sensor by Thor Labs.  To fit the image plane at the simulated 

object heights, a 296x296 array is used, the same as that used by (4). 

The lenslet array samples the spot diagram shown in Figure 14 at the period of 

.15mm, which is the lenslet pitch. 

 

(a) 

 

(b) 

 

Figure 56: (a) Spot diagram of object located at 1m and object heights between 0-20cm (b) 

Zoomed in view of box to show the periodicity of the spots generated by individual lenslet 

elements, black lines are 0.8mm apart, yielding a lenslet pitch of 0.16mm 

The image formed in the sensor plane shows the micro lens array sampling the wave 

that is incident on it.  The periodicity of these focused rays matches the periodicity of 
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the lens array and is measured to be 0.16mm, which is close to the pitch of the array 

that is used for the lenslets.   

Note the scale difference of the RMS spot size between using a lens array to focus the 

light exiting the doublet.  The lens array from Figure 13, on the other hand, refocuses 

the bundle of rays that are incident on it and thus produces more focused images for 

objects between 10-20cm.  In addition, by sampling the pattern, the ray information 

can be used to digitally refocus objects at different heights that are blurred at different 

depths as shown in (22) 

The focus of this chapter, however, is using the ray information retrieved by the 

plenoptic camera to identify the input angle of the ray that is coming into the doublet.  

This will allow the use of a plenoptic camera as a Shack Hartman sensor.  Again, as 

seen in Figure 15, the angle of the ray from the final surface of the doublet and lens 

array is known by the sampling of the wave front.  Inversing the operation shown in 

the ray equation, yields the input height and angle of the ray that was used to achieve 

that particular intensity point in the image of the plenoptic camera: 
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where M is the matrix of the system up until the lens array. 

Using the inverse equation to determine the input ray angles after going through the 

aberrations, it is seen that the errors are comparable to those of the Shack-Hartmann 

sensor in the paraxial approximation.   
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Figure 57: Error in Measured Input Angle versus Input Angle for Plenoptic Camera 

The spot diagram of each of the devices gives the degree of measure of blur of a point 

source whose planar wave fronts are incident at the respective angles with respect to 

the normal of the first surface. 

4.4 Closure 

Lenslet arrays are used to retrieve intensity information per ray that is normally lost in 

a conventional camera.  Placing an objective lens in front of the lenslet array gives the 

plenoptic camera while a collimator placed in front of the lenslet yields the Shack-

Hartman sensor.  Plenoptic cameras were shown in this thesis to maintain the 

accuracies of distortion measurement at least as well as the Shack Hartman sensor.  

Matching the f/# of the micro lens to that of the optical objective eliminates the 

possibility of cross-talk and under-sampling.   This concept was used in this thesis to 

widen the field of view of measurable wave distortions to back track through the 

optical system to find the wave at the input of the optical objective.  The extra 
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information that can be provided by such an analysis provides the distortions in the 

object as well as the environment.  The algorithm presented in this chapter showed 

the process of calculating the light field from the source to the sensor, if inverted, it 

can be used to find the light field at the source knowing the light field at the sensor 

from the plenoptic camera.  This would provide the necessary information needed to 

send to the deformable mirrors for corrections. 
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5 Surveillance Systems 

5.1 Introduction 

Research in vision systems to track a target of interest accurately over a period of 

time is still expanding at a tremendous rate in the computer vision field.  These 

surveillance systems for localization and mapping can be divided into three parts: 

1. 3D-world to 3D-camera coordinate transformations. 

2. 3D-camera to 2D sensor transformations. 

3. Algorithms performed to identify/classify certain features and/or objects 

within the 2D image. 

Any system is always limited by the quality of its calibration.  Camera calibration 

calls for finding the 11 parameters (6-extrinsic and 5-intrinsic) to identify a function 

that will take a world coordinate to its image coordinate.  Current vision system 

calibrations (24) (45) (46) primarily focus on using the pinhole model.  Nayar in his 

technical report even says that, “The traditional camera has a detector and a standard 

lens which captures only those principal rays that pass through its center of 

projection, or effective pinhole, to produce the familiar linear perspective image. In 

other words, the traditional camera performs a very simple and restrictive sampling of 

the complete set of rays, or the light field, that resides in any real scene." (29).  As 

shown in Chapter 3, a real lens can only be modeled as a pinhole with objects placed 

at far distances from the lens.  

The surveillance system presented in this chapter will focus on the model for a PTZ-

camera network system whose intrinsic parameters are no longer fixed.  This calls for 

an error optimization over a number of the camera settings to track a specific target 
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rather than a fixed one.   The system architecture introduced in this chapter moves 

towards dynamic calibrations of the camera in real-time rather than offline video 

processing, or one time calibrations.  These calibrations will be used to track an 

object at far distances over long periods of time and provide accurate paths traversed 

by the target.   

This chapter will focus on using the pinhole model of a camera for long range 

surveillance applications.  Using a single camera, one can extract a number of 

features from a room to identify any two dimensional movement, and with a pair of 

cameras, through stereovision, the depth coordinate can also be obtained.   A new 

novel surveillance technique for tracking of two dynamic cameras tracking a moving 

object is introduced.  This system interpolates the homography matrix between pixels 

of the master camera and angles on the slave camera for different pan/tilts of the 

master camera.  The master camera will hold the target in a specific region within the 

image using a homography that will be updated anytime the master camera moves. 

5.1.1 Surveillance Systems 

The primary use of this system is for tracking a target at far distances as accurately as 

one can in surveillance applications. Objects that appear to be “suspicious” in a scene 

should be tracked over long periods of time to determine their position, speed, size, 

and any number of features that can be obtained from having a series of frames that 

track the object.  These types of problems can be classified into one of three areas: 

1. Stationary object tracked by a stationary camera (no fun).  This just 

amounts to finding the 3D position of an object from stereoscopy. 
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2. Stationary camera tracking a moving object, or, equivalently, a dynamic 

camera tracking a stationary object.  The former is a surveillance 

system while the latter can be used as an inertial navigation unit. 

3. Dynamic camera tracking a dynamic object (this is extremely difficult 

and is the focus of this research).   

The stationary camera solution (47) (48) (49), or the master-slave system architecture 

with static master camera (50) (51) are well-researched problems and do not satisfy 

the requirements posed by this thesis.  Thus, this chapter focuses on the third method 

for tracking a target located at far distances.  In particular, having such systems 

operate in real-time is a hurdle within itself (52) (53). 

From Chapter 2, it was shown that the MTF of a lens gives a figure of merit as to 

what object sizes can be resolved at various distances for a certain optical system. 

   

Figure 58: Images taken by Logitech Tessar 2.0/3.7 Webcams at 1600x1200 resolution at a 

distance of 20m 

Low quality cameras do not provide enough data points to carry through the stereo 

imaging procedure. A camera with a w-pixel resolution imaging an object a length l 

from the camera EPD dictated by the FOV can resolve a minimum accuracy of wobj 

given by: 

FOV

obj
l

w
w

θ
=  
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This equation provides the distance wobj that is subtended per pixel, which is the 

limiting factor in the accuracy.  The quality resolution wobj is increased by decreasing 

the FOV, namely zooming in and operating at a larger focal length.  When choosing a 

camera, resolution should be compared to the physical pixel size of the camera to 

check that the quantum efficiency is within reasonable limit to provide a good SNR.  

Details of the quantum efficiency are normally provided by the vendor of the camera 

and for the purposes of this thesis all were rated to have a level of 25% or above 

which is common for front-illuminated CCD arrays (54) (55).    

 Using a 2-megapixel camera (1620x1280) with the tele-photo 22x zoom lens at a 

field of view of 2x1 degrees when zoomed in provides an accuracy of 2cm at a target 

range of 100m and height of 10m. 

 

 

By placing a zoom lens on an Imperx camera with a non-preset 10x 3-Motor Zoom 

Rainbow CCTV lens the target was able to be resolved at far distances as shown in 

Figure 60. 

ΘFOV 

l 

 

wobj pixels 

Figure 59: Relationship between object height and pixel coverage 
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Figure 60: Image taken with Imperx 2-Megapixel camera at a distance of 20m 

These images were taken at distances of over 20m and the checkerboard is 

completely visible and markers still detectable.  Only 18 images were used in all trials 

and by increasing the number of images reduces the errors in calibrations..  It is clear 

that zoom lenses are the solution to the problem of ranging, but the errors need to be 

minimized, and the system needs to operate in real time.  Such lenses would increase 

the accuracy in any one of the three scenarios by focusing on an object of interest to 

allow it to take more pixel-space within the image.  By increasing the focal length, we 

are thereby increasing the zoom, and will be able to track objects at far distances, or 

for that matter, objects that move to far distances, thereby keeping them within the 

field of view of the camera system over a long period of time. 

5.1.2 Zoom Lenses 

Motorized zoom lenses have great potential in the fields of tracking, vision, and depth 

mapping (56).  These lenses provide images with different magnification that vary 

with the parameters set by the separation of the lens elements (57).  The lenses work 

together to keep the focus position unchanged as the magnification is varied.  The 

change in the field of view results in a change of the magnification, which changes 
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the intrinsic parameters of the camera.  The goal is now to minimize the variations in 

aberrations and distortions over a range of settings rather than minimizing them for a 

single, fixed set of parameters.   

Every change in motor settings changes the zoom/focus positions and thus the focal 

length of the system.  With a new set of intrinsic parameters, the extrinsic parameters 

are also now different.  It is clear that rotating 20 degrees at a wide field of view is 

much different from rotating 20 degrees in a narrower field view, so the extrinsic 

parameters need to also be recalibrated.  For state-of-the art commercial zoom lenses, 

encoder settings have become very reliable.  Chen and Shi (56) claim that a lookup 

table for zoom lens calibration is not feasible because of the vast number of settings 

that are available on the camera.  They use more of a learned look-up table to form a 

smaller look-up table.  They find the 12 unknown parameters by using a circular 

pattern rather than a planar one so that they can be symmetrically blurred and the 

centers of the circles are used as the world coordinates.  To adjust for calibration with 

the varying FOV, larger circles are used when we have a large FOV and zoomed out, 

while smaller circles are used when FOV is decreased and zoomed.  Their results are 

very similar to those of Wilson’s (provided below) and the only major difference is 

the use of a different pattern for calibration and a bisection method (calibrate 

endpoint setting, then go half-way) for varying the settings on the zoom lens.  It was 

not at all clear in their paper whether or not they interpolated between the settings that 

were not within the lookup table or just used the bisection method to insert the new 

setting within the appropriate location of the look up table if needed (56). 
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Wilson (45) provides a detailed examination of a methodology for producing accurate 

camera models as the lens settings are changed.  Bivariate polynomials gP(S) , where 

g is an nth order polynomial, P is a fixed camera model that has the 11 camera 

parameters, and S is a three-tuple of the lens settings (focus, zoom, and aperture 

motor settings), are found to interpolate a camera’s parameters in real time as the 

motors are being adjusted. An auto collimated laser was imaged between the various 

zoom and focus settings, while the aperture was not varied.  In other words, only two 

of the motor settings were adjusted, which allowed him to use a bivariate polynomial.  

The displacement of the center of the collimated laser was measured to find the planar 

points for calibration.  Zoom and focus settings varied through 11 parameters each, 

which provided a total of 121 points to measure the 11 camera parameters.  To 

calibrate the camera, at each of these settings, only three images were taken moving 

the calibration object from 1.5 m, to 2m, then to 2.5m, i.e. only translational 

movement.  The results for some of the parameters are shown below (45): 

 

 

(a)                                                        (b) 
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(c)                                                        (d) 

 

(e)                                                        (f) 

 

 (g)                                                        (h) 

Figure 61: (a) Rx (b) Ry (c) Rz (d) Tx (e) Cx (f) Cy (g) f (h) k1 interpolated versus motor setting 

(45). 

No error plots are provided that explains the accuracy of their parameters, nor are the 

bivariate polynomials tested to see if providing the input motor parameters would 

lead to an accurate calibration without the actual calibration procedure. Wilson only 
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uses three images each for calibration, which from our preliminary tests showed that 

is not enough data to provide an accurate calibration, particularly with a zoom lens.  

An automated calibration procedure that makes use of many images for calibration 

could be used to refine the parameters obtained by Wilson. 

Li and Lavest (58) build off of Wilson’s work in a more experimental verification of 

Wilson’s theoretical work.   They took a series of images over a number of zoom 

settings and connected the common feature points together in a line which intersected 

at what they defined to be called the “center of expansion.”  The major problem with 

this work is that they assumed the optical axis does not vary “much” as the zoom 

settings are changed, and by doing so, placed a “hidden” constraint on their system.  

Using a planar checkerboard on a cart that moved directly backwards and forwards 

through distances of 0.8-4.5m from the camera, they claim the maximum variation of 

the optical center is about 0.5 pixels.  One of the primary problems we have in our lab 

with our motorized zoom lens is the shift of the center of the image as the camera 

zooms in on the object.  Lastly, adding to Wilson’s work, they concluded that as the 

aperture is varied, there is also a small change in the focal lengths because brighter 

objects with darker backgrounds are magnified.  This problem can be solved with an 

auto-iris capability on the lens that keeps the amount of light coming into the camera 

system at a uniform level throughout the whole image (58).   

In a more practical experiment, Lavest, Rives, and Dhome (46) use zoom lenses for 

3D reconstruction. Varying the zoom to give the calibration object a “virtual” 

displacement, the center coordinates of the image are found. 
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Figure 62: Determining camera center through zooming 

Again, this only works if one assumes that the optical axis does not change position 

within the image as the zoom is varied, and in this paper they claim that the 

maximum variation is only 0.099 pixels.  After finding two of the ten parameters 

needed for calibration, an interpolation plane is used to extract the other parameters.  

This is the plane that contains the origin of the camera, image pixel coordinate of 

interest in (with respect to the camera frame), and v, the director of l, which is the 

direction of a line in the image that we have taken (imaged line of a line in the real 

world). The goal is now to find extrinsic parameters that map the world frame to the 

image frame and have them lie in this plane.  The plane can be computed perfectly 

because we know each of the points.  So really it’s back to minimizing: 

 

where, 

 

Then the paper goes through some mathematics in finding this through a quadratic 

criterion and the Taylor polynomial of F.  These parameters were all found based on 

the pinhole model of the camera.  To model the relationship between the actual zoom 

lens (a thick lens model), they claim that the effective focal length of the system is 
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given by using the parameters found in the pin-hole model while sandwiching the 

principal planes of the lens together (46). 

 

Figure 63 Relationship between the thick-lens model and the pinhole model (46). 

 

In their experiment, they used a CIDTEC CID2250, 512x512 pixels spaced 15um x 

15um camera, and a Angoninex zoom lens T14x9 BIESM, f/1.6, about 13x (from 9 – 

124mm).  The total size of their checkerboard was 100mm, which is far too small to 

be able to track objects at far distances.  To test the accuracy of their results they 

reconstructed a cube and had errors from 0.2mm to 8mm., which is rather significant 

compared to the size of the calibration object they are using. 

In the system architecture presented in this chapter, FPAT like concepts in (59) are 

used to track objects moving on a plane at far distances.   

5.2 System Design and Architecture 

Master-slave relationships between a wide field of view camera and a narrow field of 

view camera are commonly used in surveillance setups to track an object (53) (60) 

(61).  Rarely, though, is work found using both master camera and slave camera 
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movement for target tracking.  With movement in both cameras, background 

subtraction is very difficult to use, if not impossible.  A solution is to turn off 

background subtraction while the master camera is moving and since it has a wide 

field of view, one would not expect it to move much anyway.  Thus, a series of 

homographies can be found between the master and slave cameras for a number of 

different pan/tilt settings of the master camera.  This calls for building a look up table 

and interpolating that look up table to find the respective homography. 

Look up tables (1) and interpolation functions (62), (63) , (56) are common tools used 

to navigate through the different settings to find the optimum setting for target 

tracking.  Figure 61 shows Wilson using an interpolated look up table to find the 

intrinsic parameters of the camera at a particular motor setting. Reference (10) 

interpolates a look-up table for a static master camera that is guiding numerous slave 

cameras.  Essentially, a constraint is placed on the target such as the percentage of the 

image it must cover, or the centering of the target within the image at all times, or a 

combination of the two and the intrinsic/extrinsic parameters are varied to find the 

optimum setting that best satisfies these constraints.   

Most research nowadays in surveillance systems is often done by post processing on a 

series of video images instead of in real time because the required computational 

complexity cannot be achieved in real time.  This chapter presents a system that 

throws most of the processing onto the hardware rather than running complex image 

processing algorithms.  High resolution zoom lenses with presets and gimbals are 

used to “recalibrate” the system when settings are changed.  As the system changes 

the intrinsic and extrinsic settings, the encoders on the lens and gimbal can be read off 
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to provide the new “calibration” settings.  Thus, the calibration only needs to take 

place once in the beginning and is then interpolated to find the optimum settings 

while the target moves through the field of view of the master camera.  A system 

diagram is shown in Figure 64: 

 

(a) 
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(b) 

Figure 64: Tracking procedure for PTZ camera system with (a) offline  and (b) real-time 

computations. 

As can be seen from Figure 64, this system is divided into two primary parts: the 

offline calibrations between master/slave cameras and the real-time tracking of a 

target. 

5.2.1 Off-line/One Time Calibrations 

To minimize the amount of image processing needed and thereby reduce the 

computational complexity of the problem, feature detection should only be done in 

one camera.  Once the target is localized (pixel-wise) in the image of the master 

camera, a coordinate transformation can be applied to have the slave camera center 

the target within its image. 

Simulation conducted design uses a perfect world with no noise to calculate the 

homography matrix.  Essentially, points in the world are mapped to the image of the 
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master camera via a projection matrix and rotation matrices are chosen for the slave 

camera to have that point fall in the center of its image.  The setup is shown in Figure 

65. 

 

Figure 65: Initial guess to find the slave camera angles from master camera and baseline 

An initial guess can be derived for the slave camera to point to the world point by 

finding the vector C: 

BAC
rrr

−=  

The projection matrix is then optimized to bring that world point into a region of 

within 10 pixels of the center of the slave image.  A maximum of five bounces is 

allowed if the camera begins to hover around the world point as it tries to bring it 

within the center of its image.  The pair of (x,y) retrieved from the master camera and 

(p,t) from the slave camera form a calibration point.  This is repeated nine times and a 

homography matrix is found. 
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At particular zoom settings of each camera, a homography between the pixels of the 

master camera and the pan/tilt settings of the slave camera to bring the (x,y) 

calibration point to its center is found.  The exact same algorithm to find the camera 

matrix from Chapter 2 was used to find this homography.  Nine points were chosen to 

have a good spread over the entire image in the master camera and each of those 

points were centered in the slave camera.  Since the lenses that were used in both the 

simulation and experiment were telecentric, once the slave camera is calibrated for at 

a specific zoom, the same homography mapping can be used for other zoom settings 

for targets that are “far enough” away.  Errors will arise from the fact that all lenses 

always have some shift in their optic axis (58) as they zoom in but if the target is far 

enough away then its image shift will be minimal. 

After the homography is found for various pan/tilt settings of the master camera, they 

must be interpolated for the tracking phase of the system.  Figure 66 shows the 

elements of the homography matrix for various pan/tilt settings of a master/slave 

camera setup with a baseline of 1.5m, focal lengths of 33mm and 100mm, for an area 

that is 70x70m at a range of 150m.  The blue points show the calibration values 

chosen while the surface plot is a linear interpolation through the points.  The reason 

for choosing a linear interpolation for the data will be explained in the tracking phase 

of the system.   
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Figure 66: Homography matrix elements for various pan/tilt settings of the master camera 

Practically, since the world point is not known, the slave camera is manually moved 

to bring a point in the world within the center of its image.  Once a particular point 

that falls in the master camera’s field of view is chosen, the pixel coordinate in the 

master camera and the pan/tilt settings from the encoders of the gimbal are saved into 

an array.  This is repeated for nine different points throughout the field of view of the 

master camera and SVD is used with a linear interpolation to calibrate the 

homography for various pan/tilt settings of the master camera. 

5.2.2 Real-time Tracking and Ranging 

A large region of interest about the center defined in the master camera on every 

frame checks to ensure the target stays within its boundaries.  The pan/tilt settings of 

the master camera are adjusted as the target moves above/below or to the left/right of 

this region of interest.   The increment of adjustment used is the same as that of the 
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linear calibration to ensure accuracy in the homography being used.  Ideally, the 

master camera should not be moving much since it has a wide field of view and thus 

using the linear interpolation between these schemes is okay. 

Although the cameras are set in a master slave relationship, the gimbal encoders from 

each camera are independent of one another.  This amounts to having two 

independent, different point of views of the same scene, which is stereovision.  

Determining range from such a setup can be approximated by a homogeneous linear 

method of triangulation, which often provides acceptable results.  Its advantage over 

other methods is that it can be easily modified when additional cameras are added, a 

requirement of this system (64).   

Figure 67 uses the interpolations from Figure 66 to extrapolate the world coordinate 

of a target relative to the master camera as it travels through space and plots the errors 

in the respective coordinates. 

 

Figure 67: Relative error in the coordinates for a random walk in the calibrated environment 
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From the simulation it can be  seen that the target was a few pixels away from the 

center of the slave camera (on the order of 8-10 pixels) when it moved away from the 

plane of calibration.  The calibration object used to find the homography between 

pan/tilt slave settings and pixel master settings for various pan/tilts of the master 

camera was placed at 150m.  It was found that when the target range deviated further 

from 150m, the errors become worse.  As shown in (59) one must ensure that the 

target remains on a plane so that all of the points of interest are coplanar.  The 

simulation run, however, deviated a bit from this assumption to account for a target 

that slightly moves off of the plane of calibration 5m on either side. 

Figure 68 repeats the same measurements with the addition of white pixel noise to the 

camera matrix mapping of the slave camera for various baseline measurements.   

 

Figure 68: Positioning error with additive noise at different baseline measurements.  Larger 

baselines compensate for the error produced by the noise 

To compensate for the noise at longer ranges a larger baseline should be used.  Often, 

increasing the baseline between cameras leads to rather significantly different lighting 
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conditions and thus corresponding features within two images is difficult.  An 

advantage of this system is that it does not need to worry about corresponding 

features between cameras since the homographies will all be precalibrated for 

manually.  So long as the target is found in a single camera, the second camera will 

follow the target. 

5.3 Experimental Results 

5.3.1 Hardware Setup 

The setup in the lab consisted of a Fujinon C22X23R2D-Zp1 Motorized Zoom lens 

with presets to ensure that our settings operate in a controlled loop in position mode 

rather than velocity mode.  The lenses were equipped with 16-bit encoders to 

accurately calibrate for the focal length using the MATLAB camera calibration 

toolbox (12) at a number of zoom settings fitting the model to the commonly used 

exponential model between zoom/focus settings and focal length.  The plots retrieved 

are similar to those shown earlier by Wilson (45) and other surveillance papers that 

have optical zoom capabilities (60) (53). 

The cameras used are two Imperex GE1050C 1-Megapixel 60fps, Gigabit Ethernet 

machine vision cameras.  It was found that compression added too much noise to the 

image for the accuracies and ranges the system was designed for thus the raw image 

format from the video stream of the cameras was used for the measurements/track.  

The system was operated at 30fps at 810x610 resolution and the Gigabit Ethernet 

connection allowed the system to operate in real-time. 
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Figure 69: (Left) Fujinon C22X Optical Zoom Lens 23mm-506mm (Right) GigE Machine Vision 

Cameras 

The gimbals used are designed in-house with two servo motors in the pitch and yaw 

orientations.  The gimbals are driven with two direct-drive brushless servo AC motors 

with 20bit absolute encoders that readout 0.000343degree resolutions and are 

interfaced with Gigabit Ethernet connections.  They are equipped to hold 50lbs and 

have a 0.002degree positioning repeatability at that weight.  The full system is shown 

in Figure 70. 
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Figure 70: Surveillance system in lab setup 

5.3.2 Ranging Results 

In the calibration phase, a slave camera is zoomed to a 70mm focal length and 

manually scans the environment.  A 20-pixel wide box is drawn about the center and 

that feature is found in the master camera.  The pair is selected to give the pixel-angle 

relationship at a particular master camera orientation.  In the tracking phase, the pixel 

coordinates are selected in the master camera at its orientation and the homographies 

found are used to have the slave camera center the point selected in the master camera 

within its image.  After the slave camera has a fix on the target, before moving to the 

next point, the world coordinate relative to the master camera is found.   
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(a) 

Extracted Position Coordinate 

X= 15.1078m 

Y= 3.8791 

Z= 164.5592m 

Theoretical Position Coordinate 

X=14.2m 

Y=4.2m 

Z = 170m 

Error In Coordinates 

∆X =0.9078m 

∆Y =-0.3209m 

∆Z =-5.4408m 

 

 

 (b) 

Figure 71: (a) Master Camera looking at a building with its point selected shown in red (b) Slave 

camera centering that point within its image and computing the position relative to the master 

camera. 
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(a) 

Extracted Position Coordinate 

X=35.0589 

Y=1.3408m 

Z=169.9056 

Theoretical Position Coordinate 

X=30m 

Y=2.8m 

Z = 170m 

Error In Coordinates 

∆X =5.0589m 

∆Y =-1.4592m 

∆Z =-0.0944m 

 

 

(b) 

Figure 72: (a) Master Camera looking at a building with its point selected shown in red (b) Slave 

camera centering that point within its image and computing the position relative to the master 

camera. 

Figure 71 and Figure 72 show experimental results obtained in University of 

Maryland Kim Building of the system described.  The Bimolecular Services Building 

across from the Kim Building was used as the plane for calibration and points were 
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selected in the tracking phase to center the slave camera.   Google Earth was used to 

find the range of the building relative to our lab and these were compared to the 

results given from the camera system.  Google Earth’s numbers were also tested with 

a GLR225 Bosch laser range finder and they showed similar results.  The (X,Y) 

positions are roughly estimated based on the size of the windows on the building, 

which 1.2m wide by 1.3m high.  Parking spaces were measured at these distances and 

yielded an average of about 3m spacing, which compared well to the actual size of the 

parking space.  Various measurements made at different distances from the camera 

yielded similar results as shown in Figure 73. 

 

Figure 73: Results found by choosing 10 points around target and finding standard deviation of 

estimated range 
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The results in Figure 73 were found by choosing targets at the measured distances 

shown in the y-axis (specifically a light post, a parking space, and two arrow signs on 

the road).  The error bars shown are the standard deviation of taking 10 points close 

to the target and comparing it to the actual distance measured by a laser range finder 

from the feature point to the camera system.   

Testing the surveillance setup in real-time (30 fps) at 405x305 resolution to track a 

target also showed excellent alignment capabilities.   

 

(a) 

 

(b) 



 

 127 

 

 

 (c) 

Figure 74: Surveillance system after calibration tracking a target moving from (a) Region 1 to 

(b) Region 2 (c) Region 3 

There were a number of false positives detected (an average of two) when the master 

camera adjusted its setting to bring the target back within its region of interest.  This 

can be fixed by increasing the number of learning images needed to detect a 

background so that new objects within the scene are not considered as foreground 

objects.  Increasing the number of images to find a background, however, does 

increase the latency in tracking the target with the slave camera. 

5.4 Closure 

This chapter has provided a novel technique for surveillance and ranging of targets in 

a dual PTZ system at long ranges, which only requires one set of initial calibrations.   

All processing power is thrown onto the hardware to recomputed camera matrices, 

and thus the computational expense from complicated image processing algorithms is 

avoided.  Ranges can only be determined as well as their calibrations permit, and the 

MATLAB toolbox showed significant deviations in focal length and principal point 
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calculations of the zoom lens.  A more sophisticated model would be to place two 

plenoptic cameras on PT platforms with an objective that has zoom capabilities to 

have the different optical parameters of a thick lens taken into consideration.   
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6 Conclusion/Future Work 

This thesis uses light field analysis to merge together the fields of computer vision 

and optics.  Its contributions, once again, can be grouped into three general 

categories: 

1. Light field analysis to compare optical systems and provide a figure of 

merit when models are simplified. 

2. Use of light-field cameras in adaptive optics and its simulated comparison 

to the Shack-Hartmann sensor, in specific. 

3. A surveillance system that tracks a target with two dynamic PTZs to 

extract the world coordinate relative to the camera setup in real time. 

This chapter recaps the novelties presented in this thesis for each of the areas 

mentioned above and concludes each section with a direction for numerous 

applications that are yet to be investigated. In conclusion, light field analysis and 

computational photography is the direction that cameras will be taking in the future.  

Applications of such fields are finding their way into applications in both adaptive 

optics as well as surveillance systems. 

6.1 Comparison Of Optical Models 

The optics that make a picture a picture are too often oversimplified. To address these 

issues, an accurate model for the camera and lens system is needed. Most research 

nowadays assumes a pinhole model (or perspective imaging model) for the cameras 

that linearly maps the world coordinates to the image pixel coordinates.  Many 

researchers have worked radial distortion into this model but do not include an 

analysis of optical effects such as spherical and chromatic aberrations, astigmatism, 
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and coma.  The camera, which primarily has fixed intrinsic parameters, then uses 

either a model plane like a checkerboard, or other known pattern placed within the 

scene, near the camera to find orientation, translation, and the optical parameters of 

the camera (focal length, skew, image center).  After all, when purchasing a camera, 

the bulk of the expense is going towards the lens that accompanies the camera, so 

finer models are needed. 

Lens designer programs such as CodeV provide detailed ray traces to understand 

what happens to the light as it passes through different optical elements but require 

the prescription of the lens for an accurate model.  These prescriptions are often kept 

proprietary to the designer/vendor and are not readily available.  This thesis derived 

an extension to the work of Liang and Shih (5) to analyze an imaging system from 

optical properties such as the back/front focal lengths, and entrance/exit pupil 

diameters.  Matrix optics was used to transform the light field at the object as it 

reaches the image plane.  It was shown that a simple change of basis whose 

transformation followed the rules of paraxial optics transforms the light field from the 

object to reach the imaging plane.   

Another novel contribution provided by this thesis was to provide a figure of merit 

between optical models using light field analysis.  It was shown that at longer ranges 

light fields that are formed from complex imaging systems converge to the pinhole 

model.  Essentially, Chapter 2 derived the properties of the different camera models 

in a unique manner to show how one evolves to the next.  The pinhole only allows for 

a single ray per object point to reach the imaging system and that is the ray through 

the pinhole.  The thin lens model widens the entrance pupil diameter from a delta 
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function to include the size of the thin lens but limits each ray to bend once at only 

one location.  The complex lens system is basically the input/output model of the full 

lens system that encapsulates all radii of curvature, spacing, and apertures of the lens.  

Using the paraxial approximations, the output height/angle is derived from the input 

height/angle through a linear transformation, namely the ABCD-matrix.  But as the 

distance to the optical setup gets larger, it was shown that the chief ray is a good 

approximation for the rays that are entering the system and thus using the pinhole 

model is valid and it greatly simplifies the mathematics for numerous applications.  

Bearing in mind that consumer-grade plenoptic cameras (Lytro) have been released, 

an advanced plenoptic camera system would be the next step to add some practical 

equipment to these simulations.   

6.2 Plenoptic Cameras in Adaptive Optics 

As shown in Chapter 4, there are many similarities between plenoptic cameras and 

the design of a Shack Hartman sensor.  By placing a micro lens array before the 

sensor plane to sample and focus the input wave front extrapolates the local 

distortions experienced at each point in the wave front.  These measured distortions 

are fed to deformable mirrors to correct the offset angle of the input wave front.   

Shack Hartman sensors measure the displacement from an initial undistorted 

reference wave in each sector of pixels that are located behind a particular micro lens.  

The micro lens having a small enough entrance pupil diameter only can have input 

rays approximated by the chief ray of the thin lens.  The sensor plane is located at the 

focal distance of the micro lens array, which limits the maximum angle of distortion 
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that can be measured to the ratio of the entrance pupil diameter (which is already 

small) and the focal length.  

Plenoptic cameras were shown in this thesis to maintain the accuracies of distortion 

measurement at least as well as the Shack Hartman sensor.  Matching the f/# of the 

micro lens to that of the optical objective eliminates the possibility of cross-talk and 

under-sampling.   This concept was used in this thesis to widen the field of view of 

measurable wave distortions to back track through the optical system to find the wave 

at the input of the optical objective.  The extra information that can be provided by 

such an analysis provides the distortions in the object as well as the environment.  

The algorithm presented in Chapter 4 showed the process of calculating the light field 

from the source to the sensor, if inverted, it can be used to find the light field at the 

source knowing the light field at the sensor from the plenoptic camera.  This would 

provide the necessary information needed to send to the deformable mirrors for 

corrections. 

A next step here would be to actually fabricate an advanced plenoptic camera with an 

interchangeable imaging array and test its performance for such applications.  The 

pixel width and spacing is obviously limited in the design of the sensor array and it 

would be interesting to compare that camera to those used in the Shack-Hartman 

sensor.  The wavelength is also limited to the wavelength within the range of silicon 

based focal plane arrays. but the increase in potential field of view would be a great 

addition in measuring wave front distortions.  To test this setup a collimated laser 

beam can travel through a beam expander to form a plane wave incident on the 

plenoptic camera.  Before hitting the plenoptic camera though it will travel through a 
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heat current in the atmosphere created by a convection heater.  The convection heater 

will simulate a controlled form of turbulence to distort the wave which will be 

measured by the plenoptic camera. 

A laser source will go through a beam expander to form a large collimated plane 

wave that will experience a circular, controlled convection heat steam in the 

atmosphere before it hits the plenoptic camera.  Such experiments are commonly used 

to control the amount of turbulence a laser beam experiences to analyze the 

performance of the measurement sensors.  Once completed, more astronomical 

applications will be considered. 

6.3 Surveillance/Tracking Systems 

PTZ camera networks are the future of surveillance systems.  Calibrations of these 

cameras between one another as they move over time to track targets over long 

periods of time remain an important area of research in the field.  Target localization 

can only be as good as the calibrations and this calls for both the aforementioned 

focus on optical models to better relate world to image coordinates, as well as 

advanced cooperation schemes between the cameras.   

In this thesis a novel system with multiple dynamic cameras to track a target’s world 

point in a master-slave relationship was investigated.  As the target moved out of the 

region of interest in the master camera, the master camera moved to bring the target 

back into a certain predefined window.  Calibrations between pan/tilt settings of the 

slave camera and pixel settings of the master camera are then updated based on the 

moves of the master camera to ensure the slave camera keeps the target within its 

center.  The absolute encoders available on the optical system and the gimbals were 
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then used to treat the problem as two independent cameras to find the world 

coordinate of the target relative to the master camera in real-time.  To improve 

accuracies, it was shown that the baseline of the system should be increased which is 

relatively easy to incorporate with the system that is described. 

To expand on the system currently running in real-time in our lab would call for an 

incorporation of image features to be used for correspondence. These vision 

algorithms are computationally expensive if they are to be run on the whole image, 

particularly when the video stream is in the form of uncompressed megapixel imagery 

data coming from machine vision cameras.   Finding corresponding features between 

two cameras in real-time is unfeasible with current computational power.  By limiting 

the search region to a window of interest within the master camera and another 

window of interested centered in the slave camera would alleviate such computational 

complexities.  In addition, with the larger baselines discussed for improved 

accuracies, lighting becomes a very important factor in image correspondence.  If the 

baseline is too large, the lighting coming into one camera could show a completely 

different image of the same scene between the two cameras and correspondence 

would fail.  However, by minimizing the search regions for image correspondence 

this problem is also minimized.  

Numerous applications from target tracking to optical transceiver alignment can be 

tested with the accuracies measured in our system.  Our system was implemented 

with two cameras and a target.  Surely a next step would be to use this setup as a 

single node within a much larger surveillance network.  The network could 

communication through a secondary control network to pass the target ID, namely the 
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measured world coordinate and velocities from optic flow measurements, to other 

nodes for a longer track period.  A lower data rate secondary channel transferring 

small portions of data would allow the network to be implemented in real-time for 

accurate target tracks.  It would also solve numerous handoff issues of multiple 

objects occluding each other for a while as their paths cross in space since they would 

have different world coordinates. 
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