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1. INTRODUCTION

In this thesis, we describe results from investigations of the self-assembly of anisotrop-

ically interacting particles. In particular, we focus upon the roles of dipolar and

higher order multipolar interactions on the patterns of self-organization. Using an

experimental model system of vertically vibrated magnetic spheres, we investigate

the effects of octopolar and higher order interactions on the pattern of self-assembly.

We show that simple theoretical point charge models can be used to provide insight

into the underlying causes of the observed phenomena. We also show that such

models can be used to better understand the pattern formation in several related

physical systems, including biological macromolecular self-assembly and cohesive

granular materials.

1.1 Motivation

The self-assembly of anisotropically interacting particles is currently a topic of con-

siderable interest for several fields of science. In particular, the self-assembly of

biological macromolecules (which, in general, are anisotropically interacting) is of

significant interest to the pharmaceutical industry because of possible therapeutic

value [1, 2, 3, 4, 5]. For example, the popular chemotherapy drug Taxol targets



the self-organization of tubulin proteins in cancer cells and prevents cell division

and the growth of tumors [2, 5]. Understanding the conditions which are favorable

to self-assembly and what causes such conditions to be favorable is fundamental to

the control of the polymerization. As a basic step toward understanding the self-

assembly of anisotropically interacting particles, we investigate the self-organization

of spheres with dipolar and higher order interactions.

Two-dimensional dipolar systems have been investigated using many differ-

ent experimental and theoretical approaches [6, 7]. Patterns have been observed

experimentally in nm to mm-sized magnetic particles suspended on the surface

of a liquid [8, 9, 10, 11, 12], in a magnetic fluid containing nonmagnetic parti-

cles [10, 13], in magnetic bubbles in garnet films [14], in mm to cm-sized mag-

netically excited magnetized spheres [15], at the atomic scale in thin magnetic

films [16, 17, 18, 19, 20, 21, 22, 23], in dipolar molecular fluids such as hydrogen

fluoride [24, 25], and recently in mm-sized vertically vibrated magnetic spheres [26].

Studies of biological systems also suggest that dipole-dipole interactions between

biological molecules may be an important part e.g. of pattern formation in a lipid

monolayer [27, 28]. Monte Carlo simulations of the thermal equilibrium of large

2D systems of hard spheres with centrally embedded point dipoles have shown that

ordering in the absence of external forces depends on the dipolar strength, the tem-

perature of the system, and the number density of the spheres [11, 29, 30, 31].

Significant work has also been done on pattern formation in 3D systems of

dipolar spheres [32, 33, 34, 35]. The investigations show that low-density 3D sys-

tems of dipolar spheres form chains and rings at low temperatures, but the chains
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and rings do not coagulate to form a liquid phase. The lack of a liquid phase was

suggested to be a consequence of the saturation of the interaction potential during

chain formation, and the resulting lack of strong interactions between chains. In

addition, because of the dissociation and recombination of the chains during equi-

librium, this system of dipolar spheres has been compared to microscopic physical

systems of so-called ‘living polymers’, which exhibit similar dynamic behavior [32].

The focus of our work is on the self-assembly of 2D systems of particles with dipolar

and higher order magnetic interactions. We find that at low temperatures chains

can collect to form a dense structure, in agreement with simulations of 2D systems

of dipolar spheres by Clarke et al. [25].

The self-assembly of anisotropically interacting particles is of particular in-

terest in molecular biology because of the wide array of biological systems which

exhibit self-assembly and the variety of self-organized structures that are vital to

the function of living cells [36, 37]. Studies of biological systems suggest that dipole-

dipole interactions between particles play an important role in such phenomena as

microtubule formation [38] and pattern formation in a lipid monolayer [27]. While

the interactions between these nanoscale biological particles are difficult to rigor-

ously model, simple model systems of dipolar spheres may provide insight into the

dynamics of biological self-assembly in a fundamental manner.

There also is significant current interest in the dynamics of granular materi-

als that have interactions in addition to the typical hard-sphere interactions. The

dynamics of wet granular mixtures has been a recent focus as an example of pat-

tern formation among isotropically attractive particles [39, 40]. In granular systems,
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the addition of attractive forces between particles has been observed to both cause

and prevent segregation under different circumstances [39]. The dynamics of dipo-

lar interacting spheres is also of current interest as a novel granular material with

anisotropic interactions [41, 42, 26]. Blair and Kudrolli [26] found that, in a ver-

tically vibrated 2D mixture of magnetic and non-magnetic granular spheres, the

magnetic spheres can self organize and cluster, depending on the volume fraction

of magnetic particles and on the relative strength of the magnetic dipole-dipole in-

teraction to the external vibration amplitude. In our earlier work [41], we showed

that the shape of the magnetic field is another important factor in the self-assembly,

ans the higher order moments of the interactions can significantly affect the pattern

formation.

Moments of order higher than dipole are of particular importance to biolog-

ical macromolecules, where macromolecular interaction potentials can be highly

anisotropic to higher than dipole order, and small changes in the interactions can

dramatically alter the self-assembly pattern (for example, see the self-assembly of

sickle cell hemoglobin in Chapter 6). However, while the self-assembly of dipolar

systems have been studied relatively extensively [6, 7, 8, 9, 10, 11, 12, 26, 29, 30,

31, 34, 43], the affects of higher order moments on self-assembly are, to a large

degree, unknown. Relatively few simulations or theoretical studies using models

which include higher order moments [24, 25, 27, 54] have been done. The purpose of

this thesis is a detailed study of how higher order moments (in particular, octopole

moments) affect the self-assembly of dipolar particles.
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1.2 Outline of Thesis

In Chapter 2, we describe our experimental and theoretical methods. We

give general schematics of our experimental setup, including a general description of

the dipolar particles used. We also describe, in general, the models used to provide

theoretical insight into the observed self-assembly.

In Chapter 3, we investigate the clustering transition as a function of tem-

perature. We show, using our experimental system and Monte Carlo simulations

performed by collaborators at NIST, that at temperatures above the clustering tran-

sition, the particles are largely dissociated from each other and exhibit traditional

gas phase characteristics. At temperatures below the polymerization transition, the

thermal (kinetic) energy of the particles is insufficient to overcome the attractive

interactions and the particles form strongly bound clusters. The anisotropic nature

of the dipolar interactions induces head-to-tail alignment, resulting in the formation

of linear, ring, or branched structures. Between these two limits lies a broad transi-

tion region in which these polymer-like structures continuously form and disappear

in dynamic equilibrium. Our results show that the transition temperature, TΦ, in-

creases and the width of the transition broadens with increasing concentration, C,

in accord with the analytic theory of equilibrium polymerization. (Work to be sub-

mitted to Physical Review E by J.Stambaugh, K. Van Workum, J. Douglas, and W.

Losert.)

Chapter 4 describes the effects of higher order multipole interactions.

Pattern formation is investigated for a vertically vibrated monolayer of magnetic
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spheres. The spheres, of diameter D, encase cylindrical magnetic cores of length, l.

For large D/l, we find that the particles form a hexagonal-close-packed pattern in

which the particles’ dipole vectors assume a macroscopic circulating vortical pattern.

For smaller D/l, the particles form concentric rings. The static configurational mag-

netic energy (which depends on D/l) appears to be a determining factor in pattern

selection, even though the experimental system is driven and dissipative. (Work

published by J.Stambaugh, D. Lathrop, E. Ott, and W. Losert, Physical Review E,

68 026207 (2003).)

In Chapter 5, we investigate binary systems of magnetic spheres. We show,

using a simple experiment and numerical calculations, that in dilute self-assembled

networks, a small change in the multipole moment distribution of a small fraction of

the particles can significantly increase the branching in the self-assembled network.

We also show that otherwise identical systems of magnetic spheres can segregate

due only to differences in their magnetic fields. Vertically vibrated monolayers

of magnetic spheres can segregate both by field strength and by field shape. In

binary systems of particles with differing field strength and all other properties

identical, the segregation increases with the proportion of weaker particles, and

also increases approximately linearly with acceleration over the acceleration range

studied. Binary systems of particles with differing field shape and all other properties

identical also show approximately linear increases in segregation as acceleration is

increased over the acceleration range studied. Segregation occurs in conjunction

with a decrease in magnetic energy, with the energy decrease being mostly due

to the actual segregation, rather than an evolution of the spatial pattern. (Work
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published J.Stambaugh, Z. Smith, E. Ott, and W. Losert, Physical Review E, 70

031304 (2004).)

In Chapter 6, we discuss biological self-assembly. Specific examples of several

relevant biological self-assembling macromolecular systems are given. We discuss

the important interactions which govern the self-assembly, and, in particular, we

describe the role of electrostatic interactions in self-assembly. We characterise the

electrostatic properties of several of these macromolecules by calculating their elec-

trostatic multipole moments up to octopole. We also describe a Monte Carlo method

of developing minimal point charge models of the macromolecules which match the

electrostatic multipole moments of real proteins up to the octopole terms.

Chapter 7 describes a minimal interaction model of the self-assembling

protein, tubulin. We propose a simple point charge model of the protein tubulin,

and we show that, without altering the dipole moment, the addition of higher order

multipole moments to the model can energetically stabilise the biologically correct

self-assembly pattern. The model consists of four static point charges embedded

within an impenetrable rectangle with the dimensions of a tubulin dimer. We find

that aggregates of the model tubulin dimers reproduce key features of microtubule

structure: cylindrical shape, staggering, and fraying at the edges. We also present

a physical macroscopic magnetic analog of our model, and show that it has many

of the same structural characteristics as microtubules. (Work to be submitted to

Biophys. J. by J.Stambaugh, D. Jones, and W. Losert.)

Appendix A is a detailed calculation of the multipole moments, up to

octopole, of our model and experimental particles from Chapter 5. This
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includes a determination of the conditions for matching the moments of the model

and experimental particles.

In Appendix B, we theoretically analyze the preferred self-assembly pat-

terns of some of our magnetic particles from Chapters 4 and 5 as a func-

tion of the system size. This includes a calculations of the energies of several

different patterns of particles with dipolar and higher order interactions versus the

number of particles in the patterns.

Appendix C is a detailed description of some of the energy calculations

from Chapter 4. This includes a calculations of the energies of several different

patterns of particles with dipolar and higher order interactions.
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2. METHODS

2.1 Experimental

The following is a description of general characteristics of our experimental setup.

Experimental details that are unique to each chapter will be described within the

respective Experimental Details sections of each chapter. The experimental portion

of this thesis is focused upon macroscopic two-dimensional systems of vertically

vibrated magnetic spheres. Figure 2.1 is a schematic of the experimental setup used.

A horizontal cylindrical container with a diameter 17.5 times a particle diameter

and a height of 1.7 particle diameters was constructed with a black Delrin or gray

polyvinyl chloride bottom and a rigid transparent acrylic top (for imaging). The

system was imaged from above at a rate of 1-2 Hz using a grayscale or color CCD

camera. The acceleration amplitude, a, was varied from 4g to 11g (where g is

the acceleration of gravity) and was measured using an accelerometer. Magnetic

spheres were placed in the container and sinusoidally vibrated vertically at 30 Hz

using an electromagnetic shaker. The maximum strength of the magnetic field from

the shaker at the inner container surface was 23.1 G at zero acceleration amplitude,

although at typical acceleration amplitudes the RMS magnetic field strength was of

order 1 G. No noticeable effect due to any external magnetic field from the shaker



was observed.

The magnetic particles used were cylindrical permanent magnets rigidly en-

cased in spherical hard plastic shells. The plastic shells and some of the magnets (the

‘long’ magnets) are distributed as ‘Magnetic Marbles’ by the Safari toy company,

and were purchased in the Smithsonian Air and Space Museum. Other magnets

with differing properties were purchased elsewhere and were used to replace the ex-

isting Safari magnets in order to alter the multipolar interactions of the particles.

Magnet materials were chosen for their resistance to demagnetization (both from

vibration and opposing magnetic fields) and their physical strength. Magnetic field

magnitudes of our particles were determined by measuring the maximum magnetic

field on the surfaces of at least twenty particles using a Gauss meter and calculating

mean and standard deviation of the measurements. Figure 2.2 is a general schematic

of our magnetic particles. By altering the material makeup and the axial length l of

the magnetic cores, we are able to independently change the dipolar and octopolar

moments (from symmetry the quadrupole moments are identically zero). It may

also be possible to construct similar magnetic particles with nonzero quadrupole

moments by, e.g., slicing a cylindrical magnet vertically along its axis, rotating one

of the halves 180o about the axis perpendicular to the slicing plane, then fixing the

halves back together. The quadrupole moment would then be a function of l, and the

particles would have zero dipole moment. Another method of constructing partlicle

with non-zero quadrupole would be to permenantly attach the north faces of two

cylindrical magnets together such that the magnetic dipoles are opposing. However,

for the remainder of this thesis, we will describe observations of magnetic particles
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Fig. 2.1: A schematic of the experimental setup. Magnetic spheres are placed in a 2D

container and vertically vibrated at 30 Hz. The system is imaged from above.

with zero quadrupole moments. For the majority of the experiments described in

this thesis, the particles were constructed to have differently colored northern and

southern hemispheres so that dipole orientations could be discerned.

2.2 Theoretical Models

The following is a description of general characteristics of our theoretical magnetic

particle models. Model details that are unique to each chapter will be described

within the respective Energetic Considerations sections of each chapter. The theo-
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Fig. 2.2: A general schematic of the magnetic particles used. The material makeup and

l of the magnetic cores were parameters that were varied to independently alter

the strengths of the dipolar and octopolar interactions.

retical models in this thesis consist of two to eight static point charges surrounded

by appropriately shaped impenetrable boundaries. Figure 2.3 is a general schematic

of my model of the magnetic spheres described in fig. 2.2. The model consists

of impenetrable spheres of diameter, D, containing four magnetic ‘charges’ of equal

magnitude±q, separated by distances h and w (0 < h, w ≤ D), such that the charges

are at the corners of a rectangle. This model is a two-dimensional theoretical analog

of our three-dimensional particles. h, w, and q were varied to independently change

the dipolar and octopolar moments (from symmetry the quadrupole moments are

identically zero), and mimic the interactions of the magnetic spheres in the experi-

ment. This model reduces to a two-charge model in the limit of w/D → 0. It can

also be reduced to a two-point-dipole model in the limit of of h/D → 0, and a sin-

gle, centrally located point dipole model if h/D → 0 and w/D → 0. Similar point

charge models were also developed to describe interactions between anisotropically
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Fig. 2.3: A schematic of our general magnetic particle model. The model consists of four

point charges of equal magnitude ±q, separated by distances h and w (0 ≤ h,

w ≤ D), such that the charges are at the corners of a rectangle.

interacting biological macromolecules. Those will be described in Chapters 6 and 7.

2.3 The Multipole Moment Expansion

The electrostatic potential of any system of static electric charges can be expanded

about a point using the well-known multipole expansion [55],

Φ(x) =
1

4πε0

∞
∑

l=0

l
∑

m=−l

4π

2l + 1
qlm

Ylm(θ, φ)

rl+1
, (2.1)

where Ylm are the spherical harmonics, r is the distance from the expansion center,

qlm =
∫

Y ∗
lm(θ

′, φ′)r′lρ(x′)d3x′, (2.2)

and ρ(x) is the charge density at position x. In general, the l = 0 term in the

expansion is named the ‘monopole’ term, the l = 1 term in the expansion is named

the ‘dipole’ term, the l = 2 term in the expansion is named the ‘quadrupole’ term,

l = 3 term in the expansion is named the ‘octopole’ term, and so on for higher order
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terms. In general, we may also speak of ‘multipole moments’ to characterise the

various terms in the multipole expansion. In this thesis, we define these moments

as follows:

• Monopole Moment (scalar),

Q =
N

∑

i=1

qi (2.3)

• Dipole Moments (vector),

pj =
N

∑

i=1

qiji (2.4)

• Quadrupole Moments (traceless rank 2 tensor),

Qjk =
N

∑

i=1

qi(3jiki − r2i δjk) (2.5)

• Octopole Moments (rank 3 tensor),

Ojkl =
N

∑

i=1

qijikili (2.6)

In general, these moments are associated with their respective terms in the expansion

through the following relation:

Φ(x) =
1

4πε0





Q

r
+
p · x
r3

+
1

2

∑

i,j

Qij
xixj
r5

+ ...



 . (2.7)
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3. POLYMERIZATION TRANSITIONS IN TWO-DIMENSIONAL

SYSTEMS OF DIPOLAR SPHERES

(Simulations by Kevin Van Workum and Jack F. Douglas, Polymers Division, Na-

tional Institute of Standards and Technology)

3.1 Overview

In this chapter, we investigate the clustering transition in our two-dimensional sys-

tem of magnetic spheres, as a function of vibration amplitude. Following previous

work on vertically vibrated granular matter [44], we draw an analogy between vi-

brational excitation in our experimental system and thermal excitation in a Monte

Carlo simulation of a similar system. We show, using our experimental system and

Monte Carlo simulations performed by collaborators at NIST, that at temperatures

above the clustering transition, the particles are largely dissociated from each other

and exhibit traditional gas phase characteristics. At temperatures below the poly-

merization transition, the thermal (kinetic) energy of the particles is insufficient to

overcome the attractive interactions and the particles form strongly bound clusters.

The anisotropic nature of the dipolar interactions induce head-to-tail alignment

resulting in the formation of linear, ring, or branched structures. Between these



two limits lies a broad transition region in which these polymer-like structures con-

tinuously form and disappear in dynamic equilibrium. Our results show that the

transition temperature, TΦ, increases and the width of the transition broadens with

increasing concentration, C (measured as particle area fraction in our 2D system),

in accord with the analytic theory of equilibrium polymerization [48].

It is important to have well-defined models of self-organization that contain

the minimal physical characteristics of those systems and to extensively study the

essential characteristics of these systems. We need to determine what kind of ther-

modynamic transitions are involved and how to determine the relevant interaction

parameters. The dynamical properties of these systems (formation and the prop-

erties while functioning) are also a crucial concern and we need to develop simple

models that are amenable to large scale simulations so that these properties can

be studied with existing computational resources. Optimally, the physical systems

chosen should have well-defined physical realizations that can be compared to both

simulation and analytic theories of self-organization.

Van Workum and Douglas [49] have advocated dipolar fluids as a prototypical

model of self-organization and they have extensively investigated the polymerization

transition which occurs in this model by Monte Carlo simulations in three dimen-

sions. Stambaugh and Losert [41, 42] have experimentally and theoretically studied

the self-assembly of spheres with multipolar interactions and have found sensitive

dependance of the self-assembly pattern on higher order moments. This chapter

considers a physical realization of a dipolar fluid constrained to be nearly two-

dimensional, and a corresponding Monte Carlo simulation of this two-dimensional
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fluid. This comparison not only provides a check on the physical model developed

involving magnetic particles shaken vertically to thermalize the granular fluid, but

provides a valuable check on the thermodynamic characteristics provided by the

Monte Carlo simulations and the analytic theory of equilibrium polymerization.

The choice of the dipolar fluid is independently motivated by the fact that protein

molecules characteristically have large electrostatic dipole moments (e.g. tubulin ≈

1400 Debye, as will be shown in Chapter 6) and dipolar interactions clearly have

relevance to the self-organization processes occuring in proteins [77].

3.2 Experimental Details

The magnetic particles used in this chapter had magnetic cores of length, l = 1.42±

0.01 cm., and diameter, d = 0.94 ± 0.01 cm. The particles (long particles) were

5.3± 0.1 grams in mass, the maximum strength of the magnetic field on the surface

of a particle was 0.54 kG ±16%, and the particle diameter, D, was 1.69 ± 0.01

cm. The container is constructed with a black Delrin bottom and N particles were

placed in the container, to give a system concentration, C = N
17.52

prior to vibration.

The system was imaged from above at a rate of 0.5 Hz with a 1280x1024 pixel color

camera. a was varied from 5g to 11g.

Earlier work has shown that a direct analogy can be made between the excita-

tion of macroscopic particulate matter by vertical shaking and thermal excitations

of microscopic matter [44]. For the range of driving amplitudes studied, this analogy
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can be quantified by the expression

T ∝ v2p, (3.1)

where T is the effective temperature and vp is the peak velocity of the vertically

vibrated surface. vp can be easily calculated from the vibration acceleration and

frequency, and hence, we define our experimental temperature as T = v2p.

3.3 Simulation Details

Simulations performed by Kevin Van Workum and Jack F. Douglas, Polymers Di-

vision, National Institute of Standards and Technology.

The magnetic particles are modeled as hard spheres, as described in Chapter

2, but with w = 0 such that they are made up of two oppositely charged monopoles.

The monopoles are separated by a distance h = 0.69D and are situated symmetri-

cally about the center of the sphere. The potential energy between monopole i on

sphere a and monopole j on sphere b is given by

uaibj =
qaiqbj
raibj

, (3.2)

where raibj is their separation distance and the q’s denote the charges of the monopoles.

This model is chosen to effectively represent the real interactions of the magnetic

particles used in the experiments.

In order to mimic the quasi-two-dimensional nature of the experimental setup,

the centers of the spheres are restricted to lie in a plane while the embedded dipole

vectors are allowed to rotate in 3D. All the spheres also interact with a boundary
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consisting of a radially symmetric hard wall (a cylinder) similar to that in the

experiments.

Canonical ensemble Monte Carlo (MC) simulations are used to generate equi-

librium configurations and thermodynamic averages. In addition to the traditional

translational and rotational MC moves, two advanced MC methods are imple-

mented. The Aggregate Volume Bias MC method [45] is used to enhance the dy-

namic formation and destruction of clusters. This method provides efficient phase

space sampling in systems that form strong interparticle associations such as those

present in this study. The Parallel Tempering MC method [46, 47] is also used

in these simulations to provide improved statistical sampling. In this algorithm,

several independent simulations proceed in parallel, each at a different temperature

but with the same number of particles. Periodically, two simulations adjacent to

one another with respect to their temperatures are chosen at random and a swap

of their particle configurations is attempted. Attempted swaps are accepted with a

probability given by

pa↔b = min[1, exp{∆U∆β}], (3.3)

where ∆U = Ub − Ua is the potential energy difference of the systems, and ∆β =

1/(kBTb)− 1/(kBTa). T , for the simulations, is defined in units of the dipolar par-

ticle self-energy divided by kB. At low temperatures, the particles can form large,

strongly associated clusters that may become trapped in local potential energy min-

ima causing the exploration of relevant phase-space to proceed inefficiently. At high

temperatures the particles are largely free from such constraints and the simulation

19



samples configuration space more effectively. By ‘connecting’ the simulations at

low temperature to those at high temperature through Parallel Tempering, one im-

proves the statistical sampling of phase-space. In the present study, 24 simulations

were used at each concentration and adjacent simulations differed in temperature

by ∆T = 0.01.

3.4 Results

Based on previous analytical modeling [48] and Monte Carlo simulations [49] of

equilibrium polymerization of the Stockmayer fluid (dipolar spheres with additional

isotropic Lennard-Jones van der Waals interactions), we anticipate a polymerization

transition to occur at constant concentration. At temperatures above the polymer-

ization transition, the particles are largely dissociated from each other and exhibit

traditional gas phase characteristics. At temperatures below the polymerization

transition, the thermal (kinetic) energy of the particles is insufficient to overcome

the attractive interactions and the particles form strongly bound clusters. The

anisotropic nature of the dipolar interactions induces head-to-tail alignment, result-

ing in the formation of linear, ring, or branched structures. Between these two

limits lies a broad transition region in which these polymer-like structures continu-

ously form and disappear in dynamic equilibrium. For the present, we loosely define

the polymerization transition temperature, TΦ, as the temperature at which the

particles first begin to form clusters. A more rigorous definition of TΦ based on the

average cluster size follows.
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As examples of the observed structures, Fig. 3.1 show the experiment (a-c)

for C = 0.026 at T/TΦ > 1, T/TΦ ≈ 1 , and T/TΦ < 1, respectively. Fig. 3.1 (d-f)

shows similar renderings of the simulations for C = 0.026 at T/TΦ > 1, T/TΦ ≈ 1

, and T/TΦ < 1, respectively. For T/TΦ < 1, a linear chain of head-to-tail aligned

particles is observed and for T/TΦ > 1 the particles are completely dissociated. Near

the transition, T/TΦ ≈ 1, a fraction of particles are loosely associated while the

remaining are dissociated. This is our first hint that the observed broad transition

involves the dynamic formation and destruction of polymeric chains at equilibrium

with larger chains forming as the temperatures decreases.

We first characterize the transition by monitoring the average cluster size as a

function of temperature. Two particles are considered to be part of the same cluster

when their interparticle distance is less than ra = 1.125σ. Based on previous work

[50], the observed average cluster size is expected to be relatively independent of

small changes in ra. The average cluster size is then defined by

L =

∑N
i=1 iNi

∑N
i=1Ni

, (3.4)

where i is the number of particles in a given cluster and Ni is the number of chains

of length i. In Fig. 3.2, we show L as a function of T for the experiments (a) and the

simulations (b) for a range of concentrations. We find a family of curves describing

the general increase of L upon cooling. At higher concentrations, the increase in

L(T ) occurs faster as T is lowered, reflecting the concentration dependence of the

polymerization transition. The curves in Fig. 3.2 notably have a similar shape, and

it is natural to seek a reduced variable description.
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a) b) c)

d) e) f)

Fig. 3.1: A photograph of an experimental system where the concentration C = 0.026 at

three different temperatures: T/TΦ > 1 (a), T/TΦ ≈ 1 (b), and T/TΦ < 1 (c). A

rendering of the simulation where C = 0.026 and: T/TΦ > 1 (d), T/TΦ ≈ 1 (e),

and T/TΦ < 1 (f).
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Fig. 3.2: a) A plot of L as a function of T for experimental systems where C = 0.020,

0.052, and 0.104. b) A plot L as a function of T for similar simulated systems.
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Previous simulations of the polymerization transition in the Stockmayer fluid

have demonstrated that a universal reduced variable description of the temperature

dependence of L can be obtained by expressing temperature relative to its value

of the polymerization transition, TΦ defined by an inflection point in the order

parameter for the polymerizatino transition Φ (See Eqn. 3.5 for definition). It was

also found that L at this temperature is nearly universal, taking a value 2.1 regardless

of particle concentration [49]. This result is predicted also by the analytic theory of

equilibrium polymerization [48]. We checked this relation for the simulated analog

of our experimental system and found that L at the polymerization transition (TΦ)

again lies in a narrow range for the concentrations we consider. This universality

in the magnitude of L at TΦ suggest that we should similarly be able to reduce the

scatter in the measurements in Fig. 3.2 by simply normalizing temperature by the

temperature where L = 2, to obtain an approximate equation of state description

of the T dependence of L. This procedure is motivated by the comparitively noisy

nature of our Φ data.

We see from Fig. 3.3(a) that this procedure indeed reduces the scatter con-

siderably and the reduction is quite good for the approach to the polymerization

transition temperature T → TΦ where L = 2. Note that the simulation data in

Fig. 3.3(b) exhibits a tendancy to saturate to a finite value, which is simply the

number of particles in the system. This feature is a finite size effect and the growth

of L at low T is apparently unbounded in the thermodynamic limit, as found before

for the three-dimensional Stockmayer fluid. The chains in the experiment also vi-

sually exhibit a saturation of chain length to a size corresponding to the number of
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particles in the system at low T , but the particle tracking algoithm can not follow

these large clusters reliably, giving rise to the residual scatter in Fig. 3.3(a) and

the absence of a discernable plateau. Nevertheless, Fig. 3.3(a) clearly indicates the

sharp rise in L at lower T and the significance of L(TΦ) = 2 in defining a reduced

variable description of these observations. We also note that our determination of

Φ(T ) below is consistent with L(TΦ) ≈ 2 within experimental uncertainty in our

experimental system and we could equally as well have reduced our L data by TΦ

values determined directly fomr the inflection point of Φ Both procedures lead to a

regettable large scatter at low T , where the uncertainties from our particle tracking

estimates of L and Φ are large.

It is also natural to monitor the average fraction of particles that are members

of a cluster, i.e. the extent of polymerization, Φ. The extent of polymerization is

defined by

Φ =
Np

N
, (3.5)

where Np is number of polymerized (reacted) particles and N is the total number

of particles in the system. Φ therefore defines an order parameter where Φ = 0

corresponds to an entirely dissociated system, and Φ = 1 corresponds to a state

where all the particles are in contact with at least one other particle.

Figure 3.4(a) is a plot of Φ versus T for experimental systems where C =

0.020, 0.052, and 0.104. A transition from Φ ≈ 1 to Φ ≈ 0 is seen with increasing

T for C = 0.020, while the transitions for C ≥ 0.052 are partially captured for the

temperature range studied. While it is likely that observations of the C ≥ 0.052
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Fig. 3.3: a) A plot of L as a function of T/TΦ for the experimental systems where C =

0.020, 0.052, and 0.104. b) A plot of L as a function of T/TΦ for similar simulated

systems.
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Fig. 3.4: (a)A plot of Φ versus T for experimental systems where C = 0.020, 0.052, and

0.104. (b) A similar plot of Φ versus T for similar simulated systems. Note that

for both simulation and experiment, TΦ increases and the transitions broaden

with increasing C.
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systems at higher T would show transitions similar to those at C < 0.052, the

experimental setup limited our observations to T < 0.3. Figure 3.4(b) is a plot of Φ

versus T for simulated systems for C = 0.020, 0.052, and 0.104. A transition from

Φ ≈ 1 to Φ ≈ 0 is seen with increasing T for all C. While the simulation methods

exclude the possibility of investigating temporal dynamics, the experimental system

allows a detailed study of the evolution of the spacial patterns in time.

Figure 3.5 is a plot of Φ versus time for the experimental system where C =

0.052 and T ≈ TΦ. Φ varies significantly within the timespan of the experiment,

with Φ ≈ 0 and Φ ≈ 1 at various times, though T remains constant. This large

variance and intermittency is characteristic of the system when T ≈ TΦ, and similar

phenomena are observed at other concentrations.

Figure 3.6 is the distribution of Φ’s observed in Fig. 3.5, normalized to the

total number of frames in the experiment. The broad range of the distribution is a

characteristic of the system at T ≈ TΦ.

Figure 3.7 is a plot of the variance in Φ versus T/TΦ for the experimental

system where C = 0.052. Note the significant peak at T/TΦ ≈ 1. This peak at

T ≈ TΦ is a characteristic behavior of the system at the transition, and it is also

observed at other concentrations.

In order to directly compare TΦ in our experiments and simulations, we rescale

our experimental temperature using the expression

T̃ = AT +B, (3.6)

where A and B are constants to be determined. This method of rescaling is con-
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Fig. 3.5: A plot of Φ versus time for the experimental system where C = 0.052 and T ≈ TΦ.

Note the large variation in Φ, with Φ ≈ 0 and Φ ≈ 1 at various times, though T

remains constant. This large variance and intermittency is characteristic of the

system when T ≈ TΦ.
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Fig. 3.6: A plot of the distribution of Φ’s observed in Fig. 3.5, normalized to the total

number of frames in the experiment. Note that the distribution is nonzero nearly

over the entire range of Φ.
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concentration C = 0.052. Note the significant peak at T/TΦ ≈ 1.

sistent with the thermal relation for vertically vibrated systems described in earlier

work [44]. A and B are determined from a linear best fit to a plot of the TΦ values

from the experiment (at C = 0.020, 0.026, 0.039, 0.052, 0.078, and 0.104) vs. the

TΦ values from the simulation at similar C. For our experiments, A = 13.798 and

B = 0.15144. Figure 3.8 shows the polymerization transition temperatures, TΦ and

T̃Φ ( T̃Φ are the rescaled experimental TΦ values), as a function C for the experi-

ment (filled circles) and the simulation (open circles). Also, in Fig. 3.8 is a fit of the

Dainton-Ivin equation [51] to the simulation data,

TΦ =
∆hp

∆sp + kBlnC
, (3.7)

where ∆hp = −2.13 ± 0.19, and ∆sp/kB = −8.5 ± 1.0 (in units of particle self

energy). A similar fit to the experimental data gives ∆hp = −2.20 ± 0.34, and
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Fig. 3.8: TΦ (open circles) and T̃Φ (filled circles) versus the concentration C for the systems

studied. Also plotted is a fit of TΦ to the Dainton-Ivin equation.

∆sp/kB = −8.9± 1.8. Note that TΦ and T̃Φ increase with increasing C, in a similar

fashion for both the experiment and the simulation.

3.5 Conclusion

We have investigated the self-organization of dipolar spheres into chains as a fun-

damental model of the self-assembly of particles having anisotropic interparticle

interactions. Our studies of a two-dimensional system of confined dipolar spheres

has shown that there exists a polymerization transition of the spheres at finite tem-

peratures. Using a simple model system of vertically vibrated magnetic spheres,

together with Monte Carlo simulations of a similar system, carried out by collabo-

rators at NIST, we showed that the transition temperature and the broadness of the
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transition is concentration dependent. Our results show that the transition tem-

perature, TΦ, increases and the width of the transition broadens with increasing

concentration, C, in accord with the analytic theory of equilibrium polymerization

of Dudowicz et al. [48].

3.6 Outlook

Possible future work includes investigating the role of the system size in the tran-

sitions. This investigation could be done experimentally by building containers of

different diameters and repeating the experiments at similar concentrations as those

investigated above. Such studies would help determine what role the system size

has on our results, and allow for better statistics in the case of larger systems.

It would also be interesting to investigate the role of higher order interactions

on these transitions. Quadrupolar particles could be built, as discussed in Chapter

2, or the role of the octopole could be investigated by using cylindrical magnetic

cores of differing lengths. These studied would give insight into the affects of higher

order interactions on polymerization transitions, and may have specific implications

for biological macromolecular self-assembly where higher order interactions are es-

sential.

Another possible extension of this work is to build sturdier magnetic particles

with weaker interactions so that higher relative temperatures can be investigated

without destroying the particles.
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4. PATTERN FORMATION IN A MONOLAYER OF MAGNETIC

SPHERES

4.1 Overview

In this chapter, we report observations of pattern formation in our experimental sys-

tem which depends on the shape of the magnetic core, i.e. the magnetic multipole

moment distribution. While systems of dipolar spheres have been investigated rela-

tively extensively [6, 7, 8, 9, 10, 11, 12, 26, 29, 30, 31, 34, 43], the roles of higher or-

der moments in self-assembly are relatively unknown. Our results show that spheres

containing short cylindrical magnets form HCP (hexagonal close-packed) macrovor-

tices(Fig. 4.1(a)), while spheres containing long cylindrical magnets form concentric

rings. This implies that the pattern formation depends not only on the dipolar mo-

ment, the temperature of the system, and the concentration of the spheres, but also

on higher order multipole moments. In particular, because of the cylindrical sym-

metry of the magnetic cores, our work illustrates the effect of the octopole moment

on the self-assembly.

Monte Carlo simulations of the thermal equilibrium of large 2D systems of

hard spheres with centrally embedded point dipoles have shown that ordering in

the absence of external forces depends on the dipolar strength, the temperature of
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Fig. 4.1: (a) A schematic illustration of the ‘HCP macrovortex’ pattern. The dipoles are

oriented in a macroscopic circulating vortical pattern about the center. (b) A

schematic illustration of the ‘square-packed microvortex’ pattern. The dipole

axes are tilted by about 45◦ with respect to the axes of the square pattern,

and the dipole orientations are such that they define alternating directions of

circulation (indicated by the rotational arrows in the centers of the squares) on

a checker-board pattern of squares (after Ref. [52]).

the system, and the number density of the spheres [11, 29, 30, 31]. At interme-

diate temperature, high density systems of dipolar spheres form hexagonal-close-

packed (HCP) macrovortices (Fig. 4.1(a)), while intermediate density systems form

networks of long branching chains [29]. At high temperatures, systems of dipolar

spheres disassociate and become gaseous [26, 29].

A calculation done by Belobrov et al. [52] showed that the zero-temperature

ground state of a finite (< 500 particle) two-dimensional HCP lattice of dipoles is a

macrovortex (Fig. 4.1(a)), while the zero-temperature ground state of a finite square-

35



packed lattice of dipoles is a microvortex (Fig. 4.1(b)). The microvortex state as a

minimum of the interaction Hamiltonian, was also remarked upon by Rozenbaum et

al. [53]. A similar macrovortex state seen at the atomic scale in 500 nm diameter thin

magnetic films is also of significant current technological interest as a novel magnetic

RAM material [16, 17, 18, 19, 20, 21, 22, 23]. The possibility of information storage

in such systems occurs due to an ordered out of plane component of the atomic

spins near the center of the macrovortex. While macrovortecies have been observed

in magnetic thin films of thickness less than 30 nm, the out of plane ordering has

been shown to vanish in the case of magnetic monolayers. The central out of plane

dipole orientation is independent of the ordering of the rest of the macrovortex, and

is easily flipped electronically, allowing for the possibility of two bits of memory

storage for each micron-diameter disk. The macrovortex state was also observed

in simulations of a dense system of dipolar spheres in thermal equilibrium [29],

and in an experimental system of settled magnetic spheres (a system of magnetic

spheres that are initially magnetically excited with a solenoid and then allowed

to settle at the bottom of a container under zero external magnetic field) [15].

However, to our knowledge, a macrovortex pattern has never been observed in a finite

temperature experimental system of dipolar spheres. We provide the first direct

experimental demonstration of the macrovortex pattern in a thermalized system of

dipolar spheres. We also provide a direct experimental visualization of a microvortex

pattern in a zero temperature system of dipolar spheres.
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4.2 Experimental Details

In the following experiments, we investigate particles encasing magnetic cores of

two types which we call ‘long’ and ‘short’ magnets. The long magnets we used

had length, l = 1.42 ± 0.01 cm., and diameter, d = 0.94 ± 0.01 cm. The short

magnets we used had l = 0.64 ± 0.01 cm. and d = 0.95 ± 0.01 cm. Once the long

magnets had been encapsulated in the spherical shells, the particles (long particles)

were 5.3 ± 0.1 grams in mass, the maximum strength of the magnetic field on the

surface of a long particle was 0.54 kG ±16%. The particles containing the short

magnets (short particles) were 4.3 ± 0.1 grams in mass, the maximum strength of

the magnetic field on the surface of a short particle was 0.12 kG ±24%. The short

magnets were secured inside the plastic shells by filling the extra space in each half

shell with RTV resin. All particles were constructed to have a light colored north

hemisphere and a dark colored south hemisphere so that dipole orientations could be

discerned. (Previous experiments on thermally or externally excited systems did not

sense the dipole orientations of individual particles.) The container was constructed

with a polyvinyl chloride bottom and N particles were placed in the container prior

to vibration, to give a system concentration, C, as defined in Chapter 3. Typically,

0.30 < C < 0.65. The system was imaged at a rate of 2 Hz for 500 frames with

a 1024x1024 pixel camera. In these experiments, typical accelerations for the long

particles were 4− 8g, while short particles were usually driven at about 2− 5g.
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4.3 Results

Figure 4.2(a) shows the ‘network’ pattern of short particles where C = 0.309, after

being shaken at 4.3g for 250 seconds. In this case (Fig. 4.2(a)), the initial state was

created by pouring the particles randomly into the container. The observed chain-

like structure is similar to the pattern observed by Blair et al. [26] in intermediate

density systems of vertically vibrated magnetic spheres, and by Weis [29] in simu-

lations of intermediate density systems of dipolar spheres. Figure 4.2(b) shows the

configuration of short particles where C = 0.618 after being shaken at 4.3g for 250

seconds. The initial state of the particles was random. The final state of the particles

after being driven is mostly an HCP macrovortex state similar to the ground state

of a dipolar hexagonal lattice predicted by Belobrov et al. [52] (Fig. 4.1(a)) and seen

in simulations by Weis [29]. We find that this HCP-based macrovortex is a stable

state for the short particles. When other patterns such as square-packed microvor-

tices (Fig. 4.1(b), 4.2(c)) or concentric rings are set up as the initial condition, after

driving, the system always becomes an HCP-based macrovortex (Fig. 4.2(d)). If the

system is set up as a macrovortex, it remains in a macrovortex state. Also, when

several single chains of the particles are brought together in an antiferromagnetic

square-packed state of 190 particles (each chain has the opposite dipolar orientation

from that of the two neighboring chains), they immediately, without driving, reori-

ent themselves into the microvortex state (Fig. 4.1(b), 4.2(c)). If the particles are

initially set up in a ferromagnetic HCP pattern, under small (2.4g) agitation, the

macrovortex state is assumed.
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Fig. 4.2: (a) The network pattern of an intermediate density (C = 0.309) system of short

particles after being shaken at 4.3g for 250 seconds. (b) The final macrovortex

configuration of a dense (C = 0.618) system of short particles after being shaken

at 4.3g. (c) The microvortex pattern made by the square-packed set up, un-

driven, dense (C = 0.618) system of short particles. (d) A ‘hollow macrovortex’

configuration of the short particles after being set up in an aligned, concentric

rings pattern and then shaken at 4.3g.
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Fig. 4.3: (a) The final concentric ring state of a dense, C = 0.618, system of initially

random long particles after being shaken at 7.8g for 250 seconds. (b) The final

state of the system after being shaken in a square box at 7.8g for 250 seconds.

The pattern is one of squared-off concentric rings, similar to the final state of

the particles in the cylindrical container of equal height and area.

Figure 4.3(a) is the final concentric ring state of a C = 0.618 system of long

particles after being shaken at 7.8g. The initial state of the particles was random.

The existence of the concentric ring state is independent of the initial conditions of

the system. If the system is set up in any other state, it rearranges into a concentric

ring state with sufficient driving. Systems of all lower densities also prefer ring and

line states at intermediate and low accelerations (< 8g).

Figure 4.4(a) is the initial random state of a dense (190 particle) system of

long particles. After 100 seconds of shaking at 7.8g, the system evolves into the

spiral pattern shown in Fig. 4.4 (b) (blue and red lines are superimposed upon the
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Fig. 4.4: (a) The initial random state of a dense (190 particle) system of long particles.

(b) An intermediate state of the same system of long particles after shaking at

7.8g for 100 seconds. Note the spiral ordering that occurs (highlighted by blue

and red drawn lines). (c) The final state of the system after 250 seconds, a steady

state pattern of concentric rings, similar to that shown in Fig. 4.3.

pattern to highlight the spiral ordering). Figure 4.4(c) is the final state of the system

after 250 seconds, a steady state pattern of concentric rings, similar to that shown

in Fig. 4.3.

Figure 4.5 (a) is the initial state of an intermediate density (C = 0.325) sys-

tem of long particles. The system quickly evolves to form chains of variable length

(highlighted by red drawn lines) after 30 seconds of vibration at 6.4g, as shown in

Fig. 4.5 (b). Figure 4.5 (c) is the final state of the system after 100 seconds, a steady

state pattern of concentric rings, similar to that shown in Fig. 4.3 and Fig. 4.4 (c).

Note the contrast in between the ring-like ordering of the long particles shown in

Fig. 4.5 (c), and the network pattern formed by the system of short particles at

similar density shown in Fig. 4.2 (a). The ring state is a robust steady state phe-
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Fig. 4.5: (a) The initial state of an intermediate density (C = 0.325) system of long

particles. (b) An intermediate state of the same system of long particles after

shaking at 6.4g for 30 seconds. Note the appearance of long chains. (highlighted

by red drawn lines). (c) The final state of the system after 100 seconds, a

steady state pattern of concentric rings, similar to that shown in Fig. 4.3 and

Fig. 4.4. Note that the ring state is a robust steady state phenomenon for the

long particles, reproducibly appearing at several different particle densities and

in different shaped containers.

nomenon for the long particles, reproducibly appearing at several different particle

densities and in different shaped containers, as illustrated in Figs. 4.3, 4.4, and 4.5.

We can track the positions of all particles during our experiments, using dig-

ital image algorithms developed in the IDL programming environment. To gauge

quantitatively how much HCP clustering occurred in each experiment, we designed

a program that finds the number of particles with 6 touching neighbors in each im-

age. The program identifies particles as ‘touching’ if the centers of the particles are

within 9/8 particle diameters of each other. We found that for a system of 190 short

42



particles (C = 0.618) initially in a random state and then shaken at 4.3g, the mean

number of particles with 6 touching neighbors, N6 , averaged over 500 frames, was

43.3± 9.0. For 190 initially random long particles shaken at 7.8g, N6 = 0.14± .09.

In these two experiments, where 190 particles began in a random state, the N6 of

the short particles was more than 300 times the N6 of the long particles. Using this

measure, in all experiments with similar initial conditions, the short particles were

quantitatively more clustered than the long particles.

Boundary conditions do not appear to affect the qualitative features of the final

states for either type of particle. We performed similar experiments in a square

box of height and area equal to those of the cylindrical container, and the final

states were always qualitatively similar to the final state in the cylindrical container.

For example, see Fig. 4.3(b), which shows the state of a C = 0.618 system of

long particles after shaking in the square box under similar initial conditions as for

Fig. 4.3(a).

4.4 Energetic Considerations

To gain insight into the reasons why the long particles form different patterns than

the short particles, we numerically examined the theoretical model described in

Chapter 2 with w → 0. This model is similar to that used in simulations by

Schneider et al. [27] to model lipid headgroups (which are also dipolar), and it gives

qualitatively similar results to the two-parallel-dipole model used by Camp et al. [54].

Similar three point charge models are used to match charge, dipole and quadrupole
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moments of polar molecular systems such as hydrogen fluoride for simulations [24].

Our model also reduces to a central point dipole model as h/D → 0.

We use the usual Coulomb energy formula,

Uij =
µ0
4π

qiqj
Rij

(4.1)

(similar to Eq. 3.2 in Chapter 3) and sum over all interparticle pairs of charges to

obtain the energy of a pattern of particles (excluding the energy of pairs of charges

within the same particle). When we take the limit h/D → 0, our calculations are

consistent with the energy calculations of rings and lines of spheres containing single

point dipoles done by Clarke et al. [25].

It is interesting to note that, assuming the dipole moments are aligned with

the z axis, while P0.75/P0.001 = 1 by design (where Ph/D is the z component of

the dipole moment of a model particle with a given value of h/D, the ratio of the

zzz components of the octopole moments, O0.75/O0.001 = 562500. Because the zzz

component of the octopole moment is the highest order differing term, it is likely

the most important differing moment for models of different h/D for small h/D.

In Fig. 4.6, we have plotted the energies of two touching particles as the angle

between their axes is symmetrically bent for several values of h/D. Note that the

slope of the curves increases as h/D increases. This indicates that chains of particles

with large h/D are stiffer than those with small h/D. Also note that at Θ = 0, the

particles are in the head-to-tail configuration and at Θ = π/2, the particles are in

the antialigned side-to-side configuration. For large h/D, the head-to-tail (Θ = 0)

configuration is much more favorable than the antialigned side-to-side (Θ = π/2)
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configuration (e.g. for h/D = 0.75, the head-to-tail energy is more than 6 times the

antialigned side-to-side energy). For h/D = 0.001, the head-to-tail energy is only

twice the antialigned side-to-side energy. This fact is elucidated by plotting the

ratio of the energy of two particles in head-to-tail alignment, EHT to the energy of

two particles in an antiparallel side-to-side alignment, ESS, versus h/D, as is shown

inf Figure 4.7. This indicates that, as the distance between the charges increases,

the relative importance of the side-to-side interaction decreases. Particles with large

h/D (e.g., our long particles) have a strong preference to align head-to-tail, while

particles with small h/D (e.g., our short particles) do not. This is in contrast to

recent models of dipolar ’spherocylinders’ (cylinders with hemispherical ends) which

encapsulate a single centrally located point dipole [56, 57]. These spherocylindrical

particles increase the relative importance of side-to-side interactions.

Figure 4.8 is a plot of the energy gained by bringing together ten 10-particle

chains in various patterns normalized to the energy of ten infinitely separated 10-

particle chains versus h/D. At low h/D (< 0.19), the lowest energy state is the

HCP macrovortex (as predicted by Belobrov et al. [52] for h/D = 0 particles). At

h/D > 0.19, the particles energetically prefer a ring state. This is consistent with

our observations of high density systems; particles with short cylindrical magnetic

cores form a macrovortex (Fig. 4.2(b)), while particles with long magnetic cores

form rings (Fig. 4.3(a)). Also, the orientations of the long particles in each ring

appear to be independent of the orientations of the particles in neighboring rings.

The square-packed microvortex state is more favorable than the square-packed an-

tiferromagnetic arrangement only at very small h/D (< 0.1). This is also consistent
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Fig. 4.6: The energies in units of q2h2µ0

D3π
of two touching particles as a function of the angle

Θ between their axes for several values of h/D.
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hD

h/D

Fig. 4.7: The ratio of the energy of two particles in head-to-tail alignment, EHT to the

energy of two particles in an antiparallel side-to-side alignment, ESS , versus h/D.

Note that particles with large h/D strongly prefer a head-to-tail alignment (with

EHT /ESS ≈ 6 at h/D = 0.7), while particles with smaller h/D have relatively

little preference.
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with our observations. When we attempt to set up the short particles in a square-

packed antiferromagnetic pattern, they immediately, without driving, reorient into

a microvortex pattern. The long particles never form a microvortex pattern when

set up in a square-packed antiferromagnetic state, even when driven. The HCP

ferromagnetic state is energetically unfavorable compared to separated lines at all

h/D. This is in contrast to the result for an infinite HCP lattice, in which case

the ground state is ferromagnetic [58]. It is also interesting to note that the ground

state of an HCP lattice of magnetic dipoles can change under an external tangential

magnetic field. Bologa et al. [15] observed a transition in an unexcited system of

magnetic spheres from an HCP macrovortex state to an HCP ferromagnetic state

under an increasing external tangential magnetic field.

We conclude that particles with a large h/D, such as our long particles, are

more likely to form long, stiff, weakly interacting chains and rings. Particles with

small h/D are more likely to aggregate into clustered patterns. Energetically, it

has been shown that the ground state of a hexagonal lattice of point dipoles is

a macrovortex [52]. It has also been shown that for systems of between 4 and 13

(point) dipolar particles, the global ground state is a single ring [25]. For a system of

14 or more dipolar spheres, a ‘double ring state’ has lower energy, and it is expected

that the lowest energy configuration changes once again to triple, quadruple, and

higher order ring states as the number of particles increases. We conjecture that, as

the number of particles increases, the global ground state may begin to look like a

‘hollow macrovortex’, similar to that in Fig. 4.2(d).

Figure 4.9 is a plot of the energies (normalized to the energy of
√
N infinitely
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h/D

Fig. 4.8: The energy of ten 10-particle chains brought together in various patterns nor-

malized to the energy of ten infinitely separated 10-particle lines versus h/D.

The energy of two infinitely separated 10-particle lines is normalized to 0 for all

h/D. Note that the HCP macrovortex is the lowest energy conformation only for

h/D < 0.19; for h/D > 0.19, a single 100-particle ring state is of lower energy.
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separated chains of length
√
N) of several different patterns of dipolar (h = 0.001)

particles versus
√
N . All patterns except the ring pattern are rectangular lattices

of dimensions N particles by N particles. Note that the ring state is energetically

preferred for
√
N < 9, while for

√
N ≥ 9 the HCP macrovortex is preferred. It is

also interesting to note that while the normalized energy of the HCP macrovortex

steadily increases for
√
N > 20, the normalized energy of the HCP ferromagnetic

pattern decreases. By taking a linear best fit to the final four data points of both the

HCP patterns, and extrapolating to higher
√
N , we predict the ferromagnetic state

to be of lower energy at
√
N ≈ 105. It is well-known that there is a transition from

macrovortex to ferromagnetic ordering in an HCP dipolar lattice for large N [52, 58],

and our calculations suggest the transition would occur at N ≈ 11000.

Figure 4.10is a plot of the energies (normalized to the energy of
√
N infinitely

separated chains of length
√
N) of several different patterns of h = 0.69 model

particles versus
√
N . All patterns except the ring pattern are rectangular lattices

of dimensions N particles by N particles. Note that the ring state is energetically

preferred for all calculated values of N > 2, while the microvortex and macrovortex

patterns are highly unfavorable, in contrast to the favored patterns of the h = 0.001

dipolar particles as shown in Fig. 4.9.

4.5 Conclusions

Our experimental and theoretical results show that the shape of the magnetic core in

particles can be a determining factor in pattern formation, even in simple systems.
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Fig. 4.9: A plot of the energies (normalized to the energy of
√
N infinitely separated chains

of length
√
N) of several different patterns of dipolar (h = 0.001) particles versus

√
N . All patterns except the ring pattern are rectangular lattices of dimensions

N particles by N particles. Note that the ring state is energetically preferred for

√
N < 9, while for

√
N ≥ 9 the HCP macrovortex is preferred.
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Fig. 4.10: A plot of the energies (normalized to the energy of
√
N infinitely separated

chains of length
√
N) of several different patterns of h = 0.69 model particles

versus
√
N . All patterns except the ring pattern are rectangular lattices of

dimensions N particles by N particles. Note that the ring state is energeti-

cally preferred for all calculated values of N > 2, while the microvortex and

macrovortex patterns are highly unfavorable, in contrast to the favored patterns

of the h = 0.001 dipolar particles as shown in Fig. 4.9.
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As h/D increases, the energetically favored pattern changes qualitatively. Indeed,

as h/D → 1 in our model, the head-to-tail arrangement of the dipoles becomes

infinitely more favorable than any other configuration. Our unique particles allow

us to provide the first direct experimental evidence of the square-packed microvortex

pattern in a zero temperature system of dipolar spheres, and the first observations

of an HCP macrovortex state in an excited system of dipolar spheres. Finally, we

note that the observed patterns can be understood as either minimum magnetostatic

energy equilibria (in the macrovortex and microvortex cases) or (in the case of low

density network patterns, Fig. 4.2(a)) as thermal equilibrium states.

4.6 Outlook

Possible future work includes studies of larger systems of particles with which ori-

entations can be discerned. This could be achieved by building larger, lightweight

containers that could be vibrated on a shaker similar to the one used here. Inves-

tigations of larger systems would allow for better statistics, but more importantly,

it is possible that the qualitative features of the observed patterns could change in

large systems. Specifically, for dipolar particles (without higher order interactions),

it has been shown that the favored pattern of an HCP lattice is ferromagnetic for

large systems, and vortex for small systems [52, 58].

It would also be interesting to study similar systems in 3D. One possible

method of investigating 3D systems experimentally would be to build colloidal mag-

netic particles with variable field shapes, and density match them to a surrounding
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fluid. Thermal energy could then provide the excitation force, rather than shaking.

It may be simpler to build larger density-matched magnetic particles, and then ex-

cite them with an AC magnetic field imparted by a soleniod, similar to the method

used by Bologa et al. [15].
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5. SEGREGATION IN A MONOLAYER OF MAGNETIC

SPHERES

5.1 Overview

In this chapter, we show using our experimental system, that in dilute systems,

the long particles can form a loose unbranched network pattern. If the multipole

moment distribution of a small fraction of the magnetic particles is altered, we show

there is a significant increase in the branching of the self-assembled network. We

also show that magnetic spheres of equal magnetic field strength can segregate due

only to differences in their field shape. We find that the segregation increases ap-

proximately linearly with acceleration over the acceleration range studied. We also

present evidence that systems of vertically vibrated magnetic spheres of equal mass,

size, and surface properties can segregate due only to differences in the particles’

magnetic field strengths. The observed segregation is shown to increase with the

proportion of weaker particles, and it also increases approximately linearly with ac-

celeration over the acceleration range studied. Finally, we show that the segregation

is accompanied by a significant decrease in magnetic energy.

Segregation in binary mixtures of excited granular material is a widely ob-

served phenomenon [59]. Segregation due to differences in size [39, 40, 60], shape [61,



62], density, and particle surface properties [39] has been observed to occur under

various circumstances. In particular, there is significant current interest in the seg-

regation and mixing of wet granular mixtures as an example of segregation among

mutually attractive particles [39, 40]. In granular systems, the addition of attractive

forces between particles has been observed to both cause and prevent segregation un-

der different circumstances [39]. Recent observations have also been made on pattern

formation in systems of dry magnetic spheres, as an investigation of an anisotropi-

cally attractive granular material [26, 41]. Blair and Kudrolli [26] found that, in a

vertically vibrated 2D mixture of magnetic and non-magnetic granular spheres, the

magnetic spheres can self organize and cluster, depending on the volume fraction

of magnetic particles and on the relative strength of the magnetic dipole-dipole in-

teraction to the external vibration amplitude. In our earlier work [41], we showed

that the shape of the magnetic field also influences into what pattern the beads

self-assemble.

In addition to the previous work on vertically vibrated magnetic granular

spheres [26, 41], several groups have investigated vertically vibrated monolayers of

unmagnetized granular particles [63, 64, 65]. However, the behavior of binary sys-

tems of granular matter that differs only in the shape or strength of the interaction

potential, to our knowledge, has not been investigated. The results described in

this chapter can therefore either be viewed as an investigation of a novel binary

granular material with anisotropic interactions, or as a simple model system of a

binary dipolar fluid.
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5.2 Experimental Details

Figure 5.1 is a schematic of the magnetic particles used for this chapter. We investi-

gate particles encasing magnetic cores of three types which we call ‘weak’, ‘strong’,

and ‘long’ magnets. The properties of all particles are shown in table 5.1. The weak

particles have nearly identical shape, size, and mass as the strong particles, with the

only relevant differing property being their relative magnetic strengths (measured

as the maximum magnetic field on the surface of an isolated sphere). The strong

and long particles have comparable magnetic strengths and are nearly identical in

shape, size, and mass, with the only relevant differing property being their mag-

netic core shapes, i.e. their magnetic field shapes. The strong and weak magnets

were encapsulated with non-magnetic filler of appropriate size and mass so that the

magnets were centrally located and the finished particles were identical in mass.

For each strong and weak particle, the non-magnetic filler consisted of two pieces

of hollow cylindrical brass tubing with inner and outer diameters and lengths such

that the magnets were rigidly fixed and centrally located, and the final masses were

well matched to those of the long particles.

The container was constructed with a black Delrin bottom and a mixture of

two types of particles was placed in the container so that the particles were well

mixed, i.e. there were relatively small numbers of like-particle contacts prior to

vibration. a was varied from 4g to 10g and the system was imaged from above at a

rate of 1 Hz with a 1280x1024 pixel color camera.
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Tab. 5.1: A table of particle properties.

Particle Name Colors (North/South) Mass (g) Strength (kG)a P b
z Ozzz l (cm) Magnet Material

Weak White/Yellow 5.4± 0.1 0.22± 0.03 1.0± 0.1 1.0± 0.1 0.52± 0.1 Ceramic

Strong Blue/Green 5.4± 0.1 0.60± 0.08 2.7± 0.4 2.6± 0.4 0.51± 0.1 NdFeB

Long Yellow/Green or Yellow 5.3± 0.1 0.54± 0.09 2.2± 0.3 17± 3 1.42± 0.1 Ceramic

a Measured as the maximum surface field on an isolated particle.
b Where the z axis is parallel to the line connecting the poles, with the origin at the particle center. Moments are calculated using the magnetic

strength and the core shape, and are normalized by moments of a Weak particle.

58



Identical in Field Shape

Identical in Field Strength

‘Weak ’

S

N

1.7 cm

0.52 cm

0.95 cm
‘Strong’

1.7 cm

0.51 cm

0.95 cm
‘Long’

1.7 cm

1.42 cm

0.95 cm

at Poles

Fig. 5.1: A schematic of the magnetic particles used, together with a qualitative illustra-

tion of their respective magnetic field lines (obtained using Vizimag software).

5.3 Results

Figure 5.2 is a representative image a system of 2 strong and 55 long particles during

vibration. Note that 3 to 4-fold branching occurs around the short particles, while

branching is uncommon amongst the long particles. The presence of a relatively

small number of strong particles significantly increases the branching in the network

pattern.

In systems of larger mixture fractions, a different pattern is manifest. As an

example of the observed patterns, Fig. 5.3(a) shows the mixed initial state of 88

weak and 23 strong particles. The initial state was made to have a low number of

like-particle contacts. Figure 5.3(b) is the final state of the system in Fig. 5.3(a)

after being shaken at 9.0g for 300 seconds. The final configuration (Fig. 5.3(b))

is highly segregated, with all strong blue/green (dark/dark in grayscale) particles

in two dense clumps, and the weak white/yellow (light/light in grayscale) particles

forming a loose, branching network pattern. The evolution of this system as shown
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Fig. 5.2: A representative image of a system of 2 strong (blue/green) and 55 long (solid

yellow) particles during vibration at 8.6g. Note that 3 to 4-fold branching oc-

curs around the short particles, while branching is uncommon amongst the long

particles.
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in Figs. 5.3(a) and (b) indicates that systems of otherwise identical magnetic spheres

can segregate due solely to differences in magnetic field strength.

A mixed initial state of 51 strong blue/green, and 59 long yellow/green (light/dark

in grayscale) particles is shown in Fig. 5.4(a). After 300 seconds of excitation at

9.6g, the system evolves into the configuration shown in Fig. 5.4(b). The final state

(Fig. 5.4(b)) is well segregated, with the strong particles having a tendency toward

hexagonal-close-packed (HCP) clumps, and the long particles in long unbranched

chains. The strong particles roughly tend toward HCP clumps while the long parti-

cles form long, unbranching chains as a consequence of their differences in magnetic

field shape, as has been remarked upon earlier in a study of pattern formation in

monodisperse 2D systems of magnetic spheres [41]. As evidenced in Figs. 5.4(a)

and (b), systems of otherwise identical magnetic spheres can segregate due solely to

differences in magnetic field shape.

For further analysis, we track the positions, 3D dipole orientations, and particle

types of all particles during our experiments. To quantify the segregation in each

system, we designed a program that finds all particle-particle contacts in every

image. The program identifies particles as ‘in contact’ if the centers of the particles

are within 9/8 particle diameters of each other. We tested different cutoff values

and found that our results do not qualitatively depend on the cutoff. We then define

a segregation parameter for each image,

S =
CAA

CAA + CAB

+
CBB

CBB + CAB

, (5.1)

where Cij is the total number of ‘contacts’ between particles of type i and particles of

61



a)

b)

Fig. 5.3: (a) The mixed initial state of a system of 88 weak (white/yellow, light/light in

grayscale) and 23 strong (blue/green, dark/dark in grayscale) particles. (b) The

final segregated state of the 88 weak and 23 strong particles after being shaken

at 9.0g for 300 seconds. Note that there are two dense clumps of the strong

particles, while the weak particles form a loose network pattern.
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(a

(b

Fig. 5.4: (a) The mixed initial state of a system of 51 strong (blue/green, dark/dark in

grayscale) and 59 long (yellow/green, light/dark in grayscale) particles. (b) The

final state of the 51 strong and 59 weak particles after being shaken at 9.6g for

300 seconds. Note that the strong particles are largely in clusters and segregated

from the long particles, which form long unbranching chains.
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type j in the image (A and B are particle type labels). This segregation measure has

the advantages of symmetry under interchange of particle type and equal weighting

of the segregation of each particle type. 0 ≤ S ≤ 2, and S = 1, on average, for

random mixtures of all mixture ratios.

That S = 1 for random mixtures of all mixture ratios, can be seen by exam-

ining the probabilities of contacts of each type:

pij =



















Ni

Ni+Nj−1 , i 6= j

Ni−1
Ni+Nj−1 , i = j

where pij is the probability that a contact associated with a particle of type i is with

a particle of type j, and Ni is the total number of particles of type i in a system.

So, on average,

Cij = κNipij, (5.2)

where κ is the mean number of contacts per particle; hence, S = 1.

Figure 5.5(a) is a plot of S versus time for a single trial of the 88 weak/23

strong system shown in Fig. 5.3. S increases from an initial value, 0.86, to a final

value, 1.48, indicating that the system began in a state which was ‘supermixed,’

(since we intentionally placed unlike beads next to each other), i.e., more mixed

than a random mixture (S < 1), and evolved into a segregated state (S > 1).

Figure 5.5(b) is a plot of S versus time for a single trial of the 51 strong/59 long

system in Fig. 5.4. S increases from an initial value, 0.88, to a final value, 1.39, again

indicating that the system evolved from a mixed state to a segregated state. While

trials with similar particle mixtures and acceleration amplitudes but differing initial
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conditions showed similar qualitative long time segregation behavior, the short time

behavior of S versus time varied significantly in different trials.

To compare the degree of segregation of different systems after 300 seconds, we

define a parameter, Sf , as the mean of S over the final 20 seconds of a 300 second-

long experiment. Figure 5.6 (a) is a plot of Sf versus the strong particle fraction

for strong/weak systems of 111 particles driven at 9.0g (error bars are shown as one

standard deviation of S, calculated over the final 20 seconds of a single experiment).

Sf decreases as the fraction of strong particles is increased. Figure 5.6 (b) is a plot

of Sf versus acceleration, a/g, for a system of 67 weak and 44 strong particles (filled

circles) and a system of 67 strong and 44 long particles (filled triangles). Sf increases

roughly linearly with acceleration for both systems. Note also, there are several data

points in Fig. 5.6 (b), where Sf < 1, indicating that, after 300 seconds, the systems

were supermixed. This is not an indication that the systems prefer a supermixed

state; rather, it is due both to the fact that the systems began in a supermixed

state and to the particles’ lack of mobility. The particles’ lack of mobility at low

accelerations is likely because the average input (driving) energy is less than the

magnetic particle-particle interaction energy. In no case, for any of our systems,

have we observed a significant, non-transient decrease in S in time.

5.4 Energetic Considerations

To gain insight into the cause of the observed segregation, we numerically examined

the magnetic particle model described in Chapter 2. We vary q with h so that the
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Fig. 5.5: a) The segregation, S, versus time for the system of 88 weak and 23 strong

particles shown in Fig. 5.3. Note that S increases significantly over time, and it is

greater than 1 (the S of a randomly mixed system) at the end of the experiment.

b) S versus time for the system of 51 strong and 59 long particles shown in

Fig. 5.4. Note that S again increases significantly over time, and it is greater

than 1 at the end of the experiment
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Fig. 5.6: (a) Sf versus the strong particle mixture fraction for strong/weak systems of 111

particles accelerated at 9.0g. Note that Sf decreases as the number of strong

particles in the mixture increases. (b) Sf versus acceleration, a/g, for systems

of 111 particles. Mixtures of 44 strong and 67 weak particles are shown as

filled circles, while mixtures of 67 strong and 44 long particles are shown as

filled triangles. Note that, for both mixtures, Sf increases roughly linearly with

acceleration.
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dipole moment, 2qh, is constant. This model is a generalized version of the two-

charge model used previously [41, 27]; it reduces to the two-charge model in the

limit of w/D → 0. It can also be reduced to a two-point-dipole model in the limit

of of h/D → 0, and a single, centrally located point dipole model if h/D → 0 and

w/D → 0.

By considering our cylindrical magnets as two uniformly charged discs of oppo-

site sign, but equal total charge magnitude, we can then attempt to match magnetic

scalar potentials of our model particles to our real particles. Using our simple two-

parameter model, we match the magnetic scalar potential of our real and model

particles up to the octopole terms. The weak and strong particles, having similar

shaped cores, are both modeled with two parallel point dipoles separated by a dis-

tance, w = 0.31D, as shown in Fig. 5.7(b). The point dipoles are approximated

using h = 0.01D for both the weak and strong particles, with q = 11.5 and q = 34.5,

respectively, to account for the difference in magnetic strength. The long parti-

cles are modeled with two opposite point charges of magnitude 2.0, separated by a

distance of 0.69D, as shown in Fig. 5.7(c).

Using our experimental particle type, position, and orientation data extracted

from the images, we use our model to approximate the total magnetostatic energy

of our systems for every frame. We use the usual Coulomb energy formula, Uij =

qiqj
Rij

, and sum over all interparticle pairs of charges (excluding the energy of pairs

of charges within the same particle) to obtain the energy of our experimentally

observed patterns of particles, Uex. As a reference, we use the magnetic energy of

a randomly mixed state of the same spatial and orientational structure, which we
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Fig. 5.7: (a) A schematic of our general magnetic particle model, as introduced in Fig. 2.3.

(b) For the weak and strong particles, the model reduces to a two point-dipole

model, with the dipoles separated by a distance, w = 0.31D, where D is the

particle diameter. (c) For the long particles, the model in reduces to a two-

charge model, with the charges separated by a distance, h = 0.69D.

obtain by taking the particle tracking data from the experiment, and interchanging

the particle types of randomly chosen particle pairs (keeping the particle locations

and dipole orientations fixed). The magnetic energy was then recalculated. This

randomization and calculation process was repeated eleven times and the mean

magnetic energy of the randomized system, Ur was calculated for each frame. After

eleven randomizations, the time average of the standard deviation of the randomized

magnetic energy was 5% of Ur.

In Fig. 5.8 (a), we have plotted Uex (filled circles) versus time for the system of

88 weak and 23 strong particles shown in Fig. 5.3. Ur (open circles) is also plotted

in Fig. 5.8 (a). The standard deviation of Ur is essentially constant in time at ±5,

approximately. Note that Uex decreases over time, while Ur is roughly constant; also

Uex ≤ Ur for all time. The noticeable decrease of Uex below Ur over time indicates
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that the decrease in Uex is not an artifact of indiscriminant pattern formation, but

rather a part of the segregation phenomenon. Fig. 5.8 (b) is a plot of Uex − Ur

versus time. Note that Uex − Ur decreases steadily after the first few seconds.

The outlying points in Fig. 5.8 (a) and (b) are due to errors in particle position

and orientation extraction, where false particles were detected or orientations were

improperly extracted. While the observed segregation patterns tend toward states

of low magnetostatic energy, it is not expected a priori that a driven dissipative

system would arrange into a globally minimal magnetostatic energy state over long

times. Rather, the observed patterns can be understood as non-equilibrium steady

states.

5.5 Conclusions

Using a simple experiment of a model system, we have shown that in dilute self-

assembled networks, a small change in the multipole moment distribution of a small

fraction of the particles can significantly increase the branching in the self-assembled

network. This has significant implications for the macroscopic properties of polymer

networks, and it gives insight into the possible properties of branching particles in

biologically relevant systems. Our results also show that otherwise identical sys-

tems of magnetized granular particles can segregate due only to differences in their

magnetic fields. Vertically vibrated monolayers of magnetic spheres can segregate

both by field strength and by field shape. In binary systems of particles with differ-

ing field strength, and all other properties identical, the segregation increases with
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Fig. 5.8: a) The magnetic energy, Uex, versus time for the system of 88 weak and 23 strong

particles shown in Fig. 5.3 is plotted as filled circles. The magnetic energy of the

randomly mixed state, Ur, is also plotted as open circles for reference. Note that

Uex decreases quickly within the first ten seconds, then decreases more gradually

over time, while Ur remains roughly constant. b) A plot of Uex−Ur versus time.

Uex − Ur decreases steadily after the first few seconds.
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the proportion of weaker particles, and it also increases approximately linearly with

acceleration over the acceleration range studied. Binary systems of particles with

differing field shape and all other properties identical also show approximately linear

increases in segregation as acceleration is increased over the acceleration range stud-

ied. Segregation occurs in conjunction with a decrease in magnetic energy, with the

energy decrease being mostly due to the actual segregation, rather than an evolution

of the spatial pattern.

5.6 Outlook

The weak plastic construction of our particles prevents us from probing the behavior

of our systems at higher accelerations; however, it seems likely that at high accel-

erations, the input vibration energy would exceed the magnetic interaction energy,

and systems such as ours would remix. While we expect that the qualitative behav-

ior of larger systems to be similar, the small size of the systems we studied makes

it difficult to obtain high-quality quantitative statistical results. Possible future

work includes studies of larger binary systems of magnetic particles, and using more

sturdily constructed particles that allow the investigation of higher accelerations.

It would also be interesting to investigate the interaction properties of parti-

cles which induce branching in biological self-assembly and polymer networks, and

relate their properties to those of our magnetic branching particles. The interac-

tions between biological macromolecules, and methods of quantitative comparison

of interactions will be discussed in Chapter 6. It may be possible to simulate known
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branching particles and other biological macromolecules using methods described

in Chapter 6, and it would also be intersting to insert new, synthetic particles in

the simulation to investigate their roles in the self-assembly of biologically relevent

proteins. It is possible that insight gained from such exploration could give insight

into possible real synthetic particles that would have similar effects on real biological

self-assembly.
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6. PROTEINS: ANISOTROPICALLY INTERACTING

SELF-ASSEMBLING PARTICLES

6.1 Self-Assembly in Biological Systems

Self-assembly is of particular interest in molecular biology [36, 37]. A wide array of

biologically relevant systems form through self-assembly [66]. Protein self-assembly

is of particular interest because of the many diseases that are a result of the self-

assembly [1, 2, 3, 4, 5, 36, 67]. Hemoglobin S, tubulin, and collagen self-assemble in

sickle cell anemia, cancerous tumor growth, and brittle bone disease, respectively.

Hemoglobin S, a mutation of the normal hemoglobin A protein, self-assembles into

long twisting rope-like structures in the red blood cells of diseased individuals, and

inhibits the transportation of oxygen within the body [36].

6.1.1 Hemoglobin

Hemoglobin is a protein mainly found in red blood cells; its chief function is the

transport of oxygen within the body. Hemoglobin A is the normal form of the

protein, while hemoglobin S is a variant which results from a small mutation of the

protein structure. While hemoglobin A typically does not self-organize, hemoglobin

S forms long twisting rope-like structures inside red blood cells [36]. Figure 6.1(a)



is a rendering of the hemoglobin A protein taken from the known crystallographic

structure [68], while fig. 6.1(b) is a rendering of the hemoglobin S protein [69]. Note

that, in fig. 6.1, hemoglobin S appears to be two hemoglobin A proteins bound

together; the binding of the two hemoglobin A-like proteins is a consequence of

the mutation. Figure 6.2 is a schematic of a typical self-assembly of hemoglobin S

proteins. The self-assembly of these proteins is a direct result of the alteration of

the interactions from the normal to mutated case.

6.1.2 Tubulin

Tubulin is a roughly cylindrical dimeric protein which self-assembles into long, hol-

low, cylindrical structures called microtubules inside most living cells [70, 71]. Fig-

ure 6.3(a) is a rendering of the tubulin protein, drawn from the known structure of

the protein from crystallography [72]; fig. 6.3(b) is a schematic of a normal human

microtubule. Microtubules play a crucial role in the transport of materials within

the cell, cell structure, and cell division. Because of the key role microtubule growth

has in cell division, controlling tubulin self-assembly is the purpose of many modern

chemotherapy drugs [2].

6.1.3 Collagen

Collagen is a protein which plays and essential role in the formation of bones and

cartilage in the body. There are many variants of the protein, some of which are

mutants which cause bone and joint disease [67]. Figure 6.4(a) is a rendering of a col-

lagen protein, drawn from its known structure from crystallography [73]; fig. 6.4(b)
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Fig. 6.1: a) A rendering of the electrostatic surface potential of the hemoglobin A pro-

tein drawn from the known crystallographic structure using Protein Explorer

Software. Red indicates an area of relative negative charge, blue is an area of

positive charge, and white is neutral. b) A rendering of the hemoglobin S protein

by similar method. Note that hemoglobin S appears to be two hemoglobin A

proteins bound together.
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50nm

Frank Ferrone, Drexel University

Fig. 6.2: A schematic of the twisted rope-like structure of self-assembled hemoglobin S.

Color has no intended significance. Schematic drawn by Frank Ferrone.

is a confocal fluorescence microscopy image of the self-assembled network structure

formed by normal collagen proteins [74]. It is believed that the mutated collagen

associated with disease causes a significant change in collagen interactions, which

alters the microscopic and macroscopic physical properties of the self-assembled

network [67]. Understanding the roles of the protein interactions on the pattern of

self-assembly is of significant interest because of the possible value for therapeutics.

6.2 Protein Electrostatics

Protein interactions, while anisotropic in nature, are generally far too complicated

to be described by a point dipole. Interactions between proteins can be divided,

principally, into two types [75]:

1. Hydrophobic interactions due to the relative affinities to water of the different

surfaces of the protein [76].
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Fig. 6.3: a) A rendering of the electrostatic surface potential of tubulin, drawn from the

known crystallographic structure using Protein Explorer Software. Red indicates

an area of relative negative charge, blue is an area of positive charge, and white is

neutral. b) A schematic of a normal human self-assembled structure of tubulin,

a microtubule.
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Fig. 6.4: a) A rendering of the electrostatic surface potential of collagen, drawn from the

known crystallographic structure using Protein Explorer Software. Red indicates

an area of relative negative charge, blue is an area of positive charge, and white

is neutral. b) A confocal fluorescence microscopy image of the self-assembled

network structure formed by normal collagen. Image taken by Sejin Han and

Wolfgang Losert
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2. Electrostatic interactions due to partial electron charges that are induced in

the protein by the surrounding solution.

Although both types of interactions are important for most self-assembly, the elec-

trostatic properties of the proteins are more easily quantified, and thus, I will focus

upon the protein electrostatics for the remainder of this chapter.

Using X-ray, electron crystallography, and nuclear magnetic resonance, atom-

ically detailed structure information for many proteins has been detrermined and is

availible online at the Protein Data Bank (PDB) website, http://www.rcsb.org/pdb/.

The PDB contains separate files (.pdb files) for each protein, with each file providing

the positions of the atoms in a protein. Another online resource, the PDB2PQR

Server at http://agave.wustl.edu/pdb2pqr/, takes the .pdb files as input and uses

molecular modeling (AMBER, CHARMM, or PARSE) to determine approximate

partial charges of each atom in the protein, assuming the protein is under normal

physiological conditions. The PDB2PQR Server outputs a file (a .pqr file) which

contains the position and charge of each atom in the .pdb file. Using the atomic

position and charge data, electrostatic moments of many proteins can be calculated.

I have calculated the electrostatic moments of hemoglobin A (protein database, pdb,

code 1A3N), hemoglobin S (pdb code 2HBS), tubulin (pdb code 1JFF), and collagen

(pdb code 1CAG); the independent moments of these proteins, up to quadrupole

terms, are shown in Table 6.1, and the octopole moments are shown in Table 6.2.

Note that the dipolar and higher order moments of all proteins listed in Tables 6.1

and 6.2 are all non-zero, indicating that the proteins interact anisotropically. In
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particular, the total dipole moment of tubulin is 293e−nm, or 1410 Debye; this

implies that, neglecting the effects of the surrounding fluid, the dipole-dipole inter-

action energy between tubulin proteins is on the order of 100kT when the proteins

are in close proximity. Our calculated charge and dipole moments of tubulin are

similar to those calculated by J. A. Brown [77], while our calculated dipole moments

of hemoglobin A is significantly lower than the 480D dipole moment calculated by

S. Takashima [78]. The discrepancy between our hemoglobin A dipole moment and

that calculated by Takashima is likely due to our use of the higher resolution crystal-

lographic structure of the protein and also due to our use of the improved molecular

modeling package (AMBER) implicit in the PDB2PQR Server. The use of other

available molecular modeling packages (CHARMM and PARSE) in the PDB2PQR

Server did not significantly change the calculated moments.

6.3 Multipolar Models

Although the electrostatic potentials of proteins are somewhat simple to estimate

using the atomically detailed position and charge data, because of the large num-

ber of partial charges associated with the proteins (on the order of 104, typically),

the computation of electrostatic interactions between proteins can be computation-

ally expensive. The relation between the computation time, t, of forces between

electrostatically interacting particles and the number of charges, N , is t ∝ N 2,

if no cutoff length is introduced. Because of the large number of charges associ-

ated with most proteins, and the computational time required to properly calculate
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Tab. 6.1: Charge, dipole, and quadrupole electrostatic moments of hemoglobin A, hemoglobin S, tubulin, and collagen. Ptotal is in units

of Debyes and all other moments are calculated in units of electron charge and nanometers.

Protein pdb code Q Ptotal (Debyes) Px Py Pz Qxx Qyy Qxy Qxz Qyz

Hemoglobin A 1A3N 11.8 215 1.12 -3.22 -2.91 13.1 -58.7 -2.39 -27.7 5.16

Hemoglobin S 2HBS 28.8 545 8.91 3.92 -5.83 -11.7 209 327 85.4 100

Tubulin 1JFF -18 1410 7.43 -27.5 7.07 -26.6 48.4 154 105 84.9

Collagen 1CAG 0 1150 -24.0 -.06 -.04 -15.9 8.38 -1.42 1.48 -.072

82



Tab. 6.2: Octopole electrostatic moments of hemoglobin A, hemoglobin S, tubulin, and collagen. All moments are calculated in units of

electron charge and nanometers.

Protein pdb code Oxxx Oxxy Oxxz Oxyy Oxyz Oxzz Oyyy Oyyz Oyzz Ozzz

Hemoglobin A 1A3N -10.8 11.7 -14.9 -10.8 -17.4 8.51 -8.05 -5.6 -0.822 -17.5

Hemoglobin S 2HBS 76.6 92.5 -16.0 160 -2.06 -35.9 110 -22.0 -17.8 -42.6

Tubulin 1JFF 83.3 -140 -44.0 27.9 78.0 -103 -146 -0.753 -47.0 47.7

Collagen 1CAG -386 -4.22 -0.997 -1.98 -0.171 -0.963 0.348 -0.0608 -0.045 -0.0721
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electrostatic interactions, large-scale simulations of protein self-assembly based on

physical protein-protein interactions, to my knowledge, have not been done. Using

electrostatic moments as calculated in the previous section, and a simple Monte

Carlo algorithm, I am able to develop simple 8-charge models of the proteins which

match the electrostatic moments of the real proteins up to the octopole. This is a

significant step toward a computationally inexpensive physical interaction model of

self-assembling proteins.

In the Monte Carlo algorithm, 8 charges are allowed to move independently

in four-dimensional position-charge space (q, x, y, z), with the range of each position

parameter (x, y, z) constrained such that the charges are confined within the model

protein’s spacial boundaries. q is also constrained such that |q| ≤ qmax, where

qmax ≈ 100e−, typically. A rough outline of the Monte Carlo algorithm follows.

Inputs:

• All electrostatic moments of the protein up to octopole.

• Range of (q, x, y, z) parameters.

• A ‘thermal’ parameter, kT . Typically, 0.0001 ≤ kT ≤ 1.

Internal Parameters:

• The variance,

V =
∑

all moments
(
Mmodel −Mreal

Mreal
)2, (6.1)

where Mmodel and Mreal are electrostatic moments of the model and real

protein, respectively. There are three variance parameters in the algorithm,
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Vnew, Vold, and Vmin.

• The Monte Carlo parameter, Γ = e
Vold−Vnew
kTVmin .

Steps:

1. Vold and Vmin are initialized to some large number (typically 24).

2. All q, x, y, z are initialized to zero (thus, all model moments are also initialized

to zero).

3. One of the 32 position-charge parameters, p, is chosen at random.

4. A new value, pnew, of the chosen parameter is selected from a uniform distri-

bution with the range as input.

5. The moments of the model are calculated and Vnew is calculated.

6. A random number, φ, between 0 and 1 is chosen from a uniform distribution.

7. If Γ > φ, pnew is kept (p = pnew) and Vold = Vnew. Also, if Vnew < Vmin,

Vmin = Vnew.

8. The program loops back to step 4.

The program is allowed to continue to loop until Vmin is sufficiently small. Typ-

ically, runtime is about 24 hours for 4×109 loops, where Vmin ≈ 10−6 at completion,

such that all moments are matched to better than 1%. Because this algorithm takes

only electrostatic moments, the ranges of parameters, and a thermal parameter as

input, it can be used to develop minimal electrostatic models of nearly any protein.
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The algorithm can be easily be modified to give the desired model accuracy. The

number of moments to match determines the number of charges needed in the model

(1 charge for monopole, 2 for dipole, 4 for quadrupole, etc.).

6.4 Outlook

The relatively low runtime for the above descried algorithm makes it especially

useful for large-scale self-assembly simulations where electrostatic calculations are

computationally expensive. However, the hydrophobic interactions must also be

accounted for if a structure-based model of protein interactions is to be used. If

simple models of the hydrophobic interactions can be developed, it may be possible

to accurately and simply model total protein interactions with a superposition of

minimal electrostatic and hydrophobic models. One possible method of simulating

hydrophobic interactions is to use ‘charges’ that have Lennard-Jones interactions.

The magnitudes and positions of such ‘charges’ could be varied and possibly matched

with information extracted from the Protein Data Bank, similar to the method

used in the algorithm described above. However, for the remainder of this thesis I

investigate fundamental anisotropic interaction models with no particular reference

to hydrophobic or electrostatic protein modeling.
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7. THE EFFECTS OF MULTIPOLAR INTERACTIONS ON

SELF-ASSEMBLY

7.1 Overview

As illustrated in previous chapters, anisotropically interacting particles form a wide

variety of self-assembly patterns. Controlling the self-assembly and the types of

patterns that are formed is currently a major goal for several fields of study ranging

from polymer engineering to cellular biology and medicine. In particular, control-

ling protein self-assembly is of significant interest to the pharmaceutical industry

because of possible therapeutic value. For example, the chemotherapy drug Taxol

introduces additional interactions among tubulin proteins in cancer cells and which,

in turn, prevents cell division and the growth of tumors [2]. However, because of

the computational expense of simulating such complex self-assembly systems at the

molecular level and a desire to understand the self-assembly at a fundamental level,

there has been recent renewed interest in the self-assembly of particles with simple

interaction potentials such as dipolar spheres [29, 41].

In our recent work [41, 42], we investigated the effects of higher order multi-

pole moments on self-assembly using numerical modeling and simple experiments

on a macroscopic toy model of magnetic particles. We showed that a small change



in the multipole moment distribution of the particles can significantly alter the pre-

ferred self-assembly pattern in binary and monodisperse systems. In this chapter,

we show that if the interactions of all particles are uniformly altered, complex self-

assembled structures can be stabilised. As an example, we propose a simple point

charge model of the protein tubulin, and we show that, without altering the dipole

moment, the addition of higher order multipole moments to the model can ener-

getically stabilise the biologically correct self-assembly pattern. We also present a

physical macroscopic magnetic analog of our model, and show that it has many of

the same structural characteristics as microtubules.

7.2 Biological Background

As illustrated in Chapter 6, microtubules are long, hollow, cylindrical structures

formed by the self-assembly of roughly cylindrical dimeric tubulin proteins inside

cells [70, 71]. In the presence of different drugs and ions, tubulin proteins (each

about 8.0 nm long and 4.6 nm in diameter) self assemble into a plethora of other

structures including rings, sheets [79], spirals, and ‘macrotubules’ [37]. While many

variations of microtubule structure have been seen [80], for in vivo human micro-

tubules, tubulin arranges into thirteen long filaments (protofilaments) that form the

wall of the cylindrical tube structure. In the microtubule lattice, protofilaments

are staggered by 0.93 nm from neighboring protofilaments [81] and, at the edges of

depolymerizing microtubules, the protofilaments are believed to fray out from the

main tube structure and break off [82].
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The unusual pattern of microtubule growth and sudden shrinkage (termed dy-

namic instability) is not entirely understood, and is a topic of active research [75, 83].

It is our belief that simulations of tubulin self-assembly based on physical interac-

tions between proteins could elucidate the microtubule growth process, and perhaps

aid in novel drug discovery. However, because of the significant computational ex-

pense of using atomically detailed tubulin interaction models, large scale simulations

of tubulin self-assembly based on physical interactions, to our knowledge, have not

been done. The goal of our work is to develop an interaction model which accu-

rately reproduces the self-assembly and is also simple enough to use in large-scale

simulations.

Many investigations have been done in an attempt to understand the inter-

action between individual tubulin dimers and its relationship to microtubule struc-

ture [75, 84, 85]. In particular, recent computational work by Sept et al. [75] correctly

predicted the microtubule filament staggering, and gave estimates of interfilament

and intrafilament tubulin-tubulin binding energies using the known structure of mi-

crotubules [86]. However, because of the complexity of the tubulin protein and

the computational expense of accurately reproducing all interactions, the study was

limited to static energy calculations of only five proteins in a limited number of

spacial configurations.

It is well known that tubulin is a protein that carries a strong electrostatic

dipole moment [77]. Recent calculations, based on the known structure of tubulin

indicates the strength of the intrinsic dipole moment of tubulin is about 1700D [77];

neglecting the effects of the surrounding solution, this indicates the tubulin dipole-
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dipole interaction energy is on the order of 100 kT. It has also been shown that in

vitro microtubules align in the presence of an electric field [87, 88]. The electrostatic

polarity of microtubules, and its possible relationship to its cellular functionality is

a topic of current research [89]. In addition to the known effects of electric fields on

microtubules, it has also been shown that magnetic [87] and even gravitational fields

[90] can significantly effect microtubule growth. While models based on the dipolar

nature of tubulin have been used in investigations of microtubule function [38, 77,

91, 92], models which investigate the role of higher order moments in tubulin self-

assembly have not been studied, to our knowledge.

7.3 Experimental Toy Model

Figure 7.1 is a photograph of patterns formed by cylindrical permanent magnets

(dipolar cylinders) of length 1.42 cm and diameter 0.95 cm, similar to those used in

the ‘long’ magnetic particles in Chapters 3-5. The magnets form a staggered, frayed

yet stable microtubule-like 2D structure when chains of the magnets are brought

together with consistent orientation. When chains of magnets are brought together

with opposite orientation, they form a stable, non-frayed sheet, much like the zinc-

stabilized tubulin sheets seen in previous work [37]. Chains of magnets can also be

bent to form a closed ring shape, much like the observed tubulin rings [37, 93]. In-

spired by these observations of self-assembled dipolar cylinders, we propose a simple

interaction model that reproduces many of the key features of microtubules, in-

cluding 0.93 nm staggering between neighboring protofilaments, stable microtubule
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Fig. 7.1: A photograph of patterns formed by cylindrical permanent magnets of length

1.42 cm and diameter 0.95 cm. The magnets form a staggered, frayed yet stable

microtubule-like structure when chains of the magnets are brought together with

consistent orientation. Chains of magnets can also be bent to form a closed ring

shape, much like the observed tubulin rings.

structure, and fraying protofilaments at the edges of the microtubule.

7.4 Theoretical Tubulin Model Details

Figure 7.2a is a schematic of our tubulin model. The model consists of an impen-

etrable rectangle of dimensions, 4.6 by 8.0 (unitless), encasing four point charges

of magnitude 1. The point charges are arranged such that the model protein has

zero charge, and the dipole moment is directed along the long axis of the protein

(parallel with the microtubule axis). The charges are separated by vertical and lat-

eral distances, s and t, so that if s 6= 0 or t 6= 0, moments of order higher than the

dipole are generated. This model is a generalized version of the point dipole model
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of tubulin used by Tuszyński et al. [92], and it reduces to a point dipole model when

s→ 0 and t→ 0.

7.5 Energetic Considerations

The model proteins are arranged in a 3D, cylindrical, microtubule-like lattice as

shown in Figure 5.7b. We use a Coulombic energy equation,

Uij =



















qiqj
Rij

, interprotein

0, intraprotein

and sum over all pairs of charges (excluding the energy of pairs of charges

within the same protein) to obtain the energy of our model microtubule,

Utot =
4ZC
∑

i=1

4ZC
∑

j=i+1

Uij, (7.1)

where i is a parameter that runs through the charges along the length of the mi-

crotubule, Z is the number of proteins in each protofilament, j is a parameter that

runs through the charges around the circumference of the microtubule, and C is

the number of protofilaments. In our investigation, the parameters varied were the

protofilament staggering, δ, the vertical and lateral charge separations, s and t, the

number of fraying proteins in each frayed protofilament at the edge of the micro-

tubule, N , and the curvature of the frayed protofilaments, A. C was kept fixed

at 13, while Z was varied from 10 to 100. We normalize Utot to the energy of 13

infinitely separated protofilaments of length Z, such that

E =
Utot − 13 ∗ Ufil

13 ∗ Ufil

, (7.2)
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Fig. 7.2: a) A schematic of our tubulin model. Four point charges are separated by ver-

tical and lateral distances, s and t, and encased in an impenetrable rectangle of

dimensions, 4.6 by 8.0 (unitless). b) The model proteins are arranged in a 3D,

cylindrical, microtubule-like lattice.

93



where E is the normalized energy, and Ufil is the energy of an isolated protofilament

of length Z. We also calculate an energy density, which is the energy of each model

protein within a structure,

U(z, c) =
∑

k=internal charges

∑

l=external charges

qkql
Rkl

, (7.3)

where the k is a parameter that runs through all the charges within a single pro-

tein, l is a parameter that runs through all charges outside of that protein, z is an

integral position index of the protein in a protofilament (1 ≤ z ≤ Z), and c is an

integral position index of the protofilament within the microtubule (1 ≤ c ≤ C). A

normalized energy density,

E(z, c) = Utot(z, c)− Ufil(z)
Ufil(z)

, (7.4)

is then calculated, where Utot(z, c) is the energy density of a protein at position (z, c)

within the microtubule of length Z, and Ufil(z) is the energy density of a protein at

position z within an isolated protofilament of the same length, Z.

Figure 7.3a is a plot of E vs. δ for a point dipole model of tubulin (s →6= 0

and t→6= 0), in a model microtubule where Z = 30. Note that the energy minimum

is at δ = 4.3 nm, unlike physical microtubules. This indicates that the point dipole

model does not reproduce a realistic staggering. Figure 7.4a is a plot of E within the

model microtubule. Note E > 0 everywhere within the microtubule. This is evidence

this simple point dipole model is cannot produce a stable microtubule structure.

Figure 7.3b is a plot of E vs. δ for a four point charge model of tubulin with

s = 7.2, t = 4.4, and Z = 30. Note that the energy minimum is at δ = 0.93

nm, as is the case in 13-protofilament microtubules. Figure 7.4b is a plot of E

94



within the same model microtubule. E < 0 within the core of the microtubule,

indicating the formation of a stable microtubule core. The sharp rise in E at the

ends of the microtubule is evidence that the microtubule edges are unstable and

have an energetic preference to separate into isolated protofilaments. The four

charge model of tubulin with s = 7.2 and t = 4.4 reproduces both the 0.93 nm

staggering of real microtubules, and the stable tube structure. The instability of

the model microtubule ends also suggests that the model may reproduce the fraying

protofilaments seen in earlier experimental studies [82].

7.6 Conclusions

In this chapter, we showed that if the interactions of all particles are uniformly al-

tered, complex self-assembled structures can be stabilised. As an example, we pro-

posed a simple point charge model of the protein tubulin, and showed that, without

altering the dipole moment, the addition of higher order multipole moments to the

model can energetically stabilise the biologically relevant self-assembly pattern. We

also presented a physical macroscopic magnetic analog of our model, and show that

it has many of the same structural characteristics as microtubules.

7.7 Outlook

Given that a simple four point charge model can stabilise such complex structures

as microtubules, it is likely that similar models could be used to gain insight into

the self-assembly of other anisotropically interacting particles and macromolecules.
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Fig. 7.3: a) A plot of E vs. δ for a point dipole model of tubulin in a 3D microtubule

lattice with Z = 30. Note that the energy minimum is at δ = 4.3nm, unlike

physical microtubules. b) A plot of E vs. δ for a four point charge model of

tubulin with s = 7.2, t = 4.4, and Z = 30. Note that the energy minimum is at

δ = 0.93nm, as is the case in real 13-protofilament microtubules.
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Fig. 7.4: a) A plot of E within the model microtubule. Note E > 0 everywhere within

the microtubule, indicating instability. b) A plot of E within the same model

microtubule. E < 0 within the core of the microtubule, indicating the formation

of a stable microtubule core. The sharp rise in E at the ends of the microtubule is

evidence that the microtubule edges are unstable and have an energetic preference

to separate into isolated protofilaments.
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Developing such models could be difficult, however, without deriving the models

directly from the crystallographic data in the Protein Data Bank, similar to the

method described in Chapter 6. In order to generalize this modeling to function

for any arbitrary protein, methods must be developed to effectively and simply

model the hydrophobic interactions betwee proteins. Together with the method of

modeling electrostatics described in Chapter 6, a method of developing a minimal

hydrophobic model of protein interactions could lead to an efficient method of mod-

eling and simulating a wide array of proteins, and could give important insight into

the self-assembly and possibly aid in drug discovery.
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APPENDIX



A. SEGREGATION IN A MONOLAYER OF MAGNETIC

SPHERES

A.1 Energetic Considerations

We assume our magnets are uniformly magnetized cylinders of axial length, l, con-

stant diameter, d, with the cylinder axis coincident with the z axis and the center

of mass at the origin. We may then model the magnetostatics of the magnet using

two uniformly charged discs of opposite sign, but equal total charge magnitude qtot,

of diameter d with the centers of each disc set a distance l apart, and with the

coincident planes of each of the discs being parallel. The magnetostatic moment

calculations of the magnets follow.

Charge:

Q =
∫

all space
ρ(x)d3x = qtot − qtot = 0 (A.1)

Dipole:

Px =
∫

all space
ρ(x)xd3x = 0 (A.2)

and



Py =
∫

all space
ρ(x)yd3x = 0, (A.3)

by symmetry.

Pz =
∫

all space
ρ(x)zd3x = qtotl − qtot(−l) = 2qtotl (A.4)

Quadrupole:

Qxx =
∫

all space
ρ(x)(2x2 − y2 − z2)d3x = 0, (A.5)

because the position term is even in z and the charge term is odd in z. Simi-

larly, Qyy = Qzz = 0.

Qxy = Qyx =
∫

all space
ρ(x)(3xy)d3x = 0, (A.6)

because the position term is even in z and the charge term is odd in z.

Qxz = Qzx =
∫

all space
ρ(x)(3xz)d3x = 0, (A.7)

because the position term is odd in x and the charge term is even in x. Simi-

larly, Qyz = Qzy = 0, by symmetry.

Thus, all quadrupole moments are identically zero because of symmetry.

Octopole:

We also calculate the octopole terms in the multipole moment expansion (equa-

tion 2.1). In particular, we calculate the l = 3 terms in
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qlm =
∫

all space
Y ∗
lm(θ, φ)ρ(x)r

ld3x, (A.8)

where the Y ∗
lm(θ, φ) are the complex conjugates of the spherical harmonics.

q30 =

√

7

16π

∫

all space
(2z3 − 3zr2)ρ(x)d3x (A.9)

=
2lqtot
πd2

√

7

16π

∫ d/2

r=0
2π(l2r − 6r3)dr (A.10)

=
4lqtot
d2

√

7

16π
(
l2d2

8
− 6d4

64
) (A.11)

=
lqtot
2

√

7

16π
(l2 − 3d2

4
) (A.12)

(A.13)

q31 = −
1

4

√

21

4π

∫

all space
(x− iy)(5z2 − r2)ρ(x)d3x = 0, (A.14)

because the position term is even in z and the charge term is odd in z.

q32 =
1

4

√

105

2π

∫

all space
(zx2 − zy2 − 2ixyz)ρ(x)d3x (A.15)

=
1

4

√

105

2π

∫

all space
(−2ixyz)ρ(x)d3x = 0, (A.16)

because the position term is odd in x and the charge term is even in x.

q33 = −
1

4

√

35

4π

∫

all space
(x3 + iy3 − 3xy2 − 3ix2y)ρ(x)d3x = 0, (A.17)

because the position term is even in z and the charge term is odd in z.
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The magnetostatic moment calculations of our model, as described in 2.3

follow. For the purposes of these calculations, the coincident plane of the four

charges is the yz plane, with the center of mass at the origin, the dipole moment

parallel with the z axis, and the magnitude of the charges, q ≡ qtotl
2h

to keep the total

dipole moment constant and equal to that of the magnet.

Charge:

Q =
∫

all space
ρ(x)d3x = q + q − q − q = 0 (A.18)

Dipole:

Px =
∫

all space
ρ(x)xd3x = 0 (A.19)

and

Py =
∫

all space
ρ(x)yd3x = 0, (A.20)

by symmetry.

Pz =
∫

all space
ρ(x)zd3x = qh− q(−h) = 2qh = 2qtotl (A.21)

Quadrupole:

Qxx =
∫

all space
ρ(x)(2x2 − y2 − z2)d3x = 0, (A.22)

because the position term is even in z and the charge term is odd in z. Simi-

larly, Qyy = Qzz = 0.
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Qxy = Qyx =
∫

all space
ρ(x)(3xy)d3x = 0, (A.23)

because the position term is even in z and the charge term is odd in z.

Qxz = Qzx =
∫

all space
ρ(x)(3xz)d3x = 0, (A.24)

because the position term is odd in x and the charge term is even in x. Simi-

larly, Qyz = Qzy = 0, by symmetry.

Thus, all quadrupole moments are identically zero because of symmetry.

Octopole:

We also calculate the octopole terms in the multipole moment expansion (equa-

tion 2.1). In particular, we calculate the l = 3 terms in

qlm =
∫

all space
Y ∗
lm(θ, φ)ρ(x)r

ld3x, (A.25)

where the Y ∗
lm(θ, φ) are the complex conjugates of the spherical harmonics.

q30 =

√

7

16π

∫

all space
(2z3 − 3zx2 − 3zy2)ρ(x)d3x (A.26)

=

√

7

16π

∑

all charges
qi(2z

3 − 3zx2 − 3zy2) (A.27)

=
qtoth

4

√

7

16π
(2h2 − 3w2) (A.28)

(A.29)

q31 = −
1

4

√

21

4π

∫

all space
(x− iy)(5z2 − r2)ρ(x)d3x = 0, (A.30)
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because the position term is even in z and the charge term is odd in z.

q32 =
1

4

√

105

2π

∑

all charges
qi(zx

2 − zy2 − 2ixyz) (A.31)

=
1

4

√

105

2π

∑

all charges
qi(−zy2) (A.32)

= −qhw
2

8

√

105

2π
, (A.33)

q33 = −
1

4

√

35

4π

∫

all space
(x3 + iy3 − 3xy2 − 3ix2y)ρ(x)d3x = 0, (A.34)

because the position term is even in z and the charge term is odd in z.

In matching the model to the experiment, all moments below octopole are

equivalent by design. For the octopole terms,

q32 = 0 for the experiment, (A.35)

while q32 = −
qhw2

8

√

105

2π
for the model. (A.36)

Thus, h = 0 or w = 0 for the model.

Also,

q30 =
lqtot
2

√

7

16π
(h2 − 3d2

4
) for the experiment, (A.37)

while q30 =
qtoth

4

√

7

16π
(2h2 − 3w2) for the model. (A.38)

Thus,
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q30 =



















qtoth
4

√

7
16π

(−3w2), h = 0

qtoth
4

√

7
16π

(2h2), w = 0

=
lqtot
2

√

7

16π
(l2 − 3d2

4
).

So, if







































l >
√
3d
2
, w = 0

l <
√
3d
2
, h = 0

l =
√
3d
2
, h = w = 0

and for


















h = 0, w =
√

d2

2
− 2l2

3

w = 0, h =
√

l2 − 3d2

4
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B. PATTERN FORMATION IN A MONOLAYER OF

MAGNETIC SPHERES

B.1 Energetic Considerations

Figure B.1 is a plot of the energies (normalized to the energy of
√
N infinitely

separated chains of length
√
N) of several different patterns of short (h = 0.001,

w = 0.25) model particles versus
√
N . All patterns except the ring pattern are

rectangular lattices of dimensions N particles by N particles. Note that the mi-

crovortex and macrovortex energies are nearly identical and are the energetically

preferred patterns for
√
N > 3. Also note that the HCP ferromagnetic pattern

decreases significantly relative to all other patterns, over the calculated range.

Figure B.2 is a plot of the energies (normalized to the energy of
√
N infinitely

separated chains of length
√
N) of several different patterns of weak (h = 0.001,w =

0.31) model particles versus
√
N . All patterns except the ring pattern are rectangu-

lar lattices of dimensions N particles by N particles. Note that the microvortex is

the energetically preferred pattern for
√
N > 3. Also note that the HCP ferromag-

netic pattern decreases significantly relative to all other patterns, over the calculated

range.
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Fig. B.1: A plot of the energies (normalized to the energy of
√
N infinitely separated chains

of length
√
N) of several different patterns of h = 0.001, w = 0.25 particles versus

√
N . All patterns except the ring pattern are rectangular lattices of dimensions

N particles by N particles. Note that the microvortex and macrovortex energies

are nearly identical and are the energetically preferred patterns for
√
N > 3.

Also note that the HCP ferromagnetic pattern decreases significantly relative to

all other patterns, over the calculated range.
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Fig. B.2: A plot of the energies (normalized to the energy of
√
N infinitely separated

chains of length
√
N) of several different patterns of h = 0.001,w = 0.31 parti-

cles versus
√
N . All patterns except the ring pattern are rectangular lattices of

dimensions N particles by N particles. Note that the microvortex is the ener-

getically preferred pattern for
√
N > 3. Also note that the HCP ferromagnetic

pattern decreases significantly relative to all other patterns, over the calculated

range.
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C. PATTERN FORMATION IN A MONOLAYER OF

MAGNETIC SPHERES

C.1 Energetic Considerations

Below are the equations used in the magnetostatic energy calculating algorithm.

The calculations are performed in Mathematica. In general, the calculations follow

the following steps:

1. Determine charge positions, r in the pattern being investigated.

2. Determine distances between any two charges, R, in the pattern.

3. Determine charge values, Q.

4. Calculate the magnetostatic energy, U of the entire pattern. Note: this step

requires careful attention to summation limits so as not to double count or

include particle self-energies.

The calculation of a linear chain begins with the determination of

all charge positions,

rline(d, s,m) =



















(0, md
2
− s

2
), m even

(0, (m−1)d
2

+ s
2
), m odd



where m is a dummy variable unique to each charge. The distances between all

pairs of charges is then simply

Rline(d, s,m, n) = rline(d, s,m)− rline(d, s, n) (C.1)

where n is another dummy variable unique to each charge. A charge value, Qline(q, d, s,m)

is then assigned to each charge such that

Qline(q, d, s,m) =



















− qd
s
, m even

qd
s
, m odd

The energy of the linear chain is then

Uline(X, s, d, q) =
2X−3
∑

m=0

2X−1
∑

n=m+1



















(1−δm,n−1)µ0

4π
Qline(q,d,s,m)Qline(q,d,s,n)

|Rline(d,s,m,n)| , m even

µ0

4π
Qline(q,d,s,m)Qline(q,d,s,n)

|Rline(d,s,m,n)| , m odd

where δm,n−1 is the Kronecker delta, and X is the number of particles in the chain.

Similarly, the positions of all charges in an HCP ferromagnetic pat-

tern can be calculated,

rhex(d, s,m, n) =



























































(
√
3dn
2
, md
2
− s

2
), m even, n even

(
√
3dn
2
, (m−1)d

2
+ s

2
), m odd, n even

(
√
3dn
2
, (m+1)d

2
− s

2
), m even, n odd

(
√
3dn
2
, md
2

+ s
2
), m odd, n odd

where (m,n) is a set of dummy variables unique to each charge. The distances

between all pairs of charges is then simply

Rhex(d, s,m, n, l, k) = rhex(d, s,m, n)− rhex(d, s, l, k) (C.2)
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where (l, k) is another set of dummy variables unique to each charge. A charge

value, Qhex(q, d, s,m) is then assigned to each charge such that

Qhex(q, d, s,m) =



















− qd
s
, m even

qd
s
, m odd

The energy of the rectangular HCP ferromagnetic lattice of dimensions X particles

× Y particles is then

Uhex(X,Y, s, d, q) = Y Uline(X, s, d, q) +

2X−1
∑

m=0

Y−1
∑

n=0

2X−1
∑

l=0

Y−1
∑

k=n+1

µ0
4π

Qhex(q, d, s,m)Qhex(q, d, s, l)

| Rhex(d, s,m, n, l, k) |
(C.3)

Also, the positions of all charges in a square-packed antiferromag-

netic pattern can be calculated,

rantsq(d, s,m, n) =



















(dn, md
2
− s

2
), m even

(dn, (m−1)d
2

+ s
2
), m odd

where (m,n) is a set of dummy variables unique to each charge. The distances

between all pairs of charges is then simply

Rantsq(d, s,m, n, l, k) = rantsq(d, s,m, n)− rantsq(d, s, l, k) (C.4)

where (l, k) is another set of dummy variables unique to each charge. A charge

value, Qantsq(q, d, s,m, n) is then assigned to each charge such that

Qantsq(q, d, s,m, n) =



























































qd
s
, m even, n even

− qd
s
, m odd, n even

− qd
s
, m even, n odd

qd
s
, m odd, n odd
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The energy of the rectangular square-packed antiferromagnetic lattice of dimensions

X particles × Y particles is then

Uantsq(X,Y, s, d, q) = Y Uline(X, s, d, q) +

2X−1
∑

m=0

Y−1
∑

n=0

2X−1
∑

l=0

Y−1
∑

k=n+1

µ0
4π

Qantsq(q, d, s,m, n)Qantsq(q, d, s, l, k)

| Rantsq(d, s,m, n, l, k) |
(C.5)

The positions of all charges in an HCP macrovortex pattern can be

calculated, using some additional equations to account for the orienta-

tions of the particles,

rXmacro(d, n) =

√
3dn

2
(C.6)

rY macro(d,m, n) =



























































(m+1)d
2

, m even, n even

md
2
, m odd, n even

−md
2
, m even, n odd

(m−1)d
2

, m odd, n odd

θmacro(d,m, n) = tan−1(
Xmacro

Y macro
) (C.7)

Finally, the positions of the charges are determined by

rmacro(d, s,m, n) =


























































(
√
3dn
2

+ s
2
cos(π+θmacro(d,m,n)),

(m+1)d
2

+ s
2
sin(θmacro(d,m,n))), m even, n even

(
√
3dn
2

+ s
2
cos(θmacro(d,m,n)),md

2
+ s

2
sin(π+θmacro(d,m,n))), m odd, n even

(
√
3dn
2

+ s
2
cos(π+θmacro(d,m,n)),md

2
+ s

2
sin(θmacro(d,m,n))), m even, n odd

(
√
3dn
2

+ s
2
cos(θmacro(d,m,n)),

(m−1)d
2

+ s
2
sin(π+θmacro(d,m,n))), m odd, n odd

(C.8)
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where (m,n) is a set of dummy variables unique to each charge. The distances

between all pairs of charges is then simply

Rmacro(d, s,m, n, l, k) = rmacro(d, s,m, n)− rmacro(d, s, l, k) (C.9)

where (l, k) is another set of dummy variables unique to each charge. A charge

value, Qmacro(q, d, s,m) is then assigned to each charge such that

Qmacro(q, d, s,m) =



















− qd
s
, m even

qd
s
, m odd
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The energy of the HCP macrovortex lattice of dimensions X particles × Y

particles is then

Umacro(X,Y, s, d, q) =






























































































































































































































































Y−1
∑

m=−Y

X
2

∑

n=−X−2
2

X
2

∑

k=n



















































Y−1
∑

l=−Y

µ0

4π

Qmacro(q,d,s,m)Qmacro(q,d,s,l)

|Rmacro(d,s,m,n,l,k)|
, X,Y even, n6=k

Y−1
∑

l=m+1

µ0

4π

Qmacro(q,d,s,m)Qmacro(q,d,s,l)

|Rmacro(d,s,m,n,l,k)|
, X,Y even, m odd, n=k

Y−1
∑

l=m+2

µ0

4π

Qmacro(q,d,s,m)Qmacro(q,d,s,l)

|Rmacro(d,s,m,n,l,k)|
, X,Y,m even, n=k

Y−1
∑

m=−Y+1

X
2

∑

n=−X−2
2

X
2

∑

k=n



















































Y−1
∑

l=−Y+1

µ0

4π

Qmacro(q,d,s,m)Qmacro(q,d,s,l)

|Rmacro(d,s,m,n,l,k)|
, X even, Y odd, n6=k

Y
∑

l=m+1

µ0

4π

Qmacro(q,d,s,m)Qmacro(q,d,s,l)

|Rmacro(d,s,m,n,l,k)|
, X,Y even, Y,m odd, n=k

Y
∑

l=m+2

µ0

4π

Qmacro(q,d,s,m)Qmacro(q,d,s,l)

|Rmacro(d,s,m,n,l,k)|
, X,Y,m even, Y odd, n=k

Y−1
∑

m=−Y

X−1
2

∑

n=−X−1
2

X−1
2

∑

k=n



















































Y−1
∑

l=−Y

µ0

4π

Qmacro(q,d,s,m)Qmacro(q,d,s,l)

|Rmacro(d,s,m,n,l,k)|
, Y even, X odd, n6=k

Y−1
∑

l=m+1

µ0

4π

Qmacro(q,d,s,m)Qmacro(q,d,s,l)

|Rmacro(d,s,m,n,l,k)|
, Y even, X,m odd, n=k

Y−1
∑

l=m+2

µ0

4π

Qmacro(q,d,s,m)Qmacro(q,d,s,l)

|Rmacro(d,s,m,n,l,k)|
, Y,m even, X odd, n=k

Y
∑

m=−Y+1

X−1
2

∑

n=−X−1
2

X−1
2

∑

k=n



















































Y
∑

l=−Y+1

µ0

4π

Qmacro(q,d,s,m)Qmacro(q,d,s,l)

|Rmacro(d,s,m,n,l,k)|
, X,Y odd, n6=k

Y
∑

l=m+1

µ0

4π

Qmacro(q,d,s,m)Qmacro(q,d,s,l)

|Rmacro(d,s,m,n,l,k)|
, X,Y,m odd, n=k

Y
∑

l=m+2

µ0

4π

Qmacro(q,d,s,m)Qmacro(q,d,s,l)

|Rmacro(d,s,m,n,l,k)|
, m even, X,Y odd, n=k

(C.10)
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The positions of all charges in a square-packed microvortex pattern

can be calculated,

rmicro(d, s,m, n) =







































































































































(dn−
√
2s
4
, md
2
−

√
2s
4
), m, n, m

2
even

(dn+
√
2s
4
, md
2
−

√
2s
4
), m, n even, m

2
odd

(dn+
√
2s
4
, (m−1)d

2
+

√
2s
4
), n, m−1

2
even, m odd

(dn−
√
2s
4
, (m−1)d

2
+

√
2s
4
), n even, m, m−1

2
odd

(dn−
√
2s
4
, md
2

+
√
2s
4
), m, m

2
even, n odd

(dn+
√
2s
4
, md
2

+
√
2s
4
), m even, n, m

2
odd

(dn+
√
2s
4
, (m−1)d

2
−

√
2s
4
), m−1

2
even, m,n odd

(dn−
√
2s
4
, (m−1)d

2
−

√
2s
4
), m, n, m−1

2
odd

where (m,n) is a set of dummy variables unique to each charge. The distances

between all pairs of charges is then simply

Rmicro(d, s,m, n, l, k) = rmicro(d, s,m, n)− rmicro(d, s, l, k) (C.11)

where (l, k) is another set of dummy variables unique to each charge. A charge

value, Qmicro(q, d, s,m) is then assigned to each charge such that

Qmicro(q, d, s,m) =



















− qd
s
, m even

qd
s
, m odd
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The energy of the square-packed microvortex lattice of dimensions X particles

× Y particles is then

Umicro(X,Y, s, d, q) =









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
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
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(C.12)

The positions of all charges in a ring pattern can be calculated, using

an additional equation to account for the orientations of the particles,

θring(X,n) =



















πn
X
, n even

π(n+1)
X

, n odd
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where X is the number of particles in the ring. Finally, the positions of the charges

are determined by

rring(X,n, d, s) =


















( d
2sin( π

X
)
sin(θring(X,n))+

s
2
cos(θring(X,n)),

d
2sin( π

X
)
cos(θring(X,n))− s

2
sin(θring(X,n))), n even

( d
2sin( π

X
)
sin(θring(X,n))− s

2
cos(θring(X,n)),

d
2sin( π

X
)
cos(θring(X,n))+

s
2
sin(θring(X,n))), n odd

(C.13)

where n is a dummy variable unique to each charge. The distances between all pairs

of charges is then simply

Rring(d, s,m, n,X) = rring(X,m, d, s)− rring(X,n, d, s) (C.14)

wherem is another dummy variable unique to each charge. A charge value, Qring(q, d, s, n)

is then assigned to each charge such that

Qring(q, d, s, n) =



















qd
s
, n even

− qd
s
, n odd
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The energy of the ring is then

Uring(X, s, d, q) =
Xq2d2µ0
4πs3

+
2X−2
∑

m=0

2X−1
∑

n=m+1

µ0
4π

Qring(q, d, s,m)Qring(q, d, s, n)

| Rring(d, s,m, n,X) | (C.15)
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