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Nicotine dependence is a prevalent and costly disorder characterized by notoriously 

high relapse rates. Extant research implicates stress as a key mechanism driving 

smoking across the stages of addiction, and neurobiological models of stress and 

addiction emphasize the role of overlapping corticolimbic circuits in both emotion 

dysregulation and compulsive drug seeking. However, neuroimaging research 

examining the neural correlates of stress processing in human smokers is limited and 

lacking in some areas, leaving key questions unanswered. Specifically, it is unclear 

how neural responses to stress may explain individual differences in nicotine 

dependence severity and cessation attempt outcomes. Moreover, more recent 

theoretical and empirical work has highlighted the importance of looking beyond 

functioning in discreet neural regions and has emphasized the importance of 

examining how brain functioning at a network level, through the use of resting state 



  

functional connectivity, might explain addictive behavior. However, research 

examining the relationship between functional connectivity and clinically-relevant 

smoking measures is also limited. As a first step toward addressing these gaps in the 

literature, the current study utilized a novel fMRI-compatible psychological stress 

induction task to examine the relationships between stress-induced neural activation, 

as well as resting state functional connectivity within stress-related corticolimbic 

circuits, and clinically-relevant smoking characteristics among a sample of adult 

cigarette smokers. Analysis of the fMRI data collected during administration of the 

novel stress induction task revealed significant stress-induced activation in the right 

insula, a region previously implicated in the interoceptive experience of negative 

affective states, as well as visceral symptoms of nicotine withdrawal and craving. 

Contrary to expectations, there were no significant relationships identified between 

stress-induced neural functioning, or functional connectivity within stress-related 

circuits, and the clinically-relevant smoking measures that were assessed. Findings 

are discussed in light of several study limitations and directions for future research 

are enumerated. 
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Chapter 1: Introduction 

1.1. Project Overview 

Nicotine dependence is a prevalent and costly disorder characterized by 

notoriously high relapse rates, thus representing a significant public health concern. 

Given the intractable nature of the disorder, a strong emphasis has been placed on 

understanding the processes associated with smoking maintenance and relapse following 

cessation. Extant research implicates stress as a key mechanism driving substance use 

across the stages of addiction. Moreover, neurobiological models (e.g., Li & Sinha, 2008) 

emphasize the role of overlapping corticolimbic circuits in both emotion dysregulation 

and compulsive drug seeking. However, neuroimaging research examining the neural 

correlates of stress processing in human smokers is very limited and lacking in some 

areas, leaving key questions unanswered. Specifically, it is unclear how neural responses 

to stress may explain individual differences in nicotine dependence severity and cessation 

outcomes. Moreover, recent theoretical and empirical work has highlighted the 

importance of looking beyond functioning in discreet neural regions by examining how 

brain functioning at a network level may explain addictive behavior through the use of 

resting state functional connectivity. However, work of this kind among human smokers 

is also limited to date. As such, the current study was designed to address these gaps in 

the extant literature by examining the relationships between stress-induced neural 

activation, as well as resting state functional connectivity within corticolimbic circuits, 

and clinically-relevant smoking-related variables among a sample of adult smokers. The 

current study sought to set the stage for larger, prospective longitudinal studies that aim 
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to predict smoking outcomes among treatment seeking smokers based on their stress-

related corticolimbic functioning and network level functioning in stress- and addiction-

related circuits.  

1.2. Smoking as a Public Health Concern 

  The CDC estimates that approximately 19% of all adults in the United States 

currently smoke cigarettes, with men exhibiting higher rates of smoking than women 

(21% vs. 17% respectively) (Schiller, Lucas, Ward, & Peregoy, 2012). As a result, 8.6 

million people in the U.S. suffer from smoking-related illnesses, leading to staggering 

economic costs including over $130 billion per year in direct medical costs, and an 

additional $150 billion annually in lost productivity (CDC, 2005; USDHHS, 2014). 

Beyond the high rates of illness and financial costs, cigarette smoking is also the leading 

cause of preventable death, responsible for approximately 1 in 5 deaths in the U.S. 

(~480,000) each year (USDHHS, 2014). Despite the negative consequences of smoking, 

cessation is notoriously difficult. Approximately one third of smokers attempt to quit 

each year; however, only about 10% of those who attempt to quit will ultimately succeed 

in maintaining long-term abstinence (CDC, 2005).  

  Clearly, cigarette smoking is highly prevalent, costly, and intractable, thus 

presenting a major public health concern. Therefore, researchers have examined various 

factors associated with cigarette smoking, with a growing body of research focusing 

specifically on the role of stress and negative affectivity in nicotine use, dependence, and 

relapse following cessation. Given the large body of evidence supporting the role of 

stress and negative affectivity as a key factor underlying substance use outcomes across 

drug classes, the following review begins with a very broad overview of stress and 
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addiction and a discussion of negative reinforcement theories that emphasize the role of 

stress in substance use in relapse. We then focus on a review of the literature on stress 

and cigarette smoking more specifically.  

1.3 Stress and Addiction 

  In examining the potential mechanisms that may underlie substance use and 

relapse, a long history of evidence implicates stress and negative affectivity as a 

contributing factor across drug classes (Conger, 1956; Khantzian, 1985; Koob et al., 

2014; Koob & Le Moal, 1997, 2001; Leventhal & Cleary, 1980; Marlatt & Gordon, 1985; 

Russell & Mehrabian, 1975; Sher & Levenson, 1982; Shiffman, 1982; Sinha, 2001; 

Solomon, 1977; Tomkins, 1966; Wikler, 1948; Wills & Shiffman, 1985). Affective 

distress includes feelings such as anxiety, stress, and irritability, and is often associated 

with poor substance use outcomes (Baker, Japuntich, Hogle, McCarthy, & Curtin, 2006). 

For instance, studies consistently report relapse to drug use in situations involving 

negative moods such as anxiety, anger, and depression (Brandon, Tiffany, Obremski, & 

Baker, 1990; ElGeili & Bashir, 2005; Litman, Stapleton, Oppenheim, & Peleg, 1983; 

Marlatt & Gordon, 1985; Tate, Brown, Unrod, & Ramo, 2004), and the severity of these 

symptoms has been shown to predict treatment outcome and relapse across drug classes 

(e.g., Ciraulo, Piechniczek-Buczek, & Iscan, 2003; Mulvaney, Alterman, Boardman, & 

Kampman, 1999).  

  In line with evidence supporting the relationship between affective distress and 

substance use, negative reinforcement theories collectively emphasize that the 

motivational basis of addictive drug use is the reduction or avoidance of aversive internal 

states (Baker, Piper, McCarthy, Majeskie, & Fiore, 2004; Khantzian, 1985; Solomon, 
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1977; Wikler, 1948). Thus, substance dependent individuals in the initial stages of an 

abstinence attempt who experience the highest levels of withdrawal-induced or 

environmentally-induced affective distress (e.g., stress, frustration, irritability), are most 

likely to relapse to drug use as a means of temporarily alleviating emotional discomfort. 

Over time, individuals become biased toward engaging in behavioral responses that have 

most effectively reduced negative affect in the past (i.e., substance use), and at very high 

levels of negative affect, these behavioral responses may be engaged reflexively (Baker 

et al., 2004). At the same time, alternative behavioral responses that are less tightly linked 

with the amelioration of negative affect are devalued, resulting in an overreliance on 

substance use as a means of regulating negative affect.   

1.4 Stress and Cigarette Smoking 

  Specific to smoking, ample evidence suggests that acute and chronic affective 

distress is related to smoking across multiple stages of the addiction process. In studies 

involving self-report of smoking behavior and motivations, smokers have reported that 

they initiated smoking due to elevated life stress and the belief that smoking would help 

them relax (Nichter, Nichter, Vuckovic, Quintero, & Ritenbaugh, 1997). Once initiated, 

smokers consistently report stress relief as a primary motivator for continued smoking 

(Fidler & West, 2009; McEwen, West, & McRobbie, 2008), as well as a reluctance to 

quit smoking due to high stress levels in their lives (Lader, 2007). Additionally, 

retrospective self-report studies have frequently shown significant relationships between 

exposure to stressful or traumatic events (e.g., surviving Hurricane Katrina, being 

sexually assaulted, and witnessing the September 11th terrorist attacks in New York City) 

and increased smoking behavior (e.g., Amstadter, Nugent, et al., 2009; Amstadter, 
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Resnick, et al., 2009; Nandi, Galea, Ahern, & Vlahov, 2005). However, a similar study of 

individuals exposed to a fire with mass casualties in the Netherlands did not find 

evidence of increased smoking among survivors following the event (Reijneveld, Crone, 

Verhulst, & Verloove-Vanhorick, 2003). Finally, individuals who have recently quit 

smoking show a positive relationship between negative affect and smoking urges 

(Doherty, Kinnunen, Militello, & Garvey, 1995) and commonly endorse stress as a key 

factor to explain relapses to smoking following cessation (Cohen & Lichtenstein, 1990; 

Falba, Teng, Sindelar, & Gallo, 2005; Heishman, 1999; Hymowitz, Sexton, Ockene, & 

Grandits, 1991; Matheny & Weatherman, 1998; Siahpush & Carlin, 2006; Wewers, 

1988). 

  Laboratory studies involving exposure to acute stress manipulations with human 

smokers generally support self-report evidence for a relationship between stress and 

smoking. Specifically, smokers have reported greater desire to smoke when completing a 

stressful computer task compared to a control task (Perkins & Grobe, 1992). Moreover, 

exposure to other stressful stimuli in the laboratory, including loud noises (Cherek, 1985) 

and a social stress induction (Rose, Ananda, & Jarvik, 1983) leads to increases in actual 

smoking behavior. Interestingly, data collected on a moment-to-moment basis in real-

time using ecological momentary assessment (EMA) have failed to show a relationship 

between acute negative affect and smoking behavior among active smokers (Shiffman et 

al., 2002), but these same data do show that rapid acute increases in stress tend to 

immediately precede smoking lapses among individuals trying to quit smoking (Shiffman 

& Waters, 2004). 
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Animal models have also been used to study the role of stress in relapse to 

smoking. Reinstatement models are generally used to test which factors contribute to a 

return to self-administration of a drug following extinction. Similar to other drugs of 

abuse, exposure to stress is associated with a return to nicotine self-administration, even 

after prolonged extinction (Buczek, Le, Wang, Stewart, & Shaham, 1999; Zislis, Desai, 

Prado, Shah, & Bruijnzeel, 2007). Furthermore, rats exposed to a restraint stress show 

reinstatement of nicotine-induced conditioned place preference following extinction 

procedures (Leao, Cruz, & Planeta, 2009).  

Taken together, evidence from human self-report and experimental studies, as 

well as work with animal models of stress and addiction, support the idea that stress plays 

a key role in smoking across the stages of addiction. However, not every individual who 

experiences heightened stress will go on to initiate or relapse to smoking, thus 

highlighting the need identify mechanisms, including neurobiological mechanisms, 

driving the stress-smoking relationship among human smokers in order to identify 

individuals who are most vulnerable to stress-induced smoking and relapse, and inform 

treatment development. 

1.4 Operationalizing Smoking Severity and Outcomes 

Importantly, one factor to consider in conducting research examining the 

processes underlying the stress-addiction relationship in smokers is the selection of 

specific smoking-related variables to assess. Indeed, across studies of smoking (and 

addiction more generally), there is wide variability in the way that addiction severity and 

outcomes have been operationalized (for reviews and recommendations, see Shiffman, 

Hickcox, et al., 1996; West, Hajek, Stead, & Stapleton, 2005), and studies examining 
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neural processes underlying addictive behavior have shown that neurobiological 

measures can differentially predict substance use outcomes, depending on how the 

outcomes are operationalized (e.g., Sinha & Li, 2007).  

One approach that is often used is to assess self-reported dependence severity 

using standardized psychometric scales designed to assess the various thoughts, feelings, 

symptoms, and behaviors associated with nicotine dependence. One such measure is the 

Fagerström Test for Nicotine Dependence (FTND; T. F. Heatherton, L. T. Kozlowski, R. 

C. Frecker, & K. O. Fagerstrom, 1991). The FTND includes 6 items and produces a score 

from 0 to 10, with higher scores indicating more severe nicotine dependence. The FTND 

has been shown to mark genetic liability for nicotine dependence, with heritability rates 

ranging from 0.72 to 0.75 across studies (Kendler et al., 1999; Vink, Willemsen, & 

Boomsma, 2005). Over the past two decades, the FTND has emerged as a standard 

measure of nicotine dependence in the field, and its use in the field of human 

neuroimaging research in particular continues to grow.  

Alternatively, researchers can also assess severity of smoking behaviorally by 

assessing heaviness of smoking, as indicated by average number of cigarettes smoked per 

day. Given that the mood enhancing and anxiolytic properties of nicotine have been 

estimated to last only about 10 minutes following acute cigarette exposure (Parrott, 

1995), individuals who are more averse to experiencing negative affect, and thus more 

vulnerable to the negatively reinforcing properties of cigarettes, may smoke with a 

shorter latency between cigarettes in order to avoid acute withdrawal symptoms, leading 

to an overall larger number of cigarettes smoked per day. Number of cigarettes per day is 

also important to assess as a complement to self-reported nicotine dependence severity as 
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there is evidence of racial differences in the relationship between number of cigarettes 

smoked per day and self-reported ratings of dependence, with African American 

individuals evidencing higher levels of self-reported nicotine dependence than their 

Caucasian counterparts, even when smoking the same number of cigarettes per day (Luo 

et al., 2008). There is also evidence that a variety of factors, including psychological 

factors, race, varying nicotine doses across cigarette brands, and choice of mentholated 

versus unmentholated cigarettes can all impact the amount of nicotine ingested per 

cigarette and the rate at which nicotine is metabolized once it is taken in (e.g., Clark, 

Gautam, & Gerson, 1996; Patterson et al., 2003; Wagenknecht et al., 1990). These 

findings suggest that number of cigarettes per day does not necessarily reflect total 

nicotine intake, and may explain why number of cigarettes smoked per day does not 

directly map onto nicotine dependence severity. As such, number of cigarettes per day is 

another important outcome to assess given its theoretical relevance to the relationship 

between stress and smoking, and also due to the variety of factors that modulate the 

relationship between cigarettes per day and self-reported dependence severity, suggesting 

that simple reports of number of cigarettes per day may tap different aspects of smoking 

severity as compared to self-reported nicotine dependence. 

Another highly relevant measure to assess is stress-induced craving. There is 

ample evidence to suggest that psychological stress is associated with increases in self-

reported craving among chronic substance users across drug classes (Sinha, 2001, 2008). 

Further, craving is a reliable predictor of substance use outcomes, with prospective 

studies consistently showing a relationship between craving and relapse to substance use 

following cessation, a pattern that also holds across drug classes (Crits-Christoph et al., 
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2007; Doherty et al., 1995; Litt, Cooney, & Morse, 2000; O'Connell, Schwartz, 

Gerkovich, Bott, & Shiffman, 2004; Paliwal, Hyman, & Sinha, 2008). As such, stress-

induced craving represents an important clinical construct of interest, and may be an 

important process to study in examining the mechanisms underlying the relationship 

between stress and addiction.  

Additionally, looking at one’s history of smoking behavior can also be highly 

informative in smoking research. Smoking lapse history, and a history of ‘early lapse’ 

(i.e., within 24 hours of attempted cessation) in particular, represents a clinically-relevant 

behavioral outcome variable when studying stress and nicotine addiction (e.g., R. A. 

Brown, Lejuez, Kahler, Strong, & Zvolensky, 2005). Here, lapse is defined as an instance 

of smoking (even a puff of a cigarette) following a smoking cessation attempt. Evidence 

suggests that uncomfortable withdrawal symptoms and negative affect both are predictive 

of early lapse among smokers (al'Absi, Hatsukami, Davis, & Wittmers, 2004; Brandon et 

al., 2003; Kenford et al., 2002; McCarthy, Piasecki, Fiore, & Baker, 2006; Shiffman et 

al., 1997; Strasser et al., 2005) and that those who ultimately lapse to smoking do so due 

to a failure to initiate immediate coping in the face of distress (Shiffman, Paty, Gnys, 

Kassel, & Hickcox, 1996). As such, smoking lapse history represents another important 

clinical measure of interest, and serves as a theoretically relevant outcome to assess in 

studying the relationship between stress and addiction.  

1.5 Preliminary Summary and Next Steps 

Based on the evidence reviewed above, it appears that stress contributes to drug 

craving and substance use severity and maintenance, as well as relapse risk across drug 

classes (e.g., Cohen & Lichtenstein, 1990; Shiffman, Paty, et al., 1996; Sinha, 2008; 
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Wills, Sandy, & Yaeger, 2002). Specific to smoking, stress is predictive of a variety of 

different clinically-relevant, smoking-related variables, suggesting that stress may 

contribute to smoking behavior in a variety of ways, including increasing smoking urges 

or craving, exacerbating smoking heaviness and dependence severity, and contributing to 

poor cessation outcomes. However, less is known about the specific mechanisms, 

including neurobiological mechanisms, that may determine who is most vulnerable to 

stress-induced craving and smoking, and may help to identify novel targets for smoking 

interventions.  

To date, there have been very few neuroimaging studies directly examining 

emotional stress processing in human participants with substance use disorders. Despite 

the limited data on the direct relationship between stress and addiction, a large body of 

work has explored these processes separately, and a smaller body of work is beginning to 

study the neural correlates of stress and addiction together. Based on this work, there is 

support for the role of overlapping corticolimbic circuits in both stress processing and 

regulation, and addiction. As such, the following section reviews the available literature 

on the neural correlates of stress and addiction. We begin with an overview of the 

primary method, functional magnetic resonance imaging (fMRI), that is used to examine 

neural functioning in humans. We then review specific neural regions and circuits that 

have been implicated in both stress and addiction, and finally, we provide a theoretical 

model of the neural mechanisms underlying the relationship between these two processes.  
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1.6 The Neurobiology of Addiction and Stress 

1.6.1 fMRI basics 

 Functional magnetic resonance imaging (fMRI) is a noninvasive neuroimaging 

technique that has the temporal and spatial resolution necessary to investigate 

fluctuations in brain functioning over time within millimeters of neural structures of 

interest (P. Bandettini, 2007; Huettel, Song, & McCarthy, 2009). MRI scanners work by 

using strong magnetic fields to create images of biological tissue. Specifically, the 

scanner is calibrated to emit electromagnetic signals that are in tune with the frequency of 

hydrogen nuclei, which are the most prevalent nuclei in the human body due to their 

abundance in water molecules. The hydrogen nuclei absorb the energy emitted by the 

scanner, and later emit their own signals that vary depending on the numbers and types of 

nuclei present in the tissue being scanned. By measuring variations in the signals emitted 

by hydrogen nuclei, the MRI scanner can distinguish between different types of tissue, 

such as gray and white matter in the brain, and a static image can be created, providing an 

anatomical map of the brain. 

By using an MRI scanner to repeatedly measure the signals emitted by hydrogen 

atoms over time, inferences about neural functioning can be made (Forster et al., 1998). 

When neural activation occurs, there is an increase in local oxygenated blood flow, which 

alters the magnetic signal emitted by hydrogen atoms. This altered magnetic signal is 

known as the blood oxygenated level dependent (BOLD) response. With this knowledge, 

it became possible to create MRI compatible tasks that were designed to isolate particular 

processes of interest, and then contrast the magnitude of the BOLD signal in response to 

varying task conditions in order to localize task-induced neural functioning. Using this 
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BOLD contrast technique, researchers have been able to localize the neural basis of a 

wide range of motor, sensory, and cognitive processes, and use of this technique 

continues to grow (P. Bandettini, 2007). In the current study, a psychological stress 

induction task was administered and the BOLD contrast between a stressful task phase 

compared to a non-stressful task phase will be used in an attempt to localize stress-related 

neural functioning. 

Beyond measuring task-induced activation within circumscribed neural regions, 

fMRI can also be used to infer the strength of network level connections within the 

human brain. Functional connectivity is defined as, “the temporal dependency of 

neuronal activation patterns of anatomically separated brain regions” (van den Heuvel & 

Hulshoff Pol, 2010, p. 520) and the past several years have seen a growing body of 

research utilizing “resting state” fMRI scans to measure this co-activation across discrete 

neural regions in order to make inferences about functional connections within the brain. 

Rather than completing a task in the scanner, participants undergoing resting state scans 

are asked to relax and think of nothing in particular, either with their eyes closed or while 

fixating on a minimal stimulus screen, while the scan is completed. Researchers then 

select a region of interest to serve as a reference region (also called a seed region) and 

correlate spontaneous fluctuations in BOLD functioning over the course of the resting-

state time series in the seed region with the time series of all other brain regions. These 

analyses result in a functional connectivity map reflecting the functional connections 

between the predefined seed region and the rest of the brain.  

Unfortunately, this method of measuring functional connectivity in the brain does 

not provide information regarding the causality or directionality of communication 
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between brain regions (i.e., Is brain region A “speaking to or influencing” the activation 

of brain region B, or vice versa? Or is a third brain region simultaneously influencing 

functioning in BOTH region A and B?). However, the strength of functional connectivity 

in neural circuits across the brain has been linked to cognitive functioning, intelligence, 

and various neurological and psychiatric disorders (van den Heuvel & Hulshoff Pol, 

2010). Given the complex neuroanatomical connectivity between and within networks of 

the brain, this method of measuring neural functioning has the potential to provide more 

detailed and nuanced data regarding neural mechanisms associated with a wide range of 

clinically-relevant behaviors, including addiction and relapse. Thus, this method will be 

employed in the current study and reviewed in the literature below on the neurobiology of 

stress and addiction in humans. 

1.6.2 Historical overview of neurobiological models of addiction 

Several neurobiological models have been proposed to explain the development 

of substance use disorders, as well as vulnerability to relapse, with a great deal of 

emphasis placed on the role of neuroadaptive changes that take place in brain reward, 

stress, and cognitive control circuits over the course of chronic drug use (e.g., Everitt & 

Robbins, 2005; Goldstein & Volkow, 2002; Koob & Le Moal, 2001, 2008; Li & Sinha, 

2008; Robinson & Berridge, 1993, 2001; Sutherland, McHugh, Pariyadath, & Stein, 

2012; Wise, 1980, 2002). Although not mutually exclusive, each model is unique in the 

extent to which particular neural circuits are emphasized as mechanisms driving the 

progression from initial experimentation to eventual substance dependence. Early models 

implicated midbrain dopaminergic activation as the critical mechanism driving addictive 

behavior (e.g., Wise, 1980); however, these models have since been further refined to 
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emphasize the neuroadaptive changes that occur in these brain regions over the course of 

chronic substance use that serve to increase the incentive salience of addictive substances 

over time (Robinson & Berridge, 1993, 2001). Additional models have placed greater 

emphasis on dysfunctional prefrontal inhibitory control regions, leading to impaired 

response inhibition and loss of control over addictive behavior (Goldstein & Volkow, 

2002), while others have suggested a transition at the neural level from initial prefrontal 

control over voluntary substance use, to eventual striatal control (as well as a shift within 

the striatum from ventral to dorsal control) driving habitual compulsive drug seeking 

(Everitt & Robbins, 2005). More recent models are beginning to place less emphasis on 

functioning in discreet neural regions, and are focusing more on the role of large scale 

neural networks in the development of craving during acute drug abstinence (Sutherland 

et al., 2012). Of greatest relevance to the current study are models emphasizing the 

neurocircuitry underlying the “dark side of addiction” (Koob & LeMoal, 2008); namely, 

the relationship between stress and substance use disorders. As such, although each of the 

models described above have contributed greatly to our understanding of the neural 

correlates of addiction, the current review will draw heavily from a neurobiological 

model largely derived from functional magnetic resonance imaging (fMRI) research on 

stress among human substance users (Li & Sinha, 2008) in order to provide a framework 

for the current study.  

Considering evidence from human neuroimaging research, there appear to be 

clear overlaps between the neural circuitry implicated in addiction and the circuitry 

associated with stress and emotion regulation (Li & Sinha, 2008). Highly interconnected 

cortical and subcortical networks comprised of brain regions such as the amygdala, 
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striatum, insula, medial prefrontal, and cingulate cortices are involved in the perception 

and appraisal of emotional and stressful stimuli, while circuitry including the brain stem 

(i.e., locus ceruleus and related arousal regions), hypothalamus, thalamus, striatal, and 

limbic regions are involved in physiological and emotional responses (Sinha, 2008). 

Together, these regions compose the neural circuitry mediating the experience and 

regulation of distress. Given the roles of these neural networks in both stress and 

addiction, the following section will review literature suggesting that the structures 

comprising these circuits may serve as regions of interest in the relationship between 

stress and addiction. Although the regions within these specialized circuits will be 

introduced and initially discussed in isolation, it is important to note that they are 

functionally interconnected through substantial direct and indirect projections, and the 

circuits themselves are highly overlapping. As such, the descriptions of individual brain 

regions will be followed by a discussion of how the degree of functional coupling 

between these regions is altered over the course of chronic substance use, and may also 

drive the relationships between stress, craving, and relapse. 

1.6.3 The role of limbic regions in stress and addiction 

  Important markers of emotional processing include limbic regions, such as the 

amygdala, striatum, and anterior insular cortex (insula). The amygdala has been identified 

as a key structure involved in emotion processing. Although the amygdala is involved in 

the processing of both positive and negative emotions, it is uniquely implicated in threat-

related processes and serves as a key mediator of avoidance behavior (e.g., LeDoux, 

2000). It is reliably activated in response to fearful stimuli (Hariri, Mattay, Tessitore, 

Fera, & Weinberger, 2003), and affective distress, particularly among individuals with 
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psychopathology marked by negative affect, including PTSD (Rauch et al., 2000; Shin et 

al., 1999) and depression (Abercrombie et al., 1998). Further, the amygdala is activated 

in response to monetary reward and punishment, and activation in the amygdala 

following monetary loss and reward is significantly correlated with subjective ratings of 

emotional experience, including changes in frustration (Zalla et al., 2000). Amygdala 

functioning also appears to mediate autonomic responses to large monetary gains or 

losses as individuals with bilateral amygdala damage who are exposed to gains and losses 

fail to show a physiological response (Bechara & Martin, 2004). Thus, activation in the 

amygdala can be said to signal the immediate emotional salience of environmental 

stimuli, linking features of the stimulus to its affective/emotional attributes, thereby 

providing a motivational basis for impulsive responding (e.g., substance use) in the 

presence of threatening or stress-inducing stimuli (Bechara, 2005). 

  Additionally, activation of the insula, an important region within the limbic 

system, has been linked to the representation of bodily responses, interoception (Caria et 

al., 2007; Critchley, Wiens, Rotshtein, Ohman, & Dolan, 2004), and perception of 

subjective emotions (Caria et al., 2007), as well as conscious awareness (Craig, 2009). In 

particular, activation of the insula is associated with the experience of negative feelings, 

such as fear, disgust, and anxiety, as well as recall of emotional memories (e.g., 

Winkielman, Knutson, Paulus, & Trujillo, 2007).  Further, the insula is linked with 

awareness of visceral responses that are heightened in negative emotional states 

(Critchley et al., 2004), and has been implicated in the experience of cue-induced and 

abstinence-induced craving (Brody et al., 2002; Z. Wang et al., 2007).  
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  Emerging research suggests that the insula, and its connections with other cortical 

and subcortical regions involved in affective and motivational processes, may be of 

particular interest within the field of smoking. Specifically, smokers with insula lesions 

following brain trauma are more likely to quit smoking soon after the injury, maintain 

their abstinence, report less desire to smoke, and experience fewer conscious smoking 

urges as compared to individuals with damage to other regions of the brain (Naqvi, 

Rudrauf, Damasio, & Bechara, 2007). Importantly, participants with insula lesions who 

quit smoking did not report any disruption in appetite or pleasure from eating, suggesting 

that the effects of insula damage were relatively specific to smoking, and did not impact 

motivational processes more broadly. Stemming from these findings, researchers have 

posited that during acute abstinence, the insula plays a key role in converting 

interoceptive withdrawal symptoms (e.g., irritability, anxiety, craving) into conscious 

drug urges, and in turn interacts with other regions (e.g., the ACC, vmPFC, amygdala, 

and striatum) that mediate the  decision-making processes involved in relapse (Naqvi & 

Bechara, 2009, 2010). As such, insula reactivity to interoceptive cues (e.g., stress and 

craving) and connectivity with other regions implicated in affective and motivational 

functions may contribute to stress-induced relapse among smokers. 

  Another important neural marker of emotion processing, particularly in times of 

stress, is activation in the striatum. In times of stress, there is increased dopaminergic 

transmission in the ventral striatum (VS), with evidence suggesting that dopaminergic 

neurotransmission in this region is critical for encoding rewarding stimuli, thus serving as 

a learning signal (Schultz, 2013), and may play a key role in the motivational basis of 

behavior. Specifically, animal studies have demonstrated a relationship between stress 
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and dopamine transmission (Piazza, Deminiere, Le Moal, & Simon, 1989; Piazza & Le 

Moal, 1996), which is argued to explain increases in drug self-administration in response 

to laboratory stressors (e.g., Piazza & Le Moal, 1998). Similarly, evidence from human 

fMRI studies demonstrate increases in VS activation in response to and in anticipation of 

aversive stimuli among healthy individuals (Becerra, Breiter, Wise, Gonzalez, & 

Borsook, 2001; Jensen et al., 2003; McCullough & Salamone, 1992; Sorg & Kalivas, 

1991), and cortisol release in response to psychological stress tasks correlates 

significantly with dopamine release in the VS (Oswald et al., 2006; Pruessner, 

Champagne, Meaney, & Dagher, 2004). Moreover, activation in both the ventral and 

dorsal striatum have been associated with craving among drug users (Li & Sinha, 2008). 

Thus, activation in the VS may be indicative of more than just reward functioning, but 

also of a motivational response bias toward substance use while experiencing affective 

distress.  

Given the importance of the limbic system in emotion processing and motivation 

in response to aversive stimuli, activation and strength of connectivity within and 

between these structures may significantly relate to individual differences in smoking 

heaviness and dependence severity, as well as the ability to persist in an abstinence 

attempt and resist the urge to lapse to substance use. Neurobiological models of addiction 

and accumulating empirical evidence suggest that these systems are indeed disrupted 

among drug-dependent individuals. For example, Koob & LeMoal (2008) hypothesize 

that as dependence and withdrawal develop, brain stress systems including CRF circuits 

localized in the central nucleus of the amygdala and the bed nucleus of the stria 

terminalis undergo neuroadaptive changes such that activation in these stress-processing 
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regions is chronically elevated in an attempt to restore homeostatic function. 

Consequently, these regions become chronically hyperactive, resulting in an aversive 

hedonic stress-like state characterized by increased irritability, emotionality, dysphoria, 

and frustration, thereby leading to stress-induced relapse to drug use (Koob & Le Moal, 

2001). This hypothesized relationship is supported by evidence that a hyperactive 

extended amygdala CRF system mediates the behavioral responses associated with an 

emotionally stressed state, and in particular, increased drug self-administration and the 

development of drug dependence (Baldwin, Rassnick, Rivier, Koob, & Britton, 1991; 

George et al., 2007; Koob & Heinrichs, 1999; Specio et al., 2008; Valdez et al., 2002).  

Taken together, neurobiological models and converging evidence from animal 

and human research suggest that hyperactivation in limbic regions, particularly the 

amygdala, insula, and VS, in response to affective distress may significantly contribute to 

smoking, dependence, and poor cessation outcomes. Moreover, the interconnections 

between these regions likely modulate the relationship between stress and substance use, 

as it is through these interconnections that stress-induced physiological arousal (mediated 

by activation in the amygdala and VS) is converted into conscious interoceptive 

sensations and urges (within the insula) and ultimately translated into motivated behavior 

(mediated by a combination of limbic regions including the amygdala and VS, as well as 

their interconnections with cortical regions discussed below).  

1.6.4 The role of cortical regions in stress and addiction 

  Activation in medial prefrontal brain regions, including the ventromedial 

prefrontal cortex (vmPFC) and anterior cingulate cortex (ACC), is generally associated 

with regulatory control over cognition, behavior, and emotion. For instance, the ACC is 
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believed to influence numerous aspects of human cognition and behavior, including 

behavioral monitoring, planning, and decision making (Damasio, 1994; Dehaene, Posner, 

& Tucker, 1994; Devinsky, Morrell, & Vogt, 1995; Posner & DiGirolamo, 1998; Stuss & 

Benson, 1986). A prerequisite to engaging inhibitory control functions and selecting an 

optimal behavioral response is the ability to monitor behavioral errors when they occur so 

that subsequent behaviors can be adjusted accordingly (Botvinick, Braver, Barch, Carter, 

& Cohen, 2001; Rabbitt, 1966), with research frequently implicating the ACC in these 

error-related functions (J. W. Brown & Braver, 2005; Dehaene et al., 1994; Magno, Foxe, 

Molholm, Robertson, & Garavan, 2006). Further, the ACC is most activated when 

participants are asked to both evaluate their options based on performance feedback and 

use that information to make a behavioral choice (Elliott & Dolan, 1998). The functions 

supported by the ACC are clearly relevant to the study of stress and substance use as 

behavioral evidence suggests that in the face of stress, addicted individuals who fail to 

inhibit their prepotent response toward substance use and immediately initiate alternative 

non-substance-related coping behaviors are most likely to fail in their abstinence attempt 

(Shiffman, Paty, et al., 1996). Thus, the ACC may be a region of interest in the study of 

stress and substance use.  

  Indeed, consistent evidence points to impaired functioning in prefrontal regions, 

including the ACC, in chronic substance users (Bechara, 2005; Goldstein & Volkow, 

2002; Li & Sinha, 2008; Volkow, Fowler, & Wang, 2004). For example, substance users 

demonstrate impaired response inhibition and error monitoring compared to non-

substance users in fMRI paradigms involving inhibitory control, and these deficits are 

associated with hypoactivation in medial prefrontal brain regions (Hester & Garavan, 
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2004; Kaufman, Ross, Stein, & Garavan, 2003). Additionally, impaired medial prefrontal 

activation in substance users also has been associated with increased emotion 

dysregulation. Specifically, Li et al. (2008) reported hypoactivation in the rostral ACC 

(rACC) during a stop signal task in cocaine users compared to controls, independent from 

behavioral performance on the task, and that task-induced activation in the rACC among 

substance users was negatively correlated with scores on the self-report impulse control 

subscale of the Difficulty in Emotion Regulation Scale (DERS; Gratz & Roemer, 2004). 

The impulse control subscale of the DERS includes self-rated statements such as “When 

I’m upset, I lose control over my behaviors.” Thus, in addition to its role in impulse 

control, the findings reported by Li et al. (2008) suggest that activation in the ACC might 

be particularly important for inhibiting behaviors in the face of affective distress. 

 The vmPFC is another cortical region of interest in understanding the relationship 

between stress and addiction. The vmPFC is involved in the evaluation of both the 

immediate and long-term consequences of an action, and selection of the optimal 

behavior to initiate based on the balance between the two. Individuals with bilateral 

lesions to the vmPFC display marked impairments in the ability to make decisions that 

optimize long-term outcomes. That is, when confronted with a decision that involves a 

conflict between an immediate reward but a long term negative consequence, these 

patients tend to choose the immediate reward, at the expense of severe negative future 

consequences, including financial loss, loss of social status, and even loss of family and 

friends (e.g., Bechara, 2001; Bechara, Tranel, & Damasio, 2000; Damasio, 1994). The 

same can be said for individuals with substance use disorders who compulsively engage 

in addictive behavior despite experiencing long-term negative consequences (Verdejo-
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Garcia & Bechara, 2009), and this pattern of maladaptive decision making in substance 

users has been linked to impaired functioning in the vmPFC (e.g., Volkow et al., 2004). 

Thus individuals with substance use disorders and patients with vmPC lesions share a 

“myopic” view of the future such that they are insensitive to future punishment (Verdejo-

Garcia & Bechara, 2009).  

Given the similarities between vmPFC patients and substance users, the somatic 

marker hypothesis has been applied to both of these patient populations in an effort to 

explain the neural deficits underlying these patterns of maladaptive decision making 

(Damasio, 1994; Verdejo-Garcia & Bechara, 2009). The somatic marker hypothesis 

suggests that optimal decision making is dependent on a balance between functioning in 

limbic regions that encode for immediate “feeling” states such as stress and drug craving, 

and prefrontal regulatory regions, including the vmPFC, that is more reflective of the 

long-term consequences of a behavior (Verdejo-Garcia & Bechara, 2009). Based on this 

hypothesis, hypoactivation in the vmPFC among drug users may be one mechanism 

driving compulsive drug seeking, particularly in the face of affective distress when the 

rewards (i.e., amelioration of negative affect) are immediate, and the negative 

consequences (i.e., long-term health, financial, and social consequences) are delayed and 

uncertain. 

  Taken together, cortical regions, including the ACC and vmPFC are crucial for 

effective inhibitory control and decision making. Further, these regions appear to be 

impaired among chronic drug users and these impairments are associated with 

maladaptive decision-making, particularly in the context of stress. As such, deficient 

stress-induced activation in these regions may be indicative of a reduced ability to 
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adaptively regulate one’s emotions and recruit inhibitory control functions needed to 

resist engaging in previously negatively reinforced behaviors (i.e., substance use). 

1.6.5 Limbic and prefrontal neural connectivity 

  Not only do prefrontal and limbic structures play separate roles in emotion 

regulation and decision making, but the circuitry connecting these regions appears to be 

important for modulating emotional experience, inhibiting emotionally driven impulses, 

and determining an appropriate behavioral response (e.g., Li & Sinha, 2008; Ochsner & 

Gross, 2008; Sutherland et al., 2012). State-related changes in cortico-striatal-limbic 

circuits following chronic drug use, or during acute withdrawal from an addictive 

substance, may reduce one’s ability to adapt or cope in the face of distress, and lead to 

impairments in response inhibition and decision making. For instance, failure to activate 

the vmPFC and ACC is associated with dysregulation of amygdala functioning in humans 

(Motzin, Philippi, Wolf, Baskaya, & Koenigs, 2014), as well as impairments in distress 

processing and with maladaptive decision making in the face of distress (Myers-Schulz & 

Koenigs, 2012), which are both characteristic of drug dependent individuals (for a 

detailed review see Li & Sinha, 2008).  

In addition, imaging studies point to increased prefrontal activation as a 

mechanism underlying the regulation of emotion (Beauregard, Levesque, & Bourgouin, 

2001; Critchley, Melmed, Featherstone, Mathias, & Dolan, 2001; Kober et al., 2010; 

Lane et al., 1998; Sinha, Lacadie, Skudlarski, & Wexler, 2004), and effortful cognitive 

regulation of negative emotions and drug craving has been shown to increase activation 

in frontal regions and decrease amygdala activity over time (e.g., Kober et al., 2010) (for 

review see Ochsner & Gross, 2008). Thus, increased cortical activation, in combination 
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with decreased limbic activation, in the context of stress, may indicate an enhanced 

ability to cope adaptively with affective distress and to inhibit impulses to engage in 

maladaptive behaviors.  

  Studies directly examining the strength of functional coupling between the 

amygdala and midline cortical regions through resting state functional connectivity has 

revealed that increased amygdala-vmPFC functional connectivity strength is associated 

with decreased self-reported anxiety levels among non-clinical samples (Kim et al., 

2011). Moreover, chronic drug users show weakened amygdala-cortical connections (Gu 

et al., 2010; W. Wang et al., 2010), providing further support for the role of weakened 

corticolimbic functional connectivity as the neural substrate by which substance users 

evidence an impaired ability to adapt to stress and regulate emotions effectively. 

In their integrated model of stress regulation, craving, and inhibitory control, Li & 

Sinha (2008) propose that weak cortico-striatal-limbic circuitry in patients with substance 

dependence increases susceptibility to drug seeking, particularly while experiencing 

affective distress (for illustration of the model, see Illustration 1). Specifically, during 

times of high stress and arousal, when prefrontal regions are activated and connections to 

limbic regions are strong, there is good inhibitory control and low levels of craving. 

However, reduced activation in the PFC/ACC potentially resulting from a hyperactive 

limbic system, and/or weak connectivity within the cortico-striatal-limbic circuit, limits 

inhibitory control and allows for habitual and automatic responses in times of stress.  

Notably, the model proposed by Li and Sinha (2008) was developed several years 

ago based largely on users of illicit stimulants, including amphetamines and cocaine, and 

was limited by the modest, but burgeoning, body of neuroimaging research on stress and 
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addiction that was available at the time. Therefore, additional network connectivity that 

was not explicitly emphasized by Li & Sinha (2008), but has received more attention in 

recent years, is worth consideration as it may be of relevance to the study of stress and 

addiction, and perhaps most relevant to the field of stress and smoking in particular. 

Specifically, the insula is likely to play a critical role in smoking as smokers 

deprived of nicotine show elevated activation in the insula, and this abstinence-induced 

insula activation is associated with stronger self-reported smoking urges (Z. Wang et al., 

2007). Moreover, smokers who suffer insula damage are significantly more likely to 

experience reduced smoking urges and to ultimately terminate smoking (Naqvi 2001). 

Importantly, recent neuroimaging studies of emotion nearly always report co-activation 

of the insula and the ACC, a region discussed above for its role in monitoring and 

inhibiting impulsive behavior. This frequently replicated finding has led some to suggest 

that it is communication between the insula and ACC that functions to translate 

interoceptive ‘feelings’ into a behavioral response (Craig, 2009). Specific to substance 

use, it has also been posited that during acute withdrawal, the insula mediates the 

conversion of interoceptive sensations (e.g., emotions, craving) into conscious drug 

urges, and the interconnections between the insula and regions involved in affect 

regulation, motivation, and behavior (e.g., striatum, amygdala, vmPFC, ACC) may 

provide the neural substrates by which psychological processes such as stress and craving 

can drive relapse to substance use.  

Despite the theoretical links between corticolimbic functioning, stress, and 

substance use that have been reviewed above, very little research exists to date directly 

examining the neural correlates of stress processing among substance users. Further, the 
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body of research examining the relationships between stress-induced neural functioning, 

as well as functional connectivity in stress- and addiction-related corticolimbic circuits, 

with clinically-relevant substance use outcomes is even smaller. The following section 

will review the limited literature available along this vein, and discuss the limitations of 

the extant work, as well as specific directions for future research. 

1.7. Extant fMRI Work on the Neural Correlates of Stress and Smoking 

1.7.1 fMRI studies of stress and addiction 

Currently, there is a small, yet growing, body of functional neuroimaging work 

that has begun to directly test the functional neural correlates of the relationship between 

stress and addiction among illicit drug users and smokers. Given the extremely small 

body of extant neuroimaging work that directly assesses the neural correlates of stress 

processing among smokers, the following review of fMRI studies of stress processing 

and addiction will begin with studies involving substance users more broadly, and then 

narrow the focus of the discussion to fMRI studies of stress among smokers in particular.  

1.7.2 fMRI studies of stress among illicit drug users 

The theoretical evidence reviewed above on the role of corticolimbic functioning 

in the relationship between stress and substance use outcomes has been supported in a 

small body of fMRI studies among illicit drug users. For example, in an fMRI study of 

cocaine-dependent individuals and healthy controls, participants were exposed to 

stressful and neutral personalized imagery scripts while lying inside the fMRI machine 

(Sinha et al., 2005). Although both groups evidenced similar levels of self-reported 

distress and physiological arousal (i.e., increased heart rate) during stress imagery script 
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exposure relative to neutral scripts, the healthy controls showed a specific pattern of 

stress-induced neural activation in the ACC, while the cocaine-dependent sample failed 

to display this pattern of activation. Instead, cocaine-dependent participants showed 

increased activation in limbic regions, including the caudate and dorsal striatum during 

stress exposure, and the magnitude of activation in these regions was positively 

correlated with self-reported stress-induced cocaine craving (Sinha et al., 2005). Thus, 

expanding upon previous work indicating hypoactivation in the ACC among cocaine 

users during inhibitory control and error monitoring tasks (for review, see Garavan & 

Hester, 2007), these findings suggest that activation in the ACC is also deficient in 

response to stress among cocaine users. Moreover, this stress-induced hypoactivation in 

the ACC, along with stress-induced hyperactivation in striatal regions is associated with 

increased stress-induced craving. 

 In a follow-up study, Sinha and colleagues (2005, as cited in Sinha & Li, 2007) 

conducted a follow-up interview with the same cocaine-dependent participants from 

above at 90 days post-treatment and examined the relationship between stress-induced 

neural activation and a variety of substance use outcome variables. Findings revealed that 

greater stress-induced activation in limbic regions, including the insula, was associated 

with a higher number of days of cocaine use, while increased activation in the posterior 

cingulate was positively associated with the amount of cocaine used per occasion. The 

authors suggest that stress-induced hyperactivation in the insula and posterior cingulate 

may serve as a risk factor for loss of control over cocaine intake and binge episodes 

respectively. This finding is of particular interest given recent conceptualizations 

reviewed above regarding the role of coactivation in the insula and cingulate as a neural 
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mechanism mediating the translation of interoceptive feelings (e.g., emotions, drug 

craving) into a behavioral response. As such, it appears that hyperactivation in these 

regions may indicate an inability to override a prepotent behavioral response (i.e., 

substance use) in the face of aversive interoceptive sensations (i.e., distress and stress-

induced cravings).  

Despite the advancements that have been made in our understanding of the 

relationship between stress-related neural functioning and substance use, few studies 

have utilized neuroimaging techniques to examine stress-induced neural activation 

among cigarette smokers in particular, and how this activation is associated with 

smoking-related outcomes. Further, there are clear areas in which more research is 

needed in order to directly assess the relationship between the neural correlates of stress 

processing and real-world smoking outcomes. As such, the following sections review the 

limited available fMRI studies examining stress among smokers, and highlights 

directions for additional research. 

1.7.3 fMRI studies of stress among smokers 

Despite strong emphasis within both clinical and neurobiological models of 

addiction on the role of stress in addictive behavior, few studies have directly examined 

the neural correlates of stress among smokers. In fact, to our knowledge, there is only one 

published study to date reporting on stress-induced neural activation among smokers. 

Over two separate fMRI sessions, Dagher and colleagues (2009) exposed 15 smokers to a 

psychosocial stressor that involved completion of a challenging mathematical processing 

task (i.e., the Montreal Imaging Stress Task [MIST]; (Dedovic et al., 2005)) that was 

designed to incorporate key contributors to psychological stress such as uncontrollability 
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and social-evaluative threat, and a non-stressful control task that included similar 

mathematical problems, but without time constraint (i.e., reduced uncontrollability) or 

social evaluation. Following exposure to each of the experimental conditions, participants 

were shown smoking cues involving video clips of smokers in order to examine the 

effects of psychosocial stress on cue-induced neural activation.  

Exposure to the stress task was associated with significantly decreased neural 

activation in cortical regions, including the subgenual ACC, vmPFC, and ventrolateral 

PFC relative to the control task. Somewhat paradoxically, stress task exposure was also 

associated with significant deactivation in limbic and paralimbic regions, including but 

not limited to the amygdala, posterior insula, and nucleus accumbens as compared to the 

control task. In terms of smoking cue reactivity, exposure to the psychological stressor 

was associated with significantly increased cue-induced neural activation in regions 

involved in visual attention and assigning incentive values to cues, including the medial 

prefrontal cortex, posterior cingulate cortex, and caudate nucleus, among others. 

Additionally, the researchers examined the relationship between stress-induced neural 

activation and cue-induced neural activation and found that the magnitude of stress-

induced deactivation in limbic regions predicted increased neural reactivity to smoking 

cues in wide ranging cortical and limbic circuits. (Dagher et al., 2009).  

The authors suggest that these findings provide support for the idea that stress 

increases the incentive salience of addictive substances, which in turn increases the risk 

of relapse in the context of stress. However, the finding of widespread deactivation across 

paralimbic regions is somewhat surprising given that previous animal and human studies 

of stress implicate activation in limbic regions as indicative of stress; yet, these findings 
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are consistent with previous work utilizing the same task among healthy non-smokers 

(Pruessner et al., 2008). The authors argue that stress-induced deactivation in limbic 

regions, including the amygdala and nucleus accumbens (as opposed to increased 

activation as might be expected) may be due to the fact that the task employed was a 

psychosocial stressor, as opposed to a fear-inducing task like those that have been used in 

past research, and that for this particular task, the magnitude of deactivation serves as the 

primary indicator of stress reactivity. The study did not include a comparison control 

group of non-smokers, so it is not clear how the magnitude of stress-induced limbic 

deactivation exhibited among smokers would compare to non-smokers. Nonetheless, this 

study provides initial support for the role of stress-induced corticolimbic functioning in 

enhanced smoking cue reactivity, thus adding to the empirical literature on the 

relationship between stress and smoking. However, the contradictory findings in terms of 

the role of decreased rather than increased limbic activation in cue-induced reactivity 

underscores the need for more research to understand the unique neurobiological 

substrates of stress and cigarette smoking. More research is clearly needed in this area to 

replicate existing findings, and to examine the direct effects of stress-induced neural 

activation on clinically-relevant real-world smoking outcomes. 

1.7.4 Functional connectivity studies of corticolimbic circuits in smokers 

As emphasized in Li and Sinha (2008)’s integrated neurobiological model of 

stress and addiction, as well as more recent network level models of addiction based on 

resting state functional connectivity research, it is not just functioning in circumscribed 

cortical and limbic regions that is important for addiction liability, but the strength of 

connectivity between cortical and limbic regions also influences the extent to which 
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individuals can adaptively monitor both interoceptive and external stimuli, allocate 

attentional resources accordingly, regulate their emotions, and abstain from addictive 

behaviors. As such, researchers have also examined corticolimbic functional connectivity 

among smokers. For example, Hong and colleagues (2009) examined the relationship 

between nicotine addiction severity, as measured by total scores on the Fagerstrom Test 

of Nicotine Dependence, and cingulate resting-state functional connectivity among a 

sample of healthy smokers. Results indicated that greater severity of nicotine dependence 

was associated with the weaker functional connectivity within the dorsal anterior 

cingulate cortex (dACC)–striatal circuits, and this relationship remained consistent both 

when participants wore nicotine patches during the resting scan, as well as when they 

wore a placebo patch. As such, the authors suggest that functional connectivity in the 

dACC-striatal circuit may reflect a circuitry level endophenotypic marker of nicotine 

dependence. The findings reported by Hong and colleagues (2009) are consistent with the 

model proposed by Li & Sinha (2008), which posits that stronger functional connectivity 

between prefrontal regulatory regions (i.e., the dACC) and limbic regions associated with 

emotion processing and drug motivation (i.e., the striatum) should enhance top-down 

regulatory control of prefrontal regions over limbic functioning, thus reducing 

compulsive drug seeking.  

Researchers have also tested the relationship between cue induced neural 

activation and resting state functional connectivity among smokers (Zhang et al., 2011). 

When exposed to smoking cues relative to neutral cues, smokers evidenced exaggerated 

cue-induced activation in several cortical regions including the dorsal lateral prefrontal 

cortex (dlPFC), dorsal medial prefrontal cortex (dmPFC), dorsal anterior cingulate 
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cortex/cingulate cortex, rostral anterior cingulate cortex (rACC), occipital cortex, and 

insula relative to non-smokers. These regions were then used as seed regions in 

secondary resting state functional connectivity analyses to examine how they functioned 

at a network level to predict neural reactivity to smoking cues. Results indicated 

significant relationships between the strength of connectivity between these regions and 

the magnitude of neural reactivity to smoking cues, such that connectivity between the 

rACC and dlPFC was positively related to cue reactivity in the dlPFC, connectivity 

between the dlPFC and dmPFC was positively related to cue reactivity in the dmPFC, 

and connectivity between the dmPFC and insula was inversely related to cue reactivity 

within both of these regions. As such, these findings suggest that the strength of 

connectivity between these cortical circuits can influence the magnitude of neural 

response to smoking cues. However, it is unclear how these factors directly translate into 

clinically-relevant smoking dependence characteristics or behavior. 

To our knowledge, one study to date has examined resting state corticolimbic 

functional connectivity a prospective predictor of real-world smoking outcomes (Janes et 

al., 2010). Specifically, a sample of healthy smokers completed an fMRI scan prior to a 

smoking quit attempt, during which they were shown a series of smoking-related and 

neutral images. Researchers conducted functional connectivity analyses on the fMRI data 

that was collected during the smoking-cue reactivity task and examined the relationship 

between insula-frontocingulate functional connectivity and ‘slips’ (operationalized as 

smoking a cigarette following at least 24 hours of complete abstinence) following 

cessation. Smokers who went on to ‘slip’ during their smoking cessation attempt 

displayed weaker functional connectivity between the dACC and the insula in the context 
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of smoking-related images (Janes et al., 2010). Thus, these findings provide additional 

support for the role of functional connectivity between corticolimbic regions, including 

the ACC and insula in particular, in the regulation and inhibition of addictive behavior 

among smokers.  

Most recently, Lerman and colleagaues (2014) made novel use of resting state 

functional connectivity data to test a newer network level model of nicotine dependence 

proposed by Sutherland and colleagues (2012). The model proposes that a salience 

network (SN) comprised of the insula and ACC monitors incoming information, and 

depending on the most subjectively relevant stimuli available, serves as a “toggle” 

switch, allocating attentional resources differentially between the default mode network 

(DMN, a network of midline regions involved in internal reflective thinking) and the 

executive control network (ECN, including lateral cortical regions involved in sustained 

attention to external stimuli and goal-oriented behavior). The model suggests that in the 

context of acute nicotine abstinence, the SN would allocate more resources to monitor 

internal withdrawal-related symptoms, thus biasing functioning toward the DMN and 

away from the ECN. Lerman compared the relative strength of connections between the 

SN-DMN and SN-ECN among smokers in the context of nicotine-satiated versus 

nicotine-deprived states. Findings supported the idea that the SN biases functioning 

toward the DMN during nicotine deprivation (SN-DMN connectivity was weaker during 

nicotine deprivation, indicating reduced inhibition of the DMN by the SN), and the 

magnitude of this relative bias toward the DMN while nicotine-deprived relative to 

nicotine-satiated predicted greater urges to smoke, as well as reduced suppression of the 

DMN during a working memory task. These findings suggest that not only chronic 
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smoking, but also acute smoking status (i.e., nicotine deprivation versus satiation) can 

significantly alter network dynamics and that these alterations may underlie withdrawal-

induced cognitive impairments and enhanced craving among smokers.      

1.8. Remaining Questions 

Despite what is known about the neural correlates of addiction and stress in 

smokers, there are clear gaps in the literature and key questions remain unanswered. First, 

there are no published studies to our knowledge that have examined the relationship 

between stress-induced corticolimbic functioning and real-world, clinically-relevant 

smoking outcomes, such as stress-induced craving, nicotine dependence severity, number 

of cigarettes per day, or smoking cessation outcome history. However, one unpublished 

study of this kind was presented at the 2009 Joint Conference of the Society for Research 

on Nicotine & Tobacco (SRNT) and SRNT-Europe, and has been cited in a text book 

chapter written by David and colleagues (2011). Specifically, Finnerty (2009, as cited in 

David et al., 2011) presented nine abstinent smokers with neutral, negative, and positive 

affective images during an fMRI session. Neural activation in response to the negative 

affective images was examined as a predictor of smoking severity, as measured by 

cigarettes smoked per day. The researchers found positive correlations between number 

of cigarettes per day and neural reactivity to the negative emotional images in regions 

including a large cortical frontoparietal attentional network, as well as subcortical regions 

including the caudate and thalamus. However, this study remains unpublished to date 

leaving many questions unanswered about the exact nature of the findings, thus 

highlighting the clear need for more neuroimaging work examining the relationship 

between neural reactivity to stress and smoking outcomes.  
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Noting the dearth of research on the neural underpinnings of the relationship 

between stress and addiction among humans, researchers in the field are calling for more 

studies to address this gap in the literature. For example, Schutz (2008) emphasized that 

existing research into the brain mechanisms underlying relapse and reinstatement of 

addictive behavior predominantly rely on animal studies, thus pointing to the need for 

more novel human fMRI-based paradigms designed to study key triggers, including 

psychological stress, that have been implicated in substance use and relapse. The author 

went on to argue that additional research of this kind could lead to the development of 

targeted interventions to prevent relapse. Similarly, Sinha (2008) noted that although 

evidence suggests that stress-induced neural activation, particularly in stress and reward 

circuits of the brain, may serve as a mechanism underlying the known relationship 

between stress and addiction, human research directly linking stress-induced changes in 

neural activity and real-world addictive behavior is needed in order to more definitively 

establish the association between stress, neural activation, and addiction risk, as well as 

treatment outcomes. As such, additional fMRI-based research is clearly needed to 

directly test the relationship between stress-induced neural activation and clinically-

relevant smoking variables, such as stress-induced craving, number of cigarettes per day, 

dependence severity, and smoking cessation outcome history. 

As emphasized by neurobiological models of addiction (Li & Sinha, 2008; 

Sutherland et al., 2012), it is also important that research examining the neural 

mechanisms driving addictive behavior look beyond the role of neural functioning in 

discrete brain regions, and focus more on how neural circuits function at a network level 

to gain a deeper understanding of neuropsychiatric disorders. Although neuroimaging 
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research that utilizes cognitive subtraction task paradigms (e.g., comparing neural 

functioning in response to no stress versus stress to isolate stress-induced functioning) 

can provide information about stress reactivity within specific brain regions, resting state 

functional connectivity analyses can provide complementary insight into how interactions 

between regions might drive state-dependent neural reactivity, and predict clinically-

relevant outcomes. The body of resting state functional connectivity research among 

smokers is growing, but there are currently no studies to our knowledge that use this 

approach to specifically examine how functional connectivity between brain regions 

activated by stress might function to predict clinically-relevant outcomes such as 

smoking dependence characteristics, craving, and smoking lapse history. 

1.9. Summary and Significance 

Nicotine dependence is a prevalent and costly disorder characterized by 

notoriously high relapse rates, thus representing a significant public health concern. 

Given the intractable nature of the disorder, a strong emphasis has been placed on 

understanding the processes associated with smoking and relapse following cessation. 

Self-report and experimental studies have provided support for the role of affective 

distress as a mechanism driving substance use across the stages of addiction, and 

neurobiological models (e.g., Li & Sinha, 2008) have been developed emphasizing the 

role of corticolimbic functioning in emotion dysregulation and compulsive drug seeking. 

Neuroimaging studies among smokers in particular have largely supported the model 

proposed by Li & Sinha (2008); however, research within human smokers is very limited 

and lacking in some areas, leaving key questions unanswered. Specifically, can stress-
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induced corticolimbic activation, and functional connectivity within stress-related 

corticolimbic circuits, predict clinically-relevant real-world smoking outcomes?  

1.10 Current Study 

 The current study addresses clear gaps in the existing literature on the neural 

correlates of stress and smoking by examining the relationship between corticolimbic 

functioning (i.e., stress-induced activation and functional connectivity within stress-

related corticolimbic circuitry) and clinically-relevant smoking-related outcome 

variables, including self-reported stress-induced craving, number of cigarettes smoked 

per day, retrospective smoking lapse history (i.e., number of past quit attempts lasting 

longer than 12 hours, and duration of longest past abstinence attempt), and nicotine 

dependence severity as measured by the Fagerstrom Test for Nicotine Dependence 

(FTND; T. F. Heatherton et al., 1991).  

As noted by Sinha (2008) and Schutz (2008), research that directly addresses 

stress-related neurobiological processes and their association with behavioral outcomes 

within addiction is sorely needed. By examining the specific relationships between stress-

related corticolimbic functioning and smoking-related outcomes, the current study aimed 

to set the stage for larger, prospective longitudinal studies to predict smoking outcomes 

among treatment seeking smokers based on their neural reactivity to affective distress, as 

well as the strength of functional connectivity in stress-related corticolimbic circuits.  
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1.11 Specific Aims 

1.11.1 Primary Aim 

To examine the relationship between stress-induced neural activation and clinically-

relevant smoking measures. 

Hypothesis: Reduced reactivity to stress in cortical regions including the ACC and 

vmPFC, as well as increased reactivity to stress in limbic regions including the amygdala, 

insula, and striatum during a stressful fMRI task will be significantly related to higher 

levels of stress-induced craving as measured by a Likert-type craving scale administered 

pre- and post-stress task, poorer self-reported smoking lapse history, greater number of 

cigarettes per day, and higher scores on an established self-report measure of nicotine 

dependence (i.e., the FTND).  

1.11.2 Secondary Aim 

Corticolimbic regions that show significant stress-induced activation were then used as 

seed regions for secondary analyses that aimed to examine the relationship between 

resting state functional connectivity in stress-related corticolimbic circuits and clinically 

relevant smoking measures. 

Hypothesis: Weaker functional connectivity between components of the addiction-

relevant limbic circuits that are activated by stress, including the striatum, amygdala, and 

insula, and cortical circuits (particularly the vmPFC and ACC) will be significantly 

related to higher levels of stress-induced craving as measured by a Likert-type craving 

scale administered pre- and post-stress task, poorer self-reported smoking lapse history, 

greater number of cigarettes per day, and higher scores on an established self-report 

measure of nicotine dependence (i.e., the FTND).  
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Chapter 2: Research Design 

2.1. Recruitment 

A total of 35 current cigarette smokers (17 female) were recruited as part of a 

larger study examining the neural correlates of distress tolerance among healthy smokers 

and non-smoking controls at the National Institute on Drug Abuse Intramural Research 

Program (NIDA IRP) in Baltimore, Maryland. Individuals were recruited for this study 

through IRB-approved advertisements and outreach initiatives, by referral from 

healthcare workers or facilities, or by referral from other study participants. Interested 

participants completed an initial telephone screening, and if they passed this initial 

screening, presented to NIDA IRP for a complete in-person assessment in line with 

NIDA IRP’s standard procedures for assessing participant medical and mental health 

history to determine eligibility for NIDA fMRI studies. Participants meeting the 

inclusion/exclusion criteria for the current study were contacted by study staff to schedule 

their participation.  

Of the 35 current smokers who were recruited to participate in the current study, a 

total of 15 participants were excluded from study analyses (see Illustration 2 for a 

complete illustration of how participants were selected for inclusion in study analyses).  

Reasons for participant exclusion from analyses included, (a) technical problems (i.e., 

problems with joystick calibration) (n = 2) that precluded participants from completing 

the stress task in the fMRI, (b) participant decision to terminate scan before completing 

the entire protocol (n = 1), (c) excessive head motion during resting state scan (n = 4), 

and (d) excessive head motion during stress task scan (n = 8). Head motion was 
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determined to be “excessive” if, greater than 25% of the fMRI data had to be censored 

out due to head motion (data points were censored out if there was more than 0.3mm of 

motion between successive TRs). Thus, the data analysis for the current study is based on 

the remaining sample of 20 participants (10 female) (see Section 3.1.1.1 for tests of 

potential group differences in demographic and other relevant characteristics between 

participants who were included in analyses, versus those who were excluded). 

2.2 Inclusion/Exclusion Criteria 

To qualify for the current study, participants must have been (1) between the ages 

of 18 and 50, (2) in good health (see exclusion criteria below for specific markers of poor 

health that excluded participants from the study), (3) right-handed, and (4) current 

smoker of 10 cigarettes a day or more. 

Participants were excluded from the current study if they (1) were pregnant; (2) 

had implanted metallic devices (cardiac pacemaker or neurostimulator, some artificial 

joints, metal pins, surgical clips or other implanted metal parts) or claustrophobia 

rendering them unable to undergo fMRI scanning; (3) had major medical illnesses to 

include, but not limited to, hypertension, cardiovascular disease, asthma, diabetes, 

peripheral vascular diseases, coagulopathies, syncope, history of superficial or deep vein 

thrombosis, HIV, or other clinically significant infectious diseases; (4) had current major 

psychiatric disorders including, but not limited to, mood, anxiety, borderline personality 

disorder, psychotic disorders, or substance-induced psychiatric disorders; (5) had 

neurological illnesses including, but not limited to, seizure disorders, migraine, multiple 

sclerosis, movement disorders, or history of head trauma, CVA, CNS tumor; (6) met 

DSM-IV criteria for any past or current dependence besides nicotine or use of illicit 
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substances in the last 30 days; (7) reported regular use of any prescription, over-the-

counter, or herbal medication that may alter CNS function, cardiovascular function or 

neuronal-vascular coupling; (8) had cognitive impairment as assessed by screening WASI 

vocabulary subtest below 48, corresponding to full IQ of below 85 (in that case in 

screening, a full WASI was administered to verify IQ of 85 or above); (9) showed acute 

drug intoxication or positive urine drug screen upon arrival for fMRI scan; and (10) 

tested positive on a urine pregnancy test.  

2.4 Procedure 

2.4.1 Pre-scan procedures 

The entire visit lasted approximately 5-6 hours (See Illustration 3 for a complete 

timeline of all procedures carried out during the study visit). Participants were asked to 

arrive 1.5 hours before the scheduled scan, and were told that they could smoke cigarettes 

as normal prior to their arrival for the study visit. Upon arrival, participants first 

completed the informed consent procedures. Once consent was provided, participants 

were escorted to nursing to complete a brief physical exam, including measurement of 

vital signs, brief assessment of any changes in health status since their last NIDA visit, a 

breathalyzer test for alcohol use, a urine drug-use assessment (Triage®), a urine 

pregnancy test (females only), and an MRI safety checklist that reviewed any health or 

medical conditions that would interfere with completion of an fMRI scan.  

Next, participants were given instructions on how to complete all tasks that were 

to be administered in the fMRI, and completed training modules of each of the four tasks 

(see Section 2.4.2 for more details about the tasks).  For the stress task reported in the 

current study (i.e., the PASAT-M, described in detail in Section 2.4.4), participants 



 

 43 
 

practiced the easy phase of the task on a desk-top computer until they got five 

consecutive number presentations correct, at which time it was clear that they understood 

the instructions and could perform the task. Following task training, participants were 

asked to smoke one last cigarette immediately before being escorted to the scanner for 

physiological and MRI setup.  

2.4.2 Scan Set-up and Scan Procedures 

Physiological and MRI setup occurred next. A trained Magnetic Resonance 

Technician (MR Tech) ran all scanning procedures, and a trained graduate or post-

bachelor level research assistant communicated with participants throughout all sessions. 

Upon entering the scanner, a quadrature birdcage RF volume coil was placed around 

participants’ heads and their heads were held in place by a head restraint that consisted of 

hardened polyurethane foam (expanding packing foam) placed inside double plastic bags. 

Four adhesive-coated electrocardiogram (EKG) electrodes were attached to participants’ 

chests to monitor heart rhythms throughout the scan. All scanning took place in a 

Siemens 3Tesla Allegra MRI at the NIDA IRP.  

The entire scanning procedure lasted approximately two hours (see part (B) 

within Illustration 3 for a pictorial representation of scan procedures). The scan began 

with a T1-weighted anatomical scan. Next, participants completed a working memory 

task (the N-Back; for review, see Owen, McMillan, Laird, & Bullmore, 2005) and a 

sustained attention task (the Go/No-Go; e.g., Garavan, Ross, Murphy, Roche, & Stein, 

2002), both of which were analyzed as part of the larger study on the neural correlates of 

distress tolerance, but the results of which are not reported here. The order of these two 

tasks was counter-balanced across participants. Participants were then told to close their 
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eyes and relax while the resting state functional connectivity scan was completed, lasting 

approximately eight minutes.  

Finally, participants completed two novel stress tasks modified for use in the 

fMRI, including the Mirror Tracing Persistence Test for fMRI (MTPT-M; modified, 

using an event-related design, from the computerized version of the MTPT described in 

Strong et al., 2003) and the Paced Auditory Serial Addition Test for fMRI (PASAT-M; 

described in detail in Section 2.4.4), with the order of these two tasks also counter-

balanced across participants. We chose to use the functional data from the PASAT-M as 

our measure of stress-induced neural functioning for the current study as the event-related 

design utilized in the current study’s version of the MTPT-M was found to be less 

powerful at detecting stress-related neural functioning. The MTPT-M has since been 

redesigned using a block design format, similar to the PASAT-M, for use in subsequent 

studies. Participants’ individual ratings of emotional distress were assessed frequently, 

including before, during (i.e., between task scans), and after the scan. A safety protocol, 

which was described to participants prior to the scan, was in place should any participants 

experience elevated distress following scan completion; however, no participants 

necessitated any special safety measures.  

 Given that some participants completed two tasks prior to the PASAT-M, while 

others completed three, and that the order of task completion varied across participants, 

we tested for the effects of task order on participants’ subjective mood ratings that were 

provided during the PASAT-M, as well as the effects of task order on stress-induced 

neural functioning in response to the PASAT-M. No significant effects of task order, on 
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either subjective responses or neural responses to stress, during the PASAT-M were 

identified. 

2.4.3 Post-Scan Procedures 

After the scan, participants completed self-report measures, including smoking 

measures (described in Section 2.5.3). At the end of the testing session, participants were 

compensated according to the following payment schedule: $20/hour for study visit, $50 

flat rate for time in the scanner, $15 for travel, and an additional $25 bonus based upon 

participant compliance during all study procedures. Participants were told that the $25 

bonus was based on their performance on the task in order to further increase affective 

distress during task completion. Participants were fully debriefed at study completion. 

2.4.4 Stress task: The Paced Auditory Serial Attention Task for fMRI (PASAT-M) 

2.4.4.1 Overview of PASAT-M 
 

All participants completed the Paced Auditory Serial Attention Task for fMRI 

(PASAT-M) during the second half of the fMRI scan. The original PASAT-C, developed 

as a behavioral measures of distress tolerance (Lejuez, Kahler, & Brown, 2003), was used 

as the template for the development of an fMRI compatible version used in the current 

study. The PASAT-M was created as a block design task, with an “easy phase” designed 

to control for cognitive and motor functioning, and a “hard phase” designed to elicit 

affective distress. We first present the task rules that were consistent across all task 

phases, followed by greater detail regarding how the task phases varied from one another 

as the task progressed. 

Similar to the PASAT-C, a series of numbers flashed on the screen one at a time 

and the participants were asked to add the current number on the screen to the previously 
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presented number, and then use an MRI compatible joystick to indicate the correct 

answer before the subsequent number appeared. For instance, if a ‘3’ appeared, followed 

by a ‘6’, the participant must have chosen ‘9’ before the next number appeared. There 

were four options to choose from for the response and the participants were instructed to 

move the joystick in the direction of the correct response. Correct responses resulted in a 

pleasant bell sound and an increase in the participants’ score, while incorrect and slow 

responses resulted in an explosion noise and a decrease in points. The volume level of the 

task was determined based on pilot testing prior to the current study. For all study 

participants, the volume was set at a constant level that was determined during pilot 

testing to be sufficiently loud to allow for participants to hear the task noises over the 

noise of the MRI machine. A meter on the screen reflected the participants’ overall score. 

As participants earned points, the meter went up and turned green, and as they lost points, 

the meter went down and turned red.  

Participants were told during both informed consent and task training that their 

payment at the end of the session would be determined by their total performance on the 

task. This was also stated in the instructions on the computer screen while they were in 

the scanner. A monetary reward/loss paradigm was chosen because evidence suggests 

money represents a common currency for other basic rewards (i.e., food, sex; Montague 

& Berns, 2002), and would therefore elicit similar responses to loss across participants. 

To assess changes in distress during each of the task phases, participants used a joystick 

to complete mood ratings (e.g., “Irritability”, “Stress”, “Frustration”, “Anxiety”, and 

“Craving”) before and after each phase on 100-point Likert scales displayed on the 

screen.  
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2.4.4.2 PASAT-M individual task phases (Illustration 4) 

The task began with the first set of mood ratings, followed by the first phase of 

the task. The first phase was an easy phase that was expected to activate the motor and 

working memory components of the task while keeping the amount of affective distress 

experienced by participants to a minimum. For the easy phase, only two answer options 

were available (instead of four), with the other two response locations replaced with an 

‘X’. In addition, the subsequent number was not presented on the screen until the 

participant makes each response; therefore, there was no time pressure involved, as the 

participants could proceed at their own pace. There was a total of eight 45-second activity 

blocks, beginning, ending and alternating with 30-second rest blocks (during which a 

cross hair is presented in a central fixation point on the screen in a typical block-design 

fashion), for a total of 10.5 minutes.  

Following the easy phase and a second mood rating period, a five-minute latency 

test phase began in order to determine each participant’s individual skill level. The 

difficulty level increased substantially on this phase, in that there were now four response 

options to choose from instead of two, and each time a participant got a response correct, 

the subsequent number appeared 500 milliseconds faster than it did the previous time. 

Conversely, each time a participant was too slow or chose an incorrect response, the 

subsequent number appeared 250 milliseconds slower. This is the phase that participants 

began to ‘lose’ frequently, which was accompanied by a decreasing point meter and a 

loud explosion sound after each ‘incorrect’ or ‘too slow’ response. Ability level was 

calculated as the mean latency during this phase of the task.  
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The third phase of the task was the hard phase. This phase was designed in the 

same manner as the easy phase (eight 45-second activity blocks, beginning, ending and 

alternating with 30-second rest for a total of 10.5 minutes), but difficulty was 

significantly increased, such that each activity block in the hard phase had four response 

options to choose from instead of two, and the response time allotted for each number 

presentation was 2.5x faster than their ability level as determined during the latency 

phase. Further, participants were told that their performance during this phase would 

influence how much money they would receive at the end of the testing session. The task 

parameters and procedures that were utilized in the hard phase were developed in order to 

maximize the chance that participants would perform poorly on this round and experience 

repeated forced failure and aversive negative performance feedback (i.e., constant 

explosion noises signaling failure, as well as a decreasing point meter), thereby 

increasing affective distress.  

The final phase was the distress tolerance (DT) phase, and was designed to 

measure one’s ability to persist in goal directed behavior while experiencing affective 

distress.  The rate of number presentation in this phase was identical to the hard phase 

and the DT phase lasted for a maximum of ten minutes. Participants were told that in this 

round they had a chance to earn back points they may have lost in the hard phase, but 

they would no longer lose points for ‘incorrect’ or ‘too slow’ responses.  Participants no 

longer lost points and had the opportunity to win back points to ensure that participants 

(1) were engaging in goal directed activity, and (2) did not choose to quit the task 

because it was an adaptive response to prevent further loss. However, the explosion 

noises and negative feedback for incorrect responses remained. Participants were again 
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told that their performance would determine how much money they received at the end of 

the session, but that they were told that they could press a button on the joystick at any 

time to end the task, and the statement “Press the Button to Quit at any Time” was 

displayed on the screen throughout this phase.  

Although there were a total of four phases of the PASAT-M, the final phase (i.e., 

the DT phase) was intended as a behavioral measure of distress tolerance, measured as 

time in seconds to task termination. Given that the duration of the DT phase varied across 

participants depending on how long they each chose to persist, the functional 

neuroimaging data from the DT phase was not included in analyses. To examine stress-

induced neural function, data from the easy and hard phases were used. Specifically, the 

PASAT-M easy and hard phases were analyzed as a block-design task, primarily looking 

at the contrast activation map of [hard-rest] – [easy-rest] to isolate stress-induced neural 

activation.  

2.5. Measures 

2.5.1 Diagnostic and screening measures 

All of the following measures were administered during the standard NIDA IRP 

screening procedures to determine eligibility for NIDA fMRI studies: 

(a)  Demographics Questionnaire: A self-report questionnaire that was used to assess 

basic information including age, gender, race/ethnicity, education level, occupation, 

home occupants, and socioeconomic status.  

(b)  Contact Information Form: This form requests multiple methods of contact for a 

participant, as well as the preferred contact method, preferred contact time, and 

emergency contact information.  
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(c)  Structured Clinical Interview for DSM-IV (SCID; First, Spitzer, Gibbon, & 

Williams, 1995): A structured diagnostic interview that was used to assess lifetime 

prevalence of Axis I diagnoses to determine eligibility for the current study. 

(d)  Wechsler Abbreviated Scale of Intelligence (WASI ): This is an abbreviated 

version of the Wechsler Adult Intelligence Scales – Third Edition that provides IQ 

measures of suitable reliability for estimating intelligence. For screening purposes, only 

the vocabulary portion of the WASI was administered.  However, if a participant 

received a borderline score on the vocabulary subtest (i.e., less than the minimum score 

of 48 that was required for eligibility), the full WASI was then administered to determine 

eligibility for the current study. Those with full WASI scores of 85 or more were eligible 

to participate. 

(f)  Edinburgh Handedness Inventory  (Oldfield, 1971): A self-administered 10-item 

questionnaire that was used during screening to assess if participants are right handed.  

(g)  Participant Safety – MRI Screening Form (Standard, NIDA-IRP): A brief self-

administered questionnaire that aids in determining whether a participant can safely and 

effectively receive an MRI.  

(h)  Standard History and Physical (H&P) Exam: A standard exam including blood 

pressure, heart rate, and EKG, as well as the participant’s current physical and 

psychological health, history of medical problems, family medical history, urine drug 

screen, breathalyzer to test for current alcohol intoxication, and first day of last menstrual 

cycle, as well as urine pregnancy test (for women). A comprehensive H&P was 

conducted during initial screening for eligibility to participate in NIDA fMRI studies, and 

abbreviated H&Ps (i.e., participants were only asked about changes in medical status 
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since their last study visit) were conducted with each participant during the study testing 

session.  

2.5.2 Affective measures 

(a) Mood Ratings: A total of five Likert-type scales were presented to participants 

repeatedly before, during (i.e., in between task scans), and after the entire 2-hour fMRI 

scan. During the PASAT-M scan in particular, the mood scales were presented five 

separate times (i.e., pre-easy phase, pre-latency phase, pre-hard phase, post-hard phase, 

and post-DT phase), assessing subjective feelings of “Irritability”, “Stress”, “Frustration”, 

and “Anxiety” on a scale of 0-100. Each time the mood ratings were administered, the 

scales appeared one at a time on the screen. To complete the mood ratings, participants 

are told to use their joystick to move the cursor to the point on the line which best 

reflected how they were feeling right at that moment. 

2.5.3 Smoking measures 

(a) Fagerstrom Test for Nicotine Dependence (FTND; T.F. Heatherton, L.T. 

Kozlowski, R.C. Frecker, & K.O. Fagerstrom, 1991): The FTND is a 6-item self-report 

measure that was used during screening as a continuous measure of nicotine dependence. 

The FTND has shown good internal consistency, a single dimension factor structure, and 

positive relationships with degree of nicotine intake as assessed by saliva cotinine (T. F. 

Heatherton et al., 1991). The FTND is considered to be the standard instrument in the 

field for measuring nicotine dependence. Possible scores on the FTND range from 0-10. 

(b) Smoking History Scale (SHQ): A brief self-report questionnaire that was used to 

assess different aspects of past smoking experience, including number of cigarettes per 

day and lapse history: two key smoking outcome variables in the current study. 



 

 52 
 

Specifically, the SHQ includes items such as the number of cigarettes smoked per day, 

age of smoking initiation, smoking status (e.g., daily smoker, occasional smoker, etc.), 

number of quit attempts, longest time abstinent, and other smokers in the household. The 

items asking about the number of cigarettes currently smoked per day, number of quit 

attempts, and duration of longest abstinence attempt were the ones most relevant to the 

current study as they were used to assess current smoking severity and smoking lapse 

history. 

(c) Stress-induced Craving: Stress-induced craving was assessed using a single-item 

Likert-type scale that was presented to participants along with the mood ratings at five 

time points over the course of PASAT-M administration (i.e., pre-easy phase, pre-latency 

phase, pre-hard phase, post-hard phase, and post-DT phase). Each time, the word 

“Craving” appeared on the screen and participants were instructed to use their joystick to 

move the cursor to the point along the line which best reflected how they were feeling 

right at that moment. Scores range from 0 to 100. Craving scores from post-easy phase 

and post-hard phase were used to create a difference score ([post-easy craving] – [post-

hard craving]) reflecting stress-induced craving, and all analyses examining stress-

induced craving controlled for baseline (i.e., post-easy) craving. 

2.5.4. Physiological measures 

(a)  Heart Rate (HR): Increased HR generally accompanies emotional arousal states 

(Hagemann, Waldstein, & Thayer, 2003; Min, Chung, & Min, 2005); therefore, HR was 

also measured as a manipulation check to insure that the PASAT-M induced a state of 

physiological arousal. See Section 2.6.2 below for details on method of HR measurement 

and data collection. 
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2.6. Data Acquisition 

2.6.1 fMRI 

Data acquisition occurred on a Siemens Allegra 3T scanner (Siemens, Erlangen, 

Germany). For the functional scans (both the resting functional connectivity scan and the 

PASAT-M scan), single-shot gradient-echo EPI images were obtained over the whole 

brain using an oblique axial acquisition plane (approximately 30° axial-to-coronal from 

AC-PC) that has been shown to minimize signal loss due to field inhomogenaity effects 

(Deichmann, Gottfried, Hutton, & Turner, 2003). The other imaging parameters are: 

TR=2s, TE=27ms, FOV=220x220mm2, 64x64 matrix, slice thickness=4mm, FA=78°, 

BW=4112Hz/pixel. In each scanning session, a whole-brain T1-weighted structural 

image (MPRAGE) was acquired for anatomical reference (1mm3 isotropic voxels, 

FOV=256x256mm2, TR=2.5s, TE=4.38ms, TI=1s, FA=8°, BW=130Hz/pixel).  

2.6.2 Physiological data 

Amplified HR was recorded on a BIOPAC data acquisition system (BIOPAC 

Systems, Inc., Goleta CA). The recorded data was stored on a PC at a sampling rate of 1 

kHz/channel. EKG data was recorded using four Ag-AgCl electrodes placed in the chest 

area. Beat-to-beat interval as well as HR data was automatically determined and 

submitted to semiautomatic artifact correction. EKG (HR) data were recorded 

continuously and were analyzed as average values over the entire length of each phase in 

order to assess task-related changes in physiological arousal.  
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2.7. Data Analysis Plan 

2.7.1. Aims 

 The primary aim of the data analysis was to specify the relationship between 

stress-induced neural activation and real-world, clinically-relevant smoking variables, 

including stress-induced craving as measured by a Likert-type craving scale pre- and 

post-fMRI stress task, self-reported smoking lapse history (i.e., number of past quit 

attempts lasting 12 hours or more, and duration of longest past quit attempt), number of 

cigarettes per day, and scores on an established self-report measure of nicotine 

dependence (i.e., the FTND). The secondary aim of the data analysis was to specify the 

relationship between the strength of functional connectivity between corticolimbic 

regions showing significant stress-induced activation and clinically-relevant smoking 

outcomes (i.e., same variables as listed in primary aim). 

2.7.2 Preliminary Analyses 

Prior to conducting the main study analyses, the self-reported smoking-related 

data were examined for significant violations of normality (e.g., skewness greater than 

1.0), multicollinearity, and missing values. Methods were employed, as needed, to impute 

missing data and transform data to approximate normality (i.e., log transformations for 

positive skewness). Analyses were also conducted to test for systematic differences 

between individuals who were included in analyses, versus those who were excluded. To 

assess the effectiveness of the PASAT-M as a distress-induction method, analyses were 

conducted as a manipulation check to test for significant differences in self-reported 

negative affect and craving from immediately post-easy phase to immediately post-hard 
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phase, as well as significant increases in physiological arousal (i.e., heart rate) from the 

easy phase to the hard phase. 

2.7.3 Imaging Analyses 

2.7.3.1. Preprocessing PASAT-M scan 

The imaging data were analyzed with AFNI (Analysis of Functional 

NeuroImages, http://afni.nimh.nih.gov/afni/, (Cox, 1996)). First, preprocessing occurred 

on the single-subject data. This includes motion correction, correction of slice-timing 

differences, and censoring out time points exhibiting head motion greater than 0.3mm in 

3 planes between successive TRs from individual subject data sets. Data sets exhibiting 

greater than 25% of data loss due to head motion were removed from further analyses. 

 Next, all functional images were directly registered upon their MPRAGE 

anatomical scan, translated into 3D stereotaxic coordinates (Talairach & Tournoux, 1988) 

and blurred to a FWHM of 8mm.  First-level functional images from activation-induced 

MRI signal changes were determined using multiple regression analysis (P. A. 

Bandettini, Jesmanowicz, Wong, & Hyde, 1993; Worsley & Friston, 1995) using a 

restricted maximum likelihood approach and including a ARMA(1,1) term to account for 

autocorrelation of the residuals. Regressors for the PASAT-M were boxcars for [easy-

rest] and [hard-rest] contrasts convolved with a model of the hemodynamic response 

function (HRF). Extra regressors were included to account for baseline, baseline drift, 

and residual motion. The activation map for the contrast [hard-rest] – [easy-rest] was 

used to identify significant clusters of stress-induced activation within corticolimbic 

ROIs.  Small-volume corrections were applied to the a priori hypothesized ROIs (i.e., 

amygdala, striatum, insula, vmPFC and ACC, all defined based on their locations in the 
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Talairach Daemon atlas (Lancaster, Woldorff, Parsons et al., 2000) in AFNI; see Table 1 

for list of Talairach coordinates for the center of mass of each ROI). Data were then  

corrected for multiple comparisons to omnibus p<0.05 using a combination of voxel-wise 

threshold and minimum cluster size (Forman et al., 1995). Specifically, using 3dClustSim 

in AFNI following small volume correction, it was determined that at a voxelwise 

threshold of p<0.001, a minimum cluster size of 8 voxels was required to maintain an 

omnibus threshold of p<0.05. 

 
2.7.3.2. Preprocessing Resting State Functional Connectivity Scan 

Functional connectivity analyses were conducted in AFNI (Cox, 1996), SPM5 

(Friston et al., 1995) and MATLAB (The MathWorks, Inc., Natick, MA). Preprocessing 

included slice-timing correction, motion correction, and censoring out time points 

exhibiting head motion greater than 0.3mm in 3 planes between successive TRs from 

individual subject data sets. Data sets exhibiting greater than 25% of data loss due to head 

motion were removed from further analyses. Preprocessing continued with linear 

detrending and low-pass temporal filtering with a cutoff frequency of 0.1 Hz to retain the 

low frequency fluctuation components that contribute to functional connectivity (Biswal, 

Yetkin, Haughton, & Hyde, 1995; Lowe, Mock, & Sorenson, 1998).  

 To facilitate group analysis, data was spatially normalized to the standard 

Talairach space with a resampled resolution of 3×3×3 mm3. Spatial smoothing with a 6-

mm Gaussian kernel was performed to increase spatial signal to noise ratio (SNR). To 

further align the resting-state functional data across subjects, an unbiased group-wise 

nonlinear registration method was used to deform each spatially smoothed image to an 

implicit group reference image based on a small deformation elastic model (Geng, 2007). 
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Seed regions were defined based on functional clusters of significant stress-induced 

activation on the PASAT-M (i.e., during the [hard-rest] – [easy-rest] contrast) in a-priori 

hypothesized corticolimbic regions that have previously been shown to play a role in both 

stress and addiction. One such cluster in the right insular cortex was identified (reported 

in full detail in Results section below). For the significant cluster of stress-induced neural 

activation that was identified, the entire cluster was extracted as a mask that served as the 

seed region for functional connectivity analyses. A reference time course from the seed 

region was generated by averaging the time courses of all voxels within the cluster. 

Subsequently, a cross-correlation coefficient (CC) map for the seed region was obtained 

by correlating each voxel's time course with the corresponding reference time course. 

Global fluctuations, originating presumably from systemic effects, such as respiration and 

cardiac function were corrected by extracting the top three principal component time-

courses each from voxels in white matter and ventricular CSF. These masks were 

generated by segmenting the high resolution structural images in SPM5 and down-

gridding them to the same resolution as the functional data. Correction for global 

fluctuations were then performed by regressing these time courses during calculation of 

CCs. Before proceeding to group-level analysis, the CC maps were converted to z-score 

maps that have the same tail probability as CC maps using AFNI's built-in function to 

improve the normality. 

2.7.3.3. Primary Aim 

 The primary aim was to examine the unique relationships between stress-induced 

neural activation and each of the five clinically-relevant smoking outcome variables 

outlined above (i.e., stress-induced craving, FTND score, cpd, longest past quit attempt, 
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and number of past quit attempts lasting longer than 12 hours). Second-level (i.e. group) 

analyses consisted of voxel-wise multiple linear regression analyses on the beta-weight 

maps resulting from the first-level analysis of the PASAT-M task data described above 

(namely, the activation map from the contrast [hard-rest] – [easy-rest]), using the 

3dRegAna program (Ward, 1998) within AFNI. This program allows users to enter the 

quantitative level that applies for each of the independent variables, and specify which 

variables are to appear in the full linear regression model as well as a simpler reduced 

model (Ward, 1998). Regressors for each analysis included any demographic variables 

showing a significant relationship with the smoking outcome data, followed by the 

smoking outcome variable of interest. Bonferroni corrections (Bland & Altman, 1995) 

were applied to correct for family wise error rate related to the five separate regression 

analyses. Specifically, to maintain an omnibus threshold of p<0.05, the threshold for each 

individual regression analysis was adjusted to p<0.01 (i.e., α/k = 0.05/5 = 0.01).  

 For the activation maps resulting from each regression analysis, small-volume 

corrections were applied to the a priori hypothesized ROIs (i.e., amygdala, striatum, 

insula, vmPFC and ACC, all defined based on their locations in the Talairach Daemon 

atlas (Lancaster, Woldorff, Parsons et al., 2000) in AFNI; see Table 1). Data were then  

corrected for multiple comparisons to omnibus p<0.01 using a combination of voxel-wise 

thresholding and minimum cluster size (Forman et al., 1995). Specifically, using 

3dClustSim in AFNI following small volume correction, it was determined that at a 

voxelwise threshold of p<0.001, a minimum cluster size of 12 voxels was required to 

maintain an omnibus threshold of p<0.01. 
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2.7.3.4. Secondary Aim 

 The secondary aim was to examine the unique relationships between resting state 

functional connectivity in a priori hypothesized corticolimbic circuits and each of the 

clinically-relevant smoking-related variables. The z-score map for the functionally 

defined seed region was included in separate multiple linear regression analyses using 

3dRegAna in AFNI. Regressors for each analysis included any demographic variables 

showing a significant relationship with the smoking outcome data, followed by the 

smoking outcome variable of interest. Bonferroni corrections (Bland & Altman, 1995) 

were applied to correct for family wise error rate related to the five separate regression 

analyses. Specifically, to maintain an omnibus threshold of p<0.05, the threshold for each 

individual regression analysis was adjusted to p<0.01 (i.e., α/k = 0.05/5 = 0.01).  

 For the maps resulting from each regression analysis, small-volume corrections 

were applied to the a priori hypothesized ROIs (i.e., amygdala, striatum, insula, vmPFC 

and ACC, all defined based on their locations in the Talairach Daemon atlas (Lancaster, 

Woldorff, Parsons et al., 2000) in AFNI). Data were then  corrected for multiple 

comparisons to omnibus p<0.01 using a combination of voxel-wise thresholding and 

minimum cluster size (Forman et al., 1995). Specifically, using 3dClustSim in AFNI 

following small volume correction, it was determined that at a voxelwise threshold of 

p<0.001, a minimum cluster size of 8 voxels was required to maintain an omnibus 

threshold of p<0.01. 
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Chapter 3: Results 

3.1 Preliminary Analyses 

3.1.1 Descriptives  

3.1.1.1Sample Characteristics 

A total of 20 participants were included in study analyses (see Illustration 1 for 

flow chart illustrating how participants were selected for inclusion in analyses). 

Participants ranged in age from 21 to 48 (M = 29.8, SD = 8.5). With regard to 

racial/ethnic background, 65% identified as White/Caucasian (n = 13), 30% identified as 

Black/African American (n = 6), and 5% were Asian or Southeast Asian (n = 1). In terms 

of highest education level, 20% (n = 4) reported less than a high school education, 25% 

(n = 5) reported completing high school or obtaining a GED, and 55% (n = 11) reported 

at least some college or technical school or a college degree. About one-third of the 

sample reported current unemployment (35%, n = 7), and the majority of the sample 

reported an average household income of less than $40,000 a year (80%, n = 16). The 

duration of participants’ smoking history ranged from 3-34 years (M = 12.5 years; SD = 

8.5) and smoked an average of 15.28 (SD = 4.62) cigarettes per day (cpd) in the last week 

(reports ranged from 10cpd to 25cpd). 

Given the substantial number of participants that had to be excluded from 

analyses due to head motion and other factors, we tested for significant demographic, 

smoking, and intelligence differences between individuals who were included versus 

those excluded from analyses, in order to elucidate any potential systematic differences 
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between these two groups. There were no significant group differences in age, gender, 

ethnicity, income, education, employment status, intelligence (as measured by the WASI-

vocab score obtained during screening), self-reported number of cigarettes smoked per 

day, or duration of participants’ self-reported smoking history in years. 

3.1.1.2 Descriptive statistics: Smoking measures 

Descriptive statistics for each smoking-related measure are provided in Table 2. 

Based on responses to items in the SHQ, smokers reported smoking an average 15.28 (SD 

= 4.62) cigarettes per day (cpd) in the last week (reports ranged from 10cpd to 25cpd). In 

terms of their history of quit attempts, the number of past quit attempts lasting longer 

than 12 hours reported by participants ranged from 0 to 20 times (Mean = 3.60; SD = 

4.30) and the duration of longest past quit attempts ranged from 1 to 730 days (Mean = 

244.48; SD = 270.70). The distribution of responses to the item about the number of past 

quit attempts lasting longer than 12 hours was positively skewed, thus a log10 

transformation was applied and the transformed values were used in all subsequent 

analyses that included number of past quit attempts as a regressor. Skewness values both 

prior to and following the log10 transformation are included in Table 2.  

Regarding measurement of nicotine dependence severity, participants completed 

the FTND with scores ranging from 2 to 8 (Mean = 5.25; SD = 1.80), which is in line 

with previous neuroimaging studies utilizing this measure among cigarette smokers (e.g., 

Hong et al., 2010). Finally, descriptive statistics are provided for our measure of stress-

induced craving. Immediately following the easy phase of the PASAT-M (i.e., before the 

“stressful” elements of the task were introduced), participants reported an average 

craving of 37.31 (SD = 39.12) on a scale of 0-100. Following the hard phase of the task, 
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average craving increased to 43.72 (SD = 37.73). The average change score reflecting 

stress-induced craving (i.e., (post-hard phase craving) – (post-easy phase craving)) was 

6.41 (SD = 16.58). A repeated measures ANOVA revealed no significant difference in 

craving from post-easy to post-hard phase of the task, reflecting the wide range of 

variability across participants in terms of the effect of the task on individual craving 

scores. The distribution of stress-induced craving was positively skewed; therefore, a 

log10 transformation was applied and transformed values were used in all analyses in 

which stress-induced craving was included as a regressor. 

Of all smoking-related measures that are included in subsequent analyses (i.e., 

number of quit attempts lasting longer than 12 hours, duration of longest quit attempt, 

cigarettes per day, FTND score, and stress-induced craving), none of them evidenced 

significant correlations with the other measures (all p’s > 0.07) suggesting that they are 

each tapping into unique smoking-related constructs. A correlation matrix including 

correlations among all smoking measures is provided in Table 3. 

3.1.2 Examination of potential covariates 

First, bivariate correlation analyses were conducted to examine the relationship 

between age and the various smoking outcome variables. There was a significant 

correlation between age and duration of longest past quit attempt (r = .83; p < .001). 

None of the other smoking variables were significantly related to age (all p’s > 0.10). 

Thus, all subsequent analyses that include the variable for duration of longest past quit 

attempt control for age.1 

Regarding gender, independent samples t-tests revealed a significant relationship 

with only one smoking-related variable: number of quit attempts lasting longer than 12 
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hours (t(18) = -2.36; p = .03). Specifically, women reported a history of 1.80 (SD = 1.48) 

past quit attempts lasting more than 12 hours, while men reported 5.44 (SD = 1.72) past 

quit attempts of 12 hours or longer. Therefore, subsequent analyses examining number of 

past quit attempts controlled for gender. There were no significant gender effects on any 

of the remaining smoking-related variables. Additionally, there were no other significant 

effects of demographic variables (including race, highest education, and income), or 

intelligence (as measured by WASI vocab scores obtained during study screening) on 

smoking-related variables. 

3.1.3 Overview of behavioral and self-report responses to the PASAT-M 

In terms of task performance, repeated measures ANOVAs revealed a significant 

decrease in correct responses from the easy phase to the hard phase (F(1, 19) = 28.54; p < 

.001), as well as a significant increase in incorrect responses (F(1, 19) = 33.87; p < .001), 

indicating that the hard phase was indeed significantly more difficult to perform 

successfully than the easy phase. Regarding task effects on mood ratings and arousal (as 

measured by HR), repeated measures ANOVAs revealed significant increases from post-

easy phase to post-hard phase in ratings of Anxiety (F(1, 19) = 6.28; p = .02), Irritability 

(F(1, 19) = 9.50; p = .01), Frustration (F(1, 19) = 17.41; p < .001), and Stress (F(1, 19) = 

4.33; p = .05) (Figure 1). Changes in HR over the course of the task were also examined. 

Of the 20 participants included in study analyses, HR data was missing for 7 of them due 

to technical difficulties or undetectable HR levels upon analyzing the HR data. Among 

the 13 participants that did have complete HR data, a repeated measures ANOVA showed 

a non-significant increase in HR from the easy phase (Mean easy HR = 81.16; SD = 

19.44) to the hard phase (Mean hard HR = 83.95; SD = 20.37) (F(1, 12) = 1.97; p = .19). 
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Despite the fact that there was no significant change in HR from the easy phase to the 

hard phase, task-related changes in mood ratings suggest that the PASAT-M was an 

effective method for inducing an increased subjective experience of affective distress. 

3.2 PASAT-M task effects: Stress-induced neural activation 

Next, analyses were conducted to determine the stress-related effects of the 

PASAT-M on neural activation. Specifically, the activation map for the contrast of 

interest, [hard-rest] – [easy-rest], was examined, with small volume corrections applied to 

the a priori hypothesized regions of interest (i.e., the ACC, vmPFC, insula, amygdala, 

and striatum). A combination of voxelwise thresholding and clusterizing was used to 

control for multiple comparisons. Specifically, setting a voxelwise threshold of p<.001 

required a minimum of 8 voxels to maintain an omnibus threshold of p<.05. As expected, 

analyses revealed a significant 14-voxel cluster of stress-induced activation in the 

posterior portion of the right insula (Brodman Area 13; Talairach coordinates: [57, -33, 

18]; Peak T-statistic = 5.08; Figure 2). None of the other hypothesized regions showed 

any significant stress-related effects in response to the PASAT-M. The significant cluster 

of stress-induced neural activation in the right insula was used as the seed region for 

subsequent resting state functional connectivity analyses that were conducted to address 

the secondary aim of the current study.  

3.3. Primary Aim: Relationship between Stress-Induced Neural Activation and Smoking 

Measures 

To examine the relationship between smoking-related variables and stress-

induced neural activation in response to the PASAT-M, separate regression analyses were 
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conducted for each smoking variable of interest in AFNI using 3dRegAna, specifically 

examining the relationship between each smoking variable and neural activation during 

the contrast [hard-rest] – [easy-rest] on the PASAT-M, with small volume corrections 

applied to the a priori hypothesized regions of interest. Analyses revealed no significant 

relationships between stress-induced neural activation and any of the smoking-related 

variables, including stress-induced craving, cigarettes per day, duration of longest past 

quit attempt, number of past quit attempts lasting twelve hours or more, or FTND scores. 

3.4. Secondary Aim: Resting State Functional Connectivity and Smoking Outcomes 

To examine the relationship between smoking-related variables and functional 

connectivity within corticolimbic circuits, separate regression analyses were conducted 

for each smoking variable of interest in AFNI using 3dRegAna, specifically examining 

the relationship between the strength of functional connectivity with the significant 

cluster of stress-induced neural activation in the right insula, and the various smoking 

variables of interest. Analyses revealed no significant relationships between functional 

connectivity with the right insula and any of the smoking-related variables, including 

stress-induced craving, cigarettes per day, duration of longest past quit attempt, number 

of past quit attempts lasting twelve hours or more, or FTND scores. 
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Chapter 4: Discussion 

 

4.1. Summary of Main Findings 

The current study utilized an fMRI-compatible psychological stress-induction task 

to examine the relationships among stress-induced neural activation, as well as resting 

state functional connectivity within stress-related corticolimbic circuits, and clinically-

relevant smoking-related variables among a sample of current adult cigarette smokers. 

Based on existing neurobiological models of addiction that emphasize the role of 

overlapping corticolimbic circuits in both emotion dysregulation and compulsive drug 

seeking (e.g., Li & Sinha, 2008), it was hypothesized that decreased reactivity to stress in 

cortical regions including the ACC and vmPFC; increased reactivity to stress in limbic 

regions including the amygdala, insula, and striatum; and weaker functional connectivity 

between these circuits at rest, would be significantly related to higher levels of stress-

induced craving, poorer self-reported smoking lapse history, greater number of cigarettes 

per day, and higher scores on an established self-report measure of nicotine dependence 

(i.e., the FTND). Analyses revealed a significant cluster of stress-induced activation in 

the right insula in response to the stress task; however, there were no significant 

relationships between stress-induced neural activation, or functional connectivity in 

stress-related corticolimbic circuits, and the smoking related variables. The findings are 

discussed below in light of study limitations. 
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4.1.1. Task effects: Stress-induced neural functioning  

 Consistent with previous research, fMRI data from the PASAT-M revealed 

significant stress-induced activation in the right insula. Extant research suggests a key 

role for the insula in the experience of negative feelings, such as fear, disgust, and anxiety 

(e.g., Phan, Wager, Taylor, & Liberzon, 2002; Winkielman et al., 2007), as well as 

interoceptive awareness of visceral responses that are heightened in negative emotional 

states (Critchley et al., 2004). Thus, activation in the right insula in response to a stressful 

task was expected given the significant self-reported increases in negative affective 

experiences that were reported by participants.  

The fact that we saw stress-induced activation in the posterior portion of the right 

insula in particular was somewhat unexpected. In general, activation in the posterior 

portion of the insula has been associated with perception of primary sensory stimuli (e.g., 

pain, temperature changes, itch), while activation in the anterior portion of the insula has 

more frequently been implicated in more subjective interpretations of interoceptive and 

homeostatic responses to stimuli, including the experience of emotional feelings and self-

awareness more broadly (Craig, 2011). Thus, we would have expected more task-induced 

activation in the anterior insula as opposed to the posterior insula given participants’ 

reports of significantly increased ratings of negative mood states in the hard phase 

relative to the easy phase. However, a recent study found that activation in the posterior 

insula in response to a gambling task predicted risky behavior on the task (Xue, Lu, 

Levin, & Bechara, 2010). The authors posited that the posterior insula might play a role 

in the experience of homeostatic responses associated risk, which influences subsequent 

risky decisions. Therefore, it is possible that participants’ performance on the task in the 
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current study was interpreted as a form of risk insofar as participants were told that their 

opportunity for maximum reward (i.e., financial compensation) was contingent on their 

performance on the task. They also may have been thinking ahead about their decision to 

either persist or quit the task during the final round of the PASAT-M. More research is 

needed to parse out the influences of stress vs. risk on task-induced activation within the 

anterior and posterior portions of the insula, and how this activation relates to subsequent 

behavior. Given interest in understanding the role of functional connectivity between 

corticolimbic regions previously implicated in both emotion dysregulation and 

compulsive drug seeking, the significant cluster of activation in the right insula was later 

utilized as a functionally defined seed region to better understand how it interacts with 

other corticolimbic regions at a network level to predict smoking characteristics. 

  No additional significant effects of stress during the PASAT-M were identified in 

the other hypothesized corticolimbic regions of interest, including the ACC, vmPFC, 

amygdala, or the striatum. In considering why the stress-induced neural effects during the 

PASAT-M were relatively limited, it is necessary to consider the possibility that the task 

simply was not an effective method for reliably and robustly increasing stress across 

participants. On average, subjective ratings of stress, frustration, anxiety, and irritability 

did increase significantly from the easy phase to the hard phase; however, it is possible 

that these self-reported increases in negative affect ratings could have been influenced by 

demand characteristics (i.e., participants may have reported increased distress if they 

believed that they were expected to be stressed by the task). Notably, every effort was 

made during testing sessions to avoid referring to the PASAT-M as ‘stressful’ in front of 

participants. Rather, task instructions referred to the PASAT-M as a ‘challenging’ 
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mathematical processing task in order to reduce the possibility of biasing participant 

ratings. Nonetheless, a more effective approach to assessing stress reactivity to the task 

would be to collect objective physiological measures of stress and arousal. Unfortunately, 

the only objective measure of physiological arousal that was available in the current 

study, heart rate (HR), showed no significant change from the easy to the hard phase. 

This does not necessarily mean that the task was not stressful. Although emotionally 

aroused states are generally accompanied by increased HR (Hagemann et al., 2003; Min 

et al., 2005), exceptions to this rule have been reported, particularly in response to 

attentional tasks (e.g., Berntson, Cacioppo, & Quigley, 1993). Moreover, participants in 

the current study could have experienced an anticipatory increase in HR at the end of 

each rest block as they prepared to begin the task again, which may have dampened any 

significant change in average HR between rest and task blocks in the hard phase. 

Additionally, signal from the scanner may have interfered with HR readings, and the 

sample size was relatively small to detect significant effects. Future studies may benefit 

from including additional measures of autonomic arousal, such as pulse readings in the 

extremities, or changes in blood pressure or respiration in order to determine if the stress 

manipulation does indeed increase arousal as it was expected to.  

 There are a number of potential reasons why the PASAT-M might not have been 

as stressful as was anticipated. First, the task may not have been aversive enough to elicit 

a reliable and robust stress response across participants. Extensive pilot testing was 

conducted during the development of the PASAT-M to determine effective parameters 

for maximizing the aversiveness of the task, such as the volume necessary for participants 

to hear the explosions that went off with each incorrect response during the hard phase of 
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the task. A volume level was chosen based on the results of piloting and was held 

constant across participants during data collection for the current study. It is possible, 

however, that some participants in the current study could not adequately hear the 

explosions over the constant noise of the scanner, or that they were not bothered by the 

explosion sounds.  

Second, laboratory stress paradigms have been found to be most effective at 

activating physiological stress responses when they include elements of both 

uncontrollability and social evaluative threat (Dickerson & Kemeny, 2004). While the 

PASAT-M was indeed designed to be ‘uncontrollable’ as the speed of the hard phase is 

deliberately set beyond each individual participant’s ability level, leading to constant 

forced failure, the version of the PASAT-M that was utilized in the current study did not 

include any overt social evaluative threat. Since data collection was completed for the 

current study, the PASAT-M has been modified for use in subsequent studies to include 

overt negative evaluations of participants’ performance during task administration in 

order to enhance the robustness of the PASAT-M as a psychological stress induction. 

Specifically, during the newly modified PASAT-M, research assistants now speak to 

each participant immediately following completion of the latency phase (i.e., right before 

they begin the hard phase of the task) to tell them that they are not performing as well as 

other participants normally do, and that they need to try harder. 

Finally, it is notable that the scanner itself may also serve as a stressor (Muehlhan, 

Lueken, Wittchen, & Kirschbaum, 2011). This is an important consideration when using 

cognitive subtraction methods to detect neural responses to stress. If participants are 

already experiencing elevated stress at the beginning of the task (i.e., during the easy 
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phase of the PASAT-M) simply as a byproduct of being in the scanner, the effect that this 

unintended stress has on neural functioning is subtracted out when the contrast of interest 

is applied (i.e., [hard-rest] – [easy-rest]) in an attempt to isolate the effects of stress on 

neural functioning. Efforts were made to limit this possibility by always administering 

the PASAT-M during the second half of the scan session, after participants had time to 

acclimate to the scan environment, but it remains possible that the scanner itself may 

have elevated participant stress levels, thus limiting our ability to detect stress-related 

neural functioning that would be attributable to the task. 

4.1.2. Relationship between stress-induced neural functioning and smoking-related variables 

Next, analyses were conducted to examine the relationships between stress-

induced neural functioning and our smoking-related variables (i.e., stress-induced 

craving, cigarettes per day, smoking lapse history, and FTND scores); however, no 

significant relationships were identified. There are a number of possible explanations for 

our null findings. First, as discussed above, it is possible that the PASAT-M did not serve 

as an adequately robust method for inducing psychological stress. As such, the fMRI data 

collected during the PASAT-M might not serve as a valid measure of stress-induced 

neural responding, and thus, would not be related to smoking characteristics in the 

manner that was hypothesized. Alternatively, the lack of findings could be due to the fact 

that participants were not deprived of nicotine prior to the scan, but instead, all 

participants were asked to smoke a cigarette immediately before entering the scanner, 

which was approximately 1-1.5 hours prior to PASAT-M administration. This approach 

is consistent with the method used by Dagher and colleagues (2009) who reported that 

participants smoked their last cigarette about one hour prior to beginning the fMRI stress 
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task in their study. Nonetheless, it is possible that there may have been more robust 

findings if participants in the current study had completed the stress task in a nicotine-

deprived state. 

It is also possible that the neural model that was used as the basis of the 

hypotheses for the current study may have been too narrow. Namely, the current study 

relied largely on the neural model of emotion dysregulation and compulsive drug seeking 

proposed by Li & Sinha (2008) which emphasized specific corticolimbic regions and 

their interconnections, including the vmPFC, ACC, amygdala, and striatum. Additionally, 

the insula was added into the current model given a recent emphasis in the field on the 

role of the insula in interoception (Craig, 2002; Craig, 2009), especially as it relates to the 

experience of the physical and affective symptoms associated with withdrawal among 

substance users, including smokers in particular (Naqvi & Bechara, 2010). By using 

small volume corrections to isolate the study analyses to these discrete regions of interest, 

we may have missed significant effects of stress-induced functioning in other regions of 

the brain in predicting smoking characteristics.  

4.1.3. Relationship between resting state functional connectivity and smoking-related variables 

 Next, analyses were conducted to better understanding the relationship between 

network level functioning in corticolimbic circuits that were activated by stress and 

smoking-related variables. As such, using the one a priori hypothesized corticolimbic 

region, the right insula, which showed significant stress-induced neural activation in 

response to the PASAT-M as a seed region, analyses were conducted to examine the 

relationship between the strength of functional connectivity with the right insula and 



 

 73 
 

smoking-related outcomes. No significant relationships were identified between network 

level connectivity with the right insula and smoking measures.  

Again, it is possible that the inability to detect a significant effect of functional 

coupling with the right insula may have been due to the nicotine satiated state of 

participants during the current study. Recent conceptualizations of insula functioning at a 

network level, particularly as it relates to nicotine dependence, have emphasized 

alterations in insula coupling within large-scale neural networks among smokers which 

vary as a function of acute nicotine exposure (i.e., when smokers are nicotine deprived 

vs. satiated). For example, Naqvi and Bechara (2010) have offered a theoretical model 

that parses out the role of the insula in interoception at varying stages of addictive 

behavior, including drug-taking, withdrawal, and craving states. When nicotine deprived, 

Naqvi and Bechara (2010) suggest that the insula tracks internal visceral symptoms of 

nicotine withdrawal, and interacts with other regions involved in affective and 

motivational processing, such as the vmPFC, amygdala, and striatum, which in turn alter 

subjective affective and behavioral responses to smoking cues and urges.  

More recently, Sutherland and colleagues (2012) have gone even further to 

delineate the role of the insula and its interconnections in the modulation of attentional 

allocation during nicotine-satiated versus deprived states. The authors propose that the 

insula and the ACC together acting as a salience network (SN) tracks moment-to-moment 

stimuli coming in from both internal and external sources, identifies the most subjectively 

relevant stimuli at a given moment, and then influences information processing in real-

time by serving as a “toggle” switch to modulate activity between two additional 

networks known as the default mode network (DMN) and the executive control network 
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(ECN). The DMN is composed of midline structures including the dmPFC, vmPFC, and 

posterior cingulate cortex (PCC), is consistently activated during passive states, and is 

believed to underlie internal cognitive operations, such as interospective functions 

(Raichle et al., 2001; Sestieri et al., 2011). Meanwhile, the ECN is composed of 

prefrontal and parietal structures, and is routinely activated during cognitively demanding 

tasks, supporting attentional allocation and processing of exogenous stimuli (Corbetta & 

Shulman, 2002; Seeley et al., 2007). Based on the model defined by Sutherland and 

colleagues (2012), when smokers are acutely deprived of nicotine, the SN allocates 

greater attentional resources toward the processing of internal withdrawal-related 

symptoms, thus biasing neural functioning toward the DMN and away from the ECN. 

This attentional bias toward interoceptive withdrawal-related symptoms and away from 

external stimuli may provide the neural basis for cognitive and attentional deficits that are 

consistently seen in nicotine-deprived smokers, and may also serve as a driver of nicotine 

craving.  

Indeed, Lerman and colleagues (2014) recently utilized a novel approach to 

examine the effects of nicotine deprivation on the relative resources that the SN allocates 

to the ECN versus the DMN among cigarette smokers. Findings revealed that nicotine 

deprivation was associated with a weaker connection between the SN and DMN at rest, 

suggesting an impaired ability of the SN to suppress DMN functioning. Moreover, the 

magnitude of change in functional connectivity from smoking to a deprived state 

predicted withdrawal-induced smoking urges, as well as impaired suppression of DMN 

functioning during a working memory task. 
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The theoretical and empirical work reviewed above highlights the significant 

effects that acute nicotine exposure (or deprivation) can have on network level 

functioning and more specifically, the strength of insula connectivity with other brain 

regions involved in the allocation of attention to internal versus external stimuli, thus 

having an impact on affective, motivational, and cognitive functions. Given that the 

current study only measured resting state functional connectivity with the insula during a 

nicotine satiated state, the study analyses may have missed effects of insula connectivity 

on smoking-related characteristics that might have been more pronounced in a nicotine 

deprived state. 

4.2. Limitations and Future Directions 

4.2.1. Limitations 

 The current findings must be interpreted in the context of several study 

limitations. First, analyses reported here do not include direct comparisons of neural 

functioning data collected from smokers with matched data acquired from non-smoking 

control participants. As such, no conclusive statements can be made about the extent to 

which the self-reported affective responses and patterns of neural functioning evidenced 

in response to the PASAT-M are uniquely attributable to smoking status, whether or not 

our sample of smokers evidenced impaired or abnormal stress-induced neural responses 

to the task relative to non-smokers, or if other variables that tend to co-vary with smoking 

status or dependence severity may better account for our findings. A matched control 

group would allow for experimental control over potential confounds, and would also 

provide further support for the utility of the PASAT-M as an effective stress induction 

method for the general population. A control group of non-smokers was indeed recruited 
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for the larger study from which the current study was proposed and analyses directly 

comparing neural activation in response to the PASAT-M among smokers vs. non-

smokers are underway. 

 A second limitation is that the current study is cross-sectional in design, thus 

precluding any possibility of drawing conclusions about the causal nature of significant 

relationships between neural functioning and smoking characteristics, had we seen any. 

That is, if either stress-induced neural functioning or resting state functional connectivity 

had predicted smoking-related variables, we would not be able to say whether individual 

differences in nicotine dependence severity or smoking lapse history caused variations in 

corticolimbic, and specifically, stress-related neural functioning, or if individual 

differences in neural functioning causally influenced smoking characteristics.  

Third, there were inherent limitations in the specific measures that were used to 

measure smoking characteristics and neural function. The smoking-related measures were 

all collected via self-report; therefore, these measures are only valid to the extent that 

participants had sufficient insight into their emotions and smoking-related behaviors, and 

in the case of smoking lapse history measures, accurate memories of their past smoking 

cessation attempts. It is also notable that our measure of neural functioning (i.e., changes 

in blood oxygen level dependent (BOLD) signal) does not provide any information about 

the specific neurochemical events that are responsible for the change in BOLD 

functioning in the right insula that was identified in response to the PASAT-M. The use 

of alternative technologies, such as positron emission tomography (PET) scans would 

allow for researchers to measure the release of specific neurotransmitters in the brain that 

may underlie stress-related neural responses.  
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Finally, the current study is limited in the extent to which findings can be 

generalized to the larger population of smokers. Specifically, the current study excluded 

individuals with current Axis I or II psychopathology, individuals who used any illicit 

substances within the past 30 days, individuals on certain medications, and individuals 

with major medical conditions in an attempt to isolate effects that could be uniquely 

attributed to smoking. Notably, cigarette smokers are at an increased risk of meeting 

criteria for psychiatric disorders including depression, anxiety, and substance use 

disorders (Black, Zimmerman, & Coryell, 1999), and smokers with co-occurring 

psychiatric illnesses tend to report more severe nicotine dependence symptoms and 

smoke more cigarettes per day relative to smokers who do not meet criteria for 

psychiatric disorders (Grant, Hasin, Chou, Stinson, & Dawson, 2004). As such, the 

recruitment efforts for the current study precluded our ability to assess the relationships 

between corticolimbic functioning and smoking-related variables in a substantial portion 

of the smoking population, and may have missed individuals at the most severe end of the 

nicotine dependence spectrum who could have been excluded based on co-occurring 

mental illness or use of prescription medication for the treatment of psychiatric or 

medical illnesses. Moreover, these exclusion criteria yielded a relatively small sample of 

smokers over the course of over two years of study recruitment, reflecting the limited 

number of cigarette smokers in the larger NIDA research participant pool who met all 

study criteria. As this was a first attempt to characterize neural response to the PASAT-M 

and the relationships between corticolimbic functioning and smoking-related variables, 

recruitment criteria were selected in an effort to maximize internal validity. However, 



 

 78 
 

more research with larger, and more representative, samples is clearly needed to enhance 

generalizability. 

4.2.2. Future Directions 

 Many questions remain regarding the role of corticolimbic functioning in the 

relationship between stress and nicotine dependence, smoking maintenance, and relapse. 

First, the fMRI-compatible version of the PASAT (the PASAT-M) is a novel task for 

examining stress-induced neural functioning; therefore there is a need to further clarify 

the reliability and validity of the task as a stress-induction method that is powerful 

enough to impact neural function. To this end, future studies that utilize the PASAT-M to 

examine stress-related neural function should include additional objective measures of 

physiological arousal and stress responding, such as galvanic skin conductance and 

hypothalamic-pituitary-adrenal (HPA) axis functioning (e.g., via salivary cortisol 

samples).  

Additionally, research with larger samples, that also include healthy control 

groups, will be invaluable to support the utility and generalizability of this task as a 

reliable psychological stress induction method that can robustly activate stress-related 

neurocircuitry. The current study found only one cluster of significant stress-induced 

neural activation in response to the task; however, it is unclear if this limited neural 

response to the PASAT-M may be indicative of maladaptive neural responding to stress 

among smokers. A direct comparison with healthy non-smokers would allow us to say 

more about the utility of the PASAT-M’s utility more generally, and would enhance our 

understanding of the unique effects of cigarette smoking on stress-induced neural 

functioning. Larger and more diverse samples could also facilitate the further 
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development of larger models that include individual difference factors, such as specific 

genetic polymorphisms, early and chronic stress exposure, gender, and personality factors 

that may influence corticolimbic functioning and reactivity to stress. 

Future research may also benefit from more nuanced measures of nicotine 

dependence severity that capture unique, theoretically-based, facets that contribute to 

nicotine use motivations and dependence. For example, the Wisconsin Inventory of 

Smoking Dependence Motives (WISDM-68; Piper et al., 2004) is a multidimensional 68-

item self-report measure developed to assess thirteen different theoretically relevant 

motivational factors driving nicotine dependence. A second example, the Nicotine 

Dependence Syndrome Scale (NDSS; Shiffman, Waters, & Hickcox, 2004) is a 

multidimensional self-report measure of nicotine dependence severity that was developed 

under the assumption that nicotine dependence itself is a multi-faceted construct (Shadel, 

Shiffman, Niaura, Nichter, & Abrams, 2000). The measure allows for the measurement 

of five factor analytically-derived facets of the nicotine dependence syndrome. 

Multidimensional measures of nicotine dependence, such as the WISDM-68 and the 

NDSS, may be particularly useful for examining neural mechanisms underlying stress 

and addiction, as these more nuanced scales would enable researchers to identify specific 

aspects of nicotine dependence, such as negative reinforcement motives (WISDM-68) 

and craving (NDSS), which may be uniquely associated with stress-related neural 

functioning among smokers. 

  Additionally, there is a need for longitudinal research designs to determine the 

utility of stress-related neural functioning to prospectively predict smoking outcomes, 

and to identify the extent to which smoking cessation may alter neural responses to stress. 
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Moreover, inclusion of a nicotine manipulation (i.e., within-subject comparisons of 

neural reactivity to stress and resting state functional connectivity when participants are 

nicotine deprived vs. nicotine satiated) would also substantially enhance our 

understanding of the potentially nicotine-dependent effects of stress on neural function. A 

nicotine manipulation could elucidate the relative utility of stress-related corticolimbic 

functioning during nicotine-deprived versus nicotine-satiated states to predict smoking-

related outcomes. That is, the brain may respond to stress quite differently in a nicotine 

satiated state as compared to a state of acute nicotine withdrawal or long-term abstinence 

from smoking, and these differences may vary in their ability to predict clinically-

relevant outcomes. 

Finally, continued research identifying the neural correlates of stress reactivity 

among smokers and the relationship between stress-induced neural activation and 

clinically-relevant smoking outcomes may provide biological targets for future 

interventions designed to treat smokers with heightened stress reactivity and stress-

related relapse vulnerability. Already, smoking interventions drawing from stress 

management strategies such as acceptance-based approaches (R. A. Brown et al., 2008) 

and mindfulness-based meditation (Brewer et al., 2011) have shown promising results 

among smokers, including those with a history of early lapse. By modeling the neural 

correlates of stress-related relapse vulnerability, more efficient targeted intervention 

strategies may be employed to identify and isolate those at greatest risk, treat the specific 

vulnerability that they present, and (as speculated by some researchers) perhaps even 

elucidate biomarkers to track treatment efficacy (e.g., Hong et al., 2009).  
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 Research examining the neural basis of stress processing in individuals suffering 

from addiction could also contribute to the development of novel applications of real-

time fMRI itself for the treatment of substance use disorders. Indeed, the combination of 

real-time fMRI and biofeedback represents a nascent, yet promising, avenue for the 

treatment of a variety of psychiatric illnesses, including substance use disorders. To date, 

most real-time fMRI studies have focused on participant-driven modulation of BOLD 

signal in cortical regions, including the somatomotor cortex (deCharms et al., 2005), 

auditory cortex (Yoo et al., 2007), insular cortex (Caria et al., 2007), medial frontal 

cortex (Phan et al., 2004), and ACC (deCharms et al., 2004; deCharms et al., 2005), and 

have largely included healthy participants between the ages of 18-45 years old. A smaller 

body of research has focused on subcortical structures, including the amygdala (Posse et 

al., 2003).  

Moreover, preliminary studies are emerging in support of real-time fMRI and 

participant-driven signal modulation as potential treatments for clinical disorders, 

including epilepsy (Fernandez et al., 2001; Kesavadas et al., 2007) and chronic pain 

(deCharms, 2007; deCharms et al., 2005). More recently, investigators have begun 

piloting procedures that provide real-time feedback to aid smokers in the modulation of 

neural functioning in the ACC and medial prefrontal cortex in order to reduce cigarette 

craving (Hartwell et al., 2013). This work is in extremely early stages and the researchers 

themselves acknowledge that this is only a first step toward using real-time fMRI 

feedback as a noninvasive approach to treat nicotine dependence. Much more work is 

needed in this area. 
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Taken together, the current study is a first step toward identifying neural 

mechanisms driving the relationship between stress and smoking dependence severity. 

Given the dearth of significant findings in the current study, there is clearly a need for 

researchers to continue developing and testing neural models of stress and substance use, 

using multi-method approaches to measuring stress and nicotine dependence severity, in 

order to gain a greater understanding of the role of stress in smoking initiation, 

maintenance, and relapse. Continued work in this vein could potentially provide 

additional targets for the development of more effective smoking cessation interventions.
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Illustration 1: Integrated model emphasizing the role of corticolimbic dysfunction in 

compulsive drug seeking, stress responsivity, and self-control (modified from Li & Sinha, 

2008). 
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Illustration 2: Flow chart illustrating the selection of participants for final data analyses  
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Illustration 3: Testing session Timeline: (A) The top portion of the illustration outlines all procedures that took place over the course 
of the entire testing session, lasting approximately five hours total. The numbers immediately below the figure reflect the time points 
that procedures began relative to the start of all scanning procedures. Specifically, participants arrived 1.5 hours before scanning was 
scheduled to begin. Participants provided informed consent, underwent a brief history and physical exam, and completed task training. 
About ten minutes prior to the start of the scan, participants were escorted outside to smoke a cigarette. Participants then completed all 
scan procedures, lasting no more than 2 hours. Finally, participants were administered a packet of self-report questionnaires, were 
compensated for their time, and escorted to security for release. (B) The bottom portion of the illustration provides a more detailed 
account of all scan procedures.  
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Illustration 4: PASAT-M Timeline 
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Figure 1. Negative mood ratings over the course of the PASAT-M scan. Error bars reflect 
standard error of the mean rating value at each time point (i.e., rating post-easy phase and 
rating post-hard phase). All four negative mood ratings increased significantly (p<.05) 
from post-easy to post-hard phase. 
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Figure 2. Significant stress-related activation in the posterior portion of the right insula 
(Brodman Area 13; Talairach coordinates: [57, -33, 18]. Color scale reflects value of T-
statistics for the contrast [hard-rest] – [easy-rest] in each voxel of the significant 
activation cluster.  
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Table 1. Complete list of a priori hypothesized ROIs to which small volume corrections 
were applied in group level analyses. Regions were defined based on their locations in 
the Talairach Daemon atlas in AFNI. The total number of voxels (i.e., cluster size) and 
Talairach coordinates for the center of mass of each ROI are provided below. 
 

Region    Cluster          x             y              z 

         Size     

L./R. ACC   485/536       -8/8           32  7 
L./R. vmPFC (BA10)  571/578     -24/24           56  6 
L./R. Insula   581/556     -39/39           -7  9 
L./R. Amygdala    43/47     -23/23           -5          -15 
*L./R. Striatum  399/406  
    L./ R. Caudate       -11/11            7  9 
    L./ R. Putamen       -24/24  0  3 

*The bilateral ROIs for the striatum are composed of both the bilateral caudate and 
putamen as defined by the Talairach Daemon atlas in AFNI. 
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Table 2. Descriptive statistics for smoking variables 

Measure                   Mean    SD        Min   Max       Skewness 

SHQ 
  Cigs/day                   15.28   4.62         10     25           0.403 
   # quit attempts            3.60   4.30           0     20  3.13 
   # quit attempts-                0.54   0.32           0   1.32  0.97 
      log10   
  Longest quit          244.48       270.70           0    730  0.86 
FTND                5.25   1.80           2      8  0.00  
Stress-induced craving        6.41 16.58        -10 50.50  1.49 
Str-induced craving-          1.03   0.50           0   1.79  -.69 
  log10 
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Table 3. Correlation matrix of smoking-related variables. Log10 transformed values were 
used for # quit attempts and stress-induced craving 

Smoking Measures   1                2                3               4                 5            

1. cpd     -         -    -        -    -  
2. # quit attempts      -.375         -                 -        -                  -               
3. Longest quit .20      .04    -        -               -              
4. FTND   .41      .10  .06        -               -              
5. Stress-induced        .14     -.12         .30    -.13         -     
    craving          
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Footnotes 

                                                 
1 Longest past quit attempt was also significantly correlated with duration of smoking history (i.e., number 
of years participants reported being daily smokers) (r = .74; p < .001). However, duration of smoking 
history was highly collinear with age (r = .89; p < .001). Therefore, all analyses that included the variable 
for duration of longest past quit attempt were run with both age and smoking duration included as 
covariates, and also re-run with each covariate included alone. Results did not differ regardless of if both 
covariates were included, or if either one was included individually. 


