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extravehicular operations. A range of motion study has been conducted in which 
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the intent to measure human motion in relation to scye bearing motion. Results of the 

study include an investigation of the neutral pose of the scye bearings in Earth 

gravity, an analysis of the angular range of motion observed for the right scye 

bearing, and the development of a heuristic model to predict scye bearing position 

and orientation as a function of known arm pose.  
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“from the dust of stars we came, to the stars we shall return.” 

  Edward Scull [1]  

 

Chapter 1: Introduction  

 

1.1 Motivation 

Mobility is one of the greatest challenges in spacesuit design. It requires 

strength and stamina to move while wearing a spacesuit; the pressurized fabric 

significantly increases the amount of joint torque that must be supplied by the human 

in order to move his/her limbs [1]. Improving the mobility of the suit would be a 

major advancement in the field of spacesuit design, and a necessary step in 

developing the next generation of suits that will enable humans to explore the Moon, 

Mars, and beyond.  

One of the most effective ways to improve mobility is to have a conformal 

suit with a close fit to the astronaut‟s anthropometric dimensions [2]. Because of this, 

during the Apollo era, suits were custom-fit to each astronaut prior to the mission. 

However, due to changes in body shape in a reduced gravity environment, suits that 

may have been a perfect fit on Earth were not a perfect fit in space [3]. Also, while 

having a very close-fitting suit is desired for mobility, it causes difficulty in 

ingress/egress of the suit. For example, the inter-scye distance of the shoulders is 

wider when the arms are raised over the head (necessary when putting on the upper 

torso of a waist-entry suit) than when the arms are in a neutral position at the person‟s 

sides [3]. Because of these two conflicting requirements – close fit for mobility and 
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loose fit for ingress/egress – most suit designs offer a compromise between the two. It 

would be highly desirable to have a suit design that enables ease of ingress/egress as 

well as improved mobility. 

One potential solution for this problem is a design concept for a robotically 

augmented suit, called the Morphing Upper Torso (MUT), which would provide six 

degrees of freedom (DOF) at each of the four torso bearings (shoulders, helmet, and 

waist). To accomplish this, each torso bearing would be attached via parallel 

prismatic linkages to a fixed back hatch of a rear-entry suit, in addition to being 

attached to the other torso bearings, thereby forming a system of interconnected 

Stewart platforms [4]. This design has the potential to provide greatly enhanced 

mobility at each joint. The arrangement of prismatic linkages for the Morphing Upper 

Torso design is shown in Figure 1.  As the astronaut moves, the telescoping robotic 

linkages would expand or contract, causing the shape of the upper torso to change, or 

morph, with the astronaut's motions.  

 

The next step in the development of the MUT concept is to characterize the 

desired orientation of the shoulder scye bearing in relation to human arm orientation. 

To achieve this, a range of motion (ROM) study was conducted using a VICON
TM

 

  

      
(a)                               (b) 

Figure 1. (a) Front view and (b) isometric view of MUT linkage system [3]. 
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motion capture system in which subjects wore simulated scye bearings and performed 

selected motion tasks in order to observe the behavior of the scye bearings in relation 

to arm pose. The results of this study include an analysis of the observed neutral pose 

of the scye bearings, as well as identification of the angular range of motion of the 

scye bearing, and the development of heuristic models which serve as a mapping 

between a known pose of the arm and a corresponding desired pose of the scye 

bearing applicable to a specified region. 

1.2 Suit Sizing 

 As mentioned above, having a close fit to the anthropometric dimensions of 

an astronaut‟s body is one of the keys to achieving greater mobility in a spacesuit. 

There have been several approaches to the suit sizing problem in the past. One 

example is the Apollo A7L and A7LB suits, which were custom fit to each astronaut 

[3].  Because of the costliness of the custom-fit approach, however, this method of 

suit-sizing has not been sustained in follow-on suit programs. Instead, other methods 

for achieving a close fit have been explored.  

 In the current Shuttle Extravehicular Mobility Unit (EMU), a modular 

approach has been taken towards suit fit. By using a combination of sizes for the 

upper torso, arm segments, and leg segments, a reasonably close fit can be obtained 

for each astronaut [1].  In addition to modularity, a supplementary means of EMU 

sizing is available in the form of differing length inserts used for the arms and legs. 

Initially, lace-up inserts were used in which the inner pressure bladder remained 

unchanged, but the restraint layer (which carries the pressure loads of the suit, and 

effectively determines the length of pressurized suit segments) was made longer or 
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shorter as needed [5, 1].  This caused some discomfort with bunching of the pressure 

bladder when restraints were shortened, and also proved to be a laborious process, 

requiring approximately 16 hours to change the inserts of one suit.  However, during 

the development of the “enhanced” EMU suit, several small design modifications 

were made to improve the serviceability of the suits. For instance, with the enhanced 

EMU suit, the method of leg and arm insert addition/removal become much simpler, 

with quick disconnects used to remove the inserts directly. This reduced the 

adjustment time from 16 hours to 20 minutes [1].  Additionally, vernier adjustments 

were possible on the restrain lines of suit arms and legs, in which the restraint lengths 

could be made longer or shorter for fine adjustment of suit limb length.  

 In the Russian Orlan D and Orlan DM suits, a very different approach was 

taken with regards to sizing. During initial suit designs, rather than aiming to fit the 

majority of the population in their suits (as NASA does, with their goal to 

accommodate persons between the 5th percentile American female to 95th percentile 

American male), they chose a simpler approach, in which they designed only one suit, 

intended to fit a narrow range of people (specifically, those with a chest 

circumference between 96cm and 108cm, and height of 164cm to 180cm) [6].  As 

such, a modularity approach was not needed. However, the Orlan suit design does 

allow for small adjustments in limb length. For example, the length of the lower 

torso, as well as the length of the elbow joint can be changed by adjusting the length 

of the restraint lines used for those joints [1]. With a later iteration of the Orlan suit, 

the Orlan DMA, a very small amount of modularity was introduced, in that they 
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offered two sizes for the lower torso (legs) of the suit: short and long. The rest of the 

suit elements remain a standard size. 

 As foreshadowed earlier, even if suit designers managed to achieve a near-

perfect fit of the suit to the astronaut on Earth, there is no guarantee it would fit 

perfectly in space, due to noticeable body shape changes that occur in microgravity. 

For example, in the absence of gravitational forces pulling down, the spine elongates 

in microgravity; some astronauts report an increase of about 5 cm to 8 cm in height 

[7]. Such a change in stature would certainly affect the fit and mobility performance 

of an astronaut wearing an extra-vehicular activity (EVA) suit sized to fit his/her 

Earth height. Table 1 below shows a description of the anthropometric changes that 

occur in microgravity, and what their implications are, as presented in the NASA 

Human Integration Design Handbook [8].  Specifically, changes in spine elongation, 

posture, fluid shift, and mass loss are likely to have an effect on how well a suit fits in 

space.  Because of this, there is significant motivation for having a suit system whose 

size is adjustable on-orbit, as well as on Earth.  The hard upper torso (HUT) used on 

current Shuttle EMU suits (which are also used by astronauts on the International 

Space Station) does not allow for adjustability in the torso, given its rigid nature. A 

Morphing Upper Torso design, however, would allow for adjustability on-orbit. 
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1.3 Morphing Upper Torso Scye Bearings 

  Several different shoulder joint designs have already been implemented in 

pressure suits. A detailed discussion of many of them can be found in [1].  These 

previous designs each used a minimum of one scye bearing for rotational motion. A 

scye bearing is a rotational bearing which is located at the shoulder joint of the 

spacesuit, providing one degree of freedom (that of rotation about an axis normal to 

Table 1. Body shape changes in microgravity [8]. 
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the bearing) to the joint. The word “scye” originates from the garment industry, 

where the term refers to the armhole of a torso garment, such as a shirt [2].  

Many of the previous shoulder joint designs had other mobility devices, such 

as convolutes, in addition to the scye bearing in order to provide greater freedom of 

motion at the shoulder joint. A convolute is a way of gathering the fabric in a way 

that resembles a bellows, or an accordion, providing additional material which can 

unfold when the joint is flexed. This helps the joint to more closely maintain a 

constant volume, which results in reduced workload for the astronaut when moving in 

the suit [1]. One shoulder joint design called the “stacked rolling convolute”  

provided a single-axis mobility element (the convolute) in addition to the scye 

bearing, for a two-degree of freedom shoulder joint [1].  In comparison, a later 

design, called the “armored rolling convolute joint” provided two-axis mobility in the 

convolute section (due to metal bands inserted between convolute sections which 

were allowed to pivot as gimbal rings attached to an exoskeletal frame), in addition to 

the scye bearing, thereby providing three degrees of freedom to the shoulder joint [1].   

The Morphing Upper Torso concept proposes to use robotic linkages on the 

torso, connected to a fixed back plate, to provide six degrees of freedom to each 

shoulder joint, using the telescoping robotic linkages.  Therefore, this would 

theoretically provide a much greater freedom of motion to the shoulder joint. 

Additionally, since it is a robotically driven system, the robotic linkages may be able 

to do the work for the astronaut, to achieve an ideal nude body range of motion as 

well as zero torque shoulder movement in the suit. This is the direction in which the 
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MUT concept is heading, and achieving this would be a major advancement in the 

field of spacesuit design. 

1.4 Previous Work  

The Morphing Upper Torso (MUT) has been an ongoing project underway at 

the Space Systems Laboratory at the University of Maryland. Initial investigation of 

the concept began in collaboration with ILC Dover, LP in 2005. Several 

advancements in the Morphing Upper Torso concept have been made since then. 

First, the implementing a system of interconnected Stewart platforms on a suit torso is 

a novel application of the technology, and the kinematics for such a system were not 

initially known.  However, previous work has since established the forward and 

inverse kinematics of the MUT design. In addition, functionality of this concept has 

been investigated analytically, and from this work, the concept has been demonstrated 

to be theoretically feasible [2].  In addition to the analytical analysis, half and full 

scale static models have been developed [3]. An image of the half scale model is 

shown in Figure 2.  
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In addition to significant development in the theoretical design of the Morphing 

Upper Torso, research has been conducted which investigated the possibility of 

applying the morphing concept to an arm segment, as well [11]. In performing this 

work, the inverse kinematics for the arm have been developed, a mockup of the 

morphing arm was constructed (Figure 3), and investigations were performed on a 

pressurized test section to study its behavior (Figure 4).  

 

 
Figure 2. Side view of half-scale static model of 

MUT, lying down (waist bearing on left) [3]. 
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 Results of this work concluded that the morphing arm appears to be a feasible 

concept, though with some limitations. For example, during experimental testing, it 

was found that using convolutes had the advantage of decreasing wire impingement 

on suit (“wires” here referring to the cables used to drive the linkage segments), but 

 
Figure 3. Mockup of morphing arm design [11]. 

 

Figure 4. Pressurized test section representing one segment of morphing arm [11]. 
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seemed to lead to increased wire deformation at the joints, and that certain joints 

(especially the elbow) would likely be difficult to actuate if given the requirement 

that the wires must not contact the suit arm.  Therefore, initial development of the 

morphing arm concept brought to light aspects which would require careful 

consideration in order to proceed with successful arm actuation using a system of 

Stewart platforms, including convolute involvement with the morphing arm segments 

[11]. 

  Lastly, on the theme of robotic augmentation of pressure suits, previous 

research has been conducted which investigated the design and performance of a 

power-assisted spacesuit glove [10]. As with the Morphing Upper Torso, the power-

assisted glove project was performed as a collaboration between the Space Systems 

Laboratory of the University of Maryland, and ILC, Dover [12]. This innovative 

glove design implemented a small actuator on the dorsal (back) side of the hand, 

which would reduce the amount of torque an astronaut needed to provide to actuate 

the metacarpal joint of the hand.  This design showed great improvements in 

astronaut glove performance, showing a four times greater range of motion, as well as 

a 30% reduction in „task-effort‟ when  using the power-assist glove (measured via 

muscular activity of the subject through EMG readings) [11]. These results are very 

encouraging for the MUT concept, as they suggest that robotic augmentation of a 

joint does indeed have the potential to increase the range of motion as well as 

decrease the workload required to activate a joint. 
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  In summary, the results of the power-assist glove look very promising, as do 

the mathematical analyses for the Morphing Upper Torso. The research presented in 

this thesis is intended to further the development of the MUT concept by studying the 

motion of a free-moving shoulder scye bearing in relation to human arm motion, 

which will be useful in identifying the morphing torso movements needed to achieve 

an ideal performance scenario of zero joint torque and nude body range of motion. 

1.5 Joint Angle Measurement 

One of the crucial aspects of this thesis was the data collection process, in 

which subjects performed selected tasks and their motion was recorded for later 

analysis. Of particular interest were the position and orientation of the arm during 

several motions. On Earth, in a laboratory environment, there are many techniques 

 

Figure 5. Power-assisted spacesuit glove design 

[12]. 
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available for collecting this motion data. For completeness, a brief description and 

comparison of measurement techniques used in the field of human factors and 

kinesiology is presented here, as well as a discussion of future spacesuit-appropriate 

adaptations which would have the potential to perform this function in situ during a 

mission. 

Starting with the simpler methods and moving to the more complex, some of 

the common methods of measuring joint angle motion include: photographs, 

goniometers, inclinometer [8]. Some of the slightly more complex methods include: 

camera-based motion capture (for example, VICON
TM

), radiography (x-rays), and 

bone pin insertion [8, 13]. 

 As a brief discussion of each, photographs may be used to take snapshots of 

subjects at desired poses, followed by a geometrical analysis performed on each 

image to extract angle information. This method is simple, but prone to some amount 

of subjectivity in the determination of angles from the photo. Goniometry is a method 

involving a simple device that uses a protractor attached to two straight edges; these 

straight edges can rotate with respect to the protractor, so that they can be aligned 

with the subject‟s body to measure an anthropometric angle of interest.  In taking this 

measurement, the goniometer is aligned with certain physiological landmarks of the 

body; therefore, possible error may enter the measurement due to the subjective 

nature of aligning the goniometer with these landmarks [8].  

The camera-based motion capture method is often considered more objective 

than goniometry of photography, but has possible sources of error if markers become 

occluded during the trial, or if markers slip. In radiography, x-ray scans are taken of a 
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subject in different static positions of an angle range, in order to extract angle data 

from the bone images; while a fairly accurate method, as it uses bone alignment to 

calculate angles, this is applicable primarily for studying two-dimensional motions, 

and also has the drawback of exposing the subject to appreciable doses of radiation 

[8]. 

Lastly, one of the more intrusive, but correspondingly more accurate methods 

of measuring joint angle motion is the method of bone pin insertion.  This requires a 

surgeon to make an incision in the skin above the joint or bone of interest, then inserts 

a small threaded pin directly into the bone(s) that will be of interest in the motion 

(usually several pins are used at various points of the bone or bones of the area being 

studied). Once the pins are anchored into the bone, a sensor is placed on top of each 

pin for measurement. For example, in one study, sensors associated with a Flock of 

Birds system were used to perform electromagnetic tracking of bone pin motion.  

Once the experiment is finished, the surgeon removes the bone pins, and the subject is 

provided with appropriate pain medication and treatment for incisions [14]. 

In this study, a VICON
TM

 motion capture system was used for data collection.  

This system allows multiple markers to be tracked simultaneously with great 

accuracy (resolution approximately 0.1 mm, according to personnel at the 

Autonomous Vehicle Laboratory). Possible sources of error in the position 

measurement may have been placement of markers, and/or the potential for marker 

slip during the trials. To mitigate this, however, anthropometric landmarks were 

chosen for marker attachment locations to improve repeatability between subjects, 
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and markers were adhered with strong double-sided adhesive. Details describing the 

methodology will be covered in Chapter 2. 

It is useful to note that, while a VICON
TM

 motion-capture system has been 

used to collect the arm position and orientation data for this study, if the Morphing 

Upper Torso were to be implemented as a future spacesuit design, one would need a 

system of measuring body angles that is portable, and preferably would fit inside the 

suit. Research in areas such as smart fabrics may be able to facilitate this. For 

example, research performed by Castano and colleagues [15] is currently underway to 

sense foot motion, joint angles, and foot posture using conductive polymer sensors. 

The conductive polymer technology could potentially be adapted for use on other 

parts of the body of interest to the Morphing Upper Torso research (e.g., shoulders, 

torso, and arms). In addition to conductive polymers, research in piezoresistive 

sensors incorporated into knitted textiles has been shown to accurately measure elbow 

angles during joint flexure [16].  Yet another technology for collecting data on human 

biomechanics has been investigated by Donno and colleagues [17] in developing a 

wearable fiber optic goniometry device, which is designed to measure joint angles 

with applications in athlete performance, training, and therapy.  These advances in 

smart fabrics offer exciting possibilities for implementation into a Morphing Upper 

Torso, as the sensing fabric design for these appear to be lightweight, and close-

fitting materials, which would be ideal characteristics of a garment worn inside a 

spacesuit. 

In addition to the angle-sensing fabrics described above, a system is being 

developed at the Space Systems Laboratory of the University of Maryland which may 
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provide biomechanical position information as well as angle measurement. The 

current prototype of this system uses ten piezoresistive bend sensors, a micro-

controller, and three MEMS IMU‟s (with nine DOF each) located along the arm and 

hand [18].  Systems such as this, likely in concert with the smart fabrics described 

above, would be very useful for providing the real-time body measurements needed 

for a dynamically adaptive suit.  In the interim, the VICON
TM

 system is invaluable in 

performing this function during the development phase of the MUT concept. 
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Chapter 2: Methodology and Experimental Setup 

 

2.1 Overview of Methodology 

During this study, a VICON
TM

 motion capture system was used to record 

position data of retro-reflective markers placed on the subject. Prior to conducting 

this study, a simulation suit was developed, simulated shoulder scye bearings were 

produced, and approval was obtained for human testing. During the testing, subjects 

performed several motion tasks intended to move the scye bearings through their full 

range of motion.   

2.2 VICON
TM

 Motion Capture System  

In this study, a VICON
TM

 iQ 2.5 motion capture system was used to record 

the real-time position of retro-reflective markers placed on the subject. The resolution 

of the position measurements is usually assumed to be between 1/4
th

 and 1/10
th

 mm, 

as described by personnel at the Autonomous Vehicle Laboratory. The experimental 

setup included eight VICON
TM

 cameras, which surrounded a subject standing in the 

test volume, as shown in Figure 6.  The strobing cameras detected the position of the 

markers in Cartesian coordinates relative to a base reference frame located on the 

floor, in the center of the room. The data sampling rate used for this study was 350 

Hz. In the data capture process, if at least two cameras detected the same marker, the 

system used triangulation of the intersecting light rays to determine the position of 
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that marker in three dimensions [19]. This position data was later used to calculate the 

Euler angles of the scye bearings, and the orientation of the upper arm segment.  

 

Once data was collected via the motion capture cameras, it was then post-

processed using the VICON
TM

 software before being exported for data analysis. As 

part of the post-processing phase, a computer model of the test subject was created, 

which showed the complete configuration of markers placed on the subject.  To do 

this, the author started with a template of a human body, provided by the VICON
TM

 

software, and then modified this template to include additional markers that were 

unique to this study, specifically the markers on the forehead, and over the left and 

right ear.  In addition to the human model, three other models were also made, for the 

waist bearing and each scye bearing. Images of the four models together are shown in 

Figure 7. In this image, the retro-reflective markers are shown as small colored 

spheres. 

 

 
Figure 6. Subject as seen by Vicon system, surrounded by motion-

capture cameras.   
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During the post-processing phase, these models were first calibrated to the 

subject in question. After calibration, the models were then fit to the data for each 

trial which that subject had performed. This included manually labeling the markers 

once, at the beginning of a trial, then running the calibrated model to match as many 

of the trajectories as possible, followed by use of the VICON
TM

 “fill gaps” software 

to fill in any blanks that remained. Once the data was continuous, it was run through a 

Butterworth filter, usually set at 8 to 10 Hz, and then exported from VICON
TM

 to a 

trace log file (.trc), which could then be uploaded into Microsoft Excel and/or 

MATLAB for data analysis.  

 

 

 

Figure 7. Image showing the four Vicon models 

combined: human model, waist bearing model, 

and two scye bearing models. 
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2.3 Marker Placement 

The requirement that at least two of the cameras must see a given marker at all 

times guided the decisions made with respect to marker placement on the simulation 

suit. For example, rather than attaching the markers to the flat surface of the 

simulated scye bearings, the retro-reflective markers were attached to the edge of the 

simulated bearings, to enable maximum camera visibility, as shown in Figure 14.  If 

the markers had been located on the flat surface, then the planar side of the bearing 

(the one with markers) would likely to be angled away from at least half the cameras 

at any given time, reducing the chances of the marker being found.  Therefore, the 

edges of the bearings were chosen as a more suitable location.   

In addition to placement, consideration was given to the number of markers 

each scye bearing should have.  At least three points are needed to define a plane, 

such as a shoulder bearing.  For robustness, at least five markers were used on each 

scye bearing, with six markers used on the right scye bearing so that one could 

differentiate the left from the right bearing.  

In addition to the scye bearings, a simulated waist bearing was also 

implemented, to provide a reference that would aid in visualizing the human form. 

For the simulated waist bearing, eight markers were used to ensure that at least three 

would be found at a given instant in time.  A higher number of markers were used for 

the waist bearing because of the likelihood that one or more of the markers may be 

temporarily occluded from the cameras by movement of the arms.  

Several markers were also placed on anthropometric landmarks of the body, 

which would offer a consistent marking location proportional to each person. A 
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diagram of the selected fiducial locations is shown in Figure 8. Of particular interest 

are the markers on the deltoid and elbow, as these were used to calculate the 

orientation of the upper arm segment.  The deltoid marker was placed one finger-

width below the hinge point of the shoulder joint when the arm was raised at full 

abduction. The intent was to place the marker as close to the top of the shoulder joint 

as possible, while still located on a “rigid” part of the arm. Similarly, the elbow 

marker was located one finger-width above the hinge point of that joint, 

approximately along the line of non-extension. A list of the other body marker 

locations is provided below: 

 Forehead: attached to a headband, centered above the nose 

 Ear: attached to a headband, directly above the tips of left and right ears 

 Wrist: triquetrum bone  

 Hip: top of femur 

 Knee: top of fibula 

 Ankle: medial maleolus bone 

 Big toe: the first M-P joint 

 Little toe: the fifth M-P joint 
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2.4 Simulation Suit 

In order to conduct experiments using the VICON
TM

 system, it was necessary 

to first develop a simulation suit to be worn during testing.  The purpose of the 

garment was to provide a medium for attaching the retro-reflective markers.  The 

markers needed to be securely fixed to the subject in order to track the person's 

motion accurately; to achieve this, a strong double-sided adhesive was used to fix 

markers to the simulation suit.  In addition to having the markers securely fastened, 

the garment also needed to be close-fitting with minimal sliding to provide accurate 

 
Figure 8. Location of retro-reflective 

markers on subject. Image of human 

body from [20].  
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motion tracking. Furthermore, the material needed to be flexible to allow a freedom 

of motion similar to the ideal shirtsleeves environment, applicable as the ultimate 

design goal for the Morphing Upper Torso.  The choice of material, then, was a 

spandex-like fabric for the simulation suit.  Under Armour ® was chosen for this 

purpose.  An image of the simulation suit used during testing is show in Figure 9. 

 

In addition to providing an attachment point for the body markers (which were 

taped to the suit), the simulation suit also served as the connection point for the scye 

bearings and waist bearing. These were attached to the suit using several Velcro® 

strips, offering a secure connection point, while also being easy to remove between 

subjects. In total, non-adhesive Velcro® was sewn to 34 attachment points on the suit 

(6 for each shoulder bearing, and 22 for the waist), while adhesive Velcro® was 

applied to the corresponding surfaces of the waist and shoulder bearings.  The 

locations of the Velcro® attachment points for the waist bearing and scye bearings 

can be seen in Figure 10. Two of the attachment points for the scye bearings can be 

more clearly seen in Figure 11. 

 
Figure 9. Subject wearing simulation suit: a spandex-like garment with 

simulated scye bearings and retro-reflective markers.  
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During initial testing with the suit, it was observed that the sleeves would 

move slightly when arms were raised, despite being a close fit material. Having the 

sleeves move and slide along the arm would result in the markers sliding relative to 

the body, which would lead to inaccuracies during data collection, since the marker 

would be following the motion of the sleeve rather than the true motion of the person. 

To mitigate this affect, an adjustable strap was sewn to the end of each sleeve, which 

would pass over the thumb and hold the sleeve in place (dubbed “thumb-straps” for 

 
(a)              (b) 
Figure 10. Front (a) and back (b) of the upper torso of the simulation suit, displaying Velcro 

points of attachment for simulated bearings. 

 

Figure 11. Image showing two of three attachment 

points of the scye bearing.  The three points of 

attachment for the bearing are: top of the shoulder, 

chest, and underarm (not visible). 
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this study). These were tightened to fit the subject, and would serve as a restoring 

force to help keep the sleeve in place when the arm was raised. An example of one of 

the straps in use during a shoulder abduction motion is shown in Figure 12. 

 

2.5 Simulated Waist Bearing 

The waist bearing simulator was used to provide a visual reference for the 

motion of the human body. The waist bearing, along with the markers on the head, 

legs, and feet, were important in providing visual context for the motions which were 

being recorded with VICON
TM

; when viewing video clips and images of the data, it 

would have been difficult to interpret the behavior and motion of a mere collection of 

 

Figure 12. Thumb-straps were sewn to the end of each sleeve to reduce sliding of the 

sleeve during arm motions. Thumb-strap shown in white. 
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floating dots for the scye bearing and arm, without some familiar landmarks of a 

human form in view.  

In designing the waist bearing simulator, it was desirable to have a device that 

would both act as a rigid body when attached to the person (in order to follow the 

subject‟s motion successfully), and would also be easy to don/doff between subjects. 

The material selected for this purpose was a length of copper refrigeration tubing, as 

it is rigid when unstressed, but also very malleable, such that its shape can be changed 

by hand and thereby easily adjusted to fit the waist of each person.  To make the waist 

bearing simulator, then, a length of this copper tubing was spray painted black (to 

avoid causing reflections which may be mistaken as stray retro-reflective markers by 

the VICON
TM

 camera). Adhesive Velcro was then spiraled around the length of the 

tubing to provide an attachment method to the simulation suit.  An image of a subject 

wearing a completed waist bearing is shown in Figure 13. 
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2.6 Simulated Scye Bearings 

In order to observe the (approximate) ideal location of the scye bearings of a 

spacesuit during human motion, it was necessary to develop simulated scye bearings 

for this study. As initial requirements, the scye bearing simulators needed to be 

lightweight and thin so as not to impede motion.  However, they also needed to be 

sturdy enough not to deform when the arms moved.  Initial testing with cardboard 

proved ineffectual; the material bent and folded with the motion, rather than 

maintaining a rigid shape. A next iteration of the design used foamcore, which was 

also lightweight and thin, and proved to be a sufficiently rigid material during testing. 

The scye bearing simulators were then formed as circular cutouts of foamcore, to 

 

Figure 13. Subject wearing waist bearing simulator. 
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which the retro-reflective markers were attached. An image of one of the scye bearing 

simulators is shown in Figure 14.   

 

The scye bearings were secured onto the simulation suit using Velcro® at 

three attachment points: on top of the shoulder, on the chest, and in the underarm 

region. This allowed the bearings to be taken on and off by the subject comfortably.   

Specialized retro-reflective markers had to be made to fit the scye bearings. 

There were two motivations for this. First, the available markers were difficult to 

attach to the edge of a thin planar surface, such as a scye bearing, because they were 

outfitted with circular leather skirt at the bottom. This skirt is useful when attaching 

to relatively flat or smooth surfaces, such as a human arm, but the stiffness of the 

leather made it difficult to keep the marker attached to the edge of the scye bearings, 

despite several pieces of strong adhesive tape. In preliminary testing, it was observed 

that the markers on the scye bearings would occasionally peel themselves off, as can 

 
Figure 14. Example of foamcore scye bearing simulator 

with retro-reflective markers attached.  
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be seen in Figure 15. This provided motivation to consider alternate means of attaching 

the markers. 

 
 

Another, no less important motivation, was the realization that there were a 

limited supply of markers available which were the appropriate size for human 

motion tracking. There were enough large markers to account for most of the required 

body markers, but not enough to provide for the scye bearings as well. Therefore, it 

became necessary to produce a set of custom-made markers for each of the eight scye 

bearings. To do this, a CAD drawing was created (Figure 16) with the desired shape 

of the marker, designed to fit snugly over the edge of the scye bearing simulators. 

Once the CAD model was made with the desired dimensions, an array of these 

markers were produced using a rapid prototyping machine (RPM). One batch of these 

markers is shown in Figure 17. Once the markers came out of the RPM, each one was 

covered with retro-reflective tape, and then attached to the scye bearing simulator 

 

Figure 15. Initial method of scye bearing marker 

attachment; markers would occasionally detach 

from surface. 
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using hot glue. An image of a completed scye bearing with markers attached can be 

seen in Figure 14. 

 

 

 

2.7 Resizability of Simulation Suit 

Because this garment was designed to fit a number of test subjects, the suit, as 

well as the scye bearings and waist bearing had to accommodate a range of people. 

To provide for this, four sizes of shoulder bearings were made, at size increments of 

0.25 inch increase in diameter between sizes. In addition two waist bearing simulators 

were developed (small and large), and two sizes of spandex suits were used.  This 

modularity in testing apparatus allowed each subject to have a close fit of both the 

garment and the simulated bearings during motion tracking.  

 

Figure 17. A set of scye bearing markers 

produced using a rapid prototyping machine. 

 

Figure 16. CAD drawing of desired scye bearing 

marker shape. 
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2.8 Motion Tasks Performed 

The motions selected for this study included basic planar motion in the 

sagittal, coronal, and transverse planes of the body (Figure 18), as well as two non-

planar motion tasks. The intent was to move the right scye bearing through the full 

range of motion about its local x, y, and z axes. The planar motion tasks performed in 

this study included: shoulder adduction/abduction, flexion/extension, and horizontal 

abduction/adduction. All twelve subjects performed these motions. In addition, two 

supplementary tasks were added to the testing routine starting with subject 4. 

Therefore, subjects 4 through 12 performed the planar tasks as well as two non-planar 

tasks: shoulder rolls and arm circles. The motion tasks are illustrated in Figure 19 

through Figure 23.  

The planar motion tasks were given abbreviated names during this study 

based on the local axis of the scye bearing about which the rotation would occur. The 

scye bearing axes will be defined during the data analysis section, and can be seen in 

Figure 25. The nomenclature for each motion task (or trial) used in this study is 

illustrated in Figure 19 through Figure 23. 
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Figure 18. Body planes. Image from [21].  

 
Figure 19. Shoulder abduction/ adduction.  

Rotation about the local X axis of scye bearing.  

Trial Name: “X Axis.” Image from [22].  
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Figure 21. Shoulder horizontal abduction/ adduction. 

 Rotation about local Z axis of scye bearing.  

Trial name: “Z Axis Front,” in front of coronal plane. 

Trial name: “Z Axis Back,” behind coronal plane.  

Image from [23]. 

 
Figure 20. Shoulder flexion/extension.  

Rotation about local Y axis of scye bearing.  

Trial Name: “Y Axis Front,” in front of coronal plane.  

Trial Name: “Y Axis Back,” behind coronal plane. 

 Image from [23]. 
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2.9 Sample Population  

The subjects who participated in this study were all volunteers in the age 

range of 21 to 26 years old. Data from nine male and three female subjects were 

included in this study. The subjects were a mixture of graduate and undergraduate 

students in the Aerospace Engineering Department at the University of Maryland. 

Information describing the subjects‟ characteristics is shown in Table 2. Because this 

study involves human subjects, approval was obtained from the Institutional Review 

Board (IRB) for this experiment through the University of Maryland.  For 

confidentiality purposes, the subjects are referred to by numeric code throughout the 

analysis, as subjects one through twelve.  

 

 
Figure 22. Shoulder rolls. 

Image from [24]. 

 
Figure 23. Arm circles. 

Image from [24].  
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Table 2. Characteristics of Sample Population 

Subject Number Age (years) Height (ft) Weight (lbs) Gender (M/F)

Flexibility:

rarely stretch (maybe once a month), OR

occasionally stretch (once every week or two), OR

stretch regularly (at least 3x per week)

1 26 5 ft 9 in 180 M occasionally

2 22 6 ft 2.5 in 185 M occasionally

3 21 6 ft 190 M rarely

4 22 5 ft 9 in 140 M rarely

5 22 6 ft 4 in 185 M rarely

6* - - - M -

7 22 5 ft 11 in 235 M occasionally

8 21 5 ft 9 in 150 M occasionally

9 22 5 ft 6 in 135 F occasionally

10 23 5 ft 4 in 150 F rarely

11 21 4 ft 7 in 190 M occasionally

12 22 5 ft 3.5 in 135 F occasionally

* Subject 6 did not fill out a questionnaire  
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Chapter 3: Derivation of Mathematics Used 

 

3.1 Overview 

Once the position data of the retro-reflective markers had been collected using 

the VICON
TM

 system for each trial, the data was post-processed in VICON
TM

, 

exported to a trace log file (.trc), converted to an excel file, and then imported into 

MATLAB for analysis. Using the xyz position data of the markers, local axes were 

defined for each shoulder scye bearing, a rotation matrix was computed to describe 

the bearings‟ orientation in space, and Euler angles of the bearings were calculated. In 

addition, marker data was also used to compute the orientation of the upper arm 

segment. Once the orientation angles were calculated for the scye bearing and arm, 

they could then be compared and heuristic correlation models developed. The range 

of the observed angle data was also used to describe the range of motion for the scye 

bearings, as well as the neutral pose orientation.  

3.2 Scye Bearing Local Axes 

In order to visualize the rotations of the scye bearings, it is useful to define 

local axes about which Euler rotations occur. For each scye bearing, the local axes are 

defined such that the local Y axis would point outward, away from the torso, acting 

along the direction of a hypothetical pressure vector if the subject were wearing a 

pressurized suit. The local Z axis is chosen to be in the vertical direction, relative to 

the person when in neutral pose. Finally, the orientation of the local X axis is chosen 

in order to create orthogonality with the other two local axes. The resulting 
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orientation of the local axes with respect to each scye bearing is shown in Figure 24 

and Figure 25. Specifically, Figure 24 shows the orientation of the scye bearings 

when they are aligned with the base reference frame; Figure 25 shows the 

approximate orientation of the scye bearings relative to a person wearing a spacesuit.  

 

 

With regards to notation, the subscript “Base” is used here to refer to the 

coordinate base frame in which the VICON
TM

 marker position data is given. The 

notation LS1-5 and RS1-6 is used to label markers one through five on the left scye 

 
 
Figure 24. Scye bearing orientation when aligned with base frame. The location of the retro-

reflective markers are also shown, labeled RS1-6 for the right scye bearing, and LS1-5 for 

the left scye bearing. Note: In this image, the “Y” vector is pointing into the page.  

 
 
Figure 25. Scye bearing orientation on subject. This image is shown from the rear 

view, such that the viewer’s left and right correspond to the subject’s left and 

right. 
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bearing, and markers one through six on the right scye bearing, respectively. The 

subscripts “SB,L” and “SB,R” are used to denote the left scye bearing and right scye 

bearing, respectively. 

In order to determine the orientation of the local axes mathematically at any 

point in time, it is first necessary to establish the plane of the scye bearing, using 

markers located on the bearing. To do this, a plane of best fit is computed using the 

singular value decomposition function (“svd”) in MATLAB.  The output of this 

function includes the unit normal vector to the plane of best fit.  This normal vector is 

chosen as the local Y axis, pointing away from the torso. In using the “svd” function 

in MATLAB, there are two possible outcomes for the normal to the plane of best fit; 

the function may output a vector pointing away from the torso, which is desired, or it 

may output a vector pointing inward towards the torso. To ensure that the normal 

vector is pointing in the preferred direction, a correction factor is introduced.  

First, two vectors, labeled 1V  and 2V , are defined using markers on the scye 

bearing.  A cross product is taken between these two vectors to obtain a third vector, 

3V , pointing away from the torso.  The equations describing this are shown below, 

and an illustration of 1V , 2V , and 3V  is provided in Figure 26. 
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241 RSRSV   (1) 

262 RSRSV   (2) 

213 VVV    (3) 

 

The vector 3V  is then compared to the normal vector obtained from the “svd” 

function (YSB,R), by taking a dot product between the two vectors. If the resulting dot 

product is positive, this indicates they are both pointing outward, away from the torso, 

as desired. If the dot product is negative, then YSB,R must be pointing in towards the 

torso and needs to be corrected; this is accomplished by multiplying by negative one, 

which will flip the vector around to point in the preferred direction. 

Note that, in Figure 26, the vector 3V  could be taken as the normal to the 

plane, without using the “svd” function. However, it is possible that one or more 

markers may lie slightly out of the plane, either due to measurement error from 

VICON
TM

, or possible imperfections in manufacturing the bearing. If such a marker 

RS6

RS3

RS2

RS5 RS1

RS4

V1

V3
 

Figure 26. Illustration of vectors V1, V2, and V3, used to 

verify pointing direction of the normal to the plane of best 

fit. 
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were used to compute the normal to the plane, it would further propagate the error. 

Because of this, it is assumed that taking the plane of best fit using all available 

markers to define the average plane of the scye bearing would provide a more 

accurate value for the normal.  Thus, while it would be simpler to use 3V as the 

normal, the desire for increased accuracy provides the motivation for using the “svd” 

function in MATLAB. 

Next, the local X axis is determined. During assembly of the scye bearing 

simulators, the location of certain markers were placed intentionally at locations 

diametrically opposite one another, to serve as the local X axis during data collection. 

These markers are denoted LS1 and LS4 for the left scye bearing, and RS1 and RS5 

for the right scye bearing. The location of these markers can be seen in Figure 24. 

Therefore, vector addition can be used to determine the direction of the local X axis 

of each ring, with a mathematical correction (dot product) to ensure orthogonality 

with the normal to the plane of best fit, which serves as the local Y axis (labeled 

“YSB,R” in the equation below). The equation for the local X axis of the right scye 

bearing (denoted “XSB,R”) is shown below:   

       
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                (4)   

Once the local X and local Y axes are known, the local Z axis (or “ZSB,R”)  can 

be computed using a cross product: 

        
RSBRSBRSB YXZ ,,,        (5) 
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3.3 Calculation of Scye Bearing Orientation 

Following the calculation of the local axes, it is useful to normalize the 

vectors, converting them all to unit vectors (labeled Xu, Yu, and Zu, respectively).  In 

this way, the local coordinate system is defined in terms of the base frame, which can 

be used to write a rotation matrix for conversions from the base frame to the local 

frame.  Placing the components of each normalized local vector together, the rotation 

matrix R can be formed as follows:  

      



















kZukYukXu

jZujYujXu

iZuiYuiXu

R

ˆˆˆ

ˆˆˆ

ˆˆˆ
       (6) 

Next, it is necessary to select a desired sequence for the Euler rotations. In 

defining Euler rotations, the local axes are considered to be initially aligned with the 

base frame [25]; subsequent rotations are performed in a specific sequence about the 

local axes which result in the object‟s final orientation. For this analysis, it is assumed 

that the first rotation occurs about the local Z axis, followed by a rotation about the 

local X axis, and completed by a rotation about the local Y axis, resulting in a 3-1-2 

sequence.  

This order of rotation is selected because, in order to reach the assumed 

neutral pose on the human body (from an initial alignment with the base frame) the 

scye bearings must first be rotated through an angle of +90 and -90 degrees about the 

local Z axis for the left and right scye bearings, respectively, as can be observed by 

comparing the scye bearing orientations in Figure 24 and Figure 25. Therefore, it is 

desirable to perform the Z rotation as the first rotation in the Euler sequence.  Next, 

the scye bearings may be canted inward or outward relative to the torso, which would 
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require a small rotation about the local X axis, making this the logical choice for the 

second rotation in the sequence. The last rotation would be performed about the local 

Y axis. It so happens that this is also the least interesting rotation, as it is assumed that 

this degree of freedom is already provided by the bearing nature of the joint, and it is 

therefore convenient to perform this one last. In this analysis, the variable (γSB) is 

used to denote rotation about the local Z axis of the scye bearing, and the variable 

(αSB) is used to describe rotation about the local X axis of the scye bearing.  The 

variable (βSB) describes rotation about the local Y axis, but is not of interest in the 

analysis, as it is assumed that the scye bearing will rotate freely about the Y axis as 

needed, as a characteristic inherent in the bearing design. 

  In order to develop the rotation matrix for a 3-1-2 rotation sequence, it is 

useful to first write the formulas which describe rotation about the principal axes [25]. 

Using the angle nomenclature defined for this study, the formulas can be written as 

follows, where c represents cosine, and s represents sine: 
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  Next, the above matrices must be multiplied in sequence to produce the 

desired overall rotation matrix. Careful consideration must be given to the order in 
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which the matrices are multiplied. For example, to calculate a 3-1-2 rotation about a 

fixed frame, the order of multiplication would be R = RY*RX*RZ.  However, to 

calculate a 3-1-2 rotation about a local frame, the order of multiplication is reversed, 

written as R = RZ*RX*RY. In this study, the rotations of interest are those happening 

about the local frame of each scye bearing. As such, the rotation matrix used to 

calculate the orientation angles of the scye bearings can be written as follows: 

   
























SBSBSBSBSB

SBSBSBSBSBSBSBSBSBSBSBSB

SBSBSBSBSBSBSBSBSBSBSBSB

YXZ

ccssc

cscssccssccs

csssccsssscc

RRRR






    

(10)   

By equating the elements of Eq. (6) and Eq. (10), it is possible to calculate the 

Euler angles.  For example, by isolating the term sαSB in Eq. (10) and setting it equal 

to its corresponding element in Eq. (6), the angle about the local X axis can be 

determined: 

kYus SB
ˆ     (11) 

         )ˆarcsin( kYuSB       (12) 

Similarly, by setting up a ratio of the first two elements in the middle column 

of the matrix, γSB can be found: 
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From this set of calculations, the Euler angles of rotation, γSB and αSB, can be 

calculated for the scye bearing for each time step. An illustration of rotation about the 

local Z and local X axes is shown in Figure 27. 

 

3.4 Calculation of Arm Orientation 

In order to investigate the possibility of a heuristic relationship between arm 

angle and scye bearing angle, it is necessary to calculate the orientation of the arm. In 

order to do this, a vector is drawn between the deltoid marker and elbow marker, 

representing the upper arm segment.  For the right arm, this vector is called “RSE.” 

The x, y, and z components of the RSE vector are labeled RSE(1), RSE(2), and 

 
Figure 27. Visualization of rotations gamma and alpha about local axes of scye 

bearing. 
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RSE(3), respectively. In this analysis, the angles describing arm orientation are 

referred to as γarm and αarm, and they are illustrated in Figure 28 through Figure 30. 

 

 

 

 
Figure 28. Illustration of alpha and gamma values for arm orientation. 

 
Figure 29. Illustration of gamma angle for arm. 
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As the right triangles in Figure 29 and  Figure 30 suggest, the values of γarm 

and αarm can be calculated using trigonometric relations between the vector 

components of RSE as follows: 









 

)1(

)2(
tan 1

RSE

RSE
arm                           (16)           














 

RSE

RSE )3(
sin 1                           (17) 

                  90arm                (18) 

Once the arm angles have been computed, they can be compared to the scye 

bearing angles in order to understand the relationship between arm motion and scye 

bearing motion. An illustration of the right scye bearing angles in relation to the right 

arm angles for γSB,R and γarm, as well as αSB,R and αarm are provided in Figure 31 and 

Figure 32, respectively.  

 
Figure 30. Illustration of alpha angle for arm. 
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3.5 Calculation of Scye Bearing Center 

 The derivation of the orientation parameters for both the arm and the scye 

bearing have been presented above.  Another, secondary, aspect of this study is to 

consider the position of a point on the arm (specifically, a marker placed on the 

subject‟s deltoid muscle), and investigate whether it has any relationship to the 

position of the scye bearing center.  In this way, it may be possible to gain 

information which may illuminate a method for predicting both the position and 

     
Figure 31. Sketch of gamma angles for scye bearing and arm. The right scye 

bearing is shown in purple (top view).   

 
Figure 32. Sketch of alpha angles for scye bearing 

and arm. The right scye bearing is shown in purple 

(rear view).  
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orientation of the scye bearing in relation to the arm. To do this, the position data for 

the deltoid marker is obtained directly from the VICON
TM

 system; no calculations are 

needed for this. However, the position of the scye bearing center requires some 

calculation, using position data of markers located on its perimeter.  

To calculate the position of the scye bearing center, it is useful to first define a 

vector lying along the diameter of the scye bearing, called 4V .  Logically, the center 

will be located halfway along the diameter.  Therefore, if one starts at a point on the 

scye bearing, such as RS1, and then moves along the direction of the unit vector of the 

local X axis (XU) for a distance equal to half of the diameter, one should arrive at the 

center of the circle. This is described mathematically below; also, Figure 33 is 

provided for reference.  

154 RSRSV                (19) 

Xu
V

V
RScenterSB *

4

4

2

1
1 








              (20) 
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3.6 Statistical Measures 

Once the orientation angles for both the scye bearing and arm have been 

calculated, they will be used during the correlation analysis in the search for a 

heuristic model to describe scye bearing pose as a function of arm pose.  During the 

model fitting process, it will be necessary to generate and compare correlation 

equations to one another to determine which models provide the best fit to the data. 

For this study, the metric chosen for comparing models and evaluating their 

effectiveness is the coefficient of determination (R
2
) of each equation, which 

describes how well the model fits the data. The value of R
2
 was calculated using the 

following set of equations from Navidi‟s textbook, Statistics for Scientists and 

Engineers [26]: 

RS6

RS3

RS2

RS5 RS1

RS4

XU

Ybase

Zbase

Xbase

V4

 
Figure 33. Illustration of vectors used to calculate scye 

bearing center.  
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In the above equations, SSerr represents the sum of squares error, SStot 

represents the total sum of squares, yi represents a data point at time step i, iŷ  

represents the ith value of the predicted model, avgy  represents the average value of 

the data (the dependent variable in correlation analysis), and n represents the number 

of data points taken during the trial. 

Another metric, the standard deviation, was also used during the analysis. This 

measure was used to assess the spread of the data. The equation used during this 

analysis, also obtained from Navidi‟s text [26],  is shown below, 

         
2

1

2

1

1
avg

n

i

i nXX
n











 



               (24) 

where σ is the standard deviation, n is the sample size (i.e., number of data points in a 

motion trial), Xi is the value of each data point, and avgX  is the average value of the 

set of data points.  
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Chapter 4: Results 

 

4.1 Overview of Results 

 

This study investigates the behavior that a scye bearing would ideally and 

“naturally” have if it were provided with six degrees of freedom and could follow a 

human‟s movements without impeding them, as in near-nude body performance. It is 

assumed that the simulated  shoulder scye bearings used in this experiment – being 

made of thin, lightweight material to minimize any impact they may have on human 

motion, and selected for close fit to follow the human arm motion as accurately as 

possible – that these simulated bearings would approximate the ideal position of 

actual scye bearings in allowing for near-nude body performance.  As such, it is 

interesting to study their at-rest position, when the human is standing in a neutral, 

upright pose in Earth gravity, as it may provide insight into a preferred orientation 

and position for spacesuit shoulder joint design in general. For this reason, a neutral 

body pose analysis was performed, investigating the position and orientation of the 

scye bearings when at rest. Following this, the results of the range of motion (ROM) 

study are presented, describing the angular range of motion observed in the scye 

bearings when performing various motion tasks. Lastly, the results of the correlation 

investigation are presented, describing the development of heuristic models that may 

be used to predict scye bearing position and orientation relative to arm pose, for a 

specified region of motion.  
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4.2 Neutral Pose Analysis 

In conducting the neutral pose analysis, it was assumed that the scye bearing 

simulators would settle into position after performing initial motions. Therefore, the 

measurement of neutral pose parameters was taken after the subject had performed at 

least one motion task, in order for the scye bearings to have an opportunity to “settle” 

into their presumed natural location. An example of a subject standing in the neutral 

pose is shown in Figure 34. 

 

The first aspect investigated during the neutral pose analysis was the inter-

scye bearing distance. Research questions of interest here included: could the ideal 

distance between scye bearing centers be predicted as a function of anthropometric 

dimensions, such as bideltoid breadth? The plot in Figure 35 shows the relationship 

observed between the subject‟s inter-scye bearing distance and bideltoid breadth. It 

appears that there is a noticeable correlation, which suggests that if a measurement is 

 
Figure 34. Example of subject in neutral pose, front view. Image created from 

Vicon marker position data reconstructed in MATLAB (Subject 6). 
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taken of distance between a subject‟s deltoid muscles, it may be possible to predict 

the “ideal” distance between scye bearing centers. This is potentially useful as a suit 

design metric.  Before being applied widely, though, it would be beneficial to add 

more data points to the plot below, expanding the study to include test subjects of 

varying heights, stature, and musculature, which may affect the relative distance of 

the scye bearings.   

 

An interesting observation regarding the plot in Figure 35 is that, of the 

subjects observed, a suit designer would need to account for at least 10cm of variation 

in scye bearing distance in order to properly design for the population used in this 

study. One method for providing this variation in size may be to have modular suit 

torsos of varying sizes to fit different people, as is done with the current NASA 

spacesuit, the Shuttle extravehicular mobility unit (EMU). Another option would be 

to have a dynamically reconfigurable suit, such as a Morphing Upper Torso (MUT); 

the implication of this plot is that the MUT must be capable of at least 10cm lateral 
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Figure 35. Plot of scye bearing distance as a function of bideltoid breadth. 
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variation, and therefore must have adequate stroke length in its actuators to adjust the 

linkage lengths between shoulder joints accordingly.  

The next aspect to be considered was the relative distance in x, y, and z 

coordinates (expressed in the base frame) between the deltoid marker and scye 

bearing center.  Figure 36 illustrates the results. In looking at the relative distance 

between x coordinates, it appears that, for both the left and right scye bearings, the 

bearing center was located an average of 8cm inboard of the deltoid marker.  The 

relative distances of the y and z coordinates are somewhat varied, but cluster near 

zero, implying that the scye bearing center is at roughly the same height above floor 

level as the deltoid marker, and centered laterally about the arm (i.e., approximately 

located on the coronal plane, as would be expected). 

 

After analyzing the position data of the scye bearing neutral pose, the 

orientation data was assessed. The research question of interest here was: is there a 

-100

-80

-60

-40

-20

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10 11 12

R
e
la

ti
v

e
 D

is
ta

n
c
e
 (

m
m

)

Subject Number

Relative Distance Between Scye Bearing 

and Deltoid Marker (LEFT)

X Distance

Y Distance

Z Distance

-100

-80

-60

-40

-20

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10 11 12

R
e
la

ti
v
e
 D

is
ta

n
c
e
 (

m
m

)

Subject Number

Relative Distance Between Scye Bearing 

and Deltoid Marker (RIGHT)

X Distance

Y Distance

Z Distance

 
(a)             (b) 
Figure 36. Left (a) and right (b) relative distances between deltoid marker and scye bearing 

center. 
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set of neutral angles which the scye bearing assumes consistently across subjects?  If 

so, this could help inform future suit design decisions for scye bearing orientation. In 

observing the data, however, this was not found to be the case.  As shown in Figure 

37 and Figure 38, there is appreciable variation in the values of γSB and αSB for the 

neutral pose. Unlike scye bearing center position, there does not appear to be a 

standard, common angular orientation of the scye bearings when at rest.  The most 

that can be said for the values is that both γSB and αSB appear to be “small” when the 

scye bearings are in their neutral pose. The average neutral pose value observed for 

the right scye bearing γSB,R across all twelve subjects was 4.6 degrees, with a standard 

deviation of 6.2 degrees. The average neutral pose value observed for the right scye 

bearing αSB,R across all subjects was 5.1 degrees, with a standard deviation of 4.6 

degrees. 
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(a)             (b) 
Figure 37. Left (a) and right (b) scye bearing gamma as a function of arm gamma during 

neutral pose. 
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The next question asked was, if the scye bearings are not at a constant angle 

across test subjects, are they at least at a similar (i.e., symmetric) angle within the 

same test subject? From the plots in Figure 39 and Figure 40, it is seen that the scye 

bearings were not perfectly symmetric.  In Table 3 and Table 4, it is seen that the 

average offset between left and right scye bearings for a single subject was 6.0 +/- 3.4 

degrees in γSB, and 3.7 +/- 3.1 degrees in αSB.  This is may be due to experimental 

error, however, as the initial placement of the scye bearings was performed by hand, 

with visual inspection used to adjust the bearings for approximate symmetry. It is 

favorable, then, that the scye bearings were off by a comparatively little amount.  

Since the assumption of symmetry was made for the ROM and correlation analyses 

(by only analyzing the right scye bearing for those analyses), the results below are 

encouraging in that the scye bearings were roughly symmetric for each subject, even 

if not identical across subjects.   
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(a)             (b) 
Figure 38. Left (a) and right (b) scye bearing alpha as a function of arm alpha during 

neutral pose. 
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In summary, the results of the neutral pose analysis indicate that the ideal 

orientation of the scye bearings in the neutral pose cannot be readily predicted, at 

least not using the results presented in this study. However, the ideal xyz position of 

the scye bearing center does seem predictable based on anthropometric 

characteristics. In addition, the assumption of symmetry (or near-symmetry) seems to 

be validated for this study. 
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Figure 40. Comparison of scye bearing alpha for 

left and right bearing of each subject, checking 

for symmetry. 

Table 3. Scye bearing gamma for left 

and right scye bearing of each subject. 

Left Gamma Right Gamma Difference

19.8 6.0 13.9

1.1 7.5 6.4

0.7 2.9 2.3

-0.2 9.6 9.8

1.0 -6.5 7.5

3.9 7.3 3.4

1.5 -6.3 7.8

4.4 -0.8 5.2

6.1 9.5 3.4

10.0 13.0 3.0

1.8 8.1 6.3

1.3 4.4 3.1

Average 4.3 4.6 6.0

Standard 

Deviation

5.7 6.2 3.4

Comparison of Scye Bearing Gamma 

(degrees)

 

 
Table 4. Scye bearing alpha for left 

and right scye bearing of each subject. 

Left Alpha Right Alpha Difference

10.6 14.8 4.2

3.7 5.6 1.9

-4.9 2.6 7.5

6.4 1.6 4.8

7.2 -2.3 9.5

0.8 0.3 0.5

1.1 3.8 2.7

6.0 5.1 0.9

4.7 8.7 4.1

4.7 4.5 0.2

2.5 9.6 7.2

5.5 6.4 0.9

Average 4.0 5.1 3.7

Standard 

Deviation

3.9 4.6 3.1

Comparison of Scye Bearing Alpha 

(degrees)
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Figure 39. Comparison of scye bearing gamma 

for left and right scye bearing of each subject, 

checking for symmetry.  
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4.3 Range of Motion Observed 

For the ROM study, the subjects performed several planar motions. Subjects 4 

through 12 also performed two non-planar motions: arm circles and shoulder rolls.  

The ROM study shows the total range that the right scye bearing moved for each 

subject across all tasks he/she performed.  The results of angular ROM observed for 

each subject are shown in Figure 41 and Figure 42 for γSB,R and αSB,R, respectively.  

As seen in Table 6, the ROM data for γSB,R of the right scye bearing shows an 

average range of motion from -23 degrees to 61 degrees, with an average neutral 

value of 4.6 degrees. The average ROM observed for αSB,R was approximately 1 

degree through 66 degrees, with an average neutral value of 5 degrees canted inward, 

as seen in Table 6.  The absolute maximum observed for αSB,R during these trials was 

87 degrees, exhibited by Subject 1. However, it is useful to note that Subject 1 

happened to lean during the particular trial in which the 87 degree measurement 

occurred, which inflates the measured value of αSB,R. To mitigate this, the subjects 

were instructed keep their torso facing forward and maintain their posture as level as 

possible, (i.e., avoid leaning and/or twisting) since the angles of arm and scye bearing 

both relate (either directly through trigonometric relations, or indirectly in the form of 

Euler angles that start aligned with the base frame) to the reference frame axes.  The 

subjects attempted to keep the torso as level as possible during the various motion 

tasks; however, small variations in lean and tilt were still a source of error in this 

study.  A recommendation for future work would be to have markers on the upper 

torso, perhaps placed along the sternum and spine at the height of the shoulders, 



 

 59 

 

which could be used to form a torso-centered reference frame. This would allow for 

more accurate angle measurement not affected by torso motion.  
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Figure 41. Plot showing the range of motion observed in scye 

bearing gamma for each subject. 

Table 5. ROM of scye bearing gamma observed for 

each subject. 

Subject # Min Max
Neutral 

Pose Value

1 -32.1 89.1 6.0

2 -20.5 55.6 7.5

3 -30.8 69.4 2.9

4 -19.8 83.2 9.6

5 -17.2 41.2 -6.5

6 -26.0 74.2 7.3

7 -40.6 37.3 -6.3

8 -20.7 52.7 -0.8

9 -16.4 42.4 9.5

10 -19.4 74.3 13.0

11 -15.4 46.5 8.1

12 -15.4 61.9 4.4

Average -22.9 60.6 4.6

Standard 

Deviation
7.9 17.4 6.2

Lowest Minimum -40.6

Highest Maximum 89.1

ROM of Scye Bearing Gamma 

(degrees)
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Figure 42. Plot showing the range of motion observed in scye 

bearing alpha for each subject. 

Table 6. ROM of scye bearing alpha observed 

for each subject. 

Subject # Min Max
Neutral 

Pose Value

1 10.2 87.1 14.8

2 4.3 65.2 5.6

3 -3.2 71.4 2.6

4 0.6 72.4 1.6

5 -3.4 70.2 -2.3

6 -6.0 75.7 0.3

7 -1.9 64.7 3.8

8 1.8 57.7 5.1

9 5.7 53.2 8.7

10 -3.2 62.3 4.5

11 4.6 61.1 9.6

12 1.3 55.3 6.4

Average 0.9 66.4 5.1

Standard 

Deviation
4.7 9.6 4.6

Lowest Minimum -6.0

Highest Maximum 87.1

ROM of Scye Bearing Alpha (degrees)
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In summary, Table 5 and Table 6 show the average range of motion needed 

for the right shoulder bearing of a space suit when completing these motion tasks, if 

the bearing were to move freely with the person as is proposed for the design of the 

Morphing Upper Torso. Therefore, if the subjects in this study are assumed to 

adequately  represent the user population for the morphing suit, the average range of 

motion which the morphing suit would have to accommodate in order to perform all 

the motions evaluated in this study would be: -23 to 61 degrees in gamma, and 1 to 66 

degrees in alpha. 

The results for angular range of motion can be input into the inverse 

kinematics (developed in previous work by Shane Jacobs [2]), and used to aid in 

calculating the minimum and maximum lengths needed for the prismatic linkages 

connecting the bearings of the torso; the subsequent requirements for linkage length 

would then inform design decisions for actuator stroke length for the Morphing Upper 

Torso.  

4.4 Correlation Analysis: Results of Preliminary Investigation 

During the initial data collection phase, when the scye bearing angle and arm 

angle were plotted together with time, it was observed that the scye bearing angle 

appeared to respond very closely to changes in arm angle when the subject performed 

certain motion tasks, suggesting a mathematical correlation may exist between them, 

at least for those tasks. Figure 43 through Figure 45 show examples of several of 

these plots. In each trial, subjects were typically asked to perform three or more 

repetitions of the motion; the plots below indicate that the relationship, if one exists, 

seems repeatable, in that during each of the repetitions for that trial, the same 
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behavior of the scye bearing angle following arm angle was observed. As a note, the 

units for data presented in the correlation study are (degrees) for alpha and gamma, 

and (mm) for x, y, and z coordinates of the scye bearing center and deltoid marker. 

 

 

 
Figure 44. Plot of arm alpha and scye bearing alpha during “Y Axis 

Front” trial (Subject 3). 

 
Figure 43. Plot of arm alpha and scye bearing alpha during “X 

Axis” trial (Subject 3). 
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If such a correlation does indeed exist, it would be useful to develop a 

mapping between arm pose and scye bearing pose, which could eventually be used to 

dynamically control the configuration of the MUT to respond to the astronaut‟s 

motion, by predicting where the scye bearing should be for a given arm pose and then 

moving out of the way so as not to impede the astronaut‟s motion.  The goal of the 

correlation investigation, then, was to develop a heuristic model to predict scye 

bearing orientation for a given arm pose.  A secondary goal would be to also predict 

the position of the scye bearing center for a given arm pose. 

To begin the model matching investigation, the scye bearing orientation and 

position variables were each assumed to have linear, single-variable correlations with 

their analog arm variables. For instance, it was assumed that αSB,R(αarm) = A* αarm + 

B. The coefficient of determination (R
2
) is also presented, describing how well the 

model fits the data. An R
2
 value closer to one indicates better fit, while an R

2 
of zero 

indicates no fit (or, more accurately, an R
2 

of zero indicates that the model is no better 

 
Figure 45. Plot of arm gamma and scye bearing gamma during “Z 

Axis Front” trial (Subject 3). 
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at predicting the output value than if one had simply taken the average the data in 

order to predict the output value [14]). For this study, an R
2 

value of 0.9 or greater 

was considered an excellent model, and a value above 0.7 an acceptable model.  The 

parameters for the line of best fit for each of the simple linear regression analyses 

were computed using the “polyfit” command/function in MATLAB; once the model 

parameters were known, a trend line was plotted using values computed by the 

“polyval” function in MATLAB.  

The results of simple linear regression analysis for αSB,R are shown as an 

example in Table 7, and the corresponding plots are shown in Figure 46. By 

examining the results in Table 7 and the example plots in Figure 46, it is observed 

that the linear model for αSB,R has a very high coefficient of determination for certain 

trials, indicating that the linear model works well in certain regions of motion, but not 

in others. Most notably, the αSB,R linear model has an excellent correlation for 

motions during the X Axis, Y Axis Front, and Arm Circles trials, each with R
2
 > 0.95, 

and with an average slope of approximately 0.4. (For reference, the trial names and 

their corresponding motions have been defined in Figure 19 through Figure 22). The 

linear model for αSB,R does not appear to work well for the Z Axis Front trial, or 

Shoulder Rolls, nor either of the motions that move the arm behind the coronal plane 

(Z Axis Back and Y Axis Back). Perhaps the behavior of αSB,R is nonlinear in those 

regions, or perhaps it is a function of more than one variable in those regions, or 

perhaps no correlation exists for αSB,R during that motion.  
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Similarly, in examining the linear regression values for γSB,R seen in Table 8, 

as well as the graphical representation shown in Figure 47, it is again observed that 

the linear model seems to work well in certain regions, but not in others. An 

interesting observation here is that the linear models that exhibit a high R
2 

for γarm do 

 
Figure 46. Example of alpha correlation trends observed for one subject during the trials 

(Subject 4). Note: On each of the plots shown above, the independent variable is αarm, and the 

dependent variable is αSB,R. 

Table 7. Results of simple linear regression analysis 

for alpha, calculated for each trial using data 

averaged across subjects. 

Trial
Average 

R
2

Average 

Slope, 

A

Average 

Intercept,

B

X Axis 0.984 0.402 -0.00753

Y Front 0.980 0.355 0.516

Y Back 0.388 0.0129 4.04

Z Front 0.241 0.159 15.9

Z Back 0.622 0.330 3.97

Arm Circle 0.957 0.398 -3.53

Shoulder Roll 0.544 0.555 -0.0617

Average 0.674 0.316 2.98

Standard 

Deviation
0.305 0.178 6.27

Single Variable Linear Regression 

for Alpha:

αSB = A*αarm + B

 



 

 66 

 

not necessarily have the same slope, unlike the high-correlation models for αSB,R, 

which had approximately the same slope. For instance, the three best-fitting models 

for γarm have very different slopes (0.485, 0.37, and 0.11, respectively).  The 

observation that the slope of gamma may be different for different regions of motion 

suggests that intercoupling may exist between variables. This served as motivation to 

attempt a multiple regression analysis.   

 

Table 8. Results of simple linear regression analysis 

for gamma, calculated for each trial using data 

averaged across subjects. 

Trial
Average 

R
2

Average 

Slope, 

A

Average 

Intercept,

B

X Axis 0.198 0.133 6.22

Y Front 0.758 0.411 -5.38

Y Back 0.842 0.110 1.65

Z Front 0.957 0.370 7.59

Z Back 0.968 0.485 6.75

Arm Circle 0.726 0.269 2.73

Shoulder Roll 0.368 0.200 3.67

Average 0.688 0.282 3.32

Standard 

Deviation
0.295 0.144 4.42

Single Variable Linear Regression 

for Gamma:

γSB = A*γarm + B

 



 

 67 

 

 

4.5 Correlation Analysis: Development of Heuristic Equations 

4.5.1 Selection of Motion Trial  

In developing the multiple regression analysis, it was necessary to select one 

of the seven trials to study in depth, in order to develop a multi-variable correlation 

model which would work well in that region.  The “Arm Circles” trial was selected 

for this, as it involved a considerable range of motion through a large region of space, 

rather than simple planar motion, and would be more likely to reveal intercoupling 

effects between variables, if any existed. During the arm circles trial, each subject 

held their hands out to the sides, arms fully horizontally extended, then moved their 

arms first in small circles, then medium arm circles, followed by large arm circles. 

This sequence was performed first as forward arm circles, then the same pattern 

(small, medium, then large) was repeated for backward arm circles. Therefore, this 

trial captured both large and small amplitudes of motion through a sweeping range of 

 
Figure 47. Example of gamma correlation trends observed for one subject during the trials 

(Subject 4). Note: On each of the plots shown above, the independent variable is γarm, and 

the dependent variable is γSB,R. 
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angles mostly located in front of the coronal plane. A plot of the region swept out by 

the upper arm segment during one of the arm circles trials is shown in Figure 48; in 

the figure, the trace of the elbow tip is shown in pink, and the projection of the 

motion in the base xy plane (coronal plane) is shown in yellow, while the projection 

in the base yz plane (sagittal plane) is shown in blue.  

 

4.5.2 Heuristic Equation for Scye Bearing Alpha 

The aim, then, was to develop heuristic models to predict the orientation and 

position of the right scye bearing as a function of right arm pose, if possible.  The first 

parameter evaluated was αSB. As seen in Table 9, the average R
2
 was already above 

0.9, so this model was deemed a valid model for this region. Additionally, the average 

value of the mean of residuals (i.e., the average difference between data and model) is 

1.8 degrees, which is small, as desired. A plot of one subject‟s linear correlation 

 
Figure 48. Plot showing the trace of elbow tip in three-space during 

“Arm Circles” trial (Subject 4). Trace of elbow marker in three-space is 

shown in pink; projection of elbow marker motion into the xy base 

plane shown in yellow; projection into the base yz plane is shown in 

blue. 
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model for this trial is shown in Figure 49 as an example.  The average heuristic 

equation describing the observed behavior of αSB in this region is written as: 

     53.3398.0  armSB      (25) 

     

 

 
Figure 49. Example of heuristic model for alpha during “Arm 

Circles” trial (Subject 12).  

Table 9. Parameters for heuristic model of scye bearing alpha. 
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4.5.3 Development of Heuristic Equation for Scye Bearing Gamma 

Next, model-matching was attempted for the variable γSB,R. As with αSB,R, 

single-variable linear regression was performed first. A plot of one subject‟s results 

for this trial is shown in Figure 50, and the results for each subject are shown in Table 

10.     

 

Table 10. Parameters for simple linear regression model of scye bearing 

gamma. 
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As observed in Table 10, the single-variable linear regression model exhibits an 

average R
2 

of 0.726 across test subjects, which (in this study) is acceptable, but not 

excellent. It would be desirable to develop an equation that better fits the data, if 

possible. One potential method of improving the model would be to introduce 

additional variables. As discussed in the preliminary correlation analysis section, it 

was observed that γSB,R seemed to exhibit different slopes for motion tasks performed 

in different regions; because of this, it seems reasonable to hypothesize that γSB,R may 

be a function of both αarm and γarm, and perhaps may also be a function of the 

interaction term αarm*γarm. To investigate this further, two new equations were 

devised which would isolate the effects of adding each new term, as well as one 

equation which would combine the effects of both:  

 

 
Figure 50. Example of simple linear regression model for gamma during 

“Arm Circles” trial (Subject 12). 
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   CBA armarmSB   **               (26) 

         CBA armarmarmSB   ***              (27) 

            DCBA armarmarmarmSB   ****              (28) 

 

The equation with αarm and γarm was investigated first.  The results of this 

correlation attempt are shown in Table 11, and an example of the results for one 

subject are illustrated graphically in Figure 51. In comparing the results of Table 10 

and Table 11, it is observed that introducing the αarm term alone improved the R
2 

from 

0.73 to 0.78, a favorable improvement. 

 

Table 11. Parameters for multiple regression model of scye bearing gamma, as a 

function of arm gamma and arm alpha. 
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Next, the equation involving γarm and the interaction term αarm*γarm was 

investigated.  The results of this correlation attempt are shown in Table 12, and an 

example of the results for one subject are illustrated graphically in  Figure 52. In 

comparing the results of Table 10 and Table 12, it is observed that introducing the 

interaction term αarm*γarm improved the R
2 

from 0.73 to 0.81, an even greater 

improvement than was seen by introducing the αarm term. 

 

 

Figure 51. Example of multiple regression model using arm alpha (Subject 12). 
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In comparing the results from Table 11 and Table 12, it would seem that the 

terms αarm and αarm*γarm are each significant in improving the fit of the model, with 

the interaction term being the more significant of the two. It is logical to suppose that 

introducing both terms, αarm and αarm*γarm, into the model may cause an even greater 

 

Figure 52. Example of multiple regression model using 

alpha*gamma term (Subject 12). 

 

Table 12. Parameters for multiple regression model of scye bearing gamma, using 

interaction term alpha*gamma. 
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improvement in the model‟s fit to the data. A preliminary test was run with one 

subject‟s data to assess the potential usefulness of introducing both terms to the 

model. The results of the test case are presented in Table 13.  

 
As seen in the last entry of Table 13, using both terms does cause an 

improvement from the single-variable linear regression model, increasing the R
2
 

value from 0.67 to 0.827. However, this is only a slightly marginal improvement from 

the case where only the αarm*γarm term is introduced (an increase of 0.0004 in the 

value of R
2
). Therefore, the αarm term was discarded, since it would add complexity to 

the model and reduce computational efficiency without significantly improving the 

model‟s fit to the data. The analysis then proceeded using the multiple regression 

equation containing the terms  αarm*γarm and γarm (but without αarm).  

As a next step towards improving the model, it was observed that, when this 

model was plotted in three dimensions, the data appeared to exhibit a slight saddle-

like curvature, as may be seen in Figure 52. In order to fit the curvature more closely, 

and perhaps improve the model further, quadratic terms were introduced, as αarm
2
 and 

γarm
2
. It was found that introducing these terms raised the R

2
 to 0.835, a favorable 

improvement. Similarly, the average value of the mean of residuals for this model is 

3.05 degrees, which is small, as desired. A table showing the parameters for the 

Table 13. Test Case for Assessing Importance of Terms in Gamma Model (Subject 4). 

Equation R
2

Coefficient of 

γarm*αarm

Coefficient of 

αarm

Coefficient of 

γarm

Constant

0.6710 0 0 0.305 8.35

0.7592 0 0.104 0.315 -0.0681

0.8267 0.00357 0 0.0388 8.39

0.8271 0.00339 0.00997 0.0535 7.58

Model Parameters

CBA armarmSB   **

  CBA armarmarmSB   ***

  DCBA armarmarmarmSB   ****

BA armSB   *
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heuristic equation by subject is shown in Table 14. A graphical representation of the 

quadratic regression for one subject is also shown in Figure 53. 

 

 
 

This quadratic regression model was then declared as the heuristic model for 

predicting γSB,R in this region. It is noted that, although the coefficients in Table 14 

Table 14. Parameters for heuristic model of scye bearing gamma, using quadratic regression. 

 

 

Figure 53. Example of quadratic regression (Subject 12). Introducing 

quadratic terms in the gamma equation allowed model to conform to 

the saddle-like form of the observed data. 
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are small, they are attached to squared terms, which increases their significance. It is 

also noted that the standard deviation of some of the coefficients is relatively large; 

this may indicate that a unique equation exists for each subject. This suggests that if 

the Morphing Upper Torso were a fully functioning prototype, then a calibration 

would have to be performed for each astronaut to determine the coefficients for 

his/her model prior to using the Morphing Upper Torso.  The average heuristic 

equation for γSB,R observed in this region is declared as:   

      63.3132.000262.0000690.0000169.0
22

 armarmarmarmarmSB      (14) 

4.5.4 Heuristic Equation for Z Coordinate of Scye Bearing Center 

A similar process was performed to achieve model matching for the position 

coordinates of the scye bearing center as a function of the Cartesian coordinates of the 

deltoid marker. First, the z coordinate was analyzed using single-variable linear 

regression. The results are presented in Table 15, and a plot of one subject‟s 

correlation model for this trial is shown in Figure 54. It appears that there may be 

some curvature at the extremes of this region. However, as the average coefficient of 

determination was already above 0.9, it was decided that the linear model was a close 

enough fit, without needing to add complexity to the model by introducing quadratic 

terms to account for the slight curvature. Additionally, the average value of the mean 

of residuals for this model is 5.06 mm, which is small. Therefore, the heuristic model 

for the z coordinate of the scye bearing (zSB) as a function of the z coordinate of the 

deltoid marker (zdeltoid) is declared as:          

   725*459.0  deltoidSB zz               (15) 
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4.5.5 Development of Heuristic Equation for X Coordinate of Scye Bearing Center 

Next, the x coordinate correlation was examined. The single-variable linear 

regression for the x coordinate produced an R
2
 of 0.4, which is comparatively low. 

Table 15. Parameters for heuristic model of z coordinate of scye bearing 

center. 

 

 
Figure 54. Example of heuristic model for z coordinate of scye 

bearing center during “Arm Circles” trial (Subject 12). 
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The parameters for this model computed for each subject are shown in Table 16, and a 

plot of one subject‟s results is shown as an example in Figure 55. 

 

 

 

Figure 55. Example of simple linear regression model for x 

coordinate during “Arm Circles” trial (Subject 12). 

Table 16. Parameters for simple linear regression of x coordinate of scye bearing 

center. 
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It was observed that, as with gamma, the motion trials for which the x 

coordinate had exhibited a high R
2
 during the preliminary correlation analysis often 

had a different slope; since the x coordinate appeared to have different slopes in 

different regions, it was concluded that the x coordinate is likely a function of more 

than one variable, as gamma was found to be. As a result, the x coordinate of the scye 

bearing center (xSB) was then modeled as a function of all three position coordinates 

of the deltoid marker (xdeltoid, ydeltoid, and zdeltoid, respectively). As shown in Table 17, 

the resulting model increased the average R
2
 up to 0.59, a substantial increase. A 

visual example of this model for one subject is shown in Figure 56. 

 

Table 17. Parameters for multiple regression model of x coordinate of scye bearing center, 

involving x, y, and z coordinates of deltoid marker. 
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It was then hypothesized that perhaps the xSB coordinate may depend on the 

orientation of the arm, as well as the position of the deltoid marker. To test this, two 

additional linear terms were introduced: αarm and γarm. The resulting model exhibited a 

further improvement, increasing the average R
2 

 value to 0.7.  Also, the average value 

of the mean of residuals is 3.8mm, which is small, as desired. Parameters for the 

heuristic equation are displayed by subject in Table 18. Also, a plot of one subject‟s 

correlation model for this trial is shown in Figure 57.  Because there was not a 

significant amount of curvature observed in the data, there was no motivation to 

continue with the model matching process by attempting to include quadratic terms in 

this model. Therefore, this was declared as the final form of the average heuristic 

equation of xSB:       

2.69*0453.0*419.0*0425.0*0303.0*473.0  armarmdeltoiddeltoiddeltoidSB zyxx      (16) 

 

Figure 56. Example of multiple regression model using x, y, and z of 

deltoid marker to predict for x coordinate of scye bearing during 

“Arm Circles” trial (Subject 12). 
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 4.5.6 Development of Heuristic Equation for Y Coordinate of Scye Bearing 

Center 

Lastly, a correlation for ySB was developed. The results of the initial single 

variable correlation are seen in Table 19, and an example of one subject‟s results is 

shown in Figure 58.  This single-variable linear regression model provided an average 

 
Figure 57. Example of heuristic model for x coordinate of scye bearing 

center during “Arm Circles” trial (Subject 12). 

 

Table 18. Parameters for heuristic model of x coordinate of scye bearing center. 
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R
2
 of 0.49, which is lower than desired. As with the x coordinate correlation process, 

multiple regression was then attempted in an effort to improve the fit of the model.  

 

 

As a first step in developing a multiple regression equation, the remaining 

position variables of the deltoid marker were introduced into the model. The resulting 

Table 19. Parameters for simple linear regression of y coordinate of scye 

bearing center. 

 

 

Figure 58. Example of simple linear regression model for y 

coordinate during “Arm Circles” trial (Subject 12). 
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equation exhibited a better fit to the data, as anticipated. This revised model increased 

the average R
2
 from 0.49 to 0.58, a favorable improvement in the model. The results 

of this model for each subject are shown in Table 20, and Figure 59 provides a 

graphical example of one subject‟s results.  

 

 

Table 20. Parameters for multiple regression model of y coordinate of scye bearing center, 

involving x, y, and z coordinates of deltoid marker. 

 

 

Figure 59. Example of multiple regression model using x, y, and z of 

deltoid marker to predict for y coordinate of scye bearing during 

“Arm Circles” trial (Subject 12). 
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Lastly, the angular terms of the arm pose were introduced and an average R
2
 

of 0.91 was achieved. Furthermore, the average value of the mean of residuals is 

4.7mm, which is small, as desired. Parameters for the heuristic equation for the y 

coordinate of the scye bearing are displayed by subject in Table 21; an example of 

one subject‟s correlation model for this trial is shown in Figure 60. The final form of 

the average heuristic equation of ySB was therefore declared as:  

3.79*507.0*344.0*0636.0*841.0*0850.0  armarmarmarmarmSB zyxy       (17) 

 

Table 21. Parameters for heuristic model of y coordinate of scye bearing center. 
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As a note, the amount of clearance existing in the current NASA EMU suit 

between the shoulder and scye bearing (with the subject wearing the liquid cooling 

garment) ranges from contact (0cm clearance) to about 1cm of clearance [27]. An 

example of a person with shoulder clearance can be seen in Figure 61. 

 
Figure 60. Example of heuristic model for y coordinate of scye 

bearing center during “Arm Circles” trial (Subject 12). 
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Because the NASA EMU is a planar HUT, the location of the scye bearings is 

fixed.  In one study of normal, unimpeded motion during shoulder abduction, it was 

found that movement through the full range of scapulothoracic motion results in 

approximately 6cm of change in elevation of the acromion (located at the tip of the 

shoulder), and about 4cm of change in elevation at the mid-clavicle [27]. If no 

elevation of the clavicle is permitted (i.e., if there is no clearance between shoulder 

and scye bearing), the person can still move his/her arm, as shown in Figure 62, 

however it is a more limited range of motion than if the clavicle were permitted to 

elevate completely, or even partially. Providing the astronaut with a suit which gives 

a maximum of 1cm of clearance in elevation (as in some EMU suits) allows for some 

increased range of motion (as the clavicle has room to partially elevate), however it is 

 

Figure 61. Side view of EMU HUT, example 

of clearance between scye bearing and 

shoulder. Image from [27]. 
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still a reduced range of motion compared to what can be achieved under nude-body 

conditions. 

 

Placing this in context, the x, y, and z heuristic models declared in the 

previous discussions each have an average value of the mean of residuals which is 

well within 1cm (each of them is, in fact, about 5mm or less). It is conceivable that 

the scye bearing diameter of the morphing suit may be selected such that the 

clearance available to the astronaut is equal to or slightly greater than the error 

present in the mathematical models used control the suit‟s motion. In this way, the 

suit actuation would provide most of the range of motion by following the astronaut‟s 

 

Unsuited 

Abduction

Suited

Abduction
 

                   (a)                 (b) 
Figure 62. (a) Unsuited abduction and (b) suited abduction. The red circle represents the 

fixed scye bearing location of the NASA EMU suit. Image adapted from [27]. 
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movements, actuating the robotic elements of the suit as commanded by a control 

algorithm which operates using the math models developed above, and when reaching 

the extreme limits of predicted motion of the scye bearings, the physical clearance 

between the scye bearings and the human shoulder would still be enough (i.e., greater 

than error in the model) to provide that full range of human motion as experienced in 

a near nude-body environment.  The fact that the average error is approximately 5mm 

or less for the x, y, and z models serves as a useful design input, therefore, which can 

be used to inform design decisions for scye bearing diameter of the morphing suit. 

 4.5.7 Summary of Heuristic Equations  

In summary, the initial correlation analysis revealed that single-variable linear 

regression is applicable for certain parameters over certain regions of motion, but that 

none of the parameters (position and orientation variables of the scye bearing) 

exhibited linear behavior for all motions observed.  It was therefore decided to focus 

on developing multivariable heuristic models to characterize the behavior of the five 

parameters for the most useful region observed during testing: that of the “arm 

circles” trial, which swept out the greatest volume and provided an opportunity to 

explore non-planar motion. The method of multiple regression analysis was 

successful in developing heuristic models for each of the five parameters describing 

the orientation and position of the scye bearing for a given region of motion, with an 

average R
2
 of 0.7 or greater for the final heuristic model of each parameter, and three 

of the five parameters achieving an average R
2
 in excess of 0.9. Thus, it is assumed 

that the motion of the scye bearing can be reasonably well predicted in the region of 

the “arm circles” trial using these heuristic models. A summary of the average 
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heuristic equations arrived at for each parameter, along with the average R
2 

is 

provided below: 

      957.053.3398.0 2  RarmSB               (29) 

 

   835.063.3132.000262.0000690.0000169.0 222
 RarmarmarmarmarmSB         (30) 

 

 714.02.69*0453.0*419.0*0425.0*0303.0*473.0 2  Rzyxx armarmdeltoiddeltoiddeltoidSB      (31) 

 

 906.03.79*507.0*344.0*0636.0*841.0*0850.0 2  Rzyxy armarmarmarmarmSB      (32) 

 

      906.0725*459.0 2  Rzz deltoidSB
             (33) 

 

 4.5.8 Applicability of the Heuristic Equations  

It is logical to then ask whether this characterized region is indeed useful. To 

examine the usefulness of this region, the average range of motion observed during 

the “arm circle” trials was compared to the NASA ROM requirements for suited 

motion [11]. Three of these requirements are presented below.  The top row of the 

image indicates the NASA ROM requirement, while the bottom two rows show the 

analogous pose reached during the average ROM observed in subjects performing 

this trial. As can be seen in Figure 63, while the arm circle trials do not cover the 

entire range of required suit ROM, they do cover a significant portion of the suited 

ROM envelope, suggesting that this is indeed a useful correlation. 
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(a)           (b)       (c) 

 

89º

145º

148º

       

148º

 
(d)           (e)       (f) 

 

-55º 9º
0.5º

 
(g)           (h)        (i) 

Figure 63. Illustration of suited ROM requirements compared to average ROM observed by 

subjects performing the “Arm Circles” trial; (a) suited shoulder horizontal 

adduction/abduction range, according to NASA STS suit specification
 
[11], (b) suited shoulder 

abduction/adduction range, according to NASA STS suit specification [11] (c) suited shoulder 

flexion/extension range according to NASA STS suit specification [11]; (d) through (i) depict 

the minimum and maximum values of the average arm ROM observed during arm circles 

trial. The trial seems to cover a significant portion of the required suit ROM, implying 

usefulness of the heuristic models developed. 
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Chapter 5:  Conclusions and Future Work 

 

5.1 Conclusions  

The Morphing Upper Torso is an innovative concept; it is an infusion of 

robotics and human factors to solve one of the most challenging aspects of spacesuit 

design: maneuverability. The research presented in this paper has endeavored to 

further the development of the Morphing Upper Torso, as well as spacesuit design as 

a whole. The neutral pose analysis identified the appearance of a relationship between 

bideltoid breadth and the distance between scye bearing centers, which may be a 

useful metric for future suit design. In addition, it was observed that there appears to 

be a constant offset distance between the deltoid marker and the scye bearing center, 

which may serve as another useful suit metric.  Following the neutral pose analysis, 

the results of the range of motion (ROM) study established an average angular range 

of motion for the scye bearings, which serves as a useful reference that can help 

inform design decisions for minimum and maximum linkage lengths, as well as 

actuator stroke lengths, of the Morphing Upper Torso concept. Lastly, the correlation 

analysis identified that the position and orientation of the scye bearings does not 

appear to be a function of a single linear variable in all regions; however, a heuristic 

model was developed for each of the five parameters describing the pose of the scye 

bearing with a reasonable fit between the model and data for the region of the “arm 

circle” trials. This region is especially useful as it covers a large portion of the NASA 
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required ROM for pressurized spacesuits. Therefore, this model may be useful in 

predicting the motion of the scye bearing throughout a large portion of the suited 

work envelope, which would be a crucial step towards eventually implementing a 

fully-functional Morphing Upper Torso.  

5.2 Future Work  

  In future work, the results of the ROM study can be input into the inverse 

kinematics model developed in previous work by Shane Jacobs [2], in order to 

calculate the preliminary estimates for minimum and maximum linkage lengths for 

the Morphing Upper Torso. In addition, it would be useful to continue the correlation 

analysis, developing a correlation model(s) that covers the entire range of NASA 

suited ROM specifications, thereby enabling the Morphing Upper Torso (MUT) to 

have a ROM which is at least equivalent to current pressure suits. The next step 

would be to then exceed the NASA specifications and characterize scye bearing 

motion for the entire region of human motion, in order to achieve the goal of 

providing nude-body freedom of motion of the shoulder joints.  A far-reaching goal is 

to have a suit that implements smart fabrics or other sensing techniques to determine 

the present position, orientation, and velocity of the astronaut‟s arm. Using this arm 

pose data as input, the MUT can use the correlation models developed in order to 

predict the desired scye bearing motion. Following this, a control algorithm can be 

used to actuate the robotic linkages which will drive the scye bearings into that 

desired position, orientation, and velocity in order to move them out of the way of the 

suit wearer. This would allow the astronaut to have complete freedom of motion 

within the suit, and would significantly reduce the amount of astronaut workload 
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required to move the limbs of the suit‟s upper torso, enabling the astronaut to direct 

more of his/her energy to performing the crucial mission tasks which must be carried 

out during the EVA. 

 5.2.1 Recommendation for Torso-Centered Reference Frame 

  In pursuing heuristics to predict scye bearing motion throughout the full nude-

body ROM (rather than heuristics which apply to a large portion of the ROM, as 

presented here), it may be necessary to collect further data. If additional motion 

capture experiments are to be performed in future work, the author would recommend 

implementing a few changes in the test setup, as a result of lessons learned during this 

process, which would improve the accuracy of future data collected.  

  First, it was observed during the data analysis that some of the subjects had 

leaned to the side, and/or twisted the torso slightly during motion trials. Because the 

angle calculations for both the scye bearing and the arm are related to the base frame 

(either in the form of Euler angles initially aligned with the base frame, or through 

trigonometric relations taken directly with respect to the base frame), leaning to the 

side would inflate the value of alpha (pitch), for both scye bearing and arm. Likewise, 

twisting would inflate the value of gamma (yaw) for both scye bearing and arm.  

  In addition to affecting the angle calculations, a person leaning or twisting 

would also introduce some amount of error into the position measurements of the 

markers, as the marker would travel through an additional arc length distance due to 

the lean or twist which is not associated with the motion task itself. Another source of 

error, aside from lean/twist movements, is the possibility of the person physically 

shifting between trials.  For example, if the person takes a small sidestep and/or shifts 
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his/her weight, the person may have translated a few centimeters between one trial 

and the next, and may also be facing a slightly different direction (i.e., the person 

might not be facing perfectly forward, which would introduce an offset value of 

gamma for the trial).  There were also rare occasions in which the person lost his/her 

balance during a motion trial (rather than casually shifting around between trials) and 

had to perform a translational movement to avoid falling (e.g., perform a sidestep to 

regain balance, or similar maneuver). This would also introduce some amount of error 

into the data. 

  To mitigate the translation and angle errors outlined above, subjects were 

requested to stand at a certain location relative to the base frame (which was marked 

visually by a piece of tape on the floor), and encouraged to keep their torso as level as 

possible (avoid leaning), as well as to keep their shoulders squared, facing forward 

(avoid twisting). The subjects attempted to do this, but small variations in lean, tilt, 

and translation were still a source of error in this analysis. 

  To further refine the test setup, it may be helpful in future tests to provide a 

vertical line on the wall which subjects could use as a visual reference throughout the 

motion, enabling them to be more conscious of when/if they start 

leaning/twisting/translating.  This may help in minimizing the error in the angle and 

position data collected. Another approach, one with slightly increased complexity but 

with potentially greater accuracy, would be to have a reference frame located on the 

person rather than the floor of the test volume. In that scenario, if the person 

translated, the reference frame on the body, from which scye bearing and marker 

poses would be measured, would translate, too, resulting in greater accuracy (i.e., 
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fewer occurrences of artificially inflated values of x, y, and z translation). In addition 

to improving accuracy, this would also provide a more realistic measurement setup, 

as in space there will not be a “floor” to which an external reference frame is fixed, 

just as there will not be a definable “up” or “down” outside the suit. For this reason, if 

implemented in orbit, the Morphing Upper Torso would likely use a reference frame 

located on/in the suit itself.   

  One option for simulating this would be to use the markers on the feet to form 

a fixed reference frame on the body (assuming the feet remain stationary and in 

contact with the floor throughout the motion trial). This would perhaps improve the 

measurements of gamma (yaw) slightly. For example, if the subject was standing 

misaligned from the base frame on the floor throughout the trial (i.e., not facing 

exactly towards the front, but angled away slightly), then taking the angle calculations 

with respect to the feet rather than the base frame on the floor would null out this 

constant offset error in gamma, should it exist. However, if the subject twists the 

torso during a motion trial, and/or leans during the trial, a foot-mounted reference 

frame would not improve the accuracy of the alpha or gamma measurements in these 

scenarios.  The same errors would occur, where leaning of the subject would cause 

inflation in the value of alpha, etc.  To address this issue, it would be desirable to 

have a reference frame on the torso itself, rather than the feet, to null out these effects.  

  Implementation of a torso-centered reference frame could be performed in 

several ways. One possibility is to use the waist bearing (which was intended for 

visual reference only in this study) to create a plane of best fit at the waist, and to 

define a set of coordinate axes using the markers located on the waist bearing. Two 
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challenges are encountered with this approach, however. First, as the motion of the 

waist bearing was not of primary interest in the scye bearing study, measures were 

not taken to ensure its accuracy. For example, while thumb straps were added to the 

sleeves of the simulated suit to minimize sliding motion of the fabric, such measures 

were not implemented for the waist region of the fabric. As a result, the waist bearing 

does move with the shirt fabric, which slides up/down slightly as the subject raises an 

arm, or may shift left/right as the subject reaches across his/her body, etc. Therefore, 

the measured waist bearing motion has error in that it follows the sliding motion of 

the shirt, which is not always an accurate representation of the motion of the body. It 

would be recommended to implement a method of minimizing the sliding motion of 

the shirt in future experiments, perhaps by having a one-piece tunic with adjustable 

heel straps that can be tightened to ensure the pant legs (and, by extension, the torso 

fabric) are taught, with minimal sliding.   

  The second challenge with using the waist bearing to develop a torso 

reference frame from which the shoulder motion is defined lies in the effect of spinal 

flexure. One example of this is seen during motions in which the subject is leaning to 

the left or right. During such a motion, the spine is not in an upright orientation, but 

forms an arc instead.  Therefore, the angle at the waist bearing is likely to be much 

smaller than that at the shoulders.  For example, if the person leans to the left, there 

may be 10 degrees of pitch measured at the waist bearing (i.e., bottom of the spinal 

arc) and perhaps 25 degrees of alpha (pitch) at the shoulder scye bearings (top of 

spinal arc). A similar effect may be observed for gamma, where if the person twists 

the torso, the spine can resemble a helical shape, such that angular motion at the 
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shoulders in gamma (yaw) is much larger than yaw observed at the waist. Therefore, 

using the waist bearing as the location for the torso reference frame would not fully 

account for the lean/twist occurring at the shoulders. In light of this, it would be 

desirable to have a torso-centered reference frame located at the same height as the 

shoulder joints, to improve the accuracy of measurements of shoulder joint motion. 

  For the purposes of on-Earth testing using the suit simulator developed in this 

research to study scye bearing motion, the author would recommend creating a torso 

reference frame which is centered laterally and located approximately at the same 

height as the scye bearing centers and glenohumeral joints (i.e., level with the 

shoulder joints). To achieve this, the author would recommend placing a vertical line 

of markers along the sternum, and a similar vertical line of markers along the upper 

portion of the spine (perhaps from the bottom of the scapula up to the nape of the 

neck). There will be some spinal flexure, but if taken over a relatively small region, 

and at a location level with the joint of interest, this should be minimal. To 

mathematically define the x, y, and z axes of this torso-centered reference frame, a 

plane of best fit could be defined using the spine and sternum markers. The normal to 

this plane of best fit would represent one axis (say, the torso X axis, pointing outward 

to the person‟s right). Next, a vector can be drawn from the spine to the sternum 

(using average lateral position of the markers, to minimize the effects of spinal 

flexure), to create a forward-facing vector to serve as another axis (for example, the 

torso Y axis).  Finally, an upward-pointing vector (potentially the torso Z axis) can be 

created by taking a cross product of the two previous axes. The arm and scye bearing 
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angles, as well as marker positions, can then be calculated relative to this torso 

reference frame to provide a more accurate motion analysis. 

 5.2.2 Full Torso Motion Studies 

  Additional future work would include characterizing the motion of all of the 

joints in the Morphing Upper Torso, rather than just the scye bearings. To do this, the 

motion of the waist bearing, as well as the helmet interface ring, would need to be 

characterized.  As mentioned previously, the author would recommend improvements 

in the test setup to enhance the accuracy of waist bearing measurements. This would 

include modifications to the suit to reduce sliding of the shirt fabric at the waist 

(perhaps by using a one-piece tunic with heel straps). In addition, careful 

consideration would be needed when determining the attachment location of the waist 

bearing, placing it at a realistic location where an actual waist bearing of the suit 

might be. Furthermore, it would be desirable to investigate other materials or methods 

for simulating the waist bearing. The copper tubing  used in this experiment worked 

well in that it was a malleable material which could be taken on/off easily and 

adjusted to fit each person; however, after bending and unbending a few times, the 

copper tubing was no longer a smooth, planar surface when formed into a curve 

around the person‟s waist. Instead, it formed a somewhat “lumpy” plane, which may 

introduce errors if calculating angles of pitch and yaw from this shape. It was also 

found that the copper tubing has a limited number of cycles before the 

bending/unbending motion leads to failure of the metal and the piece breaks. In a 

future implementation of the waist bearing, it would be preferable to have a material 

that does not become “lumpy” and is durable enough to last through many don/doff 
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cycles. It also needs to retain the ability to be resized between test subjects. One 

possible method for approaching this may be to have two half-elliptical foamcore arcs 

connected by two lengths of detachable, adjustable telescoping rods (one in the front 

torso region, and one in the back). Using foamcore and rods would allow for a planar 

region to be identified, and would hopefully be durable enough to last through many 

don/doff cycles.  Requiring the straight rods to be detachable allows for ease of 

don/doffability, and the telescoping feature would allow the waist bearing to be 

resized to fit each subject. 

  In addition to the waist bearing, motion of the helmet ring would also need to 

be characterized. To do this, a simulated helmet ring would first need to be developed 

and then integrated into the simulated suit. Similar to the waist bearing, the helmet 

ring would need to be resizable, planar, detachable between subjects, and attached at 

a realistic location on the simulated suit. Once the helmet ring and enhanced waist 

bearing have been implemented on the simulated suit, testing can be performed to 

characterized the motion of all four joints of the Morphing Upper Torso (shoulders, 

helmet, and waist), and the relative motion between each can be studied. In addition 

to performing motion tasks which study planar motion of each joint, it would also be 

recommended to study whole torso motions, where the person is intentionally 

leaning, twisting, and reaching, etc., at the same time, to observe the relative motion 

of the torso rings to each other during complex movements, in order to quantify full 

torso motion.  It is likely that a higher level of instrumentation would be needed for 

tracking these complex torso motions, requiring many more markers located on the 

subject‟s torso. One possible arrangement of torso markers might be to place them 
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along the full length of the spine, as well as along the front of the body from sternum 

to belly button, to track torso orientation and flexure. It may also be desirable to have 

a distribution of markers which are offset from the vertical lines of spine and sternum, 

perhaps located along the scapula, ribs, and abdomen, etc. The number and placement 

of markers will have to be selected with moderation, however, as having too many 

markers too close together will make it difficult for the VICON
TM

 cameras to resolve 

individual markers and could lead to errors in data capture. 

  Using this highly instrumented, four-ring torso simulator, it will be desirable 

to characterize not only the full range of motion, but to also develop heuristic models 

which predict the motion of each ring (scye bearings, helmet, and waist) as a function 

of known human body motion. It has been suggested that methods other than Euler 

angles may be useful in characterizing the orientation in future work, such as the 

special Euclidean group SE(3), as an advanced dynamics analysis. Whether Euler 

angles or SE(3) or other methods are used to describe the position and orientation of 

the rings, that data will then be used to develop a correlation between ring pose and 

human body pose. From this mathematical model, a control algorithm can be 

developed which will actuate the parallel manipulators of the Morphing Upper Torso, 

placing each of the four rings into their desired positions and orientations for that 

given human body pose. In addition to the heuristic model, it will be necessary to 

quantify the range of motion as well as the extreme poses of each of the four rings. 

This data can then be input into the inverse kinematics from [2] to calculate minimum 

and maximum linkage lengths between all four torso rings, and, from this, 

requirements for actuator stroke length can be fully defined. Once the actuators are 
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selected, a fully-functioning prototype of the Morphing Upper Torso can be built and 

tested. 

The implications of a morphing spacesuit are intriguing, enabling enhanced 

motion, less fatigue, and a dramatically increased effectiveness and capability of 

astronauts during extra-vehicular activity. Further research in this and other areas 

could potentially enable a suit with those qualities.  Developing the next generation of 

spacesuits is an exciting endeavor, and advancements in spacesuit design are likely to 

play a significant role in enabling humans to explore the Moon, Mars, and beyond. 
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