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Dietary methylmercury (MeHg) uptake in relation to fish lifestage, species, 

and level of exposure are poorly understood in lower trophic levels, particularly in 

estuarine species. Furthermore, little is known about the transfer of accumulated 

MeHg from female to offspring. Dietary MeHg accumulation, as well as growth and 

survival, were compared in two species of estuarine forage fish: Cyprinodon 

variegatus and Menidia beryllina. Results indicated that M. beryllina was more 

sensitive to dietary MeHg exposure than C. variegatus. Growth rate and the level of 

dietary exposure strongly influenced MeHg tissue concentrations in both species. In a 

second experiment, the source of maternally transferred MeHg was examined using a 

stable mercury isotope approach. A significant portion of Hg in eggs was from the 

burden stored in female tissues, suggesting that historical mercury exposure can be 

important in the context of maternal transfer. 
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Chapter 1: Introduction 

Background 

Mercury (Hg) is a widespread contaminant that can undergo several 

transformations in the environment. Its transformation to an organic molecule, via 

methylation, makes mercury bioavailable and therefore a concern to ecosystem and 

human health. Although our understanding of mercury cycling and transport within 

ecosystems has greatly increased, many aspects of Hg bioaccumulation and trophic 

transfer are still poorly understood. This is particularly relevant to human 

consumption, as nearly all seafood contains detectable levels of methylmercury 

(MeHg). Methylmercury is a neurotoxin and endocrine disruptor, which at high levels 

can cause health problems, especially in developing fetuses (Fitzgerald & Clarkson 

1991). Furthermore, although most Hg is emitted from industrial point sources, the 

long residence time of mercury in the atmosphere causes even remote areas to be 

affected by long-range atmospheric transport (Morel et al. 1998). Mercury is 

therefore a global concern. 

Current regulations 

Mercury pollution has been broadly regulated in the United States under the 

Clean Air Act, Clean Water Act, Resource Conservation and Recovery Act, and Safe 

Drinking Water Act. These regulations set standards for mercury levels in natural 

waters and drinking water, addressed mercury waste disposal, and established public 

warnings for mercury levels in fish (U.S. EPA, 2010). However, they failed to 

regulate the major anthropogenic source of mercury: coal-fired power plants. 
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In 2005, U.S. EPA implemented the Clean Air Mercury Rule, which is their 

first attempt to regulate mercury emissions from coal-fired power plants. The main 

goal was to reduce Hg emissions by 70 %, using a cap-and-trade program similar to 

that in the Acid Rain Program. An initial cap has already been put into effect for 

existing plants, and a second cap is planned for the year 2018 (U.S. EPA, 2010). 

Some mercury regulations have also been passed at the state level. For example, in 

2009 Maryland passed the Healthy Air Act, which requires reductions in power plant 

emissions of mercury and other air pollutants. 

Overview of Hg in the environment 

Sources and fate of inorganic Hg 

A majority of mercury entering the environment is in an inorganic form, and 

later transformed into highly bioaccumulative organic compounds, such as MeHg. 

Therefore, inorganic mercury is important to consider as a precursor to more toxic 

forms of organic mercury. Inorganic, elemental Hg enters the atmosphere as a 

byproduct of industrial processes, mainly coal-fired power plants (Wang et al. 2004; 

Figure 1.1). A large portion of mercury also comes from natural sources, such as 

volcanic emissions, crustal degassing, and forest fires (Fitzgerald & Clarkson 1991). 

Approximately 80 percent of atmospheric mercury is gaseous, and exists in its 

elemental form (Hg 0), while the remaining fraction is either particulate or aqueous 

(Wang et al. 2004). Elemental mercury is oxidized, usually by ozone, hydroxyl 

radicals, or halogens in the atmosphere, creating a more reactive form of inorganic 

mercury: HgII (Lindberg et al. 2007; Figure 1.1). 
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Atmospheric mercury is deposited to both aquatic and terrestrial systems 

(Figure 1.1). Approximately 60 percent of atmospheric mercury is transferred to land, 

while the other 40 percent is deposited to water (Morel et al. 1998). Both wet and dry 

depositions contribute to mercury loading. A majority of atmospheric deposition is 

dissolved HgII in precipitation (wet deposition), while a smaller fraction adsorbs to 

aerosols and moves via dry deposition (Morel et al. 1998). Atmospheric deposition is 

thought to be the main source of mercury contamination in aquatic ecosystems (Wang 

et al. 2004).  

Methylation 

 In order for mercury to bioaccumulate, it must first be transformed into a 

bioavailable form of organic mercury. The most common of these compounds is 

methylmercury. Unlike Hg 0 and HgII, which predominantly enter watersheds via 

atmospheric deposition, the main source of MeHg in watersheds is in situ production 

(Munthe et al. 2007). Methylation of mercury occurs under reducing conditions. 

Sulfate-reducing strains of anaerobic bacteria produce a majority of methylmercury in 

ecosystems (Gilmour et al. 1992). Photochemical processes, fueled by humic acids, 

can also methylate mercury. Therefore methylation is common in anoxic 

environments containing high levels of organic matter. Wetlands and marshes, as well 

as anoxic bottom waters are sites of high MeHg production. For example, wetlands 

have been shown to significantly increase MeHg and dissolved organic carbon (DOC) 

concentrations, while decreasing sulfate in upstream waters (Selvendiran 2008). This 

causes a net transport of MeHg to downstream aquatic systems. 
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Mercury must be in its reactive inorganic form (HgII) in order for methylation 

to occur (Stein et al. 1996). It can then undergo the following transformation to 

monomethylmercury: 

1) HgII + RCH3 = CH3Hg+ + R 

Additionally, this monomethylmercury can undergo another transformation to 

dimethylmercury: 

2) 2CH3Hg+ + H2S = (CH3)2Hg + HgS + 2H+ 

The rate of reaction (1) is much faster than that of reaction (2). Therefore, in most 

systems, monomethylmercury makes up over 95 % of the total methylmercury (Stein 

et al. 1996).  

Bioaccumulation of Hg 

Mercury concentrations in the water column, usually on the order of parts per 

trillion, can translate to concentrations of parts per million in the tissues of high-level 

consumers. Bioaccumulation of mercury in organisms is affected by a variety of 

factors, including food web structure, population age structures, and growth rates 

(Munthe et al. 2007). The transfer of MeHg to higher trophic levels is dependent on 

bioavailability of mercury to lower trophic levels, such as plankton and benthic 

invertebrates. In addition, environmental factors play a role in uptake of MeHg. For 

example, dissolved organic matter (DOM) influences bioavailability. MeHg bound to 

DOM is less available to phytoplankton (Chen et al. 2008). Additionally, pH and 

chloride content of natural waters affect speciation of MeHg, and in turn the amount 

of partitioning to phytoplankton, based on differences in the octanol-water partition 
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coefficients (Kow) of these compounds (Mason et al. 1996). This is supported by 

studies that have measured increased levels of MeHg in zooplankton from acidified 

lakes, compared to reference lakes (Watras & Bloom, 1992). 

Bioaccumulation in plankton 

Marine diatoms exposed to both inorganic and organic mercury compounds 

have demonstrated that mercuric compounds with a higher Kow have higher 

membrane permeabilities and in turn, greater bioaccumulation (Mason et al. 1995). It 

has also been found that the assimilation efficiency of MeHg from phytoplankton to 

zooplankton is four times greater than that of inorganic mercury (Mason et al. 1995). 

Measuring partitioning of mercury within phytoplankton cells showed that a majority 

of MeHg is sequestered in the cytoplasm, while only 9 % of inorganic Hg is stored in 

the cytoplasm. This suggests that inorganic mercury is sequestered in cellular 

membranes, due to its high affinity for the functional groups present, particularly 

thiols (Mason et al. 1995). Methylmercury compounds are less reactive with 

membrane functional groups and more are sequestered in the cell cytoplasm, where 

they can be easily assimilated. This difference in assimilation is due to the fact that 

zooplankton digest the cytoplasm and excrete the surrounding membrane material. 

Therefore, the high biomagnification of organic mercury compounds, relative to 

inorganic species, can be partially explained by differences in their partitioning within 

cells (Mason et al. 1995). 

Studies focused on MeHg uptake in algae have also found species-specific 

differences (Miles et al. 2001). Phytoplankton-water partition coefficients for 

methylmercury are significantly higher in eukaryotic species than in the prokaryotic 
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species. It is hypothesized that the presence of membrane-bound organelles in 

eukaryotic phytoplankton allowed for additional binding of MeHg within the cell 

(Miles et al. 2001). This demonstrates that partitioning of methylmercury from water 

to biota is not only influenced by environmental conditions, but also by physiological 

characteristics of the organism itself. 

Bioaccumulation in fish 

 As with zooplankton, the amount of MeHg stored in the cytoplasm of ingested 

algae is directly related to assimilation efficiency in herbivorous fish. This is also true 

for other food sources. In general, metals bound to the soluble organic portion of prey 

organisms are easily assimilated (Meyer et al. 2005). Diet is the major source of 

MeHg exposure in fish (Phillips & Buhler 1978; Hall et al. 1997). A portion of 

ingested Hg is transferred across the gut wall to the bloodstream and circulated 

throughout the body (Leaner & Mason 2004). A majority of this assimilated MeHg is 

stored in muscle tissues (Leaner & Mason 2004). 

Many field-based studies have measured Hg concentrations in wild fish 

populations, to determine the effect of fish age, size, and environmental conditions on 

Hg accumulation. Mercury concentrations can vary widely among species and over 

time. For example, in Maryland Reservoirs young of the year white perch (Morone 

americana) accumulate Hg rapidly, achieving whole-body concentrations of 10 ng g-1 

ww in less than 3 months (Heyes 2011). Young of the year largemouth bass 

(Micropterus salmoides) can achieve concentrations of 250 ng g-1 ww in the same 

time period (Heyes 2011). These concentrations can be an order of magnitude higher 

upon reaching reproductive age. However, neither the larval mercury concentration 
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(maternally transferred Hg), nor how subsequent accumulation proceeds through 

development is well known.  

 Much research has focused on the physical, chemical, and biological factors 

influencing methylmercury partitioning and bioaccumulation at the base of the food 

chain. These controls are important, as they ultimately determine MeHg 

concentrations in higher trophic levels. Many studies have also focused on high-level 

consumers, such as piscivorous fish, aquatic birds, and marine mammals. However, 

there is relatively little knowledge of Hg accumulation dynamics and thresholds in 

fish of lower trophic status. 

 

Physiological effects of MeHg 

MeHg as a neurotoxin 

Hg primarily affects the central nervous system, causing degeneration of 

neurons. In severe cases of human exposure, specific areas of the brain are damaged, 

causing loss of sensory and balance, as well as decreased motor function (Fitzgerald 

& Clarkson 1991). Hg exposure has also been shown to cause more subtle changes in 

the neurological function of vertebrates. These include impaired behaviors related to 

foraging, predator avoidance, and reproduction in species of amphibians and fish 

(Burke et al. 2001; Webber & Haines 2003; Alvarez et al. 2006).  

MeHg as an endocrine disruptor 

The endocrine system regulates physiological processes, such as reproduction, 

metabolism, development, and digestion via hormones and enzymes. Recent studies 

have shown endocrine disruption in fish as a result of MeHg exposure. Several 
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laboratory dosing experiments have reported decreases in fish growth (Friedman et al. 

1996; Houck & Cech 2004; Lee et al. 2011), possibly due to decreased levels of 

cortisol and thyroid hormone (Friedman et al. 1996) or interference with 

gastrointestinal function and decreased nutrient absorption (Lee et al. 2011).  

Changes in reproductive success related to dietary MeHg exposure have also 

been found in laboratory dosing studies. After exposure to dietary MeHg, male 

fathead minnows showed significantly suppressed levels of testosterone, while 

females showed decreased levels of 17β-estradiol and lower gonadosomatic index 

(Drevnick and Sandheinrich 2003). Additionally, spawning success was significantly 

lower in pairs fed MeHg diets. These changes in sex hormone levels are evidence that 

methylmercury can act as an endocrine disruptor, and in turn decrease reproductive 

fitness.  

Vitellogenin gene expression has been shown to significantly decrease in 

female fathead minnows following dietary MeHg exposure (Klaper et al. 2006). Since 

vitellogenin is an essential yolk precursor protein, these changes likely have 

downstream effects on egg production. This coincides well with suppressed 17β-

estradiol levels (Drevnick & Sandheinrich 2003) and decreased reproductive effort 

(Hammerschmidt et al. 2002) found in exposed female minnows. It has been 

hypothesized that MeHg may bind to estrogen receptors, acting as an estrogen mimic 

that decreases natural hormone levels (Klaper et al. 2006). A subsequent study by 

Drevnick et al. (2006) showed that dietary MeHg exposure in fathead minnows 

significantly increased the occurrence of apoptosis in ovarian follicular cells. These 

cells are responsible for producing 17β-estradiol and other sex steroid hormones. 
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Therefore increased apoptosis by MeHg may also be a mechanism of reduced 

hormone production (Drevnick et al. 2006).  

Maternal transfer of MeHg 

While diet is the major source of MeHg in adult fish (Phillips & Buhler 1978; 

Hall et al. 1997), maternal transfer has been shown to be a significant route of 

exposure for larval and juvenile fish (Latif et al. 2001; Alvarez et al. 2006). Latif et 

al. (2001) compared walleye populations from a contaminated and relatively 

uncontaminated lake. Walleye eggs from both lakes were exposed to varying aqueous 

MeHg concentrations. Larvae from the contaminated lake had much higher MeHg 

concentrations, regardless of waterborne mercury exposure, suggesting that MeHg in 

fish larvae is significantly affected by maternal exposure.  

The source of this maternally transferred Hg is still poorly understood. It was 

originally thought that MeHg partitioned from stores in female tissues into 

developing oocytes (Niimi 1983). However, a more recent study by Hammerschmidt 

and Sandheinrich (2005) indicated that egg mercury content was a reflection of the 

maternal diet during oogenesis, rather than Hg stored in female tissues. 

Understanding the mechanism and source of this maternally transferred Hg is 

necessary in order to more accurately assess offspring exposure during sensitive early 

lifestages. 

Rationale 

There is limited research on the response of fish occupying lower trophic 

levels to MeHg exposure. These organisms are important links between producers at 

the base of the food chain and high-level consumers. The effects of variables such as 
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fish age, species, and dietary history on MeHg uptake is poorly understand, 

particularly in estuarine systems. Furthermore, we know very little about the transfer 

of this accumulated Hg to offspring. It is important to evaluate the resiliency of 

species to MeHg exposure based upon both lethal and sublethal endpoints, such as 

growth. Despite the importance of marine fisheries to human society, a majority of 

research has focused on freshwater fish. There is a need to study other species, with 

varying life histories, particularly those that inhabit saltwater environments. 

This research consisted of two separate dosing studies. Chapter 2 presents 

findings from an experiment which sought to compare the sensitivity of two estuarine 

forage fish species (Cyprinodon variegatus and Menidia beryllina) to dietary MeHg 

exposure, as well as characterize uptake from juvenile to adult life stages. Chapter 3 

presents a second dosing study which used a stable mercury isotope approach to 

determine the source of maternally transferred MeHg in the sheepshead minnow 

(Cyprinodon variegatus). 

Terminology 

In the following chapters, several terms are used to distinguish among types of 

mercury. T-Hg refers to total mercury, which includes all inorganic and organic 

forms. MeHg refers to monomethylmercury. In Chapter 3, “ambient mercury” is used 

to describe the mercury fed to fish during stage 1 of dosing. 199Hg is the enriched 

stable isotope fed to fish during the second period of dosing. Both ambient Hg and 

199Hg were measured as T-Hg, however it is assumed that a majority of this is 

methylmercury, as this was the only form of mercury added to fish diets. 

 



 

 
 

 

Figure 1.1. Conceptual diagram
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Conceptual diagram of mercury cycling in the environment.  
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Chapter 2: Uptake of dietary methylmercury by two estuarine 
fish: the sheepshead minnow (Cyprinodon variegatus) and 
inland silverside (Menidia beryllina) 
 

 

Introduction 

Background 

Mercury is a widespread contaminant that is of concern to both ecosystem and 

human health. Natural and anthropogenic sources release elemental Hg into the 

atmosphere (Fitzgerald & Clarkson 1991; Wang et al. 2004), which is oxidized and 

deposited to terrestrial and aquatic systems as HgII (Lindberg et al. 2007). This 

reactive form of mercury can then undergo several transformations in the 

environment, including methylation by bacteria. Sulfate-reducing strains of anaerobic 

bacteria produce a majority of methylmercury (MeHg) in ecosystems (Gilmour et al. 

1992). This transformation is most prevalent in anoxic sediments having high organic 

matter contents, such as in wetlands and marshes. As marshes comprise a substantial 

component of many estuarine ecosystems and serve as nursery habitat, small fish may 

be exposed to significant concentrations of MeHg (Mitchell and Gilmour 2008).  

Methylmercury accumulates in food chains, reaching potentially harmful 

concentrations in upper trophic levels. Aside from humans, animals occupying high 

trophic positions in aquatic food webs, such as piscivorous birds, are highly 

susceptible (DesGranges et al. 1998; Adams and Frederick 2008). Although it is 

important to understand mercury accumulation and toxicity in species of high trophic 

position, Hg exposure in these organisms is ultimately determined by their prey 
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(Phillips & Buhler 1978; Hall et al. 1997). Yet the behavior of mercury in the base of 

the food chain is poorly understood, particularly in fish of low trophic status. 

Many field-based studies have measured Hg concentrations in wild fish to 

determine the effect of fish age, size, and environmental conditions on Hg 

accumulation. Mercury concentrations can vary widely among species and over time. 

For example, in Maryland Reservoirs young of the year white perch (Morone 

americana) accumulate Hg rapidly, achieving whole-body concentrations of 10 ng g-1 

ww in less than 3 months (Heyes 2011). Young of the year largemouth bass 

(Micropterus salmoides) can achieve concentrations of 250 ng g-1 ww in the same 

time period (Heyes 2011). These concentrations can be an order of magnitude higher 

upon reaching reproductive age. However, neither the larval mercury concentration 

(maternally transferred Hg), nor how subsequent accumulation proceeds through 

development is well known.  

It is difficult to tease apart processes that control Hg accumulation since the 

dietary history of field-collected fish is unknown. This is a particularly important 

variable to consider, as previous studies have shown that diet is the primary pathway 

of Hg uptake (Phillips & Buhler 1978; Hall et al. 1997). It is difficult to accurately 

model or predict the level of Hg contamination in prey items. While some studies 

have examined mercury exposures based on Hg in fish stomach contents (Ward et al. 

2010), such studies only address the proximate diet at the time of sampling, and do 

not necessarily reflect the diet over an individual’s entire lifetime. 

Laboratory dosing studies provide the opportunity to control and monitor 

dietary Hg exposure over time. Fish growth and development can also be easily 
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measured, allowing for evaluation of physiological effects. However, many 

laboratory dosing studies have measured mercury accumulation over only short time 

periods, on the order of hours or days (Leaner & Mason 2001; Leaner & Mason 

2004), rather than addressing chronic exposure as would occur in natural habitats. 

Furthermore, most of these laboratory studies have used freshwater species as test 

organisms, and thus relatively little is known about mercury dynamics in estuarine 

and marine systems, where the majority of fisheries exploited for human consumption 

occur. 

Study rationale 

The relationship between dietary exposure and MeHg accumulation is poorly 

understood in fish of lower trophic levels, particularly in estuarine ecosystems. It is 

also unknown how this relationship varies among species. Therefore, two estuarine 

forage fish species were chosen as test organisms: the sheepshead minnow 

(Cyprinodon variegatus) and the inland silverside (Menidia beryllina).  

Cyprinodon variegatus and M. beryllina inhabit shallow coastal waters along 

the Atlantic coast of North America from Massachusetts to Mexico (Murdy et al. 

1997). Both species are abundant in estuarine marshes and serve as important prey for 

other vertebrates and macroinvertebrates. Sheepshead minnows are ideal for 

laboratory studies because of their small size, rapid maturation, and overall tolerance 

of laboratory conditions. Inland silversides also have rapid development, yet, relative 

to sheepshead minnows, are much more sensitive to abiotic conditions.  
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Objectives 

The objectives of this study were to: 

1. Compare species sensitivity to dietary MeHg with both lethal and sublethal 

endpoints (growth) 

 

2. Compare accumulation of dietary MeHg between species, among levels of 

dietary exposure, and over different life stages 

Methods 

Experimental protocol 

Food preparation 

 Methylmercury diets were prepared with methylmercury (II) chloride (Alfa 

Aesar). MeHg was incorporated into flake food via an agar/gelatin matrix. Gelatin, 

agar, flake food, and deionized water were combined in a mass ratio of 0.7:1:20:100 

respectively. Agar and gelatin were added to boiling deionized water and stirred for 

one minute. This mixture was poured into a shallow Pyrex baking dish and mixed 

with pre-ground flake food. Aqueous MeHg was then added to the mixture at 

calculated volumes to achieve the following nominal concentrations: 1, 5, 10, and 20 

µg g-1 dw. After setting in a refrigerator overnight, food was cut into small slices and 

frozen at -80° C. Food was then freeze-dried and ground with a mortar and pestle to 

produce a fine, dry, flake mixture. Fish diets were stored at – 4º C between feedings 

to minimize degradation of Hg concentrations. This storage did not significantly 

decrease food Hg content over the course of the experiment. Actual Hg 

concentrations averaged 65 % of the target concentrations (Table 2.1). 
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Husbandry 

Fish were housed in 76 L aquaria at Chesapeake Biological Laboratory 

(Solomons, MD). All tanks were equipped with individual filters, heaters, and 

aeration to maintain water quality. Water temperature was maintained at 

approximately 26° C for the duration of the experiment. Filtered ambient river water 

(Patuxent River, MD, USA) was used, thus salinity varied naturally between 11 and 

20 ppt over the course of the experiment. A 14:10 hour light:dark cycle was 

maintained throughout. Each tank received 1 g of food daily, which was confirmed to 

be an ad libitum regimen, as excess food remained prior to subsequent food additions.  

Tanks were cleaned weekly and water quality was monitored by measuring dissolved 

oxygen, temperature, salinity, conductivity, and pH weekly. Ammonia levels were 

also measured colorimetrically (A.P.I.) in a random subset of tanks periodically. Note 

that this husbandry protocol was approved by the University of Maryland Center for 

Environmental Science IACUC (protocol #S-CBL-10-03). 

Fish were acquired from Aquatic Biosystems (Denver, CO, USA) at 14 days 

old and distributed to aquaria at a density of 12 fish per tank (0.16 individuals / L). 

All individuals were fed control food and acclimated to laboratory conditions for two 

weeks prior to the start of dosing. The 70-day dosing period spanned the juvenile to 

adult life stages of both species, beginning at 28 days old and ending at 98 days old.  

Treatments and sampling design 

Treatments consisted of a control diet and four diets with varying 

concentrations of methylmercury (see above). Each treatment contained 3 replicate 
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tanks for each species, totaling 30 aquaria. Treatments and species were randomly 

distributed among tank positions.  

Fifteen individuals of each species were sacrificed at the beginning of the 

experiment to measure background Hg concentrations, as well as initial length and 

weight. During the dosing period, 3 individuals were sub-sampled from each tank at 

three time points: days 23, 46, and 70. Fish were held for 48 hours in separate aerated 

buckets, to clear gut contents. Each individual was then euthanized via cervical 

dislocation, measured for total length and wet mass, and frozen at -80° C for later T-

Hg analysis. After 70 days of dosing, the experiment was terminated. 

Water samples were collected from each tank every two weeks and analyzed 

for both T-Hg and MeHg to track partitioning of Hg within aquaria over time (see 

Appendix). Food was sub-sampled every two weeks and analyzed for MeHg to 

monitor any changes in concentrations due to storage. To extract MeHg from food, 

triplicate 1 g sub-samples of food were distilled in a solution of 20 mL Milli-Q water, 

1 mL 50 % sulfuric acid, and 0.5 mL 20 % potassium chloride (Horvat et al. 1993). 

The distillate was then analyzed for MeHg (see below). 

Sample preparation and analyses 

Digestions 

 Fish carcasses were freeze-dried for 24 hours prior to digestion. Fish were 

then digested on a hot plate at 120 - 150° C for 6-9 hours, using 5 mL of 50:50 

concentrated nitric acid:sulfuric acid. Digestions were done in 50 mL Erlenmeyer 

flasks with watch glass covers for ventilation. Digestions were considered complete 

when flasks were free of brown gas. Samples were cooled and diluted to 50 mL with 
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Milli-Q water. Samples were then oxidized with 1 mL of bromine monochloride 

(BrCl) and analyzed the following day. Exact dilution volumes were calculated by 

weight difference. 

T-Hg analysis 

 Analysis of total mercury (T-Hg) was conducted on a Tekran Model 2600 

Mercury Analyzer with a Model 2620 Autosampler (Tekran Instruments, Canada). 

The instrument measures T-Hg via cold vapor atomic fluorescence spectrometry 

(CVAFS). Briefly, all mercury species within the sample were reduced to elemental 

mercury (Hg0) by stannous chloride (SnCl2). Hg0 was then concentrated on a gold 

trap, thermally desorbed, analyzed by CVAFS, and quantified according to EPA 

method 1631 (US EPA, 1996). 

 Prior to analysis, excess oxidant was neutralized in samples with 10 ul of 

hydroxylamine hydrochloride. T-Hg standards were prepared from a NIST stock 

solution in concentrations of 5, 10, 25, 50, 75, 100, 150, and 200 ng L-1. A matrix 

blank was prepared, according to the type of samples being analyzed. When 

analyzing fish samples, the matrix blank consisted of 0.2 % digest acid and 0.08 % 

BrCl and when analyzing water samples, the matrix blank consisted of 0.5 % BrCl. 

Quality control included calibration blanks, replicate standards and samples, duplicate 

dilutions, and duplicate SRMs (DORM-2, National Research Council Canada). 

MeHg analysis 

 Methylmercury analysis was conducted on a Tekran Model 2500 Mercury 

Analyzer (Tekran Instruments, Canada). Water samples were acidified with 0.5 % 

sulfuric acid one day prior to analysis and KOH was used to adjust pH between 3 and 
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9 the following morning. No additional preparation was necessary for distilled food 

samples. Aliquots of sample were added to bubblers containing a citrate buffer (pH = 

4.8). The solution was ethylated with sodium tetraethylborate, converting MeHg to 

gaseous methylethylmercury (Bloom 1989). This was purged from solution and 

concentrated on Tenax traps. Methylethylmercury was then thermally desorbed from 

traps, separated by gas chromatography, and detected by CVAFS. Each run included 

a set of standards (25-500 pg in volume), as well as blanks and sample replicates.  

Statistical analyses 

Statistical analyses were conducted in Minitab (Version 13.1, Minitab Inc., 

State College, PA). Mean values for each replicate were calculated for treatment 

comparisons by analysis of variance (ANOVA). Assumptions of normality and 

homoscedasticity were tested prior to each analysis and data were transformed if 

necessary. Statistical significance was evaluated at α = 0.05 in all cases. When factors 

were significant in ANOVA, Tukey’s multiple pairwise comparisons were used to 

separate specific differences in levels.  

Mortality was analyzed by calculating the proportion of individuals that died 

in each tank over the course of the experiment. Data were arcsine square root 

transformed to meet normality assumptions and two-way ANOVA was used to 

evaluate species and treatment differences. In this study, mass and length at a given 

time period are representative of growth, as all individuals were the same age at the 

beginning of the experiment (Ward et al. 2010). Mass and length data were analyzed 

with one-way ANOVA to assess treatment differences for each species. Additionally, 

mass and length-specific growth rates were calculated for three equivalent time 



 

 20 
 

periods (Day 0-23, 23-46, and 46-70) using the equation:     

    (m2 – m1) / m1 

Where m1 represents the initial measurement and m2 represents the final 

measurement. These values were then compared with one-way ANOVA to detect 

treatment differences for each species. 

 T-Hg tissue concentrations were log10 transformed to meet normality 

assumptions. Two-way ANOVA was used to determine differences in mass specific 

and total body burdens between treatments, species, and days. Because no data were 

available for M. beryllina in the highest treatment on day 70 due to mortality, the 14 

µg g-1 treatment was eliminated from the analysis. Additionally, analysis of 

covariance (ANCOVA) was performed to evaluate species differences in body 

burdens, with fish mass as a covariate. To assess the relationship between mercury in 

the diet and fish body burdens, linear regression analysis was performed on log10 

transformed fish and dietary Hg concentrations. This analysis was conducted 

separately for each species. Pearson product moment correlation analysis was used to 

examine correlation between fish mass and tissue concentrations in both species. 

 Lastly, dietary bioaccumulation factors (BAFs) were calculated for each 

treatment and species, using the equation: 

    [ Hg ] fish / [ Hg ] diet 

Because BAFs were not statistically different between sampling dates, values were 

averaged over the entire dosing period, allowing the inclusion of the highest treatment 

in statistical analyses. Values were log10 transformed and compared between 

treatments and species using two-way ANOVA.  
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Results 

Survival 

The proportion of individuals that died differed significantly between species 

(p= 0.043) and among treatments (p < 0.001). M. beryllina had significantly higher 

mortality than C. variegatus (p = 0.0428). Both species in the 14 µg g-1 treatment had 

significantly higher mortality than all lower treatments (Figure 2.1). Cyprinodon 

variegatus also displayed delayed mortality, compared to M. beryllina, in both the 7 

µg g-1 and 14 µg g-1 treatments. For example, in the 14 µg g-1 treatment, mortality 

was first observed in M. beryllina after 24 days of dosing, while C. variegatus did not 

display mortality until day 34. 

Growth 

Menidia beryllina showed significant differences in mass among treatments 

on Day 46 (p= 0.035). Individuals in the highest treatment (14 µg g-1) had 

significantly lower wet mass than individuals in both the control (p= 0.0397) and 3 µg 

g-1 (p= 0.0456) treatments (Figure 2.2). Cyprinodon variegatus showed significant 

differences in mass specific growth rate between Days 23 – 46 (p= 0.005). The 

highest treatment had a significantly lower mass specific growth rate than the 0.6 µg 

g-1 (p= 0.0284) and 3 µg g-1 (p= 0.0029) treatments (Figure 2.3). Cyprinodon 

variegatus also showed significant differences in length specific growth rate during 

the same time period. Individuals in both the 7 µg g-1 treatment (p= 0.0497) and the 

14 µg g-1 treatment (p= 0.0057) had significantly lower length specific growth rates 

than the 3 µg g-1 treatment (Figure 2.3). 
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Mercury accumulation 

Accumulation curves for each treatment and species (Figure 2.4) show a large 

increase in mass-specific T-Hg body burden between Day 1 and Day 23 of dosing. 

Tissue concentrations between Day 23 and 46 did not differ, however body burdens at 

Day 70 were significantly higher than those at Day 23 (p = 0.0435). T-Hg body 

burdens were significantly different among treatments (p < 0.001) and between 

species (p<0.001) over the 70-day dosing period. Menidia beryllina had significantly 

higher mass specific body burdens than C. variegatus in all treatments. There was 

also a significant interaction between treatment and species (p<0.001). T-Hg tissue 

concentrations increased linearly with dietary Hg concentration in both M. beryllina 

and C. variegatus (p < 0.001, adj. R2 > 0.99 ; Figure 2.5).  

 Examining mercury accumulation in terms of total body burden (µg) showed 

increasing Hg content over time (Figure 2.6). While M. beryllina had higher mass-

specific tissue concentrations of Hg, C. variegatus had significantly higher total body 

burdens (p < 0.0001). Total body burdens differed significantly among treatments (p 

< 0.001) and days (p < 0.001), with each sampling point having significantly higher 

Hg content than the previous. When fish mass (dry wt.) was used as a covariate, no 

differences were detected between species, and body burden significantly varied with 

mass (p = 0.023). Mass was significantly negatively correlated with mass specific 

tissue concentrations in all treatments (Figure 2.7).  

 Dietary bioaccumulation factors (BAFs) were similar among days, but 

differed significantly between species (p < 0.001) and among treatments (p < 0.001) 

(Figure 2.8). There was also a significant interaction between species and treatments 
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(p = 0.01). Menidia beryllina had significantly larger BAFs than C. variegatus. 

Among M. beryllina individuals, the 0.6 µg g-1 treatment had significantly higher 

BAFs than the 3 µg g-1 treatment (p = 0.0185) and 7 µg g-1 treatment (p = 0.0481). 

Cyprinodon variegatus individuals showed a similar trend in BAFs. The 0.6 µg g-1 

treatment had significantly higher BAFs than the control treatment (p = 0.0064), 7 µg 

g-1 treatment (p = 0.0016), and 14 µg g-1 treatment (p = 0.0062). The 3 µg g-1 

treatment also had significantly higher BAFs than the 7 µg g-1 treatment (p = 0.0057) 

and the 14 µg g-1 treatment (p = 0.0208). 

Discussion 

Survival 

Our study suggests that M. beryllina is more sensitive to dietary MeHg 

exposure than C. variegatus, based on higher mortality, as well as more rapid onset of 

mortality. Although most mortality was seen in the highest treatments, there are likely 

species-specific differences in sublethal responses at lower levels of mercury 

exposure, which should be investigated in future studies. Species comparisons are 

important when assessing toxicological effects of a contaminant, however there are 

limited examples of this in mercury literature. 

Growth 

Both species had reduced growth in the highest treatments (14 ug g-1 and 7 ug 

g-1), between days 23 and 46. This suggests an effect of dietary MeHg on growth. 

However, these reductions did not show consistent treatment effects. For example, 

growth in the 14 µg g-1 diet was lower than some treatments, but not always the 
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control. Further studies with higher replication might reveal stronger treatment 

effects. No significant effects of MeHg on growth were detected in the other time 

periods. However, statistical power was very low between days 0 and 23 (power = 

0.17) and between days 46 and 70 (power = 0.2). Therefore, we cannot rule out 

effects of dietary MeHg on growth during these periods.  

Previous studies have found similar negative effects of dietary methylmercury 

on fish growth (Houck & Cech 2004), particularly in larger fish such as walleye 

(Friedman et al. 1996) and sturgeon (Lee et al. 2011). Hypothesized mechanisms for 

this include decreased levels of cortisol and thyroid hormone (Friedman et al. 1996), 

interference with gastrointestinal function and decreased nutrient absorption (Lee et 

al. 2011), as well as reallocation of energy to MeHg detoxification (Lee et al. 2011). 

Since fish in this study were fed ad libitum and could consume as much food as 

needed, the last mechanism is an unlikely explanation. The fact that growth 

reductions were seen even when fish could compensate for increased energy needs, 

suggests that a physiological impairment may have caused the observed decreases in 

growth. 

Mercury accumulation 

Mercury tissue concentrations in C. variegatus were very similar to those 

measured in fathead minnows fed the same dietary MeHg concentrations 

(Hammerschmidt et al. 2002). Tissue concentrations in both C. variegatus and M. 

beryllina were also similar to Hg concentrations measured in sturgeon during a 

laboratory dosing study (Lee et al. 2011). Although sturgeon (Lee et al. 2011) were 

exposed to higher dietary concentrations, their final tissue concentrations were similar 
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to those in our study. Interestingly, sturgeon exhibited much higher mortality in 

response to these mercury body burdens. Tissue concentrations that showed little 

mortality in this study were higher than many of those reported in fish from 

contaminated areas. For example, red drum (Sciaenops ocellatus) from Lavaca Bay 

(TX) contained a maximum of  5.7 µg g-1  ww, while fish in this study accumulated 

over 7 µg g-1  ww with no increase in mortality. This suggests that small forage fish, 

such as C. variegatus and M. beryllina, have a high tolerance for dietary MeHg 

exposure and could be resilient in highly contaminated ecosystems. If fish occupying 

low trophic levels are capable of surviving with high Hg body burdens, they may 

serve as mercury reservoirs within food webs. This has important implications for the 

Hg exposure of higher trophic levels. 

The largest change in mercury tissue concentrations occurred within the first 

23 days of dosing, even though fish growth during this time period was comparable to 

the other time periods. We are not aware of any studies that have found differences in 

MeHg depuration mechanisms during the juvenile lifestage, relative to the adult 

lifestage. However, this is certainly possible. There may also be differences in the 

way mercury is assimilated in young fish, when energy demands are high and there is 

a strong priority on producing new somatic tissue. Additionally, we found significant 

increases in mass specific Hg concentrations between days 23 and 70, indicating that 

mercury accumulation occurred during the sub-adult lifestage as well.  

We observed a significant linear relationship between dietary Hg exposure 

and T-Hg body burden, suggesting that fish tissue concentrations respond strongly to 

the level of Hg contamination in the diet. This coincides with the idea that diet is the 



 

 26 
 

primary pathway of MeHg uptake in fish (Phillips & Buhler 1978; Hall et al. 1997). 

This strong relationship was observed after only a few weeks of dosing, which also 

shows that tissue concentrations respond rapidly to concentrations in the diet. This 

finding is similar to observed in an ecosystem-level stable isotope study (Paterson et 

al. 2006), which found that newly added mercury in zooplankton and benthic 

invertebrates was quickly assimilated in wild fish. A study of MeHg uptake kinetics 

in C. variegatus showed that ingested Hg is transferred to the bloodstream and 

subsequently to tissues at a relatively fast rate, particularly in small individuals 

(Leaner & Mason 2004), further explaining the rapid responses observed. 

Cyprinodon variegatus had significantly higher growth rates than M. beryllina 

throughout the study, which is a factor that should be considered when comparing Hg 

accumulation between species. We found that mass was negatively correlated with 

tissue concentrations in both species. This was supported by the lack of species 

differences in Hg body burdens when mass was used as a covariate. Therefore it is 

likely that differences in the tissue concentrations of C. variegatus and M. beryllina 

were due to species differences in growth over the dosing period, rather than 

physiological differences in mercury assimilation and depuration. This correlation has 

been observed in field studies (Harris & Bodaly 1998; Simoneau et al. 2005; Ward et 

al. 2010), however it is complicated by the variable physical conditions and unknown 

dietary history of field-collected fish. A bioenergetics-based model comparing fish 

sampled from two different lakes, with differing mercury concentrations, found that a 

majority of the variation was explained by differences in dietary MeHg (Harris & 

Bodaly 1998). However, a significant portion of the variation among lakes was 



 

 27 
 

explained by growth rates. By controlling variables such as dietary MeHg exposure 

and water chemistry, our laboratory experiment gives additional evidence of the 

significant effects of fish growth rate on Hg tissue concentrations.  

Based on these findings, growth rate is an important variable to consider when 

comparing tissue concentrations among species. This has ecological implications for 

consumers. Larger, faster-growing prey items may have reduced mercury content, on 

a per gram basis. Additionally, an ecosystem that is dominated by smaller, slow-

growing prey species may be more susceptible to Hg bioaccumulation in higher 

trophic levels (Ward et al. 2010). Previous studies have shown that productive 

systems can experience mercury dilution via algal blooms at the bottom of the food 

chain (Chen et al. 2005). This effect can be enhanced by subsequent high 

consumption and growth dilution in consumers (Karimi et al. 2007). Overall, growth 

is an important factor to consider when assessing mercury accumulation in both 

individuals and ecosystems. 

Lastly, we found that dietary bioaccumulation factors decreased with 

increased dietary mercury exposure. This pattern was evident for both species. Other 

laboratory dosing studies have also found decreased assimilation of mercury at higher 

levels of exposure in both fish (Houck & Cech 2004) and larval amphibians (Unrine 

et al. 2004). This suggests that MeHg accumulated is not a constant fraction of MeHg 

ingested, but rather, accumulation is dependent on the level of contamination in the 

diet. This has implications for bioaccumulation models, which often use a constant 

term for contaminant uptake. In the case of mercury, it appears that this model 

parameter should vary with dietary exposure.  
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Table 2.1. Target MeHg concentrations* and corresponding measured concentrations 
± SE for each treatment. Measured concentrations were averaged over the 
experiment. 
 

Target MeHg concentration  Actual MeHg concentration 

(µg g-1 dw) (µg g-1 dw) 

0.06 0.04 ± 0.003 

1.00 0.56 ± 0.05 

5.00 3.33 ± 0.30 

10.00 6.78 ± 0.63 

20.00 13.96 ± 1.45 
 
* The target MeHg concentration for control food was not zero because background 
mercury in flake food was unavoidable (ingredients include shrimp and fish meal, 
which contain MeHg). The target concentration was based on literature values. 
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Figure 2.1. Mean percent mortality ± 1 SE for each treatment, over the 70-day dosing 
period (n=3). Different letters indicate significantly different values. 
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Figure 2.2. Mean length and weight ± 1 SE over time for both C. variegatus (top 
panel) and M. beryllina (bottom panel). n=3 for each point. Asterisks indicate 
significantly different values. 
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Figure 2.3. Mean length specific and mass specific growth ± 1 SE for the three 
experimental time periods (n=3). Different letters indicate significantly different 
values. 
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Figure 2.4. Mass specific T-Hg tissue concentrations ± 1 SE for all treatments over 
the 70-day dosing period. n=3 for each point. In the legend, “M” represents M. 
beryllina, “C” represents C. variegatus, and numbers represent dietary Hg 
concentrations. 
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Figure 2.5. Relationship between MeHg concentration in the diet and mass specific 
T-Hg concentration in fish, for each species. Values were averaged over time for each 
treatment. 
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Figure 2.6. T-Hg body burdens ± 1 SE for all treatments over the 70-day dosing 
period. n=3 for each point. In the legend, “M” represents M. beryllina, “C” represents 
C. variegatus, and numbers represent dietary Hg concentrations. 
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Figure 2.7. Relationship between T- Hg body burden and mass for both species. Each 
treatment is graphed individually. Points represent individual fish (n=18). 
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Figure 2.8. Mean Bioaccumulation factor ± 1 SE for each treatment (n=3). Different 
letters indicate significantly different values. 
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Chapter 3: Investigation of maternal transfer of dietary MeHg in 
the sheepshead minnow (Cyprinodon variegatus) using a stable 
mercury isotope 

 

Introduction 

Background 

Maternal transfer of contaminants is an important exposure pathway as early 

life stages are often most susceptible to their effects. Pollutants transferred from the 

mother have the potential to significantly affect survival and development of embryos 

(Alvarez et al. 2006; Hopkins et al. 2006), as well as adversely affect offspring later 

in life (Eisenreich et al. 2009; Bergeron et al. 2011). The effects of maternally 

transferred compounds ultimately have implications for population viability (Hopkins 

et al. 2006), and are therefore important topics of study. 

Mercury is a contaminant of concern in many ecosystems, particularly in its 

methylated form (MeHg), which readily accumulates in fish and other biota. Recent 

studies have shown endocrine disruption and reproductive effects in fish as a result of 

dietary MeHg exposure (Drevnick & Sandheinrich, 2003; Klaper et al., 2006). Effects 

of MeHg observed in freshwater minnows (Pimephales promelas) include changes in 

sex hormone levels (Drevnick & Sandheinrich, 2003), as well as decreases in the 

production of vitellogenin, an essential yolk protein (Klaper et al. 2006). As both an 

endocrine disruptor and potent neurotoxin, MeHg has the potential to impair 

developing offspring. However, our current understanding of maternal transfer of 

MeHg and its effects remain limited, particularly in estuarine fish. 
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While diet is the major source of MeHg for adult fish (Phillips & Buhler 1978; 

Hall et al. 1997), maternal transfer has been shown to be a significant route of 

exposure for larval and juvenile fish (Latif et al. 2001; Alvarez et al. 2006). Recent 

studies on the cellular mechanisms by which MeHg moves through the body have 

shown that MeHg readily complexes with cysteine (Simmons-Willis et al. 2002). This 

structure mimics that of methionine and can therefore be transferred across cell 

membranes to developing oocytes via methionine transporters (Simmons-Willis et al. 

2002). It was originally thought that MeHg partitioned from stores in female tissues 

into developing oocytes. However, a more recent study by Hammerschmidt and 

Sandheinrich (2005) indicated that egg mercury content was a reflection of the 

maternal diet during oogenesis, rather than Hg stored in female tissues. 

Study rationale 

Dynamics of methylmercury transfer from parent to offspring are poorly 

understood and could significantly affect the reproductive fitness of offspring. This 

research aims to increase knowledge of maternal MeHg transfer in estuarine fish. By 

using a stable mercury isotope, we can differentiate between mercury stored in female 

tissues and mercury assimilated from the maternal diet during oogenesis. 

Additionally, this approach allows us to quantify assimilation of methylmercury from 

the diet, and subsequent transfer to offspring. Stable mercury isotopes are powerful 

tools to trace the fate of mercury species and investigate processes such as 

methylation, bioaccumulation, and adsorption onto particles (Hintelmann & Ongrinc 

2003). Using this technique in the context of maternal transfer is a novel approach. 
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Effects of methylmercury exposure on lower trophic levels have implications 

for species of higher trophic levels, including important commercial species. 

Furthermore, compared to freshwater species, accumulation and effects of MeHg in 

estuarine and marine organisms are understudied. Therefore, we chose to focus on the 

estuarine minnow Cyprinodon variegatus. Cyprinodon variegatus inhabits shallow, 

coastal waters of North America from Massachusetts to Mexico (Murdy et al. 1997). 

Sheespshead minnows hatch after 4 to 7 days, remain as larvae for approximately 28 

days, and metamorphose to the juvenile stage which lasts approximately 35 days prior 

to sexual maturation (Raimondo et al. 2009). Sheepshead minnows are ideal for 

laboratory studies because of their small size, rapid development, and tolerance of 

laboratory conditions. Due to its abundance in estuarine marshes (e.g. Rowe and 

Dunson, 1995), C. variegatus serves as important food source for other vertebrates 

and macroinvertebrates. 

Objectives 

The objectives of this study were to: 

 

1. Assess the effect of dietary MeHg on egg production by C. variegatus 

 

2. Quantify maternal mercury transfer and determine if it occurs in a dose-

dependent nature 

 

3. Use a stable mercury isotope to trace maternal transfer and test recent findings 

that suggest that transfer is largely from the maternal diet during oogenesis 
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Methods 

Experimental protocol 

Food preparation 

Methylmercury diets were prepared with methylmercury (II) chloride (Alfa 

Aesar) for the first period of dosing (28 days), and with laboratory synthesized 

Me199Hg for the remainder of dosing (63 days; Figure 3.1). 199Hg, a stable isotope of 

mercury, was purchased from Oak Ridge National Laboratory. Me199Hg was 

synthesized by methylation of 199Hg with methylcobalamin and subsequent extraction 

using methylene chloride. This was based on methods described in Hintelmann and 

Ogrinc (2003). Me199Hg solutions were analyzed for both T-Hg and MeHg to confirm 

that all mercury in solution was MeHg. 

MeHg was incorporated into flake food via an agar/gelatin matrix. Gelatin, 

agar, flake food, and deionized water were combined in a mass ratio of 0.7:1:20:100, 

respectively. Agar and gelatin were added to boiling deionized water and stirred for 

one minute. This mixture was poured into a shallow Pyrex baking dish and mixed 

with pre-ground flake food. Aqueous MeHg was then added to the mixture at 

calculated volumes to achieve the following nominal concentrations: 1, 5, and 10 µg 

g-1 dw. After setting in a refrigerator overnight, food was cut into small slices and 

frozen at -80°C. Food was then freeze-dried and ground with a mortar and pestle to 

produce a fine, dry, flake mixture. Fish diets were stored at – 4 º C between feedings 

to minimize degredation of Hg concentrations. Actual Hg concentrations averaged 

101 % of the target concentrations (Table 3.1). 
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Husbandry 

Fish were housed in 76 L aquaria at Chesapeake Biological Laboratory 

(Solomons, MD). All tanks were equipped with individual filters, heaters, and 

aeration to maintain water quality. Water temperature was maintained at 

approximately 26 ° C for the duration of the experiment. Filtered ambient river water 

(Patuxent River, MD, USA) was used, thus salinity varied naturally between 7 and 15 

ppt over the course of the experiment. A 14:10 hour light:dark cycle was maintained 

throughout. Each tank received 1 g of food daily, which was confirmed to be an ad 

libitum regimen, as excess food remained prior to subsequent food additions. Tanks 

were cleaned weekly and water quality was monitored by measuring dissolved 

oxygen, temperature, salinity, conductivity, and pH weekly. Ammonia levels were 

also measured colorimetrically in a random subset of tanks periodically. Note that this 

husbandry protocol was approved by the University of Maryland Center for 

Environmental Science IACUC (protocol #S-CBL-10-03). 

Sheepshead minnows were acquired from Aquatic Biosystems (Denver, CO) 

at 14 days old. Prior to the study, fish were held in 38 L aquaria for a two-week 

acclimation period, during which time they were fed control food. At the end of this 

period, individuals were randomly distributed among 76 L aquaria at a density of 12 

fish per tank (0.16 individuals / L), and dosing was initiated.  

Treatments and sampling design 

Treatments consisted of a control diet and three diets with varying 

concentrations of methylmercury. Treatments consisted of a control, and nominal 

MeHg doses of 1 (low), 5 (medium), and 10 µg g-1 dw (high). Each treatment 
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contained 6 replicate tanks, totaling 24 aquaria. Treatment and species were randomly 

distributed among tank positions.  

Juveniles were fed a non-isotopic MeHg diet for 28 days, after which point 

diets were switched to an isotopic diet containing Me199Hg (Figure 3.1). This switch 

was timed to occur before the onset of oogenesis. To confirm this, 3 females were 

sacrificed from one tank per treatment and dissected to evaluate reproductive status. 

No developed eggs were found in individuals at the beginning of isotope dosing. 

Therefore, we assumed that the isotopic diet spanned the period of oogenesis. 

Individuals were fed the isotopic diet for 63 days, for a total Hg dosing period 

of 91 days. At the end of the experiment, fish were transferred to clean aerated water 

and held unfed for 48-hours. Individuals were then euthanized by cervical dislocation, 

measured for total length and wet mass, and frozen at -80° C for later mercury 

analysis. Prior to freezing, all female fish were dissected to remove eggs. Eggs were 

lightly rinsed with deionized water, counted, and weighed. Eggs from each female 

were pooled into 5 mL Teflon vials and frozen at -80° C for subsequent digestion and 

mercury analysis. Because sheepshead minnows have asynchronous ovaries, eggs 

vary in development and size within the gonad. Therefore, only eggs that were large 

enough to be accurately removed and counted were included in egg analyses.  

Each batch of food was sub-sampled and analyzed once, in order to measure 

actual mercury doses. Since significant MeHg breakdown in food was not found in 

the previous experiment, weekly sub-sampling of food was not done in this 

experiment. To extract MeHg from food, triplicate 1 g sub-samples of food were 

distilled in a solution of 20 mL Milli-Q water, 1 mL 50 % sulfuric acid, and 0.5 mL 



 

 43 
 

20 % potassium chloride (Horvat et al. 1993). The distillate was then analyzed for 

MeHg (see below). 

Sample preparation and analyses 

Digestions 

 Fish carcasses were freeze-dried for 24 hours prior to digestion. Fish were 

then digested on a hot plate at 120-150° C for 6-9 hours, using 5 mL of 50:50 

concentrated nitric acid:sulfuric acid. Digestions were done in 50 mL Erlenmeyer 

flasks with watch glass covers for ventilation. Digestions were considered complete 

when flasks were free of brown gas. Samples were cooled and diluted to 50 mL with 

Milli-Q water. Samples were then oxidized with 1 mL of bromine monochloride 

(BrCl) and analyzed the following day. Exact dilution volumes were calculated by 

weight difference. 

Eggs from each female were freeze-dried in 5 mL Teflon vials and digested 

with 2 mL of 50:50 nitric acid:sulfuric acid for 24 hours in a 60º C oven. Samples 

were then diluted and oxidized using the same procedure described for fish. 

T-Hg analysis 

 Analysis of total mercury (T-Hg) was conducted on a Tekran Model 2600 

Mercury Analyzer with a Model 2620 Autosampler (Tekran Instruments, Canada). 

The instrument measures T-Hg via cold vapor atomic fluorescence spectrometry 

(CVAFS). Briefly, all mercury species within the sample are reduced to elemental 

mercury (Hg0) by stannous chloride (SnCl2). Hg0 is then concentrated on a gold trap, 

thermally desorbed, analyzed by CVAFS, and quantified according to EPA method 

1631 (US EPA, 1996). This instrument was interfaced with an ICP-MS (Hewlett 
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Packard 4500, Agilent Technologies), in order to separate and quantify individual Hg 

isotopes after total mercury detection by CVAFS. Concentrations of 199Hg and 

ambient Hg were calculated based on methods of Hintelmann & Ogrinc (2003). 

 Prior to analysis, excess oxidant was neutralized in samples with 10 ul of 

hydroxylamine hydrochloride. T-Hg standards were prepared from a NIST stock 

solution in concentrations of 5, 10, 25, 50, 75, 100, 150, and 200 ng L-1. A matrix 

blank was prepared, according to the type of samples being analyzed. When 

analyzing fish samples, the matrix blank consisted of 0.2 % digest acid and 0.08 % 

BrCl and when analyzing water samples, the matrix blank consisted of 0.5 % BrCl. 

Quality control included calibration blanks, replicate standards and samples, duplicate 

dilutions, and duplicate SRMs (DORM-2, National Research Council Canada). 

MeHg analysis 

 Aliquots of distilled samples were added to bubblers containing a citrate 

buffer (pH = 4.8). The solution was ethylated with sodium tetraethylborate, 

converting MeHg to gaseous methylethylmercury (Bloom 1989). This was purged 

from solution and concentrated on Tenax traps. Methylethylmercury was then 

thermally desorbed from traps, separated by gas chromatography, and detected by 

CVAFS (Tekran Model 2500). Each run included a set of standards (25-500 pg in 

volume), as well as blanks and sample replicates.  

Statistical analyses 

Statistical analyses were conducted in Minitab (Version 13.1, Minitab Inc., 

State College, PA). Mean values for each replicate were calculated for treatment 

comparisons by analysis of variance (ANOVA).  However, for linear regressions and 
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correlation analysis relating females specifically to their eggs, values for individual 

fish from all replicates combined were used. This was thought to be the most 

biologically relevant approach. As a result, n values are higher in linear regressions 

and correlation analyses than in ANOVA. Assumptions of normality and 

homoscedasticity were tested prior to each analysis and data were transformed if 

necessary. Statistical significance was evaluated at α = 0.05 in all cases. When factors 

were significant in ANOVA, Tukey’s multiple pairwise comparisons were used to 

separate specific differences in levels.  

 One-way ANOVA was used to compare the number of eggs per female in 

each treatment. Total Hg (T-Hg), ambient Hg, and 199Hg concentrations in fish and 

eggs were log transformed and analyzed for treatment differences using one-way 

ANOVA. Control fish and eggs were eliminated from these analyses because they 

were never exposed to 199Hg. Linear regression analysis was used to determine if egg 

T-Hg concentration was dependent on maternal Hg burden. Pearson product moment 

correlation analysis was used to determine correlations between egg T-Hg 

concentration and 1) the number of eggs in the mother and 2) Hg in the maternal diet. 

 To calculate the percent of Hg transferred from a female to her eggs, a pre-

oogenesis fish body burden was estimated by adding fish and egg Hg burdens. The 

percent of this total found in eggs was then calculated. The percentages of 199Hg and 

ambient Hg maternally transferred were log transformed prior to correlation analysis 

(Pearson product moment). These percentages were also compared among treatments 

with one-way ANOVA.  Because the number of eggs per female appeared to differ 

among treatments but was not statistically significant, we conducted a retrospective 
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power analysis (target power 0.70) on these data to assess effects of experimental 

design on this result.  Lastly, due to water quality issues, several replicates were lost. 

Therefore, n values in ANOVA are lower than the original number of replicates stated 

in the experimental design. 

Results 

Egg production 

Female egg production did not significantly differ between treatments. The 

control treatment had the highest number of eggs per female (74 ± 8). Individuals in 

the low, medium, and high MeHg treatments had an average of 49 ± 26, 69 ± 28, and 

10 ± 5 eggs per female, respectively (Figure 3.2). Although not statistically 

significant, individuals fed the high MeHg diet had the lowest number of eggs per 

female. 

Controls on maternal transfer 

T-Hg concentrations in eggs were significantly dependent on maternal T-Hg 

body burden and showed a strong positive linear relationship (p < 0.001, R2 = 0.914 ; 

Figure 3.3). Egg T-Hg concentrations were negatively correlated with the number of 

eggs in the mother (p = 0.023, r = -0.443 ; Figure 3.4). T-Hg concentrations in eggs 

were significantly different between treatments (p < 0.001) and egg Hg content was 

significantly positively correlated with Hg concentration in the maternal diet (p = 

0.003, r = 0.894). 
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Ambient vs. isotopic mercury 

Overall, both ambient and isotopic Hg increased with dose in fish and eggs 

(Figure 3.5). Adult fish tissue concentrations of 199Hg significantly differed among 

treatments (p = 0.006 ; Figure 3.5). Individuals in the low treatment accumulated 

significantly less 199Hg than individuals in the medium (p = 0.0134) and high (p = 

0.0079) treatments. However, there was no difference in isotopic Hg accumulation 

between medium and high treatments. The concentration of 199Hg in eggs also 

significantly differed among treatments (p = 0.019 ; Figure 3.5). Eggs from the low 

treatment had significantly less of the enriched Hg  isotope than eggs from the high 

treatment (p = 0.0160). 

 Patterns of ambient mercury accumulation and maternal transfer were similar. 

Fish tissue concentrations of ambient Hg significantly differed among treatments (p = 

0.006 ; Figure 3.5). Individuals in the low treatment accumulated significantly less 

ambient Hg than fish in the medium (p = 0.0134) and high (p = 0.0079) treatments. 

The concentration of ambient Hg in eggs was also significantly different among 

treatments (p < 0.001 ; Figure 3.5). Eggs from the low treatment had significantly 

lower ambient Hg than those from the medium (p = 0.0235) and high (p = 0.0053) 

treatments. Additionally, egg concentrations of ambient Hg in all three treatments 

were significantly higher than control concentrations, indicating these levels were 

above background mercury from the flake food diet alone. 

The percent of total mercury that was ambient did not significantly differ 

between fish and eggs, or between treatments (Table 3.2). The percent of mercury 

transferred from a female to her eggs averaged 0.36 % of ambient Hg and 0.44 % of 
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199Hg. There was a significant positive correlation between the percent of 199Hg and 

percent of ambient Hg transferred (p < 0.001, r = 0.779 ; Figure 3.6), suggesting that 

both mercury isotopes were transferred proportionally. The percent transferred did 

not significantly differ among treatments for either isotope (Table 3.3).  

Discussion 

Egg production 

There were no differences in egg production among treatments. However, the 

high variation in number of eggs per female suggests that a larger number of 

replicates are needed to detect an effect of MeHg.  Note that power analysis revealed 

that our design provided a statistical power to assign statistical significance of only 

0.30 (at α = 0.05), most likely due to loss of multiple replicates due to water quality 

issues.  Previous studies have found negative effects of dietary MeHg on egg 

production in fathead minnows (Hammerschmidt et al. 2002). This is likely a 

consequence of changes in sex hormone levels and decreased vitellogenin production 

caused by MeHg exposure (Drevnick & Sandheinrich, 2003; Klaper et al. 2006). 

Controls on maternal transfer 

Because eggs were stripped directly from females after euthanasia, eggs were 

not exposed to aqueous MeHg. Therefore we can assume all MeHg found in eggs was 

maternally transferred. We found an average of 0.4 % of female Hg body burden was 

transferred to eggs. This percentage is similar to T-Hg transfer measured in five 

different species: 0.3 % (white bass), 0.4 % (smallmouth bass), 0.6 % (rainbow trout), 

1.8 % (white sucker), and 2.3 % (yellow perch) (Niimi 1983). A study by 
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Hammerschmidt et al. (1999) also found 1.9 % transfer in field-collected yellow 

perch. 

The percentage of MeHg transferred to fish eggs was relatively low, compared 

to observations of transfer of organic contaminants, such as PCBs, pesticides, and 

fungicides. For organic compounds, studies have found that 5 – 30 % of the maternal 

burden is transferred to fish eggs, depending on the specific compound and species 

(Niimi 1983). MeHg transfer is also lower than that observed for some inorganic 

contaminants in other organisms. One study found that female frogs transfer 

approximately 50 % of their total selenium burden and 3 – 8 % of their strontium 

burden into eggs (Hopkins et al. 2006). The low percentage of MeHg transferred from 

mother to egg suggests that spawning is not a significant mercury depuration route for 

sheepshead minnows, although this may be the case for other contaminants. 

We found a significant negative correlation between the number of eggs in a 

female and the Hg concentration in her eggs. Additionally, egg mass did not differ 

between treatments, nor did the percent of Hg body burden transferred (Table 3.3). 

This suggests that a specific proportion of Hg is partitioned from the female to 

developing eggs. If this burden is distributed among a larger number of eggs, a lower 

mercury concentration would be expected in offspring. Therefore, it appears the 

clutch size of an organism during a particular reproductive event may have important 

implications for the amount of MeHg transferred and subsequent effects on offspring. 

This has also been suggested for maternal transfer of selenium in frogs (Hopkins et al. 

2006). 
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We found that maternal body burden was a strong predictor of MeHg content 

of eggs. Mercury concentrations in eggs increased linearly with female Hg 

concentration, as observed elsewhere in both field-collected yellow perch 

(Hammerschmidt et al. 1999) and laboratory-dosed fathead minnows 

(Hammerschmidt & Sandheinrich 2005). This linear model could be determined for a 

specific species and then applied to Hg tissue concentrations of wild fish populations, 

in order to predict exposure and potential risk to offspring. 

Ambient vs. isotopic mercury 

The most striking result of this study was the increase of ambient mercury in 

eggs, with increasing dose (Figure 3.5). A constant percentage of ambient Hg was 

transferred to eggs in each treatment. In this study, ambient mercury represents 

historical mercury exposure and the enriched Hg isotope (199Hg) represents recent Hg 

exposure, including the period of oogenesis. Higher ambient mercury in eggs from 

higher dietary treatments is evidence that a significant portion of maternally 

transferred Hg is from the burden stored in female tissues. It is clear from our study 

that recently ingested MeHg is not the only source of maternally transferred mercury. 

If this were the case, we would have found almost entirely 199Hg in eggs. Ambient Hg 

concentrations in eggs from Hg-exposed females were significantly higher than in 

control eggs. Therefore the presence of ambient Hg in eggs cannot be attributed to 

background mercury levels in flake food.  Lastly, ambient Hg and the enriched Hg 

isotope were transferred proportionally to eggs, further suggesting that both female 

tissues and the diet during oogenesis are sources of maternally transferred Hg. 
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Based on these findings, it appears that historical mercury exposure can be 

important in the context of maternal transfer. While mercury ingested during 

oogenesis is also important, prior mercury exposure matters. For example, if a fish 

has minimal MeHg exposure over its early life, but feeds on a highly contaminated 

diet during oogensis, maternally transferred mercury will largely reflect recent dietary 

exposure, as found by Hammerschmidt & Sandheinrich (2005). However, if a fish 

accumulates high levels of mercury from exposure early in life, but feeds on a 

relatively uncontaminated diet during oogenesis, maternal mercury transfer may still 

be high, due to historic exposure. In this case, the source of maternally transferred Hg 

would be largely from the burden stored in female tissues. 

 This has important implications for offspring exposure. Egg Hg content may 

not be as sensitive to variations in the maternal diet during oogenesis as previously 

thought. Furthermore, an individual’s entire history of mercury exposure can affect 

egg Hg levels. If maternal body burden is high, but current maternal diet is relatively 

low, Hg concentrations in developing fish may be higher than expected. This is 

important to consider in the context of trophic transfer. Species feeding on larval or 

juvenile fish are affected by maternally transferred Hg, as this constitutes a large 

portion of Hg contamination in young fish. 
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Table 3.1. Target MeHg concentrations* and corresponding measured concentrations 
± SE for each treatment. Measured concentrations were averaged over the 
experiment. 
 
 

Target MeHg concentration  Actual MeHg concentration 

(µg g-1 dw) (µg g-1 dw) 

0.06 0.04 ± 0.007 

1.00 1.04 ± 0.27 

5.00 5.02 ± 0.80 

10.00 9.90 ± 2.61 

  
* The target MeHg concentration for control food was not zero because background 
mercury in flake food was unavoidable (ingredients include shrimp and fish meal, 
which contain MeHg). The target concentration was based on literature values. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 53 
 

Table 3.2. Mean percent ambient Hg ± 1 SE in fish and eggs for the low (n=3), 
medium (n=3), and high (n=2) treatments. Values represent a percentage of the total 
mercury concentration. All values are statistically similar. 
 
 

Treatment 

Mean  %  ambient Hg  

Fish Eggs 

Low 13.4 ± 0.9 7.9 ± 2.1 

Med 10.3 ± 2.6 14.8 ± 2.9 

High 10.3 ± 1.0 8.6 ± 0.5 
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Table 3.3. Mean percent ambient Hg and percent 199Hg transferred from female to 
eggs for each treatment. All values are statistically similar. 
 
 

 % ambient Hg 
transferred 

% 199Hg 
transferred Treatment 

Low 0.31 0.64 

Medium 0.60 0.52 

High 0.17 0.17 
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Figure 3.1. Diagram of experimental design and timing of ambient and 199Hg dosing. 
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Figure 3.2. Mean number of eggs ± 1 SE for females from each treatment: control 
(n=4), low (n=3), medium (n=3), and high (n=2). All values were statistically similar. 
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Figure 3.3. Linear regression analysis of mass specific T-Hg concentrations in female 
bodies versus eggs. Points represent individuals (n=39). All treatments are included. 
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Figure 3.4. Correlation between the number of eggs in a given female and the mass 
specific T-Hg concentration of her eggs. Points represent individuals (n=26). Controls 
were excluded due to low concentrations. 
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Figure 3.5. Mean concentrations of ambient Hg and 199Hg in eggs (left) and fish 
carcass (right), for low (n=3), medium (n=3) and high (n=2) treatments. Different 
letters indicate significant differences among treatments. 
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Figure 3.6. Relationship between the percent of ambient Hg and the percent of 199Hg 
transferred from female to eggs. Points represent individuals (n=26). 
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Chapter 4: Conclusions, applications, and future research 

 
 

This research sought to identify important variables affecting accumulation 

and maternal transfer of methylmercury in fish occupying low trophic levels. Mercury 

is a contaminant of concern in ecosystems, particularly its methylated form (MeHg) 

which readily accumulates in fish and other biota. Dynamics of dietary MeHg uptake 

in relation to fish lifestage, species, and level of exposure are poorly understood in 

lower trophic levels, particularly estuarine species. Furthermore, little is known about 

the transfer of this accumulated MeHg from female to offspring. These research 

questions were addressed in two chapters. Chapter 2 compared dietary MeHg 

accumulation, as well as growth and survival in two species of estuarine forage fish: 

Cyprinodon variegatus and Menidia beryllina. This experiment was conducted over a 

70-day dosing period, and included 5 levels of dietary exposure. Chapter 3 examined 

the source of maternally transferred MeHg in Cyprinodon variegatus using a stable 

mercury isotope approach. 

Chapter 2 demonstrated that growth rate and the level of dietary exposure 

strongly influence tissue concentrations of Hg in Menidia beryllina and Cyprinodon 

variegatus. Additionally, results showed that dietary bioaccumulation factors were 

not consistent across treatments, but rather, decreased with increasing dietary mercury 

concentration. Controls on bioaccumulation are important to identify in controlled 

laboratory studies, as they may be unclear or unidentifiable from field data. These 

findings have important implications for mercury bioaccumulation models. Models in 

previous studies have used a constant term for Hg assimilation (Trudel & Rasmussen 
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2001). However, results from Chapter 2 as well as other recent studies (Houck & 

Cech 2004; Unrine et al. 2004) suggest that the proportion of MeHg accumulated is 

not constant for a given size and age of fish. In the case of mercury, it appears that 

this model parameter should vary with dietary exposure.  

Concentrations of MeHg in the control and two lowest treatments (0.04, 0.6, 

and 3 µg g-1  respectively) were considered environmentally relevant. These spanned 

levels of MeHg found in benthic invertebrates (Hall et al. 1998) and crayfish muscle 

(Allard & Stokes 1989) from relatively uncontaminated systems. When comparing 

tissue concentrations reached in this study to those measured in young-of-the-year 

(YOY) white perch and largemouth bass from Maryland reservoirs, the lowest 

treatment achieved body burdens that were an order of magnitude higher than field-

collected YOY fish (Figure 4.1). It is possible that wild fish are feeding on diets with 

lower MeHg levels than expected. Therefore future studies should use lower dietary 

MeHg concentrations to reach more realistic tissue concentrations in test species. 

Both species tolerated tissue concentrations near 7 µg g-1 ww, with little 

mortality (no mortality in C. variegatus and 2.5 % mortality in M. beryllina). This is a 

much higher threshold than expected. It appears that these species are resilient to Hg 

tissue concentrations greater than those observed in wild fish populations in 

contaminated areas. For example, catfish (Ameiurus spp. and Ictalurus punctatus) and 

largemouth bass (Micropterus salmoides) populations in the Savannah River have 

tissue concentrations that range from 0.3 – 1.0 µg g-1 ww (Paller & Littrell 2007). 

Mercury levels in red drum (Sciaenops ocellatus) from Lavaca Bay (TX) have 

historically ranged from 0.5 – 5.7 µg g-1 ww, with the maximum tissue concentration 
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occurring in 1977, when Hg contamination from a nearby chloralkali plant was high 

(Sager 1977).  

Mercury concentrations in the diet of Lavaca Bay fish (Sager 1977) were 

similar to those in this study. T-Hg concentrations in estuarine algae, detritus, 

bivalves, polychaetes, and crustaceans, ranged from 0.5 µg g-1 ww to a maximum of 

19 µg g-1 ww in some polychaetes and detritus (Locarnini & Presley 1996). However, 

consumers in this system (such as red drum described above) had lower mercury 

accumulation than fish in our study. This is likely due to differences in mercury 

speciation in the diet. Although Hg species were not reported in the study, Lavaca 

Bay benthic organisms likely contained both inorganic and organic mercury. A high 

proportion of inorganic Hg is typical in organisms occupying lower trophic levels 

(Francesconi & Lenanton 1992; Mason et al. 2000; Kehrig et al. 2001). Small forage 

fish, such as those in our study, feed on algae, zooplankton, and benthic invertebrates, 

which usually contain between 5 and 50 % MeHg (Francesconi & Lenanton 1992; 

Morel et al. 1998). The proportion of MeHg increases over trophic levels, reaching 

95-99 % in higher level consumers (Morel et al. 1998; Mason et al. 2000; Kehrig et 

al. 2001). Fish consuming prey with high inorganic Hg content would likely 

accumulate less mercury than the individuals in our study, which consumed entirely 

MeHg. This is due to the higher assimilation efficiency of MeHg compared to HgII 

(Wong & Wang 2003). 

It is important to expose organisms to realistic ratios of inorganic and organic 

mercury compounds in laboratory dosing studies. For high level consumers, such as 

piscivorous fish, a diet that contains a large proportion of MeHg is realistic. However, 
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for species occupying lower trophic levels, exposure to both inorganic and organic 

mercury is significant. Therefore, future studies should incorporate realistic 

proportions of mercury compounds in the diet. This is important not only for realistic 

accumulation, but also for realistic toxicological responses, as inorganic Hg and 

MeHg may have different mechanisms of toxicity. 

Although our assessment of resiliency is only based on survival, future studies 

should focus on more sensitive sub-lethal endpoints, such as reproduction. It is likely 

that the tissue burdens observed in this study have adverse effects on reproduction, 

based on previous studies of a freshwater minnows with similar Hg burdens 

(Hammerschmidt et al. 2002). Sub-lethal effects of MeHg are also likely to vary 

between species. Chapter 2 demonstrated species-specific differences in mortality 

related to dietary MeHg exposure. There is a lack of species comparisons in mercury 

literature, therefore studies that compare the Hg-sensitivity of different species 

continue to be important. 

Chapter 3 demonstrated the unique information that can be obtained from 

mercury stable isotope studies. In addition to tracing maternal transfer, the use of an 

enriched stable isotope allows us to calculate depuration of ambient mercury over 

time (Figure 4.2). This is another parameter in bioaccumulation models that is 

important, but poorly understood. Mercury mass balance models have used an 

elimination rate (ng / day) that is constant for a given fish size and water temperature 

(Trudel and Rasmussen 2001). However, it appears that fish mercury burden is also a 

controlling factor. In this study, Cyprinodon variegatus were capable of excreting a 

consistent percentage of their Hg body burden over time (Figure 4.2), causing 
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individuals in high Hg treatments to depurate a larger mass of Hg per day. A recent 

study also suggests that the exposure pathway affects elimination rates of metals. 

Depuration of cobalt appears to be dependent on both the route and duration of 

exposure (Mansouri et al. 2011). 

Factors controlling Hg depuration are an important area of future research. 

The use of stable isotopes as tracers allows both accumulation and elimination to be 

measured simultaneously (Evans et al. 2002). In the future, stable isotopes could be 

used to label different exposure routes or compare accumulation and depuration at 

different time points, via multiple enriched isotopes. This type of technique is also 

useful for other metals, which could have varying dynamics of uptake and 

elimination. 

Accumulation and depuration are important processes not only in the context 

of Hg exposure, but ultimately affect the amount of Hg transferred to offspring. 

Results from Chapter 3 indicate that a significant portion of maternally transferred Hg 

is from the burden stored in female tissues. This burden is directly related to the rate 

at which Hg is accumulated and eliminated, as well as the dietary history of an 

individual. It is clear from this study that recently ingested MeHg is not the only 

source of maternally transferred mercury and that historical Hg exposure is important 

when assessing potential exposure of offspring. 

Although both species in this study appeared very resilient to dietary MeHg 

exposure, it is still unclear if MeHg can have significant effects on the reproductive 

fitness of fish in contaminated ecosystems. There is limited research on the effects of 

maternally transferred MeHg on offspring health, particularly in fish. Even though 
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maternal contribution is small, exposure to MeHg during sensitive early life stages 

could have effects on an individual’s reproductive success later in life. Thus far, no 

studies have investigated reproduction in the second generation after MeHg exposure. 

Cross-generational effects of maternally transferred MeHg are important areas of 

future study, in order to better understand possible population-level responses. 
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Figure 4.1. Mercury concentrations in young of the year fish in Maryland reservoirs 
from 2008 – 2010. Experimental concentrations in M. beryllina and C. variegatus in 
the control and lowest treatment are included for comparison. 
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Figure 4.2. Estimated depuration of ambient mercury (ng/day) in each treatment, 
over the 63 days of 199Hg dosing. Percentages of total burden depurated are also 
included. Different letters indicate significant differences in depuration (ng/day). 
Note that percentages did not differ among treatments. 
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Appendix: Mercury partitioning in water 
 
 

Background 
 
 Many toxicological studies that focus on dietary exposure fail to measure 

aqueous levels of contaminants. Although diet is thought to be the major source of Hg 

in fish (Phillips & Buhler 1978; Hall et al. 1997), it is important to characterize all 

exposure routes in laboratory dosing experiments. In this study dosing was conducted 

in closed systems, which had the potential to accumulate Hg over time. Aqueous 

mercury likely included Hg partitioned from un-eaten food and feces, as well as Hg 

excreted by fish. Over time, demethylation of aqueous MeHg was expected; therefore 

it was important to measure both inorganic and organic Hg concentrations. We also 

determined the concentration of dissolved MeHg, as chemical form affects 

bioavailability. 

Methods 

Water samples were collected from each tank every two weeks, filtered 

through muffled 0.7 um glass microfiber filters (GF/F, Whatman), preserved with 0.5 

% HCl, and refrigerated for later analysis. Additionally, a sub-set of water samples 

were filtered to 3kDa via centrifuge ultrafiltration, in order to measure dissolved Hg. 

Water samples were analyzed for T-Hg and MeHg to track partitioning of Hg within 

aquaria over time.  

 Analysis of total mercury (T-Hg) was conducted on a Tekran Model 2600 

Mercury Analyzer with a Model 2620 Autosampler (Tekran Instruments, Canada). 

The instrument measures T-Hg via cold vapor atomic fluorescence spectrometry 
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(CVAFS). Briefly, all mercury species within the sample were reduced to elemental 

mercury (Hg0) by stannous chloride (SnCl2). Hg0 was then concentrated on a gold 

trap, thermally desorbed, analyzed by CVAFS, and quantified according to EPA 

method 1631 (US EPA, 1996). 

 Prior to analysis, excess oxidant was neutralized in samples with 10 ul of 

hydroxylamine hydrochloride. T-Hg standards were prepared from a NIST stock 

solution in concentrations of 5, 10, 25, 50, 75, 100, 150, and 200 ng L-1. A matrix 

blank was prepared, according to the type of samples being analyzed. When 

analyzing fish samples, the matrix blank consisted of 0.2 % digest acid and 0.08 % 

BrCl and when analyzing water samples, the matrix blank consisted of 0.5 % BrCl. 

Quality control included calibration blanks, replicate standards and samples, duplicate 

dilutions, and duplicate SRMs (DORM-2, National Research Council Canada). 

 Water samples were acidified with 0.5 % sulfuric acid one day prior to 

analysis and KOH was used to adjust pH between 3 and 9 the following morning. 

Aliquots of sample were added to bubblers containing a citrate buffer (pH = 4.8). The 

solution was ethylated with sodium tetraethylborate, converting MeHg to gaseous 

methylethylmercury (Bloom 1989). This was purged from solution and concentrated 

on Tenax traps. Methylethylmercury was then thermally desorbed from traps, 

separated by gas chromatography, and detected by CVAFS (Tekran Model 2500). 

Each run included a set of standards (25-500 pg in volume), as well as blanks and 

sample replicates.  
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Summary of aqueous mercury 
 

T-Hg concentrations were dose dependent and seemed to stabilize after 

approximately 2 weeks of dosing (Figure A.1). Aqueous mercury was slightly higher 

in Cyprinodon variegatus tanks, possibly due to higher waste loads. An average of 46 

% of aqueous Hg was methylated on Day 15 and an average of 23 % was methylated 

on Day 70 (Figure A.2). Percentages of MeHg were consistent across treatments, with 

a lower proportion of MeHg at the end of the dosing period. This suggests that Hg 

was demethylated throughout the experiment. Furthermore, the half-life of inorganic 

Hg is much lower than that of MeHg. In a 3 g fish, the half-life of inorganic Hg is 

approximately 10 days, while the half-life of MeHg is over 250 days (Trudel and 

Rassmussen 1997). Therefore, it is likely that depuration contributed to the inorganic 

Hg load, in addition to demethylation. Approximately 50% of MeHg was in the 

dissolved phase (Figure A.3). Most aquaria had dissolved MeHg concentrations of 1-

5 ng/L, which are concentrations that occur in natural waters. 

Overall, waterborne mercury likely had little influence on fish Hg 

accumulation in this study. Previous studies have shown that the diet is the primary 

Hg exposure pathway in fish (Phillips & Buhler 1978; Hall et al. 1997), and that less 

that 0.1 % of accumulation is the result of direct uptake from water (Trudel et al. 

2000). Additionally, there were low concentrations of dissolved MeHg, which is the 

form of Hg that would most readily accumulate in fish (Trudel et al. 2000). 
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Figure A.1. Mean T-Hg concentrations in water over time. Each point represents a 
treatment average (n=3). 
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Figure A.2. Mean MeHg and inorganic Hg concentrations in each treatment for the 
first sampling point (Day 15- above) and the last sampling point (Day 70- below). 
Percentages represent the portion of T-Hg that was MeHg. 
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Figure A.3. Mean dissolved and colloidal MeHg concentrations for each treatment on 
Day 70. Percentages represent the portion of MeHg that was in a dissolved form. 
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