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1. INTRODUCTION

We consider a risk-sensitive optimal control problem for hidden Markov models

(HMM), i.e., controlled Markov chains where state information is only available to

the controller via an output (message) process. The optimal control of HMM under

standard, risk-neutral performance criteria, e.g., discounted and average costs, has

received much attention in the past. Many basic results and numerous applications

have been reported in the literature in this subject; see [ABFGM], [BE2], [KV],

and references therein. Controlled Markov chains with full state information and a

risk-sensitive performance criterion have also received some attention, dating back

at least to the work of Howard and Matheson [HOM]; see also [BSO], [CSO].

On the other hand, quite the opposite is the situation for HMM under risk-

sensitive criteria, e.g., expected value of the exponential of additive costs. Whittle

and others (see [WHI] and references therein) have extensively studied the risk-

sensitive optimal control of partially-observable linear exponential quadratic Gaus-

sian (LEQG) systems; see also [BVS]. More recently, James, Baras and Elliott [JBE],

[BJ], have treated the risk-sensitive partially-observable optimal control problem of

discrete-time non-linear systems.

The paucity of results in this subject area can be mostly attributed to the lack in

the past of appropriate su�cient statistics, or information states. As is well known,

if the cost criterion being considered is of the type \expected value of additive

costs," then the posterior probability density, given all available information up

to the present, constitutes a su�cient statistic for control (or information state);

see [ABFGM], [BE2], [KV]. The latter result was originally proved by Shiryaev in

the early sixties [SHI1]-[SHI2], who also proved that this was not the case for non-

additive cost criteria [SHI3]. In particular, the posterior probability density is not a

su�cient statistic for HMM under an \exponential of sum of costs" type of criterion,

which is non-additive. This fact was overlooked in [GHE], thus invalidating the

claims of optimality for the policies obtained in that paper. {

{ Certainly, one can pose a well de�ned stochastic optimal control problem given

any statistic. However, if the chosen statistic is not su�cient, then one cannot hope

to obtain the \overall" optimal policy, except by serendipity.
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Recently, James, Baras, and Elliott [BJ], [JBE] have derived information states

for HMM under an \exponential of additive costs" criterion, and have also given

dynamic programming equations from which optimal values and controls can be

computed, for problems with a �nite horizon. Building upon the results by Baras,

James and Elliott, we report in this paper results of an investigation on the nature

and structure of risk-sensitive controllers. We pose the following question:

How does risk-sensitivity manifest itself

in the structure of a controller?

Whittle [WHI] has addressed a similar question for the LEQG problem, and

he has shown that much insight can be gained from a comparison of the risk-

neutral (i.e., the classical LQG) and risk-sensitive equations describing the optimal

controller. In our context, one di�culty encountered is that optimal controllers are

de�ned in terms of di�erent information states for the risk-neutral and risk sensitive

cases; see also [BJ], [JBE].

The paper is organized as follows. Section 2 summarizes some basic results

about utility and risk theory. In section 3 we present our model, and recall the

main results on information states from [BJ]-[JBE] that will be needed for our

developments. Section 4 contains several general results, and in section 5 we present

a particular case study of a popular benchmark problem. We obtain structural

results for the optimal risk-sensitive controller, and compare it to that of the risk-

neutral case. Furthermore, we show that indeed the risk-sensitive controller and its

corresponding information state converge to the known solutions for the risk-neutral

situation, as the risk factor goes to zero. We also study the in�nite and general risk

aversion cases.

2. RATIONAL PREFERENCES, UTILITY AND RISK

Consider the situation where a decision maker (DM) is faced with several

choices, the outcomes of which are uncertain. That is, the DM can choose among

several gambles or lotteries � 2 �, and the consequent reward R for the lottery is a

random variable, with a known probability distribution P�. With no loss of gener-

ality for our purposes, we may associate P� with the lottery itself. Utility theory,
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as developed by von Neuman and Morgenstern (vNM), see [BE1], [LR], tries to

quantitatively describe the preferences of the DM, under the assumption that these

are rational, in the following sense. Let P�1 and P�2 be two of the choices available

to the DM, and suppose that he always prefers P�1 over P�2 . Then, (vNM) assume

that there exists a complete and transitive relation \�" on the set of lotteries such

that

P�1 � P�2 : (2:1)

Under some \continuity" condition for the relation \�" (see [BE1], [LR, p. 27]) it

can be shown that:

(i) there exists a real-valued utility function U : IR! IR such that

P�1 � P�2 () IE�1fU(R)g � IE�2fU(R)g (2:2);

(ii) U(�) is unique, up to an a�ne transformation of the form �U(�)+�; with � > 0

and � 2 IR.

Let R� := IE�fRg, which is sometimes called the \actuarial value" of the

lottery � [PT]. Note that if the DM's utility function is a�ne, then his preferences

only depend on the expected values of R. Thus, he would then be indi�erent as

to whether to keep the lottery P� (i.e., proceed with the gamble) or avoid it and

instead be compensated with the quantity R�, i.e., IE
�fU(R)g = U(R�). In this

situation the DM is said to be risk neutral. On the other hand, the DM may prefer

certainty over the uncertain lottery, i.e., he may be risk averse or pessimistic;

in this case we have that:

IE�fU(R)g � U(R�): (2:3)

Notice that (2.3) implies in general that U(�) is a concave function. Conversely, if

IE�fU(R)g � U(R�); (2:4)

which implies in general that U(�) is convex, the DM is said to be risk seeking or

optimistic.

Note that the characterization given by (2.3)-(2.4) is not enough to measure

the DM's sensitivity to risk. Pratt [PT] introduced a measure of risk that has
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been widely accepted, see also [BE1]. First, de�ne the risk premium p� as the

quantity the DM is willing to pay in order to avoid the lottery, and instead receive

its actuarial value, that is:

U(R� � p�) = IE�fU(R)g: (2:5)

Now, following [PT] (see also [BE1]), proceeding formally we have that

U(R� � p�) = U(R�)� p�U
0(R�) + o[p�]; (2:6)

where o[�]=�! 0, as �! 0. Also

IE�fU(R)g = IE�fU(R�) + (R�R�)U
0(R�) +

1

2
(R�R�)

2U 00(R�) + o[(R�R�)
2]g

= U(R�) +
1

2
�2�U

00(R�) + IE�fo[(R�R�)
2]g;

(2:7)

where �2� denotes the variance of R with respect to P�. Thus, we obtain from

(2.5)-(2.7) that

p�U
0(R�) = �

1

2
�2�U

00(R�) + o[p�] + IE�fo[(R�R�)
2]g: (2:8)

Therefore, we see from (2.8) that the risk premium is proportional, up to �rst order

(i.e. locally), to the variance of the reward, and the proportionality factor is one

half the risk aversion coe�cient:

r(z) := �
U 00(z)

U 0(z)
= �

d

dz
log(U 0(z)): (2:9)

Notice that if r(�) > 0 then the DM is risk averse, and risk seeking in the converse.

Furthermore, if r(z) = 0, then the DM is risk neutral, i.e., his utility function

is a�ne, and thus his preferences depend only on the actuarial (expected) values

of the lotteries. The latter is the most common case (implicitly) studied in the

literature, where expected values of rewards are maximized; see [ABFGM], [BE2],

[KV].
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2.1 CONSTANT RISK AVERSION

In many situations it is to be expected that the DM has either a decreasing

or increasing risk aversion coe�cient r(�), as a function of the DM's wealth. For

example, it is to be expected that a portfolio manager may be more reticent to risk

half his assets if the value of the portfolio is a billion dollars, than if it is $10; 000;

see [BE2] for a very nice presentation of problems of this nature. On the other

hand, if r(�) = constant, then the DM's sensitivity to risk does not depend on the

level of his current wealth. To gain more insight into this situation, consider the

certainty equivalent for a lottery P�, denoted by c� 2 IR and de�ned by:

IE�fU(R)g = U(c�): (2:10)

Then, if the DM has constant risk aversion, his utility function must satisfy the so

called \� property": if R is increased by a quantity � 2 IR, then one has that the

certainty equivalent is increased by the same amount [HOM]. From (2.9), it is seen

that if r(�) = 
 2 IR, then one has that the utility function for the DM must take

one of the following forms (up to an a�ne transformation):

r(�) = 
 =)

8>>><
>>>:

U(z) = z; 
 = 0;

U(z) = �exp(�
z); 
 > 0;

U(z) = exp(�
z); 
 < 0.

(2:11)

In the sequel, we will be concerned with negative net bene�ts, i.e., costs, instead

of rewards, and thus we will seek to minimize disutilities instead of maximizing utili-

ties. Hence, correspondingly the following disutility function L(�) will be considered,

for 
 2 IR, 
 6= 0:

L(c) := sgn(
)exp(
 � c); (2:12)

where sgn(
) denotes the sign of 
.
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3. THE CONTROLLED HIDDEN MARKOV MODEL

A controlled hidden Markov model is given by a �ve-tuple hX;Y;U; fP (u) : u 2

Ug; fQ(u) : u 2 Ugi; here X = f1; 2; : : : ; NXg is the �nite set of (internal) states,

Y = f1; 2; : : : ; NYg is the set of observations (or messages), U = f1; 2; : : : ; NUg

is the set of decisions (or controls). In addition, we have that P (u) :=
�
pi;j(u)

�
is the NX � NX state transition matrix, and Q(u) :=

�
qx;y(u)

�
is the NX � NY

state/message matrix, i.e., qx;y(u) is the probability of receiving message y when

the state is x and action u has been selected. In the operations research literature

similar models are called partially observable Markov decision processes [FAM1],

[FAM2], and in the computer science literature �nite state stochastic automata

[DOB], [PAZ]. Two types of information patterns are of interest.

Information Pattern 1 (IP1):

At decision epoch t, the system is in the (unobservable) state Xt = i, a decision

Ut = u is taken, and the state evolves to Xt+1 = j with probability pi;j(u).

Once the state has evolved to Xt+1, an observation Yt+1 is gathered, such that:

ProbfYt+1 = y j Xt+1 = i; Ut = ug = qx;y(u): (3:1:a)

Hence, based on I
(1)
t := (Y0; U0; Y1; : : : ; Ut; Yt+1), a new decision Ut+1 is se-

lected.

Information Pattern 2 (IP2):

At decision epoch t, the system is in the (unobservable) state Xt = i, a decision

Ut = u is taken, and an observation Yt+1 is gathered, such that:

ProbfYt+1 = y j Xt = i; Ut = ug = qi;y(u): (3:1:b)

The state then evolves to Xt+1 = j with probability pi;j(u). Hence, based on

I
(2)
t := (U0; Y1; U1; Y2; : : : ; Ut; Yt+1), a new decision Ut+1 is selected.

Hereafter we will simply write It and Yt for a generic information pattern and the

�ltration generated by the available observations, respectively, up to decision epoch

t.
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Given an expected cost per stage (i; u) 7! c(i; u), the sum of costs for the �nite

horizon M is given by

CM :=
M�1X
t=0

c(Xt; Ut): (3:2)

The risk-sensitive optimal control problem is that of �nding a control policy � =

f�0; �1; : : : ; �M�1g, with It 7! �t(It) 2 U, such that the following criterion is

minimized:

J
(�) := sgn(
)IE�
�
exp

�

 � CM

��
; (3:3)

where 
 6= 0 is the risk-factor, and sgn(
) is the sign of 
; here IE� denotes the

expectation induced by policy � and, implicitly, the initial distribution of the state.

By computing the Taylor series expansion of J
(�), when 
 is su�ciently small, the

risk sensitivity of the above criterion becomes evident in that, in addition to the

standard expected sum of costs, a second order term in the expansion measures the

variance of CM ; see [WHI] for details. If 
 > 0, then the controller is risk-averse or

pessimistic, whereas if 
 < 0 then the controller is risk-prefering or optimistic.

3.1 INFORMATION STATES

As for the risk-neutral case [ABFGM], [BE], [KV], an equivalent stochastic

optimal control problem can be formulated in terms of information states and sepa-

rated policies. Here we follow the work of Baras, Elliott, and James [BJ]-[JBE], who

derived information states both for problems with continuous [JBE] and discrete

[BJ] state variables. First, we equivalently reformulate the stochastic control prob-

lem in terms of a canonical measure, as follows. Let Yt be the �ltration generated

by the available observations up to decision epoch t, and let Gt be the �ltration

generated by the sequence of states and observations up to that time as given by

(IP). Then the probability measure induced by a policy � is equivalent to a canon-

ical distribution Py, under which fYtg is independently and identically distributed

(i.i.d), uniformly distributed, independent of fXtg, and fXtg is a controlled Markov

chain with transition matrix as above. We have that

dP�

dPy
jGt = ��t ; (3:4)
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where

��t =

8<
:
N t
Y
��t

k=1qXk;Yk(Uk�1); Gt generated by (IP1);

N t
Y
��t

k=1qXk�1;Yk(Uk�1); Gt generated by (IP2).
(3:5)

Then, the cost incurred by using the policy � is given by

J
(�) := sgn(
)IE�
�
exp

�

 � CM

��
= sgn(
)IEy

�
��M � exp

�

 � CM

��
: (3:6)

Following [BJ], [EM] and [JBE], the information state for our problem is given by

�
t (i) := IEy
�
1[Xt = i]exp

�

 � Ct

�
� ��t j Yt

�
; (3:7)

where 1[A] is the indicator function of the event A, and �
0 (i) = p0, where p0

is the initial distribution of the state and is assumed to be known. Notice that

�
t 2 IRNX
+ :=

�
� 2 IRNX j �(i) � 0; 8i

	
. With this de�nition of information

state, similar results as in the risk-neutral case can be obtained. In particular,

one obtains a recursive updating formula for f�
t g, which is driven by the output

(observation) path and evolves forward in time. Moreover, the value functions can

be expressed in terms of the information state only, and dynamic programming

equations give necessary and su�cient optimality conditions for separated policies,

i.e., maps �
t 7! ~�t(�


t ) 2 U; see [BJ], [JBE]. In particular we have that:

J
(�) = sgn(
)IEy
� NXX
i=1

�
M (i)
�
; (3:8)

where f�
Mg is obtained from (3.5) under the action of policy �. Hence, the original

partially observed problem is equivalently expressed as one with complete state

information, i.e., f�
t g. For ease of presentation, we consider hereafter the risk-

averse case only (
 > 0); the risk-seeking case is treated similarly.

4. GENERAL RESULTS

As in the completely observed case [HOM], de�ne the disutility contribution

matrix as x:

[D(u)]i;j := pi;j(u) � exp(
c(i; u)): (4:1)

x Notice that we are using expected one-stage cost functions. If on the other

hand a model using one-stage cost functions that depend explicitly on the current

and next state, e.g, c(i; j; u) is used, then (4.1) is modi�ed accordingly.
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The following lemma gives the recursions that govern the evolution of the informa-

tion state.

Lemma 4.1: The information state process f�
t g is recursively computable as:

�
t+1 =

8<
:
NY �Q(Yt+1; Ut)D

T (Ut) � �


t ; Yt generated by (IP1);

NY � D
T (Ut)Q(Yt+1; Ut) � �



t ; Yt generated by (IP2);

(4:2)

where Q(y; u) := diag(qi;y)(u), and AT denotes the transpose of the matrix A.

Proof: Following [JBE], [BJ], we have that the operator governing the evolution

of the information state is the matrix with (i; j) element given by NY � pi;j(u) �

exp(
c(i; u))qi;y(u), where u denotes the decision taken at decision epoch t, and y

denotes the value of the most recent observation gathered by decision epoch t+ 1.

Then (4.2) follows straightforwardly. ut

Remark 4.1: The NY factor appears in (4.2) due to the use of the canonical

measure Py; see (3.5).

Remark 4.2: For risk-sensitive completely observed controlled Markov chains with

�nite state and control sets, it is well known that the disutility matrix D(u) governs

the evolution of the disutility [HOM], [JAQ]. On the other hand, for risk-neutral

HMM models, the information state used is the conditional probability distribu-

tion of the (unobservable) state, given the available observations [ABFGM], [BE2],

[KV]. The unnormalized form of this conditional probability distribution is given

by similar recursions as in (4.2), with D(u) replaced by P (u). Moreover, observe

that as 
 ! 0, D(u) ! P (u) (elementwise). Therefore, we see that (4.2) is the

\natural" extrapolation of the standard risk-neutral information state.

As in [BJ], [JBE], de�ne value functions J
(�;M�k) : IRNX
+ ! IR, k = 1; : : : ;M ,

as follows:

J
(�;M � k) := min
�M�k:::�M�1

n
IEy
�NXX
i=1

�
M (i) j �
M�k = �
	o

: (4:3)

For ease of presentation, we will hereafter consider exclusively (IP1). Simple mod-

i�cations to the results in the sequel give the corresponding results for (IP2). Fur-

thermore, we will denote by T (u; y) the matrix

T (u; y) := NY �Q(y; u)D
T (u): (4:4)
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The next result follows directly from [BJ], [JBE].

Lemma 4.2: The dynamic programming equations for the value functions in this

problem are given as:

8<
:
J
(�;M) =

PNX
i=1 �(i);

J
(�;M � k) = minu2U
�
IEy
�
J
(T (u; YM�k+1) � �;M � k + 1)

�	
k = 1; 2; : : : ;M .

(4:5)

Furthermore, a separated policy �� = f��0 ; : : : ; �
�
M�1g that attains the minimum in

(4.5) is risk-sensitive optimal.

Recall that IEy[�] is the expectation with respect to the canonical measure Py,

and thus for a given function f : Y! IR,

IEy
�
f(Yt)

�
=

1

NY

NYX
y=1

�
f(y)

�
: (4:6)

Next, we present several general results for the risk-sensitive case that have similar

counterparts in the standard risk-neutral case [ABFGM], [BE2], [FAM1], [KV],

[SSO].

Lemma 4.3: The value functions given by (4.5) are concave functions of � 2 IRNX
+ .

Proof:

We proceed by induction in k, with the case k = 0 being trivially veri�ed from

(4.5). Assume that the claim holds true for 0 � k = k� 1 < M . Let 0 � � � 1 and

�1; �2 2 IRNX
+ , and de�ne ~� := ��1 + (1� �)�2. Then we have that:

J
(~�;M � k) = min
u2U

n 1

NY

NYX
y=1

J
(T (u; y) � ~�;M � k + 1)
o

� min
u2U

n 1

NY

NYX
y=1

�
�J
(T (u; y) � �1;M � k + 1)

+ (1� �)J
(T (u; y) � �2;M � k + 1)
�o

� �J
(�1;M � k) + (1� �)J
(�2;M � k);

(4:7)
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where the �rst inequality follows due to the induction hypothesis, and the second

inequality due to (4.5). ut

Remark 4.3: For the risk-neutral case, a similar result was initially pointed out by

Shiryaev [SHI1]-[SHI2], and shown in detail by �Astr�om [AST], for normalized infor-

mation states. This result has been fundamental in showing optimality of structured

policies in the risk-neutral case; see [FAM1], [LOV], [WCC], and references therein.

Next, de�ne recursively sets of vectors in IRNX
+ as follows:

A0 := f1 = (1; 1; : : : ; 1)g;

Ak :=
n 1

NY

NYX
y=1

�y � T (u; y) j �y 2 Ak�1; u 2 U
o
:

(4:8)

Note that the cardinality of the sets de�ned in (4.8) obeys the recursion jAkj �

jAk�1j
NY � NU. In the risk-neutral case, the counterpart of the following result

has been shown to have important computational implications [ABFGM], [FAM1],

[SSO]. It will play a key role in our subsequent developments.

Lemma 4.4: The value functions given by (4.5) are piecewise linear functions in

� 2 IRNX
+ , such that:

J
(�;M � k) = min
�2Ak

�
� � �

	
: (4:9)

Proof:

We proceed by induction in k, with the case k = 0 being trivially veri�ed from

(4.5). Assume that the claim holds true for 0 � overlinek = k� 1 < M , then from

(4.5) above we have:

J
(�;M � k) = min
u2U

n 1

NY

NYX
y=1

min
�2Ak�1

�
� � T (u; y) � �

	o

= min
u2U

nh 1

NY

NYX
y=1

~�(u; y; �) � T (u; y)
i
� �
o

= min
�2Ak

n
� � �

o

; (4:10)
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where ~�(u; y; �) 2 Ak�1 denotes a minimizer in the expression on the right of the

�rst equality above. The last equality follows since � � T (u; y) � � > ~�(u; y; �) �

T (u; y) � �, for all � 2 Ak�1, u 2 U, y 2 Y, � 2 IR+
NX

. ut

Lemma 4.5: Optimal separated policies f��t g are constant along rays through the

origin, i.e., let � 2 IRNX
+ then ��t (�

0) = ��t (�), for all �
0 = ��, � � 0.

Proof:

>From Lemma 4.4 we see that J
(�0;M � k) = �J
(�;M � k). Hence, the

result follows from Lemma 4.2. ut

De�nition 4.1: From (4.5) and (4.6), for u 2 U and k = 1; 2; : : : ;M , let

J
u (�;M � k) := IEy
�
J
(T (u; YM�k+1) � �;M � k + 1)

�

=
1

NY

NYX
y=1

�
J
(T (u; YM�k+1) � �;M � k + 1)

�
:

(4:11)

The control region CRk
u � IRNX

+ for action u 2 U, at the M � k decision epoch, is

de�ned as:

CRk
u :=

�
� j � 2 IRNX

+ ; J
(�;M � k) = J
u (�;M � k)
	
: (4:12:a)

Furthermore by Lemma 4.2 if ��M�k is an optimal separated policy for stage M � k

then, for u 2 U,

CRk
u := f� 2 IRNX

+ j ��M�k(�) = ug: (4:12:b)

De�nition 4.2: An action u 2 U is said to be a resetting action if there exists

j� 2 X such that pi;j�(u) = 1, for all i 2 X. Therefore from (4.1)-(4.2) and (4.4)

we note that, for any � 2 IRNX
+ and y 2 Y,

T (u; y) � � = qj�;y

NXX
`=1

�
exp(c(`; u)) � �(`)

�
� �j� ; (4:13)

where �1 = (1; 0; 0; : : : ; 0)T , �2 = (0; 1; 0; : : : ; 0)T , ..., �NX = (0; 0; 0; : : : ; 1)T . We

further denote

�(�; u) := qj�;y

NXX
`=1

�
exp(c(`; u)) � �(`)

�
: (4:14)
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Theorem 4.1: Let u 2 U be a resetting action. Then CRk
u, is a convex subset of

IRNX
+ .

Proof:

Recall from Lemma 4.3 that the optimal cost-to-go functions J
(�;M � k) are

concave. Since the maps T (u; y) in (4.4) are linear then J
u (�;M � k) are also

concave, for all u 2 U. Furthermore, IRNX
+ is a convex domain. Then, by Lemma

1 in [LOV] we have that: if J
u (�;M � k) is a linear function in IRNX
+ , then CRk

u is

convex. Thus all that remains to be proven is the linearity of J
u (�;M � k).

Let � 2 IRNX
+ , we have by (4.2), (4.4), De�nitions 4.1-4.2, and Lemma 4.4 that:

J
u (�;M � k) =
1

NX

1X
y=0

min
�2Ak�1

�
� � T (u; y)�

	

= �(�; u) � min
�2Ak�1

�
� � �j�

	

= �(�; u) � ��(j�);

(4:15)

where

��(j�) := min
�
�(j�) j

�
�(1); �(2); : : :�(j�); : : : �(NX)

�
2 Ak�1

	
:

Hence, since by (4.14) �(�; u) is linear in IRNX
+ , so is J
u (�;M � k). ut

5. A CASE STUDY

We consider a popular benchmark problem for which much is known in the risk-

neutral case. This is a two-state replacement problem which models failure-prone

units in production/manufacturing systems, communication systems, etc. The un-

derlying state of the unit can either be working (Xt = 0) or failed (Xt = 1), and

the available actions are to keep (Ut = 0) the current unit or replace (Ut = 1) the

unit by a new one. The cost function (x; u) 7! c(x; u) is as follows: let R > C > 0,

then c(0; 0) = 0, c(1; 0) = C, c(x; 1) = R. The messages received have probability

1=2 < q < 1 of coinciding with the true state of the unit. The state transition

matrices are given as:

P (0) =

�
1� � �
0 1

�
; P (1) =

�
1 0
1 0

�
; (5:1)
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with 0 < � < 1; see [WCC], [FAM1], [FAM2] for more details. With the above

de�nitions, the matrices used to update the information state vector are given by:

T (0; y) = 2

�
qy(1� �) 0
(1� qy)� (1� qy)e


C

�
;

T (1; y) = 2

�
qye


R qye

R

0 0

�
;

(5:2)

where qy := q(1� y) + (1� q)y, y = 0; 1.

For this case � = (�(1); �(2))T 2 IR2
+, and the dynamic programming recur-

sions (4.5) take the form:

8<
:
J
(�;M) = �(1) + �(2);

J
(�;M � k) = min
�
J
0 (�;M � k); J
1 (�;M � k)

	
.

(5:3)

De�ne the replace control region CRk
replace and the keep control region CRk

keep

in the obvious manner, c.f. De�nition 4.1.

Lemma 5.1. For all decision epochs the replace control region is a (possibly empty)

conic segment in IR2
+.

Proof:

>From (5.1) the replace action resets the system to the working state. Then

the result follows immediately from Lemma 4.5 and Theorem 4.1. ut

The next result establishes an important threshold structural property of the

optimal control policy. This is similar to well known results for the risk neutral case

[FAM1], [FAM2], [LOV], [WCC].

Theorem 5.1. If CRk
replace is nonempty, then it includes the �(2)-axis, i.e., IR2

+ is

partitioned by a line through the origin such that for values of � 2 IR2
+ above the

line it is optimal to replace the unit, and it is optimal to keep the unit otherwise.

Proof:

We proceed to show that if it is optimal to keep the unit in the �(2)-axis (see

Lemma 4.5), then the optimal policy is to keep the unit for all values of � 2 IR2
+.
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Hence, by contradiction, we can then conclude from Lemma 5.1 that if CRk
replace

is nonempty, then it must include the �(2)-axis, and the statement of the theorem

then follows.

Let �0 = (0; �(2))T , �(2) > 0. Then, for 0 < k �M , we have from (5.2), (5.3),

and Lemma 4.4 that:

J
0 (�
0;M � k) = e
C�(2)��(2);

J
1 (�
0;M � k) = e
R�(2)��(1);

where ��(i) denotes the componentwise minimum over Ak�1. Suppose that

J
0 (�
0;M � k) < J
1 (�

0;M � k)

() e
C��(2) < e
R��(1):
(5:4)

Now, for any other � 2 IR2
+,

J
1 (�;M � k) = e
R(�(1) + �(2))��(1);

and

J
0 (�;M�k) =
1X

y=0

min
�2Ak�1

�
qy(1��)�(1)�(1)+(1�qy)��(1)�(2)+(1�qy)�(2)e


C�(2)
	
:

(5:5)

Since 
 > 0 and R > C > 0, then

J
0 (�;M � k) <
1X

y=0

min
�2Ak�1

�
qy(1� �)�(1)e
R�(1) + (1� qy)��(1)e


C�(2)

+ (1� qy)�(2)e

C�(2)

	
:

(5:6)

Now, de�ne ~Ak�1 � Ak�1 as:

~Ak�1 :=
n
� 2 Ak�1 j e


C�(2) < e
R��(1)
o
; (5:7)
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which is nonempty by (5.4). Then by minimizing over ~Ak�1 the terms on the right

hand side in (5.6) we obtain an upper-bound for this expression, and we �nally get

that:

J
0 (�;M � k) < e
R�(1)��(1) + e
R�(2)��(1) = J
1 (�;M � k);

and therefore it is optimal to keep the unit at all � 2 IR2
+. ut

Using the dynamic programming recursions (5.3), the structure of optimal poli-

cies can be further elucidated. First we need a simple technical result, the proof of

which is presented in the Appendix. De�ne:

�0 := 1;

�1 := 1 = (1� �)�0 + �e0�
C ;

...

�k+1 := (1� �)�k + �ek
C ; k = 0; 1; : : : ;M:

(5:8)

Lemma 5.2: �k+1 > �k, and e
R�k > �k+1; k = 1; 2; : : : ;M .

The following theorem gives more precise results on the structure of optimal

policies, and its proof is presented in the Appendix.

Theorem 5.2: Let 0 < K �M be given.

(i) The necessary and su�cient condition for the policy with ��M�1(�) = : : : =

��
M�K

(�) = 0 (i.e., always keep the unit in the last K stages) to be optimal is

that:

eK
C

�
K�1

� e
R; (5:9:a)

or equivalently,

R � KC �
ln(�

K�1)



: (5:9:b)

(ii) If (5.9) holds, then:

J
(�;M �K) = J
0 (�;M �K) = �
K
�(1) + eK
C�(2);

J
1 (�;M �K) = �
K�1e


R
�
�(1) + �(2)

�
:

(5:10)

{17{



(iii) If 1 � K �M is the smallest integer for which (5.9) fails to hold, then ��
M�K

(�)

is of threshold type, with IR2
+ being partitioned by the line:

e
R�
K�1 � �

K

eK
C � e
R�
K�1

�(1) = �(2); (5:11)

such that the region to the left (above) the line is the replace control region.

Remark 5.1. Note that the simplest nontrivial decision process corresponds to the

case M = 2, since (5.9) is always satis�ed for K = 1.

5.1. SMALL AND LARGE RISK LIMITS

In order to build a better understanding as to how risk sensitivity manifests

itself in the structure of the optimal control strategies, we analyze both the small

risk sensitivity limiting case (
 ! 0) and the in�nite risk aversion case (
 ! 1).

First, we give some insight on conditions (5.9).

Remark 5.2. Let K be a positive integer. Then if R � KC, we have that

sgn(
)e
R � sgn(
)e
KC ;

and hence the DM would never prefer to replace the unit, at any point within the

last K stages. Therefore, R � KC is a su�cient condition for the optimal policy

to be ��M�k(�) = 0, 8� 2 IR�
+, k = 1; 2; : : : ;M �K, i.e., it is optimal to keep the

unit for the last K stages; c.f. (5.9).

In�nite Risk Aversion Case (
 !1).

Consider the situation 
 !1 in (5.8). Note that for 
 large enough:

�
K�1 � � � e

�
K�2

�

C :

Therefore, as 
 !1, we have from (5.9) that the necessary and su�cient condition

for it to be always optimal to keep the unit in the last K stages approaches R � 2C,

which is the same condition for it to be always optimal to keep the unit in the last
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two stages. Furthermore, as is readily veri�ed from (4.10), if R < 2C and 
 ! 1

then it is always optimal to replace the unit at stage M � k, for all 2 � k � M ,

i.e., the threshold line tends to the �(1)-axis. Hence the DM becomes myopic in

the sense that, except for the last one, all decision epochs appear to be the same.

The DM appears to always face a two-stage decision process, the simplest one

possible; c.f. Remark 5.1. In the jargon of Whittle [WHI], it could be then said

that an in�nitely risk averse DM exhibits \neurotic" behavior, his optimal strategy

being of the \bang bang" type with respect to the parameter R: if R � 2C, then

��M�k(�) = 0, and otherwise ��M�k(�) = 1, for all 2 � k �M . This behavior can be

partly explained by noting that at most one change will then occur in the stream

of costs, thus achieving least variability in the cumulative cost.

Small Risk Aversion Case (
 ! 0).

Next, we examine the question: How do the results in Theorems 4.1, 5.1-

5.2 compare to known results for the risk-neutral case? The answer is that

the risk-sensitive controller obtained here has as its small risk limit the known risk-

neutral controller, and both controllers have in general a similar structure. Similarly

as in [WCC], the dynamic programming equations for the risk-neutral case can be

written, with the conditional probability distribution of the state as the information

state. Then, it can be shown that the optimal risk-neutral controller has a structure

similar to the risk-sensitive controller given in Theorem 5.1. Furthermore, it can

be shown that the necessary and su�cient condition in the risk-neutral case for the

separated policy ��M�1(�) = : : : = ��
M�K

(�) = 0 to be optimal is:

R > KC � �0
K�1

; (5:12)

where �0
K�1

is obtained as the derivative with respect to 
, evaluated as 
 ! 0, of

(5.8). As can be easily veri�ed, the above is nothing but the small risk limit (i.e.,

as 
 ! 0) of (5.9).

General Risk Aversion Case (
 > 0).

The following result helps bring to light a manifestation of aversion to risk in

the DM; its proof is given in the Appendix.
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Lemma 5.3. Let 
 > 0, then for all k > 1:

ln(�k) > 
 � �0k: (5:13)

ut

Notice that the decision to replace a unit involves an uncertain, and therefore

a risky, investment in that the unit being replaced may actually be in working

condition, or it may subsequently fail. This is re
ected in (5.9), (5.12) and (5.13)

in that a risk neutral DM or controller may decide to replace a unit for values of R

higher than a risk averse DM or controller would not.
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Appendix

Proof of Lemma 5.2:

Note that e
C > 1 = �1. Proceeding by induction, suppose that ek
C > �k.

Then, from (5.8), we have:

e(k+1)
C = (1� �)e(k+1)
C + �e(k+1)
C

> (1� �)ek
C + �ek
C

> (1� �)�k + �ek
C

= �k+1:

(A:1)

Then the �rst result follows since:

�k+1 � �k = �
�
ek
C � �k

�
> 0: (A:2)

On the other hand, we have that

e
R�k = (1� �)e
R�k + �e
R�k

> (1� �)�k + �e
C = �k+1:
(A:3)

ut

Proof of Theorem 5.2. It is instructive to �rst perform a few steps of the dynamic

programming recursions of (5.3), which we proceed to do next. Recall (4.11), (5.2),

and (5.8) which will be used repeatedly.

STAGE k = 0.

J
(�;M) = �(1) + �(2): (A:4)

STAGE k = 1.

J
(�;M � 1) = min
n
J
0 (�;M � 1); J
1 (�;M � 1)

o
; (A:5)
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where

J
0 (�;M � 1) = (1� �)�(1) + ��(1) + e
C�(2) = �1�(1) + e
C�(2);

J
1 (�;M � 1) = �0e

R
�
�(1) + �(1)

�
:

(A:6)

Therefore, the region in IR2
+ where it is optimal to keep the unit is de�ned by the

condition:

J
0 (�;M � 1) � J
1 (�;M � 1)

() �1�(1) + e
C�(2) � �0e

R
�
�(1) + �(2)

�

()
�
�1 � e
R�0

�
�(1) �

�
e
R � e
C

�
�(2)

()
e
R�0 � �1
e
C � e
R�0

�(1) � �(2):

(A:7)

Since e
C � e
R and �(i) � 0; i = 1; 2, then (A.7) implies that it is always optimal

to keep the unit, i.e., ��M�1(�) = 0; 8� 2 IR2
+.

STAGE k = 2.

We have that J
(�;M � 1) = J
0 (�;M � 1). Therefore:

J
0 (�;M � 2) = (1� �)�(1) + e
C
�
��(1) + e
C�(2)

�

= �2�(1) + e2
C�(2);
(A:8:a)

J
1 (�;M � 2) = �1e

R
�
�(1) + �(2)

�
: (A:8:b)

Then the condition for it to be optimal to keep the unit is:

J
0 (�;M � 2) � J
1 (�;M � 2)

() �2�(1) + e2
C�(2) � �1e

R
�
�(1) + �(2)

�

()
�
�2 � e
R�1

�
�(1) �

�
e
R�1 � e2
C

�
�(2):

(A:9)
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Therefore, using the results in Lemma 5.2, we conclude that it is always optimal

to keep the unit, i.e., ��M�2(�) = 0; 8� 2 IR2
+, if and only if R � 2C. Otherwise,

IR2
+ is partitioned into two control regions by a the line, as described by:

�
e
R�1 � �2

�
e2
C � e
R�1

�(1) = �(2): (A:10)

Thus the optimal policy is of the threshold type, such that it is optimal to keep the

unit for � values below and on the line determined by (A.10), and to replace the

unit otherwise.

STAGE K, 2 < K �M.

Assume that

R �
�
K � 1

�
C �

ln(�
K�2)



;

and therefore: a) ��M�1(�) = : : : = ��
M�K+1

(�) = 0, and b) J
(�;M � K + 1) =

�
K�1�(1) + e(K�1)
C�(2). Thus, we have:

J
0 (�;M �K) = �
K�1(1� �)�(1) + e(K�1)
C

�
��(1) + e
C�(2)

�

= �
K
�(1) + eK
C�(2);

(A:11:a)

J
1 (�;M �K) = e
R�
K�1

�
�(1) + �(2)

�
(A:11:b)

Then, the condition for it to be optimal to keep the unit is:

J
0 (�;M �K) � J
1 (�;M �K)

() �
K
�(1) + eK
C�(2) � e
R�

K�1

�
�(1) + �(2)

�

()
�
�
K
� e
R�

K�1

�
�(1) �

�
e
R�

K�1 � eK
C
�
�(2):

(A:12)

Thus, the necessary and su�cient condition for it to be optimal to keep the unit for

all � 2 IR2
+ is:

eK
C

�
K�1

� e
R: (A:13)
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If (A.13) is not satis�ed, then the optimal policy will be of the threshold type, with

IR2
+ being partitioned into keep and replace regions by a line, as de�ned by (5.11).

ut

Proof of Lemma 5.3. From the recursion (5.8) it follows that:

�k =
k�2X
l=0

(1� �)l�e(k�1�l)
C + (1� �)k�1; (A:14:a)

�0k =
k�2X
l=0

(1� �)l�(k � 1� l)C: (A:14:b)

Now, it also follows from (5.8) that:

�kj
=0 = 1; (A:14:c)

and therefore (A.14.a) is a convex combination of exponentials (the last term cor-

responding to e0�
C . Therefore, since ln(�) is a strictly convex function, we have

that:

ln(�k) = ln
�k�2X
l=0

(1� �)l�e(k�1�l)
C + (1� �)k�1
�

>
k�2X
l=0

(1� �)l�ln
�
e(k�1�l)
C

�

= 
�0k:

(A:15)

ut
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