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Chapter 0

Introduction

One of the most interesting examples of the interplay between algebra and topology

is the study of group actions on topological spaces. Perhaps the best result to date is the

solution by Madsen, Thomas, and Wall (see [41] for the proof and [17] for a survey) in

1976 of the topological spherical space form problem (see [21]): classify all manifolds

whose universal cover is a sphere. This is equivalent to finding all free actions by finite

groups on spheres. The solution by Madsen, Thomas, and Wall was to classify the finite

groups which can act freely on a sphere, and to construct an action in each case. Their

investigation was motivated by the following results, for which we need a definition:

Definition 0.0.1. A finite group G is periodic, that is, its cohomology is periodic of period

n, if and only if

H i(G;Z)∼= H i+n(G;Z)

for all i≥ 1 (assuming G acts trivially on Z).

Theorem 0.0.1 (P. A. Smith, [38]). If a finite group G acts freely on a sphere, the coho-

mology of G must be periodic.

Theorem 0.0.2 (Milnor, [31]). If a finite group G acts freely on a sphere, every involution

in G must be central.

Theorem 0.0.3 (Swan, [39]). A finite group G acts freely on a finite complex X homotopy

equivalent to Sn−1 if and only if the cohomology of G is periodic.
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Finally, Madsen, Thomas, and Wall showed:

Theorem 0.0.4 ([41]). A finite group G acts freely on a sphere if and only if the cohomol-

ogy of G is periodic and every involution in G is central.

Swan’s theorem is a converse of Smith’s theorem for the case of finite complexes

homotopy equivalent to spheres. Eventually, for a group G satisfying Smith and Milnor’s

conditions, Madsen, Thomas, and Wall were able to obtain a free action on a manifold

using surgery-theoretic techniques on Swan’s free G-complex X . That is, they showed

that the Smith and Milnor conditions were necesssary and sufficient.

It can be shown (see [16] Theorem XII.11.6) that the cohomology of a group G is

periodic if and only if every abelian subgroup of G is cyclic, a condition which can be

rephrased in terms of the rank of the group:

Definition 0.0.2. The rank of a finite group G, denoted r(G), is the maximum value of

the p-ranks,

rp(G) = max{n|(Zp)n ↪→ G},

for all p dividing the order of G.

A group of the form (Zp)n is called an elementary abelian group of rank n.

Hence, a group G is periodic if and only if r(G)= 1. Since a rank-1 group acts freely

on a finite complex having the homotopy type of one sphere, this led to the following

conjecture (appearing in [7]):

Conjecture 0.0.5. A finite group of rank n acts freely on a finite complex homotopy equiv-

alent to Sm1 ×·· ·×Smn .
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It should be noted that free actions arising from representations (called “linear

spheres”) can always be used to find such free actions for p-groups, but cannot be used in

general (see [36]).

We will outline the present state of research on this problem and, after some nec-

essary background is given, explain the contributions that the present work makes. In

particular, we will restrict attention to the problem of finding free actions by rank-2 finite

groups on finite complexes homotopy equivalent to a product of two spheres.

0.1 Euler classes

Before proceeding with a discussion of results pertaining to Conjecture 0.0.5, we

will need the following definitions:

Definition 0.1.1. Given an action of a group G on a topological space X , the following

fibration is called the Borel Construction:

X � � // X ×G EG

p
��

X ×EG/((x,e) v (gx,ge))

BG

where BG is the classifying space for the group G (so that H∗(G;M) ∼= H∗(BG;M) for

any coefficients M) and EG is a principal G-bundle over BG (in the case of a discrete

group, this is just the universal cover of BG). If M is any G-module, the Leray-Serre (also

called “Serre”) spectral sequence associated to this fibration is a first quadrant spectral

sequence with

E p,q
2

∼= H p(G;Hq(X ;M))
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and converging to the equivariant cohomology H∗
G(X ;M). Note that, if the G-action is

free, the equivariant cohomology is isomorphic to the cohomology of the quotient space:

H∗
G(X ;M)∼= H∗(X/G;M).

In the case of an orientable G-action on X ' Sn−1, we have

H∗(X ;Z)∼= H∗(Sn−1;Z)∼= Z

with generator a, so that the E2 page of the spectral sequence is:

a

H∗(X)

α

H∗(G)

dn

Recall that the transgression is the map

dn : E0,n−1
n → En,0

n

from the vertical axis to the horizontal axis. The class dn(a) = α ∈ Hn(G) is the Euler

class of the action.

Remark 0.1.1.

This construction also gives the familiar Gysin sequence for any trivial G-module

4



M:

· · · → H i(G;M) ^α−→ H i+n(G;M)
p∗−→ H i+n

G (X ;M)→ H i+1(G;M)→ ··· .

In the case of a free G-action on some X ' Sn−1, recall that the cohomology of G

must be periodic, and in fact the Euler class α is a periodicity generator for the cohomol-

ogy of G. That is, isomorphism on cohomology is realized by cup product with α. The

spectral sequence associated to a free G-action on a product of equidimensional spheres

is not much more complicated than the case of a single sphere, and led to some results

in this case. For example (also proved by D. Benson and J. Carlson ([7]) and Browder

([11])):

Theorem 0.1.1 (G. Carlsson, [14]). Suppose that a finite group G acts freely on a finite

complex X ' (Sn−1)r with trivial action on homology. Then for any prime p the p-rank

of G is at most r. Moreover, the complex of cellular chains on X is G-chain homotopic to

a tensor product of n complexes, where each complex has the homology of a sphere.

The first part of this theorem is a converse of Conjecture 0.0.5 in the special case of

a product of equidimensional spheres. It should be noted, however, that we cannot expect

every rank-n group to act freely on a finite complex homotopy equivalent to a product of

n equidimensional spheres: Oliver (see [34]) showed that not every rank-2 group can act

on a finite complex having the homotopy type of a product of two spheres of the same

dimension. In particular, he showed that A4, which contains Z2×Z2, cannot act freely on

such a space. Since every rank-2 nonabelian simple group contains A4, this implies that no

rank-2 simple group can act freely on such a space (see [4] section 5). His main tool was

the machinery of the Steenrod algebra, which is discussed in the following subsection.
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Due to the increasing complexity of the above spectral sequence and related issues, the

arguments in [7], [14], and [11] do not easily generalize to products of spheres of different

dimensions. More tools are needed to obtain information in these cases.

0.2 The Steenrod Algebra

The mod-p Steenrod Algebra, Ap, is generated by a collection of cohomology op-

erations which are natural with respect to maps of topological spaces and commute with

the suspension of topological spaces. These operations are called P-power operations,

except in the case of the familiar Bockstein map, which is also a generator. In later chap-

ters, we will use some properties of the P-power operations and the Bockstein, and will

explain their use in context. We will need a few results concerning the Steenrod Algebra.

Theorem 0.2.1. H∗(X ;Fp) is a module over Ap for every topological space X.

Thus, the Steenrod Algebra contains obstructions to a graded commutative Fp-

algebra being the cohomology ring structure of a topological space. There are some

famous non-existence results proved using the above fact, including the non-existence of

Z[α]/(αm), m > 3 and |α| other than 2 or 4, as the cohomology ring of a topological space

(see [20] for a discussion of this and some other applications of the properties of Ap). Re-

calling the Borel construction for a G-action on a space X , and noting that transgressions

in the Leray-Serre spectral sequence commute with the action of Ap (see [29] Corollary

6.9), we see that:

FACT 0.2.1. Let G be a finite group. The Euler class of a G-action on a space X ' Sn

must generate an Ap-invariant ideal in H∗(G;Fp).
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In particular, this implies that not every cohomology class in H∗(G;Fp) can be the

Euler class of an action on a space homotopy equivalent to a sphere. This fact will be

very important.

0.3 Effective Euler Classes

More recently, in 2001, Adem and Smith (see [4]) constructed actions satisfying the

conditions of Conjecture 0.0.5 for some large classes of rank-2 groups. Their construction

takes a certain type of (necessarily non-free) action by a rank-2 finite group G on a single

sphere and builds a free G-action on a finite complex homotopy equivalent to a product

of two spheres:

Theorem 0.3.1 ([4]). Let G be a finite group and X a finite dimensional G-CW complex

such that all of the isotropy subgroups of G have periodic cohomology. Then there exists

a finite dimensional CW-complex Y with a free G-action such that Y ' SN ×X. If X is

simply connected and finitely dominated, then we can assume Y is a finite complex.

They also showed that any rank-2 p-group and every rank-2 simple group except

possibly PSL(3, p) (p an odd prime) yields to this construction. Finding the required type

of G-action is equivalent to finding an action with a particular type of Euler class:

Lemma 0.3.2 (see [4], Lemma 4.5). The following conditions on an Euler class α ∈

HN(G;Z) of a G-action on a finite-dimensional X ' SN−1 are equivalent:

1. every maximal rank elementary abelian subgroup of G acts without stationary

points;
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2. α|E 6= 0 for all maximal rank elementary abelian subgroups E of G.

Such an Euler class is said to be effective.

An effective Euler class need not always exist; Adem and Smith noted the possibil-

ity that PSL(3, p) did not have one in [4] and, in [22], Jackson completely characterized

the groups which have effective Euler classes:

Theorem 0.3.3 (Jackson, [22]). A rank-2 group has an effective Euler class if and only if

it does not p′-involve the group Qd(p), for p an odd prime. Qd(p) is given by the split

extension

0→ F2
p →Qd(p)→ SL(2, p)→ 1,

with SL(2, p) acting on the vectors of F2
p by multiplication on the left.

A group G is said to p′-involve another group L if there are subgroups K / H ≤ G such

that H/K ∼= L and the order of K is relatively prime to p.

In particular, Qd(p) does not have an effective Euler class and, since Qd(p) ↪→

PSL(3, p) (see Chapter 2) with the same Sylow-p subgroup, PSL(3, p) does not have

one, either. Therefore, Adem and Smith’s construction fails for the groups Qd(p) and

PSL(3, p), and free actions by these groups (if they exist) must be obtained by different

means.

0.4 Other Constructions of Free Actions

Essentially, 0.3.1 is the only effective method for constructing the desired free ac-

tions. One other possibility for constructing a free G-action (r(G) = n) as in Conjec-
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ture 0.0.5 is mentioned by D. Benson and J. Carlson in [7]. In their proof of Theo-

rem 0.1.1, they give a means for constructing (from n carefully chosen classes in H∗(G;Z))

a chain complex F which is the tensor product of chain complexes having the homology

of a sphere and is naturally endowed with a free G-action. A finite topological realization

of this complex, that is, a finite complex X whose cellular chain complex is G-chain ho-

motopic to F , would have the homotopy type of a product of n spheres. D. Benson and J.

Carlson give no suggestions as to how to find such a realization, noting only that there are

obstructions, including one in Ap. In particular, if we study the Serre spectral sequence

associated to a free action on a product of spheres, we see that the transgressions of the

fundamental classes must generate an Ap-invariant ideal. An algorithm for finding a topo-

logical realization of a chain complex is given by J. Smith in [37]. A realization need not

always exist and, in fact, Smith’s theorem contains necessary and sufficient conditions for

the existence of a realization. Although the algorithm is not easy to implement, it may

illuminate other obstructions to the existence of a free action.

The mod-p reductions of the n integral classes in H∗(G;Z) must form a homoge-

neous system of parameters for H∗(G;Fp) (see [33] Appendix A and [10]). The computa-

tions in Chapter 1 make it possible to find homogeneous systems of parameters for Qd(p)

and PSL(3, p).

0.5 Results

The main results of this paper are:

Theorem 0.5.1. The following are computed:
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• H∗(Qd(p);Fp) and H∗(Qd(p);Z);

• H∗(PSL(3, p);Fp) and H∗(PSL(3, p);Z)(p);

• The Ap-invariant prime ideals in H∗(Sylp(Qd(p));Fp), H∗(Qd(p);Fp),

and H∗(PSL(3, p);Fp).

The computation of Ap-invariant prime ideals yields information about pairs of

cohomology classes which can possibly arise as transgressions in the spectral sequence

associated to the Borel construction which, by the construction of [7] discussed in Sub-

section 0.4, could generate the desired free Qd(p)- or PSL(3, p)-complex.

Aside from questions in the realm of group actions, the Qd(p) groups are an in-

teresting class of groups in their own right. Indeed, they are the special affine group of

F2
p. They exhibit a necessary condition for having Cohen-Macaulay group cohomology

(every maximal elementary abelian subgroup has equal rank) although H∗(Qd(p);Fp) is

not a Cohen-Macaulay ring (see Chapter 3). PSL(3, p) is a finite, simple, rank-2 group of

Lie type, whose cohomology in characteristic p had not been computed before this work.

The fact that Qd(p) has all maximal elementary abelian p-subgroups of equal rank

and has no effective Euler class suggested that perhaps this group might be a counterex-

ample to the following “depth conjecture”:

Conjecture 0.5.2 (see [13]). The depth of A = H∗(G;k) is equal to dim(A/q) for some

associated prime ideal q.

However, Qd(p) is not a counterexample (see Proposition 3.0.8). In order to show

this, we use our calculation of H∗(Qd(p);Fp) to exhibit the required associated prime
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ideal. In general, there is not an easy way to find which associated prime realizes the

depth, and there does not seem to be another proof possible without the calculations in

Chapter 1.
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Chapter 1

The Qd(p) Groups and Their Cohomology

The Qd(p) groups are given by the split extension:

0 // (Zp)2 // Qd(p) // SL(2, p)oo // 1

with SL(2, p) acting on (Zp)2 by matrix multiplication on the left.

The Sylow-p subgroup of Qd(p) is the extra-special p-group of order p3 and expo-

nent p, which has the following presentation:

P = 〈A,B,C|Ap = Bp = Cp = 1,C = [A,B],AC = CA,BC = CB〉,

where C = [A,B] = A−1B−1AB. P may be expressed as a group extension in two different

ways (see [40]):

1 // CC
p

// P // CA
p ×CB

p
// 1 (non-split)

1 // CB
p ×CC

p
// P // CA

poo // 1 (split)

and embeds in Qd(p) as:

A =

0,

 1 1

0 1


 ,B =

e2,

 1 0

0 1


 ,C =

e1,

 1 0

0 1


 ,

with 0 viewed as the zero vector and e1,e2 as the standard basis vectors. There are p+1

copies of P in Qd(p) since there are p + 1 copies of Zp in SL(2, p). In P, the subgroup

〈B,C〉 ∼= (Zp)2 is normal. We will refer to the subgroup 〈B,C〉 as H. Note also that

Z(P) = 〈C〉.
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1.1 Computation of H∗(Qd(p);Fp)

The strategy is given by the following

Lemma 1.1.1. Let G be a finite group, P a Sylow-p subgroup of G, and C =
\

g∈G

gPg−1.

If the map ResP∩gPg−1

C is a monomorphism for all g 6∈ NG(P), then for any G-module M,

H∗(G;M)(p)
∼= [ResP

C]−1(H∗(C;M)G/C)∩H∗(P;M)WG(P).

Proof: Recall that, for a subgroup K of H, the quotient WHK = NHK/K is the Weyl

group of K. This group is the quotient of NHK having potentially nontrivial action on

cohomology, since conjugation by k ∈ K induces the identity map. Since C =
\

g∈G

gPg−1

is clearly a normal subgroup, WG(C)∼= G/C.

Recall the following well-known “stability theorem”:

Theorem 1.1.2. (see [2] Theorem II.6.6) Let G ⊇ H ⊇ Sylp(G), where Sylp(G) is a p-

Sylow subgroup of G. Then, for any ZG-module M,

ResG
H : H∗(G;M)(p) → H∗(H;M)(p)

is injective, and its image consists of the stable elements in H∗(H;M)(p), that is, the

subring of H∗(H;M)(p) for which the following diagram commutes for all g ∈ G:

H∗(H;M)(p)

res

))RRRRRRRRRRRRRR

c∗g // H∗(gHg−1;M)(p)

resuukkkkkkkkkkkkkkk

H∗(H ∩gHg−1;M)(p)

So the restriction map from a group to any subgroup containing its Sylow-p sub-

group gives an isomorphism of the stable elements and the p-primary part of the coho-

mology ring. So we want to find the stable elements of H∗(P;M), that is, the elements

making the following diagram commute for all g ∈ G:

13



H∗(P;M)
res

((QQQQQQQQQQQQQ

c∗g // H∗(gPg−1;M)

resuullllllllllllll

H∗(P∩gPg−1;M)

If g∈NG(P), P∩gPg−1 = P. The diagram commutes for all g∈NG(P) on the fixed

points under conjugation by g, which are H∗(P;M)WG(P), so all stable elements must be

contained in this set of fixed points.

If g 6∈ NG(P), gPg−1∩P 6= P. The following commutative diagram will be helpful

in illustrating our argument:

H∗(P)
c∗g //

res
��

H∗(gPg−1)

res
��

H∗(P∩gPg−1)
c∗g //

res
��

H∗(g(P∩gPg−1)g−1)

res
��

H∗(C)
c∗g // H∗(C)

Suppose that an element x ∈ H∗(P;M) is stable. Then

ResgPg−1

gPg−1∩P(c∗g(x)) = ResP
gPg−1∩P(x)

for all g ∈ G. Restricting to C, we have

ResgPg−1∩P
C ResgPg−1

gPg−1∩P(c∗g(x)) = ResgPg−1∩P
C ResP

gPg−1∩P(x).

But since c∗g commutes with restriction maps, this shows that

c∗g(ResP∩gPg−1

C (ResP
P∩gPg−1(x)) = ResP∩gPg−1

C (ResP
gPg−1∩P(x)).

Hence ResP
C(x) is fixed under conjugation by g for all g ∈ G and

x ∈ [ResP
C]−1(H∗(C;M)G)∩H∗(P;M)WG(P).
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For the converse: by assumption, the map c∗g is the identity on ResP
C(x) for all g∈G.

Now,

ResP
C(x) = ResP∩gPg−1

C (ResP
P∩gPg−1(x))

and, for g 6∈ NG(P), ResP∩gPg−1

C is a monomorphism, implying that

⇒ResP∩gPg−1

C (ResP
P∩gPg−1(x)) = c∗g(ResP∩gPg−1

C (ResP
P∩gPg−1(x))

= ResP∩gPg−1

C (c∗g(ResP
P∩gPg−1(x)))

⇒ResP
P∩gPg−1(x) = c∗g(ResP

P∩gPg−1(x))

= ResgPg−1

P∩gPg−1(c∗g(x))

by commutativity of c∗g and restriction maps. Hence x is stable, as desired. 2

Corollary 1.1.3. H∗(Qd(p);Fp)∼= [ResP
H ]−1(H∗(H;Fp)SL(2,p))∩H∗(P;Fp)WG(P).

Remark 1.1.1.

In particular, the lemma gives a means for finding the cohomology of any normal

extension G given by

(Zp)n = H /−→ G−→ N

with the p-rank of G,

rp(G) = max{m|(Zp)m ↪→ G},

being equal to n, and |Sylp(G)| = pn+1 since in this case
\

g∈G

gSylp(G)g−1 = H. Thus

ResP∩gPg−1

C is clearly a monomorphism for g 6∈ NGP.
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1.2 The Ring H∗(P;Fp)

Recall that H∗(Qd(p);Fp) ∼= H∗(P;Fp)stab(Qd(p)), so we will need to understand

the cohomology of P in order to proceed. The following theorem of I.J. Leary, who refers

to P as P(3), is taken from [25]; note that the case p = 3 will be considered separately.

Theorem 1.2.1 (Leary, [25]). Let p be a prime greater than 3. Then H∗(P;Fp) is gener-

ated by elements

y, y′, x, x′, Y, Y ′, X , X ′, d4, . . . ,dp,c4, . . . , cp−1, z,

with

deg(y) = deg(y′) = 1, deg(x) = deg(x′) = deg(Y ) = deg(Y ′) = 2,

deg(X) = deg(X ′) = 3, deg(di) = 2i−1, deg(ci) = 2i, deg(z) = 2p.

The generators are defined as follows: identify the class y with the cocycle y(AiB jCk) = i

and the class y′ with the cocycle y′(AiB jCk) = j, Y with the Massey triple product 〈y,y,y′〉,

Y ′ with 〈y′,y′,y〉, and

di =


CorP

〈B,C〉(c
′i−1d′) i < p−1

CorP
〈B,C〉(c

′p−2d′)− xp−2y i = p−1

CorP
〈B,C〉(c

′p−1d′)+ xp−2X i = p

where d′ denotes the cocycle d′(BrCs) = s and c′ = σ(d′). The generator z is the mod-

p reduction of the top-dimensional integral Chern class of a p-dimensional irreducible

representation of P restricting to the center 〈C〉 ∼= Zp as p copies of the identity. Finally,

σ(y) = x, σ(y′) = x′,

σ(Y ) = X , σ(Y ′) = X ′.
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σ(di) =


ci i < p

0 i = p.

The generators satisfy the relations:

yy′ = 0, xy′ = x′y, yY = y′Y ′ = 0, yY ′ = y′Y ,

Y 2 = Y ′2 = YY ′ = 0, yX = xY , y′X ′ = x′Y ′,

Xy′ = 2xY ′+ x′Y , X ′y = 2x′Y + xY ′,

XY = X ′Y ′ = 0, XY ′ =−X ′Y , xX ′ =−x′X,

x(xY ′+ x′Y ) = x′(xY ′+ x′Y ) = 0,

xpy′− x′py = 0, xpx′− x′px = 0,

xpY ′+ x′pY = 0, xpX ′+ x′pX = 0,

ciy =


0 i < p−1

−xp−1y i = p−1
ciy′ =


0 i < p−1

−x′p−1y′ i = p−1

cix =


0 i < p−1

−xp i = p−1
cix′ =


0 i < p−1

−x′p i = p−1

ciY =


0 i < p−1

−xp−1Y i = p−1
ciY ′ =


0 i < p−1

−x′p−1Y ′ i = p−1

ciX =


0 i < p−1

−xp−1X i = p−1
ciX ′ =


0 i < p−1

−x′p−1X ′ i = p−1

cic j =


0 i+ j < 2p−2

x2p−2 + x′2p−2− xp−1x′p−1 i = j = p−1
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diy =


0 i < p

−xp−1Y i = p
diy′ =


0 i < p

−x′p−1Y ′ i = p

dix =


0i < p−1

−xp−1y i = p−1

xp−1X i = p

dix′ =


0 i < p−1

−x′p−1y′ i = p−1

−x′p−1X ′ i = p

diY = 0, diY ′ = 0,

diX =


0 i 6= p−1

−xp−1Y i = p−1
diX ′ =


0 i 6= p−1

−x′p−1Y ′ i = p−1

did j =


0 i < p−1 or j < p−1

x2p−3Y − x′2p−3Y ′+ xp−1x′p−2Y ′ i = p, j = p−1

dic j =


0 i < p−1or j < p−1

x2p−3y+ x′2p−3y′− xp−1x′p−2y′ i = j = p−1

−x2p−3X + x′2p−3X ′− xp−1x′p−2X ′ i = p, j = p−1

The action of the Steenrod algebra Ap is completed by the following:

P1(z) = zcp−1, P1ci =


izcp−1 i < p−1

−zcp−2 + x2p−2 + x′2p−2− xp−1x′p−1 i = p−1

P1(X) = xp−1X + zy, P1(X ′) = x′p−1X ′− zy′.

Remark 1.2.1.

In [8], Benson and Carlson attempt to find a more compact description, if not a nicer

presentation, of H∗(P;Fp) using symplectic forms. However, as acknowledged in [9],

their description was not complete. Others, including Milgram and Tezuka (see [30] for
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the case p = 3 to follow) and Lewis (see [26]), have also studied the cohomology of this

group.

Regarding the action of Ap: since we know the Bocksteins of the generators and

Leary computes the action of P1 above, we can use the Adem relations to get Pn from

P1 for n ≤ p−1. This completes the action for all generators except di and z. But since

deg(z) = 2p, we know that Pp(z) = zp and Pm(z) = 0 for m > p. Although Leary does not

compute the action of P1 on the di, it is obtained by a straightforward calculation using

Frobenius reciprocity:

P1(CorP
〈B,C〉(c

′i−1d′)) = CorP
〈B,C〉(P

1(ci−1d′))

= (i−1)CorP
〈B,C〉(c

′p+i−2d′)

= (i−1)CorP
〈B,C〉(c

′i−2d′Res(z)− x′p−1c′i−1d′)

= (i−1)zCorP
〈B,C〉(c

′i−2d′)+(i−1)x′p−1CorP
〈B,C〉(c

′i−1d′),

so that

P1(di) =


(i−1)zdi−1 +(i−1)x′p−1di i < p−1

−2zdp−2 +2x′2p−3y′−2x′p−1xp−2y+2x2p−3y i = p−1,

−zdp−1− x′2p−3X ′+ x′p−1xp−2X i = p.

A similar argument also shows that σ(dp) = 0: since the Bockstein commutes with

corestrictions, we have

σ(dp) = Cor(c′p)

= Cor(Res(z)+ c′Res(x′p−1))

= x′p−1Cor(c′)

= x′p−1σ(Cor(d′)).
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by Frobenius Reciprocity and the fact that Cor ◦Res is multiplication by the index

[P : H] = p since H / P. It remains to show that Cor(d′) = 0. This can be done directly,

viewing d′ as the cocycle in d′(AiB jCk) = k in H∗(P;Fp). A set of coset representatives

for H in P is given by As, 0≤ s≤ p−1, so the corestriction is

p−1

∑
s=0

As
d′(AiB jCk)=

p−1

∑
s=0

d′(As(AiB jCk)As−1
) since the action of As on Fp is trivial

=
p−1

∑
s=0

d′(Ai(AsB jAs−1
)Ck)

=
p−1

∑
s=0

d′(Ai(BCs) jCk)

=
p−1

∑
s=0

d′(AiB jCs j+k)

=
p−1

∑
s=0

k + s j

= j
p−1

∑
s=0

s

= j
(

p(p−1)
2

)
= 0.

Regarding the class z: Leary first computes the integral cohomology of P (see [24]),

then the mod-p cohomology. The class z is first defined as the top integral Chern class of

an irreducible p-dimensional representation of P restricting to the center 〈C〉 as p copies

of the identity. Leary shows that the additive order of z in integral cohomology is p2;

the z in mod-p cohomology is the reduction mod-p of the integral class z. We will need

this fact when we compute the integral cohomology of Qd(p) later. (Note that Lewis’s

computation of H∗(P;Z) in [26] agrees with that of Leary, although Lewis defines the

generator in degree 2p differently.) Lastly, note that, since z ∈H∗(P;Fp) is the restriction

of an integral class, it maps to zero under σ. 2
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In our computations, we will use the following

FACT 1.2.1. : H∗(P;Fp) has generators over Fp:

Degree Elements

1 y, y′

2 Y, Y ′, x, x′

3 X , X ′, yY ′, xy, xy′, x′y′

4 xY, xY ′, x′Y, x′Y ′, x′2, x2, xx′

5 x2y, x2y′, x′2y, x′2y′, xX , x′X , x′X ′, XY ′

6 XX ′, x2Y, x2Y ′, x′2Y, x′2Y ′, x3, x′3, x2x′, xx′2

> 6 even f1, f2Y, f3Y ′, cigi, XX ′gm

> 6 odd f1y, f2y′, f3X , f4X ′, drgr

where 4≤ i≤ p−1, 4≤ r ≤ p, the f j are homogeneous polynomials in x,x′,z and the gk

are homogeneous polynomials in z.

Note that, since deg(ci) = 2i and deg(di) = 2i−1, the elements cigi and drgr only

appear in certain degrees. Furthermore, note that products of the ci and dr, including

powers of the non-nilpotent element cp−1, can be written in terms of the above generators.

This shows that elements of even degree have one of the two following forms:

f1 + f2Y + f3Y ′+XX ′gk or f1 + f2Y + f3Y ′+ cigi

for some 4≤ i≤ p−1 and elements of odd degree have one of the two following forms:

f1y+ f2y′+ f3X + f4X ′+XY ′gs or f1y+ f2y′+ f3X + f4X ′+drgr

for some 4≤ r ≤ p. This FACT can be checked directly using the relations in H∗(P;Fp).

Leary makes this verification for elements not involving di, ci, or z, but it is easy to check
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that any element in H∗(P;Fp) can be written in one of the above forms.

1.3 The Map ResP
H .

Recall that H is the subgroup 〈B,C〉 of P and [ResP
H ]−1(H∗(H;Fp)SL(2,p)) is an

ingredient in the computation of H∗(Qd(p);Fp) by Lemma 1.1.1. Let Res denote the

restriction map ResP
H , Cor the corestriction CorP

H , and σ the Bockstein map.

Proposition 1.3.1. The images of the generators of H∗(P;Fp) under the map Res are:

Element Image under Res Element Image under Res

y 0 y′ u

x 0 x′ β

Y 0 Y ′ uv

X 0 X ′ vβ−uγ

di 0 ci 0, i < p−1

dp−1 −βp−2u cp−1 −βp−1

dp −βp−2(vβ−uγ) z γp− γβp−1

Table 1.1: Images under the map Res

Proof: Recall that H �P denotes the subgroup 〈B,C〉with cohomology ring H∗(H;Fp)∼=

Fp[β,γ]⊗∧(u,v), where σ(u) = β and σ(v) = γ. The class u represents the cocycle

ȳ′(BrCs) = r and v represents the cocycle d′(BrCs) = s.

Recall that the class y′ represents the cocycle y′(AiB jCk) = j and Y ′ by the Massey

product Y ′ = 〈y′,y′,y〉. Clearly y′ restricts to u ∈ H∗(P;Fp). Leary computes the restric-

tion Res(Y ′) = uv directly from the bar construction, an argument we will not reproduce
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here. Thus Res(x′) = β and Res(X ′) = σ(Res(Y ′)) = σ(uv) = vβ− uγ. It is also a direct

consequence of the definitions that the elements y,Y,x,X restrict to 0 in H∗(H;Fp).

Recalling the correspondence

d′↔ v y′↔ u

c′↔ γ x′↔ β,

the definition of the di can be written as

di =


CorP

〈B,C〉(γ
i−1v) i < p−1

CorP
〈B,C〉(γ

p−2v)− xp−2y i = p−1

CorP
〈B,C〉(γ

p−1v)− xp−2X i = p.

We now compute the restriction of the di. Since H / P, Res ◦Cor is multiplication

by the norm element N in Z[< A >], which is N = 1+A+ · · ·+Ap−1. It can be computed

directly that Ak(v) = v+ ku, so that

Res◦Cor(γ jv) =
p−1

∑
k=0

(γ+ kβ) j(v+ ku).

Expanding,

p−1

∑
k=0

(γ+ kβ) j =
j

∑
i=0

 j

i

γ
j−i

β
i

(
p−1

∑
k=0

ki

)
,

which is zero for i < p−1 and −1 for i = p−1 by Newton’s formula. Therefore

Res◦Cor(γ jv) = v
j

∑
i=0

 j

i

γ
j−i

β
i

(
p−1

∑
k=0

ki

)
+u

j

∑
i=0

 j

i

γ
j−i

β
i

(
p−1

∑
k=0

ki+1

)

=


0 j < p−2

−βp−2u j = p−2

−βp−2(vβ−uγ) j = p−1.
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Furthermore, since x and X are in the kernel of Res, we see that Res(dp−1) = −βp−2u,

implying that Res(cp−1) =−βp−1 and Res(dp) =−βp−2(vβ−uγ).

For the generator z: recall the definition of z as the pth Chern class of an irreducible

p-dimensional representation of P, which restricts to H as a sum of one copy of each of

the representations of H restricting to 〈C〉 as the identity. These representations have first

Chern classes γ+ iβ for each choice of i, so

Res(z) =
p−1

∏
i=0

(γ+ iβ) = γ
p− γβ

p−1.

Recalling the definitions of the generators and using the above table, we can see:

Proposition 1.3.2. The image of Res is the subalgebra of H∗(H;Fp) generated by β,γp−

γβp−1,u,uv,vβ− uγ and is generated by the restrictions of y′, x′, Y ′, X ′, dp−1, cp−1, dp,

and z. As a module over Ap, this is the subalgebra generated by the restrictions of y′, Y ′,

dp−1, dp, and z.

1.4 Computation of Res−1(H∗(H;Fp)SL(2,p))

This will proceed in steps: first, we determine the fixed points H∗(H;Fp)SL(2,p),

then the elements in H∗(P;Fp) which restrict to the fixed points (modulo the kernel), and,

finally, the kernel of Res.

1.4.1 Computation of H∗(H;Fp)SL(2,p)

The ring

H∗(H;Fp)∼= Fp[γ,β]⊗∧(u,v),
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where γ,β have degree 2, v,u have degree 1, and the image of the Bockstein map σ is

σ(v) = γ, σ(u) = β. SL(2, p) acts in the standard way on H1(H;Fp), with generators

A =

 1 1

0 1

 , D =

 0 −1

1 0


(see [5]). The action of A and D on Fp[γ,β]⊗∧(u,v) is given by:

A(v) = u+ v D(u) = v

A(u) = u D(v) =−u

A(γ) = γ+β D(γ) =−β

A(β) = β D(β) = γ.

Proposition 1.4.1 (Wilkerson, [42]).

Fp[γ,β]SL(2,p) ∼= Fp[
p

∑
i=0

(γp−1)p−i(βp−1)i,γβ
p−βγ

p].

Proof: The fixed-point set Fp[γ,β]GL(2,p) is well-known; the generators over Fp

are the Dickson invariants, call them c2,1 =
p

∑
i=0

(γp−1)p−i(βp−1)i of degree 2p(p−1) and

c2,0 = (γβp−βγp)p−1 of degree 2(p+1)(p−1). Wilkerson gives algorithms for comput-

ing c2,1 and c2,0. He also shows that Fp[β,γ]SL(2,p) has generators c2,1 and w = γβp−βγp;

note that wp−1 = c2,0.

Claim 1.4.2. The fixed points of even degree are Fp[β,γ]SL(2,p)⊗∧(vu).

Proof: It remains to show that vu is fixed under the action of SL(2, p): a b

c d


 v

u

=

 av+bu

cv+du

, so vu 7→ (ad−bc)vu = vu.
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Theorem 1.4.3 (Mui, [32]). The fixed points of odd degree are generated by vβ−uγ and

vβp−uγp over Fp[γ,β]SL(2,p).

Proof: Note that vβ−uγ and vβp−uγp are invariant and linearly independent over

Fp[γ,β]: let

f = (vβ−uγ)g+(vβ
p−uγ

p)h

where g,h are homogeneous polynomials in β,γ. Then if f = 0,

0 = (vβ−uγ) f = vu(γβ
p−βγ

p)h⇒ h = 0

and similarly

0 = (vβ
p−uγ

p) f =−vu(γβ
p−βγ

p)g⇒ g = 0.

Hence, an element of the form (vβ− uγ)g +(vβp− uγp)h is invariant if and only if g,h

are invariant.

An arbitrary element of odd degree has the form f = v f1(γ,β)+u f2(γ,β); suppose

that f is invariant under the action of SL(2, p). Invariance of f under SL(2, p) implies

invariance under the subgroup generated by A. Applying A to f and equating coefficients

of u and v, we see that

f2(γ,β)− f2(γ+β,β) = f1(γ+β,β),

so f1 is divisible by β, and

f1(γ,β) = f1(γ+β,β),

so f1 is invariant under A. We now rewrite

f = (vβ−uγ) f ′1 +uγ f ′1 +u f2,
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where f1 = β f ′1 with f ′1 invariant under A. Furthermore,

f (v,0;γ,0) = 0.

Since f must also be invariant under D =

 0 −1

1 0

 ,

D( f ) =−u f1(−β,γ)+ v f2(−β,γ)

therefore f (v,0;γ,0) = 0 implies that f2 is divisible by γ. Rewrite f as

f = (vβ−uγ) f ′1 +uγ f3.

Invariance of f and (vβ−uγ) f ′1 under A imply invariance of γ f3 under A.

Notice that an element which is divisible by γ and invariant under A must be divisi-

ble by γp− γβp−1, for the image of γ under Ak is γ+ kβ and

∏
k∈Fp

γ+ kβ = γ
p− γβ

p−1.

Rewrite f again as

f = (vβ−uγ) f ′1 +u(γp− γβ
p−1) f ′3.

Finally, note that

u(γp− γβ
p−1) = (vβ−uγ)βp−1− (vβ

p−uγ
p),

showing that

f = (vβ−uγ)( f ′1 +β
p−1 f ′3)− (vβ

p−uγ
p) f ′3.

Linear independence of vβ−uγ and vβp−uγp shows that f ′1 +βp−1 f ′3 and f ′3 are invariant

under SL(2, p), as desired. 2
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There is a simpler way to write the results shown above: in terms of the Steenrod

algebra Ap. The Steenrod algebra is a collection of cohomology operations satisfying

certain axioms, including

Pk(x) =


xp |x|= 2k

0 |x|< 2k.

The cohomology ring of a group is a module over the Steenrod algebra Ap and so must

be the fixed points (H∗(H;Fp))SL(2,p). Hence, we may state our results in terms of Ap;

we will do so throughout. In the present case, we have

Proposition 1.4.4. The fixed point set (Fp[γ,β]⊗∧(v,u))SL(2,p) has Ap-invariant gener-

ator vu over Fp[γ,β]SL(2,p).

Proof: Using the axioms for Ap, we see that σ(vu) =−(vβ−uγ) and P1(vβ−uγ) =

(vβp−uγp). In particular, P1(β) = βp and P1(γ) = γp since the degree of these elements

is 2.

1.4.2 The Inverse Image of the Fixed Points Under Res.

We begin by computing the inverse image in even degrees.

Claim 1.4.5. [Res−1](Fp[βγp− γβp,
p

∑
i=0

γ
(p−1)(p−i)

β
(p−1)i]) is the subalgebra

Fp[x′z,zp−1 + x′p(p−1)]+ ker(Res)

of Hev(P;Fp).

Proof: It is clear that Res(x′z) = βγp− γβp and

Res(zp−1 + x′p(p−1)) =
p

∑
i=0

(γp−1)p−i(βp−1)i :
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Res(zp−1 + x′p(p−1))= (γp− γβp−1)p−1 +βp(p−1)

=
(γp− γβp−1)p

γp− γβp−1 +β
p(p−1)

=
γp2 − γpβp(p−1) +βp(p−1)(γp− γβp−1)

γp− γβp−1

=
γp2 − γβ(p+1)(p−1)

γp− γβp−1

=
γ(p+1)(p−1)−β(p+1)(p−1)

γp−1−βp−1

=
p

∑
i=0

(γp−1)p−i(βp−1)i.

Using the form of even-degree elements in H∗(P;Fp), the claim follows from:

Lemma 1.4.6. The map Fp[x′,z]
g // Fp[β,γ] given by

g :


x′ 7→ β

z 7→ γp− γβp−1

is a monomorphism on homogeneous elements.

Proof: Recall that the degree of x′ is 2 and the degree of z is 2p; β and γ both have

degree 2. Now, g is clearly a monomorphism on homogeneous polynomials in degree

n < 2p. For n≥ 2p, write n = 2pm+2r, where r < p. Then a homogeneous polynomial

h of degree n can be written as

h(x′,z) =
m

∑
i=0

aix′pi+rzm−i.

If r > 0, we can factor out x′r, so it suffices to show the case n = 2pm. Proceed by

induction; the cases m = 0 and m = 1 are clear. For the inductive case, assume that g

is a monomorphism on homogeneous polynomials of degree less than or equal to m. In

degree m+1, we have
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0 = g(h) =
m+1

∑
i=0

aiβ
p(m+1−i)(γp− γβ

p−1)i

= a0β
p(m+1) +

m

∑
i=1

aiβ
p(m+1−i)(γp− γβ

p−1)i +am+1(γp− γβ
p−1)m+1

⇒ a0,am+1 = 0, since the coefficients of βp(m+1) and γp(m+1) must be zero. Therefore

0 =
m

∑
i=1

aiβ
p(m+1−i)(γp− γβ

p−1)i

= β
p(γp− γβ

p−1)
m−1

∑
i=0

ai+1β
p(m−1−i)(γp− γβ

p−1)i

⇒
m−1

∑
i=0

ai+1β
p(m−1−i)(γp− γβ

p−1)i = 0.

But this is the image of
m−1

∑
i=0

ai+1x′p(m−1−i)zi, a homogeneous polynomial of degree m−1,

so each ai+1 must be zero. Hence h = 0. 2

Since there are no relations in H ∗ (P;Fp) involving z, Lemma 1.4.6 essentially

gives the following picture:

Fp[x′z,zp−1 + x′p(p−1)] �
� //

∼=��

Fp[x′,z] �
� //

∼=
��

H∗(P;Fp)

Res

��
Fp[βγp− γβp,

p

∑
i=0

γ
(p−1)(p−i)

β
(p−1)i] �

� // Fp[β,γp− γβp−1] �
� // H∗(H;Fp)

Having computed the image of Res in Proposition 1.3.1 above, and using the forms

of arbitrary elements in H∗(P;Fp), it is now easy to verify:

Proposition 1.4.7. Res−1[H∗(H;Fp)SL(2,p)] is the Fp-subalgebra of H∗(P;Fp) generated

by

Y ′, X ′, x′z, x′p−1X ′− zy′, zp−1 + x′p(p−1)

and the kernel of Res.
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1.4.3 The Kernel of Res.

Proposition 1.4.8. The kernel of Res is the ideal in H∗(P;Fp) generated by the Fp gen-

erators

y, x, Y, X , di, ci, x′p−2y′+dp−1, x′p−1 + cp−1, x′p−2X ′+dp,

where 4≤ i < p−1.

Proof: Clearly, the elements y, x, Y , X , and, for 4 ≤ i < p− 1, di and ci are in

the kernel (see Proposition 1.3.1). It remains to show that the proposed set generates

ker(Res). For elements of degree less than or equal to 6, we can find the elements of the

kernel by inspection. To compute restrictions of elements of larger degree, we will need:

Generators for H∗(P) over Fp in degrees greater than 6 are given above and we

shall use them now to find the inverse image of 0 under Res; this will suffice to determine

a generating set for the kernel. An element of even degree may be written (non-uniquely)

as

f1 + f2Y + f3Y ′+gkXX ′ or f1 + f2Y + f3Y ′+gici,

where 4 < i≤ p−1 and f j = f j(x,x′,z) and gr = gr(z) = arzr are homogeneous polyno-

mials. Write Res( f j(x,x′,z)) = f̄ j(0,β,γp− γβp−1) and Res(gr(z)) = ḡr(γp− γβp−1). We

would like to determine when

Res( f1 + f2Y + f3Y ′+gkXX ′) = f̄1 + f̄3uv

is zero. Since f̄1 and f̄3 are polynomials in β and γ, f̄1 + f̄3uv = 0 exactly when f̄1 = 0

and f̄3 = 0. By Lemma 1.4.6, Res is a monomorphism on the fi(0,x′,z), so f1 and f3 must

either be zero or multiples of x.
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Next, observe that

Res( f1 + f2Y + f3Y ′+gici) =


f̄1 + f̄3uv 4≤ i < p−1

f̄1 + f̄3uv−βp−1ḡp−1 i = p−1.

The case 4 ≤ i < p−1 is the same as the argument shown above. Similarly, for the case

i = p−1, we must have f̄1−βp−1ḡp−1 = 0 and f̄3 = 0. Since x is in the kernel, it suffices

to consider f̄1 = f1(0,β,γp− γβp−1), giving

f̄1−β
p−1ḡp−1 = β

r
m

∑
i=0

aiβ
p(m−i)(γp− γβ

p−1)i−bβ
p−1(γp− γβ

p−1)n

for some r < p, which has degree 2r + 2pm = 2(p− 1)+ 2pn. Thus r ≡ −1 mod p, so

r = p−1 and m = n. Rewrite

f̄1−β
p−1ḡp−1 = β

p−1

(
n

∑
i=0

aiβ
p(n−i)(γp− γβ

p−1)i−b(γp− γβ
p−1)n

)
= 0

⇒ ai = 0 for 0 ≤ i < n and an = b. This shows that f̄1 = βp−1(γp− γβp−1)n. But this

is the restriction of a homogeneous polynomial in x′ and z, so the lemma shows that

f1 = x′p−1zn. The element f1 +cp−1gp−1 must therefore be a multiple of (x′p−1 +cp−1)zn.

Hence x′p−1 + cp−1 is a generator of the kernel.

An element of odd degree can be written as

f1y+ f2y′+ f3X + f4X ′+gidi

or

f1y+ f2y′+ f3X + f4X ′+XY ′gs

where 4 ≤ i ≤ p, f j = f j(x,x′,z) and gi = gi(z) = arzr are homogeneous polynomials.
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Observe that

Res( f1y+ f2y′+ f3X + f4X ′+gidi)=


f̄2u+ f̄4(vβ−uγ) i < p−1

f̄2u+ f̄4(vβ−uγ)−βp−2uḡp−1 i = p−1

f̄2u+ f̄4(vβ−uγ)−βp−2(vβ−uγ)ḡp i = p.

and

Res( f1y+ f2y′+ f3X + f4X ′+XY ′gs) = f̄2u+ f̄4(vβ−uγ).

To determine when these restrictions are zero, observe that u and vβ− uγ are linearly

independent over Fp[γ,β], so f̄2 and f̄4 must be zero when i < p−1; as above, f2 and f4

must be 0 or multiples of x. For the case i = p− 1, proceeding as above, we see that f̄4

must be zero and f2y′+ dp−1gp−1 is a multiple of (x′p−2y′+ dp−1)zn. Similarly, in the

case i = p, f̄2 = 0 and f4X ′+dpgp is a multiple of (x′p−2X ′+dp)zn. 2

1.5 The Action of the Weyl Group

Now we find the fixed points of H∗(P;Fp) under the action of WQd(p)(P). Recall

the presentation for P:

P = 〈A,B,C|Ap = Bp = Cp = 1,C = [A,B],AC = CA,BC = CB〉

embedding in Qd(p) as

A =

0,

 1 1

0 1


 ,B =

e2,

 1 0

0 1


 ,C =

e1,

 1 0

0 1


 .

By inspection of the elements in SL(2, p), we see that WQd(p)(P) ∼= Zp−1 ∼= F×p ,

generated by α =

0,

 α 0

0 α−1


 where α is a primitive root of F×p . Under the
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action of α, that is, α(w) = αwα−1,

A 7→ Aα2
,B 7→ Bα−1

,C 7→Cα.

Clearly the action of α induces an automorphism of P.

We now determine the action of WQd(p)(P) on H∗(P;Fp). By the definitions of y

and y′ as cocycles y(AiB jCk) = i and y′(AiB jCk) = j, we see that y 7→ α2y and y′ 7→ α−1y′.

Since β(y) = x and β(y′) = x′, this implies that x 7→ α2x and x′ 7→ α−1x′.

To find the action on Y and Y ′, recall that Massey triple products are natural with

respect to group automorphisms, so that the product is linear in each factor. These prop-

erties give the action on Y and Y ′:

Y = 〈y,y,y′〉 7→ 〈α2y,α2y,α−1y′〉

= α2+2−1〈y,y,y′〉

= α3Y

Similarly, Y ′ 7→ Y ′. Since X and X ′ are the images under the Bockstein of Y and Y ′,

X 7→ α3X and X ′ is fixed.

Since the action of WQd(p)(P) induces an automorphism of P sending C 7→Cα, we

may use:

Lemma 1.5.1 (Leary, [25]). In mod-p cohomology, the effect of an automorphism of P

restricting to Z(P) as C 7→C j sends di to jidi, ci to jici, and z to jz.

Our results are summarized in the following table:
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Element WQd(p)(P)-Image Element WQd(p)(P)-Image

y α2y y′ α−1y′

x α2x x′ α−1x′

Y α3Y Y ′ Y ′

X α3X X ′ X ′

di αidi ci αici

z αz

Table 1.2: Images under WQd(p)(P)-action

Proposition 1.5.2. An even-degree element of H∗(P;Fp)WQd(p)(P) has the form

f1 + f2zp−4Y + f3Y ′+


g1zp−4XX ′

cizp−1−igi


and an odd-degree element has the form

f1


x′2y

xnzp−3−2ny

+ f2


zy′

x′p−2y′

+ f3zp−4X + f4X ′+


zp−4XY ′gs

dizp−1−igi

dpzp−2gp


,

with braces indicating possible choices (recalling that the elements must be homoge-

neous), and

• the f j are homogeneous polynomials in x′2x, x′z, x′p−1, xkzp−1−2k, and zp−1;

• the gr are homogeneous polynomials in zp−1;

• 0≤ n≤ p−3
2 ;
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• 0 < k ≤ p−1
2 ;

• 4≤ i≤ p−1.

Proof: Since the WQd(p)(P)-action maps each generator to itself times some power

of α, linear combinations of generators are fixed if and only if each constituent monomial

is. To find the fixed points in H∗(P;Fp), we inspect the form of arbitrary elements in each

degree. The inspection proceeds quickly in degrees less than or equal to 6. In degrees

greater than 6, recall that H∗(P;Fp) has the following generators over Fp:

f1, f2Y, f3Y ′, cigi, XX ′gk, f1y, f2y′, f3X , f4X ′, dihi, XY ′gs

where 4≤ i≤ p−1, the f j are homogeneous polynomials in x,x′,z and the gk are homo-

geneous polynomials in z, so it suffices to check these.

For example, we determine when the monomial x′rxszt is fixed under the action

of WQd(p)(P) as follows: notice that x
p−1

2 , x′p−1, and zp−1 are all fixed, so that we may

restrict attention to 0≤ s≤ p−1
2 and 0≤ r, t ≤ p−1. Under the WQd(p)(P)-action, x′rxszt 7→

α2s+t−rx′rxszt , and finding the fixed points is equivalent to determining when 2s + t − r

is a multiple of p− 1. In the case r = 0, we have 2s + t = k(p− 1), where k ∈ {0,1,2}.

Thus, the possibilities are xnzp−1−2n and xp−1xnzp−1−2n, 0≤ n≤ p−1
2 . Subtracting r = 2

means we must add one to s or two to t, likewise subtracting r = 1 means we must add

one to t. Hence, the fixed monomials in x′, x, and z must be products of x
p−1

2 , x′p−1, zp−1,

x′2x, x′z, and xnzp−1−2n. The arguments for other generators over Fp are similar, so we

will not include all of them here.

We can easily check that the elements listed below, in conjunction with their images

under σ and P1, yield all of the fixed monomials found in the tables above. We have shown
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Proposition 1.5.3. H∗(P;Fp)WQd(p)(P) has Ap-invariant algebra generators Y ′, zy′, x′p−2y′,

zp−1, x′2y, xnzp−3−2ny, zp−4Y , dizp−1−i, and dpzp−2, where 0≤ n≤ p−3
2 and 4≤ i≤ p−1.

1.6 The Ring H∗(Qd(p);Fp)

We are finally in a position to prove

Theorem 1.6.1. Let p be a prime greater than 3. Then H∗(Qd(p);Fp) is isomorphic as an

Fp-algebra to the subalgebra of H∗(P;Fp) generated by x′z, zp−1 +x′p(p−1), x′p−1 +cp−1,

x′2x, xkzp−1−2k, Y ′, X ′, x′p−1X ′− zy′, dp−1 +x′p−2y′, x′2y, cizp−1−i, dizp−1−i, xnzp−3−2ny,

zp−4Y , zp−4X where 0 < k ≤ p−1
2 , 0 ≤ n ≤ p−3

2 , and 4 ≤ i < p− 1. The Ap-invariant

generators are Y ′, zp−1 + x′p(p−1), dp−1 + x′p−2y′, x′2y, dizp−1−i, xnzp−3−2ny, and zp−4Y .

Proof: By Lemma 1.1.1,

H∗(Qd(p);Fp)∼= [ResP
H ]−1(H∗(H;Fp)SL(2,p))∩H∗(P;Fp)WG(P).

By Proposition 1.4.7, this is the following subalgebra of H∗(P;Fp):

(Fp[Y ′, X ′, x′z, x′p−1X ′− zy′, zp−1 + x′p(p−1)]+ ker(Res))∩H∗(P;Fp)WG(P).

Examining table 1.2, we see that

Y ′, X ′, x′z, x′p−1X ′− zy′, zp−1 + x′p(p−1) ⊆ H∗(P;Fp)WG(P),

therefore the Fp-subalgebra these elements generate in H∗(P;Fp) is also contained in

H∗(P;Fp)WG(P). By the modular law, we now have the subalgebra

Fp[Y ′, X ′, x′z, x′p−1X ′− zy′, zp−1 + x′p(p−1)]+ ker(Res)WG(P).
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All that remains is to find a generating set for this subalgebra over H∗(P;Fp). Comparing

the form of elements of H∗(P;Fp)WQd(p)(P) given in Proposition 1.5.2 and the kernel of Res

computed in Proposition 1.4.8, we obtain the set of generators listed in the hypothesis.

Lastly, verification of the Ap-invariant generators is straightforward.

Remark 1.6.1.

We now know that an even-degree element of H∗(Qd(p);Fp) has the following

form:

f1 + f2zp−4Y + f3Y ′+


zr1(p−1)+p−4XX ′

cizri(p−1)+p−1−i

(x′p−1 + cp−1)zr(p−1)


and an odd-degree element has the form:

f1


x′2y

xnzp−3−2ny

+ f2(x′p−1X ′− zy′)+ f3zp−4X + f4X ′+


zp−4XY ′gs

dizp−1−igi

x′p−2y′+dp−1


with braces indicating possible choices (recalling that the elements must be homoge-

neous), and

• the f j are homogeneous polynomials in x′2x, x′z, zp−1 + x′p(p−1), and xkzp−1−2k;

• the gr are homogeneous polynomials in zp−1;

• 0≤ n≤ p−3
2 ;

• 0 < k ≤ p−1
2 ;

• 4≤ i≤ p−1.

These conditions represent a refinement of the conditions of Proposition 1.5.2.
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1.7 The Rings H∗(Qd(p);Z) and H∗(Qd(p);Fq), q 6= p.

Recall that, for a finite group G,

H∗(G;Z)∼=
M
q||G|

H∗(G;Z)(q)

in dimensions greater than 0; H0(G;Z)∼= Z. As before, for each prime p, the p-primary

part H∗(G;Z)(p) consists of the stable elements in the integral cohomology of the Sylow-

p subgroup.

First, we compute the most interesting case of q = p. This can be done in the

same manner as the computation for mod-p cohomology using Leary’s computation of

H∗(P;Z) (see [24]) and our lemma showing

H∗(Qd(p);Z)(p)
∼= Res−1[H∗(H;Z)SL(2,p)]∩H∗(P;Z)WQd(p)(P).

The ring

H∗(H;Z)∼= Fp[γ,β]⊗∧(vβ−uγ)

so clearly

H∗(H;Z)SL(2,p) ∼= Fp[
p

∑
i=0

γ
(p−1)(p−i)

β
(p−1)i,βγ

p− γβ
p]⊗∧(vβ−uγ).

We now need to compute the inverse image of this ring and the action of WQd(p)(P). Most

of the computations will carry over from the mod-p case, a fact which we can show by

exhibiting the relationship between H∗(P;Fp) and H∗(P;Z). The ring H∗(Qd(p);Z)(p)

is isomorphic to the subring of elements in mod-p cohomology lifting to integral coho-
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mology. That is, the coefficient sequence

0 // Z
p //

��

Z π //

��

Fp //

��

0

0 // Fp
p // Z/p2Z π̄ // Fp // 0

yields a pair of long exact sequences on cohomology

Hn(P;Z)
π∗ //

��

Hn(P;Fp)
δ //

=
��

σ

''NNNNNNNNNNN
Hn+1(P;Z)

p //

π∗
��

Hn+1(P;Z)

��
Hn(P;Z/p2Z)

π̄∗ // Hn(P;Fp)
σ // Hn+1(P;Fp)

p // Hn+1(P;Z/p2Z)

where δ and σ are the respective Bockstein maps and the diagram is commutative. A

mod-p cohomology class lifts to integral cohomology if it is in the image of π∗.

Commutativity of the triangle implies that im(σ) lifts and im(π∗)⊆ ker(σ). Hence

the classes x, x′, X , X ′, and ci for all 4 ≤ i ≤ p− 1 lift and, furthermore, these elements

have order p in integral cohomology. The only other generators which could possibly lift

are dp and z. Inspection of the ring H∗(P;Z) (see [24]) shows that dp does not lift; z lifts

by definition.

Lastly, we examine arbitrary elements of H∗(P;Fp), using the set of generators for

the ring over Fp in each degree. In view of the relation x′X =−xX ′, we see that x′Y +xY ′

is in the kernel of σ. In fact, this class lifts (see [25] p. 69).

It is easy to see that the action of WQd(p)(P) is the same for the elements x, x′, X , X ′,

and ci, 4 ≤ i ≤ p− 1 in mod-p cohomology and in integral cohomology. The action on

mod-p cohomology also determines the action on x′Y +xY ′, so it remains only to find the

action on z. Recalling that C 7→Cα, where α is the generator of WQd(p)(P), and z restricts

to 〈C〉 as p copies of the identity, it is clear that z 7→ αpz ≡ αz, so that the action on the
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integral class z is the same as the action on the mod-p class z. Now it is clear that

Proposition 1.7.1. H∗(Qd(p);Z)(p) is generated as an algebra over Z by the elements

zp−1 + x′p(p−1), x′z, x′p−1 + cp−1, X ′, x′2x, cizp−1−i, xnzp−1−2n, zp−4X , zp−3(x′Y + xY ′)

where 4≤ i < p−1 and 1≤ n≤ p−1
2 , subject to the relations in H∗(P;Fp) for the gener-

ators of the same names and the additional relation

px = px′ = pX ′ = pX = pci = p(x′Y + xY ′) = p2z = 0.

Remark 1.7.1.

The class x′Y +xY ′ lifts to H∗(P;Z)(p) but is not fixed under the action of WQd(p)(P).

However, zp−3(x′Y + xY ′) is fixed, and is contained in H∗(Qd(p);Fp) since it can be ex-

pressed in the form (xzp−3)Y ′+(x′z)(zp−4Y ).

Now we compute H∗(Qd(p);Z)(q), q 6= p. We will use

Claim 1.7.2. For p 6= q and any coefficients M, H∗(Qd(p);M)(q)
∼= H∗(SL(2, p);M)(q).

Proof: This follows immediately from the spectral sequence for the group extension

0 // (Zp)2 // Qd(p) // SL(2, p)oo // 1 ,

which collapses in Fq-coefficients.

The following proof for the case q 6= 2 uses properties of stable elements: again,

we look for the stable elements using Lemma 1.1.1. Recalling that Qd(p) is defined as

the semidirect product (Zp)2 o SL(2, p), we see that the Sylow-q subgroups of Qd(p)

are exactly the Sylow-q subgroups of SL(2, p). These are isomorphic to Zq and we will

41



call them Q. Recall that the stable elements are the cohomology classes in H∗(Q;M)(q)

making the following diagram commute for all g ∈ Qd(p):

H∗(Q;M)
res

((QQQQQQQQQQQQQ

c∗g // H∗(gQg−1;M)

resuukkkkkkkkkkkkkk

H∗(Q∩gQg−1;M)

Now, if g ∈ NQd(p)Q, then Q∩gQg−1 = Q. The stable elements under NQd(p)Q are

the fixed points under its action. If g 6∈ NQd(p)Q, then Q∩gQg−1 = {1} and all elements

are stable. So

H∗(Qd(p);M)(q)
∼= H∗(Q;M)NQd(p)Q.

By the same argument,

H∗(SL(2, p);M)(q)
∼= H∗(Q;M)NSL(2,p)Q.

Again looking at Qd(p) as a semi-direct product, it is easy to see that

NQd(p)Q∼= NSL(2,p)Q.

2

Therefore, by Theorem 9.1 in [40],

Proposition 1.7.3. For q 6= p a prime dividing the order of Qd(p)= p3(p2−1), H∗(Qd(p);Fq)∼=

Zq[β4]⊗∧(u3), where u3 is a 3-dimensional class and σ(u3)= β4, and H∗(Qd(p);Z)(q)
∼=

Zq[β4].

Proof: Of course, if q does not divide the order of Qd(p), the cohomology is zero.

Using the identity

H∗(G;M)(p)
∼= H∗(Sylp(G);M)NG(Sylp(G))
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for a group G with Sylp(G) abelian and a list of conjugacy classes in SL(2, p), Thomas

verifies the integral case. Clearly, the argument for the mod-q cases follows the same

reasoning.

1.8 The Case p = 3

We will denote the Sylow-3 subgroup of Qd(3) by P3 to avoid confusion. Our meth-

ods are the same as in the case p 6= 3, so some details will be omitted. The presentation

for the cohomology ring of the Sylow-3 subgroup is different in this case, and, in fact,

Milgram and Tezuka [30] show that the ring is detected by the restriction maps to proper

subgroups, which is not true in the case p 6= 3 since the generators di and ci, 4≤ i < p−1,

are essential: they restrict to zero on every maximal subgroup.

Theorem 1.8.1. (Leary, [25]) For the prime p = 3, H∗(P3;F3) is generated by elements

y,y′,x,x′,Y,Y ′,X ,X ′,z, with

deg(y) = deg(y′) = 1, deg(x) = deg(x′) = deg(Y ) = deg(Y ′) = 2,

deg(X) = deg(X ′) = 3, deg(z) = 6,

β(y) = x,β(y′) = x′,β(Y ) = X ,β(Y ′) = X ′,

subject to the following relations:

yy′ = 0, xy′ = x′y, yY = y′Y ′ = xy′, yY ′ = y′Y ,

YY ′ = xx′, Y 2 = xY ′, Y ′2 = x′Y ,

yX = xY − xx, y′X ′ = x′Y ′− xx′,

Xy′ = x′Y − xY ′, X ′y = xY ′− x′Y ,

XY = x′X, X ′Y ′ = xX ′, XY ′ =−X ′Y , xX ′ =−x′X,
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XX ′ = 0, x(xY ′+ x′Y ) =−xx′2, x′(xY ′+ x′Y ) =−x′x2,

x3y′− x′3y = 0, x3x′− x′3x = 0,

x3Y ′+ x′3Y =−x2x′2, x3X ′+ x′3X = 0.

The elements y and y′ are defined by cocycles y(AiB jCk) = i and y′(AiB jCk) = j

as before, and Y =< y,y,y′ >, Y ′ =< y′,y′,y >. That the relations in this group look

somewhat different than in the case p 6= 3 can be explained by properties of Massey

products, which imply that x =< y,y,y > and x′ =< y′,y′,y′ > (see [23] for background).

It is easy to show that an element of even-degree has the (non-unique) form

f1 + f2Y + f3Y ′

and an odd element has the form

f1y+ f2y′+ f3X + f4X ′+ f5XY ′,

with the fi polynomials in x, x′, and z. The map Res is a monomorphism on polynomials

fi(x,x′,z) = fi(0,x′,z) by Lemma 1.4.6, so the above argument also shows that the inverse

image of H∗(H;F3)SL(2,3) is generated by z2 + x′6, x′z, Y ′, X ′, x′2X ′− zy′ and ker(Res),

which has generators y, x, Y , and X over H∗(P3;F3). It remains to compute the fixed

points under the action of the Weyl group, which can be done directly once we know the

action:

44



Element WQd(3)(P3)-Image Element WQd(3)(P3)-Image

y α2y≡ y y′ α−1y′ ≡ αy′

x α2x≡ x x′ α−1x′ ≡ αx′

Y α3Y ≡ αY Y ′ Y ′

X α3X ≡ αX X ′ X ′

z αz

Table 1.3: Images under WQd(3)(P3)-action

We can now prove

Theorem 1.8.2. The ring H∗(Qd(3);F3) is isomorphic to the subalgebra of H∗(P3;F3)

generated by z2 + x′6, x′z, Y ′, X ′, x′2X ′− zy′, y, x, zY , zX . Furthermore, H∗(Qd(3);Z)(3)

is generated over Z by z2 + x′6, x′z, X ′, x, zX, and xY ′+ x′Y , subject to the relations for

the generators of the same names in H∗(P3;F3) and the additional relation 9z = 3x′ =

3x = 3X = 3X ′ = 3Y = 3Y = 0.

Proof: The argument is the same as in the case p 6= 3, see Theorem 1.6.1 and

Proposition 1.7.1.

Remark 1.8.1.

We now know that an arbitrary element of H∗(Qd(3);F3) can be expressed as:

f1 + f2Y ′+ f3zY

in even degrees and

f1y+ f2(x′2X ′− zy′)+ f3zX + f4X ′

in odd degrees, where the fi are homogeneous polynomials in x, x′z, and z2 + x′6.
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1.9 The Restriction Maps from H∗(Qd(p);Fp)

We would like to know whether a particular element of H∗(Qd(p);Fp) is contained

in a given Ap-invariant prime ideal in H∗(Qd(p);Fp). These ideals are in one-to-one

correspondence with conjugacy classes of elementary abelian p-subgroups E of Qd(p),

and the corresponding prime ideals are

√
ker(ResQd(p)

E )

(see [6] Theorem 7.5.1 for the result of Quillen). Note that extensions and contractions of

Ap-invariant ideals are again Ap-invariant, or, more simply, ResQd(p)
E = ResP

EResQd(p)
P , so

we can find these by computing the

√
ker(ResP

E)

and applying the results to H∗(Qd(p);Fp). This is the approach we will take.

Proposition 1.9.1. Up to conjugacy, the subgroup lattice of P is:

P

〈B,C〉

44jjjjjjjjjjjjjjjjjjjjj
〈A,C〉

99ttttttttttt
〈AB,C〉

OO

· · · 〈ABp−1,C〉

iiTTTTTTTTTTTTTTTTTT

〈C〉

<<yyyyyyyyy

55kkkkkkkkkkkkkkkkkk

33gggggggggggggggggggggggggggggg

11ddddddddddddddddddddddddddddddddddddddddddddddddddd 〈B〉

OO

〈A〉

OO

〈AB〉

OO

· · · 〈ABp−1〉

OO

{1}

kkWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

iiTTTTTTTTTTTTTTTTTTTTT

ddIIIIIIIIII

OO 55kkkkkkkkkkkkkkkkkk

Proof: Since the exponent of P is p, all of the subgroups of P are elementary

abelian. Consider P as the extension

0→ 〈C〉 i→ P π→ 〈A〉×〈B〉 → 1.
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Clearly P has rank 2, since 〈A〉×〈B〉 ∼= (Zp)2 is contained in P and P 6∼= (Zp)3.

The subgroup 〈A〉×〈B〉 has order p2 and p2−1 = (p−1)(p+1) nonzero elements.

Each nonzero element has order p, so generates a cyclic subgroup of order p with p−1

nonzero elements. Hence there are exactly p + 1 distinct rank-1 subgroups of 〈A〉× 〈B〉:

the subgroups 〈A〉, 〈B〉 and 〈ABk〉, 0 <≤ p−1, without loss of generality.

If E is a rank-2 subgroup of P, it must contain 〈C〉, else P ∼= (Zp)3. E maps to a

rank-1 subgroup under π. Now, there exists a bijection between the set of subgroups of P

containing 〈C〉 and subgroups of 〈A〉×〈B〉, so there are exactly p+1 non-conjugate rank-

2 subgroups of P: 〈A,C〉, 〈B,C〉 and 〈ABk,C〉, 0 < k ≤ p−1, without loss of generality.

Furthermore, P contains exactly p + 1 non-conjugate rank-1 subgroups not containing

〈C〉. 2

We computed ResP
H in Proposition 1.3.1. It is possible to compute the restrictions

to other subgroups using the commutativity of restriction maps and automorphisms of P.

Note that the automorphisms behave differently for p = 3, due to properties of Massey

products, so we will consider this case later. For now, let p > 3. We will need to know the

induced action on cohomology of the following automorphisms of P, where 1≤ k≤ p−1:

φ1 : A 7→ B φ2,k : A 7→ ABk

B 7→ A B 7→ B

C 7→C−1 C 7→C

The induced actions of φ1 and φ2,k on H∗(P;Fp) (see Lemma 1.5.1) are:
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Element Image Under φ∗1 Image Under φ∗2,k

y y′ y

y′ y y′+ ky

x x′ x

x′ x x′+ kx

Y Y ′ Y

Y ′ Y Y ′− kY

X X ′ X

X ′ X X ′− kX

di (−1)idi di

ci (−1)ici ci

z −z z

We now define our notation for the cohomology of the rank-2 subgroups of P. As

before, H ∼= 〈B,C〉 with its familiar cohomology ring. Let a denote the cocycle a(AiC j) =

i and wk the cocycle wk((ABk)iC j) = i. By an abuse of notation, writing v for the cocycles

v(AiCn) = n, v(B jCn) = n, and v((ABk)iCn) = n, and γ = σ(v), denote

• H∗(〈B,C〉;Fp)∼= Fp[β,γ]⊗∧p(u,v), where β = σ(u)

• H∗(〈A,C〉;Fp)∼= Fp[α,γ]⊗∧p(a,v), where α = σ(a)

• H∗(〈ABk,C〉;Fp)∼= Fp[ωk,γ]⊗∧p(wk,v), where ωk = σ(wk).

The induced actions of φ1 and φ2,k on the cohomology of H and 〈A,C〉 are
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φ1(u) = a φ2,k(u) =−kwk

φ1(v) =−v φ2,k(v) = v

φ1(a) = u φ2,k(a) = wk

φ1(β) = α φ2,k(β) =−kωk

φ1(γ) =−γ φ2,k(γ) = γ

φ1(α) = β φ2,k(α) = ωk.

Using the commutativity of the diagram

H∗(P)
φ∗ //

Res
��

H∗(P)

Res
��

H∗(E)
φ∗ // H∗(E ′)

for all subgroups E,E ′ of P (that is, commutativity of induced automorphisms

on cohomology and restriction maps) and Lemma 1.5.1, we obtain the restrictions to

all subgroups of P and we can therefore compute the restrictions of the generators of

H∗(Qd(p);Fp). See the appendix for these tables.

We will not show all of the computations, but the following illustrates the strategy:

ResP
〈ABk,C〉(Y

′)= φ2,k(ResP
〈A,C〉(Y

′+ kY ))

= φ2,k(−kav)

=−kwkv.

Note: these results agree with those of [19] on integral cohomology.
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Element Degree Image under ResP
〈A,C〉

y 1 a

y′ 1 0

x 2 α

x′ 2 0

Y 2 −av

Y ′ 2 0

X 3 −vα+aγ

X ′ 3 0

di 2i-1 0, i < p−1

dp−1 2p-3 −αp−2a

dp 2p-1 −αp−2(vα−aγ)

ci 2i 0, i < p−1

cp−1 2p-2 −αp−1

z 2p −γp + γαp−1

Table 1.4: Images under the map ResP
〈A,C〉
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Element Degree Image under ResP
〈ABk,C〉

y 1 wk

y′ 1 −kwk

x 2 ωk

x′ 2 −kωk

Y 2 −wkv

Y ′ 2 −kwkv

X 3 −(vωk−wkγ)

X ′ 3 −k(vωk−wkγ)

di 2i-1 0, i < p−1

dp−1 2p-3 −ω
p−2
k wk

dp 2p-1 −ω
p−2
k (vωk−wkγ)

ci 2i 0, i < p−1

cp−1 2p-2 −ω
p−1
k

z 2p γp− γω
p−1
k

Table 1.5: Images under the map ResP
〈ABk,C〉
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Generator ResQd(p)
〈B,C〉 ResQd(p)

〈A,C〉

zp−1 + x′p(p−1)
∑

p−1
i=0 (γp−1)p−i(βp−1)i (γp− γαp−1)p−1

x′z βγp− γβp 0

cp−1zp−1 −(βγp− γβp)p−1 −(αγp− γαp)p−1

x
p−1

2 0 α
p−1

2

x′2x 0 0

xnzp−1−2n 0 αn(γp− γαp−1)p−1−2n

x′p−1 + cp−1 0 −αp−1

Y ′ uv 0

X ′ vβ−uγ 0

x′p−1X ′− zy′ vβp−uγp 0

dp−1 + x′p−2y′ 0 −αp−2a

x′2y 0 0

cizp−1−i 0 0

dizp−1−i 0 0

xnzp−3−2ny 0 αn(γp− γαp−1)p−3−2na

zp−4Y 0 −(γp− γαp−1)p−4av

zp−4X 0 −(γp− γαp−1)p−4(vα−aγ)

Table 1.6: Images under the restriction maps to 〈B,C〉 and 〈A,C〉
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Generator ResQd(p)
〈ABk,C〉

zp−1 + x′p(p−1) (γp− γω
p−1
k )p−1 +ω

p(p−1)
k

x′z −kωk(γp− γω
p−1
k )

cp−1zp−1 −(ωkγp− γω
p
k )p−1

x
p−1

2 ω

p−1
2

k

x′2x k2ω3
k

xnzp−1−2n ωn
k(γ

p− γω
p−1
k )p−1−2n

x′p−1 + cp−1 0

Y ′ −kwkv

X ′ −k(vωk−wkγ)

x′p−1X ′− zy′ k−1(vω
p
k −wkγp)

dp−1 + x′p−2y′ 0

x′2y k2ωkwk

cizp−1−i 0

dizp−1−i 0

xnzp−3−2ny ωn
k(γ

p− γω
p−1
k )p−3−2nwk

zp−4Y (γp− γω
p−1
k )p−4wkv

zp−4X (γp− γω
p−1
k )p−4(vωk−wkγ)

Table 1.7: Images under the map ResQd(p)
〈ABk,C〉
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Generator ResQd(p)
〈C〉 ResQd(p)

〈B〉 ResQd(p)
〈A〉 ResQd(p)

〈ABk〉

zp−1 + x′p(p−1) γp(p−1) βp(p−1) 0 ω
p(p−1)
k

x′z 0 0 0 0

cp−1zp−1 0 0 0 0

x
p−1

2 0 0 α
p−1

2 ω

p−1
2

k

x′2x 0 0 0 k2ω3
k

xnzp−1−2n 0 0 0 0

x′p−1 + cp−1 0 0 −αp−1 0

Y ′ 0 0 0 0

X ′ 0 0 0 0

x′p−1X ′− zy′ 0 0 0 0

dp−1 + x′p−2y′ 0 0 −αp−2a −ω
p−2
k wk

x′2y 0 0 0 k2ωkwk

cizp−1−i 0 0 0 0

dizp−1−i 0 0 0 0

xnzp−3−2ny 0 0 0 0

zp−4Y 0 0 0 0

zp−4X 0 0 0 0

Table 1.8: Images under restriction maps to rank-1 subgroups

54



1.9.1 The Case p = 3

Recall from Section 1.8 that < y,y,y >= x and < y′,y′,y′ >= x′ in H∗(P3;F3). This

affects the automorphisms of H∗(P3;F3) induced by automorphisms of P3, but only on

the generators Y and Y ′. The induced automorphisms have the following affect:

Element Image Under φ∗1 Image Under φ∗2,k

y y′ y

y′ y y′+ ky

x x′ x

x′ x x′+ kx

Y Y ′ Y + kx

Y ′ Y Y ′− kY + k2x

X X ′ X

X ′ X X ′− kX

z −z z
Therefore, the restrictions are:
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Element Degree Image under ResP3
〈A,C〉

y 1 a

y′ 1 0

x 2 α

x′ 2 0

Y 2 −av

Y ′ 2 0

X 3 −vα+aγ

X ′ 3 0

z 2p −γ3 + γα2

Table 1.9: Images under the map ResP3
〈A,C〉

Element Degree Image under ResP3
〈ABk,C〉

y 1 wk

y′ 1 −kwk

x 2 ωk

x′ 2 −kωk

Y 2 −kωk +wkv

Y ′ 2 kwkv−2k2ωk

X 3 vωk−wkγ

X ′ 3 k(vωk−wkγ)

z 2p γ3− γω2
k

Table 1.10: Images under the map ResP3
〈ABk,C〉
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Generator ResQd(3)
〈B,C〉 ResQd(3)

〈A,C〉

z2 + x′6 ∑
3
i=0 γ2(3−i)β2i (γ3− γα2)2

x′z βγ3− γβ3 0

y 0 a

x 0 α

Y ′ uv 0

X ′ vβ−uγ 0

x′2X ′− zy′ vβ3−uγ3 0

zY 0 −(γ3− γα2)av

zX 0 −(γ3− γα2)(vα−aγ)

Table 1.11: Images under the restriction maps to 〈B,C〉 and 〈A,C〉

Generator ResQd(3)
〈ABk,C〉

z2 + x′6 (γ3− γω2
k)

2 +ω6
k

x′z −kωk(γ3− γω2
k)

y wk

x ωk

Y ′ kwkv−2k2ωk

X ′ k(vωk−wkγ)

x′2X ′− zy′ vω3
k −wkγ3

zY (γ3− γω2
k)(−kωk +wkv)

zX (γ3− γω2
k)(vωk−wkγ)

Table 1.12: Images under the map ResQd(3)
〈ABk,C〉
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Generator ResQd(3)
〈C〉 ResQd(3)

〈B〉 ResQd(3)
〈A〉 ResQd(3)

〈ABk〉

z2 + x′6 γ6 β6 0 ω6
k

x′z 0 0 0 0

y 0 0 a wk

x 0 0 α ωk

Y ′ 0 0 0 −2k2ωk

X ′ 0 0 0 0

x′2X ′− zy′ 0 0 0 0

zY 0 0 0 0

zX 0 0 0 0

Table 1.13: Images under restriction maps to rank-1 subgroups

58



Chapter 2

The Cohomology of PSL(3, p)

The group PSL(3, p) is the quotient of SL(3, p) by the central elements
λ 0 0

0 λ 0

0 0 λ

 ,

where λ ∈ F×p with λ3 = 1. Equivalently, we may view elements of PSL(3, p) as equiva-

lence classes of elements in SL(3, p), with two elements being equivalent if they differ by

multiplication by an element of the center. Throughout this chapter, we will represent an

equivalence class or coset by a matrix.

The group PSL(3, p) has order

p3(p3−1)(p2−1)
gcd(p−1,3)

and is simple of rank 2. We would like to know the cohomology of this rank-2 group in

order to gain some insight into whether or not it can act freely on a finite complex having

the homotopy type of a product of two spheres. Recall that groups without effective

Euler classes, exactly those which p′-involve the group Qd(p) (proved in [22]), do not

yield to Adem and Smith’s construction in [4]. Therefore, a new approach is necessary

to construct an action, if one exists, and we hope that the cohomology of PSL(3, p) will

suggest some avenues.

We compute the cohomology of PSL(3, p) in much the same way as the cohomol-
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ogy of Qd(p) was computed. Indeed, knowing H∗(Qd(p);Fp) will simplify the com-

putations since Qd(p) embeds in PSL(3, p). In particular, these groups have the same

Sylow-p subgroup P, which gives the isomorphisms

H∗(PSL(3, p);Fp)
Res∼= H∗(Qd(p);Fp)stab(PSL(3,p))

and

H∗(PSL(3, p);Fp)
Res∼= H∗(P);Fp)stab(PSL(3,p))

by Theorem 1.1.2. We will use both of these isomorphisms in our computations and we

will regard H∗(Qd(p);Fp) as a subring of H∗(P;Fp) whenever it is convenient to do so.

Recall that Qd(p) is given by the extension

0 // (Zp)2 // Qd(p) // SL(2, p)oo // 1

with SL(2, p) acting on (Zp)2 by matrix multiplication on the left, having Sylow-p sub-

group

P = 〈A,B,C|Ap = Bp = Cp = 1,C = [A,B],AC = CA,BC = CB〉,

where C = [A,B] = A−1B−1AB. P embeds in Qd(p) as:

A =


 0

0

 ,

 1 1

0 1


 ,B =


 0

1

 ,

 1 0

0 1


 ,C =


 1

0

 ,

 1 0

0 1


 .

There is an embedding of Qd(p) into PSL(3, p) given by


 x

y

 ,

 a b

c d


 7→


a b x

c d y

0 0 1

 .
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Denote the image of M under this map by M̄; we will sometimes use these interchange-

ably. Note that the image is, in fact, contained in PSL(3, p) because of the entry 1 in

the lower right. Furthermore, since the elements

 1 1

0 1

 and

 0 −1

1 0

 generate

SL(2, p) (see [5]), Qd(p) has generators Ā, B̄, C̄, and D̄ =


0 −1 0

1 0 0

0 0 1

.

In this chapter, we will compute H∗(PSL(3, p);Fp) and H∗(PSL(3, p);Z)(p) for

p≥ 3. See [3] for some properties of the mod-2 cohomology of PSL(3, p).

2.1 Computation of Stable Elements

We want to find the stable elements of H∗(P;Fp), that is, the elements making the

following diagram commute for all g ∈ PSL(3, p):

H∗(P;Fp)
res

((QQQQQQQQQQQQQ

c∗g // H∗(gPg−1;Fp)

resuullllllllllllll

H∗(P∩gPg−1;Fp)

If g ∈ NPSL(3,p)(Qd(p)), P∩gPg−1 = P, so the stable elements must be contained

in the set of fixed points under the action of WPSL(3,p)(Qd(p)). We compute these now.

2.1.1 The Weyl Groups of P and Qd(p) in PSL(3, p) and Their Induced

Actions on Cohomology

The two Weyl groups are related, as we now show.
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Claim 2.1.1. The Weyl group WPSL(3,p)(Qd(p)) = NPSL(3,p)(Qd(p))/Qd(p) is generated

by the image of


1 0 0

0 i−1 0

0 0 i

 in PSL(3, p), where i ∈ F×p is a primitive root, and

WPSL(3,p)(P) is generated by the images of


α 0 0

0 α−1 0

0 0 1

 and


1 0 0

0 i−1 0

0 0 i

 in

PSL(3, p), where i and α are primitive roots in F×p .

Proof: Recall that an arbitrary element of Qd(p) as a subgroup of PSL(3, p) is given

by


α β x

γ δ y

0 0 1

. If an element M =


a b c

d e f

g h i

of SL(3, p) normalizes Qd(p), it is

straightforward to check that g and h must be 0. In fact, there are no further restrictions

on normalizing elements, so NPSL(3,p)(Qd(p)) is generated by the images of


a b c

d e f

0 0 i

 : a,b,c,d,e, f , i ∈ Fp, i(ae−bd) = 1



in PSL(3, p). To generate


a b c

d e f

0 0 i

, take


a bi ci−1

d ei f i−1

0 0 1




1 0 0

0 i−1 0

0 0 i

 .

Note that


a bi ci−1

d ei f i−1

0 0 1

 ∈ Qd(p) since i(ae− bd) = 1 by assumption. Further-
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more, two matrices


1 0 0

0 i−1 0

0 0 i

 and


1 0 0

0 j−1 0

0 0 j

 are equivalent in PSL(3, p)

if and only if i = j, so that WPSL(3,p)(Qd(p)) ∼= F×p ∼= Zp−1, generated by the matrix

ī =


1 0 0

0 i−1 0

0 0 i

 with i a primitive root.

An arbitrary element of P ≤ PSL(3, p) is given by


1 β x

0 1 y

0 0 1

. Again, it is

straightforward to verify directly that if M normalizes P, it must have d,g,h = 0, and

therefore aei = 1. Hence, M can be written as the product
1 bia ci−1

0 1 f i−1

0 0 1




a 0 0

0 a−1 0

0 0 1




1 0 0

0 i−1 0

0 0 i

 ,

since a−1i−1 = e.

Recall that the Weyl group of P in Qd(p) is

〈


α 0 0

0 α−1 0

0 0 1


〉

(see Section 1.5).

2

As before, the action of the Weyl group WPSL(3,p)(P) induces an automorphism of

P, and it is easily verified that

A 7→ Ai,B 7→ Bi−2
,C 7→Ci−1

.

The effect on the cohomology of P and Qd(p) can easily be computed:
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Generator ī-Image Generator ī-Image

y iy y′ i−2y′

x ix x′ i−2x′

Y Y Y ′ i−3Y ′

X X X ′ i−3X ′

d j i− jd j c j i− jc j

z i−1z

x′z i−3x′z

zp−1 + x′p(p−1) zp−1 + x′p(p−1)

x′p−1 + cp−1 x′p−1 + cp−1

x′2x i−3x′2x

xkzp−1−2k ik−(p−1−2k)xkzp−1−2k = i3kxkzp−1−2k

x′p−1X ′− zy′ i−3x′p−1X ′− zy′

x′p−2y′+dp−1 x′p−2y′+dp−1

x′2y i−3x′2y

d jzp−1− j d jzp−1− j

c jzp−1− j c jzp−1− j

xnzp−3−2ny i3n+3xnzp−3−2ny

zp−4Y i−(p−4)zp−4Y

zp−4X i−(p−4)zp−4X .

Table 2.1: Images of Generators of H∗(Qd(p);Fp) Under the ī-Action
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Notice that the value of gcd(p− 1,3) will affect the fixed points. As in the com-

putation of H∗(Qd(p);Fp), the action of the Weyl group takes each generator to itself

times a power of i, so a linear combination of generators is fixed if and only if each con-

stituent monomial is fixed. Recalling the forms of arbitrary elements in H∗(Qd(p);Fp)

(see 1.6.1), we can easily show that

Proposition 2.1.2. H∗(Qd(p);Fp)WPSL(3,p)(Qd(p)) is generated over Fp by zp−1 + x′p(p−1),

xp−1, x′p−1 + cp−1, x′p−2y′+ dp−1, dizp−1−i, cizp−1−i, zp−4XY ′, zp−4XX ′, zp−4Y (x′2x),

zp−4X(x′2x), zp−4Y (x′z), zp−4X(x′z), xmzp−3−2my(x′2x)m+1−m′
(x′z)m′

, xkzp−1−2k(x′2x)k−t(x′z)t ,

xkzp−1−2k(x′2x)k−1−t ′(x′z)t ′



Y ′

X ′

x′2y

x′p−1X ′− zy′


, and the following generators, which de-

pend on gcd(p−1,3): if gcd(p−1,3) = 1, we have: (x′2x)p−1−s(x′z)s, and

(x′2x)p−2−s′(x′z)s′



Y ′

X ′

x′2y

x′p−1X ′− zy′


. If 3n = p−1, we have (x′2x)n−h(x′z)h,

(x′2x)n−1−h′(x′z)h′



Y ′

X ′

x′2y

x′p−1X ′− zy′


,

xnzp−1−2n, x
p−1

2 x
n
2 zp−1−n with the following conditions on the exponents and indices:

• 4≤ i < p−1
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• 0≤ m≤ p−3
2 , 0≤ m′ ≤ m+1;

• 0 < k ≤ p−1
2

• 0≤ t ≤ k, 0≤ t ′ ≤ k−1;

• 0≤ s≤ p−1, 0≤ s′ ≤ p−2;

• 0≤ h≤ n, 0≤ h′ ≤ n−1.

2.1.2 Stability Under Elements of PSL(3, p) Which Do Not Normalize P

Finding the subring of stable elements of H∗(P;Fp) under PSL(3, p) will not be

as easy as in the case of Qd(p), since PSL(3, p) is simple and therefore Lemma 1.1.1

does not apply. First, we find the elements of PSL(3, p) which do not normalize P.

Since nonsingular matrices over a field have an LU-decomposition, an arbitrary matrix

in PSL(3, p) has a preimage N ∈ SL(3, p) which can be written as N = LU , where L is a

lower-triangular matrix of the form

L =


1 0 0

c 1 0

a b 1


and U is an upper-triangular matrix; note that U ∈NPSL(3,p)(P) since the normalizer is the

subgroup of upper-triangular matrices. Since cN = cLcU ,

P∩NPN−1 = P∩LPL−1.
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We need to know these intersections in order to compute the stable elements. Let M be a

matrix of the form

M =


1 0 0

c 1 0

a b 1

 .

By direct inspection, we find that

• If M =


1 0 0

c 1 0

0 0 1

 , P∩MPM−1 = 〈B,C〉;

• If M =


1 0 0

0 1 0

0 b 1

 , P∩MPM−1 = 〈A,C〉;

• Otherwise, P∩MPM−1 = {1}.

Note that

MA =


1 0 0

0 1 0

0 1 1



generates all matrices of the form


1 0 0

0 1 0

0 b 1

. Likewise, MB =


1 0 0

1 1 0

0 0 1

 gener-

ates all matrices of the form


1 0 0

c 1 0

0 0 1

 . These matrices induce the following auto-

67



morphisms of 〈A,C〉 and H,

MA : A 7→ A MB : B 7→ BC

C 7→ A−1C C 7→C

i.e., MA normalizes 〈A,C〉 and MB normalizes H. (We should expect the latter since

MB ∈ Qd(p) and H is normal there.) All of H∗(P;Fp) is stable under the M for which

P∩MPM−1 = {1}. Furthermore, since

ResPSL(3,p)
P (w) = ResQd(p)

P (ResPSL(3,p)
Qd(p) (w))

for all w ∈H∗(PSL(3, p);Fp) and both maps are monomorphisms (see Theorem 1.1.2), it

suffices to find the stable elements in H∗(Qd(p);Fp). Since MB ∈ Qd(p), clearly all of

H∗(Qd(p);Fp) is stable under this element.

Therefore, all that remains is to find the stable elements of H∗(Qd(p);Fp) under

MA. We claim that these are exactly the inverse image of the fixed points H∗(〈A,C〉;Fp)MA

under the restriction map ResQd(p)
〈A,C〉 . For, MA ∈NPSL(3,p)(〈A,C〉) acts on H∗(〈A,C〉) and the

following diagram commutes:

H∗(P)
M∗

A //

Res
��

H∗(MAPM−1
A )

Res
��

H∗(〈A,C〉)
M∗

A // H∗(〈A,C〉)

Finally, we will use an argument similar to the one given in the proof of Theo-

rem 1.6.1 to compute H∗(PSL(3, p);Fp).

The induced action of 〈MA〉 on

H∗(〈A,C〉;Fp)∼= Fp[α,γ]⊗∧p(a,v)

(where α is the image of a under the Bockstein and γ is the image of v) is
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a 7→ a− v v 7→ v

α 7→ α− γ γ 7→ γ

This corresponds to the action of the matrix

 1 0

−1 1

 on Fp[α,γ]⊗∧p(a,v).

Therefore, the results of H. Mui of invariants of GL(2, p) apply (see [32]). In the course

of his proof of Theorem 1.4.3, Mui proves:

Lemma 2.1.3 (Mui, [32]). . The fixed points of Fp[α,γ]⊗∧(a,v) under the action of 〈MA〉

are generated over Fp by v, γ, av, vα−aγ, vαp−aγp, and αp−αγp−1.

(In fact, Mui’s lemma gives the fixed points for the general case H∗((Zp)k;Fp).)

It now remains to find the preimage of these elements under ResQd(p)
〈A,C〉 . We will

proceed as in the computation of H∗(Qd(p);Fp) and will skip some verifications. We

know the form of an arbitrary even-degree element of H∗(Qd(p);Fp) (see Remark 1.6.1):

f1 + f2zp−4Y + f3Y ′+


zr1(p−1)+p−4XX ′

cizri(p−1)+p−1−i

(x′p−1 + cp−1)zr(p−1)


.

The restriction is

f̄1− f̄2(γp− γα
p−1)p−4av+0+


0

0

−αp−1(γp− γαp−1)r(p−1)


.

This element is fixed if and only if f̄1−αp−1(γp− γαp−1)r(p−1) and f̄2(γp− γαp−1)p−4

are fixed.
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Recalling the tables of restrictions in Subsection 1.9, we can check that the follow-

ing generators of H∗(Qd(p);Fp) over Fp are in the kernel of ResQd(p)
〈A,C〉 :

x′z, x′2x, Y ′, X ′, x′p−1X ′− zy′, x′2y, dizp−1−i, cizp−1−i.

In particular, we have ResP
〈A,C〉(x

′) = 0, ResP
〈A,C〉(x) = α, and ResP

〈A,C〉(z) = γp−γα. By an

argument exactly as in the proof of Lemma 1.4.6, we can show

Lemma 2.1.4. The map Fp[x,z]
g // Fp[α,γ] given by

g :


x 7→ α

z 7→ γp− γαp−1

is a monomorphism on homogeneous elements.

Furthermore, we can show that a homogeneous polynomial in the elements xkzp−1−2k

has the form

bxn( p−1
2 )zm(p−1)xkzp−1−2k

for some 0 < k < p−1
2 . Thus, f̄t is a homogeneous polynomial in

p

∑
j=0

γ
(p−1)(p− j)

α
(p−1) j

and α
n( p−1

2 )+k(γp − γαp−1)m(p−1)+p−1−2k for some 0 < k < p−1
2 . These generators are

fixed under the action of

 1 1

0 1

:

α 7→ α γ 7→ α+ γ.

The fixed points must also be fixed under the action of

 1 0

−1 1

 and we can

show that these two matrices generate all of SL(2, p). Hence we are looking for the inverse

image of
p

∑
j=0

γ
(p−1)(p− j)

α
(p−1) j and αγp − γαp under the map ResQd(p)

〈A,C〉 . By the above
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lemma (Lemma 2.1.4), and using the same argument as in the argument for H∗(Qd(p);Fp),

the preimage (modulo the kernel of ResQd(p)
〈A,C〉 ) is generated by zp−1 + x′p(p−1) + xp(p−1),

(xz)p−1, and (x′p−1 +cp−1)zp−1. (By a degree argument, we can show that no multiple of

zp−4Y can restrict to a fixed point.)

Returning to the odd-degree elements in H∗(Qd(p);Fp), we see that the restriction

of

f1


x′2y

xnzp−3−2ny

+ f2


x′p−1X ′− zy′

x′p−2y′+dp−1

+ f3zp−4X + f4X ′+


zp−4XY ′gs

dizp−1−igi


is

f̄1


0

αn(γ− γαp−1)p−3−2na

+ f̄2


0

−αp−1a

− f̄3(γ−γα
p−1)p−4(vα−aγ)+0+0.

Since a and f̄3(γ−γαp−1)p−4 are never fixed (the latter by the same argument as presented

in the even-degree case), it remains to determine when

f̄1α
n(γp− γα

p−1)p−3−2n− f̄2α
p−1 = 0.

Observing that p−3
2 + p−1

2 = p− 2, we see that x
p−1

2 x
p−3

2 y = xp−2y and f1xnzp−3−2ny +

f2(x′p−2y′+dp−1) must be a multiple of xp−2y+x′p−2y′+dp−1. Since xp−1+x′p−1+cp−1

is the Bockstein of xp−2y+ x′p−2y′+dp−1, it must also be in the kernel.

Altogether, we have shown:

Proposition 2.1.5. The stable elements of H∗(P;Fp) under the action of the lower-triangular

matrices in PSL(3, p) consist of the Fp-subalgebra generated by zp−1 +x′p(p−1) +xp(p−1)

and (xz)p−1 and the kernel of ResQd(p)
〈A,C〉 , which is the ideal in H∗(Qd(p);Fp) generated
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by x′z, x′2x, Y ′, X ′, x′p−1X ′− zy′, x′2y, dizp−1−i, cizp−1−i, xp−2y + x′p−2y′ + dp−1, and

xp−1 + x′p−1 + cp−1.

2.2 The Ring H∗(PSL(3, p);Fp)

All that remains is to compute the intersection of the elements given in Proposi-

tion 2.1.5 and H∗(P;Fp)WPSL(3,p)(P). Recall that the value of gcd(3, p− 1) determines the

order of PSL(3, p), so it also affects the cohomology ring.

Theorem 2.2.1. The ring H∗(PSL(3, p);Fp) is isomorphic to the Fp subalgebra of H∗(P;Fp)

generated by zp−1 + x′p(p−1) + xp(p−1), (xz)p−1, xp−2y + x′p−2y′+ dp−1, xp−1 + x′p−1 +

cp−1, dizp−1−i, cizp−1−i, zp−4XY ′, zp−4XX ′, zp−4Y (x′2x), zp−4X(x′2x), zp−4Y (x′z), zp−4X(x′z),

xmzp−3−2my(x′2x)m+1−m′
(x′z)m′

, xkzp−1−2k(x′2x)k−t(x′z)t ,

xkzp−1−2k(x′2x)k−1−t ′(x′z)t ′



Y ′

X ′

x′2y

x′p−1X ′− zy′


, and the following generators, which de-

pend on gcd(p−1,3):

If gcd(p−1,3)= 1, we have: (x′2x)p−1−s(x′z)s and (x′2x)p−2−s′(x′z)s′



Y ′

X ′

x′2y

x′p−1X ′− zy′


.
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If 3n = p−1, we have (x′2x)n−h(x′z)h, (x′2x)n−1−h′(x′z)h′



Y ′

X ′

x′2y

x′p−1X ′− zy′


, xnzp−1−2n,

and x
p−1

2 x
n
2 zp−1−n with the following conditions on the exponents and indices:

• 4≤ i < p−1;

• 0≤ m≤ p−3
2 , 0≤ m′ ≤ m+1;

• 0 < k ≤ p−1
2 ;

• 0≤ t ≤ k, 0≤ t ′ ≤ k−1;

• 0≤ s≤ p−1, 0≤ s′ ≤ p−2;

• 0≤ h≤ n, 0≤ h′ ≤ n−1.

Proof: An argument similar to the one presented in Theorem 1.6.1 shows that these

generators in fact give all of

[ResP
〈A,C〉]

−1(H∗(〈A,C〉;Fp)MA)∩H∗(Qd(p);Fp)ī.

2

2.3 The Integral Cohomology of PSL(3, p)

We will only compute the p-primary part,

H∗(PSL(3, p);Z)(p).
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As in the case of H∗(Qd(p);Z)(p), we look for the elements in H∗(PSL(3, p);Fp) which

lift to integral cohomology. In Proposition 1.7.1, we determined which classes in H∗(Qd(p);Fp)

lift to integral cohomology and, since H∗(PSL(3, p);Fp) embeds in H∗(Qd(p);Fp), this

proposition is all we need to show:

Theorem 2.3.1. The ring H∗(PSL(3, p);Z)(p) is generated as an algebra over Z by

zp−1 + x′p(p−1) + xp(p−1), (xz)p−1, xp−1 + x′p−1 + cp−1cizp−1−i, zp−4XX ′, zp−4X(x′2x),

zp−4X(x′z), xkzp−1−2k(x′2x)k−t(x′z)t , zp−3(x′Y + xY ′), zp−3(x′pY + xpY ′),

xkzp−1−2k(x′2x)k−1−t ′(x′z)t ′X ′, and the following generators, which depend on gcd(p−

1,3):

If gcd(p−1,3) = 1, we have: (x′2x)p−1−s(x′z)s and (x′2x)p−2−s′(x′z)s′X ′.

If 3n = p−1, we have (x′2x)n−h(x′z)h, (x′2x)n−1−h′(x′z)h′X ′, xnzp−1−2n, and x
p−1

2 x
n
2 zp−1−n.

These generators satisfy the relations in H∗(P;Fp) for the generators of the same names,

the additional relation

px = px′ = pX ′ = pX = pci = p(x′Y + xY ′) = p2z = 0,

and the following conditions on the exponents and indices:

• 4≤ i < p−1;

• 0 < k ≤ p−1
2 ;

• 0≤ t ≤ k, 0≤ t ′ ≤ k−1;

• 0≤ s≤ p−1, 0≤ s′ ≤ p−2;

• 0≤ h≤ n, 0≤ h′ ≤ n−1.
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2.4 The Case p = 3

Proceeding as in the case p 6= 3 above, we will skip most verifications. Notice that

the action of the Weyl group is as follows:

Generator ī-Image Generator ī-Image

y iy y′ i−2y′ ≡ y′

x ix x′ i−2x′ ≡ x′

Y Y Y ′ i−3Y ′ ≡ iY ′

X X X ′ i−3X ′ ≡ iX ′

z i−1z≡ iz

Table 2.2: Images of Generators of H∗(P3;F3) Under the ī-Action

Using Remark 1.8.1, we know that an arbitrary element of H∗(Qd(3);F3) can be

expressed as:

f1 + f2Y ′+ f3zY

in even degrees and

f1y+ f2(x′2X ′− zy′)+ f3zX + f4X ′

in odd degrees, where the fi are homogeneous polynomials in x, x′z, and z2 + x′6. Hence,

we have:

Theorem 2.4.1. H∗(PSL(3,3);F3) is isomorphic to the subalgebra of H∗(P(3);F3) gen-
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erated by z2 + x′6 and


x′z

x





x′z

Y ′

X ′

x′2X ′− zy′

y

x

zY

zX



,

with braces indicating possible choices. H∗(PSL(3,3);Z)(3) is generated as an algebra

over Z by z2 + x′6, xY ′+ x′Y and


x′z

x





x′z

X ′

x′2X ′− zy′

x

zX



,

subject to the relations in H∗(P(3);F3) for the generators of the same names and the

additional relation 9z = 3x′ = 3x = 3X = 3X ′ = 3Y = 3Y = 0.
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Chapter 3

Depth and Dimension

One familiar invariant of a ring A is its Krull dimension, dim(A), which is equal to

the length of the longest chain of prime ideals in A. Another invariant is the depth of a

ring, which can be defined in terms of a regular sequence in A:

Definition 3.0.1. A regular sequence in a ring A is an ordered set of elements (a1, . . . ,ak)

such that a1 is not a zero-divisor and, for each 1 < i ≤ k, ai is not a zero-divisor in

A/(a1, . . . ,ai−1). The depth of A is the largest possible value of k. A ring whose depth

equals its dimension is called Cohen-Macaulay.

We are interested in cohomology rings of finite groups. In [35], Quillen shows that

dim(H∗(G;Fp)) = rp(G)

for a finite group G. In order for the mod-p cohomology ring of a finite group to be

Cohen-Macaulay, it is necessary that all of the maximal abelian p-subgroups have equal

rank:

Proposition 3.0.2 ( [10], Prop. 1.2). Let G be a finite group and k a field of characteristic

p. If G has maximal elementary abelian p-subgroups of different ranks, then H∗(G;k) is

not Cohen-Macaulay.

Proof: By Quillen’s Dimension Theorem in [35], the irreducible components of

the maximal ideal spectrum of H∗(G;k) are in one-to-one correspondence with conju-
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gacy classes of maximal elementary abelian p-subgroups of G, and, furthermore, the

dimension of the component is equal to the rank of the corresponding subgroup. But all

irreducible components of the maximal ideal spectrum of a Cohen-Macaulay ring have

equal dimension (see [28] Theorem 17.3). 2

The condition is not sufficient, as evidenced by the groups P, Qd(p), and PSL(3, p);

these groups each have every maximal elementary abelian subgroup of rank 2, but are not

Cohen-Macaulay:

Claim 3.0.3. The rings H∗(P;Fp), H∗(Qd(p);Fp), and H∗(PSL(3, p);Fp) are not Cohen-

Macaulay for p > 3.

Proof: We will use the following theorem of Carlson:

Theorem 3.0.4 ([12]). Let G be a finite group and k a field of characteristic p. Suppose

that H∗(G;k) has a nonzero element ζ which restricts to zero on CG(E) for each elemen-

tary abelian p-subgroup of E ≤ G of rank s. Then H∗(G;k) has an associated prime q

such that the Krull dimension of H∗(G;k)/q is strictly less than s. In particular, the depth

of H∗(G;k) is strictly less than s.

(Recall that a prime ideal q in a ring A is associated if one of the following equiva-

lent conditions hold (see [27]):

1. there exists an element w ∈ A with Ann(w) = q

2. A contains a subring isomorphic to A/q.)

Since each of these groups has p-rank equal to 2, Quillen’s Dimension Theorem

(see [35]) shows that the Krull dimension of each of the mod-p cohomology rings of
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these groups is 2. In order to show that these rings are not Cohen-Macaulay, we want

to show that their depth is strictly less than 2, so it suffices to exhibit a nonzero element

ζ in each ring restricting to zero on the centralizer of every rank-2 elementary abelian

subgroup.

For the ring H∗(P;Fp):

• Proof 1. In Section 1.3, we showed that the image of di and ci, 4≤ i < p−1, under

ResP
H was zero. Using the maps on cohomology induced by automorphisms of P

(computed in Subsection 1.9), we can show that the di and ci restrict to zero on

every rank-2 subgroup of P. Since P has order p3 and is not abelian, every rank-2

subgroup of P must be its own centralizer.

• Proof 2. It suffices to exhibit a rank-2 polynomial subalgebra over which the ring

is finitely generated but not free (see also Proposition 2.5.1 in [6]). By the Noether

Normalization theorem, there exists a rank-2 polynomial subalgebra R over which

H∗(P;Fp) is finitely generated. If H∗(P;Fp) were free over R, clearly we could

find a regular sequence of length 2 in H∗(P;Fp). By Macaulay’s theorem (cite), it

suffices to exhibit one such subalgebra.

In H∗(P;Fp), all generators except x, x′, cp−1, and z square to zero. The generators

x and x′ are not algebraically independent, in view of the relation xpx′− x′px = 0.

In view of the relations xcp−1 = −xp and x′cp−1 = −x′p and the form of elements

given in Fact 1.2.1, the ring H∗(P;Fp) is finitely generated over the subalgebra

Fp[cp−1,z]. But since cp−1 is a zero-divisor (cp−1ci = 0 for all 4 ≤ i < p− 1),

H∗(P;Fp) is not free over Fp[cp−1,z].
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Note that the method of Proof 2 is not as easily implemented in the other cases.

For the rings H∗(Qd(p);Fp) and H∗(PSL(3, p);Fp), we utilize

Proposition 3.0.5 ([1] Prop. 2.4). Let Ess(P) denote the essential cohomology of a p-

group P. The elements Ess(P)Out(P) are universally stable, i.e., are contained in any

H∗(G;M)(p) for a finite group G with Sylp(G) = P.

Thus, it suffices to exhibit a nontrivial element in Ess(P)Out(P).

Claim 3.0.6. For 4≤ i < p−1, the elements cizp−1−i and dizp−1−i fixed under Out(P).

Proof: Since compositions of the automorphisms φ1 and φ2,k (see Subsection 1.9)

give all possible permutations of conjugacy classes of elementary abelian subgroups of P,

it is clear that they generate Out(P). By inspection of the table 1.9, it is clear that cizp−1−i

and dizp−1−i are fixed under φ1 and φ2,k for all 4≤ i < p−1.

Remark 3.0.1.

Note that, by Duflot’s theorem (see [18]): for any finite group G,

depth(H∗(G;Fp))≥ rp(Z(Sylp(G))),

each of H∗(P;Fp), H∗(Qd(p);Fp), and H∗(PSL(3, p);Fp) have depth 1.

Theorem 3.0.4 represents a partial solution to the following conjecture:

Conjecture 3.0.7 (see [13]). The depth of A = H∗(G;k) is equal to dim(A/q) for some

associated prime ideal q.

We know that the associated primes in H∗(Qd(p);Fp) are
√

ker(ResQd(p)
E ) (see [6]

Theorem 7.5.1). But even when the required associated prime exists, it is not immediately
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clear which associated prime realizes the depth. We will now exhibit an associated prime

q for which dim(H∗(Qd(p);Fp))/q = 1.

Proposition 3.0.8. The annihilator of dizp−1−i and cizp−1−i, 4≤ i < p−1, in H∗(Qd(p);Fp)

is the Ap-invariant prime ideal
√

ker(ResQd(p)
〈C〉 ) =

√
ker(ResQd(p)

〈B〉 ). The dimension of the

quotient by this ideal is 1.

Proof: The relations in H∗(P;Fp) imply that the product of di or ci, 4 ≤ i < p−1,

with any element other than z is zero. Hence, all generators for H∗(Qd(p);Fp) over Fp

except for zp−1 + x′p(p−1) annihilate dizp−1−i and cizp−1−i, 4 ≤ i < p− 1; the ideal they

generate is q = ker(ResQd(p)
〈C〉 ), as can be seen by inspection of the tables of restrictions

in Subsection 1.9. In fact, this ideal is a radical ideal (q =
√

q) since ResQd(p)
〈C〉 (zp−1 +

x′p(p−1) = γp(p−1), a non-zero divisor, and the restriction map ResQd(p)
〈C〉 factors as follows:

H∗(Qd(p);Fp)
Res //

))RRRRRRRRRRRRRR
Fp[γp(p−1)] �

� // H∗(〈C〉;Fp)

H∗(Qd(p);Fp)/q

'
66mmmmmmmmmmmm

which implies that H∗(Qd(p);Fp)/q is an integral domain. This also clearly shows

that dim(H∗(Qd(p);Fp)/q) = 1. 2

An analogous argument also shows:

Proposition 3.0.9. For p > 3 and odd prime,

1. The annihilator of di and ci, 4 ≤ i < p−1, in H∗(P;Fp) is the Ap-invariant prime

ideal
√

ker(ResP
〈C〉).
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2. The annihilator of dizp−1−i and cizp−1−i, 4≤ i < p−1, in H∗(PSL(3, p);Fp) is the

Ap-invariant prime ideal
√

ker(ResPSL(3,p)
〈C〉 ).

In both cases, the dimension of the quotient by this ideal is 1.

3.0.1 The Case p = 3

Note that H∗(P3;F3) is Cohen-Macaulay (see [30]) and has no essential cohomol-

ogy. This implies, by Proposition 6.8 in [10], that H∗(Qd(3);F3) is also Cohen-Macaulay.
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