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Despite the overwhelming success of neural networks for pattern recognition,

these models behave categorically different from humans. Adversarial examples,

small perturbations which are often undetectable to the human eye, easily fool

neural networks, demonstrating that neural networks lack the robustness of human

classifiers. This thesis comprises a sequence of three parts. First, we motivate

the study of defense against adversarial examples with a case study on algorithmic

trading in which robustness may be critical for security reasons. Second, we develop

methods for hardening neural networks against an adversary, especially in the low-

data regime, where meta-learning methods achieve state-of-the-art results. Finally,

we discuss several properties of the neural network models we use. These properties

are of interest beyond robustness to adversarial examples, and they extend to the

broad setting of deep learning.
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Chapter 1: Introduction

Deep learning models have achieved state-of-the-art performance in settings

ranging from computer vision to natural language processing to time-series fore-

casting to social network graph processing to speech recognition to reinforcement

learning to recommendation systems. It is well-known that many of the biggest

companies in existence are heavily dependent on neural networks. Nonetheless, lit-

tle light has been shed on why neural networks make the decisions they do and how

trustworthy they are. As a result of the strong empirical performance of these mod-

els, practitioners are satisfied to use them as black-boxes. Should we be alarmed by

the widespread deployment of models whose behavior we do not understand? Re-

cent work has shown that neural networks are vulnerable to adversarial examples,

deliberately chosen tiny perturbations to inputs which do not change the seman-

tic meaning but dramatically change the network’s output. We first answer the

question, “Are these perturbations harmless or should we be worried?”

In Chapter 3, we motivate the study of adversarial examples and defenses

against these vulnerabilities by studying adversarial attacks in the setting of finance.

High-frequency trading systems are often completely automated and make decisions

on small time-scales with no human oversight. We demonstrate that a malicious
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trader can cause small perturbations to the input of neural networks which forecast

future prices by placing their own buy and sell orders on a stock exchange. Using our

algorithm and without knowing anything about their victims’ models, an adversarial

trader can fool the victim into consistently predicting that stock prices will always

go down, for example. We further use this attack as a tool for interpreting the

behavior of algorithmic trading models, and we find that they are sensitive to a

specific type of pattern which closely resembles illegal “spoofing”.

After motivating the field of adversarial attacks and defenses, we study meth-

ods for producing lightweight neural network models which are robust to adver-

sarial attacks in Chapter 4. Previous work uses knowledge distillation to produce

networks which are simultaneously lightweight and accurate by teaching the small

“student” networks to imitate larger state-of-the-art “teacher” models. Other work

has suggested that knowledge distillation from non-robust teacher models produces

adversarially robust student models, but this claim has since been debunked. We

show that knowledge distillation from adversarially robust teacher models produces

robust student models, even when distillation is performed on only clean data. Fur-

ther, we develop a method for improving the robustness of student models. Our

method, adversarially robust distillation (ARD), improves on the performance of

previous state-of-the-art defenses. We also introduce an accelerated version of ARD

which has the same computational cost as (non-robust) knowledge distillation.

The rise of deep learning has been facilitated by the increasing availability

of training data. Popular methods leverage enormous datasets, such as ImageNet,

which contain over a million labeled images. In many applications, practitioners may
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not have such large datasets and instead adapt pre-trained models to their problems.

Few-shot learning methods seek to produce models which adapt well to new tasks.

In Chapter 5, we thoroughly investigate adversarial robustness properties of few-

shot learning methods. We develop an algorithm for producing models which adapt

on very little training data to new tasks while exhibiting a high level of adversarial

robustness. We find that architectural features and pre-processing defenses, which

have been used to improve robustness when vast training datasets are available,

have no benefit for few-shot learning.

This work closes with a discussion of interesting properties of neural networks

in Chapter 6. We empirically test predictions from deep learning theory and find

that they often do not hold in the realistic setting. Previous work has suggested that

the loss landscape for neural networks contains no suboptimal local minima. We

present theoretical results which prove otherwise, and we use our constructive proof

to empirically find suboptimal local minima on real datasets. Other previous theory

suggests that networks with low-norm parameters perform better. We develop a

new regularizer which improves performance over that of low-norm regularizers by

increasing the norm of neural network parameters. We believe that practitioners

have been led astray by theoretical results which operate in unrealistic settings. We

encourage theoretical work which attempts to generalize previous results to settings

which are relevant to real-world practice.
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Chapter 2: Preliminaries

2.1 What are neural networks?

A neural network is a function which performs an alternating composition of

affine and nonlinear operations. A common nonlinearity used in neural networks

is g(x) = [max(xi, 0)], called the rectified linear unit (ReLU) [61]. Then, a simple

one hidden layer network is f(x) = h2(g(h1(x))), where hi(x) = Aix + bi is an

affine function. We call g ◦ hi a hidden layer, and we call the nonlinearity, g, an

activation function. Layers in which all entries of the input are allowed to be used

in computation of the output are called fully-connected. The entries in Ai and bi are

parameters of the network. Networks with all fully-connected layers are known as

multi-layer perceptrons (MLP) [131]. See Figure 2.1 for a diagram of a multi-layer

perceptron with two hidden layers.

Modern networks for computer vision harness translation invariance in images

by employing discrete convolutions instead of fully-connected layers [48]. The pa-

rameters of convolutional layers are the entries of kernels against which inputs are

convolved. Convolutions are linear and can be written in the matrix form above.

For example, 2D discrete convolutions can be written as multiplication by a Toeplitz

matrix.
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In order to make computation efficient, modern neural networks use pooling

operations between some or all layers. Average pooling can be written as a convo-

lution operation with each entry of the kernel equal to 1
n
, where n is the number

of entries in the kernel [112]. Maximum pooling is similar to average pooling, but

instead of averaging elements within a window, the maximum is computed [168].

These pooling operations compress the information input into subsequent layers,

reducing computational cost.

The authors of [80] hypothesized that as neural network parameters change

during training, the distribution of inputs to any given intermediate layer changes

since the parameters of the previous layer change. The authors devised a scheme

called batch-normalization in which each batch of data during training, parame-

ters are updated which normalize the outputs of convolutional layers channel-wise.

Others have found that batch-normalization and other normalization schemes make

training neural networks less dependent on hyperparameters of the training routine

[159].

Another architectural feature of modern neural networks is skip connections, in

which information is sent not only from a layer to the next layer but to layers several

steps deeper as well [67, 76]. For example, in some networks, layers take as input not

only the output of the previous layer but also the output of other previous layers.

Another scheme, residual connections, involves adding the output of the previous

layer to that of other previous layers before inputting to the upcoming layer. Using

the notation of our previous construction, f(x) = h3(g(h2(g(h1(x)) + x))) contains

a residual connection.

5



Figure 2.1: A two hidden layer multi-layer perceptron [39].

2.2 Training neural networks for classification

Training neural networks is framed as a minimization problem,

min
θ

E(x,y)∼DL(fθ(x), y),

where fθ is the network with parameters θ, D is a data distribution generating image-

label pairs, and L is a loss function which is a proxy for error on the task. The loss

function is carefully chosen, in combination with the activation function and the

initialization for the network parameters, in order to yield a tractable optimization

problem. In classification problems, a popular choice for loss functions is cross-

entropy composed with the softmax function. The softmax function and cross-
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entropy functions are respectively written

s(x)i =
exi∑n
k=1 e

xk
, c(x, y) = − log(xy),

where x has the number of entries corresponding to the number of classes in the

classification problem, and the label y denotes the index corresponding to the correct

class. Thus, classification networks output the same number of entries as there are

classes in the problem, and the softmax function converts the network outputs to a

probability distribution over the classes. The cross-entropy loss in turn penalizes the

network for generating a probability far away from 1 for the correct class. Neural

networks trained with softmax and cross-entropy, L = c ◦ s, generate estimates of

posterior probabilities on the training data [17]. Another loss function used for

training neural networks is KL-divergence, KL(p,q) =
∑

i pi log(pi

qi
), where p,q are

probability distributions. This loss function is used to encourage a network with

softmax to output probabilities similar to those of a specified distribution.

We begin a training routine by randomly initializing the parameters, θ, of a

network f [158]. We also consider a learning rate, α, which will govern the speed

of training. Training is separated into epochs, periods in which the network sees all

data in the data set exactly once. During each epoch, the data set is randomly split

into batches of equal size. We loop through each batch and update the network’s

parameters according to a gradient descent step

θ ← θ − α
∑
i∈B

∇θL(fθ(xi), yi),
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where L denotes the loss function, and B is the set of indices corresponding to data

in the current batch. This training algorithm is called stochastic gradient descent

(SGD). Similar routines use modified update rules in order to accelerate training.

For example, momentum [152] involves the following:

v ← γv + η
∑
i∈B

∇θL(fθ(xi), yi),

θ ← θ − v.

Further additions to the training routine harness regularizers, penalty terms added

to the loss function. A common regularizer is weight-decay, which penalizes the

sum of squared parameters, w(θ) =
∑
θ2
i [93]. During training, we measure both

the training loss and training accuracy, the percentage of training samples classified

correctly, in order to evaluate how well models fit the data. After training, we

evaluate generalization by measuring accuracy on the test set. When models overfit

the training data, we observe declining training loss while test accuracy remains

constant or even increases.

2.3 Adversarial attacks

Adversarial examples are small perturbations to the input of a neural network

which does not change the semantic meaning of the input but greatly changes the

network’s output [21]. A pathological example is a perturbation to a single pixel of

an image of a car which causes the image to be classified as a person. Adversarial
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examples also exist in settings other than image classification. For example, an

adversarial example for detection might involve a small perturbation that causes

failure to detect a car or a person [164].

In the classification setting, an adversarial attack is a “small” perturbation to

data which causes misclassified. We formalize the notion of an adversarial example

below.

Definition 2.1 (Adversarial Example). Denote the set of valid inputs by S and

image similarity distance function by d. An input x′ ∈ S is an adversarial example

relative to model f , input label pair, x, y, and attack budget ε if d(x,x′) < ε

and arg maxi f(x)i = y, so that the perturbation is small and the original input is

classified correctly by f and yet arg maxi f(x′)i 6= y.

The most popular choice of distance function for constraining the attacker is

the `∞ norm, in which case the attack is called an `∞ attack. A simple method for

generating an `∞ adversarial attack, called the Fast Gradient Sign Method (FGSM),

perturbs an input by δ = ε sign[∇xL(fθ(x), y)] [57]. More powerful attacks use an

iterative optimization procedure. An example of an iterative attack is the PGD at-

tack in which δn+1 = πε[δn+α sign[∇δnL(fθ(x+δn), y)]], where πε denotes projection

onto the `∞-ball of radius ε centered at the origin [114].

A large body of work has developed around avoiding vulnerability to these

attacks Some methods involve issuing certificates that a network does not admit

adversarial examples within some radius of a data point [27]. Other methods involve

creating networks whose loss function yields a difficult optimization problem for the
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attacker [7]. And yet other defenses sanitize adversarial data before feeding it into

the network [59].

In the adversarial robustness literature, accuracy on non-adversarial data is

called natural accuracy while accuracy on adversarial examples is called robust ac-

curacy.

2.4 Datasets

In this work, we primarily consider natural image datasets. CIFAR-10 and

CIFAR-100 are canonical natural image datasets from the Canadian Institute for

Advanced Research (CIFAR) with ten and one hundred classes respectively [92].

These datasets each contain 60,000 labeled RGB images with spatial dimensions

of 32 × 32. The ten classes for CIFAR-10 are airplanes, cars, birds, cats, deer,

dogs, frogs, horses, ships, and trucks. These classes are non-overlapping. CIFAR-

100 similarly contains non-overlapping classes of common objects and animals. Both

CIFAR-10 and CIFAR-100 are split into training and test sets with 50000 and 10000

images respectively. Below is a panel with an image from each CIFAR-10 class.

In the few-shot setting, datasets are split into training and testing classes so

that models can be trained on the training classes and tested by fine-tuning on the

testing classes. One such dataset is CIFAR-FS which is constructed by choosing

64 classes of CIFAR-100 to be training classes, 16 for validation, and 20 for testing

[12]. Mini-ImageNet is another few-shot dataset formed by choosing 600 images from

each of 100 classes from the ImageNet 2012 classification dataset and downsampling
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Figure 2.2: An example from each of the ten CIFAR-10 classes [92].

the images to be 84 × 84 × 3 [162]. The classes are then split using the same

training/validation/testing proportions as CIFAR-FS.

In our experiments with stock data, we use assets from the Nasdaq exchange.

We use order book snapshots provided by LOBSTER (Limit Order Book System -

The Efficient Reconstructor) [77].

2.5 Mathematics in machine learning

Mathematical work has contributed to many facets of machine learning. Fun-

damental work on approximation theory attempts to better understand why neural

networks work [32, 106]. Dimension reduction methods illuminate the shape and

dimensionality of data and also to understand why some networks are more effective

for few-shot classification [55, 124]. The scattering transform is a transform method

which uses frames from harmonic analysis to model neural networks [18, 105, 127].

Similarly work has used shearlet transforms to introduce shearing and scale invari-
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ance into convolutional neural networks [50].

In scientific applications, mathematical contributions have helped to adapt

deep learning methods to real applications. In optical communication, a CNN-

based demultiplexing method has reduced hardware costs by rendering alignment

unnecessary [40]. Denoising methods have enabled practitioners to remove artifacts

in passive cavitation imaging [109].

The adversarial attack and robustness literature has seen advances from math-

ematics as well. Optimization work has proven that adversarial attacks can increase

the loss of neural networks [41]. Other work has tested various basis function com-

pression methods for adversarial robustness [148].
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Chapter 3: Analyzing the Security of Machine Learning for Algorith-

mic Trading

Algorithmic trading systems are often completely automated, and deep learn-

ing is increasingly receiving attention in this domain. Nonetheless, little is known

about the robustness properties of these models. We study valuation models for

algorithmic trading from the perspective of adversarial machine learning. We intro-

duce new attacks specific to this domain with size constraints that minimize attack

costs. We further discuss how these attacks can be used as an analysis tool to

study and evaluate the robustness properties of financial models. Finally, we inves-

tigate the feasibility of realistic adversarial attacks in which an adversarial trader

fools automated trading systems into making inaccurate predictions. This work was

conducted with Avi Schwarzschild, Naftali Cohen, Tucker Balch, Ankit Patel, and

Tom Goldstein [56]. My contribution was conceiving, implementing, and testing the

adversarial attacks and writing a substantial portion of the paper.

3.1 Introduction

Machine learning serves an increasingly large role in financial applications.

Recent trends have seen finance professionals rely on automated machine learn-

13



ing systems for algorithmic trading [2], robo-advisers that allocate investments and

rebalance portfolios [111, 118], fraud detection systems that identify illicit trans-

actions [1, 13, 130], risk models that approve/deny loans [15], and high-frequency

trading systems that make decisions on timescales that cannot be checked by hu-

mans [4, 5, 8, 16, 69, 90]. With the widespread use of such models, it is increasingly

important to have tools for analyzing their security and reliability.

In the mainstream machine learning literature, it is widely known that many

machine learning models are susceptible to adversarial attacks in which small but de-

liberately chosen perturbations to model inputs result in dramatic changes to model

outputs [94]. It has already been demonstrated that adversarial attacks can be used

to change someone’s identity in a face recognition system [150], bypass copyright

detection systems [132], and interfere with object detectors [46]. In this work, we

investigate adversarial attacks on models for algorithmic and high-frequency trading.

Trading bots historically rely on simple ML models and increasingly leverage

the cutting-edge performance of neural networks [5, 16]. Security and reliability

issues are particularly relevant to high-frequency trading (HFT) systems, as actions

are determined and executed in extremely short periods. These short time horizons

make it impossible for human intervention to prevent deleterious behavior, and it

is known that unstable behaviors and security vulnerabilities in such systems have

contributed to major market events (e.g., the 2010 “flash crash” [89]).

We focus on adversarial attacks on the stock price prediction systems employed

by trading bots. We look at adversarial attacks from two different perspectives.

Adversarial analysis of reliability and stability: After a price prediction
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model has been trained, it is important to understand the reliability of the model

and any unseen instabilities or volatile behaviors it may have. A naive analysis

method is backtesting; one feeds recent historical stock market data into a model and

examines its outputs. However, models may have extreme behaviors and instabilities

that arise during deployment that cannot be observed using historical data. This

is especially true when complex and uninterpretable neural models are used [156].

Furthermore, market conditions can change rapidly, resulting in a domain shift that

degrades model performance [34, 126].

We propose the use of adversarial attacks to reveal the most extreme behaviors

a model may have. Our adversarial attacks generate synthetic market conditions

under which models behave poorly, and determine whether instabilities exist in

which small changes to input data result in extreme or undesirable behavior. This

can be used as a tool to interrogate the reliability of a model before deployment or

during postmortem analysis after a major event.

Adversarial attacks as a security vulnerability: We assess the poten-

tial for adversarial attacks to be used by malicious agents to manipulate trading

bots. Several factors contribute to the potential vulnerability of stock price mod-

els. In mainstream adversarial literature, the attacker often cannot directly control

model inputs; the adversary modifies a physical object (e.g., a stop sign) with the

hopes that their perturbation remains adversarial after the object is imaged under

unknown conditions. By contrast, our adversary is blessed with the ability to di-

rectly control model inputs. When order book data is used for price prediction,

law-abiding traders and malicious actors alike receive identical market data from

15



an exchange. The adversary can perturb the order book by placing (and canceling)

their own orders. These adversarial orders quickly appear on the public exchange

and are fed directly into victim models.

At the same time, there are challenges to attacks on order book data. An ad-

versary’s malicious orders must be bounded in their financial cost and detectability.

Moreover, the attacker cannot know the future of the stock market, and so attackers

must rely on universal attacks that remain adversarial under a wide range of stock

market behaviors. An adversary’s knowledge of the victim model is also limited,

thus we assess the effectiveness of these universal attacks across model architectures

as well.

Interestingly, when the attacks are deployed on historical market data, we

observe that adversarial algorithms can automatically discover known manipulation

strategies used by humans in “spoofing”. These attacks are known to be effective

and problematic, spawning their ban in the Dodd-Frank Act of 2010 [70].

3.2 Background

Before discussing new methods, we briefly review relevant existing work on

algorithmic trading and adversarial attacks.

3.2.1 Machine Learning for High-Frequency Trading

High-frequency trading bots can profit from extremely short-term arbitrage

opportunities in which a stock price is predicted from immediately available infor-
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mation, or by reducing the market impact of a large transaction block by breaking

it into many small transactions over a trading day [4, 19, 69, 90].

High-frequency trading systems contain a complex pipeline that includes price

prediction and execution logic. Price prediction models (often called “valuations”)

are a fundamental part of any trading system; they forecast the future value of

equities and quantify uncertainty. Execution logic consists of proprietary buy/sell

rules that account for firm-specific factors including transaction costs, price-time

priority of orders, latency, and regulatory constraints [34].

Since the ability to anticipate trends is the core of algorithmic trading, we

focus on price prediction and its vulnerability to attack. Price predictors use various

streams of time-series data to predict the future value of assets. Traditional systems

use linear models, such as autoregressive moving-average (ARMA) and support-

vector machine (SVM), since linear models like these are fast for both training and

inference [10, 87].

As hardware capabilities increase, training and inference are accelerated by

advances in GPU, FPGA, and ASIC technology. Heavyweight models, like neural

networks, have gathered interest as computations that were once intractable on a

short timescale are becoming feasible [36]. Recent works use LSTM and temporal

convolutional networks to predict future prices in a short time horizon [5, 16].

Common trading strategies, typical of technical analysis, rely on mean-reversion

or momentum-following algorithms to identify an oversold or overbought asset.

Mean-reversion methods assume that fluctuations in stock prices will eventually re-

lax to their corresponding long-term average, whereas momentum-following methods
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aim at identifying and following persistent trends in asset prices. Simple trading

algorithms identify an indicator of either strategy and act when prices cross a pre-

defined threshold, thus signaling for a potentially profitable trade over the oversold

or overbought asset [28, 119].] We use this type of thresholding for our trading

systems. More details on our setup can be found in Section 3.3.2.

Historically, traders have engaged in spoofing in which an adversary places

orders on either side of the best price to fake supply or demand, often with the intent

of canceling the orders before execution [139]. Orders placed by a trader engaging

in spoofing can be thought of as a naive hand-crafted adversarial perturbation.

In this work, we use techniques from mathematical optimization to automate the

construction of effective and efficient perturbations. Spoofing is now illegal under

the Dodd-Frank Act of 2010. However, our perturbations, crafted with optimization

techniques, may be less detectable than handcrafted versions and thus may present

a problem for enforcement.

3.2.2 Adversarial Attacks

Neural networks are known to be vulnerable to adversarial attacks, small per-

turbations to inputs which dramatically change a network’s output [94]. The most

popular setting for studying adversarial attacks to date is image classification. Ad-

versarial attacks in this domain perturb an image to fool a classifier while constrain-

ing the perturbation to be small in some norm.

While classical adversarial perturbations are designed for a single image, “uni-
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versal” perturbations are crafted to fool the classifier when applied to nearly any

image [116, 145]. Similar attacks exist for other vision tasks like detection and

segmentation [165]. Other domains, such as natural language and graph struc-

tured data, have attracted the attention of adversarial attacks, but these attacks

are impractical [3, 33]. In NLP, adversarial text may be nonsensical, and in graph

structured data, attackers are weak.

3.2.3 The Order Book

The order book keeps track of buy orders and sell orders for a financial asset

on an exchange. We use limit order book data from the Nasdaq Stock Exchange.

Limit orders are orders in which an agent either offers to buy shares of a stock at or

below a specified price or offers to sell shares of a stock at or above a specified price.

Since agents can place, for example, buy orders at a low price, limit orders may

not execute immediately and can remain in the order book for a long time. When

the best buy order price (the highest price at which someone will buy) matches or

exceeds the best sell order price (the lowest price at which someone is willing to sell)

orders are filled and leave the book.

At any given time, the order book contains prices and their corresponding sizes.

Size refers to the total number of shares being offered or demanded at a particular

price. The size entries for a price level may contain orders of many agents, and these

orders are typically filled in a first-in-first-out manner. More complex rules come

into play when, e.g., orders require tie breaking, or limit orders have stipulations on
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their execution. A complete list of market practices and conduct standards can be

found in the official Nasdaq equity rules [91].

3.3 Building valuation models

In this section, we describe simple valuation models that we will attack. Our

models digest a time series of size-weighted average price levels over a 1 minute

interval, and make a prediction about a stock price ten seconds in the future. The

models used here were chosen for their simplicity – they are meant to form a testbed

for adversarial attacks and not to compete with the proprietary state-of-the-art.

Still, we verify that our models learn from patterns in the data and out-perform

simple baselines.

3.3.1 Data

We use centisecond-resolution data from September and October 2019, and

we choose to only use the first hour of trading each day since this period contains

the largest volume of activity. Taking one month of data per asset, we use the

first sixteen trading days for training and the last four for testing. We choose well-

known stocks with high volatility relative to order book thickness: Ford (F), General

Electric (GE), and Nvidia (NVDA). Order book data was furnished by LOBSTER,

a financial data aggregator that makes historical order book data for Nasdaq assets

available for academic use [77].

Consider that each row of the order book contains the ten best buy prices
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and their corresponding sizes, {(pB1 , sB1 ), ..., (pB10, s
B
10)}, as well as the ten best sell

prices and their corresponding sizes, {(pS1 , sS1 ), ..., (pS10, s
S
10)}. These rows are each

a snapshot of the book at a particular time. We process this data by creating the

size-weighted average (SWA) of a row,

SWA([pB1 , s
B
1 , ..., p

B
10, s

B
10, p

S
1 , s

S
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S
10, s

S
10])

=

∑10
i=1 p

B
i s

B
i +
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S
i s
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i=1 s
B
i +

∑10
i=1 s

S
i

,

for each row. Movement in the size-weighted average may represent a shift in either

or both price and size. The SWA is a univariate surrogate for the price of an asset.

After computing SWAs of the order book data, inputs to the models are 60

second time-series of this one-dimensional data. Since we use order book snapshots

at intervals of 0.01 seconds, an input contains 60 × 100 = 6, 000 SWA entries. See

Figure 3.1 for a visual depiction of the SWA time-series.

We focus on three-class classification models for concreteness. The goal of the

model is to classify an equity as likely to increase in price above a threshold, decrease

below a threshold, or remain between the thresholds. Thresholds are chosen to be

symmetric around the origin, and so that the default class (“no significant change”)

contains one third of all events, making the classification problem approximately

balanced.
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Figure 3.1: This sample of the SWA curve for GE data shows an example of an
input snippet. The label for this input is determined by the change in price from
the right end of the green snippet to the green dot.

3.3.2 Trading Models

On each asset, we train a linear classifier, a multi-layer perceptron (MLP), and

an LSTM [74]. The MLP models have 4 hidden layers, each of width 8,000. The

LSTM models have 3 layers and a hidden-layer size of 100.

We train each model with cross-entropy loss over the three classes. Since our

data can be sampled by taking any 60 second snippet from the first hour of any of

the trading days in our training set, we have a large number of data points. We

randomly choose a batch of 60-second snippets from all of the training data and

perform one iteration of SGD on this batch before resampling. These batches range

in size from 2,000 to 3,000 data points depending on the model. Further details can

be found in the Appendix of [56].
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3.3.3 Comparison to baselines

The performance of our models is reported as classification accuracy on testing

data. Since we have a large quantity of data, we randomly sample 10,000 snippets

from the test set and form confidence intervals of radius one standard error from

the accuracy estimations.

We verify that our models are indeed learning from the data by checking that

they exceed simple baselines. See Table 3.1 for the numerical results. There are

two natural baselines for this problem: a random guess, and a strategy that always

predicts the label most commonly associated with that stock in the training data.1

The latter baseline always performed worse than a random guess on the test data,

so the most natural performance baseline accuracy is 33.33%. Tables 3.1 and 3.2

show accuracy measurements which should be read with this in mind. Note that

price prediction is a difficult task, and profitable valuation models typically achieve

performance only a few percentage points better than baselines [19].

3.4 Analyzing the Vulnerabilities of Trading Models

In this section, we develop a basic adversarial attack, and we use it to study

the robustness properties of trading models as well as to compare the sensitivities

of different networks. One might think that because these models are trained on

noisy data, they are insensitive to small perturbations. We demonstrate that the
1Our classes are designed so that the middle class (little to no change in the SWA) accounts

for one third of the training data. This leaves the ‘up’ and ‘down’ classes slightly off balance.
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Ford (F)
Model Test Accuracy(%)

Linear 34.66(±0.5)
MLP 36.56(±0.5)
LSTM 36.40(±0.5)

General Electric (GE)
Model Test Accuracy (%)

Linear 36.41(±0.5)
MLP 36.87(±0.5)
LSTM 35.65(±0.5)

Nvidia (NVDA)
Model Test Accuracy (%)

Linear 34.15(±0.5)
MLP 35.69(±0.5)
LSTM 37.11(±0.5)

Table 3.1: Accuracy of each model on test data with confidence intervals of radius
one standard error. Note that all models are performing pattern recognition as
described in Section 3.3.2. Furthermore, the neural network models outperform the
linear ones.
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networks are indeed vulnerable.

3.4.1 Rules for Perturbing the Order Book

A number of unique complexities arise when crafting adversarial attacks on

order book data. We consider an adversary that places orders at the ten best buy

and sell prices (orders at extreme price levels are typically discarded by analysts

as they are unlikely to be executed). Equivalently, we can perturb the size entries

upwards, but only to whole numbers, in raw order book data.

Note that using the size-weighted average as model inputs and only raising

size entries prevents the adversary from greatly impacting the data seen by a model.

Although these inputs lack the information content of raw order book data, without

changing the price entries, an attacker can at most perturb the size-weighted average

to the maximum or minimum price in the ten best buy/sell orders at a given time-

stamp.

Consider the sequence of order book snapshots used for size-weighted average,

{xi}, and the sequence of adversarial orders (on a per-row basis), {ai}. We cannot

simply add these two quantities to compute the perturbed order book since the

adversarial orders may remain on the book after being placed. On the other hand,

we cannot blindly propagate the orders to the end of the snippet because transac-

tions may occur in which adversarial orders are executed, removed from the book,

and therefore be excluded from subsequent snapshots. Thus, denote the propaga-

tion function which accumulates adversarial orders and accounts for transactions,
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returning the sequence of perturbations to the snapshots, by p. Then, the perturbed

sequence of order book snapshots is {xi + δi} where {δi} = p({ai}). Finally, the

input to a model is SWA({xi + δi}).

3.4.2 Quantifying Perturbation Size

In order to determine just how sensitive our models are, we must quantify the

size of the perturbations being placed. We consider three possible metrics: cost,

capital required, and relative size.

• We compute cost to the attacker as the change in the total value of his or

her assets from the start of the snippet to the end. Assets include both cash

and stocks. For this reason, cost accounts for changes in the price of stocks

purchased when a buy order is filled (but we do not include transaction costs).

We operate under the assumption that all attack orders are transacted when

other orders are transacted at the same price level.

• Capital required is the hypothetical total cost of executing all orders placed by

the attacker. This quantity is the total dollar value of orders in the perturba-

tion.

• Finally, we quantify the relative size of our perturbation as the size (number

of shares) of the adversary’s propagated perturbation as a percentage of total

size on the book during the snippet.

Since transactions occur infrequently at this time-scale, and prices go up

roughly as much as they go down, the average cost across attacks is less than $1.00
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for each asset-model combination. For this reason, our crafting algorithms limit

perturbation size in terms of capital required. We denote the capital required for

an order sequence {ai} as C({ai}). We also measure cost and relative size.

3.4.3 Robustness to Random Noise

Before describing our attack, we establish a baseline by randomly inserting

orders instead of using optimization methods, and we propagate the perturbations

through the order book. We compare our attacks to this baseline to demonstrate

that the optimization process is actually responsible for impairing classification. In

fact, random attacks with a high budget barely impair classification at all. See Table

3.2 for accuracy against a random attacker. All random attacks have a budget over

$2,000,000, a sum far higher than any optimization-based attack we consider.

3.4.4 Crafting gradient-based attacks

We now introduce a simple adversarial attack for studying model sensitivity.

This attack is untargeted, meaning that it degrades model performance by finding

a small perturbation that causes misclassification to any wrong label.

Consider a model, f , and a sequence of snapshots, {xi} with label y. Our

attacker solves the maximization problem,

max
{ai}
L(f({SWA(xi + δi)}), y),

with capital constraint C({ai}) ≤ c, where {δi} = p({ai}). The adversary cannot
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perturb price (only size) in the snapshot, and all size entries must be integer-valued.

To this end, we perform gradient ascent on the cross-entropy loss, L, using a random

learning rate α ∼ U(0, α0) and the update rule,

{ai}k ← {ai}k−1 + α∇L(f({SWA(xi + δi)}), y).

The attacker runs through this iterative method with a small step size until either

the model no longer predicts the correct label, y, or C(Rr({ai})) exceeds the capital

constraint, c, where Rr = dx + re is a ceiling operator that rounds size entry x to

the greatest integer less than or equal to x+ r (i.e. R0.3(0.8) = 1). When the attack

terminates, we return the adversarial perturbation, Rr({ai}). We choose c and r to

be $100,000 and 0.95, respectively, in our experiments. See the Appendix of [56] for

a discussion on choice of attack hyperparameters.

Note. In a standard PGD attack, attacks are randomly initialized in an `∞ ball, and

perturbations are projected onto the ball each iteration. In contrast to `∞-bounded

attacks, there is no natural distribution for random initialization within the set,

{{ai} : C(ai) ≤ c}. Moreover, there is no unique projection onto this set. Thus, we

instead opt for a randomized learning rate in order to inject randomness into the

optimization procedure [24].

Table 3.2 depicts the effect of adversarial orders crafted in this manner on

price prediction. Empirically, these trading models are not robust to low-budget

perturbations. Moreover, gradient-based attacks are far more effective at fooling

our models than randomly placed orders with far higher budget, indicating that our
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Ticker Model Atest(%) Arand(%) Aadv(%) Capital ($) Size (%)

F Linear 34.66 34.39 16.66 26, 808 0.4
MLP 36.56 33.12 7.22 24, 055 0.4
LSTM 36.40 37.26 21.76 10, 340 < 0.1

Model Atest(%) Arand(%) Aadv(%) Capital($) Size (%)

GE Linear 36.41 35.03 19.53 34, 513 0.6
MLP 36.87 33.65 9.87 23, 853 0.4
LSTM 35.65 33.01 20.59 12, 580 < 0.1

Model Atest(%) Arand(%) Aadv(%) Capital ($) Size (%)

NVDA Linear 34.15 37.47 28.98 53, 805 2.5
MLP 35.69 34.39 27.60 49, 556 2.4
LSTM 37.11 35.88 35.56 5, 327 < 0.1

Table 3.2: Model performance on clean and perturbed inputs. We denote accuracy
on the test data, accuracy on randomly perturbed data, and accuracy on adver-
sarially perturbed data by Atest, Arand, and Aadv, respectively. We also report the
average capital the adversary must have before making an effective perturbation,
and the average relative size of successful attacks, both of which are computed as
described in Section 3.4.2. The average cost to the attacker per asset is less than
$1.00.

valuation models are robust to noise but not to cleverly placed orders. MLPs, while

generally of higher natural accuracy than linear models, are also significantly less

robust. In all experiments, MLPs achieve lower robust accuracy, even with smaller

perturbations. On the other hand, LSTM models seemingly employ gradient mask-

ing as they are far more difficult to attack using gradient information. To further

confirm the gradient masking hypothesis, we see in Section 3.5 that LSTM models

are the most easily fooled models in the face of transferred universal perturbations.
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3.4.5 The Effect of High Price-to-Size Ratio

We found that valuation models for equities with high price per share and low

trading volume were difficult to attack. For such stocks, the increments by which

an adversary can perturb the size-weighted average are coarse, so gradient-based

methods with rounding are ineffective. For example, in the data we use, Nvidia

stock costs ∼ $180/share compared to ∼ $9/share for Ford stock during the data

range we considered. This fact, combined with roughly 5× lower trading volume,

makes it difficult to perform low cost attacks, or attacks with low relative size, on

Nvidia. As a result of this quantization effect, we are almost unable to impair

models on Nvidia. This observation leads us to believe that price prediction on

assets with this property is more robust in general (at least using the class of SWA-

based models studies in our setting). In the ensuing sections, we focus on Ford

and General Electric stocks, which have relatively higher volume and lower cost per

share.

3.5 Universal Transfer Attack: A More Feasible Threat Model

The adversarial attacks discussed above provide a useful basis for analyzing

model robustness but do not pose any real security threat because of three unrealistic

assumptions. First, the attacker is performing an untargeted attack, meaning that

the attacker knows the class that a snippet belongs to (i.e., whether it will go up,

down, or remain), and is only trying to cause the label to change to some other

class. Furthermore, attacks are crafted while looking at every row of the order book
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simultaneously. For this reason, the attacker may use knowledge about the end of

a snippet when deciding what orders to place in the book at the beginning of the

snippet. Third, the attacker must know their victim’s architecture and parameters.

In short, the strategies displayed above require the attacker to know the future and

their opponent’s proprietary technology.

In this section, we consider making universal perturbations – we craft a single

attack that works on a large number of historical training snippets with the hope

that it transfers to unseen testing snippets. These attacks can be deployed in real

time without knowing the future. Furthermore, we use targeted attacks, so that

the attacker may anticipate the behavior of the victim. In order to add even more

realism, we use transfer attacks in which the attacker does not know the parameters

of the model they are attacking. In this situation, we train surrogate models and

use universal perturbations generated on the surrogates to attack the victim.

We craft universal perturbations by solving

min
δ

∑
i

L(f({SWA({xi + δi)}), yt) + γR(δ),

where L is cross-entropy loss, {δi} = p({ai}), {xi} are the order book snapshots in

the training data, yt is a target label, δ is a universal perturbation to the size entries,

and R(δ) is a penalty term which may be used to encourage the perturbation to

require, for example, less size relative to the size on the book. The perturbation, δ,

represents the size of orders placed by the adversary at particular price levels and

time stamps. That is, the adversary must only consider how many levels a price is
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from the best offer rather than specific dollar amounts. We solve this problem with

stochastic gradient descent by sampling training data and minimizing loss. See the

Appendix of [56] for attack hyperparameters. We apply this pre-computed sequence

of adversarial orders to the test data by propagating the orders through the order

book for each individual input sequence and adding to the original clean snippet.

We measure and report the success rate at moving correctly classified inputs from

outside the target class into the target class.

We find that universal adversarial perturbations in this setting work well. In

particular, we were able to find universal perturbations that are small relative to the

order book and yet fool the model a significant percentage of the time. Moreover,

we find that these attacks transfer between models, and our relative size penalty is

effective at reducing the budget of an attacker while maintaining a high fool rate.

See Table 3.3 for targeted universal perturbation transfer attack results.

These targeted universal perturbations are prototypical patterns for convincing

a model to predict a particular SWA movement. For example, to force the victim to

predict a downwards trend, the adversary places sell orders followed by buy orders

and finally more sell orders to feign downwards momentum in the SWA (See Figure

3.2). We find that visualizing universal perturbations is helpful for interpreting why

our models make the decisions they do.
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Ulinear UMLP

Model Fooled Size Fooled Size

Linear 9.5% 1.0% 11.90% 0.8%
MLP 23.75% 1.1% 36.10% 0.8%
LSTM 31.21% 0.9% 40.46% 0.8%

Table 3.3: Model performance on universal attacks (Ford data). We denote the
universal perturbations computed on the linear model and on the MLP by Ulinear
and UMLP, respectively. We craft universal adversarial perturbations on the linear
model and the MLP and assess the performance of three models under these attacks.
Both of these attacks were computed with a penalty on relative size.
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Figure 3.2: Examples of two targeted universal adversarial attacks computed on
the same model (MLP trained on Ford data). The perturbation on the top was
computed without constraint, and when transferred to test data and a different
model, it fooled the victim on 157 inputs (out of 341 correctly classified) and accounts
for a relative size on the book of 3.8%. The bottom perturbation is the result of the
same process with an added penalty on relative size. The penalized attack shows a
sparser perturbation with a relative size of 0.9% while causing misclassification of
almost the same number of inputs (123).

3.6 Patterns in Adversarial Orders

We observe patterns in adversarial attacks that can help explain the behavior of

classifiers. The non-universal attacks on particular inputs highlight the vulnerability

of the valuation models. For example, see Figure 3.3, where the perturbation is so

small compared to the size on the book that a human would not distinguish the
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attacked signal from the clean one. Yet, the attack is concentrated on the fringes

of the order book, much like a spoofing attack. Figure 3.2 shows a case in which a

universal adversary has learned an interpretable perturbation in which it creates a

local minimum in the size-weighted average by alternately placing perturbations on

opposite sides of the book. Our relative size penalty visibly decreases the size and

concentration of the perturbation without decreasing effectiveness.
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Figure 3.3: The unperturbed and perturbed order books (top left and top right,
respectively). The bottom two images show the unpropagated and propagated ad-
versarial perturbations (left and right, respectively). In this instance, the addition
of the bottom right image to the clean signal in the top left yields the perturbed
input in the top right. Note that the difference between the perturbed and unper-
turbed signals is not noticeable here, where the model was fooled into incorrectly
classifying the SWA as going up.

Universal perturbations bring to light two important features of these price
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predictors. The first is that targeted universal perturbations, which are generally

less effective, have a major impact on the performance of these models. The models

are vulnerable even to these weak attacks. Second, the targeted universal attacks

expose interpretable model behavior. In Figure 3.2, we see that the attacker creates

local extrema in the order book which cause the model to anticipate mean reversion.

3.7 Discussion

This work introduces adversarial attacks to financial models both as a method

for understanding model sensitivities and also as a potential threat. As seen in

other applications of adversarial machine learning, there are robustness tradeoffs

to be leveraged, and there is no free lunch. While neural network models perform

better at pattern recognition in this setting than traditional linear valuations, we

also find them to be less robust. We further notice that the same adversarial patterns

that fool one model also fool others and that these patterns are highly interpretable

to humans. The transferability of these attacks, combined with their ability to be

effective with a small attack budget, suggests that they could possibly be leveraged

by a malicious agent with limited knowledge of a victim.
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Chapter 4: Adversarially Robust Distillation

Knowledge distillation is effective for producing small, high-performance neu-

ral networks for classification, but these small networks are vulnerable to adversarial

attacks. This paper studies how adversarial robustness transfers from teacher to stu-

dent during knowledge distillation. We find that a large amount of robustness may

be inherited by the student even when distilled on only clean images. Second, we

introduce Adversarially Robust Distillation (ARD) for distilling robustness onto stu-

dent networks. In addition to producing small models with high test accuracy like

conventional distillation, ARD also passes the superior robustness of large networks

onto the student. In our experiments, we find that ARD student models decisively

outperform adversarially trained networks of identical architecture in terms of robust

accuracy, surpassing state-of-the-art methods on standard robustness benchmarks.

Finally, we adapt recent fast adversarial training methods to ARD for accelerated

robust distillation. This work was conducted with Liam Fowl, Soheil Feizi, and Tom

Goldstein [51]. My contribution was conceiving of the central ideas of the project,

implementing the algorithms, conducting most experiments from all sections, and

writing most of the paper.
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4.1 Introduction

State-of-the-art deep neural networks for many computer vision tasks have

tens of millions of parameters, hundreds of layers, and require billions of operations

per inference [68, 155]. However, networks are often deployed on mobile devices

with limited compute and power budgets or on web servers without GPUs. Such

applications require efficient networks with light-weight inference costs [30, 44, 135,

157].

Knowledge distillation was introduced as a way to transfer the knowledge of

a large pre-trained teacher network to a smaller light-weight student network [73].

Instead of training the student network on one-hot class labels, distillation involves

training the student network to emulate the outputs of the teacher. Knowledge

distillation yields compact student networks that surpass the performance achievable

by training from scratch without a teacher [73].

Classical distillation methods achieve high efficiency and accuracy but neglect

security. Standard neural networks are easily fooled by adversarial examples, in

which small perturbations to inputs cause mis-classification [57, 156]. This phe-

nomenon leads to major security vulnerabilities for high-stakes applications like

self-driving cars, medical diagnosis, and copyright control [102, 132, 137]. In such

domains, efficiency and accuracy are not enough – networks must also be adversar-

ially robust.

We study distillation methods that produce robust student networks. Unlike

conventional adversarial training [114, 149], which encourages a network to output
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correct labels within an ε-ball of training samples, the proposed Adversarially Robust

Distillation (ARD) instead encourages student networks to mimic their teacher’s

output within an ε-ball of training samples. See Figure 4.1 for a diagram of the

ARD pipeline. Thus, ARD is a natural analogue of adversarial training but in the

context of distillation. Formally, we solve the following optimization problem.

Definition 4.1 (Adversarially Robust Distillation). Adversarially Robust Distilla-

tion (ARD) is defined as the minimax problem,

min
θ

E(X,y)∼D

[
αt2 KL(Stθ(X + δθ), T

t(X))︸ ︷︷ ︸
Adversarially Robust Distillation loss

+(1− α) L(Stθ(X), y)︸ ︷︷ ︸
classification loss

]
,

where δθ = arg max‖δ‖p<ε L(Stθ(X+δ), y), T and S are teacher and student networks,

and D is the data generating distribution.

In this work, we focus on image datasets. See Section 4.5 for a more thorough

description. Below, we summarize our contributions in this section:

• We show that knowledge distillation using only natural images can preserve

much of the teacher’s robustness to adversarial attacks. This property en-

ables the production of efficient robust models without the expensive cost of

adversarial training. See Section 4.4 for more details.

• We introduce Adversarially Robust Distillation (ARD) for producing small

robust student networks. In our experiments, ARD students exhibit higher

robust accuracy than adversarially trained models with identical architecture,

and ARD often exhibits higher natural accuracy simultaneously. Interestingly,
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ARD students may exhibit even higher robust accuracy than their teacher. See

Table 4.1 for the results of our experiments. 4.5

• We accelerate our method for efficient training by adapting fast adversarial

training methods. 4.5.4

Figure 4.1: Adversarially Robust Distillation (ARD) works by minimizing discrepancies
between the outputs of a teacher on natural images and the outputs of a student on
adversarial images.

Model
Robust Accuracy

(Aadv)
AT ResNet18 teacher 44.46%
AT ResNet18 → MobileNetV2 38.21%
AT ResNet18 ARD−−−→ MobileNetV2 50.22%

Table 4.1: Performance of an adv. trained (AT) teacher network and its student on
CIFAR-10, where robust accuracy (Aadv) is with respect to a 20-step PGD attack
as in [114]. Here “→” denotes “knowledge distillation onto” and “ ARD−−−→” denotes
“adversarially robust distillation onto”.

Table 4.1 shows that a student may learn robust behavior from a robust

teacher, even if it only sees clean images during distillation. Our method, ARD,

outperforms knowledge distillation for producing robust students. To gain initial

intuition for the differences between these methods, we visualize decision boundaries

for a toy problem in Figure 4.2. Randomly generated training data are depicted as
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colored dots with boxes showing the desired `∞ robustness radius. Background col-

ors represent the classification regions of the networks (10-layer teacher and 5-layer

student). In each case, the network achieves perfect training accuracy. A training

point is vulnerable to attack if its surrounding box contains multiple colors. Results

in Figure 4.2 are consistent with our experiments in Section 4.5 on more complex

datasets. We see in these decision boundary plots that knowledge distillation from

a robust teacher preserves some robustness, while ARD produces a student who

closely mimics the teacher.

4.2 Related Work

Early schemes for compressing neural networks involved binarized weights to

reduce storage and computation costs [30]. Other efforts focused on speeding up

calculations via low-rank regularization and pruning weights to reduce computation

costs [104, 157]. Knowledge distillation teaches a student network to mimic a more

powerful teacher [73]. The student is usually a small, lightweight architecture like

MobileNetV2 (MNV2) [135].

Knowledge distillation has also been adapted for robustness in a technique

called defensive distillation [125]. In this setting, the teacher and student have

identical architectures. An initial network is trained on class labels and then distilled

at temperature t onto a network of identical architecture. Defensive distillation

improves robustness to a certain `0 attack [125]. However, defensive distillation

gains robustness due to gradient masking, and this defense has been broken using
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`0, `∞, and `2 attacks [20, 21].

Various methods exist that modify networks to achieve robustness. Some

model-specific variants of adversarial training utilize surrogate loss functions to

minimize the difference in network output on clean and adversarial data [113, 178],

feature denoising blocks [167], and logit pairing to squeeze logits from clean and

adversarial inputs [84]. Still other methods, such as JPEG compression, pixel de-

flection, and image superresolution, are model-agnostic and minimize the effects of

adversarial examples by transforming inputs [44, 120, 129].

Recently, there has been work on defensive-minded compression. The authors

of [163] and [180] study the preservation of robustness under quantization. Defensive

Quantization involves quantizing a network while minimizing the Lipschitz constant

to encourage robustness [108]. While quantization reduces space complexity, it does

not reduce the number of Multiply-Add (MAdd) operations needed for inference,

although operations performed at lower precision may be faster depending on hard-

ware. Moreover, Defensive Quantization is not evaluated against strong attackers.

Another compression technique involves pruning [143]. Pruning does reduce the

number of parameters in a network, but it does not decrease network depth and

thus may not accelerate inference. Additionally, this work does not achieve high

compression ratios and does not achieve competitive performance on CIFAR-10.

Pruning maintains the same architectural framework and does not allow a user to

compress a state-of-the-art large robust network into a lightweight architecture of

their choice. Creating small robust models is also of interest for the few-shot setting.

Adversarial querying approaches this problem from the meta-learning perspective
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[52].

Figure 4.2: A student distilled from a robust teacher is more robust than a naturally
trained network, but ARD produces a more robust network than either and closely mimics
the teacher’s decision boundary. Adversarially vulnerable training points have `∞ boxes
outlined in red.

4.3 Problem Setup

Knowledge distillation employs a teacher-student paradigm in which a small

student network learns to mimic the output of an often much larger teacher model

[73]. Knowledge distillation entails the minimization problem,

min
θ
`KD(θ), `KD(θ) = EX∼D

[
KL(Stθ(X), T t(X))

]
, (4.1)

where KL is KL divergence, Sθ is a student network with parameters θ, T is a

teacher network, t is a positive temperature constant, and X is an input to the

networks drawn from data generating distribution D. In this work, we focus on

distributions of natural images. The temperature constant refers to a number by

which the logits are divided before being fed into the softmax function. Intuitively,

knowledge distillation involves minimizing the average distance from the student’s

output to the teacher’s output over data from a distribution. The softmax outputs
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of the teacher network, also referred to as soft labels, may be more informative

than true data labels alone. In [73], the authors suggest using a linear combination

of the loss function, `KD(θ), and the cross-entropy between the softmax output of

the student network and the one-hot vector representing the true label in order to

improve natural accuracy of the student model, especially on difficult datasets. In

this case, we have the loss function

`KD(θ) = E(X,d)∼D
[
αt2 KL(Stθ(X), T t(X) + (1− α)L(Stθ(X), y)

]
, (4.2)

where L is the standard cross-entropy loss, and y is the label. In our experiments,

we use α = 1 except where otherwise noted. We tune α (where 0 ≤ α ≤ 1)

in select cases in order to trade robustness for natural accuracy to surpass some

previous robustness methods in both robust and natural accuracy simultaneously.

We investigate if students trained using knowledge distillation inherit their teachers’

robustness to adversarial attacks. We also combine this method with adversarial

training.

Adversarial training is another method for encouraging robustness to adver-

sarial attacks during training [149]. Adversarial training involves the minimax op-

timization problem,

min
θ

E(X,y)∼D

[
max
‖δ‖p<ε

Lθ(X + δ, y)

]
, (4.3)

where Lθ(X + δ, y) is the loss of network with parameters θ, input X perturbed by
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δ, and label y. Adversarial training encourages a student to produce the correct

label in an ε-ball surrounding data points. Virtual Adversarial Training (VAT) and

TRADES instead use as a loss function a linear combination of cross-entropy loss

and KL divergence between the network’s softmax output from clean input and

from adversarial input [113, 178]. The KL divergence term acts as a consistency

regularizer which trains the neural network to produce identical output on a natural

image and adversarial images generated from the natural image. As a result, this

term encourages the neural network’s output to be constant in ε-balls surrounding

data points.

Knowledge distillation is useful for producing accurate student networks when

highly accurate teacher networks exist. However, the resulting student networks

may not be robust to adversarial attacks [21]. We combine the central ideas of

knowledge distillation and adversarial training to similarly produce robust student

networks when robust teacher networks exist.

We focus on adversarial robustness to `∞ attacks since these are pervasive in

the robustness literature. Thus, we carry out both adversarial training and ARD

with FGSM-based PGD `∞ attacks similarly to [114, 178]. We re-implemented

the methods from these papers to perform adversarial training and to establish

performance baselines. In our experiments, we use WideResNet (34-10) (WRN) and

ResNet18 teacher models as well as MobileNetV2 (MNV2) students [68, 135, 172].

Adversarial training and TRADES teacher models are as described in [114, 178].

We aim to to use our combination of knowledge distillation and adversarial training

to produce efficient networks robust to `∞ attacks.
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4.4 Adversarial robustness is preserved under knowledge distillation

The softmax output of a neural network classifier trained with cross-entropy

loss estimates the posterior distribution over class labels on the training data distri-

bution [17]. Empirical study of distillation suggests that neural networks perform

better when trained on the softmax output of a powerful teacher than when trained

on only class labels [73]. The distribution of images generated by adversarial attacks

with respect to a particular model and a data generating distribution, D, may differ

from the distribution of natural images generated byD. Distillation from a naturally

trained teacher is known to produce student models which are not robust to adver-

sarial attacks [21]. Thus, we suspected that a non-robust teacher network trained

on natural images would be poorly calibrated for estimating posterior probabilities

on the distribution of images generated by adversarial attacks. On the other hand,

an adversarially trained teacher network might provide a more accurate estimate of

posterior probabilities on this distribution. We compare the robustness of student

models distilled from both naturally trained and adversarially trained teachers. If

we distill from an adversarially trained teacher, will the student inherit robustness?

If robustness transfers from teacher to student, we can harness state-of-the-art

robust teacher networks to produce accurate, robust, and efficient student networks.

Moreover, since adversarial training is slow due to the bottleneck of crafting adver-

sarial samples for every batch, we could create many different student networks from

one teacher, and adversarial training would only need to be performed once. This

routine of training a robust teacher and then distilling onto robust students would
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be far more time efficient than training many robust student networks individually.

4.4.1 Non-robust teachers produce non-robust students

To establish a baseline for comparison, we distill a non-robust ResNet18 teacher

and evaluate against a 20-step PGD attack as in [114]. We verify known results

showing that defensive distillation is ineffective for producing adversarially robust

students [21]. The authors of [21] noticed that the original defensive distillation pa-

per defends against a particularly ill-suited attacker, and they introduce a stronger

attacker. Since this work, adversarial attacks have become stronger and even more

capable of breaking defensive distillation. In this section, we demonstrate that the

strong attacker we use in our tests adequately cripples student networks distilled

from a naturally trained teacher.

Model Anat Aadv
ResNet18 teacher 94.75% 0.0%
ResNet18 → ResNet18 94.92% 0.0%
ResNet18 → MNV2 93.53% 0.0%

Table 4.2: Performance of a naturally trained teacher network and its students
distilled (with t = 30) on CIFAR-10, where robust accuracy is with respect to a
20-step PGD attack as in [114]. Anat denotes natural accuracy.

4.4.2 Robust teachers can produce robust students, even distilling on

only clean data

Next, we substitute in a robust adversarially trained ResNet18 teacher network

and run the same experiments. We find that our new student networks are far

more robust than students of the non-robust teacher. See Table 4.3 for empirical
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performance. In fact, the student networks acquire most of the teacher’s robust

accuracy. These results confirm that robust lightweight networks may indeed be

produced cheaply through knowledge distillation without undergoing adversarial

training.

Student Model Anat Aadv
AT ResNet18 teacher 76.54% 44.46%
AT ResNet18 → ResNet18 76.13% 40.13%
AT ResNet18 → MNV2 76.86% 38.21%

Table 4.3: Performance of an adversarially trained ResNet18 teacher network and
student networks of various sizes distilled on CIFAR-10, where robust accuracy is
with respect to a 20-step PGD attack as in [114].

4.4.3 Not all robust networks are good teachers, and robustness does

not transfer on some datasets

In the previous experiments, we see that a student network may inherit a

significant amount of robustness from a robust teacher network during knowledge

distillation. However, some robust teachers are not conducive to this robustness

transfer. We use robust WideResNet (34-10) models trained using adversarial train-

ing and TRADES to show that while these models do transfer robustness during

knowledge distillation, they transfer less than the weaker ResNet18 teacher network

from the previous section. See Table 4.4. Additionally, a robust WRN teacher

model transfers almost no robustness under knowledge distillation against 20-step

PGD untargeted attacks on CIFAR-100, a much harder dataset for robustness to

untargeted attacks than CIFAR-10. See Table 4.5. Further experiments show that

robustness transfer diminishes rapidly as we decrease α from our default value of 1.
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For these reasons, we develop ARD for distilling a variety of teachers in order

to produce robust students. Using ARD, robustness is preserved on architectures

and datasets that do not transfer robustness under vanilla knowledge distillation.

Model Anat Aadv
AT WRN teacher 84.41% 45.75%
TRADES WRN teacher 84.92% 56.61%
AT WRN → MNV2 92.49% 5.46%
TRADES WRN → MNV2 85.6% 21.69%

Table 4.4: Robust WRN teacher models and their students on CIFAR-10, where
robust accuracy is with respect to a 20-step PGD attack as in [114].

4.5 Improving the robustness of student models with Adversarially Ro-

bust Distillation (ARD)

We combine the central machinery from knowledge distillation, adversarial

training, and TRADES/VAT to produce small robust student models from much

larger robust teacher models using a method we call Adversarially Robust Distilla-

tion. ARD not only produces more robust students than knowledge distillation, but

ARD also works for teachers and datasets on which knowledge distillation is ineffec-

tive for transferring robustness. Our procedure is a natural analogue of adversarial

Model Anat Aadv
AT WRN teacher 59.9% 28.36%
AT WRN → MNV2 25.54% 1.30%
AT WRN → MNV2

(α = 0.95) 75.94% 0.02%
AT WRN → MNV2

(α = 0.93) 76.38% 0.00%

Table 4.5: Robust teacher network and its students on CIFAR-100, where robust
accuracy is with respect to a 20-step PGD attack as in [114].
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training but in a distillation setting. During standard adversarial training, we en-

courage a network to produce the ground truth label corresponding to a clean input

when the network is exposed to an adversary. Along the same lines, our method

treats the teacher network’s softmax output on clean data as the ground truth and

trains a student network to reproduce this ground truth when exposed to adversarial

examples. We start with a robust teacher model, T , and we train the student model

Sθ by solving the following optimization problem (Definition 4.1 revisited):

min
θ

E(X,y)∼D
[
αt2 KL(Stθ(X + δθ), T

t(X)) + (1− α)L(Stθ(X), y)
]
,

where δθ = arg max‖δ‖p<ε L(Stθ(X + δ), y), L is cross-entropy loss, and we divide the

logits of both student and teacher models by temperature term t during training.

The t2 term is used as in [73] since dividing the logits shrinks the gradient. The

cross-entropy loss, which encourages natural accuracy, is a standard training loss.

Thus, α is a hyperparameter that prioritizes similarity to the teacher over natural

accuracy. In our experiments, we set α = 1 except where otherwise noted, elim-

inating the cross-entropy term except when additional natural accuracy is needed

for comparison with baseline models. We find that lower values of α are useful for

improving performance on harder classification tasks. Our training routine involves

the following procedure:

49



Algorithm 1: Adversarially Robust Distillation (ARD)
Require: Student and teacher networks S and T , learning rate γ, dataset
{(xi, yi)}, number of steps, K, per PGD attack, and ε maximum attack
radius.
Initialize θ, the weights S;
for Epoch = 1,...,Nepochs do

for Batch = 1,...,Nbatches do
Construct adv. example x′i for each xi ∈ Batch by maximizing
cross-entropy between Sθ(x′i) and yi constrained to ‖xi − x′i‖p < ε
using K-step PGD.
Compute ∇θ`ARD({xi}, θ) =

∑
i∇θ[αt

2 KL(Stθ(x
′
i), T

t(xi))
+(1− α)L(Stθ(X),y)], over the current batch.
θ ← θ − γ∇θ`ARD({xi}, θ)

4.5.1 ARD works with teachers that fail to transfer robustness under

knowledge distillation

In Section 4.4, we saw that that some teacher networks do not readily trans-

fer robustness. We see through our experiments in Table 4.6 that ARD is able

to create robust students from teachers whose robustness failed to transfer during

knowledge distillation. TRADES and adversarially trained MobileNetV2 (MNV2)

models are each outperformed in both natural and robust accuracy simultaneously

by an ARD variant. In these experiments, the WideResNet teacher model contains

20 times as many parameters and performs 70 times as many MAdd operations as

the MobileNetV2 student.

4.5.2 ARD works on datasets where knowledge distillation fails

In Section 4.4, we saw that a student network inherited little robustness from

an adversarially trained teacher network on CIFAR-100. This dataset is very difficult
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Model Anat Aadv
TRADES WRN teacher 84.92% 56.61%
AT MNV2 80.50% 46.90%
TRADES MNV2 83.59% 44.79%
TRADES WRN ARD−−−→ MNV2 82.63% 50.42%
TRADES WRN ARD−−−→ MNV2

(α = 0.95) 84.70% 46.28%

Table 4.6: Performance on CIFAR-10, where robust accuracy is with respect to a
20-step PGD attack as in [114].

to protect from untargeted attacks because it contains many classes that are similar

in appearance. In Table 4.7, we see that a MobileNetV2 student model trained on

CIFAR-100 using ARD from an adversarially trained WideResNet is significantly

more robust than an adversarially trained MobileNetV2. In fact, the ARD model is

nearly as robust as its teacher.

Model Anat Aadv
AT WRN teacher 59.90% 28.36%
AT MNV2 55.62% 22.80%
AT WRN ARD−−−→ MNV2 (α = 0.93) 55.47% 27.64%

Table 4.7: Performance on CIFAR-100, where robust accuracy is with respect to a
20-step PGD attack as in [114].

4.5.3 ARD can produce networks more robust than their teacher

In some experiments, ARD student networks are more robust than their teacher.

Interestingly, this behavior does not depend on distilling from a high-capacity net-

work to a low capacity network; distilling ResNet18 onto itself and MobileNetV2

onto itself using ARD results in far better robustness than adversarial training alone.

We seek to understand if this increased robustness is caused by differences
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between the student and teacher architectures, and so we use ARD to distill a teacher

network onto a student network with an identical architecture. In our experiments,

ARD boosted the robustness of both the ResNet18 and MobileNetV2 models. See

Table 4.8.

Model Anat Aadv
AT ResNet18 76.54% 44.46%
AT MNV2 80.50% 46.90%
AT ResNet18 ARD−−−→ ResNet18 79.49% 51.21%
AT MNV2 ARD−−−→ MNV2 81.22% 47.95%
AT ResNet18 ARD−−−→ MNV2 79.47% 50.22%

Table 4.8: Performance on CIFAR-10, where robust accuracy is with respect to a
20-step PGD attack as in [114].

4.5.4 Accelerating ARD using fast adversarial training methods

The ARD procedure described above takes approximately the same amount of

time as adversarial training. Adversarial training is slow since it requires far more

gradient calculations than natural training. Several methods have been proposed

recently for accelerating adversarial training [144, 175]. We similarly accelerate

performance for ARD by adapting “free” adversarial training to distillation. This

version, Fast-ARD, described in Algorithm 2, is equally fast to knowledge distilla-

tion. See Table 4.10 for a list of training times. During training, we replay each

mini-batch several times in a row. On each replay, we simultaneously compute the

gradient of the loss with respect to the image and parameters using the same back-

ward pass. Then, we update the adversarial attack and the network’s parameters

simultaneously. Empirically, Fast-ARD produces less robust students than the full
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ARD above, but it produces higher robust accuracy compared to models with identi-

cal architectured trained using existing accelerated free adversarial training methods

as seen in Table 4.9. Furthermore, Fast-ARD from a TRADES WideResNet onto

MobileNetV2 produces a more robust student than our most robust MobileNetV2

produced during vanilla knowledge distillation and in the same amount of training

time. Our accelerated algorithm is detailed in Algorithm 2.

Algorithm 2: Fast-ARD with free adversarial training
Requires: Student and teacher networks S and T , learning rate γ, norm p,
dataset {(xi, yi)}, and attack step-size r and radius ε
Initialize θ, the weights of network S, and set δ = 0.
for Epoch = 1,...,Nepochs

m
do

for Batch = 1,...,Nbatches do
for j = 1,..., m do

For xi ∈ Batch, find new perturbation δ′i by maximizing
cross-entropy between Sθ(xi + δi + δ′i) and yi over δ′i,
constrained to ‖δi + δ′i‖p < ε, using a 1-step PGD attack.
Compute the gradient of the loss function ∇θ`ARD({xi}, θ) =∑

i∇θ[αt
2 KL(Stθ(x

′
i), T

t(xi)) + (1− α)L(Stθ(X),y)], over
current batch.
δi ← δi + δ′i
θ ← θ − γ∇θ`ARD({xi}, θ)

Model Anat Aadv
Free trained MNV2 (m=4) 82.63% 23.13%
TRADES WRN F-ARD−−−−→ MNV2

(m=4) 83.51% 37.07%
Free trained MNV2 (m=8) 72.30% 27.96%
TRADES WRN F-ARD−−−−→ MNV2

(m=8) 76.38% 36.85%

Table 4.9: Performance of MobileNetV2 classifiers, free trained and Fast-ARD, on
CIFAR-10, where robust accuracy is with respect to a 20-step PGD attack as in
[114]. “ F-ARD−−−−→” denotes “Fast-ARD onto”.
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Model Time (hrs)
AT MNV2 41.09
TRADES WRN → MNV2 5.13
TRADES WRN ARD−−−→ MNV2 41.06
TRADES WRN F-ARD−−−−→ MNV2 (m=4) 5.15
TRADES WRN F-ARD−−−−→ MNV2 (m=8) 5.10

Table 4.10: Training times for adversarial training, clean distillation, ARD, and
Fast-ARD. Each model was trained with 200 parameter updates for each training
image (equivalent of 200 epochs). All models were trained on CIFAR-10 with a
single RTX 2080 Ti GPU and identical batch sizes. The AT model and the ARD
model were trained with a 10-step PGD attack. “ F-ARD−−−−→” denotes “Fast-ARD onto”.

4.5.5 ARD and Fast-ARD models are more robust than their adver-

sarially trained counterparts

While 20-step PGD is a powerful attack, we also test ARD against other `∞

attackers including Momentum Iterative Fast Gradient Sign Method [37], DeepFool

[117], 1000-step PGD, and PGD with random restarts. We find that ARD and

Fast-ARD outperform adversarial training and free training respectively across all

attacks we tried. See Table 4.11. A common criticism of early robustness papers is

that they do not test their methods against sufficiently powerful attacks. In order

to assuage these concerns, we test our models against some of the most powerful

known attacks.

4.6 Space and time efficiency of student and teacher models

We perform our experiments for ARD with WideResNet (34-10) and ResNet18

teacher models as well as a MobileNetV2 student model. We consider two network
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Model MI-FGSM20 DeepFool 1000-PGD 20-PGD 100-restarts
AT MNV2 50.82% 57.74% 46.51% 46.79%
ARD−−−→ MNV2 55.16% 64.61% 49.98% 50.30%
Free trained MNV2 (m=4) 30.60% 41.09% 22.23% 22.94%
F-ARD−−−−→ MNV2(m=4) 44.78% 60.03% 36.01% 36.88%

Table 4.11: Robust validation accuracy of adversarially trained and free trained
MobileNetV2 and TRADES WRN ARD (and Fast-ARD) onto MobileNetV2 on
CIFAR-10 under various attacks. All attacks use ε = 8

255
.

qualities for quantifying compression. First, we study space efficiency by counting

the number of parameters in a network. Second, we study time complexity. To this

end, we compute the multiply-add (MAdd) operations performed during a single

inference. The real time elapsed during this inference will vary as a result of imple-

mentation and deep learning framework, so we use MAdd, which is invariant under

implementation and framework, to study time complexity.

The WideResNet and ResNet18 teachers we employ contain ∼ 46.2M and

∼ 11.2M parameters respectively, while the MobileNetV2 student contains ∼ 2.3M

parameters. A forward pass through the WRN and ResNet18 teacher models takes∼

13.3B MAdd operations and ∼ 1.1B MAdd operations respectively, while a forward

pass through the student model takes ∼ 187M MAdd operations. To summarize

these network traits, compared to a WideResNet (34-10) teacher, the MobileNetV2

student model:

• Contains ∼ 5% as many parameters

• Performs ∼ 1.4% as many MAdd operations during a forward pass
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4.7 Experimental details

We train our models for 200 epochs with SGD, momentum of 0.9, and weight-

decay of 2e− 4. Fast-ARD models are trained for 200
m

epochs so that they make the

same number of gradient computations as ARD. We use an initial learning rate of

0.1, and we decrease the learning rate by a factor of 10 on epochs 100 and 150 (epochs

100
m

and 150
m

for Fast-ARD). We use a temperature term of 30 for CIFAR-10 and 5

for CIFAR-100. To craft adversarial examples during training, we use FGSM-based

PGD with 10 steps, `∞ attack radius of ε = 8
255

, a step size of 2
255

, and a uniformly

distributed random start within the `∞ radius. A PyTorch implementation of ARD

can be found at https://github.com/goldblum/AdversariallyRobustDistillation

4.8 The effects of hyperparameters and data augmentation for knowl-

edge distillation of robust teacher models

We show the results of experiments in Table 4.12 and Table 4.13, varying tem-

perature and α. We see that only very low temperature terms are not conducive to

robustness preservation, but knowledge distillation is not highly sensitive to tem-

perature, and a wide array of temperature terms are effective for producing robust

students. On the other hand, robustness transfer decays rapidly when α decreases.

This effect produces a robustness-accuracy tradeoff.

Data augmentation yields dramatic improvements for robustness transfer as

the student gets to see the teacher’s behavior at more data points, as can be seen in
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Table 4.14. A natural idea is to teach the student the teacher’s behavior at adver-

sarial points as well. However, this data augmentation technique greatly decreases

training speed and does not provide significant improvement.

Temperature Anat Aadv
1 77.37% 35.44%
10 78.1% 38.55%
30 76.86% 38.21%
50 76.28% 38.5%
100 76.44% 38.65%

Table 4.12: Performance of adversarially trained ResNet18 teacher network distilled
onto MobileNetV2 (MN) with different temperature terms on CIFAR-10, where
robust accuracy is with respect to a 20-step PGD attack as in [15].

α Anat Aadv
1.00 76.86% 38.21%
0.99 82.93% 28.36%
0.95 91.58% 9.65%
0.90 92.34% 7.96%
0.70 92.33% 7.54%
0.50 92.14% 2.73%

Table 4.13: Performance of adversarially trained ResNet18 teacher network distilled
onto MobileNetV2 (MN) with different α terms on CIFAR-10, where robust accuracy
is with respect to a 20-step PGD attack as in [15].

Data Augmentation Anat Aadv
No augmentation 75.76% 32.05%
Horizontal flips 76.24% 35.39%
Random crops 76.31% 37.31%
Both flips and crops 76.86% 38.21%
Adv. examples generated from teacher 76.76% 38.33%

Table 4.14: Performance of adversarially trained WideResNet distilled onto Mo-
bileNetV2 (MN) with various data augmentation on CIFAR-10, where robust accu-
racy is with respect to a 20-step PGD attack as in [15].
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4.9 Notes on loss functions for ARD

We tried other versions of the loss function with the addition of a (non-

adversarial) knowledge distillation KL divergence term, which increases natural

accuracy slightly but sharply decreases robust accuracy, and the addition of cross-

entropy between the softmax of the adversarially attacked student and the one-hot

label vectors, which is redundant in combination with the ARD loss and empirically

harms robustness. We also explored using T t(x′i) instead of T t(xi) in the KL diver-

gence term in the loss function, where x′i is an adversarial example generated by the

input, xi. However, the accuracy, both natural and robust, decreased with this loss

function. Additionally, passing an adversarial example through the teacher model

will slow down training and sharply increase memory consumption if the teacher is

much larger than the student. Our method does not require forward passes through

the teacher during training as long as logits of the training data are stored ahead of

time. We explored generating adversarial attacks during training by maximizing KL

divergence instead of cross-entropy. This technique lowers natural accuracy without

improving robust accuracy.

In our training routine, we employ data augmentation in the form of ran-

dom crops and horizontal flips. We intend to explore adaptive data augmentation

methods tailored specifically for robust distillation.
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4.10 ARD with naturally trained teacher models

ARD encourages a student to produce, for all images within an ε-ball of a data

point, the teacher’s output at that data point. Thus, it seems reasonable to try using

ARD with a naturally trained teacher model. As evident in Table 4.15, naturally

trained teachers produce robust students, but these students may be less robust

than those of robust teachers and less robust than adversarially trained models with

identical architecture.

Model Anat Aadv
ResNet18 ARD−−−→ MobileNetV2 84.18% 44.61%
WRN ARD−−−→ MobileNetV2 84.43% 42.51%

Table 4.15: Performance of MobileNetV2 students distilled from naturally trained
teachers on CIFAR-10, where robust accuracy is with respect to a 20-step PGD
attack as in [15].

4.11 Improving the speed of ARD by reducing the number of attack

steps

Another way to improve the speed of ARD training is to reduce the number

of attack steps in order to reduce the number of gradient calculations. In our

experiments shown in Table 4.16, reducing the number of attack steps improves

natural accuracy while decreasing robust accuracy. This procedure has a similar

effect to reducing α. We suggest this strategy over reducing α since it has the added

benefit of accelerating training.
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Attack Steps (training) Anat Aadv
4 84.28% 46.49%
6 83.38% 48.35%
10 82.63% 50.42%

Table 4.16: Performance of TRADES WideResNet distilled onto MobileNetV2 using
ARD with adversaries generated using different numbers of attack steps on CIFAR-
10. Robust accuracy is with respect to a 20-step PGD attack as in [15].

4.12 Sensitivity of ARD to hyperparameters

Compared to knowledge distillation for preserving robustness, ARD is less

sensitive to the temperature parameter. We found that varying the temperature

parameter does not significantly impact either the natural or robust accuracy of

the resulting student. See Table 4.17. Like with knowledge distillation, varying

α presents an accuracy-robustness tradeoff. See Table 4.18. However, unlike with

knowledge distillation, we find that under ARD, robust accuracy decays far slower

as α decreases so that ARD is less sensitive to this parameter.

Temperature Anat Aadv
1 81.41% 49.57%
5 82.24% 48.77%
10 82.33% 48.93%
30 82.63% 50.42%
50 82.14% 48.97%

Table 4.17: Performance of TRADES WideResNet distilled onto MobileNetV2 using
ARD with different temperature terms on CIFAR-10, where robust accuracy is with
respect to a 20-step PGD attack as in [15].
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α Anat Aadv
1.00 82.63% 50.42%
0.95 84.7% 46.28%
0.90 86.58% 41.16%
0.70 90.57% 25.18%
0.50 83.00% 13.09%

Table 4.18: Performance of TRADES WideResNet distilled onto MobileNetV2 using
ARD with different values of α on CIFAR-10, where robust accuracy is with respect
to a 20-step PGD attack as in [15].

4.13 Discussion

We find that knowledge distillation allows a student network to absorb a large

amount of a teacher network’s robustness to adversarial attacks, even when the stu-

dent is only trained on clean data. However, in some cases, a distilled student model

is still far less robust than the teacher. To improve student robustness, we intro-

duce Adversarially Robust Distillation (ARD). In our experiments, student models

trained using our method outperform similar networks trained using adversarial

training in robust and often natural accuracy. Our models exceed state-of-the-art

performance on CIFAR-10 and CIFAR-100 benchmarks. Furthermore, we develop

a free adversarial training variant of ARD and demonstrate appreciably accelerated

performance.

Recent work on distillation has produced significant improvements over vanilla

knowledge distillation [22]. We believe that Knowledge Distillation with Feature

Maps could improve both natural and robust accuracy of student networks. Adap-

tive data augmentation like AutoAugment [31] may also improve performance of

both normal knowledge distillation for robust teachers and ARD. Finally, with the
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recent publication of fast adversarial training methods [144, 175], we hope to further

accelerate ARD.
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Chapter 5: Robust Few-Shot Learning: A Meta-Learning Approach

Previous work on adversarially robust neural networks requires large training

sets and computationally expensive training procedures. On the other hand, few-

shot learning methods are highly vulnerable to adversarial examples. The goal of

our work is to produce networks which both perform well at few-shot tasks and are

simultaneously robust to adversarial examples. We adapt adversarial training for

meta-learning, we adapt robust architectural features to small networks for meta-

learning, we test pre-processing defenses as an alternative to adversarial training

for meta-learning, and we investigate the advantages of robust meta-learning over

robust transfer-learning for few-shot tasks. This work provides a thorough analysis

of adversarially robust methods in the context of meta-learning, and we lay the

foundation for future work on defenses for few-shot tasks. This work was conducted

with Liam Fowl and Tom Goldstein [53]. My contribution was conceiving of the cen-

tral ideas of the project, implementing the algorithms, conducting most experiments

from all sections, and writing most of the paper.
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5.1 Introduction

For safety-critical applications like facial recognition, traffic sign detection, and

copyright control, adversarial attacks pose an actionable threat [45, 132, 181]. Con-

ventional adversarial training and pre-processing defenses aim to produce networks

that resist attack [115, 134, 179], but such defenses rely heavily on the availability

of large training datasets. In applications that require few-shot learning, such as

face recognition from few images, recognition of a video source from a single clip,

or recognition of a new object from few example photos, the conventional robust

training pipeline breaks down.

When data is scarce or new classes arise frequently, neural networks must

adapt quickly [43, 83, 128, 161]. In these situations, meta-learning methods achieve

few-shot learning by creating networks that learn quickly from little data and with

computationally cheap fine-tuning. While state-of-the-art meta-learning methods

perform well on benchmark few-shot classification tasks, these naturally trained

neural networks are highly vulnerable to adversarial examples. In fact, we will see

below that even robust classifiers, when adapted to a new task, fail to resist attacks

unless appropriate measures are taken.

We study robust few-shot image classification by meta-learning. We begin by

exploring several obvious defenses for few shot learning: adversarial training, robust

architectural features, and pre-processing defenses, and find that all three provide

relatively weak security in the few-shot setting. Specifically, feature denoising lay-

ers, architectural features that achieve state-of-the-art adversarial robustness on
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ImageNet, are not effective on the lightweight architectures used by meta-learning

algorithms, and pre-processing defenses, such as DefenseGAN and image superres-

olution, dramatically decrease natural accuracy without achieving robustness.

We propose a new approach, called adversarial querying, in which the net-

work is exposed to adversarial attacks during the query step of meta-learning. This

algorithm-agnostic method produces a feature extractor that is robust, even with-

out adversarial training during fine-tuning. In the few-shot setting, we show that

adversarial querying out-performs standard defenses by a wide margin in terms of

both clean accuracy and robustness.

Model Anat Aadv
AT transfer learning (R2-D2 backbone) 39.13% 25.33%
ADML 47.75% 18.49%
Naturally Trained R2-D2 72.59% 0.00%
AQ R2-D2 (ours) 57.87% 31.52%

Table 5.1: The R2-D2 meta-learning method, adversarially trained transfer learn-
ing (ADML), and our adversarially queried (AQ) R2-D2 classifier on 5-shot Mini-
ImageNet. The transfer learning model was trained on all training data (except the
hold-out classes) simultaneously, and then fine-tuned on few-shot classes. All R2-D2
models are fine-tuned with a ridge regression head as in [12], and we re-implement
ADML from [169]. Natural accuracy is denoted Anat, and robust accuracy, Aadv, is
computed with respect to a 20-step PGD attack as in [115] with ε = 8

255
.

5.2 Related Work

5.2.1 Learning with less data

Before the emergence of meta-learning, a number of approaches existed to cope

with few-shot data. One simple approach is transfer learning, in which pre-trained
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feature extractors are created using large datasets, and then fine-tuned on new tasks

using less data [11]. Metric learning methods avoid overfitting to the small number of

training examples in new classes by instead performing classification using nearest-

neighbors in feature space with a feature extractor that is trained on a large corpus

of data and not re-trained when classes are added [49, 110, 151]. Metric learning

methods are computationally efficient when adding many low-shot classes, since the

feature extractor network is not re-trained.

Meta-learning algorithms create a “base” model that quickly adapts to new

tasks by fine-tuning. This model is created using a set of training tasks {Ti} that

can be sampled from a task distribution. Each task comes with support data, T si ,

and query data, T qi . In practice, each task is taken to be a classification problem

involving only a small subset of classes in a large many-class dataset. The number

of examples per class in the support set is called the shot, so that fine-tuning on five

support examples per class is 5-shot learning.

An iteration of training begins by sampling tasks {Ti} from the task distribu-

tion. The base model is fine-tuned on the support data for the sampled tasks, and

then used to make predictions on the query data. Then, the base model parameters

are updated to improve the accuracy of the resulting fine-tuned model. This re-

quires backpropagation through the fine-tuning steps. See Algorithm 3 for a formal

treatment.

Note that the fine-tuned parameters, θi = A(θ, T si ), in the above algorithm,

are a function of the base model’s parameters so that the gradient computation in

the outer loop may backpropagate through A. For validation after training, the base
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Algorithm 3: The meta-learning framework
Require: Base model, Fθ, fine-tuning algorithm, A, learning rate, γ, and
distribution over tasks, p(T ).
Initialize θ, the weights of F ;
while not done do

Sample batch of tasks, {Ti}ni=1, where Ti ∼ p(T ) and Ti = (T si , T
q
i ).

for i = 1, ..., n do
Fine-tune model on Ti (inner loop). New network parameters are
written θi = A(θ, T si ).
Compute gradient gi = ∇θL(Fθi , T

q
i ).

Update base model parameters (outer loop): θ ← θ − γ
n

∑
i gi

model is fine-tuned on the support set of hold-out tasks, and accuracy on the query

set is reported. In this work, we report performance on OmniGlot, Mini-ImageNet,

and CIFAR-FS [12, 95, 162].

We focus on four meta-learning algorithms: MAML, R2-D2, MetaOptNet,

and ProtoNet. [12, 47, 103, 151]. During fine-tuning, MAML uses SGD to up-

date all parameters, minimizing cross-entropy loss. Since unrolling SGD steps into

a deep computation graph is expensive, a first-order variants ignore second-order

derivatives. We use the original MAML formulation. R2-D2 and MetaOptNet, on

the other hand, only update the final linear layer during fine-tuning, leaving the

“backbone network” that extracts these features frozen at test time. R2-D2 replaces

SGD with a closed-form differentiable solver for regularized ridge regression, while

MetaOptNet achieves its best performance when replacing SGD with a solver for

SVM. Because the objective of these linear problems is convex, differentiable convex

optimizers can be efficiently deployed to find optima, and differentiate these optima

with respect to the backbone features at train time. ProtoNet takes an approach

inspired by metric learning. It constructs class prototypes as the centroids in feature
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space for each task. These centroids are then used to classify the query set in the

outer loop of training. Because each class prototype is a simple geometric average

of feature representations, it is easy to differentiate through the fine-tuning step.

5.2.2 Robust learning with less data

Several authors have tried to learn robust models in the data scarce regime.

The authors of [146] study robustness properties of transfer learning. They find

that retraining earlier layers of the network during fine-tuning impairs the robust-

ness of the network, while only retraining later layers can largely preserve robustness.

ADML is the first attempt at achieving robustness through meta-learning. ADML

is a MAML variant, specifically designed for robustness, which employs adversarial

training [169]. However, this method for robustness is only compatible with MAML,

an outdated meta-learning algorithm. Moreover, ADML is computationally expen-

sive, and the authors only test their method against a weak attacker. We implement

ADML and test it against a strong attacker. We show that our methods achieve

both higher robustness and natural accuracy.

Sample results comparing baseline robust learning methods are shown in Ta-

ble 5.1, which shows that clean meta-learning and a direct application of adver-

sarial training to meta-learning (the ADML method) achieve low levels of robust-

ness. While simple robust transfer learning achieves more robustness, the adversar-

ial querying procedure does significantly better in terms of both clean and robust

accuracy.
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5.3 Evaluating the robustness of existing few-shot methods

In this section, we benchmark existing methods for robust learning with scarce

data in terms of both natural and robust accuracy. Following standard practices, we

assess the robustness of models by attacking them with `∞-bounded perturbations.

We craft image perturbations using the projected gradient descent attack (PGD)

since it has proven to be one of the most effective algorithms both for attacking as

well as for adversarial training [115]. This attack is a more powerful version of the

one-step attack used in ADML [169]. A detailed description of the PGD attack can

be found in Algorithm 4. We consider perturbations of `∞ radius of 8
255
, and a step

size of 2
255

as described by [115].

Adversarial training is the industry standard for creating robust models that

maintain good clean-label performance [115]. This method involves replacing clean

examples with adversarial examples during the training routine. A simple way to

harden models to attack is adversarial training which we define formally.

Definition 5.1 (Adversarial Training). Adversarial training involves solving the

minimax optimization problem,

min
θ

E(x,y)∼D

[
max
‖δ‖p<ε

Lθ(x + δ, y)

]
, (5.1)

where Lθ(x+ δ, y) is the loss function of a network with parameters θ, x is an input

image with label y, and δ is an adversarial perturbation.

Adversarial training finds network parameters that keep the loss low (and class
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labels correct) even when adversarial perturbations are added.

Algorithm 4: PGD Attack
Require: network, Fθ, input data, (x, y), perturbation, δ, number of steps,
n, step size, γ, and attack bound, ε.
Initialize δ ∈ Bε(x) randomly;
for i = 1, ..., n do

Compute g = sign (∇xLθ (x + δ, y)).
Update δ = δ + γg.
If ‖δ‖p > ε, then project δ onto the surface of Bε(x).

return perturbed image x + δ

5.3.1 Naturally trained meta-learners are not robust

Similarly to classically trained classifiers, we expect that few-shot learners

are highly vulnerable to attack when adversarial defenses are not employed. We

test prominent meta-learning algorithms against a 20-step PGD attack as in [115].

Table 5.2 contains 5-shot natural and robust accuracy on the Mini-ImageNet and

CIFAR-FS datasets [12, 162].

Model Anat MI Aadv MI Anat CIFAR-FS Aadv CIFAR-FS
ProtoNet 70.23% 0.00% 79.66% 0.00%
R2-D2 73.02% 0.00% 82.81% 0.00%
MetaOptNet 78.12% 0.00% 84.11% 0.00%

Table 5.2: 5-shot MiniImageNet (MI) and CIFAR-FS results comparing naturally
trained meta-learners. Anat and Aadv are natural and robust test accuracy respec-
tively, where robust accuracy is computed with respect to a 20-step PGD attack.

We find that these algorithms are completely unable to resist the attack. In-

terestingly, MetaOptNet uses SVM for fine-tuning, which is endowed with a wide

margins property. The failure of even SVM to express robustness during testing

suggests that using robust fine-tuning methods on naturally trained meta-learners
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is insufficient for robust performance. To further examine this, we consider MAML,

which updates the entire network during fine-tuning. We use a naturally trained

MAML model and perform adversarial training during fine-tuning (see Table 5.3).

Adversarial training is performed with 7-PGD as in [115]. If adversarial fine-tuning

yielded robust classification, then we could avoid expensive adversarial training vari-

ants during meta-learning.

Model Anat Aadv Anat(adv−tuned) Aadv(adv−tuned)

1-shot Mini-ImageNet 45.04% 0.03% 33.18% 0.20%
5-shot Mini-ImageNet 60.25% 0.03% 32.45% 1.55%
1-shot Omniglot 91.50% 68.46% 91.60% 74.66%
5-shot Omniglot 97.12% 82.28% 97.71% 87.94%
5-shot Omniglot AQ 97.27% 95.85% 97.51% 96.14%

Table 5.3: MAML models on Mini-ImageNet and Omniglot datasets. Anat and
Aadv are natural and robust test accuracy respectively, where robust accuracy is
computed with respect to a 20-step PGD attack. Anat(adv−tuned) and Aadv(adv−tuned)

are natural and robust test accuracy with 7-PGD training during fine-tuning. The
bottom row is an adversarially queried model for comparison.

While clean trained MAML models with adversarial fine-tuning are slightly

more robust than their naturally fine-tuned counterparts, they achieve almost no

robustness on Mini-ImageNet even with adversarial fine-tuning. Omniglot is an eas-

ier dataset for robustness, so we include an adversarially queried (AQ) MAML model

for comparison. The adversarially queried model achieves far superior robustness.

We conclude from these experiments that naturally trained meta-learners are vul-

nerable to adversarial examples, and an analysis of robust techniques for few-shot

learning is in order.
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5.3.2 Transfer learning from adversarially trained models is less robust

than robust meta-learning

We have observed that few-shot learning methods with a non-robust feature

extractor break under attack. But what if we use a robust feature extractor? In

the following section, we consider both transfer learning and meta-learning with a

robust feature extractor.

In order to compare transfer learning and meta-learning, we train the back-

bone networks from meta-learning algorithms on all training data simultaneously in

the fashion of standard adversarial training using 7-PGD (not meta-learning). We

then fine-tune using the head from a meta-learning algorithm on top of the trans-

ferred feature extractor. We compare the performance of these feature extractors

to that of those trained using adversarially queried meta-learning algorithms with

the same backbones and heads. This experiment provides a direct comparison of

feature extractors produced by transfer learning and robust meta-learning (see Ta-

ble 5.4). Meta-learning exhibits far superior robustness than transfer learning on all

algorithms we test.

Model Anat Transfer Aadv Transfer Anat Meta Aadv Meta
MAML 32.79% 18.03% 33.45% 23.07%
ProtoNet 31.14% 22.31% 52.04% 27.99%
R2-D2 39.13% 25.33% 57.87% 31.52%
MetaOptNet 50.23% 22.45% 60.71% 28.08%

Table 5.4: Adversarially trained transfer learning and adversarially queried meta-
learning on 5-shot Mini-ImageNet. Anat and Aadv are natural and robust test ac-
curacy respectively, where robust accuracy is computed with respect to a 20-step
PGD attack.
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5.4 Adversarial Querying: a robust meta-learning technique

We now adapt adversarial training to the meta-learning paradigm by introduc-

ing the query data, but not support data, to adversarial attack (see Algorithm 5).

This approach yields fast performance during deployment, as adversarial training

(which is roughly 10X slower than standard training) is not required to adapt to a

new task. Adversarial querying is algorithm agnostic. We test this method on the

MAML, ProtoNet, R2-D2, and MetaOptNet algorithms on the Mini-ImageNet and

CIFAR-FS datasets (see Table 5.5).

Algorithm 5: Adversarial Querying
Require: Base model, Fθ, fine-tuning algorithm, A, learning rate, γ, and
distribution over tasks, p(T ).
Initialize θ, the weights of F ;
while not done do

Sample batch of tasks, {Ti}ni=1, where Ti ∼ p(T ) and Ti = (T si , T
q
i ).

for i = 1, ..., n do
Fine-tune model on Ti. New network parameters are written
θi = A(θ, T si ).
Construct adversarial query data, T̂ qi , by maximizing L(Fθi , T̂

q
i )

constrained to ‖x̂qj − xqj‖p < ε for query examples, xqj , and their
associated adversaries, x̂qj .
Compute gradient gi = ∇θL(Fθi , T̂

q
i ).

Update base model parameters: θ ← θ − γ
n

∑
i gi

In our tests, R2-D2 outperforms MetaOptNet in robust accuracy despite hav-

ing a less powerful backbone architecture. In Section 5.4.2, we dissect the effects

of backbone architecture and classification head on the disparity between R2-D2

and MetaOptNet in robust performance. In Section 5.4.4, we verify that adversarial

querying generates networks robust to a wide array of strong attackers.
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Model Anat MI Aadv MI Anat CIFAR-FS Aadv CIFAR-FS
ProtoNet AQ 52.04% 27.99% 63.53% 40.11%
R2-D2 AQ 57.87% 31.52% 69.25% 44.80%
MetaOptNet AQ 60.71% 28.08% 71.07% 43.79%

Table 5.5: Comparison of adversarially queried (AQ) meta-learners on 5-shot Mini-
ImageNet (MI) and CIFAR-FS. Anat and Aadv are natural and robust test accuracy
respectively, where robust accuracy is computed with respect to a 20-step PGD
attack.

Adversarial querying can also be used to construct meta-learning analogues

for other variants of adversarial training. We explore this by substituting the cross-

entropy loss for the TRADES loss [179]. We refer to this method as meta-TRADES.

While meta-TRADES can marginally outperform our initial adversarial querying

method in robust accuracy with a careful hyperparameter choice, λ, we find that

networks trained with meta-TRADES severely sacrifice natural accuracy (see Table

5.6).

Model Anat MI Aadv MI Anat CIFAR-FS Aadv CIFAR-FS
R2-D2 Adversarial Queried 57.87% 31.52% 69.25% 44.80%
R2-D2 TRADES (1/λ = 1) 56.02% 30.96% 66.29% 45.59%
R2-D2 TRADES (1/λ = 3) 51.51% 32.30% 61.41% 46.54%
R2-D2 TRADES (1/λ = 6) 34.29% 22.04% 58.32% 45.89%

Table 5.6: 5-shot Mini-ImagNet (MI) and CIFAR-FS results comparing meta-
TRADES to adversarial querying. Anat and Aadv are natural and robust test ac-
curacy respectively, where robust accuracy is computed with respect to a 20-step
PGD attack.
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5.4.1 For better natural and robust accuracy, only fine-tune the last

layer.

High performing meta-learning models, like MetaOptNet and R2-D2, fix their

feature extractor and only update their last linear layer during fine-tuning. In the

setting of transfer learning, robustness is a feature of early convolutional layers,

and re-training these early layers leads to a significant drop in robust test accuracy

[146]. We verify that re-training only the last layer leads to improved natural and

robust accuracy in adversarially queried meta-learners by training a MAML model

but only updating the final layer during fine-tuning including during the inner loop

of meta-learning. We find that the model trained by only fine-tuning the last layer

decisively outperforms the traditional MAML algorithm (AQ) in both natural and

robust accuracy (see Table 5.7).

Layers updated Anat Aadv Anat(adv−tuned) Aadv(adv−tuned)

All layers 33.45% 23.07% 33.03% 23.29%
FC Only 40.06% 25.15% 39.94% 25.32%

Table 5.7: Adversarially queried MAML compared with a MAML variant with only
the last layer re-trained during fine-tuning on 5-shot Mini-ImageNet. Anat and
Aadv are natural and robust test accuracy respectively, where robust accuracy is
computed with respect to a 20-step PGD attack. Anat(adv−tuned) and Aadv(adv−tuned)

are natural and robust test accuracy respectively with 7-PGD training during fine-
tuning. Layers are fine-tuned for 10 steps with a learning rate of 0.01.
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5.4.2 The R2-D2 head, not embedding, is responsible for superior ro-

bust performance.

The naturally trained MetaOptNet algorithm outperforms R2-D2 in natural

accuracy, but previous research has found that performance discrepancies between

meta-learning algorithms might be an artifact of different backbone networks [23].

On natural meta-learning, we confirm that MetaOptNet with the R2-D2 backbone

performs similarly to R2-D2 (see Table 5.8). In our adversarial querying experi-

ments, we saw that MetaOptNet was less robust than R2-D2. This discrepancy

remains when we train MetaOptNet with the R2-D2 backbone (see Table 5.9). We

conclude that MetaOptNet’s backbone is not responsible for its inferior robustness.

These experiments suggest that ridge regression may be a more effective fine-tuning

technique than SVM for robust performance. ProtoNet with R2-D2 backbone also

performs worse than the other two adversarially queried models with the same back-

bone architecture.

Model 1-shot MI 5-shot MI 1-shot CIFAR 5-shot CIFAR
R2-D2 55.22% 73.02% 68.36% 82.81%
MetaOptNet 60.65% 78.12% 70.99% 84.11%
MetaOptNet (R2-D2 backbone) 55.78% 73.15% 68.37% 82.71%

Table 5.8: Natural test accuracy of naturally trained R2-D2, MetaOptNet, and the
MetaOptNet head with R2-D2 backbone on the Mini-ImageNet (MI) and CIFAR-FS
(CIFAR) datasets.
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Model 1-shot MI 5-shot MI 1-shot CIFAR 5-shot CIFAR
R2-D2 20.59% 31.52% 32.33% 44.80%
MetaOptNet 18.37% 28.08% 30.74% 43.79%
MetaOptNet (R2-D2 backbone) 18.81% 24.68% 29.57% 41.90%
ProtoNet (R2-D2 backbone) 18.24% 28.39% 26.48% 40.59%

Table 5.9: Robust test accuracy of adversarially queried R2-D2, MetaOptNet, and
the MetaOptNet and heads with R2-D2 backbone on Mini-ImageNet (MI) CIFAR-
FS (CIFAR) datasets. Robust accuracy is computed with respect to a 20-step PGD
attack.

5.4.3 Enhancing robustness with robust architectural features

In addition to adversarial training, architectural features have been used to en-

hance robustness [166]. Feature denoising blocks pair classical denoising operations

with learned 1× 1 convolutions to reduce the feature noise in feature maps at vari-

ous stages of a network, and thus reduce the success of adversarial attacks. Massive

architectures with these blocks have achieved state-of-the-art robustness against tar-

geted adversarial attacks on ImageNet. However, when deployed on small networks

for meta-learning, we find that denoising blocks do not improve robustness. We

deploy denoising blocks identical to those in [166] after various layers of the R2-D2

network. The best results for the denoising experiments are achieved by adding a

denoising block after the fourth layer in the R2-D2 embedding network (See Table

5.10).

5.4.4 Resistance to other attacks

We test our method by exposing our adversarially queried R2-D2 model to a

variety of powerful adversarial attacks. We implement the momentum iterated fast
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Model Anat Aadv
R2-D2 73.02% 0.00%
R2-D2 AQ 57.87% 31.52%
R2-D2 AQ Denoising 57.68% 31.14%

Table 5.10: 5-shot MiniImageNet results for our highest performing R2-D2 with
feature denoising blocks. Anat and Aadv are natural and robust test accuracy re-
spectively, where robust accuracy is computed with respect to a 20-step PGD attack.

gradient sign method (MI-FGSM), DeepFool, and 20-step PGD with 20 random

restarts [38, 115, 117]. Our adversarially queried model indeed is nearly as robust

against the strongest `∞ bounded attacker as it is against the 20-step PGD attack

with a single random start we tested against previously. Note that DeepFool is not

`∞ bounded and thus the perturbed images are outside of the robustness radius

enforced during adversarial querying.

Model Anat ADF AMI A20−PGD
R2-D2 73.02% 7.91% 0.01% 0.0%
R2-D2 AQ 57.87% 14.45% 31.87% 30.31%
R2-D2 AT (Transfer Learning) 39.13% 0.42% 24.01% 19.75%

Table 5.11: 5-shot MiniImageNet results against DeepFool (DF) (2 iteration) `∞ at-
tack, MI-FGSM (MI) (ε = 8/255) attack, and PGD attack with 20 random restarts
(20-PGD). We compare R2-D2 trained with adversarial-querying (AQ) to the trans-
fer learning R2-D2 as in section 5.4.

5.5 Pre-processing defenses as an alternative to adversarial training

Recent works have proposed pre-proccessing defenses for sanitizing adversarial

examples before feeding them into a naturally trained classifier. If successful, these

methods would avoid the expensive adversarial querying procedure during training.

While this approach has found success in the mainstream literature, we find that it
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is ineffective in the few-shot regime.

In DefenseGAN, a GAN trained on natural images is used to sanitize an ad-

versarial example by replacing (possible corrupted) test images with the nearest

image in the output range of the GAN [134]. Unfortunately, GANs are not ex-

pressive enough to preserve the integrity of testing images on complex datasets

involving high-res natural images, and recent attacks have critically compromised

the performance of this defense [7, 79]. We found the expressiveness of the gener-

ator architecture used in the original DefenseGAN setup to be insufficient for even

CIFAR-FS, so we substitute a stronger ProGAN generator to model the CIFAR-100

classes [85].

The supperesolution defense first denoises data with sparse wavelet filters and

then performs superresolution [120]. This defense is also motivated by the principle

of projecting adversarial examples onto the natural image manifold. We test the

superresolution defense using the same wavelet filtering and superresolution network

(SRResNet) used by [120] and first introduced by [99]. Like with the generator

for DefenseGAN, we train the SRResNet on the entire CIFAR-100 dataset before

applying the superresolution defense.

We find that these methods are not well suited to the few-shot domain, in

which the generative model or superresolution network may not be able to train on

the little data available. Morever, even after training the generator on all CIFAR-

100 classes, we find that DefenseGAN with a naturally trained R2-D2 meta-learner

performs significantly worse in both natural and robust accuracy than an adversar-

ially queried meta-learner of the same architecture. Similarly, the superresolution
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defense achieves little robustness. The results of these experiments can be found in

Table 5.12.

Model Anat Aadv
R2-D2 83.30% 0.00%
R2-D2 AQ 69.25% 44.80%
R2-D2 with SR defense 35.15% 23.00%
R2-D2 with DefenseGAN 35.15% 28.05%

Table 5.12: 5-shot CIFAR-FS results comparing the superresolution defense (SR
defense) and DefenseGAN. Anat and Aadv are natural and robust test accuracy
respectively, where robust accuracy is computed with respect to a 20-step PGD
attack. Both methods perform worse than their adversarially queried counterpart.

5.6 Discussion & Conclusion

Naturally trained networks for few-shot learning are vulnerable to adversarial

attacks, and existing robust transfer learning methods do not perform well on few-

shot tasks. Naturally trained networks suffer from adversarial vulnerability even

when adversarially trained during fine-tuning. We thus identify the need for an

investigation into robust few-shot methods. We particularly study robustness in the

context of meta-learning. We develop an algorithm-agnostic method, called adver-

sarial querying, for hardening meta-learning models. We find that meta-learning

models are most robust when the feature extractor is fixed, and only the last layer

is retrained during the fine tuning stage. We further identify that choice of classi-

fication head matters for robustness. We hope that this work serves as a starting

point for developing new adversarially robust methods for few-shot applications.
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Chapter 6: Some Interesting Properties of Neural Networks

We empirically evaluate common assumptions about neural networks that are

widely held by practitioners and theorists alike. In this work, we: (1) prove the

widespread existence of suboptimal local minima in the loss landscape of neural

networks, and we use our theory to find examples; (2) show that small-norm pa-

rameters are not optimal for generalization; (3) demonstrate that ResNets do not

conform to wide-network theories, such as the neural tangent kernel, and that the

interaction between skip connections and batch normalization plays a role; (4) find

that rank does not correlate with generalization or robustness in a practical setting.

This work was done in collaboration with Jonas Geiping, Avi Schwarzschild, Michael

Moeller, and Tom Goldstein [54]. My role was leading the project, conceiving of and

proving the theorem, conceiving of the norm-bias regularizer as well as conducting

the related experiments, and doing a large portion of writing.

6.1 Introduction

Modern deep learning methods are descendent from such long-studied fields as

statistical learning, optimization, and signal processing, all of which were built on

mathematically rigorous foundations. In statistical learning, principled kernel meth-
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ods have vastly improved the performance of SVMs and PCA [141, 153], and boost-

ing theory has enabled weak learners to generate strong classifiers [140]. Optimizers

in deep learning are borrowed from the field of convex optimization , where momen-

tum optimizers [121] and conjugate gradient methods provably solve ill-conditioned

problems with high efficiency [72]. Deep learning harnesses foundational tools from

these mature parent fields.

Despite its rigorous roots, deep learning has driven a wedge between theory

and practice. Recent theoretical work has certainly made impressive strides towards

understanding optimization and generalization in neural networks. But doing so has

required researchers to make strong assumptions and study restricted model classes.

In this work, we seek to understand whether deep learning theories accurately

capture the behaviors and network properties that make realistic deep networks

work. Following a line of previous work, such as [154], [174], [9] and [138], we put the

assumptions and conclusions of deep learning theory to the test using experiments

with both toy networks and realistic ones. We focus on the following important

theoretical issues:

• Local minima: Numerous theoretical works argue that all local minima of

neural loss functions are globally optimal or that all local minima are nearly

optimal. In practice, we find highly suboptimal local minima in realistic neural

loss functions, and we discuss reasons why suboptimal local minima exist in

the loss surfaces of deep neural networks in general.

• Weight decay and parameter norms: Research inspired by Tikhonov regular-
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ization suggests that low-norm minima generalize better, and for many, this

is an intuitive justification for simple regularizers like weight decay. Yet for

neural networks, it is not at all clear which form of `2-regularization is optimal.

We show this by constructing a simple alternative: biasing solutions toward a

non-zero norm still works and can even measurably improve performance for

modern architectures.

• Neural tangent kernels and the wide-network limit: We investigate theoreti-

cal results concerning neural tangent kernels of realistic architectures. While

stochastic sampling of the tangent kernels suggests that theoretical results on

tangent kernels of multi-layer networks may apply to some multi-layer net-

works and basic convolutional architectures, the predictions from theory do

not hold for practical networks, and the trend even reverses for ResNet ar-

chitectures. We show that the combination of skip connections and batch

normalization is critical for this trend in ResNets.

• Rank: Generalization theory has provided guarantees for the performance of

low-rank networks. However, we find that regularization which encourages

high-rank weight matrices often outperforms that which promotes low-rank

matrices. This indicates that low-rank structure is not a significant force

behind generalization in practical networks. We further investigate the adver-

sarial robustness of low-rank networks, which are thought to be more resilient

to attack, and we find empirically that their robustness is often lower than the

baseline or even a purposefully constructed high-rank network.
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6.2 Local minima in loss landscapes: Do suboptimal minima exist?

It is generally accepted that “in practice, poor local minima are rarely a prob-

lem with large networks.” [98]. However, exact theoretical guarantees for this state-

ment are elusive. Various theoretical studies of local minima have investigated spin-

glass models [26], deep linear models [86, 97], parallel subnetworks [60], and dense

fully connected models [123] and have shown that either all local minima are global

or all have a small optimality gap. The apparent scarcity of poor local minima has

lead practitioners to develop the intuition that bad local minima (“bad” meaning

high loss value and suboptimal training performance) are practically non-existent.

To further muddy the waters, some theoretical works prove the existence of

local minima. Such results exist for simple fully connected architectures [154], single-

layer networks [107, 170], and two-layer ReLU networks [133]. For example, [171]

show that local minima exist in single-layer networks with univariate output and

unique datapoints. The crucial idea here is that all neurons are activated for all

datapoints at the suboptimal local minima. Unfortunately, these existing analyses

of neural loss landscapes require strong assumptions (e.g. random training data,

linear activation functions, fully connected layers, or extremely wide network widths)

— so strong, in fact, that it is reasonable to question whether these results have

any bearing on practical neural networks or describe the underlying cause of good

optimization performance in real-world settings.

In this section, we investigate the existence of suboptimal local minima from a

theoretical perspective and an empirical one. If suboptimal local minima exist, they
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are certainly hard to find by standard methods (otherwise training would not work).

Thus, we present simple theoretical results that inform us on how to construct non-

trivial suboptimal local minima, concretely generalizing previous constructions, such

as those by [171]. Using experimental methods inspired by theory, we easily find

suboptimal local minima in the loss landscapes of a range of classifiers.

Trivial local minima are easy to find in ReLU networks – consider the case

where bias values are sufficiently low so that the ReLUs are “dead” (i.e. inputs to

ReLUs are strictly negative). Such a point is trivially a local minimum. Below, we

make a more subtle observation that multilayer perceptrons (MLPs) must have non-

trivial local minima, provided there exists a linear classifer that performs worse than

the neural network (an assumption that holds for virtually any standard benchmark

problem). Specifically, we show that MLP loss functions contain local minima where

they behave identically to a linear classifier on the same data.

We now define a family of low-rank linear functions which represent an MLP.

Let “rank-s affine function” denote an operator of the form G(x) = Ax + b with

rank(A) = s.

Definition 6.1. Consider a family of functions, {Fφ : Rm → Rn}φ∈RP parameterized

by φ.We say this family has rank-s affine expression if for all rank-s affine functions

G : Rm → Rn and finite subsets Ω ⊂ Rm, there exists φ with Fφ(x) = G(x), ∀x ∈ Ω.

If s = min(n,m) we say that this family has full affine expression.

We investigate a family of L-layer MLPs with ReLU activation functions,

{Fφ : Rm → Rn}φ∈Φ, and parameter vectors φ, i.e., φ = (A1,b1, A2,b2, . . . , AL,bL),
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Fφ(x) = HL(f(HL−1...f(H1(x)))), where f denotes the ReLU activation function

and Hi(z) = Aiz + bi. Let Ai ∈ Rni×ni−1 , bi ∈ Rni with n0 = m and nL = n.

Lemma 6.1. Consider a family of L-layer multilayer perceptrons with ReLU acti-

vations {Fφ : Rm → Rn} and let s = mini ni be the minimum layer width. Then this

family has rank-s affine expression.

Proof. Let G be a rank-s affine function, and Ω ⊂ Rm be a finite set. Let G(x) =

Ax+b with A = UΣV being the singular value decomposition of A with U ∈ Rn×s

and V ∈ Rs×m.

We define

A1 =

ΣV

0


where 0 is a (possibly void) (n1 − s) × m matrix of all zeros, and b1 = c1 for

c = maxxi∈Ω,1≤j≤n1 |(A1xi)j|+ 1 and 1 ∈ Rn1 being a vector of all ones. We further

choose Al ∈ Rnl×nl−1 to have an s × s identity matrix in the upper left, and fill all

other entries with zeros. This choice is possible since nl ≥ s for all l. We define

bl =

[
0 c 1

]T
∈ Rnl where 0 ∈ R1×s is a vector of all zeros and 1 ∈ R1×(nl−s) is a

(possibly void) vector of all ones.

Finally, we choose AL =

[
U 0

]
, where now 0 is a (possibly void) n×(nL−1−s)

matrix of all zeros, and bL = −cAL1 + b for 1 ∈ RnL−1 being a vector of all ones.

Then one readily checks that Fφ(x) = G(x) holds for all x ∈ Ω. Note that all

entries of all activations are greater or equal to c > 0, such that no ReLU ever maps

an entry to zero.
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The ability of MLPs to represent linear networks allows us to derive a theorem

which implies that arbitrarily deep MLPs have local minima at which the perfor-

mance of the underlying model on the training data is equal to that of a (potentially

low-rank) linear model. In other words, neural networks inherit the local minima of

elementary linear models.

Theorem 6.2. Consider a training set, {(xi, yi)}Ni=1, a family {Fφ} of MLPs with

s = mini ni being the smallest width. Consider the training of a rank-s linear clas-

sifier GA,b, i.e.,

min
A,b
L(GA,b; {(xi, yi)}Ni=1), subject to rank(A) ≤ s, (6.1)

for any continuous loss function L. Then for each local minimum, (A′,b′), of the

above training problem, there exists a local minimum, φ′, of L(Fφ; {(xi, yi)}Ni=1) with

the property that Fφ′(xi) = GA′,b′(xi) for i = 1, 2, ..., N .

Proof. Based on the definition of a local minimium, there exists an open ball D

around (A′,b′) such that

L(GA′,b′ ; {(xi, yi)}Ni=1) ≤ L(GA,b; {(xi, yi)}Ni=1) ∀(A,b) ∈ D with rank(A) ≤ s.

(6.2)

First, we use the same construction as in the proof of Lemma 6.1 to find a

function Fφ′ with Fφ′(xi) = GA′,b′(xi) for all training example xi. Because the

mapping φ 7→ Fφ(xi) is continuous (not only for the entire network F but also for

all subnetworks), and because all activations of Fφ′ are greater or equal to c > 0,
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there exists an open ball B(φ′, δ1) around φ′ such that the activations of Fφ remain

positive for all xi and all φ ∈ B(φ′, δ1).

Consequently, the restriction of Fφ to the training set remains affine linear for

φ ∈ B(φ′, δ1). In other words, for any φ ∈ B(φ′, δ1) we can write

Fφ(xi) = A(φ)xi + b(φ) ∀xi,

by defining A(φ) = ALAL−1 . . . A1 and b(φ) =
∑L

l=1ALAL−1 . . . Al+1bl. Note that

due to s = mini ni, the resulting A(φ) satisfies rank(A(φ)) ≤ s.

After restricting φ to an open ball B(φ′, δ2), for δ2 ≤ δ1 sufficiently small, the

above (A(φ),b(φ)) satisfy (A(φ),b(φ)) ∈ D for all φ ∈ B(φ′, δ2). On this set, we,

however, already know that the loss can only be greater or equal to L(Fφ′ ; {(xi, yi)}Ni=1)

due to (6.2). Thus, φ′ is a local minimum of the underlying loss function.

The proof of the above theorem constructs a network in which all activations

of all training examples are positive, generalizing previous constructions of this type

such as [171] to more realistic architectures and settings. Another paper has em-

ployed a similar construction concurrently to our own work [64]. We do expect that

the general problem in expressivity occurs every time the support of the activations

coincides for all training examples, as the latter reduces the deep network to an

affine linear function (on the training set), which relates to the discussion in [9]. We

test this hypothesis below by initializing deep networks with biases of high variance.

Remark (CNN and more expressive local minima). Note that the above construc-

tions of Lemma 6.1 and Theorem 6.2 are not limited to MLPs and could be extended
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to convolutional neural networks with suitably restricted linear mappings Gφ by us-

ing the convolution filters to represent identities and using the bias to avoid any

negative activations on the training examples. Moreover, shallower MLPs can simi-

larly be embedded into deeper MLPs recursively by replicating the behavior of each

linear layer of the shallow MLP with several layers of the deep MLP. Linear clas-

sifiers, or even shallow MLPs, often have higher training loss than more expressive

networks. Thus, we can use the idea of Theorem 1 to find various suboptimal local

minima in the loss landscapes of neural networks. We confirm this with subsequent

experiments.

We find that initializing a network at a point that approximately conforms

to Theorem 1 is enough to get trapped in a bad local minimum. We verify this

by training a linear classifier on CIFAR-10 with weight decay, (which has a test

accuracy of 40.53%, loss of 1.57, and gradient norm of 0.00375 w.r.t to the logistic

regression objective). We then initialize a multilayer network as described in Lemma

6.1 to approximate this linear classifier and recompute these statistics on the full

network (see Table 6.1). When training with this initialization, the gradient norm

drops futher, moving parameters even closer to the linear minimizer. The final

training result still yields positive activations for the entire training dataset.

Moreover, any isolated local minimum of a linear network results in many local

minima of an MLP Fφ′ , as the weights φ′ constructed in the proof of Theorem 6.2

can undergo transformations such as scaling, permutation, or even rotation without

changing Fφ′ as a function during inference, i.e. Fφ′(x) = Fφ(x) for all x for an
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Table 6.1: Local minima for MLPs generated via various initializations. We show
loss, euclidean norm of the gradient vector, and minimum eigenvalue of the Hessian
before and after training. We use 500 iterations of the power method on a shifted
Hessian matrix computed on the full dataset to find the minimum eigenvalue. The
experiment in the last row is trained with no momentum (NM).

At Initialization After training

Init. Type Loss Grad. Min. EV Loss Grad. Min. EV

Default 4.5963 0.5752 -1.5549 0.0061 0.0074 0.0007
Lemma 6.1 1.5702 0.0992 0.03125 1.5699 0.0414 0.0156
Bias+20 31.204 343.99 -1.7421 2.3301 0.0090 0.0005

Bias ∈ U(−50, 50) 51.445 378.36 -430.49 2.3153 0.0048 0.0000
Bias ∈ U(−10, 10) NM 12.209 42.454 -47.733 0.2198 0.0564 0.0013

infinite set of parameters φ, as soon as F has at least one hidden layer.

While our first experiment initializes a deep MLP at a local minimum it in-

herited from a linear one to empirically illustrate our findings of Theorem 6.2, Table

6.1 also illustrates that similarly bad local minima are obtained when choosing large

biases (third row) and choosing biases with large variance (fourth row) as conjec-

tured above. To significantly reduce the bias, however, and still obtain a sub-par

optimum, we need to rerun the experiment with SGD without momentum, as shown

in the last row, reflecting common intuition that momentum is helpful to move away

from bad local optima.

Remark (Sharpness of sub-optimal local optima). An interesting additional prop-

erty of minima found using the previously discussed initializations is that they are

“sharp”. Proponents of the sharp-flat hypothesis for generalization have found that

minimizers with poor generalization live in sharp attracting basins with low vol-

ume and thus low probability in parameter space [78, 88], although care has to be

taken to correctly measure sharpness [35]. Accordingly, we find that the maximum
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eigenvalue of the Hessian at each suboptimal local minimum is significantly higher

than those at near-global minima. For example, the maximum eigenvalue of the

initialization by Lemma 1 in Table 6.1 is estimated as 113, 598.85 after training,

whereas that of the default initialization is only around 24.01. While our analysis

has focused on sub-par local optima in training instead of global minima with sub-

par generalization, both the scarcity of local optima during normal training and the

favorable generalization properties of neural networks seem to correlate with their

sharpness.

In light of our finding that neural networks trained with unconventional ini-

tialization reach suboptimal local minima, we conclude that poor local minima can

readily be found with a poor choice of hyperparameters. Suboptimal minima are less

scarce than previously believed, and neural networks avoid these because good ini-

tializations and stochastic optimizers have been fine-tuned over time. Fortunately,

promising theoretical directions may explain good optimization performance while

remaining compatible with empirical observations. The approach followed by [42]

analyzes the loss trajectory of SGD, showing that it avoids bad minima. While this

work assumes (unrealistically) large network widths, this theoretical direction is

compatible with empirical studies, such as [58], showing that the training trajectory

of realistic deep networks does not encounter significant local minima.
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6.2.1 Additional comments regarding Theorem 1

Note that our theoretical and experimental results do not contradict theoretical

guarantees for deep linear networks [86, 97] which show that all local minima are

global. A deep linear network with s = min(n,m) is equivalent to a linear classifier,

and in this case, the local minima constructed by Theorem 6.2 are global. However,

this observation shows that Theorem 6.2 characterizes the gap between deep linear

and deep nonlinear networks; the global minima predicted by linear network theories

are inherited as (usually suboptimal) local minima when ReLU’s are added. Thus,

linear networks do not accurately describe the distribution of minima in non-linear

networks.

6.2.2 Additional results concerning suboptimal local optima

Table 6.2 shows more experiments. As above in the previous experiment,

we use gradient descent to train a full ResNet-18 architecture on CIFAR-10 until

convergence from different initializations. We find that essentially the same results

appear for the deeper architecture, initializing with very high bias leads to highly

non-optimal solutions. In this case even solutions that are equally bad as a zero-

norm initialization.

Further results on CIFAR-100 are shown in Tables 6.3 and 6.4. These exper-

iments with MLP and ResNet-18 show the same trends as explained above, thus

confirming that the results are not specific to the CIFAR-10 dataset.
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Table 6.2: Local minima for ResNet-18 and CIFAR-10 generated via initialization
and trained by vanilla gradient descent, showing loss, euclidean norm of the gradient
vector.

At Initialization After training

Init. Type Loss Grad. Loss Grad.

Default 2.30312 0.05000 0.00014 0.01410
Zero 2.30258 0.00025 2.30259 0.00013

Bias+20 12.95754 590.12170 2.30658 0.00004
Bias ∈ U(−10, 10) 12.96790 214.68600 2.30260 0.00123
Bias ∈ U(−50, 50) 84.67800 1190.23500 2.30260 0.00702

Table 6.3: Local minima for ResNet-18 and CIFAR-100 generated via initialization
and trained by vanilla gradient descent, showing loss, euclidean norm of the gradient
vector

At Initialization After training

Init. Type Loss Grad. Loss Grad.

Default 4.60591 0.02346 0.00030 0.00466
Zero 4.60517 0.00019 4.60517 0.00003

Bias+20 34.37053 655.51569 4.60517 0.00015
Bias ∈ U(−100, 100) 178.74391 2615.72534 4.60517 0.00003

Table 6.4: Local minima for MLP and CIFAR-100 generated via initialization and
trained by vanilla gradient descent, showing loss, euclidean norm of the gradient
vector.

At Initialization After training

Init. Type Loss Grad. Loss Grad.

Default 4.60670 0.16154 0.02579 0.01482
Zero 4.60517 0.00019 4.60517 0.00011

Bias+10 15.77286 359.65710 4.60517 0.00079
Bias ∈ U(−5, 5) 8.69149 63.59983 2.15917 0.09718

Bias ∈ U(−10, 10) 13.02693 158.78347 2.58368 0.09233
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6.3 Weight decay: Are small `2-norm solutions better?

Classical learning theory advocates regularization for linear models, such as

SVM and linear regression. For SVM, `2 regularization endows linear classifiers

with a wide-margin property [29], and recent work on neural networks has shown

that minimum norm neural network interpolators benefit from over-parametrization

[63] . Following the long history of explicit parameter norm regularization for linear

models, weight decay is used for training nearly all high performance neural networks

[25, 65, 76, 136].

In combination with weight decay, all of these cutting-edge architectures also

employ batch normalization after convolutional layers [80]. With that in mind, [160]

shows that the regularizing effect of weight decay is counteracted by batch normal-

ization, which removes the effect of shrinking weight matrices. [176] argue that the

synergistic interaction between weight decay and batch norm arises because weight

decay plays a large role in regulating the effective learning rate of networks, since

scaling down the weights of convolutional layers amplifies the effect of each opti-

mization step, effectively increasing the learning rate. Thus, weight decay increases

the effective learning rate as the regularizer drags the parameters closer and closer

towards the origin. The authors also suggest that data augmentation and care-

fully chosen learning rate schedules are more powerful than explicit regularizers like

weight decay.

Other work echos this sentiment and claims that weight decay and dropout

have little effect on performance, especially when using data augmentation [71]. [75]

94



further study the relationship between weight decay and batch normalization, and

they develop normalization with respect to other norms. [147] instead suggest that

minimum norm solutions may not generalize well in the over-parametrized setting.

We find that the difference between performance of standard network archi-

tectures with and without weight decay is often statistically significant, even with

a high level of data augmentation, for example, horizontal flips and random crops

on CIFAR-10 (see Tables 6.5 and 6.6). But is weight decay the most effective form

of `2 regularization? Furthermore, is the positive effect of weight decay because the

regularizer promotes small norm solutions? We generalize weight decay by biasing

the `2 norm of the weight vector towards other values using the following regularizer,

which we call norm-bias :

Rµ(φ) =

∣∣∣∣∣
(

P∑
i=1

φ2
i

)
− µ2

∣∣∣∣∣ . (6.3)

R0 is equivalent to weight decay, but we find that we can further improve

performance by biasing the weights towards higher norms (see Tables 6.5 and 6.6).

In our experiments on CIFAR-10 and CIFAR-100, networks are trained using weight

decay coefficients from their respective original papers. ResNet-18 and DenseNet are

trained with µ2 = 2500 and norm-bias coefficient 0.005, and MobileNetV2 is trained

with µ2 = 5000 and norm-bias coefficient 0.001. µ is chosen heuristically by first

training a model with weight decay, recording the norm of the resulting parameter

vector, and setting µ to be slightly higher than that norm in order to avoid norm-

bias leading to a lower parameter norm than weight decay. While we find that
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weight decay improves results over a non-regularized baseline for all three models,

we also find that models trained with large norm bias (i.e., large µ) outperform

models trained with weight decay.

These results lend weight to the argument that explicit parameter norm reg-

ularization is in fact useful for training networks, even deep CNNs with batch nor-

malization and data augmentation. However, the fact that norm-biased networks

can outperform networks trained with weight decay suggests that any benefits of

weight decay are unlikely to originate from the superiority of small-norm solutions.

To further investigate the effect of weight decay and parameter norm on gen-

eralization, we also consider models without batch norm. In this case, weight decay

directly penalizes the norm of the linear operators inside a network, since there are

no batch norm coefficients to compensate for the effect of shrinking weights. Our

goal is to determine whether small-norm solutions are superior in this setting where

the norm of the parameter vector is more meaningful.

In our first experiment without batch norm, we experience improved per-

formance training an MLP with norm-bias (see Table 6.6). In a state-of-the-art

setting, we consider ResNet-20 with Fixup initialization, a ResNet variant that re-

moves batch norm and instead uses a sophisticated initialization that solves the

exploding gradient problem [177]. We observe that weight decay substantially im-

proves training over SGD with no explicit regularization — in fact, ResNets with

this initialization scheme train quite poorly without explicit regularization and data

normalization. Still, we find that norm-bias with µ2 = 1000 and norm-bias coef-

ficient 0.0005 achieves better results than weight decay (see Table 6.6). This once
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again refutes the theory that small-norm parameters generalize better and brings

into doubt any relationship between classical Tikhonov regularization and weight

decay in neural networks. See Section 6.3.1 for a discussion concerning the final pa-

rameter norms of Fixup networks as well as additional experiments on CIFAR-100,

a harder image classification dataset.

Table 6.5: ResNet-18, DenseNet-40, and MobileNetV2 models trained on non-
normalized CIFAR-10 data with various regularizers. Numerical entries are given
by m(±s), where m is the average accuracy over 10 runs, and s represents standard
error.

Model No weight decay (%) Weight decay (%) Norm-bias (%)
ResNet 93.46 (±0.05) 94.06 (±0.07) 94.86 (±0.05)

DenseNet 89.26 (±0.08) 92.27 (±0.06) 92.49 (±0.06)
MobileNetV2 92.88 (±0.06) 92.88 (±0.09) 93.50 (±0.09)

Table 6.6: ResNet-18, DenseNet-40, MobileNetV2, ResNet-20 with Fixup initializa-
tion, and a 4-layer multi-layer perceptron (MLP) trained on normalized CIFAR-10
data with various regularizers. Numerical entries are given by m(±s), where m is
the average accuracy over 10 runs, and s represents standard error.

Model No weight decay (%) Weight decay (%) Norm-bias (%)
ResNet 93.40 (±0.04) 94.76 (±0.03) 94.99 (±0.05)

DenseNet 90.78 (±0.08) 92.26 (±0.06) 92.46 (±0.04)
MobileNetV2 92.84 (±0.05) 93.64 (±0.05) 93.64 (±0.03)
ResNet Fixup 10.00 (±0.00) 91.42 (±0.04) 91.55 (±0.07)

MLP 58.88 (±0.10) 58.95 (±0.07) 59.13 (±0.09)

6.3.1 Details concerning low-norm regularization experiments

Our experiments comparing regularizers all run for 300 epochs with an initial

learning rate of 0.1 and decreases by a factor of 10 at epochs 100, 175, 225, and 275.

We use the SGD optimizer with momentum 0.9.

We also tried negative weight decay coefficients, which leads to ResNet-18
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CIFAR-10 performance above 90% while blowing up parameter norm, but this per-

formance is still suboptimal and is not informative concerning the optimality of

minimum norm solutions. One might wonder if high norm-bias coefficients lead to

even lower parameter norm than low weight decay coefficients. This question may

not be meaningful in the case of networks with batch normalization. In the case

of ResNet-20 with Fixup, which does not contain running mean and standard de-

viation, the average parameter `2 norm after training with weight decay is 24.51

while that of models trained with norm-bias is 31.62. Below, we perform the same

tests on CIFAR-100, a substantially more difficult dataset. Weight decay coefficients

are chosen to be ones used in the original paper for the corresponding architecture.

Norm-bias coefficient/µ2 is chosen to be 8100/0.005, 7500/0.001, and 2000/0.0005

for ResNet-18, DenseNet-40, and ResNet-20 with Fixup, respectively, using the same

heuristic as described in the main body.

Table 6.7: ResNet-18, DenseNet-40, and ResNet-20 with Fixup initialization trained
on normalized CIFAR-100 data with various regularizers. Numerical entries are
given by m(±s), where m is the average accuracy over 10 runs, and s represents
standard error.

Model No weight decay (%) Weight decay (%) Norm-bias (%)
ResNet 71.73 (±0.25) 74.66 (±0.17) 75.90 (±0.16)

DenseNet 65.61 (±0.33) 68.98 (±0.25) 69.24 (±0.11)
ResNet Fixup 1.000 (±0.00) 65.08 (±0.30) 65.58 (±0.17)

6.4 Kernel theory and the infinite-width limit

In light of the recent surge of works discussing the properties of neural networks

in the infinite-width limit, in particular, connections between infinite-width deep
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neural networks and Gaussian processes, see [100], several interesting theoretical

works have appeared. The wide network limit and Gaussian process interpretations

have inspired work on the neural tangent kernel [81], while [101] and [14] have used

wide network assumptions to analyze the training dynamics of deep networks. The

connection of deep neural networks to kernel-based learning theory seems promising,

but how closely do current architectures match the predictions made for simple

networks in the large-width limit?

We focus on the Neural Tangent Kernel (NTK), developed in [81]. Theory

dictates that, in the wide-network limit, the neural tangent kernel remains nearly

constant as a network trains. Furthermore, neural network training dynamics can

be described as gradient descent on a convex functional, provided the NTK remains

nearly constant during training [101]. In this section, we experimentally test the

validity of these theoretical assumptions.

Fixing a network architecture, we use F to denote the function space parametrized

by φ ∈ Rp. For the mapping F : RP → F , the NTK is defined by

Φ(φ) =
P∑
p=1

∂φpF (φ)⊗ ∂φpF (φ), (6.4)

where the derivatives ∂φpF (φ) are evaluated at a particular choice of φ describing

a neural network. The NTK can be thought of as a similarity measure between

images; given any two images as input, the NTK returns an n× n matrix, where n

is the dimensionality of the feature embedding of the neural network. We sample

entries from the NTK by drawing a set of N images {xi} from a dataset, and
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computing the entries in the NTK corresponding to all pairs of images in our image

set. We do this for a random neural network f : Rm → Rn and computing the

tensor Φ(φ) ∈ RN×N×n×n of all pairwise realizations, restricted to the given data:

Φ(φ)ijkl =
P∑
p=1

∂φpf(xi, φ)k · ∂φpf(xj, φ)l (6.5)

By evaluating (6.5) using automatic differentiation, we compute slices from the NTK

before and after training for a large range of architectures and network widths. We

consider image classification on CIFAR-10 and compare a two-layer MLP, a four-

layer MLP, a simple 5-layer ConvNet, and a ResNet. We draw 25 random images

from CIFAR-10 to sample the NTK before and after training. We measure the

change in the NTK by computing the correlation coefficient of the (vectorized)

NTK before and after training. We do this for many network widths, and see what

happens in the wide network limit. For MLPs we increase the width of the hidden

layers, for the ConvNet (6-Layer, Convolutions, ReLU, MaxPooling), we increase

the number of convolutional filters, for the ResNet we consider the WideResnet

[173] architecture, where we increase its width parameter. We initialize all models

with uniform He initialization as discussed in [66], departing from specific Gaussian

initializations in theoretical works to analyze the effects for modern architectures

and methodologies.

The results are visualized in Figure 6.1, where we plot parameters of the NTK

for these different architectures, showing how the number of parameters impacts the

relative change in the NTK (||Φ1−Φ0||/||Φ0||, where Φ0/Φ1 denotes the sub-sampled
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Figure 6.1: (a) The relative norm of the neural tangent kernel as a function of the
number of parameters is shown for several networks. This figure highlights the differ-
ence between the behavior of ResNets and other architectures. Figure 6.1c visualizes
the same data in a logarithmic scale. (b) The correlation of the neural tangent ker-
nel before and after training. We expect this coefficient to converge toward 1 in
the infinite-width limit for multi-layer networks as in [81]. We do not observe this
trend for ResNets as is clear from the curve corresponding to the WideResNet. (d)
The average norm of parameter change decreases for simple architectures but stays
nearly constant for the WideResNet.

NTK before/after training) and correlation coefficient (Cov(Φ1,Φ0)/σ(Φ1)/σ(Φ0)).

[81] predicts that the NTK should change very little during training in the infinite-

width limit.

At first glance, it might seem that these expectations are hardly met for our

(non-infinite) experiments. Figure 6.1a and Figure 6.1c show that the relative change

in the NTK during training (and also the magnitude of the NTK) is rapidly increas-

ing with width and remains large in magnitude for a whole range of widths of

convolutional architectures. The MLP architectures do show a trend toward small
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changes in the NTK, yet convergence to zero is slower in the 4-Layer case than in

the 2-Layer case.

However, a closer look shows that almost all of the relative change in the

NTK seen in Figure 6.1c is explained by a simple linear re-scaling of the NTK. It

should be noted that the scaling of the NTK is strongly effected by the magnitude

of parameters at initialization. Within the NTK theory of [100], a linear rescaling

of the NTK during training corresponds simply to a change in learning rate, and so

it makes more sense to measure similarity using a scale-invariant metric.

Measuring similarity between sub-sampled NTKs using the scale-invariant cor-

relation coefficient, as in Figure 6.1b, is more promising. Surprisingly, we find that,

as predicted in [81], the NTK changes very little (beyond a linear rescaling) for the

wide ConvNet architectures. For the dense networks, the predicted trend toward

small changes in the NTK also holds for most of the evaluated widths, although there

is a dropoff at the end which may be an artifact of the difficulty of training these wide

networks on CIFAR-10. For the Wide Residual Neural Networks, however, the gen-

eral trend toward higher correlation in the wide network limit is completely reversed.

The correlation coefficient decreases as network width increases, suggesting that the

neural tangent kernel at initialization and after training becomes qualitatively more

different as network width increases. The reversal of the correlation trend seems

to be a property which emerges from the interaction of batch normalization and

skip connections. Removing either of these features from the architecture leads to

networks which have an almost constant correlation coefficient for a wide range of

network widths, see Figure 6.5, calling for the consideration of both properties in
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new formulations of the NTK.

In conclusion, we see that although the NTK trends towards stability as the

width of simple architectures increases, the opposite holds for the highly performant

Wide ResNet architecture. Even further, neither the removal of batch normalization

or the removal of skip connections fully recover the positive NTK trend. While we

have hope that kernel-based theories of neural networks may yield guarantees for

realistic (albeit wide) models in the future, current results do not sufficiently describe

state-of-the-art architectures. Moreover, the already good behavior of models with

unstable NTKs is an indicator that good optimization and generalization behaviors

do not fundamentally hinge on the stability of the NTK.

6.4.1 Details on the Neural Tangent Kernel experiment

For further reference, we include details on the NTK sampling during training

epochs in Figure 6.2. We see that the parameter norm (Right) behaves normally (all

of these experiments are trained with a standard weight decay parameter of 0.0005),

yet the NTK norm (Left) rapidly increases. Most of this increase, however is scaling

of the kernel, as the correlation plot (Middle) is much less drastic. We do see that

most change happens in the very first epochs of training, whereas the kernel only

changes slowly later on.
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Figure 6.2: Plotting the evolution of NTK parameters during training epochs. Left:
Norm of the NTK Tensor, Middle: Correlation of current NTK iterate versus initial
NTK. Right: Reference plot of the network parameter norms.
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Figure 6.3: The similarity coefficient of the neural tangent kernel after training with
its initialization. We expect this coefficient to converge toward 1 in the infinite-
width limit for multi-layer networks. Also shown is the direct relative difference of
the NTK norms, which behaves similarly to the normalized direct difference from
figure 6.1.
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Figure 6.4: For reference we record the test accuracy of all models from 6.1 in the
left plot and the relative change in parameters in the right plot.
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Figure 6.5: The correlation coefficient of the neural tangent kernel after training with
its initialization for different WideResNet variants - namely WideResNet without
batch normalizations and WideResNet without skip connections. We interestingly
find that removing either of both properties, which are widely regarding as beneficial
for neural network training, stabilizes the trend seen in the default WideResNet.
However both variants hardly converge toward 1, even when sampling very wide
ResNets.

6.5 Rank: Do networks with low-rank layers generalize better?

State-of-the-art neural networks are highly over-parameterized, and their large

number of parameters is a problem both for learning theory and for practical use. In

the theoretical setting, rank has been used to tighten bounds on the generalization

gap of neural networks. Generalization bounds from [62] are improved under condi-

tions of low rank and high sparsity [122] of parameter matrices, and the compress-

ibility of low-rank matrices (and other low-dimensional structure) can be directly

exploited to provide even stronger bounds [6]. Further studies show a tendency of

stochastic gradient methods to find low-rank solutions [82]. The tendency of SGD to

find low-rank operators, in conjunction with results showing generalization bounds

for low-rank operators, might suggest that the low-rank nature of these operators is

important for generalization.
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[96] claim that low-rank networks, in addition to generalizing well to test data,

are more robust to adversarial attacks. Theoretical and empirical results from the

aforementioned paper lead the authors to make two major claims. First, the authors

claim that networks which undergo adversarial training have low-rank and sparse

matrices. Second, they claim that networks with low-rank and sparse parameter

matrices are more robust to adversarial attacks. We find in our experiments that

neither claim holds up in practical settings, including ResNet-18 models trained on

CIFAR-10.

We test the generalization and robustness properties of neural networks with

low-rank and high-rank operators by promoting low-rank or high-rank parameter

matrices in late epochs. We employ the regularizer introduced in [142] to create

the protocols RankMin, to find low-rank parameters, and RankMax, to find high-

rank parameters. RankMin involves fine-tuning a pre-trained model by replacing

linear operators with their low-rank approximations, retraining, and repeating this

process. Similarly, RankMax involves fine-tuning a pre-trained model by clipping

singular values from the SVD of parameter matrices in order to find high-rank

approximations. We are able to manipulate the rank of matrices without strongly

affecting the performance of the network. We use both natural training and 7-step

projected gradient descent (PGD) adversarial training routines [115]. The goal of

the experiment is to observe how the rank of weight matrices impacts generalization

and robustness. We start by attacking naturally trained models with the standard

PGD adversarial attack with ε = 8/255. Then, we move to the adversarial training

setting and test the effect of manipulating rank on generalization and on robustness.
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Model Training
method

Clean Test
Accuracy
(%)

Robust
(%)
ε = 8/255

Robust
(%)
ε = 1/255

ResNet-18 Natural 94.66 0.00 31.98
RankMax 93.66 0.00 22.01
RankMin 94.44 0.00 31.53
Adversarial 79.37 35.38 74.27
RankMaxAdv 80.00 35.55 74.92
RankMinAdv 78.34 33.68 73.19

ResNet-18 Natural 92.95 0.01 31.34
w/o skips RankMax 91.71 0.00 18.81

RankMin 92.42 0.00 30.37
Adversarial 79.57 35.95 74.88
RankMaxAdv 79.43 36.45 74.87
RankMinAdv 78.52 33.97 73.64

Table 6.8: Result presented here are from experiments with CIFAR-10 data and
two of the architectures we studied. Robust accuracy is measured with 20-step
PGD attacks with the ε values specified at the top of the column.

In order to compare our results with [96], we borrow the notion of effective

rank, denoted by r(W ) for some matrix W . This continuous relaxation of rank is

defined as follows. r(W ) = ‖W‖∗
‖W‖F

where ‖ · ‖∗, ‖ · ‖1, and ‖ · ‖F are the nuclear norm,

the 1-norm, and the Frobenius norm, respectively. Note that the singular values

of convolution operators can be found quickly with a method from [142], and that

method is used here.

In our experiments we investigate two architectures, ResNet-18 and ResNet-18

without skip connections. We train on CIFAR-10 and CIFAR-100, both naturally

and adversarially. Table 6.8 shows that RankMin and RankMax achieve similar

generalization on CIFAR-10. More importantly, when adversarially training, a set-

ting when robustness is undeniably the goal, we see the RankMax outperforms both
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(a) Effective rank of naturally trained models.
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(b) Effective rank of adversarially trained
models.

Figure 6.6: This plot shows the effective rank of each filter for the ResNet-18 models.
The filters are indexed on the x-axis, so moving to the right is like moving through
the layers of the network. Our routines designed to manipulate the rank have exactly
the desired effect as shown here.

RankMin and standard adversarial training in robust accuracy. Figure 6.6 confirms

that these two training routines do, in fact, control effective rank. Experiments with

CIFAR-100 yield similar results and are presented in Section 6.5.1. It is clear that

increasing rank using an analogue of rank minimizing algorithms does not harm

performance. Moreover, we observe that adversarial robustness does not imply low-

rank operators, nor do low-rank operators imply robustness. The findings in [82]

are corroborated here as the black dots in Figures 6.6 show that initializations are

higher in rank than the trained models. Our investigation into what useful intuition

in practical cases can be gained from the theoretical work on the rank of CNNs and

from the claims about adversarial robustness reveals that rank plays little to no role

in the performance of CNNs in the practical setting of image classification.
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6.5.1 Details on RankMin and RankMax

We employ routines to promote both low-rank and high-rank parameter ma-

trices. We do this by computing approximations to the linear operators at each

layer. Since convolutional layers are linear operations, we know that there is a ma-

trix whose dimensions are the number of parameters in the input to the convolution

and the number of parameters in the output of the convolution. In order to compute

low-rank approximations of these operators, one could write down the matrix cor-

responding to the convolution, and then compute a low-rank approximation using a

singular value decomposition (SVD). In order to make this problem computationally

tractable we used the method for computing singular values of convolution operators

derived in [142]. We were then able to do low-rank approximation in the classical

sense, by setting each singular value below some threshold to zero. In order to com-

pute high-rank operators, we clipped the singular values so that when mulitplying

the SVD factors, we set each singular value to be equal to the minimum of some

chosen constant and the true singular value. It is important to note here that these

approximations to the convolutional layers, when done naively, can return convo-

lutions with larger filters. To be precise, an n × n filter will map to a k × k filter

through our rank modifications, where k ≥ n. We follow the method in [142], where

these filters are pruned back down by only using n× n entries in the output.

When naturally training ResNet-18 and Skipless ResNet-18 models, we train

with a batch size of 128 for 200 epochs with the learning rate initiated to 0.01 and

decreasing by a factor of 10 at epochs 100, 150, 175, and 190 (for both CIFAR-
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10 and CIFAR-100). When adversarially training these two models on CIFAR-10

data, we use the same hyperparameters. However, in order to adversarially train

on CIFAR-100, we train ResNet-18 with a batch size of 256 for 300 epochs with an

initial learning rate of 0.1 and a decrease by a factor of 10 at epochs 200 and 250.

For adversarially training Skipless ResNet-18 on CIFAR-100, we use a batch size of

256 for 350 epochs with an initial learning rate of 0.1 and a decrease by a factor of

10 at epochs 200, 250, and 300. Adversarial training is done with an `∞ 7-step PGD

attack with a step size of 2/255, and ε = 8/255. For all of the training described

above we augment the data with random crops and horizontal flips.

During 15 additional epochs of training we manipulate the rank as follows.

RankMin and RankMax protocols are employed periodically in the last 15 epochs

taking care to make sure that the loss remains small. For these last epochs, the

learning rate starts at 0.001 and decreases by a factor of 10 after the third and fifth

epochs of the final 15 epochs. As shown in Table 6.10, we test the accuracy of each

model on clean test data from the corresponding dataset, as well as on adversarial

examples generated with 20-step PGD with ε = 8/255 (with step size equal to 2/255)

and ε = 1/255 (with step size equal to .25/255).

When training multi-layer perceptrons on CIFAR-10, we train for 100 epochs

with learning rate initialized to 0.01 and decreasing by a factor of 10 at epochs 60, 80

and 90. Then, we train the network for 8 additional epochs, during which RankMin

and RankMax networks undergo rank manipulation.
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Table 6.9: Results from rank experiments with a multi-layer perceptron and CIFAR-
10.

MLP and CIFAR-10

Training method Training
Accuracy
(%)

Clean
Accuracy
(%)

Robust
(%)
ε = 8/255

Robust
(%)
ε = 1/255

Naturally Trained 100.00 58.79 3.76 28.94
RankMax 99.97 58.19 3.72 26.63
RankMin 100.00 58.06 3.76 28.48

Table 6.10: Results from rank experiments on CIFAR-100. Robust accuracy is
measured with 20-step PGD attacks with the ε values specified at the top of the
column.

ResNet-18 and CIFAR-100

Training method Training
Accuracy
(%)

Clean
Accuracy
(%)

Robust
(%)
ε = 8/255

Robust
(%)
ε = 1/255

Naturally Trained 99.97 73.08 0.00 17.5
RankMax 99.90 72.67 0.00 16.95
RankMin 99.92 72.57 0.00 17.63

Adversarially Trained 99.92 50.88 17.81 45.99
RankMaxAdv 99.73 51.04 16.80 45.74
RankMinAdv 99.91 50.22 16.64 45.03

ResNet-18 w/o skip connections and CIFAR-100

Training method Training
Accuracy
(%)

Clean
Accuracy
(%)

Robust
(%)
ε = 8/255

Robust
(%)
ε = 1/255

Naturally Trained 99.96 72.13 0.01 13.7
RankMax 99.82 71.35 0.04 11.74
RankMin 99.90 71.28 0.00 13.53

Adversarially Trained 99.92 50.47 17.62 45.18
RankMaxAdv 99.90 50.93 17.72 45.78
RankMinAdv 99.91 49.37 16.77 44.41
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6.6 Conclusion

This work highlights the gap between deep learning theory and observations in

the real-world setting. We underscore the need to carefully examine the assumptions

of theory and to move past the study of toy models, such as deep linear networks

or single-layer MLPs, whose traits do not describe those of the practical realm.

First, we show that realistic neural networks on realistic learning problems contain

suboptimal local minima. Second, we show that low-norm parameters may not be

optimal for neural networks, and in fact, biasing parameters to a non-zero norm dur-

ing training improves performance on several popular datasets and a wide range of

networks. Third, we show that the wide-network trends in the neural tangent kernel

do not hold for ResNets and that the interaction between skip connections and batch

normalization play a large role. Finally, we show that low-rank linear operators and

robustness are not correlated, especially for adversarially trained models.
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