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The work in this dissertation examines the fluid-structure interaction phenom-

ena in a series of three experimental studies. The first two sets of experiments were

conducted in a large, water-filled pressure vessel with a nominal internal diame-

ter of 1.77 m. Cylindrical shells were made from thin-walled aluminum and brass

tubes with circular cross-sections (internal diameters D) and internal clearance-fit

aluminum end caps. Implosion and explosion events were photographed with a

high-speed camera (27,000 frames per second), and the waterborne pressure waves

resulting from the implosion were measured simultaneously with underwater blast

sensors. The natural implosions were generated by raising the ambient water pres-

sure slowly to a value, Pc, just above the elastic instability limit of the models. For

the models with larger L/D, where L is the internal length of the model, the model

cross sections flattened during the implosion (mode 2). It was found that the ampli-

tude of these mode 2 pressure waves scale with the pressure difference ∆P = Pc−Pi

(where Pi is the internal pressure of the air inside the cylindrical models) and the



time scales with (D/2)
√
ρ/∆P (where ρ is the density of water). The geometry

and material properties of the structure seem to play only a secondary role. Dur-

ing the explosion experiments, the pressure vessel is pressurized to various pressure

levels below the natural implosion pressure of the models and an explosive was set

off nearby. It was found that the implosion is induced by one of two mechanisms:

the shockwave generated by the explosion and the hydrodynamic pressure field of

the explosion bubble during its collapse and re-expansion. In the final experimental

study, the impact of a plunging breaking wave (wavelength ≈ 1.2 m) on a partially

submerged cube (with dimensions L = 0.3048 m) is studied in a wave tank (14.8 m

long). The water free surface shape upstream of the cube before and after the wave

impact was measured with cinematic Laser-Induced Fluorescence (LIF), employing

a high-speed digital camera, a laser light sheet and fluorescent dye mixed with the

water. It was observed that for some cube positions, the free surface between the

front face of the cube and the wave crest forms a circular arc that converges to a

point and forms a high-velocity vertical jet (≈ 3 m/s). Although these problems are

intrinsically different, they are flows dominated by inertial forces (viscous effects are

not important) where a rapidly collapsing interface shape produces high-pressure

waves.



Fluid Structure Interactions: Implosions of Shell Structures and
Wave Impact on a Flat Plate

by

Christine M. Ikeda

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2012

Advisory Committee:
Professor James H. Duncan, Chair/Advisor
Professor Amir Riaz
Professor Balakumar Balachandran
Professor William Fourney
Professor Richard Calabrese, Dean’s Representative



c© Copyright by
Christine M. Ikeda

2012



Acknowledgments

First and most importantly, I would like to thank my advisor, Professor James

H. Duncan, for giving me my first experience conducting research as an undergradu-

ate. Without this opportunity, I would have never found a passion for experimental

research in Fluid Dynamics. Working with him in the last six years has been a

pleasure, and I aspire to be like him.

I would also like to thank my committee members, Professor William Fourney,

Professor Balakumar Balachandran, Professor Amir Riaz and Dean’s Representa-

tive, Professor Richard Calabrese, for their time and feedback on my dissertation and

research. I would also like to acknowledge the other faculty members and staff who

have also helped me over the years: Professor Kenneth Kiger, Professor Santiago

Solares, Professor James Wallace, Ulrich Lieste and Amarildo DaMata.

I also wish to acknowledge my colleagues in the Hydrodynamics lab: Dr. Xinan

Liu, Dr. Mostafa Shakeri, Dr. Eric Maxeiner, Dr. James Diorio, Dr. Mohammadreza

Tavakolinejad, Naeem Nasnadi, Ren Liu, Dan Wang, Nathan Washuta, An Wang

and Karan Parmar. In addition, I would like to acknowledge the help of the following

undergraduate students: Martin Czechanowski, Jens Wilkerling, Christoph Rother,

Ronen Lautman, Steffen Harbarth and Michael Choquette. I would also like to

acknowledge Marcelo Valdez for his assistance in the ANSYS calculations.

Finally, I would like to thank my family and friends for their support.

ii



Table of Contents

List of Tables v

List of Figures vi

1 Introduction 1

2 The Implosion of Cylindrical Shell Structures in High-Pressure Water 5
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Present Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 High-Pressure Experimental Facility . . . . . . . . . . . . . . 14
2.3.2 Cylindrical Shell Structures: Brass, Aluminum . . . . . . . . . 16
2.3.3 High-Frequency Pressure Measurements . . . . . . . . . . . . 23
2.3.4 High-Speed Photography . . . . . . . . . . . . . . . . . . . . . 24
2.3.5 Test Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.6 Plan of Experiments . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.1 Natural Implosions: Mode 2 . . . . . . . . . . . . . . . . . . . 30
2.4.2 Natural Implosions: Constant Available Energy . . . . . . . . 47
2.4.3 Natural Implosions: Constant P, Constant V . . . . . . . . . . 52

2.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 56

3 The Explosion-Induced Implosion of Cylindrical Shell Structures in High-
Pressure Water 61
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.1 Underwater Explosions . . . . . . . . . . . . . . . . . . . . . . 62
3.2.2 Explosions and Gas Bubbles in Proximity to Rigid Structures 65
3.2.3 Present Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.3.1 Explosives: Reynolds Detonators . . . . . . . . . . . . . . . . 71
3.3.2 High-Frequency Pressure Measurements . . . . . . . . . . . . 72
3.3.3 High-Speed Photography . . . . . . . . . . . . . . . . . . . . . 74
3.3.4 Test Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.3.5 Plan of Experiments . . . . . . . . . . . . . . . . . . . . . . . 77

3.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.4.1 Explosion-Induced Implosions: Re-entrant Jet . . . . . . . . . 79
3.4.2 Explosion-Induced Implosions: Stand-off Distance . . . . . . . 81
3.4.3 Explosion-Induced Implosions: Aluminum Cylindrical Models 90
3.4.4 Explosion-Induced Implosions: Investigation of Failure Mech-

anisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

iii



3.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 98

4 The Impact of a Plunging Breaker on a Partially Submerged Cube 101
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.2.2 Present Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.3.1 Deep-Water Wave Experimental Facility . . . . . . . . . . . . 109
4.3.2 Wave Generation Technique . . . . . . . . . . . . . . . . . . . 111
4.3.3 Wave Profile Measurements . . . . . . . . . . . . . . . . . . . 114
4.3.4 Repeatability of Wave Generation . . . . . . . . . . . . . . . . 119
4.3.5 Plan of Experiments . . . . . . . . . . . . . . . . . . . . . . . 120

4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.4.1 Region I Results . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.4.2 Flip-Through Behavior . . . . . . . . . . . . . . . . . . . . . . 127
4.4.3 Region II: Position 4 . . . . . . . . . . . . . . . . . . . . . . . 139
4.4.4 Contact Point . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 149

5 Summary of Conclusions and Contributions 152
5.1 The Natural Implosion of Cylindrical Shell Structures in High-Pressure

Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.2 Explosion-Induced Implosion of Cylindrical Shell Structures . . . . . 153
5.3 The Impact of a Plunging Breaker on a Partially Submerged Cube . . 155

A Natural Implosion Figures 157

B Natural Implosion Figures 176

Bibliography 184

iv



List of Tables

2.1 Summary of Implosion Experiments . . . . . . . . . . . . . . . . . . . 31

3.1 Summary of Explosion-Induced Implosion Experiments . . . . . . . . 78

3.2 Failure Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.1 Summary of Cube Locations . . . . . . . . . . . . . . . . . . . . . . . 122

A.1 Summary of Implosion Experiments . . . . . . . . . . . . . . . . . . . 158

v



List of Figures

2.1 Plot of Southwell Theory for Elastic Instability Limit . . . . . . . . . 8

2.2 Plot of Sturm Theory for Elastic Instability Limit . . . . . . . . . . . 13

2.3 Experimental Facility: High-Pressure Tank . . . . . . . . . . . . . . . 17

2.4 Schematic of Cylindrical Models . . . . . . . . . . . . . . . . . . . . . 18

2.5 Lathe set up for drawing grid lines on a cylindrical model. . . . . . . 19

2.6 Schematic of Out-of-Roundness test set up. . . . . . . . . . . . . . . . 20

2.7 Schematic of Pressure Sensor Configuration . . . . . . . . . . . . . . 24

2.8 Theory for Elastic Instability Limit compared with Experiments . . . 27

2.9 Theoretical PcV Computation . . . . . . . . . . . . . . . . . . . . . . 29

2.10 B2D25r2: Pressure Waves and Images of Implosion . . . . . . . . . . 32

2.11 B2D16r1: Pressure Waves and Images of Implosion . . . . . . . . . . 33

2.12 A2A2r2: Pressure Waves and Images of Implosion . . . . . . . . . . . 34

2.13 A2A3r2: Pressure Waves and Images of Implosion . . . . . . . . . . . 35

2.14 Comparison of Pressure Waves (Mode 2) . . . . . . . . . . . . . . . . 37

2.15 Orientation of collapse with peak pressure . . . . . . . . . . . . . . . 38

2.16 Pressure Contours (Mode 2) . . . . . . . . . . . . . . . . . . . . . . . 40

2.17 Pressure Contours (Mode 2) . . . . . . . . . . . . . . . . . . . . . . . 41

2.18 Pressure Contours (Mode 2) . . . . . . . . . . . . . . . . . . . . . . . 42

2.19 Comparison of all mode 2 results . . . . . . . . . . . . . . . . . . . . 43

2.20 Scaled Pressure Waves for Mode 2 . . . . . . . . . . . . . . . . . . . . 45

2.21 Peak Pressure versus Mass Ratio . . . . . . . . . . . . . . . . . . . . 46

2.22 B3D25r1: Pressure Waves and Images of Implosion . . . . . . . . . . 48

2.23 B4D25r1: Pressure Waves and Images of Implosion . . . . . . . . . . 49

vi



2.24 Comparison of Cylindrical Models of Constant Available Energy . . . 51

2.25 Pressure Contours: Mode 3 and 4 . . . . . . . . . . . . . . . . . . . . 52

2.26 Photo of imploded cylindrical models . . . . . . . . . . . . . . . . . . 53

2.27 Scaled Pressure Waves for Constant Available Energy Cylindrical
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.28 Comparison of Constant Pc, Constant PcV . . . . . . . . . . . . . . . 55

2.29 Scaled Pressure Waves for Constant Pc, Constant PcV Cylindrical
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1 Pressure Sensor Configuration: Preliminary . . . . . . . . . . . . . . 74

3.2 Second and third pressure sensor configurations for the explosion ex-
periments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3 Sequence of events: Preliminary . . . . . . . . . . . . . . . . . . . . . 80

3.4 Preliminary Pressure Waves . . . . . . . . . . . . . . . . . . . . . . . 82

3.5 Summary of experiments of varying stand-off distances . . . . . . . . 83

3.6 Pressure records for experiments of varying stand-off distances . . . . 85

3.7 Run-to-run comparison of pressures . . . . . . . . . . . . . . . . . . . 87

3.8 Sequence of events for BE05r02 . . . . . . . . . . . . . . . . . . . . . 88

3.9 Pressure records for BE05ro2 . . . . . . . . . . . . . . . . . . . . . . 89

3.10 Pressure records for aluminum cylindrical models . . . . . . . . . . . 91

3.11 Sequence of events for AE05r01 . . . . . . . . . . . . . . . . . . . . . 93

3.12 Sequence of events for AE05r02 . . . . . . . . . . . . . . . . . . . . . 94

3.13 Sequence of events for AE05r03 . . . . . . . . . . . . . . . . . . . . . 95

4.1 Experimental Facility: Wave Tank . . . . . . . . . . . . . . . . . . . . 111

4.2 Wave Packet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.3 Calibration image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

vii



4.4 Camera calibration curve . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.5 Edge-detection example . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.6 Water surface height versus time at two locations in wave tank . . . . 121

4.7 Sequence of events: Cube Position 1 . . . . . . . . . . . . . . . . . . . 124

4.8 Sequence of events: Cube Position 2 . . . . . . . . . . . . . . . . . . . 125

4.9 Sequence of events: Cube Position 3 . . . . . . . . . . . . . . . . . . . 126

4.10 Water Surface Profiles: Position 1, run 1 . . . . . . . . . . . . . . . . 128

4.11 Water Surface Profiles: Position 2, run 2 . . . . . . . . . . . . . . . . 129

4.12 Water Surface Profiles: Position 3, run 2 . . . . . . . . . . . . . . . . 130

4.13 Water Surface Profiles: Position 1 . . . . . . . . . . . . . . . . . . . . 131

4.14 Water Surface Profiles: Position 2 . . . . . . . . . . . . . . . . . . . . 132

4.15 Water Surface Profiles: Position 3 . . . . . . . . . . . . . . . . . . . . 133

4.16 Water Surface Profiles: Region I . . . . . . . . . . . . . . . . . . . . . 135

4.17 Circular arcs: Position 1 . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.18 Circular arcs: Position 2 . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.19 Circular arcs: Position 3 . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.20 Time evolution of radius and position of circular arcs . . . . . . . . . 140

4.21 Sequence of events: Position 4 . . . . . . . . . . . . . . . . . . . . . . 141

4.22 Water Surface Profiles: Position 4, run1 . . . . . . . . . . . . . . . . . 142

4.23 Water Surface Profiles: Position 4 . . . . . . . . . . . . . . . . . . . . 143

4.24 Contact Point Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.25 Contact point vertical velocity . . . . . . . . . . . . . . . . . . . . . . 146

4.26 Contact point acceleration . . . . . . . . . . . . . . . . . . . . . . . . 147

4.27 Contact point height and vertical velocity compared . . . . . . . . . . 148

viii



A.1 B2D25r2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.2 B2D25r1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A.3 B2D25r3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A.4 B2D16r1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

A.5 B2D16r2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

A.6 B2D16r3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

A.7 A2A2r1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

A.8 A2A2r2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

A.9 A2A2r3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

A.10 A2A2r4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

A.11 A2A2r5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

A.12 A2A3r1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

A.13 A2A3r2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

A.14 B3D25r1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

A.15 B3D25r2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

A.16 B4D25r1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A.17 B4D25r2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

B.1 B4D25r3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

B.2 B4D25r4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

B.3 B4D25r5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

B.4 B4D25r6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

B.5 B4D25r7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

ix



Chapter 1

Introduction

Fluid-structure interaction phenomena are very common in nature. However,

the underlying physics of these interactions is not as well understood due to their

complex nature. The work in this dissertation studies small piece of the fluid-

structure interaction field in a series of three experimental studies: (1) the natural

implosion of cylindrical shell structures in a high-pressure water environment, (2)

the explosion-induced implosion of cylindrical shell structures in a high-pressure

water environment, and (3) the impact of a deep-water plunging breaking wave

on a partially submerged rigid cube. Although these three physical problems are

intrinsically different, they share some physical features. The first feature is that

there is a rapidly collapsing interface shape that produces high-pressure waves. The

second feature is that each flow is dominated by inertia forces and viscosity is not

important.

For the natural implosion of cylindrical shell structures, to be discussed in

Chapter 2, a cavity of air is surrounded by a thin cylindrical structure, which is

in turn surrounded by high-pressure water. The collapse of this cavity involves

the buckling of the structure. The generated pressure waves during the natural

implosion event have contributions from both, the structure and the air cavity. The

impact of the collapsed walls of the cylinder against each other, as well as the collapse
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of the air cavity produce a distinct pressure pulse.

Typical time scales of these implosion events are on the order of 1 ms. The

growth rate of the boundary layer surrounding the cylindrical structure can be

estimated as δ ∼
√
νt, where ν is the kinematic viscosity. Using a value of ν =

1.004× 10−6 m2/s for water at 20◦C, the final thickness of this boundary layer after

the implosion event is estimated at 1 µm.

The explosion-induced implosions of cylindrical shell structures, to be dis-

cussed in Chapter 3, involve two cavities of gas. The first cavity is the air surrounded

by the thin metallic structure, and the second cavity is the explosive gas bubble cre-

ated during the explosion event. The pressure waves resulting from the explosion

event include a distinguishable shockwave front and several pressure oscillations due

to the multiple cycles of collapse and re-expansion of the explosion gas bubble and

reflections from the tank walls. Pressure waves also result from the collapse of the

cylindrical structure and internal air cavity.

The time scale of the shockwave is typically on the order of 1 ns, while the

time-scale of the implosion is again on the order of milliseconds. An estimate of

the boundary layer growth over the time duration of an explosion is 31.7 nm. This

value is a conservative estimation since, in actuality, the local temperature of the

water near the structure is increased as a consequence of the explosion event. This

increased temperature corresponds to a decreased kinematic viscosity (for example,

0.326× 10−6 m2/s for water at 90◦C), and thus, the boundary layer would be even

thinner.

Finally, when a deep-water plunging breaking wave impacts the front face of a

2



partially submerged cube, the presence of the wall causes the wave breaking event to

change. During this event, the crest of the wave steepens as it approaches the wall,

and the water level between the cube and the crest increases, creating a circular

arc. This arc closes as the wave crest progresses toward the wall. In some cases,

the wave crest begins to break and curl over, closing the circular arc and entrapping

air. The focusing of this circular water surface into a smaller and smaller arc is

accompanied by high accelerations and high pressure gradients. The impact of the

wave on the front face of the cube produces a strong peak pressure on the cube,

and this is usually accompanied by a strong vertical jet of water. The air cavity in

question is only partially closed and is bounded by the front face of the cube and

the free-surface of the water. The time scale of the wave impact event is on the

order of 0.1 s. An estimate of the boundary layer growth over the time duration of

the wave impact is 0.45 mm.

For the three different physical events, the time scales are short enough that

viscous diffusion does not have time to affect the physics of the flow. As described

above, the thickest boundary layer is encountered on the surface of the cube im-

pacted by a plunging wave and is estimated to be less than 0.5 mm. The thinnest

boundary layer, developing on the surface of a collapsing cylindrical shell subject

to a nearby explosion, was of the order of nanometers. In comparison to the length

scales of the structures (17 mm to 31 mm for the cylindrical shell structures and

31 cm for the cube), the boundary layer is negligible.

This dissertation is a combination of three projects that shall be discussed in

Chapters 2, 3, and 4. The first project is on the natural implosion of cylindrical shell
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structures in high-pressure water (Chapter 2). The second project is a continuation

of the first project and examines the implosion of cylindrical shell structures in high-

pressure water due to a nearby explosion ( Chapter 3). The final project is on the

impact of a plunging breaking wave on a partially submerged cube in deep water

(Chapter 4). Finally, Chapter 5 shall discuss the main conclusions obtained from

these projects.
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Chapter 2

The Implosion of Cylindrical Shell Structures in High-Pressure Water

2.1 Abstract

The implosion of cylindrical shell structures in a high-pressure water environ-

ment was studied experimentally. The shell structures are made from thin-walled

aluminum and brass tubes with circular cross sections and internal clearance-fit alu-

minum end caps. The internal diameters of the tubes ranged from 15-mm to 40-mm

diameters (D) and the internal length-to-diameter ratios (L/D) were between 2.3

and 10. The models were filled with air at atmospheric pressure, Pi. The implosions

were generated in a high-pressure tank with a nominal internal diameter of 1.77 m

by raising the ambient water pressure slowly to a value, Pc, just above the elastic

instability limit of each shell structure. The implosion events were photographed

with a high-speed digital movie camera and the pressure waves were measured si-

multaneously with an array of underwater blast sensors. For the models with larger

L/D, the tubes flatten during implosion (with a mode 2 cross-sectional shape). In

these cases, it was found that the pressure wave profiles primarily scale with the

pressure difference ∆P = Pc − Pi and the time scale (D/2)
√
ρ/∆P , where ρ is the

density of water, with the details of the structure producing only secondary effects.

For models with smaller L/D, the tubes imploded with modes 3 and 4, meaning

that 3 or 4 lobes were formed in the final cross-sectional shape. Even when these
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geometries were chosen to have the same available energy (PcV , where V is the

internal volume of air inside the cylindrical shell), the pressure wave profiles did not

scale using fluid properties.

2.2 Introduction

2.2.1 Literature Review

The collapse or implosion of cylindrical shell structures produces high-frequency

pressure waves that can cause damage to nearby structural elements. Predictions of

the onset of elastic instability and critical mode number based on linear theory for

simple shell structures (spheres and cylinders) have been available from the 1850s

for the application of boiler flues during the Industrial Revolution. In the first

experiments, only cylindrical pipes with very long aspect ratios were of interest.

Fairbairn’s [29] study, the first of its kind, investigated the effect of tube strength

with respect to variations in length, diameter, and wall-thickness. The empirical

expression Fairbairn found for the strength of the tube is

Pc = C
w2.19

LD
, (2.1)

where Pc is the collapse pressure, w is the wall thickness, L is the length, D is the

diameter, and C is an experimentally determined constant [29]. Due to manufac-

turing limitations, the cylindrical models tested were not uniform in wall thickness

or roundness [12].

Basset [4], Bryan [7], Carman [10] and Stewart [55] predicted theoretically

6



the elastic instability limit for infinitely long cylinders using energy methods. Bas-

set pointed out that the correct mathematical expressions for the potential energy

terms were not known due to the mathematical definition of the problem. While an

approximation can be made, the exact energy terms cannot be defined.

Carman [10, 13, 11] found that there is a critical length above which the

collapse pressure is a constant and no longer dependent on the length of the tube.

Carman [11] ran an extensive set of experiments on shorter length tubes, varying the

ratio of w/D for different diameter tubes of steel, brass, aluminum, hard rubber, and

glass. It is important to note that the experimentally determined collapse pressure

for a given tube design was not repeatable because the manufacturing procedures

at that time were not capable of producing repeatable tubes.

Using energy methods, Southwell [52, 53, 54] derived an expression for the

elastic instability limit with a dependence on mode number

Pc = 2E
w

D

[
π4

16n4(n2 − 1)
· D

4

L4
+

1

3ν2 (M2 − 1)
·
(
1/ν2 − 1

) w2

D2

]
, (2.2)

where E is the elastic modulus, ν is Poisson’s ratio, and M is the total mass. This

expression yields multiple solutions, (i.e., a family of curves, one curve for each mode

number) for a given length and wall thickness, see Fig 2.2, which contains a plot of

Pc versus L, for a single set of values for E, ν, M , and w. Mode 2 (n = 2, the lowest

mode) occurs when the cross-section becomes flat and exhibits two lobes. Mode

3 (n = 3) occurs when the cross section contains 3 lobes that are ideally equally

spaced and so on. As can be seen in the figure, as the pressure in raised for a given

tube design, the mode number and collapse pressure are given by the curve with the
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Figure 2.1: Family of curves from Southwell Theory (solid lines) and hyperbola
envelope (dashed line) for the conditions of E = 16.6× 106 psi, ν = 0.33, D = 1 in
and w = 0.013 in.

lowest pressure at the given value of L. Southwell also found an approximation (for

easier calculation) to these curves by enveloping the curves with one hyperbola (see

Fig. 2.1), which is

Pc =
8
√

6π

27

E

(1− ν2)3/4
(w/D)5/2

L/D
. (2.3)

Southwell’s investigation gave the first complete theoretical explanation of the lobes

into which the model collapsed.

Careful experiments performed by Cook [18] validated the theoretical predic-

tion from Southwell [53]. Additionally, Southwell and Cook [18, 19] concluded that

tubes with infinitely low ratios of L/D could not collapse purely by this instability.

In fact, von Sanden and Günther [51] found through a theoretical investigation that

the collapse of a very short tube, with L/D < 0.2, is brought on by high-stress

regions adjacent to the supports exceeding the proportional limit and causing the
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tube to fail by yielding.

R. von Mises [59] was the first to develop a theory for the collapse of short

tubes under both axial and radial loading conditions. Until this point, only radial

loading had been considered [51]. The theory from von Mises, considering only

simply-supported end conditions, was derived from the theory of elasticity. His

result is shown below:

Pc =


1

3

[
n2 +

(
πD

2L

)2
]2
− 2ν1n

2 + ν2
2E

1− ν (w/D)3 +
2E(w/D)

[n2( 2L
πD

)2 + 1]2


 1

n2 − 1 + 1
2

(
πD
2L

)2 ,

(2.4)

where

µ1 =
1

2
[1 + (1 + ν) ρ] [2 + (1− ν) ρ] , (2.5)

µ2 = (1− ρν)
[
1 + (1 + 2ν) ρ−

(
1− ν2

) (
1 +

1 + ν

1− ν ρ
)
ρ2
]
, (2.6)

and

ρ =
1

n2
(

2L
πD

)2
+ 1

. (2.7)

Because it was difficult without computers or calculators to evaluate the complex

expression he derived, he also developed approximations to the equation [59, 61].

In the early 1930s, the US Navy became interested in applying the knowledge

of the collapse of shells to submarine design. Experiments conducted at the U.S.

Experimental Model Basin by Saunders and Windenburg [51, 61] were compared

to the theoretical predictions of Southwell [52, 53, 54] and von Mises [59] and were

used to develop new empirical formulas for the collapse pressures of cylindrical shell

structures of low aspect ratio. They found that the von Mises prediction was the

most accurate of the theories. Windenburg et al. [51, 61] also studied the effect of
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imperfections in the circular cross sections of the cylindrical models and found that

almost no reduction in the collapse pressure occurs if variations in the radius of the

cylinder at all points do not exceed the wall thickness of the model.

Further research was put forth by Sturm [56], who provided a very rigorous

derivation of the collapse pressure of a cylindrical shell under radial and axial load-

ing. The cases for fixed end conditions were derived from the stress equilibrium

equations and are shown below:

Pc = rKE
(
w

D

)3

=

(
K1 +K2

D2

w2

)
E
(
w

D

)3

, (2.8)

where

K1 =
2

3

n2{n2λ22 − ν(λ2 − 1)− 1}+ α2−1−ν
α2λ2

[n2{1 + (λ2 + 1)(2− ν)} − 1]

F2(1− ν2)
, (2.9)

K2 =
2

α2
2F2

, (2.10)

F2 = n2 − 1 +
1

α2
2

− ν

λ2α2

+
I

R2(1− ν2)wλ2α2

[n2{1− (λ2 + 1)(2− ν)}

−1][α2 − 1− ν + (1− PaR

Ew
){α2(1− ν2)− (1 + ν)2}], (2.11)

λ2 =
π2R2

n2b2L2
− 1, (2.12)

α2 =
n2b2L2

π2R2
− 1, (2.13)

r =
F

F + π2R2/2L2
, (2.14)

R = D/2 is the radius, I is the moment of inertia, Pa is the pressure load on the

ends, and b ∼= 0.664 is the constant which is evaluated from the end conditions.

Sturm verified his theory experimentally.
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Finally, in the late 1990s to present day, research has been conducted on

cylindrical models to understand the pressure wave pulses generated by the collapse

of cylindrical shell structures [28, 43, 58, 38, 22], the collapse propagation along a

long tube [38, 22], and the examination of the effect of defects in the cylindrical

shell structures [30, 28, 43, 41, 22].

Park and Kyriakides [43] studied the collapse of stainless steel cylinders that

were dented to various degrees. The dents reduced the local resistance to collapse,

and larger dents were found to lower the collapse pressure due to the effect on

the deformation of the cross-section of the cylinder. Dyau and Kyriakides [28]

experimented with the propagation pressure of long cylindrical shells under external

pressure. A long cylindrical shell model with a local imperfection can lead to a local

collapse when exposed to external pressure. The propagation pressure is defined as

the lowest pressure at which the local collapse will propagate.

Turner [58] conducted experiments with thin-wall glass spheres in order to

determine the influence of failure on pressure waves. The models were forced to

fail using a mechanical indentation device. The results from these experiments were

compared to a computational fluid-structure interaction model and had reasonable

agreement.

2.2.2 Present Work

Due to both the large amount of deformation in the solid material (small linear

deformation assumptions do not apply) and the large motion of the fluid-structure
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interface, the process of the implosion (after the implosion is initiated due to the

elastic instability) is not well understood or predicted. The time history of the

pressure waves generated from the collapse of the structure is not easily predicted

theoretically or numerically.

The research described in this chapter seeks to expand on the previous stud-

ies. Three laboratory-scaled experimental studies were conducted to understand the

generation of pressure waves during the collapse process for cylindrical shell struc-

tures immersed in a high-pressure water environment. The first study explores the

effects of model geometry and material on the implosion of models that collapse in

a mode 2 shape. In the second study, mode 2, 3 and 4 implosions are compared for

models created with the same 25.4-mm diameter brass-260 tube stock and lengths

chosen such that the available energy of the implosion (PcV , where Pc is the ambi-

ent collapse pressure and V is the volume of air in the cylindrical shell structure) is

constant; shorter cylindrical shell structures (with lower internal volume, V ) require

higher ambient pressures (Pc) to become elastically unstable than for longer cylin-

drical shell structures (with larger V). In the final study mode 2 and 4 implosions

are compared for models made from brass 260 alloy tube stock with two diameters

and lengths such that the constant available energy of the implosion (PcV ) is the

same for both model designs as are the collapse pressure (Pc) and the volume of air

inside the cylindrical shells (V ). The dynamic pressure waves generated by the im-

plosions were compared within these three studies, and high-speed movies provided

simultaneous information about the structural deformation and motion during the

implosions.
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for radial and axial loading of a cylindrical shell structure with fixed end conditions,
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2.3 Experimental Details

Two types of experiments are conducted to study the collapse of cylindrical

shell structures in high-pressure water. The first is natural implosion, which occurs

when the ambient pressure in the experimental facility is raised above the elas-

tic instability limit of a given geometry and material of a hollow cylindrical shell

structure. Once the elastic instability limit is reached, the model becomes unstable

and begins to collapse inward. The mode in which it collapses to is determined by

the theory given in Sec. 2.2. The second experiment consists of explosion-induced

implosions (to be discussed in Chapter 3).

Both experiments are conducted in the high-pressure experimental facility

(Sec. 2.3.1). The cylindrical shell models that are used in both experiments are

fabricated from thin-walled brass and aluminum hollow cylinders (to be discussed

in Sec. 2.3.2). For both experiments, high-frequency pressure measurements are
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taken with piezoelectric pressure sensors (Sec. 2.3.3), and high-speed photography

is used to understand the implosion process (Sec. 2.3.4).

2.3.1 High-Pressure Experimental Facility

The implosion experiments were conducted in a steel high-pressure tank that

consists of a vertically oriented cylindrical middle section (height 0.85 m, internal

diameter 1.77 m and wall thickness) capped by “elliptically” shaped top and bottom

sections, see Fig. 2.3 (a) and (b). The maximum internal height of the tank is 1.77 m.

The tank is rated for static internal pressures up to 40 bar (gauge). There are 10

window ports with diameters of 10.2 cm in the tank walls; eight of the ports are

located on the circular horizontal mid-plane of the tank, while two ports are located

on the top, see Figs. 2.3 (b) and (a), respectively. During the experiments, three

of the ports along the mid-plane of the tank were fitted with glass windows while

the other seven were fitted with steel plates. There are also two 50.8-mm diameter

openings, one in the top of the tank and one in the bottom. The opening at the

bottom is fitted with a ball valve and is used for draining the tank. The opening

at the top is fitted with a piping tree used for filling the tank with water and

high-pressure nitrogen gas. The nitrogen gas was used to increase the pressure of

the air above the water surface of the tank. The pressure in the water at the free

surface inside the tank is the same as that in the air-nitrogen gas while, due to

the hydrostatic pressure gradient, the pressure at the bottom of the tank is about

0.18 bar higher due to the hydrostatic pressure gradient. In all cases herein the
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pressure in the nitrogen gas is reported as Pc.

The piping tree at the top of the experimental facility, schematically shown

in Fig. 2.3 (a), is connected to the water inlet opening at the top of the tank. The

piping tree includes openings for the nitrogen gas inlet and gas outlet (not shown).

The inlet and outlet are controlled by two solenoid valves. The system was designed

so that supplying electrical power to both valves opens the inlet and closes the

outlet, thus allowing nitrogen gas to enter the facility and increase the ambient

pressure. When power is not supplied to the valves, the inlet valve is closed and the

outlet valve is open, allowing the nitrogen gas to leave the facility, thus decreasing

the ambient pressure in the facility to that in the laboratory. Additionally, there

are two ambient pressure sensors connected to the piping tree. The first one is a

slow-response pressure transducer (Honeywell, Model TJE, Range 0 to 1,000 psig,

resolution 1 psi) that is read by the data acquisition computer and a digital read-out

box. The second pressure sensor is a mechanical dial sensor, for back up. Finally,

there is a pressure-relief safety valve, which would be opened if the ambient pressure

inside the facility is greater than 41 bar.

A quick-opening manhole on the side of the tank (not shown) allows for access

to the interior for the placement of models and pressure probes. The models and

measurement equipment were suspended inside the tank on fishing lines (monofila-

ment nylon, rated for a tension load of 178 N), which were attached to 12 eye bolts

welded to the inside surface of the tank. Cables for the pressure sensors entered

the tank via high-pressure feed-through fittings that were placed in ten 25.4-mm-

diameter couplings located on the bottom of the tank.
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It is important to consider acoustic reflections inside the tank during the im-

plosion experiments. If an imaginary sphere of radius 0.885 m were centered inside

the tank, it would touch the tank walls along a circle at the mid-plane of the cylin-

drical middle section of the tank and at single points on the top and bottom. The

remaining parts of the internal surface of the tank are farther than 0.885 m from

the tank center. (The longest distance from the center to a point on the wall is

≈ 0.92 m.) Given a sound wave speed in water of 1482 m/s at 20◦ C, the acoustic

reflection time for a wave traveling from the center of the tank to the closest points

on the tank wall and back to the center is approximately 1.19 ms. However, since

the remainder of the internal surface is farther from the tank center and since the

tank wall internal surface normals are not directed toward the center, most of the

energy from spherical pressure waves generated at the center of the tank return after

multiple reflections with reduced amplitude and spread out in times greater than

1.19 ms. Reflections from the internal surface of the tank come back with a positive

amplitude while reflections from the free surface return with a negative amplitude.

2.3.2 Cylindrical Shell Structures: Brass, Aluminum

The cylindrical models were assembled from thin-walled tubes, end caps, wash-

ers, and screws. Fig. 2.4 shows a schematic drawing of the arrangement of the tube

and end caps. To construct a model, the tube was first cut to length, Lt, using

a lathe. To mount the tube in the lathe without deformation from the clamping

pressure, a collet with a diameter slightly larger than the outer diameter of the
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Figure 2.3: Experimental facility: (a) Steel high-pressure tank with piping tree
shown on top. There are 10 window ports and a quick-opening manhole. Solenoid
valves control the flow of compressed nitrogen gas into the facility. (b) Schematic
showing the set up of the camera and lights. This is a plan view of the experimental
facility. The circle at the center of the tank shows the position of the cylindrical
model. The camera views the implosion event through one of the 8 window ports on
the midplane of the facility. Two high-intensity flood lamps (650 W) are placed at
the two windows adjacent to the one used for the camera. The remaining window
ports have steel plates installed.
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Figure 2.4: Schematic of Cylindrical Models. A tube is first cut to length, Lt =
L + Do, where Do is the outer diameter of the tube, Lt is the cut length, and L is
the length of air inside the cylindrical model, measured endcap to endcap. Endcaps
are fabricated that have a clearance fit with the inner diameter of the model and
have a penetration depth of 0.5Do.

tube was used with a thin layer of tape ensuring a snug fit around the tube. The

collet was used to insure that the pressure holding the piece in the lathe was evenly

distributed. The cut was performed slowly so the pipe did not bend, and both ends

were faced off so the ends of the cylinder are perpendicular to the axis of the tube.

The end caps were fabricated on the lathe from an aluminum 6061 rod that was

≈ 3 mm larger in diameter than the outer diameter of the tube (Drod = 3 mm+Do).

A hole was drilled through the axis of each end cap and tapped with a 1/4”-20

thread. The diameter of a 0.5Do-long portion of each end cap was then cut down

to the inside diameter of the tube, Di, minus a small amount, to yield a clearance

fit when the cap was forced into the end of the tube, see Fig. 2.4. Therefore, the

total length of each thin-walled tube was Lt = L+Do, where L is the length of the

internal air-filed portion of the tube after inserting the end caps. To insure that

no water could enter the model through the clearance fit, a small layer of silicon
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Figure 2.5: Lathe set up for drawing grid lines on a cylindrical model.

sealant was applied to the end cap during installation. After the end caps were

installed, a 1/4”-20 drilled-head screw was placed in each end cap and sealed with

the silicon sealant. Each screw had a 1/16”-diameter hole through its head in the

direction normal to the screw axis for mounting the model in the tank. A thin-layer

of white paint was sprayed on the outer surface of the tube between the end caps.

An ultrafine black marker was used to draw a finely spaced grid (of squares 6.35 mm

by 6.35 mm) on the painted tube surface using the lathe, while spinning it manually

(see Fig. 2.5).

Each cylindrical model was mounted vertically in the center of the tank using

fishing lines threaded through the holes in the two screw heads on the model and the

eye bolts on the inside surface of the tank. The cylindrical models were primarily

constrained in the vertical direction, so the model could move horizontally and

deform freely during the implosion event.

The outer diameters of the tubes were measured both before and after the

tubes were cut to length. In the first experiments, the diameters were measured

photographically and in the later experiments they were measured using a microm-
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Figure 2.6: Schematic of Out-of-Roundness test set up.

eter. A reference line was first drawn onto the tube along its axis before being

cut-to-length. The diameter was measured at axial distances spaced 150 mm apart

before the tubes were cut and 25 mm apart after they were cut. These measurements

were made at 12 equally spaced angular positions around the tube. Comparison of

the measurements before and after cutting revealed that there was no measurable

change in tube diameter or cross-sectional shape caused by the cutting process.

Fig. 2.6 shows a schematic of the photography technique for measuring the

diameter of the tube. The tube, with one end cap assembled without silicon, was

attached to a pivoting table with angular tick-marks. A flood light was used to

back-light the tube with a white diffusive sheet between the flood lamp and the

tube in order to create uniform lighting. A digital SLR (Nikon D1X) camera with

a telephoto lens (200 mm focal length) was placed on the opposite side of the tube.

The telephoto lens was used to move the camera farther away from the model and

thus reduce distortion of the geometry in the images. Still images were taken at

angular positions around the tube and at axial distances along the tube described
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in the previous paragraph. The majority of pixels in each frame contained the

entire diameter of the tube to increase the sensitivity. A calibration piece of known

diameter was taken before each set of images. Once the images were taken, the

still frames were post-processed using a gradient-based edge detection technique in

Matlab. This photographic method of measuring tube diameter was sensitive to the

camera focus and the threshold values chosen for the edge detection algorithm. This

method was also found to be time consuming and not more accurate than simply

measuring the diameters with a micrometer.

The digital micrometer was used instead of calipers, because the micrometer

contact surfaces consist of two parallel plates. These plates allowed the measurer

to insure that the measurement was done perpendicular to the curvature of the

tube, because the parallel plates had to be positioned tangent to the tube wall.

The micrometer chosen was designed to apply constant force during measurement

to insure that the tube was not deformed while being measured and that the mea-

surements were repeatable. The measurement time was much shorter than that of

the photographic technique.

Attempts to measure the tube wall thickness were made using both an ultra-

sonic device and a micrometer with a ball-tip attachment. The ultrasonic device

(GE Krautkramer CL 5) was used once the paint and grid were present on the

surface of the cylindrical model and measured wall thicknesses at the points of in-

tersection of the finely spaced grid. The ultrasonic device sends a sound wave into

the material through a probe placed on the surface of the model. The sound wave is

reflected back into the probe after hitting the inner tube surface due to the change
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in acoustic impedance of the metal to air interface. Based on the known wave speed

in the material and travel time of the wave, the thickness (half of the distance trav-

eled) is determined. The thin layer of paint is ignored based on the low acoustic

impedance of the paint compared to the metal. The accuracy of the ultrasonic

gauge is calculated to be ±0.0025 mm (or 0.0001 in). The ultrasonic measurements

did not work well, probably because of the high surface curvature and thin tube

wall (w). These factors resulted in an inability to determine that the probe was

placed perpendicular to the surface of the cylindrical model and erratic results were

obtained. These measurements were also time consuming.

Given the difficulties with the ultrasonic measurement device, a micrometer

with a ball-tip attachment was used to measure the wall thickness of the cylindrical

models. The ball tip was placed on the inside surface of the tube to allow for one

point of contact on the interior of the tube, while the outside surface was in contact

with the parallel plate consistent with standard micrometer design. However, mea-

surements could only be made at the tube ends because of the physical limitations

of micrometers. Since the end caps penetrate 0.5Do into the tubes, the micrometer

measurements are not made over the central air-filled section of the tube. Measur-

ing the thickness on the tubes after they were cut gave insight into the thickness

distribution along the manufactured tube stock from which the tubes were cut. The

wall thicknesses were measured near each end of the tube at 3 locations (separated

by increments of 6.35 mm along the axis) and at increments of 20◦ around the tube.
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2.3.3 High-Frequency Pressure Measurements

The ambient water pressure in the tank was obtained from measurements of the

pressure of the nitrogen gas using a slow-response pressure transducer (Honeywell,

Model TJE, Range 0 to 1,000 psig, resolution 1 psi). This sensor was calibrated by

the manufacturer before and after the experiments were performed. The calibration

curve changed by less than 0.3% at typical operating pressures (7 bar to 25 bar).

Due to the hydrostatic pressure gradient in the water, the pressure at the model is

about 0.08 bar higher than the pressure in the nitrogen gas. In the results, the gas

pressure is reported as the ambient pressure in the tank.

The dynamic pressure waves in the water were measured with up to 16 un-

derwater blast sensors that use a Tourmaline crystal sensor (PCB Piezoelectronics,

Inc. models #138A02 and 138A01). For the natural implosion experiments, eight of

these sensors were attached to a thin stainless steel support frame so that the sens-

ing elements formed a ring of radius 1.5Ro, where Ro = Do/2, around the centerline

of the model, see Fig. 2.7. The support frame was suspended in the tank using

fishing lines. The pressure sensors have a rise time of 1.5 microseconds (µs) and a

useful range of ±138 bar. Each sensor was connected to a signal conditioner that

gives a ±10 volt analog output signal. The signals were then sent to simultaneous

sample-and-hold Analog-to-Digital (A/D) converters with a sample rate of 2 MHz

per channel. A program in LabView was used to record the final output data into

the computer and convert the voltage signal into units of pressure.

For the natural implosions, the ambient pressure at which a given model will

23



Tormaline sensing

crystal 2.5R  from

model centerline

Pressure

probes

model

Support frame

for pressure

probes

0

Figure 2.7: A schematic plan view showing the orientation of the cylindrical model in
the tank surrounded by the eight meridian plane pressure sensors. In this schematic,
the dots represent the position of the tourmaline crystals located inside the pressure
sensors. The sensors are placed at a radius of 2.5R0 away from the center of the
cylindrical model, where R0 is the outer radius of the cylindrical model.

implode is not known precisely. Thus, in order to capture the pressure signals, the

A-to-D system operates continuously filling the system memory in a first-in-first-out

mode, holding more than 2 seconds of data at all times. Then, when the operator

hears a noise from within the tank (the pressure waves hitting the tank walls from

within) indicating that the model has imploded, she manually triggers the A-to-D

system, which is set to save two seconds of data ending at the moment the trigger

was initiated.

2.3.4 High-Speed Photography

The motion and deformation of the model during a natural implosion is recorded

with high-speed digital photography, using a Phantom V7.2 camera (Vision Re-

search, Inc) with an 800-by-600-pixel sensor, with a maximum sampling rate of
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4800 pps at full resolution. The camera was set to record 27,000 pictures per second

(pps) at an image size of 256 by 256 pixels and was post-triggered in the same way as

the A/D system. A timing system triggers the A/D recorder and camera simultane-

ously, so that the pressure signals over the 37-µs period that each image is captured

can be examined. The camera is positioned to view the implosion through one of

the glass windows in the mid-plane of the tank and the two adjacent windows are

used to project light from two 650-W flood lamps onto the model (shown in Fig. 2.3

(b)). The inside surface of the tank was painted black to provide contrast to the

painted surface of the models. From the movies of the implosions, both qualitative

information and quantitative measurements can be extracted. The qualitative in-

formation includes the state of the model at any time. Quantitative measurements

include the implosion time of the model and the orientation of the collapsed model

with respect to the tank.

2.3.5 Test Procedures

To perform an experiment, the model and pressure sensors were first placed

in the experimental facility. The front manhole and drain were closed, and the tank

was filled through the 50.8-mm-diameter ball valve in the piping tree at the top of

the tank until ≈5.7 L of air remained. The water inlet ball valve was closed, and

the tank was slowly pressurized with high-pressure nitrogen gas through a solenoid

valve in the piping tree. Immediately after the model imploded, anywhere from 2

to 5 minutes after the pressurization process began, the nitrogen inlet valve was
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closed and the nitrogen outlet valve was opened to depressurize the tank. After

each experiment, the water inlet valve is opened and the tank is drained through

the valve at the bottom.

2.3.6 Plan of Experiments

In this chapter, there are three different sets of experiments that will be dis-

cussed. Table 2.1 shows the conditions tested for the natural implosion experiments.

The columns show the run designation; implosion mode number (n); the tube ma-

terial; outer diameter (D) and wall thickness (w); the ambient implosion pressure

(Pc); and available energy (PcV ) for each implosion test. The run designation starts

with an “A” for aluminum or “B” for brass and this is followed by the observed

mode number of the implosion (“2”, “3” or “4”). For the brass models, the next

symbol is a “D” for diameter followed by numbers giving the outer diameter of the

tube truncated to the nearest millimeter. For the aluminum models (all of which

had an outer diameter of 38.1 mm), the next symbol is an “A” followed by either

a “2” for the 2024 alloy or “3” for the 3003 alloy. Finally, all run designations end

with the run number.

It was found that the linear theory (from Sturm [56]) for predicting the collapse

pressure and mode number was not always accurate, probably due to the slight

differences between the tube end conditions used in the theory and those used in

the models in the experiments. Therefore, several cylindrical models of different

lengths were constructed and imploded to empirically determine parts of the linear
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Figure 2.8: The linear theory (from Strum [56]) curves are shown for the three w/D
cases that were tested in this study. Each circle represents one experimental run
with a w/D = 0.013 at a given L/D that yielded a collapse pressure, Pc/E, as
shown. The diamonds show the experimental runs with a w/D = 0.0213 at various
L/D values. The squares show the experimental runs with w/D = 0.0233 at various
L/D values. When the theory curve is very steep, the discrepancies between the
theory and experiment are clearly seen; however, when the curve is less steep, there
is a greater agreement between the theory and experiment.
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theory curves for small L/D. Fig. 2.8 shows the linear theory elastic instability limit

for the three different thickness-to-diameter (w/D) ratios used in this study. Points

representing single experimental runs are plotted to show the difference in the linear

theory and what was observed in the laboratory. From these experiments, cylindrical

model geometries were chosen for the constant available energy experiments.

The first set of experiments explored mode 2 implosions on cylindrical models

of different materials and geometries (Sec. 2.4.1). As seen in Fig. 2.8, mode 2

implosions occur when the length-to-diameter ratio of the model (L/D) is sufficiently

large. Also, for mode 2, Pc becomes nearly constant when L/D is large. The models

that underwent mode 2 implosions are B2D25 (L/D = 9.1), B2D16 (L/D = 9.2),

A2A2 (L/D = 6.3), and A2A3 (L/D = 6.3).

The second study explored mode numbers 2 through 4 for cylindrical models

that have the same available energy (PcV ) and the same cross-sectional geometry

(see Sec. 2.4.2). Here models were created from the same tube stock but with

different lengths. As can be seen from Fig. 2.8, as the model length is reduced the

mode number of the instability increases as does Pc. To explore the effect of mode

number, model lengths were chosen such that the energy available for the implosion,

PcV , was the same for all models. Fig. 2.9 (a) shows the theoretically computed PcV

versus L/D for the w/D of the tube stock used in this set of experiments. As can

be seen, a horizontal line can be draw across at one value of PcV that correspond

to different values of L/D. The models used for these experiments were B2D25

(L/D = 9.1), B3D25 (L/D = 3.3), and B4D25 (L/D = 2.3). The available energy

for these cylindrical models is about 80 N-m, see Table 2.1.
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Figure 2.9: (a) Theoretically computed PcV versus L/D for w/D = 0.013. This
curve was computed from the solid black curve in Fig. 2.8 by multiplying Pc/E by
E and V , the volume of the air inside the tube. (b) Theoretically computed PcV
versus L/D for w/D = 0.013 (shown in solid black) and w/D = 0.0213 (shown as a
dashed black line). The solid black curve was computed from the solid black curve
in Fig. 2.8 by multiplying Pc/E by E and V , the volume of the air inside the tube,
and the dashed black curve from the dotted black curve.

In the third set of experiments, modes 2 and 4 were compared for cylindrical

models having the same available energy (PcV ), while holding the collapse pressure

and internal air volume constant (see Sec. 2.4.3) were studied. Two tubes with

different diameters and lengths were chosen to hold PcV constant in this manner.

Fig. 2.9 (b) shows the theoretically computed values of PcV versus L/D for the two

different w/D tubes used in this experiment. In this set of experiments, the point

of intersection between the two curves gives the L/D and w/D of the models to be

tested.The models used for these experiments were B2D16 (L/D = 9.2) and B4D25

(L/D = 2.3). The available energy for these cylindrical models is about 86 N-m,

see Table 2.1.
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2.4 Results and Discussion

The results from the first, second and third set of experiments are presented

in Secs. 2.4.1, 2.4.2, and 2.4.3, respectively. It is noted that the destructive nature

of the experiment requires a new tube to be fabricated for each experiment, which

leads to the slight variations from run to run. The error in cutting the length of the

tubes is no more than 1 mm. There may be slight non-uniformity in the geometry

of the tube stock due to the manufacturing process (extrusion).

2.4.1 Natural Implosions: Mode 2

In this first section of the results, the experiments conducted for the cylindrical

shell structures that implode in mode 2 are discussed. For these experiments, four

different cylindrical shell geometries and materials were used. Fig. 2.10, Fig. 2.11,

Fig. 2.12, and Fig. 2.13 show the pressure records for one representative run for

B2D25, B2D16, A2A2, and A2A3, respectively. In each figure, three still frames

taken from the high-speed movies were matched in time with three of the key features

in the pressure record. The qualitative behavior of the dynamic pressures for each

collapse are very similar. The first region is the decrease in pressure caused by the

relaxation in pressure on the wall of the cylinder as it moves inward. The second

region is a small jump in pressure that occurs before the maximum peak. At this

point in time, the walls initially make contact with one another. The final region

consists of the second peak, which is the largest, and it occurs when the walls come

into complete contact with one another. Appendix A shows the pressure records

and movie frames for each experimental run.
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Run Mode Material Outer Wall Length Collapse Available
Diameter Thickness Pressure Energy

n Do w L Pc PcV
(mm) (mm) (mm) (bar) (N-m)

B2D25r1 2 Brass 25.4 0.33 231 7.3 81.1
B2D25r2 260 7.1 78.9
B2D25r3 7.5 83.3

B2D16r1 2 Brass 16.6 0.36 152 26.6 80.1
B2D16r2 260 26.5 79.8
B2D16r3 26.9 81.1

A2A2r1 2 Alum 38.1 0.89 241 26.5 661.7
A2A2r2 2024 26.6 664.1
A2A2r3 28.2 704.0
A2A2r4 26.7 666.6
A2A2r5 26.4 659.1

A2A3r1 2 Alum 38.1 0.89 241 28.3 706.5
A2A3r2 3003 28.7 716.6

B3D25r1 3 Brass 25.4 0.33 84 19.4 78.2
B3D25r2 260 18.8 76.0
B3D25r3 20.7 83.6
B3D25r4 21.4 86.4
B3D25r5 21.3 86.1

B4D25r1 4 Brass 25.4 0.33 58 26.1 72.9
B4D25r2 260 28.3 78.9
B4D25r3 28.9 80.4
B4D25r4 27.9 77.9
B4D25r5 31.4 87.7
B4D25r6 31.5 88.0
B4D25r7 31.5 88.0

Table 2.1: A summary of the cylindrical models imploded naturally for the first
three experiment sets. The names given have an “A” for aluminum or “B” for
brass. The mode number follows, then there is either a “D” for diameter followed
by numbers representing the diameter, or for the case of aluminum models, an “A”
for alloy followed by “2” for 2024 or “3” for 3003. Finally, there is an “r” representing
the run number for the given geometry and material. These names are used in plot
legends and plot titles to give a quick reference to the cylindrical models in this table.
25 individual experimental runs were performed on 8 unique cylindrical models.
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Figure 2.10: Each line represents one of the eight meridian pressure sensors for
B2D25r2. Three still frames from the high-speed video are shown at the times cor-
responding to the minimum pressure peak, first small positive peak and the maxi-
mum positive peak. These still frames give insight into the shape of the imploding
model at each time in the pressure record. As the walls close in, there is a drop
in pressure. The first small positive peak occurs when the walls first impact each
other. The large positive pressure peak occurs when the walls make full contact and
the collapse is complete. For a complete set of pressure records and still frames, see
Appendix A.
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Figure 2.11: Each line represents the signal from one of the eight meridian pressure
sensors for B2D16r1. Three still frames from the high-speed video are shown at the
times corresponding to the minimum pressure peak, first small positive peak and
the maximum positive peak. For a complete set of pressure records and still frames,
see Appendix A.
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Figure 2.12: Each line represents the signal from one of the eight meridian pressure
sensors for A2A2r2. Three still frames from the high-speed video are shown at the
times corresponding to the minimum pressure peak, first small positive peak and
the maximum positive peak. For a complete set of pressure records and still frames,
see Appendix A.
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Figure 2.13: Each line represents the signal from one of the eight meridian pressure
sensors for A2A3r2. Three still frames from the high-speed video are shown at the
times corresponding to the minimum pressure peak, first small positive peak and
the maximum positive peak. For a complete set of pressure records and still frames,
see Appendix A.
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Though the general behavior for the dynamic pressure records is the same for

each experimental run, the time scales and pressure scales differ for each cylindrical

model design tested. Fig. 2.14 shows one representative set of pressure records for

the implosion of each of the four model designs. Each geometry yields a different

collapse time and different pressure magnitude and time scales. In each case, the

pressure records are shifted in time so that the maximum pressure peak occurs at

t = 0. The pressure signals for the B2D25r2 model have the smallest amplitude and

the longest time scale. The pressure signals for the B2D16r1 model show a higher

amplitude than B2D25r1 and the shortest time scale. Finally, A2A2r2 and A2A3r1

are similar and have the highest pressure amplitude and the second longest time

scale.

The pressure waves for each of the eight pressure sensors shown in Fig. 2.14

appear to be slightly different. In order to visualize the difference in pressure versus

the azimuthal direction, the same pressure data for all experimental runs versus

time can be shown in polar coordinates in Fig. 2.16, Fig. 2.17 and Fig. 2.18. The

radial direction is taken to be the time, which begins when the pressure wave starts

to decrease and ends at the time of the zero crossing after the maximum peak

pressure. The azimuthal direction corresponds to the position of the pressure sensors

(placed at increments of 45◦). The grayscale of the surface gives the amplitude of the

pressure wave with respect to time and azimuthal location. The straight line plotted

on top of the contour shows the orientation of the final mode 2 collapse, which gives

a reference to interpret the pressure contours. The orientation of the collapse was

measured from the high-speed movies and the accuracy is ±15◦. The angle, ∆θ,
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Figure 2.14: To compare the mode 2 occurrences, one representative run is shown for
each of the four different cylindrical models collapsing in Mode 2. They are B2D25r1,
B2D16r1, A2A2r2 and A2A3r1. Each geometry yields a different collapse time and
different pressure magnitude and time scales. In each plot, the time scale is shifted
so that the maximum positive pressure peak occurs at time t = 0. B2D25r2 has the
smallest pressure amplitude of pressure and the longest collapse time. B2D16r1 has
a higher pressure amplitude than B2D25r1 and the shortest collapse time. Finally,
A2A2r2 and A2A3r1 are similar and have the highest pressure amplitudes and the
second longest collapse times.
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Figure 2.15: Histogram of ∆θ obtained during the experiments, where ∆θ is defined
as the minimum angle between the line formed by the deformed cross-sectional shape
of the cylinder and the location of the maximum peak pressure.

is defined as the minimum angle between the line formed by the deformed cross-

sectional shape of the cylinder and the azimuthal location of the maximum peak

pressure. Fig. 2.15 shows a histogram of ∆θ obtained during the experiments. By

definition of ∆θ, the angles can only fall between 0◦ and 90◦. As shown for the

four cases, the orientation of the final collapse shape and the peak pressure in the

azimuthal direction do not show any correlation.

Because the peak pressure appears to be noisy in the pressure versus time

signal (Fig. 2.14), the pressure impulse, the integral of the pressure versus time

curve with respect to time, was computed. The black squares, shown in Fig. 2.16,

Fig. 2.17 and Fig. 2.18, show the pressure impulse computed for each sensor record

integrating only the positive pressure peak. The black diamonds show the total

pressure impulse, calculated from the start of the collapse to the zero crossing after
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the positive pressure peak. The white circles show the impulse from the start of the

collapse to the zero crossing just before the positive pressure peak. Finally, the white

diamonds show the amplitude of the minimum (negative) pressure peak. These four

metrics are shown clearly in Fig. 2.16 (a). The radial direction corresponds to the

magnitude of each of these four metrics. For each of these four metrics, there was

no correlation with the orientation of the final collapse shape.

In order to directly compare one run to another and because there was no

correlation between azimuthal pressure characteristics and the final deformed shape,

an average of the eight meridian plane sensors was taken as the one representative

curve for each experimental run, shown in Fig. 2.19.

This experiment is comparable to a cylindrical gas (air) bubble collapsing in

water but with a thin-walled metallic membrane. Therefore, it seemed reasonable to

scale the pressure signals with similar metrics for a collapsing bubble. The averaged

pressure signals, from Fig. 2.19, are scaled by the difference in pressure between the

ambient collapse pressure and the initial pressure inside the cylindrical model for

the pressure axis and by the characteristic collapse time of a gas bubble in a fluid

for the time axis. The scaling used is

P − Pc
Pc − P0

, (2.15)

for the pressure and

t

Ri

√
ρ

Pc−P0

, (2.16)

for the time, where Pc is the ambient collapse pressure, P0 is the pressure inside the

model (ambient pressure), Ri is the inner radius of the shell, and ρ is the density
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Figure 2.16: The pressure contours for the cylindrical models collapsing in mode 2.
The radial direction is time. The azimuthal direction corresponds to the position of
the pressure sensors (placed at increments of 45◦). The grayscale of the surface gives
the amplitude of the pressure wave. The line plotted on top of the contour shows
the orientation of the final mode 2 collapse. The black squares show the pressure
impulse computed for the positive pressure peak, shown in (a). The black diamonds
show the total pressure impulse of both the positive and negative peak, shown in
(a). The white circles show the pressure impulse of the negative peak, shown in (a).
Finally, the white diamonds show the amplitude of the minimum (negative) pressure
peak, also shown in (a). Pressure contours are continued in Figs. 2.17 and 2.18.
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Figure 2.17: The pressure contours for the cylindrical models collapsing in Mode 2,
continued.
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Figure 2.18: The pressure contours for the cylindrical models collapsing in Mode 2,
continued.
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Figure 2.19: Each curve shows the average of the meridian plane pressure sensors
for each run. The callouts show how repeated runs for each geometry grouped.

of water. The pressure versus time data from Fig. 2.19 is plotted using the above

nondimensionalization in Fig. 2.20. The normalized data has nearly identical non-

dimensionalized collapse time from each different experimental run for these mode

2 cylindrical models. The collapse time is defined as the time between the initial

pressure drop and the maximum peak. The magnitude of the nondimensional peak

pressures range between 0.5 and 0.9, and the minimum value in the dip before

the peak ranges between -0.3 and -0.2. The scaling performed on the variables is

considered satisfactory judging from the results in Fig. 2.20. Even though the thin-

walled shell structure of the undeformed model is much stronger than the gas-fluid

interface of a bubble, once the shell structure goes out of round due to the elastic

instability, it becomes weak and undergoes large deformations. The success of the

scaling in Fig. 2.20 supports the hypothesis that the weak state of the cylindrical
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shell during the implosion allows for the hydrodynamic forces to dominate over the

stiffness of the structure surrounding the air volume. This indicates that once the

cylindrical model collapse is initiated, the metallic structure becomes unimportant

and the air cavity collapses as if the structure was not present.

In order to investigate the spread in the dimensionless peak pressures in

Fig. 2.20, the dimensionless peak pressure versus the mass ratio was plotted in

Fig. 2.21 (a). The mass ratio is defined as the mass per unit length of the tube in

the shell structure to the mass per unit length of the water that the structure dis-

places. The mass ratio was chosen here since, while it is hypothesized that the shell

structure is weak during the implosion, structure still has significant mass which

might affect the implosion rate and therefore the pressures. Here, the data falls into

three groups of mass ratios based on the material and size. The aluminum cylindri-

cal models (which all have the same size, wall thickness and mass per unit length)

have the same mass ratio. It is interesting to note the relatively high variation in the

peak dimensionless pressure values for the aluminum models as well as the fact that

the variation in peak dimensionless pressures for the 3003 alloy cylindrical models

fell into the range of the peak dimensionless pressures for the 2024 alloy cylindri-

cal models. The peak dimensionless pressures for the two brass cylindrical models

(B2D25 and B2D16) are nearly the same. The values of the dimensionless pressure

peaks for the aluminum model implosions (A2A2 ad A2A3) were, on average, higher

than the values for the brass cylindrical implosions and the values for the aluminum

models have a much larger range.

In view of the larger range in dimensionless peak pressures for the aluminum
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Figure 2.20: Each curve shows the average of the meridian plane pressure sensors
for each run. The time (horizontal axis) is scaled in the time axis by the character-

istic bubble collapse time, Ri

√
ρ/(Pc − P0) , and the pressure (vertical) axis by the

relative pressure of the ambient collapse pressure and the initial gas pressure inside
the structure Pc − P0.
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Figure 2.21: (a) The peak pressure for each mode 2 experimental run versus mass
ratio, where the mass ratio is the mass of the structure over the mass of water that
the structure displaces. (b) The pressure impulse for each mode 2 experimental run
versus mass ratio. The pressure impulse was computed for the positive pressure
peak for twice the time range of the first zero crossing to the peak pressure.

models, it was decided to also examine the variation of the pressure impulse, which

is usually a more stable measurement, versus the mass ratio. The time range in

the computation for the impulse was taken as twice the time from the upward

zero crossing to the peak pressure, starting at the upward zero crossing. Fig. 2.21

(b) shows this pressure impulse versus the mass ratio for each mode 2 implosion.

The pressure impulse for the two brass cylindrical models (B2D25 and B2D16) are

nearly the same. However, the pressure impulse for the aluminum model implosions

(models A2A2 and A2A3) were, on average, higher than those for the brass model

implosions and had a much larger range. The cause of the large range of peak

dimensionless pressure values and pressure impulses for the aluminum cylindrical

models was not known. It should be noted that the ambient implosion pressure

had a small range (from 26.4 to 28.7 bar or 5% of the average, 27.4 bar) while the

dimensionless peak pressure had a relatively large range (from 0.63 to 0.90 or 20%
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of the average).

2.4.2 Natural Implosions: Constant Available Energy

In this section, the results of implosion modes 2, 3, and 4 (B2D25, B3D25,

and B4D25) for the Brass 260 cylindrical models with the same diameter and the

same available energy are presented. One of the cylindrical model designs used in

the previous section on mode 2 implosions is repeated here for comparison with

the mode 3 (B3D25) and 4 (B4D25) implosions. Therefore, the plots will not be

repeated in this section except when making a comparison. Fig. 2.22 and Fig. 2.23

show one representative run for a mode 3 and 4 implosion, respectively. As in

the previous section, these figures show the eight meridian plane pressure sensors

as well as still frames from the high-speed movie matched in time with three of

the key features in the pressure record. The key features in the collapse for these

higher mode-cylindrical models, as can be seen in the figures, are the same features

discussed in the previous section for mode 2.

Fig. 2.24 shows one representative run for each of three cylindrical models

(B2D25, B3D25 and B4D25). The collapse times and pressure amplitudes are clearly

different for each geometry. For each run shown, there is a variation in the pressure

records for each of the sensors. A similar analysis to that performed in the previous

section is carried out here. Using polar coordinates, the azimuthal direction (pres-

sure sensor positions) and the time (radial direction) are visualized. Refer to the

previous section for the details on the construction of the plots. Fig. 2.25 (a) and

(b) show one representative case in mode 3 and 4, representatively. Unfortunately,
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Figure 2.22: Each line represents one of the eight meridian pressure sensors for
B3D25r1. Three still frames from the high-speed video are shown at the times
corresponding to the minimum pressure peak, first small positive peak and the
maximum positive peak. As the walls close in, there is a drop in pressure. The
first small positive peak occurs when the walls first impact each other. The large
positive pressure peak occurs when the collapse is complete. For a complete set of
pressure records and still frames, see Appendix A.
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Figure 2.23: Each line represents one of the eight meridian pressure sensors for
B4D25r1. Three still frames from the high-speed video are shown at the times
corresponding to the minimum pressure peak, first small positive peak and the
maximum positive peak.
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due to the greater number of lobes in the cross sectional shape, the final deformed

shape with respect to the azimuthal direction was not accurately measured.

When examining the final deformed cross-sectional shapes of the cylindrical

models, it was found that the lobes were not azimuthally symmetric for modes 3 and

4. Some representative cylindrical models are shown in Fig. 2.26. Some of the final

deformed cross sections for mode 3 had two lobes that appeared to be pinching, and

some of the mode 4 cylindrical models appeared to have 3 lobes very close together.

A couple mode 4 cylindrical models appeared to have 3 lobes, but one lobe was very

thick and looked as it would develop into two lobes.

It was already shown in Fig. 2.20 that the mode 2 cylindrical shell pressure

waves scale in time and pressure for different material and geometry. An average

of the eight meridian plane sensors is taken as the one representative curve for

each experimental run for the cylindrical models that have diameters of 25.4 mm.

Fig. 2.27 shows the same time and pressure scaling as Fig. 2.20, where the time

is scaled by Ri

√
ρ/(Pc − P0) and the pressure is scaled by Pc − P0. The scaling

of time looks appropriate but the pressure scaling yields peaks that are different in

magnitude. Some of the speculated causes in the discrepancy in normalized pressure

peak magnitude are different amounts of deformation per unit length of the model,

of heat dissipated and of radiated energy as pressure waves. In this experiment, only

the pressure waves are measured, so no concrete conclusion can be drawn about the

deformation or the dissipated heat.
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Figure 2.24: A comparison of one representative run for each geometry B2D25r1,
B3L8r3, and B4D25r1. As expected, the collapse times and maximum peak pressures
for each of these cylindrical models are different.

51



(a) Mode 3 (b) Mode 4

  1

  2

  3

  4

30

210

60

240

90

270

120

300

150

330

180 0

 

 

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

  1

  2

  3

  4

30

210

60

240

90

270

120

300

150

330

180 0

 

 

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

Figure 2.25: (a) One representative pressure contours for mode 3, B3D25r3. (b)
One representative pressure contours for mode 4, B4D25r1.

2.4.3 Natural Implosions: Constant P, Constant V

The final discussion of results presents the cylindrical models that have the

same available energy, the same collapse pressure, and the same volume of air.

These brass 260 cylindrical models collapsed in implosion modes 2 and 4 (B2D16

and B4D25). Both models have been discussed in the previous two sections and are

presented here for comparison. Fig. 2.28 shows one representative run for each of

the two cylindrical models in this study. The collapse times and pressure amplitudes

are observed to be different.

It was already shown in Fig. 2.20 that the mode 2 cylindrical shells of dif-

ferent material and geometry scale in time and pressure, and it has been shown

in Fig. 2.27, that for constant available energy and constant diameter cylindrical

models, the pressure waves do not scale for modes 2, 3, and 4. In this case, the

available energy is constant by keeping the internal volume and the collapse pres-
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Figure 2.26: This photograph shows representative cylindrical models after they
were imploded. For the mode 2 cases, only one representative model is shown since
all repeated runs appear to be similar. For the higher modes, there are more repeated
models shown because of the variation in the final deformed shape. It should be
noted that the paint for these models came off the cylindrical models during the
collapse event due to the high deformation.
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Figure 2.27: An average of the meridian plane pressure sensors for the cylindrical
models with constant available energy collapsing in modes 2, 3, and 4 are scaled in

the time axis by the characteristic bubble collapse time, Ri

√
ρ/(Pc − P0) , and the

pressure (vertical) axis by the relative pressure of the ambient collapse pressure and
the initial gas pressure inside the structure, Pc − P0. It is seen that the time scales
match, but the pressure peaks do not. The highest pressure peak is for mode 2 and
the lowest pressure peak is for mode 4.
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Figure 2.28: To compare constant available energy cylindrical models with nearly
the same collapse pressure, pressure versus time curves for all eight meridian plane
sensors are shown for two representative runs. The specific runs are B2D16r1 and
B4D25r1.
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Figure 2.29: An average of the meridian plane pressure sensors for the cylindrical
models collapsing in mode 2 and 4, with constant Pc and V , are scaled in the time

axis by the characteristic bubble collapse time, Ri

√
ρ/(Pc − P0), and the pressure

(vertical) axis by the relative pressure of the ambient collapse pressure and the initial
gas pressure inside the structure, Pc − P0.

sure nearly the same. An average of the eight meridian plane sensors is taken as

the one representative curve for each experimental run for the cylindrical models in

this comparison. Fig. 2.29 shows these curves with the maximum peaks lined up at

time zero, where the time is scaled by Ri

√
ρ/(Pc − P0) and the pressure is scaled by

Pc−P0. The scaling of time looks appropriate but the pressure scaling yields peaks

that are different in magnitude.

2.5 Conclusions and Future Work

An experimental study of the implosion of cylindrical shell structures in a

high-pressure water environment was performed with the aim to determine the
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effect of geometry and material on the resulting pressure waves. High-frequency

underwater blast sensors were used to record dynamic pressure waves at the same

non-dimensional distance from the meridian plane of the cylindrical models. The

cylindrical models are made from brass 260 alloy and aluminum 2024 alloy and 3003

alloy. Cylinder length-to-diameter (L/D) ratios between 2.3 and 10 were examined,

which resulted in implosion modes of 2, 3, and 4. The process of collapsing cylin-

drical shell structures was carefully documented in terms of high-frequency pressure

waves, and the motion of the collapsing walls was correlated with the pressure waves.

The linear theory (from Sturm [56]) that predicts the elastic instability limit

and the mode number at which a cylindrical model will implode was not accurate for

the models in this experiment probably due to slight differences in the end conditions

(which arise from the method of mounting the cylindrical models in the experimental

facility and the design and installation of the model end caps). Therefore, it was

necessary to empirically map out certain regions of the elastic instability curves,

particularly in the region near the transition between modes 3 and 4. Using the

experimental predictions, the models having the same available energy (PcV ) were

chosen more accurately.

For the models that collapsed in mode 2, the azimuthal distribution of the

pressure peak and pressure impulse did not correlate with the orientation of the

final deformed collapse shape. When comparing the pressure waves and in partic-

ular the collapse times and peak pressure magnitudes varied significantly from one

model design to another. However, when the average of the eight meridian plane

pressure sensors was scaled in time with the characteristic gas bubble collapse time
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(
Ri

√
ρ/ (Pc − P0)

)
and scaled in pressure by the relative pressure between the am-

bient collapse pressure and the initial gas pressure inside the structure (Pc − P0),

the pressure waves are remarkably similar. The normalized collapse times are nearly

identical and the pressure peaks are within the run-to-run variation of one of the

models tested. These results may indicate that during collapse, the stiffness of the

out-of-round metal structure is minimal compared to the hydrodynamic forces.

A similar investigation was performed for cylindrical models that were con-

structed from the same material (brass 260) and tube stock (the same diameter

and wall thickness) but with model lengths chosen to collapse in modes 2, 3 and

4 with the same available energy (PcV ). In these experiments it was not possible

to reliably measure the final orientation of the deformed collapsed model shape for

modes 3 and 4. When comparing the pressure waves for these cylindrical models,

the collapse times and pressure wave magnitudes were very different. The averages

of the eight meridian plane pressure sensors for each run were scaled in time and

pressure, using the same characteristic variables mentioned above. The time scaling

appeared to be accurate, but scaled pressure magnitudes varied significantly from

one model design to another. This result might be caused by the variation in energy

required to deform the model and the percent volume change during collapse from

one model to another, both of which would change the energy that went into the

pressure waves.

The final comparison was performed for cylindrical models with constant avail-

able energy, but where the collapse pressures (Pc) and internal volumes (V ) were
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nearly constant. For these experiments, two different diameters of brass cylindri-

cal models were used and these models collapsed in mode 2 and 4 shapes. Scaling

of the pressure waves in time and pressure as discussed in the previous paragraph

yielded similar results. The mode 4 cylindrical models yielded a lower pressure

amplitude when scaled and underwent more deformation per unit length than the

mode 2 cylindrical models. Even though the available energy was the same for the

two cylindrical models, different amounts of energy were radiated away as pressure

waves.

From the scaling of the pressure waves for the three experimental studies, it

was found that the time scaling was appropriate for all runs. This means that the

collapse time of the air inside the structure is independent of the structure once it

undergoes large deformations and becomes weak. On the other hand, the pressure

scaling was appropriate for the mode 2 implosions only. The amount of deformation

per unit length is the same for all mode 2 implosions. Therefore, the same per-

centage of energy is expected to be used to deform the structure, leaving the same

amount of energy to be radiated away as both heat and pressure waves. The mode

2 experimental results show that the same amount of scaled energy is radiated away

from the structure as pressure waves. In the constant available energy experiments,

different mode numbers are observed for different geometries of cylindrical models.

For different mode numbers, the deformation per unit length is different. Since the

mode 2 cylindrical models have the least amount of deformation per unit length,

then it is expected that less energy is required for deformation and more energy is

available to be radiated away as pressure waves. The scaling for the pressure is typ-
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ical for collapsing bubbles and therefore, does not inherently consider the structure

deformation. A more extensive study on mode 3 and 4 implosions with different

materials and geometry may answer this question.
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Chapter 3
The Explosion-Induced Implosion of Cylindrical Shell Structures in
High-Pressure Water
3.1 Abstract

An experimental study of the explosion-induced implosions of cylindrical shell

structures in a high-pressure water environment was performed. The shell structures

were filled with air at atmospheric pressure and placed in a large water-filled pres-

sure vessel. The vessel was then pressurized to various pressure levels P∞ = αPc,

where Pc is the natural implosion pressure of the model and α is a factor that ranges

from 0.8 to 0.9. An explosive was set off at various standoff distances, d0, from the

model center line, where d0 varies from 1.4R to 10R, and R is the predicted maxi-

mum radius of the explosion bubble. High-speed photography (27,000 fps) was used

to observe the explosion and resulting shell structure implosion. High-frequency

underwater blast sensors recorded dynamic pressure waves at several positions. The

cylindrical models were made from aluminum (diameter D = 39.1 mm, wall thick-

ness w = 0.89 mm, length L = 240 mm) and brass (D = 16.7 mm, w = 0.36 mm,

L = 152 mm) tubes. The pressure records were interpreted in light of the high-speed

movies. It was found that the implosion can be induced by one of two mechanisms:

the shockwave generated by the explosion or the hydrodynamic pressure field of

the explosion bubble during its collapse and re-expansion. Whether an implosion

is caused by the shockwave or the explosion bubble’s hydrodynamics pressure field

depends on the maximum bubble diameter and the stand-off distance.
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3.2 Introduction

3.2.1 Underwater Explosions

Robert H. Cole’s [17] book published in 1948, which is still relevant today,

gives a detailed description of underwater explosions. An explosion is a chemical

reaction in an inherently unstable material that occurs extremely fast and produces

a large amount of heat. An explosion is triggered by introducing a sufficient amount

of energy to this explosive material. The chemical reaction is initiated in a small

area, which then triggers the chemical reaction to the rest of the explosive material

[17].

When an explosion takes place in water, the water is considered compressible.

The sudden increase in pressure caused by the explosion generates a shockwave, or

a steep-fronted compression wave. This shockwave radiates outward relieving the

high pressure of the explosive reaction at speeds that could be of the order of several

times the (linear) acoustic wave speed in water (1482 m/s). As the wave front moves

outward, the magnitude of the pressure drops rapidly to acoustic values. The speed

of propagation of the wavefront also decreases with the distance traveled eventually

approaching the speed of sound in water[17].

When the shockwave encounters a boundary or obstacle, it reflects back. On

rigid boundaries, the interaction between the reflected and incoming wave is con-

structive (due to the rigid nature of the boundary); therefore the pressure amplitude

is doubled close to the wall. Reflected waves from a free surface interact destruc-

tively with the incoming wave, due to the constant pressure condition at the free
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surface [17].

Immediately following the detonation of an explosion, a bubble of explosive

byproduct gases is generated. The first stage of the gas bubble is an expansion

in which the pressure inside decreases rapidly. Due to the effect of inertia, the

bubble over-expands and at its maximum size, its internal pressure is less than the

local ambient pressure. The bubble then begins to collapse due to the imbalance

of pressure on the two sides of the fluid-gas interface. Upon reaching the minimum

volume, the pressure in the bubble is much higher than ambient and it expands

again. A number of these oscillations persist until all energy is lost to radiation,

chemical or physical changes in the gaseous products, actual loss of gaseous products

in the form of small bubbles, or turbulence (which can be caused by viscous drag

of the bubble moving upward due to buoyant forces). With each bubble collapse, a

positive pressure pulse is emitted, and with each cycle, the bubble maximum radius

and frequency of oscillation decrease [17, 1].

The Principle of Similarity for blast waves is widely used when presenting

results from explosion experiments. The Hopkinson-Cranz scaling law is an exten-

sion of the Principle of Similarity, where the ambient conditions are assumed to be

invariant. These scaling law is often called the “cube-root” law. The customary

scaled distance is

Z = R/W
1
3 , (3.1)

the customary scaled time is

T = t/W
1
3 , (3.2)
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and the customary scaled impulse is

ζ = I/W
1
3 , (3.3)

where Z, T , and ζ are constants, R is the characteristic length, t is the characteristic

time, I is the characteristic impulse, and W is the mass of the explosive [3]. Using

this scaling relation, the size of the bubble created by an explosion can be calculated.

In order to scale the bubble size based on changes in ambient pressure (while

keeping the explosive mass constant), the Rayleigh-Plesset equation can be used.

The Rayleigh-Plesset equation is the potential flow (incompressible and irrotational)

solution to the problem of an oscillating (collapse and re-expansion) gas bubble in

water. It is a solution to Laplace’s equation,

52φ = 0, (3.4)

where u = 5φ (i.e., the velocity, u, is the gradient of the velocity potential, φ). The

kinematic boundary condition is that the particles at the air-water interface remain

on the interface or

dxp

dt
= 5φ (xp, t) , (3.5)

where xp is the position vector of a particle, p, that is on the interface. The dynamic

boundary condition is that the pressure across the interface is continuous and using

Bernoulli’s equation this can be expressed as

Dφ

Dt
=

1

2
|5φ|2 +

P∞ − Pb
ρ

, (3.6)

where P∞ is the pressure far away from the bubble, ρ is the density of the fluid
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(water) and Pb is the pressure inside the bubble, given by the polytropic law

Pb = P0 + Pg0

(
V0
V

)γ
, (3.7)

where P0 is the vapor pressure, V0 is the initial bubble volume, V is the instantaneous

bubble volume and γ is the isotropic constant (γ = 1.3). Assuming that the initial

bubble radius is the radius of the detonator, R0, and that the initial velocity of the

bubble at t = 0 is Ṙ0 = 0, the Rayleigh-Plesset equation can be used to find a

relationship between the parameters describing the initial state of the bubble and

the maximum bubble radius:

Pg0
(P∞ − P0)

= (1− γ)

[(
Rmax

R0

)3

− 1

] [(
Rmax

R0

)3−3γ
− 1

]−1
. (3.8)

Using Eq. 3.1, the maximum bubble radius can be scaled based on different sizes

of explosives. Using Eq. 3.8, the effect of the ambient pressure on the maximum

bubble radius can be estimated.

Keller and Kolodner [35] modified the above theory to account for the com-

pressibility of the water. Their modified theory predicted damped bubble oscillations

of diminishing period, and their predictions agreed with experimental data.

3.2.2 Explosions and Gas Bubbles in Proximity to Rigid Structures

The detonation of an underwater explosive can cause serious damage to nearby

structures. Since the 1950s, the dynamic response of submerged structures loaded

by underwater explosions have been a topic of interest. An underwater explosion

can cause damage by two mechanisms; the shockwave and the oscillations of a gas

bubble formed by the explosive byproducts.
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Huang and Wang [34] simulated three-dimensional, transient, spherical acous-

tic waves interacting with a cylindrical elastic shell structure. They found that the

pressures at the fluid-shell interface could be negative indicating the possibility of

cavitation.

Geers and Felippa [31] used Doubly Asymptotic Approximations (DAAs),

which are differential equations for the boundary element analysis of the interaction

of a structure surrounded by an infinite fluid, to explore the interaction of shell

structures with a surrounding liquid. They found that the second-order form of the

DAA accurately predicted the free-vibration modes of a submerged spherical shell.

Kwon and Fox [37] compared numerical simulations to experimental results

of the nonlinear dynamic response of a cylinder subjected to a far-field underwater

explosion. They found through experimental strain measurements that the cylinder

rotated as a result of the explosion either due to an asymmetric flow field or due

to improper rigging. In the numerical simulations, they discovered three modes of

dynamic motion exhibited by the explosion-loaded cylinder: the accordion mode,

breathing mode, and whipping mode.

Brett et al. [6] conducted small-scale experiments of the deformation of sub-

merged cylinders subjected to a nearby explosion. They measured the pressure

pulses in the liquid and the accelerations of the structure walls, and quantified the

deformation of the cylinder. It is important to note that the cylinder was suffi-

ciently strong that the deformation did not include implosion of the cylinder. From

the pressure records in the experiments, Brett et al. argue that cavitation occurred

near the wall of the structure during the explosion event. In the pressure record,
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there is first very large-amplitude peak with a short time duration, the shockwave.

Immediately following the shockwave is a shorter peak, which is the reflection of

the shockwave off the structure. Following that is a slight dip in pressure below the

ambient pressure, which led Brett et al. to hypothesize that there were cavitation

bubbles in the water surrounding the structure. These cavitation bubbles then col-

lapse, causing another high pressure peak. If the structure is not damaged due to

the shockwave, the resulting gas bubble oscillations can cause damage to the struc-

ture. The pressure pulses that result from the bubble oscillations have a smaller

amplitude but a longer time duration than the shockwave, therefore, these pressure

pulses can have an impulse comparable to the shockwave. Another mechanism for

damage due to the oscillating gas bubble is related to its asymmetric collapse and

the formation of a re-entrant jet under some conditions. In this mechanism, the

structure causes an obstruction of the water flow and produces a re-entrant water

jet to form on the side of the bubble farthest from the structure. This jet pierces

the opposite side of the bubble during the implosion and causes very high pressures

on the structure [6].

Sato et al. [50] studied the behavior of a gas bubble near a rigid boundary

in an oscillatory pressure field using numerical simulations. The study assumed an

inviscid, incompressible, irrotational liquid surrounding a gas bubble that follows a

polytropic gas law. The bubble migration (toward or away from the rigid wall) was

found to be strongly dependent on the frequency of the oscillating pressure field.

In this oscillatory pressure field, they also found that a liquid micro jet is formed

during both the collapse process and the rebound process. Additionally, they found
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that the period and amplitude of the bubble oscillations were dependent on the

distance of the bubble from the rigid wall and to the time-dependent pressure field

within the liquid.

Zhang et al. [66] simulated the collapse of an initially spherical cavity (the

internal pressure of the bubble was held constant) near a rigid wall and followed

the formation of the reentrant liquid jet. Their numerical method was based on

conventional and hyper-singular boundary integral equations, which allowed for the

continuous simulation of the bubble motion including the impact and penetration

of the re-entrant jet. Their investigations showed that the bubble surface is trans-

formed into a ring bubble (toroidal shape) that is smoothly attached to a vortex

sheet during the impact of the re-entrant jet. This penetration interface becomes

surrounded by a high-pressure region. Theoretical analysis and the numerical sim-

ulations proved that the impact of the jet on the bubble surface caused a loss in

kinetic energy in the flow field. The authors believed this lost kinetic energy would

be radiated away as pressure waves in a compressible liquid. In addition, they found

that the flow field was highly sensitive to the initial distance from the bubble center

to the wall. It is important note that in these calculations, the volume of the bubble

monotonically decreased to zero as the collapse occurred since, as mentioned above,

the pressure in the bubble was held constant.

Zhang and Duncan [67] expanded the previous work to model the internal gas

pressure, which is dependent on the instantaneous bubble volume. Qualitatively,

the results were found to be similar in that a re-entrant jet was formed during the

final stages of the collapse creating the toroidal shaped ring bubble and that a shear

68



layer developed along the interface of the impact. However in this later work, it was

found that the bubble reaches a minimum volume (and a re-entrant jet begins to

form) and the high internal gas pressures cause a rebound in the bubble. During

this rebound, Zhang and Duncan found that the pressure on the wall reached a

maximum value (in the previous work, this maximum pressure value on the wall

could not be computed).

Popinet and Zaleski [46] studied the effect of viscosity on the jet formation

of collapsing bubbles near solid boundaries. In comparisons with experiments, they

found that the damping of radial oscillations of the gas bubble cannot be attributed

to viscous dissipation alone. They speculated that both acoustic and thermal dis-

sipation need to be considered in order to accurately capture the dynamics of the

oscillating bubble. In their parametric study of the effect of viscosity, they found

that the jet impact velocity decreases as the viscosity increases. There is a critical

Reynolds number below which the jet impact will not occur. This critical Reynolds

number was found to be dependent on the initial bubble radius and the relative

distance between the bubble and the wall.

Wang and Khoo [60] used an indirect boundary element method to model

three-dimensional explosion bubbles. The simulations examined a single explosion

bubble, two symmetric explosion bubbles close to one another (both away from and

near a free surface), an explosion bubble near a rigid sphere (near a free surface), and

an explosion bubble near a wall to determine the effect of nearby objects on the shape

of the bubble as it collapsed. For the simulation of the explosion bubble near a rigid

wall, Wang and Khoo [60] compared their results to experimental data. During
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the expansion of the bubble in both the simulation and experiment, the bubble

flattened along the side boundary closest to the wall. As the bubble collapsed, it

lost its vertical symmetry due to gravity effects. A re-entrant jet was formed on the

opposite edge of the bubble from the wall, and the jet moved toward the wall in the

simulation. Unfortunately, due to optical limitations, the jet was not seen in the

experimental data [60].

3.2.3 Present Work

Numerous studies have been conducted on underwater explosions, underwater

explosion bubbles, and explosions near rigid structures. However, little research has

been conducted on the combination of underwater explosion loading on cylindrical

shell structures that become unstable and implode. The object of the present ex-

periment is to combine the work presented above with the experiments conducted in

Chapter 2 to understand the failure of a cylindrical shell structure due to a nearby

explosion. There are two mechanisms that are predicted to cause the failure of the

cylindrical shell structure, the explosion shockwave and the oscillating gas bubble.

High-speed movies combined with pressure records will give insight into the collapse

process of a cylindrical shell structure subjected to a nearby explosion.

3.3 Experimental Details

For this experiment, models that were studied in the natural implosion phase

of the experiment are used. In each experiment, the ambient pressure in the water

tank is raised to some fraction of the elastic instability limit of the model, then a
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small (29 to 203 mg) explosive charge is detonated at varying stand-off distances

from the model.

3.3.1 Explosives: Reynolds Detonators

Reynolds detonators are Exploding Bridgewire (EBW) detonators and are

manufactured by hand by Reynolds Industries Systems, Incorporated (RISI). The

detonators consist of two layers of explosive materials. The explosive materials

contained in the detonator cap are Pentaerythritol tetranitrate (PETN, C5H8O12N4)

(initiating explosive) and Cyclotrimethylenetrinitramine (RDX, C3H6N6O6) (output

explosive). PETN is sensitive to shock and friction while RDX is more stable.

For the experiments in this dissertation, both RP-87 and RP-80 EBW deto-

nators were used. The RP-87 contains 26 mg of PETN and 43 mg of RDX with

a stainless steel cap outside the brass sleeve. The RP-87 was used in the first set

of experiments at low ambient pressures. The RP-80 contains 80 mg of PETN

and 123 mg of RDX with an aluminum cap outside the brass sleeve. Two gold

bridgewires are embedded in the PETN parallel to one another. The other ends of

the bridgewires are connected to lead wires which are in turn connected to a firing

module.

To ignite the explosive, the lead wires are connected to an FS-17 firing module,

also manufactured by RISI. The FS-17 sends a high voltage (3000 V) across the

bridgewire. The high voltage causes the bridgewires to evaporate in the detonator

cap, creating a shockwave that initiates the detonation of the PETN and then the

RDX.

71



3.3.2 High-Frequency Pressure Measurements

The ambient water pressure in the tank was obtained from measurements of the

pressure of the nitrogen gas using a slow-response pressure transducer (Honeywell,

Model TJE, Range 0 to 1,000 psig, resolution 1 psi), discussed in Sec. 2.3.3.

The dynamic pressure waves in the water were measured with up to 9 under-

water blast sensors that use a Tourmaline crystal sensor (PCB Piezoelectronics, Inc.

models #138A02 and 138A01). These are the same pressure sensors discussed in

Sec. 2.3.3. These pressure sensors are arranged into three different configurations.

Fig. 3.1 shows the positions of the pressure sensors in the configuration used

in the first experiment. The cylindrical model was placed at the center of the

experimental facility. Eight pressure sensors were mounted to the ring described in

Sec. 2.3.3. The axis of the ring was aligned with the vertical axis of the the tank,

and the ring was displaced down by 22.86 cm with respect to the center of the tank.

Two pressure sensors, A and B, were placed at a distance for 25.4 cm from the

center of the cylindrical shell structure. Pressure sensor A was placed on the same

side of the cylinder as the Reynolds detonator, and pressure sensor B was on the

opposite side. Pressure sensors C and D were placed at a distance for 55.88 cm from

the center of the cylindrical shell structure; Pressure sensor C was on the same side

of the cylindrical model as the Reynolds detonator, and pressure sensor D was on

the opposite side. Finally, one pressure sensor (not shown in Fig. 3.1) was placed

directly below the center of the cylindrical model at a distance of 50.8 cm.

In the second configuration, shown in Fig. 3.2 (a), only six pressure sensors
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were used. This configuration was used for the second set of experiments that

were conducted on brass cylindrical shell structures. Two pressure sensors were

placed near the tank walls, and the remaining four were placed at a radial distance

of 30.5 cm from the detonator. As seen in Fig. 3.2 (a), one pressure sensor was

placed such that the cylindrical model was in between the pressure sensor and

the detonator. The reason for this placement was so the structure would block

the shockwave pressure from the pressure sensor in the hopes that the implosion

pressure signal from the structure could be seen in the pressure sensor.

The third configuration, shown in Figs. 3.2 (b), (c), and (d), was used for

the final set of experiments which was conducted on aluminum cylindrical shell

structures. In this configuration, nine pressure sensors were used. Like in the

first configuration, two pressure sensors were placed near the wall. Three pressure

sensors (E, F and G) were placed at a radial distance of 30.5 cm from the detonator,

with one sensor (E) behind the cylindrical shell structure, as shown in Fig. 3.2 (b).

Three pressure sensors (A, B, and D) were placed at a radial position of 5.08 cm

from the detonation, shown in Fig. 3.2 (c), which in these experiments is the stand-

off distance from the detonator to the cylindrical shell structure. Therefore, three

pressure sensors can record the shockwave pressure at the same radial location as

the cylindrical model. Three pressure sensors (A, B, and C), shown in Fig. 3.2 (c),

with two also located at 5.08 cm from the detonator, are placed 2.86 cm from the

center axis of the cylindrical shell structure. Again, the reason for the placement of

sensors C and E behind the structure was so the structure would block the shockwave

pressure from the pressure sensor. The close proximity to the structure would also
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Figure 3.1: Pressure sensor positions for the preliminary experiment (First Configu-
ration). The cylindrical model was placed in the center of the experimental facility,
and the RP-87 detonator was placed in the meridian plane at a distance of 2.54 cm
from the edge of the cylindrical model.

help to discern the implosion signal within the explosion event assuming that the

structure collapses before the shockwave reflects back from the tank walls.

3.3.3 High-Speed Photography

The motion and deformation of the model during an explosion-induced implo-

sion is recorded with high-speed digital photography, using a Phantom V12.1 camera

(Vision Research, Inc.) with an 1280-by-800-pixel sensor and a maximum sampling

rate of 6242 frames per second (fps) at full resolution. The camera was set to record

27,000 fps at an image size of 512 by 512 pixels. A timing system triggers the A/D

system, camera, and detonation simultaneously, so that the pressure signals over

the 37-µs period that each image is captured can be examined.

The camera is positioned to view the implosion through one of the glass win-
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Figure 3.2: Second and third pressure sensor configurations for the explosion exper-
iments.
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dows in the mid-plane of the tank and the two adjacent windows are used to project

light from two 650-W flood lamps onto the model (shown in Fig. 2.3 (b)). From the

movies of the implosions, both qualitative information and quantitative measure-

ments can be extracted. The qualitative information includes the orientation of the

collapsed model with respect to the tank and explosive, the state of the model at

any time, and via the relative timing of the explosion and implosion, whether the

implosion is triggered by hydrodynamics of the collapsing bubble or the shockwave

of the detonation. Quantitative measurements include the implosion time of the

model, the maximum radius of the explosion bubble, and the oscillation period of

both the model and the explosion bubble.

3.3.4 Test Procedures

To perform an experiment, the EBW detonator is placed in the center of the

experimental facility, and the model and pressure sensors are placed in their desired

positions. The front manhole and drain were closed, and the tank was filled with

water through the 50.8-mm-diameter ball valve in the piping tree at the top of the

tank until ≈5.7 L of air remained. The water ball valve was closed, and the tank

was slowly pressurized with nitrogen gas through a solenoid valve in the piping tree.

The ambient pressure was set to a predetermined value, Pamb = αPc, where α is

a factor ranging from 0.8 to 0.9. The A-to-D pressure sensor system, camera, and

explosive detonation were then triggered simultaneously with the zero referenced to

the trigger initiation. Due to electrical delay, the detonation occurred 2-ns after the
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trigger, and 1.5 s of data was recorded. Once the explosive detonated, the nitrogen

inlet valve was closed and a separate valve opened to depressurize the tank. After

each experiment, the water inlet valve was opened and the tank was drained through

the valve at the bottom.

3.3.5 Plan of Experiments

Table 3.1 shows a summary of the explosion-induced implosion experiments

that were conducted. The columns in the table show the run designation, the

stand-off distance between the explosion and cylindrical model, whether the model

collapsed or not, and whether a high-speed movie was taken. The run designation

starts with either a “B” for models constructed from brass tubes or an “A” for

models constructed from aluminum tubes. This followed by an “E” for explosion-

induced implosions, the standoff distance (a number in centimeters) and the run

number. Three experimental studies were conducted. In the first, the cylindri-

cal model collapsed due to impact from the re-entrant bubble jet formed by the

explosive-byproduct-gas bubble as seen in a high-speed movie. In the second set

of experiments, the standoff distance between the explosive and cylindrical models

was varied over a range of distances such that the gas bubble would not impact

the structure. In these second experiments, no high-speed movies were taken and

the maximum value of d0 for the model to collapse was found. In the final set of

experiments, the collapse of two models constructed with different materials and

geometries was investigated under similar loading conditions.
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Run Material Diam Standoff Ambient Implosion? High-Speed
Distance Pressure Movie?

D d0 Pamb
(mm) (cm)

BE25r01 Brass 25.4 2.54 0.81Pc yes yes

BE05r01 Brass 16.7 5.08 0.9Pc yes yes
BE05r02 Brass 16.7 5.08 0.9Pc yes no
BE10r01 Brass 16.7 10.16 0.9Pc yes no
BE12r01 Brass 16.7 12.7 0.9Pc yes no
BE15r01 Brass 16.7 15.24 0.9Pc yes no
BE17r01 Brass 16.7 17.78 0.9Pc yes no
BE17r02 Brass 16.7 17.78 0.9Pc no no
BE22r01 Brass 16.7 22.86 0.9Pc yes no
BE27r01 Brass 16.7 27.94 0.9Pc yes no
BE30r01 Brass 16.7 30.48 0.9Pc yes no
BE30r02 Brass 16.7 30.48 0.9Pc no no
BE33r01 Brass 16.7 33.02 0.9Pc no no
BE60r01 Brass 16.7 60.96 0.9Pc no no

AE05r01 Al 6061 3.81 5.08 0.89Pc yes yes
AE05r02 Al 6061 3.81 5.08 0.89Pc yes yes
AE05r03 Al 6061 3.81 5.08 0.89Pc yes yes
BE05r01 Brass 16.7 5.08 0.9Pc yes yes

Table 3.1: A summary of the explosion-induced implosion experiments. The names
given have a “B” for brass or an “A” for aluminum. The next letter is either an “E”
for explosion-induced or “N” for natural implosion. The next two numbers describe
the stand-off distance, d0, then there is an “r” representing the run number for the
given conditions. These names will be used in plot legends and plot titles to give a
quick reference to the cylindrical models in this table.

3.4 Results and Discussion

As described above, three sets of experiments were performed, which are sum-

marized in Table 3.1. As was noted in the previous chapter, due to the destructive

nature of these experiments, a new model must be used for each experimental run,

therefore, run-to-run variations in the results are to be expected.
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3.4.1 Explosion-Induced Implosions: Re-entrant Jet

As previously mentioned, one experiment (designated BE25r01) involving a

cylindrical model having a diameter of 25.1 mm (the model design was designated

B2D25 in the natural implosion experiments, Pc = 7.3 bar) was conducted. The

ambient pressure in the experimental facility was set to Pamb = 5.9 bar, or 81% of its

natural collapse pressure (Pc). Using this ambient pressure, the Hopkinson-Cranz

scaling law (Eq. 3.1), and the Rayleigh-Plesset equation (Eq. 3.8), the maximum

explosion bubble radius for the Reynolds detonator, RP-87, was calculated to be

3.92 cm.

The stand-off distance between the explosive and the wall of the cylinder

was 2.54 cm. It was found however, that the bubble of explosive gases was more

elongated in the vertical direction, therefore, the bubble did not make contact with

the cylindrical model during its first expansion. A high-speed movie was taken at a

rate of 27,000 frames per second. A set of images taken from the high-speed movies

is shown in Fig. 3.3. Fig. 3.3 (a) shows the initial set up of the cylindrical model

and detonator. It is important to note the orientation of the Reynold’s Detonator

provides an orientation for the nearly axisymmetric, but non-spherical explosion

bubble. In this case, the axis of the cylindrical detonator is pointing down about

about 15 degrees toward the axis of the model. Fig. 3.3 (b) shows the detonation of

the RP-87. Fig. 3.3 (c) shows the explosive gas bubble at its first maximum bubble

radius. The bubble is hard to see, as it appears to look like a cloud. Fig. 3.3 (d)

shows the bubble at its first minimum bubble radius. In Fig. 3.3 (e), the oscillating
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(a) t = 0 (b) t = 0.044 ms (c) t = 1.191 ms

Detonator

(d) t = 2.412 ms (e) t = 2.634 ms (f) t = 3.004 ms

Figure 3.3: A sequence of images from the high-speed movie of the preliminary
experiment of a brass cylindrical shell model implosion triggered by a Reynolds
detonator, RP-87, at a 25.4 mm stand-off distance (d0). The high-speed movie
was taken at a rate of 27,000 frames per second. (a) the start of the experiment,
(b) detonation of the RP-87, (c) oscillating gas bubble at its first maximum bubble
radius, (d) oscillating gas bubble at its first minimum bubble radius, (e) re-expansion
and new position of oscillating gas bubble, and (f) cylinder begins to collapses.

bubble re-expanding and its center shifting closer to the cylindrical shell structure.

In Fig. 3.3 (f), the cylinder collapses due to the reentrant jet of the gas bubble

during its second expansion.

From the pressure records obtained, the high-pressure wave from the explosion

reached the pressure sensors on the ring (the closest pressure sensors to the explosive)

at time, t = 0.3 ms, as measured relative to the time of detonation. Comparing this

time with the sequence of images from the high-speed movies in Fig. 3.3 (f), it

can be seen that the collapse of the cylindrical model occurs about 3 ms after the
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detonation, which is more than 10 times later than the moment when the high-

pressure wave reached the cylindrical model.

Fig. 3.4 (a) shows that the pressure records for the ring of pressure sensors

have nearly identical peak pressure values, arrival time and time duration of the

peak. This is expected since these pressure sensors are the same distance from the

explosion event (see Fig. 3.1 for pressure sensor positions). Fig. 3.4 (b) shows records

from the other pressure sensors, which are located at varying distances away from

the explosion. As expected, the closest pressure sensor, A, shows the high-pressure

wave arriving the earliest. The pressure peak magnitudes decrease with distance

away from the explosion. The arrival time of the high-pressure wave to the pressure

sensor is earlier for pressure sensors closer to the explosive.

3.4.2 Explosion-Induced Implosions: Stand-off Distance

The cylindrical model with the smallest diameter (designated B2D16 in the

natural implosion experiments), which has the shortest collapse time in these exper-

iments, was chosen for the rest of the experiments with the brass models since the

collapse time with respect to the reflection time was small. However, as discussed

before, this smaller cylindrical model requires a higher ambient pressure for its nat-

ural implosion. The available glass windows installed in the experimental facility

were not designed to withstand the total pressure due to the combination of the

required ambient pressure and the explosion overpressure, all the window ports in

the experimental facility were covered with stainless steel plates.
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(a) 8 Pressure Sensors in a Ring 22.86 cm below the meridian plane
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(b) Pressure Sensors on the Meridian Plane

0.2 0.4 0.6 0.8

0

10

20

30

40

Time (ms)

P
re

s
s
u

re
 (

b
a
r)

 

 
Pressure Sensor A

Pressure Sensor C

Pressure Sensor B

Pressure Sensor D

50.8 cm below

Figure 3.4: Pressure versus time record for the 13 pressure sensors used in the
preliminary experiment, model BE25r01. (a) The eight pressure sensors mounted
on a ring and placed 22.86 cm below the meridian plane of the tank (at the same
distance from the explosion). (b) Pressure Sensors A-D are in the meridian plane.
Pressure Sensor A and C are on the side of the cylindrical model where the explosive
is located, see Fig. 3.1, and Pressure Sensor B and D are on the opposite side if the
cylindrical model. The final pressure sensor is directly below the cylindrical model
at a distance of 50.8 cm.
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Figure 3.5: This schematic summarizes the stand-off distances for the set of experi-
ments with the 16.7-mm diameter brass models with the detonator (RP-80) placed
in the center of the experimental facility and the stand-off distance between the det-
onator and the cylindrical shell structure varied between 5.08 cm and 60.96 cm. The
ambient pressure in the experimental facility was held constant at Pamb = 24.1 bar.
The “x”-marks indicate that the model did not implode and the check-marks in-
dicate the model did implode. As can be seen, a wide range of stand-off distances
greater than the predicted maximum radius for the explosion bubble were used.

In the set of experiments with the brass cylindrical models of diameter 16.7 mm,

the detonator (RP-80) was placed in the center of the experimental facility and the

stand-off distance between the detonator and the cylindrical shell structure was

varied between 5.08 cm and 60.96 cm. The ambient pressure in the experimental

facility was held constant at Pamb = 24.1 bar. For this ambient pressure and deto-

nator, the explosive bubble maximum radius (Rbub = 3.56 cm) was predicted using

Eqs. 3.1 and 3.8. Therefore, it was expected that the bubble should not impact the

structure on the first bubble expansion. A summary of these experiments is shown

in Table 3.1 and visualized in Fig. 3.5. It is noted that for two stand-off distances,

d0 = 17.78 cm and d0 = 30.48 cm, two repeated experimental runs were carried

out. For both of these standoff distances, the structure collapsed in one of the runs

and not in the other. Because there was no high-speed video, it was unknown what
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caused the discrepancy in these results.

The pressure sensor positions for this set of experiments are shown in Fig 3.2

(a). Fig. 3.6 (a) to (d) shows the pressure versus time recorded by pressure sensors

A, B, C, and D, respectively, for all 11 experimental runs. As seen in each set of

pressure records, there is a slight spread in the arrival time (a range of 0.02 ms).

Given the speed of sound waves in water (1,480 m/s) this arrival time corresponds

to a range of distances of 29 mm and it is believed that the this is caused by small

variations in the relative position of the sensors and explosions from run to run. In

addition, the arrival time for the shockwaves seen by pressure sensors A, B, and C

is nearly the same. This is to be expected since the pressure sensors are nearly at

the same distance from the explosion. The magnitude of the pressure peaks are not

the same in a given run when comparing the three pressure sensors. Consistently,

pressure sensor C has a much higher peak pressure. It is noted that unlike the

preliminary experiments, the Reynolds detonator for these experiments was pointed

vertically up in all runs, so the lead wires formed a vertical line moving downward

away from the detonator cap. It is thought that the high pressure in sensor C

might be caused by repeatable non-uniformity in the pressure wave resulting from

the blasting cap design.

Fig. 3.7 shows the pressure records for all the sensors from each experimental.

The data from each run are displaced vertically by a small amount on the same plot

to illustrate the repeatability from run to run. These pressure records, which only

show early times in the event, cannot be used to predict whether or not the structure

collapsed. At later times, the shockwave reflection does not allow discernment of

84



(a) (b)

0.15 0.2 0.25 0.3 0.35 0.4

0

10

20

30

40

50

60

Time (ms)

P
re

s
s
u

re
 (

b
a

r)

 

 
BE05r02

BE10r01

BE12r01

BE17r01

BE33r01

BE15r01

BE17r02

BE22r01

BE30r02

BE27r01

BE30r01

0.15 0.2 0.25 0.3 0.35 0.4

0

10

20

30

40

50

60

Time (ms)
P

re
s
s
u

re
 (

b
a

r)

 

 
BE05r02

BE10r01

BE12r01

BE17r01

BE33r01

BE15r01

BE17r02

BE22r01

BE30r02

BE27r01

BE30r01

(c) (d)

0.15 0.2 0.25 0.3 0.35 0.4

0

10

20

30

40

50

60

Time (ms)

P
re

s
s
u
re

 (
b
a
r)

 

 
BE05r02

BE10r01

BE12r01

BE17r01

BE33r01

BE15r01

BE17r02

BE22r01

BE30r02

BE27r01

BE30r01

0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

10

20

30

40

50

60

Time (ms)

P
re

s
s
u
re

 (
b
a
r)

 

 
BE05r02

BE10r01

BE12r01

BE17r01

BE33r01

BE15r01

BE17r02

BE22r01

BE30r02

BE27r01

BE30r01

Figure 3.6: Pressure records for the four pressure sensor locations for the set of brass
model experiments with the detonator (RP-80) placed in the center of the experi-
mental facility and the stand-off distance varied between 5.08 cm and 60.96 cm. (a)
Pressure sensor A, (b) Pressure sensor B, (c) Pressure sensor C, and (d) Pressure
sensor D located 30.5 cm from the explosion.
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the pressure signal from the implosion of the cylindrical model.

Once these experiments were completed, a new set of windows for the exper-

imental facility was designed out of 7.62-cm-thick optically clear acrylic. Because

the acrylic windows were thicker than the glass windows, a new window mounting

system was designed and constructed. Once these new windows were installed, one

additional run with a 16.7-mm brass tube model was conducted. Because this ex-

periment was performed last, the third configuration for the pressure sensors was

used, see Fig. 3.2 (a), (b), (c) and (d). Fig. 3.8 shows a sequence of images from

the high-speed movie, taken at 27,000 frames per second. These images show the

cylindrical model and detonator at the start of the experiment, the detonation of the

RP-80, the bubble at the first maximum bubble radius, the bubble during the first

minimum bubble radius, re-expansion of the bubble, and the end of the cylindrical

structure collapse.

Fig. 3.9 shows the pressure records for BE05r02. The first pressure peaks in

Fig. 3.9 (a) for sensors have a maximum value that is cut-off due to the limited range

of the sensor used and the small distance between the sensors and the explosive.

In Fig. 3.9 (b), the pressure record for sensor C is shown. The peak pressure is

diminished because the cylindrical shell structure is between the explosive and the

sensor and so the structure shields the sensor from the full shockwave. The second

peaks in these records corresponds to the reflection of the high-pressure wave from

the rigid tank walls. Fig. 3.9 (c) shows the pressure records obtained at pressure

sensor locations E, F, and G (as seen in Fig. 3.2 (b)). The arrival of the high-

pressure wave occurs at nearly the same time for each sensor as they are nominally
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Figure 3.7: The pressure records for all the sensors from each experimental run. The
records from each run are displaced vertically by a small amount to illustrate the
repeatability from run-to-run. There is no visible difference between models that
did or did not collapse.

87



(a) t = −0.048 (b) t = 0 ms (c) t = 0.764 ms

(d) t = 1.337 ms (e) t = 1.624 ms (f) t = 2.006 ms

Figure 3.8: A sequence of images from the high-speed movie of BE05r02. The high-
speed movie was taken at a rate of 27,000 frames per second. (a) The start of the
experiment, (b) detonation of the RP-80 , (c) the bubble reaches its maximum radius
at 0.764 ms. (d) The bubble reaches its first minimum radius, (e) re-expansion of
the gas bubble, and (f) the end of the cylinder collapse.
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Figure 3.9: Pressure records for BE05r02. (a) Pressure sensors A, B, and D at
5.08 cm from explosion (b) Pressure sensor C, 2.86 cm from the cylindrical shell
structure and located on the opposite side of the model from the explosion. (c)
Pressure sensors E, F and G at 30.5 cm from the explosion.
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the same distance away from the explosion event.

3.4.3 Explosion-Induced Implosions: Aluminum Cylindrical Models

In this set of experiments, the detonator (RP-80) was placed in the center

of the experimental facility, and the stand-off distance between the detonator and

the cylindrical shell structure was kept constant at d0 = 5.08 cm. A summary of

these experiments is shown in Table 3.1. In the first three aluminum models listed in

Table 3.1, implosions were induced using a nearby explosion. These experiments are

compared to the explosion-induced implosion of the brass cylindrical model in the

last section (designated BE05r01). In all cases, high-speed movies of the implosion

events were taken.

Fig. 3.10 (a), (b) and (c) show the pressure records for the three pressure

sensors (A, B, and C) located closest to the cylindrical model for each explosive run

with the explosion-induced implosions (see Fig. 3.2 for pressure sensor locations).

The first pressure peaks (those from the shock wave from the explosion) have a

maximum value that is cut-off due to the limited range of the sensor used. The

second peaks in these records is the reflection of the shockwave from the rigid tank

walls. In Fig. 3.10 (c), the first peak pressure is diminished because the cylindrical

shell structure shields the sensor from the full shockwave. Fig. 3.10 (e) and (f) show

the pressure records for the three pressure sensors (E, and F) located at a radial

distance of 30.5 cm from the detonator for each of the three repeated runs. The

arrival of the shockwave occurs at the same time for each sensor as they are the
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Figure 3.10: Pressure records for the pressure sensor positions (A to F) shown in
Fig. 3.2 (b) for AE05r01, AE05r02 and AE05r03.
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same distance away from the explosion event. The peak values for pressure sensors

F, the pressure peaks are between 60 and 70 bar. The first peak value for pressure

sensor E was about 40 bar. This lower pressure magnitude was due to the structure

shielding the sensor from the explosion.

Figs. 3.11, 3.12, and 3.13 show a sequence of images from the high-speed

movie of AE05r01, AE05r02, and AE05r03, respectively. The images show the

characteristic events in the experiments: the start of the experiment, the instant

when the detonation occurs, the instant when the explosion gas bubble reaches

maximum size, the instant when the explosion gas bubble reaches minimum size, the

second re-expansion of the gas bubble, and the end of the implosion of the cylindrical

model. Comparing run-to-run, it is observed that the characteristic events occur at

almost the same time, ranging from 0 to 0.096 ms apart. The time at which the

cylinder collapses more variation from run-to-run than the other mentioned events.

Furthermore, it is noted that the oscillating gas bubble does not make contact with

the cylindrical model.

3.4.4 Explosion-Induced Implosions: Investigation of Failure Mech-

anisms

As discussed in the previous sections, the cylindrical models collapsed much

later than the detonation of the explosive. In the first experiment, it was found

that the cylindrical model collapsed due to the re-entrant jet of the explosive gas

bubble. In the second experiment, the process of the collapse was recorded in one
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(a) t = −0.048 (b) t = 0 ms (c) t = 0.715 ms

(d) t = 1.478 ms (e) t = 1.764 ms (f) t = 5.483 ms

Figure 3.11: A sequence of images from the high-speed movie of AE05r01 (a) Start
of the experiment. (b) Detonation of the RP-80. (c) First maximum bubble radius
of the oscillating explosive gas bubble. (d) First minimum bubble radius of the
oscillating explosive gas bubble. (e) The oscillating bubble is re-expanding. (f)
Cylindrical shell structure collapses.
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(a) t = −0.048 (b) t = 0 ms (c) t = 0.811 ms

(d) t = 1.478 ms (e) t = 1.764 ms (f) t = 5.292 ms

Figure 3.12: A sequence of images from the high-speed movie of AE05r02 (a) Start
of the experiment. (b) Detonation of the RP-80. (c) First maximum bubble radius
of the oscillating explosive gas bubble. (d) First minimum bubble radius of the
oscillating explosive gas bubble. (e) The oscillating bubble is re-expanding. (f)
Cylindrical shell structure collapses.
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(a) t = −0.048 (b) t = 0.048 ms (c) t = 0.811 ms

(d) t = 1.478 ms (e) t = 1.764 ms (f) t = 4.434 ms

Figure 3.13: A sequence of images from the high-speed movie of AE05r01 (a) Start
of the experiment. (b) Detonation of the RP-80. (c) First maximum bubble radius
of the oscillating explosive gas bubble. (d) First minimum bubble radius of the
oscillating explosive gas bubble. (e) The oscillating bubble is re-expanding. (f)
Cylindrical shell structure collapses.
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experimental run. In the final experiment, three repeated runs were documented

using high-speed movies.

If the cylindrical model reached resonance with the explosion bubble, the struc-

ture could become unstable and implode. For cylindrical shell structures, the two

likely modes of resonance are breathing and whipping. As seen in the high-speed

movies, the cylindrical model oscillated for several periods before collapsing. From

the high-speed movies, the oscillation frequency of the cylindrical model was mea-

sured and tabulated in Table 3.2 in the third column. The oscillation frequency of

the gas bubble was also measured from the high-speed movies (shown in column five

of the table). As expected, the frequency of the bubble oscillations and the cylinder

oscillations are close in magnitude. One can speculate that the bubble drives the

cylinder oscillations. An extension of this idea is that the bubble drives the cylinder

to resonance. To test this idea, the natural frequencies of the cylindrical shells were

computed in ANSYS for the breathing mode and bending (whipping) mode. These

frequencies are tabulated in the second and third columns of Table 3.2, respectively.

These natural frequencies of the structure are much higher than the frequencies

measured from the experiments.

The calculation of the natural frequencies (breathing and whipping modes) of

the cylindrical models was performed using an ANSYS model. Due to the complex

geometry of the cylindrical shell structures (containing heavy end caps at both ends),

a closed-form analytical solution is not possible. In order to provide some validation

of the ANSYS calculations, the natural frequency of a slender cylindrical model

(L/D = 20, where slender requires L/D ≥ 10) was computed both in ANSYS and
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by using Euler-Bernoulli beam bending theory. The resulting bending frequency

for the slender cylindrical model (aluminum 6061 with no end caps, D = 38.1 mm,

w = 0.89 mm) was 402 Hz in the ANSYS model and 406 Hz in the Euler-Bernoulli

beam bending theory. These values are nearly identical. The cause of the deviation

of these two frequencies can be attributed to the cross-sectional warpage that is

taken into account in the ANSYS model and neglected in the Euler-Bernoulli beam

bending theory. Due to the thin wall of the cylindrical model, neglecting the cross-

sectional area warpage is not a good assumption.

The cylindrical models that are used in these experiments do not qualify as

slender beams (L/D ≥ 10), therefore, the linear Euler-Bernoulli beam theory is

not valid. However, the Euler-Bernoulli beam bending theory was used to estimate

the frequency of the cylindrical shell structure with a lumped mass at both ends to

help verify the ANSYS results. The frequency calculated by ANSYS is tabulated

in the table. The frequency calculated with Euler-Bernoulli beam bending theory

was 1484 Hz (for AE05 models), which shows reasonable agreement to 1526 Hz

calculated by ANSYS.

In addition to the vibrational modes of the cylindrical structure, the natural

collapse pressure of the cylindrical models can be explored. The ambient pressure

in the experimental facility was about 90% of the natural collapse pressure of cylin-

drical models. The high-pressure wave of the explosion exceeds the natural collapse

pressure of the cylindrical model for a short time. In the natural explosion experi-

ments, the pressure is raised quasi-statically. The time duration of the high-pressure

wave of the explosion is much shorter in comparison. One pressure sensor was placed

97



Model f theorybreathing f theorybending fmeasstructure fmeasbubble ∆tPc wPc

(Hz) (Hz) (Hz) (Hz) (ms) (cm)

BE25r01 N/A N/A N/A 794.8 N/A N/A
BE05r01 2727.7 1199.2 666.7 983.6 0.08 11.7
AE05r01 2220.4 1526.3 789.5 800 0.165 24.6
AE05r02 2220.4 1526.3 833.3 800 0.16 23.8
AE05r03 2220.4 1526.3 769.2 1000 N/A N/A

Table 3.2: A summary of the theoretical frequencies of breathing mode and bending
mode of the structure compared with the measured frequency of the structure oscil-
lation and measured frequency of the bubble oscillations. The amount of time and
spatial width of the explosion pressure wave exceeding the natural collapse pressure.

at the same radial distance from the explosive as the cylindrical model. Therefore,

the pressure versus time of the location of the cylindrical model is known. From

this pressure record, the time duration that the peak pressure of the explosion ex-

ceeds the natural collapse pressure can be measured. These values are tabulated

in Table 3.2 in column six. The final column in the table is the estimated spatial

thickness of the pressure peak that exceeds the natural collapse pressure based on

the time duration in column six and the sound speed in water. These thicknesses

are listed in the last column of the table.

3.5 Conclusions and Future Work

Three experimental studies were conducted. The first experiment, conducted

at low pressure, imploded due to impact from the re-entrant jet from the explosion

bubble. The last two images shown in Fig. 3.3 show that this jet impact/implosion

occurred during the second bubble collapse.

In the second set of experiments, the standoff distance between the explosive

and cylindrical models was varied such that the gas bubble would not impact the
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structure and no re-entrant jet was formed. In these second experiments, no high-

speed movie was taken and the maximum value of d0 for the model to collapse

was found to be d0 = 8.6Rbub. In these experiments, it was not known at what

time after the explosion event the cylindrical model imploded, because high-speed

movies were not taken (due to the limitation of the experimental facility). There

was only one run (BE05r02) where a high-speed movie was taken, which shows the

cylindrical model imploding much later (2 ms later) than the shockwave arrival to

the structure. There was no significant difference in the pressure records for runs

when an implosion occurred and did not occur. This suggests that the implosion

signature is lost in the multiple reflections of the shockwave and bubble pulsations.

In the final set of experiments, the collapse of models with different geometry

and material was investigated under similar loading conditions. Despite the difficulty

in obtaining exact model and pressure sensor placement and in obtaining repeatable

explosions, the high-speed movies show that the timing of the characteristic events

are repeatable to within 48 to 96 microseconds (one or two movie frames). The

cylindrical model, as seen in the high-speed movies, oscillated for several cycles

before collapsing. These oscillations were driven by the oscillating explosion gas

bubble. From the movies, a transverse (whipping) mode vibration was observed.

However, it was not clear whether a breathing mode vibration also existed. The

oscillation frequency was measured from the high-speed movies and was found to

be about half the natural frequency for the whipping mode and one third of the

natural frequency of the breathing mode (as determined by ANSYS calculations).

The time duration of the peak pressure from the explosive that exceeded the
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natural collapse pressure of the cylindrical models was measured from the pressure

records. These times give a lower limit for the amount of time the local pressure

around the model is above the natural collapse pressure of the model. In these

experiments, the pressure at the location of the cylindrical model exceeded the

natural collapse pressure for about 0.16 ms. During this time, the cylindrical model

did not collapse even though the pressure was significantly higher than the natural

collapse pressure. In fact, the peak pressure was at least 4.5 times higher than the

natural collapse pressure of the model. The aluminum cylindrical models did not

collapse until 4 ms after the high-pressure wave passed.

In the future, it is suggested that these experiments be carried out in the

field, where reflections of the pressure waves from the boundary will not be present.

Additional parameters can be varied in the experiments such as ambient pressures

and size of explosives.
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Chapter 4
The Impact of a Plunging Breaker on a Partially Submerged Cube
4.1 Abstract

The impact of a plunging breaking wave (wavelength ≈ 1.2 m) on a partially

submerged cube (with dimensions L = 0.3048 m) is studied experimentally. The

free surface shape upstream of the cube during the wave impact was measured

with a cinematic Laser-Induced Fluorescence (LIF) technique employing a high-

speed digital camera, a laser light sheet and fluorescent dye mixed with the water.

Measurements were taken with the cube submerged by 0.5L at three horizontal

positions ranging from xcube = xb − 0.28 m to xcube = xb − 0.13 m, where xb =6.75

m is the breaker location in the absence of the cube as measured from the back

face of the wedge of the wave maker (The breaker location is defined here as the

horizontal position of the jet tip as it hits the front face of the wave). Measurements

were also taken with the cube submerged by 0.3L at one horizontal position, xcube =

xb − 0.28 m. Within the range of positions that were explored, the wave impact

behavior fell into two categories. In the first behavior category, which occurred with

the cube in the two horizontal positions closest to the wave maker for both depths

of submergence, the free surface between the front face of the cube and the wave

crest forms a circular arc that converges to a point and then forms a high-velocity

vertical jet (speeds ≈ 3 m/s). In the second category, which occurred with the cube

at the farthest position from the wave maker, the plunging jet begins to overturn

and impacts the front face of the cube. It was found that for the cube positions
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with category one wave impact behavior, the evolution of the water surface shape

between the cube and the wave crest was nearly identical.

4.2 Introduction

4.2.1 Literature Review

The impact of large-amplitude water waves on structures has been investigated

by a number of researchers. The literature on wave impact on vertical walls mounted

to the bottom boundary in shallow water has been reviewed by Peregrine [44].

Wave breaking is a strongly nonlinear transient two–phase process that is not easily

modeled with rigorous theoretical or numerical treatments and makes well-controlled

repeatable experiments very difficult. In fact, it was not until the 1970s that accurate

numerical modeling of the overturning of a water wave (without the presence of a

nearby structure) was achieved using potential-flow, boundary element calculations,

see for example Longuet-Higgins and Cokelet [33], Cooker and Peregrine [20] and

Dold and Peregrine [25]. When an incident wave has a small slope (i.e., when the

wave height over the wavelength is vanishingly small), linear theory gives a good

description of the impact of the wave on the wall, including the pressure on the wall

[44]. However, when the incident waves are even moderately steep the wave impact

and wall pressure cannot be accurately predicted by linear theory.

Without the presence of a wall, a plunging breaking wave can occur when, due

to various nonlinear effects, the wave steepens rapidly forming a jet that curls over

and plunges back into the front face of the wave. If a bottom-mounted vertical wall

is placed in the flow field, the breaking process can change dramatically depending
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on the location of the wall. If the wall is placed where the wave is most vertical, an

identical wave will be changed dramatically. The water surface at the contact point

on the water is pushed upward by the wall. This rising water causes the height of the

crest (measured as the vertical distance from the water surface contact point on the

wall to the wave crest) to reduce progressively; the water surface appears as if it is

converging to a point. Peregrine [44] predicted vertical accelerations of the water at

the wall to exceed 1000g (where g is gravity), when the water surface approaches the

convergence point. This would require pressure gradients exceeding 1000ρg (where

ρ is density). From these gradients, Peregrine estimated wall pressures much greater

than 10ρg (h+H), or 10 times the hydrostatic pressure at the bottom, where h is

the height of the crest measured from the still water level and H is the depth of

the still water. It is important to note that high pressures are attributed to the

convergence of the surface to a point, as there is no plunging jet formed to impact

the wall at this wall position. Due to the high vertical accelerations, a violent

vertical jet is formed at the convergence point. Peregrine named this phenomenon

flip-through.

Chan and Melville [16] observed three different wave impact behaviors, includ-

ing flip-through. They conducted an extensive experimental study of the impact of

deep-water waves (wavelength much less than the water depth) on a vertical wall

that spanned the width of the tank and extended to the tank bottom. In their ex-

periments, three distinct wave impact behaviors were observed based on the position

of the wall relative to the breaking point of the wave: (I) a region of wall positions

where a strong vertical jet is formed during impact and high impact pressures are
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observed (flip-through), (II) a transition region where a jet forms and hits the wall,

entrapping an air pocket; and (III) a region where the crest has already plunged

into the fluid before impacting the wall and a double-peak impact pressure record

is observed due to a secondary jet impacting the wall ahead of the crest. It should

be noted that Peregrine’s [44] two-dimensional numerical calculations and Chan

and Melville’s [14, 16] experiments exhibited flip-through behavior even though the

incident wave generation was very different. Another difference between the simula-

tions and experiments was the presence of bubbles and droplets in the experiments,

which are likely caused by surface tension, three-dimensionality of the flow and the

boundary layer on the wall.

The pressure on a wall during wave impact can be attributed to both the

hydrodynamics of the wave impact that causes high impulsive pressures and the

dynamics of entrained air (to be discussed in more detail later). The peak pressure

is dominated by inertia and lasts for about 1 millisecond in the laboratory and

10-100 milliseconds in the ocean [44].

Chan and Melville [16] found large variability in the observed pressure records

in repeated runs in their experiments, which they attributed to varying amounts

of air entrained from the wave breaking process. According to Peregrine [44], this

variability can also be attributed to small disturbances, such as surface roughness

on the wall or small residual surface waves and water motion from previous exper-

imental runs that can reduce the impact pressures. Early researchers, Bagnold [2]

and Richert [48], also saw variability in peak pressure measurements. They were the

first to compute the pressure impulse of wave impact and found it to be a more re-
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peatable metric than the pressure alone. The pressure impulse is simply the integral

of the pressure over the time duration of the impact,

P (x) =

tafter∫

tbefore

p (x, t) dt. (4.1)

Because the peak pressure occurs in such a short time scale, the nonlinear, grav-

ity and viscosity terms become negligible compared to the local acceleration and

pressure gradient terms from the equation of motion. The resulting equation,

ρ
∂u

∂t
+∇p = 0, (4.2)

is simpler to integrate over the appropriate domain for pressure impulse models.

Cooker and Peregrine [20] developed a pressure impulse model by using a

simplified wave shape consisting of a step function in water, height H, during a

constant-velocity (U) impact with a vertical wall. They found a relatively small

pressure impulse, 0.54ρUH per unit length of the wall. This low pressure impulse is

attributed to the effect of the constant pressure of the free surface behind the step.

This result indicates that the shape of the wave at distances more than 0.5H from

the wall is not important. Experimental studies, undertaken by Chan [15], show

that the pressure-impulse estimates of Cooker and Peregrine have some limitations.

Using the pressure-impulse field to estimate the pressure field, it was found that the

most violent peak pressures have a maximum of 2P/∆t, where P is the impulse as

defined in Eq. 4.1.

Using a two-dimensional pressure impulse model, Cooker and Peregrine [21]

showed that the pressure impulse decays logarithmically with depth down the wall
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for the limiting case of infinite water depth. Wood and Peregrine [63] obtained re-

sults for three-dimensional pressure-impulse models and found the forces and pres-

sures are reduced compared to two-dimensional impact [44]. Other solutions using

the pressure-impulse model include the effects of the proximity of other surrounding

rigid boundaries (studied by Peregrine and Kalliadasis, [45] and Wood and Peregrine

[62, 63]) and the effect of the porosity of the breakwater (modeled by Wood and

Peregrine [64]).

During a wave impact event, air can be entrained when the wave breaks before

impacting the wall or when the plunging jet impacts the wall before breaking thus

entrapping a pocket of air. The compressibility of this air pocket can cause two

features in the pressure record on the wall: first, an increase in the time duration of

the pressure peak (and a decrease in the magnitude of the peak) and second, pressure

oscillations following the peak [44]. Peregrine [44] explains that the increase in the

time duration of the pressure peak can be attributed to the extra time it takes to

compress and re-expand the trapped air pocket. The trapped air bubble acts as a

elastic spring. Water rebounds or “bounces-back” imparting an increased pressure

impulse on the wall. Wood et al. [65] experimentally measured an increased pressure

impulse on the wall when an air pocket was present. Laboratory experiments have

shown that oscillations in pressure following the peak are related to the trapped air

[44].

Wave impact studies by Bagnold [2], Chan and Melville [16] and Peregrine

[44] suggest that the highest impact pressure peaks are produced when the least

amount of air is entrapped. Subsequent studies afterward have confirmed Bagnold’s
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observations, see Richert [48], Blackmore and Hewson [5], Kirkgöz [36, 49], Hattori et

al. [32] and Bullock et al. [8]. During a flip-through wave impact, which by definition

forms no air pocket, some of the energy from the incoming wave is converted into

the upward jet. In cases when an air pocket is entrapped by the incoming wave,

energy that would have gone into the upward jet is instead used to break up the air

pocket. This might lead to a reduction in the jet height [44].

Bagnold was the first to propose an air pocket model. The model was based on

the adiabatic compression process of a pocket of entrapped air between a breaking

wave and a solid structure. The water surface slows down as it compresses the

air pocket, creating a high pressure zone in the air pocket, which can give rise to

a Raleigh-Taylor instability. Simple linearized models of the acoustic modes for

a semicircular air pocket were constructed by Topliss et al. [57] and Zhang et al.

[68]. It was found that the oscillation period of the air pocket compared well to

experimental observations.

Bullock et al. [9] conducted experiments with both salt and fresh water in the

same wave flume for cases where an air pocket is entrapped during wave impact.

They found that though the pressure peaks were reduced by 10% in salt water, the

pressure-impulse remained nearly the same compared to fresh water.

Lamarre and Melville [39] and Bullock et al. [8] measured a wide range of

air-volume fractions in breakers generated in the laboratory and those found in the

field. They concluded that there are difficulties in scaling the air volume fractions

between laboratory and field conditions and suggest that simple Froude scaling is

not sufficient.
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A number of wave impact studies were directed toward assessing the effective-

ness of breakwaters for protection against damage due to tsunamis. Oshnack et al.

[42] conducted a large-scale experimental study of the effectiveness of small seawalls.

Lukkunapasit and Ruangrasamee [40] found that low retaining walls (1 m high) were

effective at dissipating tsunami energy. Dalrymple and Kreibel [23] discussed the

idea of the upward splash of the wave impact deflecting the wave momentum upward

and thus reducing damage to structures on the other side of the seawall. They ob-

served that there was increased damage after a tsunami at positions directly behind

the pedestrian openings in seawalls, confirming that the seawalls do in fact deflect

the wave and reduce damage.

4.2.2 Present Work

In the present work, the impact of a breaking wave on a partially submerged

cube (dimensions L = 0.305 m) was explored in a wave tank (14.8 m long, 1.15 m

wide with a water depth of 0.91 m). Two-dimensional plunging breakers were pro-

duced in deep water by a dispersive focusing method that is similar to Rapp and

Melville [47]. Only one wave maker motion was used in all the experiments. The

impact the wave on the cube was studied with the cube placed at a number of hori-

zontal positions relative to the breaker location (without the cube in the tank) and

two depths of submergence. It is important to note that the cube does not span the

entire width of the wave tank or extend to the bottom of the tank. Therefore, the

wave impact problem is three-dimensional, and the physics of the wave impact pro-

cess are different from those in the works cited previously where a two-dimensional
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problem was analyzed with a wall that extended to the bottom of the tank. In

the present experiments, only wave impacts in Regions I and II (from Chan and

Melville’s [16] description of wave impact behavior) were observed. Wave profiles

were measured with a cinematic Laser-Induced Fluorescence (LIF) technique that

utilized two synchronized high-speed cameras at two viewing angles. The evolution

of the water surface shape in front of the cube, including the position and velocity

of the water contact point on the vertical centerline of the front face of the cube are

analyzed. Pressure measurements were not performed here, but will be discussed in

the Future Work section (Sec. 4.5)

4.3 Experimental Details

In the present section, the wave tank (Sec. 4.3.1), the wave generation tech-

nique (Sec. 4.3.2), the wave profile measurement technique (Sec. 4.3.3), the repeata-

bility of the wave generation process (Sec. 4.3.4) and the outline of the experiments

(Sec. 4.3.5) are discussed in detail.

4.3.1 Deep-Water Wave Experimental Facility

The experiments are performed in a wave tank that is 14.8 m long, 1.1 m

wide and 2.2 m deep with a water depth of 0.91 m. The waves are generated by a

programmable wave maker consisting of a vertically oscillating wedge that is located

at one end of the tank, see Fig. 4.1. The front face of the wedge is tilted forward

by 30◦ (the normal to the front face points downward at angle of 30 degrees from

horizontal) and the back face of the wedge is vertical and very close to the end wall
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of the tank. The wedge was driven by a ball-screw and servo-motor mechanism.

A computer-based feedback control system was used with a position sensor and a

tachometer to control the motion of the wedge precisely. The wave maker motion

is repeatable within ±0.1% in amplitude from run to run. Consequently, highly

repeatable breaking waves are obtained in the tank.

A sloped beach is located at the end of the tank opposite to the wave maker.

For the current experiments, the beach is used mainly to expedite calming of the

water surface between experimental runs.

The wave tank also includes an instrument carriage that rides on precision

rails mounted to the tops of the long side walls of the tank, see Fig. 4.1. Most

of the wave measurement equipment was mounted on the carriage, which was held

stationary during each experimental run.

Water treatment is critical in the present experiments for two main reasons.

First, in the photographic LIF measurements of the free surface profiles, dust and

particles on the free surface can produce inaccurate measurements. Second, the

presence of surfactants can affect the behavior of the waves and the impact process.

In order to maintain a clean water surface, a surface skimmer and diatomaceous-

earth water filtration system was used between experimental runs. In this system,

the skimmer is placed behind the beach, see Fig. 4.2, and the water is returned to the

tank at the opposite end of the tank after filtration. The wave impact experiment

was run at intervals of 30 minutes. In between runs, the filtration system was turned

on for about 10 minutes and then turned off for 20 minutes to allow the residual

water motions to subside.
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Figure 4.1: A schematic showing the tank, the wave maker, the cube and the lighting
setup from the cinematic LIF measurements of the water surface profiles.

4.3.2 Wave Generation Technique

Water waves steepen and break due to energy input from the wind, nonlin-

ear instabilities, directional energy focusing, dispersive focusing, interaction with

current systems, and shoaling. The most common way of generating deep-water

breaking waves in a laboratory wave tank is to use dispersively focused wave pack-

ets. This method provides the greatest control over breaking location and strength.

Dispersive focusing uses a frequency-modulated packet of waves that is gener-

ated by a mechanical wave maker. The wave packet must have high-frequency waves

generated at the beginning of the packet and low-frequency waves at the end of the

packet. Due to the frequency dispersion of water waves, the low-frequency waves,

which have high phase speeds, catch up in space and time with the high-frequency

waves, which have a lower phase speed. As the packet propagates, the entire wave
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packet will focus to a narrow region of time (tb) and space (xb). The result is es-

sentially one wave that contains the energy of all the waves initially in the packet.

The concentration of energy in such a small region causes the wave to become very

steep and leads to breaking if the initial waves are steep enough.

Longuett-Higgins [33] derived the basic technique of calculating the required

distribution of wave frequencies in time that will converge at the breaking distance

(xb) at the same time using linear theory. Other researchers have modified Longuett-

Higgins’ technique. Davis and Zarnick [24] solved the inverse of the classical Cauchy-

Poisson initial water surface elevation problem to calculate the wave packet that, if

reversed in time, will eventually converge to a steep wave.

The breaking waves in this study were generated by the dispersive focusing

method proposed by Longuet-Higgins [33] and later modified by Rapp and Melville

[47]. This wave generation method has been used in a number of earlier studies in

the Hydrodynamics Laboratory. The wave packet consists of the sum of N sinusoidal

components and the wavemaker motion to produce these waves is given by

zw = W (t)
2π

N
A

N∑

i=1

1

ki
cos

(
xb

(
ωi
c̄
− ki

)
− ωit+

π

2

)
, (4.3)

where W (t) is a window function which is described below, A is an adjustable con-

stant called the wavemaker amplitude, xb is the horizontal position of the breaking

event (by linear theory) measured from the back of the wedge, t is time, ki and ωi

are, respectively, the wavenumber, and frequency of each of the i = 1 to N wave

components (ω = 2πf where f is the frequency Hz), and c̄ is the average of the

group velocities (ci = 0.5ωi/ki) of the N components. The frequencies are equally
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spaced, ωi+1 = ωi + ∆ω, where ∆ω is a constant. The window function was chosen

to give the wedge zero motion at times when the summation of components resulted

in only a very small motion:

W (t) = 0.25(tanh(βω̄(t− t1)) + 1)(1− tanh(βω̄(t− t2))), (4.4)

where β is a constant that determines the rise rate of the window function, chosen

as 5.0, and ω̄ is the average of the N frequencies, ωi. The window function is nearly

equal to 1.0 for most of the time between t = t1 and t = t2 and is zero at other

times [27]. The times t1 and t2 were chosen to allow the lowest and highest frequency

components (i = 1 and i = N , respectively) to be generated and to travel to position

xb:

t1 = xb (1/c̄− 1/cN) , (4.5)

t2 = xb (1/c̄− 1/c1) . (4.6)

In the wave maker motion equation (Eq. 4.3), the parameters within the argu-

ment of the cosine term are chosen from linear theory, while the other parameters

were obtained by trial and error with the goal of producing a violent plunging

breaker when the cube was not installed in the tank. The result was a strong plung-

ing breaker generated from a wave packet with an average frequency, f0 = 1.15 Hz.

For this breaker, N = 32, h/λ0 = 0.35792 (where h is the vertical distance between

the mean water level and the vertex of the wedge and λ0 = 2πg/ω̄2, where g is

gravitational acceleration), H/λ0 = 0.486 (H is the mean water depth in the tank),

xb/λ0 = 10.0, N∆ω/ω̄ = 0.77, and A/λ0 = 0.074. The resulting profile of wedge

height versus time that was used as the input to the wavemaker is shown in Fig. 4.2.
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Figure 4.2: The wavemaker input showing the vertical height of the wavemaker
versus time.

For deep water wave packets, linear theory gives a good prediction at positions

close to the wave generator. As the wave packet moves down the tank, the wave

amplitudes increase and the linear theory produces inaccurate results. Dommer-

muth et al. [26] developed a numerical model that simulates the wave generation

and breaking process (up to plunging jet impact) using potential flow analysis. This

model uses a high-resolution refined mixed Euler-Lagrangian solution scheme ignor-

ing the effects of surface tension. The fully nonlinear calculations provide a more

accurate prediction than linear theory as the wave approaches breaking.

4.3.3 Wave Profile Measurements

All wave profile observations and measurements were made photographically.

White-light videos were obtained to qualitatively analyze of the wave-cube inter-

action. Videos using Laser-Induced Fluorescence (LIF) illumination were used to
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obtain quantitative measurements of the surface wave profile evolution during the

impact with the cube.

In the LIF measurements, a 6-Watt Argon-Ion laser operating at 5 W was

directed through a series of optical lenses and mirrors to the top of the carriage.

From the top of the carriage, a mirror, two spherical lenses and a cylindrical lens

were used to direct the beam downward and deform it into a 1-mm-thick vertical

sheet as it hit the water surface. The light sheet was centered along the width of

the wave tank and expanded in the stream-wise direction, as shown in Fig. 4.1.

The cameras were focused on the the intersection of the light sheet with the mean

water level. Fluorescent dye was mixed into the wave tank in order to make the

laser light sheet visible at the water surface. Two high-speed cameras (Phantom

v640, Vision Research, Inc) were mounted on the instrument carriage. The cameras

were mounted above the water surface, making a shallow viewing angle of 5◦ to

10◦ relative to the horizontal. Long-wavelength-pass optical filters were placed in

front of the camera lenses. These filters absorb the laser light reflected from the

water surface and pass the light from the glowing dye. The first camera was pointed

slightly downstream and provided a view of the front and back of the propagating

wave as the wave approached the cube. The contact point of the water surface and

the cube is seen in this view as well as the resulting vertical splash after impact.

However, when the wave begins to overturn and break, the plunging jet of the wave

sometimes obstructs the view of part of the front face of the wave. The second

camera was mounted to face slightly upstream and provided the missing view of the

front face of the approaching wave. The second camera does not show the contact
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point or the back of the wave. The two views together provide a complete picture

of the wave breaking event at all times.

The cameras were set to take images at a rate of 300 frames per second with a

resolution of 2560 by 1600 pixels with 12-bit gray levels. The cameras were synchro-

nized in time and were set to start recording movies at the start of the wave maker

control program. To initiate this camera image capture sequence, a switch closure

was sent from the computer that controlled the wave maker to a delay box (Berekley

Nucleonics) when the wave maker control program was activated. The delay box

waited a specified delay time (for the experiments discussed, this ranged from 16 to

20 seconds based on the cube position) before sending a 5-Volt Transistor-Transistor

Logic (TTL) signal to a function generator. The function generator then commenced

sending a series of square waves with the desired frequency of the cameras. At each

rising edge of the square wave, the two cameras recorded images. Using this ex-

ternal clock image sequencing allows precise control of the synchronization of the

two cameras. It is important to note here that there was a delay caused by the

computer between the time at which the button was pushed to initiate the wave

maker program and the time at which the camera was triggered. This delay time

was 0.12 seconds and was measured by comparing a high-speed video of the wave

maker motion to the wedge motion as measured by the wave maker position sensor

and recorded by the computer that controls the wave maker.

In order to process the data from the cameras, calibration images of a checker-

board were taken from both cameras – an example is shown in Fig. 4.3. The checker-

board was held in the same vertical plane that is occupied by the light sheet during
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the LIF movies. These calibration images were used to find the number of pixels

per centimeter, distortion caused by the viewing angle, and mean still water level.

Fig. 4.4 shows a mapping from image units (pixels) to physical units (centimeters)

from the checkerboard corner points found in Fig. 4.3. The mean water level in the

calibration images was determined by fitting a straight line to the set points deter-

mined by eye to represent the contact line of the water surface on the calibration

board. Additionally, the calibration images allow a map of physical locations in the

image plane to be made from one camera to another in order to combine the results

of both cameras. Before each run, still frames of the flat surface with the laser light

sheet shining on the water surface were taken to confirm the mean water level for

each experimental run.

The images from the high-speed movies were downloaded to a desktop com-

puter and an in-house Matlab code was used to process the images. The image

processing starts with the adjustment of the image contrast before applying the

Matlab function “Edge.” A threshold value of the intensity gradient magnitude was

chosen, and the edge function outputs an array of the same dimensions as the image

with each pixel either 1 (a pixel with gradient magnitude above the threshold level)

or a 0 (a pixel with gradient magnitude below the threshold level). Because the

cameras were focused at the air-water interface that shows a sharp edge between

the black air and the white water in the LIF images, the gradients at the water

surface become very high.

A search algorithm was used to find the first point on the air-water interface

starting on the right side of the image, then a nearest-neighbor algorithm was used
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Figure 4.3: One calibration image (from camera 1) showing the checkerboard cali-
bration grid and the mean still water level. The magenta diamonds show the corner
points, the red star shows the point where the top edge of the cube passes through
the plane of the calibration board, and blue circle shows a point on the mean water
level below the corner points. The point corresponding to the red star is known to
be 15.24 cm above the mean water level. The straight blue line was fit to the set of
points determined by eye to represent the contact line of the water surface in the
plane of the board.
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Figure 4.4: Calibration curve using the points taken from Fig. 4.3. A line was fit
to these points in order to map the edge from the post-processing to real physical
units.
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Figure 4.5: An example of the edge-detection technique showing the free-surface as
detected by the edge-detection technique (red line) and the region where the free
surface was approximated by a spline-fit (yellow) because it was obscured from the
view of the camera..

to find the connecting points on the air-water interface until the front face of the

cube was reached. If there was a disconnect in the free surface profile caused by a

part of the wave surface obscuring the wave profile at the plane of the light sheet, a

spline-fitting algorithm, requiring user-input to connect the discontinuity, was used.

Fig. 4.5 shows a sample image where spline-fitting was used (shown in yellow).

4.3.4 Repeatability of Wave Generation

In order to demonstrate the repeatability of the wave generation in the wave

tank, wave height versus time at two points in the tank were measured without the

cube in the facility. Rather than using wave gauges, the LIF camera system was

used as an overly robust method of taking these measurements. One LIF camera
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was mounted on the instrument carriage using the same laser light sheet setup as

described in Sec. 4.3.3. The carriage was moved to each measurement location

relative to the wavemaker, and a checkerboard calibration target was used not only

to calibrate the images to physical units, but also, by lining up the checkerboard

relative to known locations on the tank, to precisely determine the position of the

image relative to the wave maker.

LIF movies were processed using the technique described in Sec. 4.3.3. Because

the water surface height was only required at one point, an average of seven the

surface heights in pixel columns covering a horizontal distance of 0.8 mm along the

light sheet was for the output “wave gauge” measurement shown in Fig. 4.6.

Fig. 4.6 shows the water surface elevation at the streamwise positions of (a)

561.8 cm and (b) 670.5 cm from the back edge of the wavemaker. Note that in

Fig. 4.6 (a), there is a break in the curve that was due to the water surface moving

below the image eld of view. As can be seen in the figures, the water surface versus

time records are quite repeatable from run to run. Measurements of the maximum

elevation in each run indicate a range of only 0.07 cm with a mean value of 8.68 cm

for the 561.8 cm streamwise position and a range of 0.11 cm with a mean value of

8.35 cm for the 670.5 cm streamwise position.

4.3.5 Plan of Experiments

Table 4.1 shows a summary of the cube positions used in this study. For

all runs, the same plunging breaking wave, discussed in Sec. 4.3.2, was used. The

parameters that were varied in the experiments were the streamwise (xpos) position
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Figure 4.6: Repeatability of wavemaker without the presence of the cube in the tank.
Water surface elevation, z verus t, where z is the free surface position referenced
from the mean still water level and t is the time elapsed from the moment the wave
maker input program is initiated, for positions (a) x = 561.75 cm (2 repeated runs)
and (b) x = 670.5 cm (3 repeated runs) from the back edge of the wavemaker. Note
that in (a), there is a break in the curve that was due to the water surface moving
below the image field of view.
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Position xpos zpos Impact # of Repeat
Number (cm) (cm) Region LIF Runs

1 642 0 I 4
2 642 5.7 I 3
3 647 0 I 3
4 657 0 II 3

Table 4.1: A summary of the cube locations used in this study. The xpos is the
stream-wise position of the front face of the cube relative to the back of the wave
maker. The zpos is the height of the center of the cube relative to the mean water
level. The next to last column, Impact Region, refers to the three regions defined
by Chan [16] that are listed in Sec. 4.2.

measured from the back of the wedge wave maker to the front face of the cube and

the depth of submergence (zpos) measured as the vertical distance from the center

of the cube to the mean water level. When zpos = 0, the center of the cube is at

the mean water level and the cube is halfway submerged. The last column, “Impact

Region,” refers to the three regions defined by Chan and Melville [16] discussed in

Sec. 4.2. Within the range of these experiments, most of the data fell in Region I,

while for one cube position, it fell into Region II.

4.4 Results and Discussion

The results obtained for each of the four cube positions will be discussed

in Secs. 4.4.1 through 4.4.3. These results include snapshots taken from white-

light movies for both camera views and LIF measurements of the water surface

evolution. Although two cameras were used to take LIF measurements of the wave

impact event, only the movies from camera 1, which show the water contact point

on the front face of the cube were analyzed, since they give a good view of nearly all

of the wave profile. In Sec. 4.4.2, the convergence of the wave surface profiles to a
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point (flip-through) are discussed for the Region I impact events and the case with

Region II impact is discussed in Section 4.4.3. Measurements of the positions of the

contact point between the front face of the cube and the free surface are presented

in Sec. 4.4.4.

4.4.1 Region I Results

For three of the cube positions explored, the wave-cube interaction exhibited

a Region I-type behavior. As the wave approaches the front face of the cube, the

region between the wave crest and the cube surface forms an arc due to the influence

of the wall not allowing the water to move in the streamwise direction. As the wave

progresses toward the cube face, this arc closes and a jet forms with vertical velocity,

parallel to the cube face (flip-through).

A sequence of four images from one white-light movie of the impact of the

wave with the cube located at cube Position 1 is shown in Fig. 4.7. The interval

between frames is 33.33 ms. The images were chosen such that the time instances

at (c) coincides with the time that the curvature of the water surface changes to

the upward jet, defined here as the moment of wave impact. Figs. 4.8 and 4.9

show similar sequences of eight images for Positions 2 and 3, respectively. Fig. 4.8

(a) - (d) show the view from camera 1, and Fig. 4.8 (e) - (h) show the view from

camera 2, where each row corresponds to the same instant in time. The interval

between frames is 33.33 ms. The images were chosen such that the time instances at

(c) and (g) coincide with the time that the curvature of the water surface changes

to the upward jet, defined here as the moment of wave impact.

123



(a) (b)

Cube Shadow

Water surface

(c) (d)

Vertical Jet

Figure 4.7: A sequence of four images from one high-speed movie (from camera 1) of
the impact of a breaking wave on the cube at Position 1. In this cube position, the
free surface between the water contact point and the wave crest focuses to a point
(image c), thereby, creating a fast-moving vertical jet. The time interval between
the photographs in 33.333 ms.
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(a) (e)

Cube

Shadow

Water surface

(b) (f)

(c) (g)

(d) (h)

Vertical Jet

Figure 4.8: A sequence of eight images from two high speed movies of the impact of
a breaking wave on the cube at Position 2. The left-hand side shows images taken
with camera 1, while the right-hand side shows images taken with camera 2. The
time interval between the photographs in 33.333 ms.
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 4.9: A sequence of eight images from two high speed movies of the impact of
a breaking wave on the cube at Position 3. The left-hand side shows images taken
with camera 2, while the right-hand side shows images taken with camera 1. Each
row contains images from the same instant in time. The time interval between the
photographs in 33.333 ms.
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The profile shapes (from the LIF measurements) for one representative run for

cube Position 1, are shown in Fig. 4.10 (a) up to the moment of wave impact (the

instant when the water surface at the face of the cube has zero curvature) and the

subsequent profiles showing the vertical jet are shown in Fig. 4.10 (b). The blue lines

show the free surface with the magenta areas showing locations where spline fitting

was used. Figs. 4.11 and 4.12 show the LIF measurements for one representative

run for cube Positions 2 and 3, respectively.

To examine the repeatability of the surface profile histories for each cube

position, the wave impact test was repeated 3 to 4 times at each location. Profile

histories for the repeated runs up to the time of formation of the vertical jet are

shown in Fig. 4.13 for Position 1, Fig. 4.14 for Position 2, and Fig. 4.15 for Position

3. As can be seen in these figures, the profiles are in close agreement, except at the

forward face of the crest where the small amount of breaking before impact is seen

to vary a bit from run to run. This effect was likely due to residual water motions

in the wave tank. This residual motion can be reduced by increasing the calming

period in between experimental runs.

4.4.2 Flip-Through Behavior

For the three cube positions analyzed here, the measured wave surface profiles

were very similar (see Figs. 4.13, 4.14, and 4.15, corresponding to cube Position

1 (xcube = 642 cm, zcube = 0 cm), Position 2 (xcube = 642 cm, zcube = 5.7

cm) and Position 3 (xcube = 647 cm, zcube = 0 cm), respectively). Fig. 4.16

shows the first run of each of the three positions plotted in the same figure with
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Figure 4.10: Sequence of profiles of the water surface during impact of the wave for
Position 1, run 1. The time between profiles is 3.333 ms. For clarity, the earlier
profiles, up to the point of formation of the vertical jet, are shown in (a) and the
later profiles, after the point of formation of the vertical jet, are shown in (b). The
small magenta areas on each curve are locations where spline-fitting was used.
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Figure 4.11: Sequence of profiles of the water surface during impact of the wave for
Position 2, run 2. The time between profiles is 3.333 ms. For clarity, the earlier
profiles, up to the point of formation of the vertical jet, are shown in (a) and the
later profiles, after the point of formation of the vertical jet, are shown in (b). The
small magenta areas on each curve are locations where spline-fitting was used.
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Figure 4.12: Sequence of profiles of the water surface during impact of the wave for
Position 4, run 1. The time between profiles is 3.333 ms. For clarity, the earlier
profiles, up to the point of formation of the vertical jet, are shown in (a) and the
later profiles, after the point of formation of the vertical jet, are shown in (b). The
small magenta areas on each curve are locations where spline-fitting was used.
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Figure 4.13: Sequence of profiles of the water surface during impact of the wave up to
the point of formation of the vertical jet for Position 1 showing all four experimental
runs. The time between profiles is 3.333 ms.
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Figure 4.14: Sequence of profiles of the water surface during impact of the wave
up to the point of formation of the vertical jet for Position 2 showing all three
experimental runs. The time between profiles is 3.333 ms.
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Figure 4.15: Sequence of profiles of the water surface during impact of the wave
up to the point of formation of the vertical jet for Position 3 showing all three
experimental runs. The time between profiles is 3.333 ms.

133



no post-shifting of the profiles in time or space. The wave surface profile evolution

is quite similar for the three cases, even though the position of the cube varies by

5 cm between positions or 4% of the nominal breaker wavelength as given by linear

theory, λ = g/(2πf 2) = 118 cm. This indicates that the flip-through behavior is

relatively insensitive to the cube position.

It can be observed in the movies and surface profile histories that the water

surface between the cube wall and the wave crest appears to be converging to a

point. Furthermore, this water surface seems to have the shape of a circular arc

whose radius is progressively decreased as the crest approaches the cube. To test

this idea, circles were fit to the water surface between the cube wall and the wave

crest. The circles were constrained to have their centers on the vertical line formed

by the front face of the cube and the radius and vertical position of the center of the

circle were obtained by a least squares fit to the profile data. Fig. 4.17 (a) shows

the measured surface profiles (blue) for cube Position 1 (from Fig. 4.10) with these

fits of the circular arc (shown in red). As can be seen in the figure, the circular

arcs fit the profile data quite well up to the last three profiles where some wave

breaking effects roughen the surface. Fig. 4.17 (b) shows a zoomed out version of

Fig. 4.17 (a) to show that the red curves form large circles. As the wave approaches

the cube, the radius of the circles decrease, and the center point of the circle moves

down. Figs. 4.18 and 4.19 show the measured surface profiles (blue) for Positions 2

(from Fig. 4.11) and 3 (from Fig. 4.12), respectively, with circular fits to the front

of the wave (shown in red). In Figs. 4.13, 4.14, 4.15, it was shown that that the

wave profiles are repeatable, so profiles from only one representative run per cube
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Figure 4.16: Sequence of water surface profiles for three representative runs for the
three cube positions in Region I. Blue: Cube Position 1 (xcube = 642 cm, zcube
= 0 cm), Magenta: Cube Position 2 (xcube = 642 cm, zcube = 5.7 cm) and Red:
Cube Position 3 (xcube = 647 cm, zcube = 0 cm). Even though the positions of the
cube vary by about 5 cm in the streamwise and vertical directions, the measured
wave profiles do not differ substantially.
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position was used to fit these circles.

In order to compare the results of the circular fits corresponding to the different

cube positions, temporal histories of the radii and vertical heights of the centers of

the circles are plotted in Figs. 4.20(a) and (b), respectively, for cube positions 1, 2

and 3. In these plots, t = 0 is taken as the time when the measured water surface

profile in front of the cube face is projected to have zero curvature, as mentioned

above this time is called the moment of wave impact. As can be seen in the Fig. 4.20

(a), the radius versus time histories are very close to one another and this similitude

is more pronounced near t = 0. The data for Positions 1 and 2, in which the cube

is at the same horizontal location, but different vertical locations are very similar

quantitatively for all times. The radius versus time data, Fig. 4.20 (a), show that

in all cases the radii decreases steadily from about 150 cm at t = −0.25 s to zero at

t = 0. The curves of the height of the center of the circle versus time in Fig. 4.20 (b)

also decrease steadily from about 150 cm above the mean water level at t = −0.25 s,

but the height at t = 0 is nearly 13 cm for all three cases.

Within this range of cube positions, the wall strongly influences the shape

evolution of the wave. At time t = −0.15 s, the radius of the circle for cube

Position 3 appears to match the radius of the circles for cube Positions 1 and 2.

To estimate the distance at which the wave profiles become similar for these cube

positions, the time, t = −0.15 s corresponds to a position in space if the average

phase speed of the wave, vp = 136 m/s is assumed to be constant. This distance

can be estimated at 20.4 cm ahead of the cube. The behavior of radius versus time

for cube Positions 1 and 2 is similar, which is not surprising since the cube location
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Figure 4.17: Measured surface profiles (blue) for cube Position 1 from Fig. 4.10 (a).
The red curves show the circular fits to the area of the water surface between the
front face of the cube and the wave crest. (a) shows the axes set to fit the blue
measured profiles, showing only part of the circles, (b) shows the same plot zoomed
out so that the entire circles are visible. The circles decrease in radius as the wave
approaches the cube. The center point of the circle fit, which was set to be a point
at x = 0 (along the vertical wall), moves downward as the wave approaches the
cube.
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Figure 4.18: Measured surface profiles (blue) for Position 2 from Fig. 4.11 (a). The
red curves show the circular fits to the area of the surface between the cube wall
and the crest.
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Figure 4.19: Measured surface profiles (blue) for Position 3 from Fig. 4.12 (a). The
red curves show the circular fits to the area of the surface between the cube wall
and the crest.
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is in the same streamwise location relative to the breaking point of the wave. The

depth of submergence at these small distances does not appear to affect the rate

at which the quarter circle, formed by the wall and wave crest, shrinks over time.

Fig. 4.20 (b) shows the vertical position of the circle center versus time for Positions

1, 2, and 3, which behaves similarly to the radius.

4.4.3 Region II: Position 4

A sequence of eight images from two white-light movies of the impact at cube

Position 4 is shown in Fig. 4.21. Fig. 4.21 (a) - (d) show the view from camera 1,

and Fig. 4.21 (e) - (h) show the view from camera 2, where each row corresponds to

the same instant in time. The interval between frames is 33.33 ms, and the images

were chosen such that the time instances at (c) and (g) correspond to the moment

of wave impact as defined above. As the wave progresses toward the cube face, the

crest steepens and begins to curl over (see Fig. 4.21 (g) and (h)). The wave impacts

the front face of the cube as the crest overturns but before it plunges back into the

water. Therefore, this cube position falls into the transition region, Region II.

The LIF movies for this case were processed and one representative sequence

of water surface profiles from the contact point on the front face of the cube to a

region upstream of the wave crest is shown in Fig. 4.22 (a) and (b). The wave profile

shapes up to the moment when the vertical jet is formed are given in Fig. 4.22 (a)

and the subsequent profiles showing the resulting water jet are given in Fig. 4.22

(b). These movies were harder to process due to the formation of the plunging jet

just before the wave impacted the cube.
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Figure 4.20: A comparison of the circular fit characteristics for one representative
run for Positions 1, 2, and 3 in Region 1. (a) shows the radius versus time and (b)
shows the vertical position of the circle center versus time. The time of impact was
t = 0.
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Cube Shadow

Water surface

(b) (f)

(c) (g)

(d) (h)

Vertical Jet

Figure 4.21: A sequence of eight images from two high speed movies of the impact
of a breaking wave on the cube at Position 4. The left-hand side shows images
from camera 2, while the right-hand side shows images taken from camera 1. Each
row contains images from the same instant in time. The time interval between the
photographs in 33.333 ms.
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Figure 4.22: Sequence of profiles of the water surface during impact of the wave for
Position 4, run 1. The time between profiles is 3.333 ms. For clarity, the earlier
profiles, up to the point of formation of the vertical jet, are shown in (a) and the
later profiles, after the point of formation of the vertical jet, are shown in (b). The
small magenta areas on each curve are locations where spline-fitting was used.
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Figure 4.23: Sequence of profiles of the water surface during impact of the wave up
to the point of formation of the vertical jet for cube Position 4. The time between
profiles is 3.333 ms. Profiles are shown for all five experimental runs.
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Water surface profiles up to the moment of impact for the other repeated runs

were also obtained and Fig. 4.23 shows the five repeated runs for cube Position

4 plotted on the same figure. As can be seen from the figure, the profiles vary

considerably from run to run, once the wave begins to break.

4.4.4 Contact Point

The height (zc), vertical velocity (vc), and acceleration (ac) of the contact

point of the water free surface on the front face of the cube are plotted versus

time in Fig. 4.24, Fig. 4.25, and Fig. 4.26, respectively. The contact point height

in each image was taken from the water surface profiles at the horizontal location

corresponding to the front face of the cube. A 5-Point Central Difference Scheme was

used to numerically compute the velocity, and a Second-Order Central Difference

Scheme was used to compute the acceleration. The second derivative was very noisy

due to the amplification of small changes from one point to another. The run-to-run

variability is low for cube positions 1, 2 and 3, but is higher for position 4 due to

the breaking that occurs before impact.

The water surface height rises continuously during the impact process, as

shown for all four cube positions. The velocity of the contact point rises slowly at

first but after reaching about vp (the nominal wave phase speed as determined by

linear theory, vp = g/ (2πf)) it rises nearly linearly to about 3vp in about 0.02 s,

yielding an average vertical acceleration on the order of 135 m/s2, about 14g.

Fig. 4.27 shows a comparison of the contact point height (zc) and vertical

velocity (vc) versus time for each of the four cube positions. For each cube position,
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Figure 4.24: Contact point behavior. Contact point height, zc, versus time for (a)
Cube Position 1: xcube = 642 cm, zcube = 0, (b) Cube Position 2: xcube = 642 cm,
zcube = 5.7 cm, (c) Cube Position 3: xcube = 647 cm, zcube = 0, and (d) Cube
Position 4: xcube = 657 cm, zcube = 0. Each position shows three to five repeated
runs to demonstrate the repeatability of the contact point motion. Time t = 0 is
the time of impact.
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Figure 4.25: Contact point vertical velocity, vc/vp, versus time for (a) Cube Position
1, (b) Cube Position 2, (c) Cube Position 3, and (d) Cube Position 4, where vp is
the phase velocity of the wave (vp = 135.77 cm/s). Each position shows three to
five repeated runs. t = 0 is the moment of impact as defined in the text.
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Figure 4.26: Contact point acceleration, ac/g, versus time for (a) Cube Position 1,
(b) Cube Position 2:, (c) Cube Position 3, and (d) Cube Position 4. Each position
shows three to five repeated runs. t = 0 is the instant of wave impact.
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Figure 4.27: A comparison of the contact point height (zc) and vertical velocity (vc)
for each of the four cube positions. For each cube position, one representative run
is shown. (a) shows the contact point height, and (b) shows the vertical velocity.
The time scale is shifted so that t = 0 is the moment of wave impact.
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one representative run is shown. Fig. 4.27 (a) shows the contact point height, and

Fig. 4.27 (b) shows the vertical velocity. The contact point height versus time is

quite similar for Positions 1, 2 and 3. For Position 4, the contact point rises at

a slower rate and to a lower height when compared to the other positions. This

different behavior can be interpreted as a consequence of the overturning of the

wave as it approaches the cube, which does not happen when the cube is placed at

positions 1 to 3.

4.5 Conclusions and Future Work

An experimental study on the impact of plunging breaking waves on a partially

submerged cube in deep water was conducted. The results of this chapter focus on

the shape evolution of the free surface as a plunging breaking wave approaches

the partially submerged cube. The shape evolution was measured using cinematic

Laser-Induced Fluorescence (LIF). There were four different positions of the cube

relative to the mean free surface and to the breaking point of the single wave used

in this study. The positions of the cube are summarized in Sec. 4.4. Within the

range of cube positions that were explored, the wave impact phenomenon can be

categorized as belonging to Regions I (where the region of the water surface between

the water contact point and the crest focuses to a point, without wave breaking,

during impact) and II (where a plunging jets forms, overturns and impacts on the

front face of the cube before impacting the front face of the wave) as described by

Chan and Melville [16]. Comparing the surface evolution of the three cube positions

that fell into Region I, it was found that the surface profiles close to the front face
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of the cube were nearly identical. This suggests that within this range of cube

positions, the surface evolution of an incoming wave is not very sensitive to the

position of the cube.

In order to investigate this further and noting that the approaching wave ap-

pears to form a circular arc between the front face of the cube and the steepening

crest, circular arcs were fit to the measured profile. These circular arcs had decreas-

ing radii over time as the wave approached the cube. It was found that the radius

behavior, for all cube positions corresponding to Region I impact was nearly the

same.

The contact point position between the free surface and the front face of the

cube was extracted from the surface profile measurements. As expected, the time

evolution of the contact point obtained in the experimental runs corresponding to

different cube positions in Region I, are very similar to one another. For the cube

position corresponding to Region II, the contact point evolution did not compare

well with that corresponding to cube position in Region I. This result is expected

since the nature of the wave impact in Region II is different with the plunging jet

overturning before impact with the cube. For all the cube positions studied here,

a similar trend is observed in the time evolution of the contact point. Initially,

the contact point moves upward at a relatively slow speed. When the wave crest

becomes closer to the cube, a sudden increase in the contact point upward speed is

observed. Accelerations reached about 14g close to the impact event. Ultimately,

these high accelerations imply high pressures on the cube front face as a consequence

of the impact. However, pressure measurements were not made at this point and
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constitute future work.

The conclusions drawn in this dissertation focused mainly on the range of

cube positions where flip-through occurred. Flip-through is the region where the

highest pressure distributions on the front face of the cube are expected. Future

work would include repeating experiments within this region while simultaneously

measuring the pressure on the front face of the cube. Finally, the angle of attack of

the cube relative to the mean water level is another parameter that can be explored.

Preliminary results with the cube tilted toward the wave maker (not included in

this dissertation) show promising features not observed in the cases presented here.
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Chapter 5
Summary of Conclusions and Contributions
5.1 The Natural Implosion of Cylindrical Shell Structures in High-

Pressure Water

From the literature reviewed in Sec. 2.2, it was found that few studies exam-

ined the implosion process of cylindrical shell structures. A systematic study that

varied the geometry, material, and implosion mode number was conducted in this

dissertation. The implosion events were recorded quantitatively with simultaneous

high-speed movies and high-frequency pressure-field measurements.

For the cylindrical models that collapsed in mode 2, the pressure distribution

and pressure impulse in the azimuthal direction did not correlate with the orientation

of the final deformed shape. When comparing the pressure records, the collapse

times and peak pressure magnitudes varied significantly from one model design to

another. However, when the average of the eight meridian plane pressure sensors was

scaled in time with the characteristic bubble collapse time (Ri

√
ρ/ (Pc − P0), where

Ri is the internal radius of the model, Pc is the natural collapse pressure, P0 is the

initial pressure of the air inside the model, and ρ is the density of water) and scaled

in pressure by the relative pressure between the ambient collapse pressure and the

initial gas pressure inside the structure (Pc−P0), the pressure waves, are remarkably

similar. The normalized collapse times are nearly identical, about 2.5 ± 0.25. The

average normalized pressure peaks vary from 0.5 to 0.9 over the models tested. There

is considerable range in the normalized pressure in repeated implosions of the same
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model design, particularly in the case of the aluminum models, all of which have the

largest diameter and the lowest mass ratio (defined as the mass length of the tube

from which was constructed divided by the mass per length of the water displaced by

the model). The success of this bubble scaling may indicate that during collapse, the

contribution of the stiffness of the out-of-round metal structure is minimal compared

to the hydrodynamic forces.

For the two experiments that explore the variation in mode number while

holding the available energy (PcV ) constant, the scaling used for the pressure waves

in the mode 2 experiments worked well for the time scale (horizontal axis) but not as

well for the pressure magnitude scale (vertical axis). In view of the greater amount

of deformation per unit length to form higher numbers of lobes, this result is not

surprising.

5.2 Explosion-Induced Implosion of Cylindrical Shell Structures

In previous published work involving underwater explosions near structures,

the studies focus on sufficiently strong structures that do not implode due to nearby

explosions. In these studies, the vibration modes are calculated as well as localized

damage. In the current work, the cylindrical structure used is pre-loaded with

hydrostatic pressure to about 90% of its natural implosion pressure. Therefore, when

the nearby explosion occurs, the cylindrical model becomes unstable and collapses.

In these experiments, the interaction of the model with the explosion shock-

waves and oscillating gas bubble from the explosion caused the model to implode by

three mechanisms. In the first set of experiments, the cylindrical model imploded
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due to the impact of the model-directed re-entrant jet formed during the second

bubble collapse of the explosion gases. In the second set of experiments, the stand-

off distance between the explosive and cylindrical structure were chosen to be at

greater distances than the predicted maximum bubble radius. The stand-off dis-

tances were varied while keeping the ambient pressure constant. It was found that

at stand-off distances of up to 8.6Rbub the cylindrical model would implode due

to the explosion event. In the final set of experiments, the collapse of models with

different geometry and material was investigated under similar loading conditions.

The high-speed movies show that the characteristic explosion events occur within

48 to 96 microseconds (one or two frames) from run-to-run. In these experiments,

structure oscillations were observed before implosion. The oscillations are driven by

the pulsating pressure field (due to the pulsating explosion bubble). The oscillation

frequency was measured from the high-speed movies and was found to be about

half the natural frequency for the whipping mode of the model and one third of the

natural frequency of the breathing mode of the model as calculated through ANSYS

with the model in an air environment.

In these experiments, the pressure at the location of the cylindrical model

exceeded the natural collapse pressure for about 0.16 ms. During this time, the

cylindrical model did not collapse even though the pressure was at least 4.5 times

higher than the natural collapse pressure. The aluminum cylindrical models did not

collapse until 4 ms after the high-pressure wave passed.

154



5.3 The Impact of a Plunging Breaker on a Partially Submerged
Cube

Experiments and computational studies of the impact of breaking waves on

walls are marine structures is critical to their design. Traditional theoretical studies

of water waves do not offer much insight into the high pressures associated with the

wave impact process. Therefore, a combination of careful experimental studies and

validated computational models are needed to properly predict the pressure field of a

wave impacting a wall. Previous impact work has concentrated on two-dimensional

studies where the structure is a wall that extends to the bottom of the wave tank.

In the present work the interaction of a plunging breaking water wave with

a rigid partially submerged cube (L = 0.305 m with water depth H = 0.91 m)

was studied experimentally in a wave tank. One plunging wave was used for all

experimental runs, and surface profile measurements were taken with the cube sub-

merged by 0.5L at three horizontal positions ranging from xcube = xb − 0.28 m to

xcube = xb − 0.13 m, where xb = 6.75 m is the breaker location in the absence of

the cube as measured from the back face of the wedge of the wave maker. Measure-

ments were also taken with the cube submerged by 0.3L at one horizontal position,

xcube = xb − 0.28 m. Within the range of positions that were explored, the wave

impact behavior fell into two categories. In the first behavior category, also called

flip-through, the free surface between the front face of the cube and the wave crest

forms a circular arc that converges to a point and then forms a high-velocity vertical

jet (speeds ≈ 3 m/s). In the second behavior category, the wave forms a plunging
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jet that impacts the cube wall directly.

For the conditions where flip-through was observed, circular arcs were fit to

the measured profile for the region between the front face of the cube and the crest.

These circular arcs had decreasing radii over time as the wave approached the cube.

It was found that the radius behavior, for all cube positions corresponding to this

impact category, was nearly identical for times when the wave crest was near the

cube (within 20 cm). This suggests that within this range of cube positions, the

surface evolution is controlled by local dynamic processes. The work presented in

this dissertation lays the groundwork for future experiments to be done with pressure

measurements of the wave on the cube.
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Appendix A
Natural Implosion Figures
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Run Mode Material Outer Wall Length Collapse Available
Diameter Thickness Pressure Energy

n Do w L Pc PcV
(mm) (mm) (mm) (bar) (N-m)

B2D25r1 2 Brass 25.4 0.33 231 7.3 81.1
B2D25r2 260 7.1 78.9
B2D25r3 7.5 83.3

B2D16r1 2 Brass 16.6 0.36 152 26.6 80.1
B2D16r2 260 26.5 79.8
B2D16r3 26.9 81.1

A2A2r1 2 Alum 38.1 0.89 241 26.5 661.7
A2A2r2 2024 26.6 664.1
A2A2r3 28.2 704.0
A2A2r4 26.7 666.6
A2A2r5 26.4 659.1

A2A3r1 2 Alum 38.1 0.89 241 28.3 706.5
A2A3r2 3003 28.7 716.6

B3D25r1 3 Brass 25.4 0.33 84 19.4 78.2
B3D25r2 260 18.8 76.0
B3D25r3 20.7 83.6
B3D25r4 21.4 86.4
B3D25r5 21.3 86.1

B4D25r1 4 Brass 25.4 0.33 58 26.1 72.9
B4D25r2 260 28.3 78.9
B4D25r3 28.9 80.4
B4D25r4 27.9 77.9
B4D25r5 31.4 87.7
B4D25r6 31.5 88.0
B4D25r7 31.5 88.0

Table A.1: A summary of the cylindrical models imploded naturally for the first
three experiment sets. The names given have an “A” for aluminum or “B” for
brass. The mode number follows, then there is either a “D” for diameter followed
by numbers representing the diameter, or for the case of aluminum, an “A” for alloy
followed by “2” for 2024 or “3” for 3003. Finally, there is an “r” representing the
run number for the given geometry and material.

158



−1.5 −1 −0.5 0 0.5
−2

−1

0

1

2

3

4

5

6

t i me (ms)

P
(r
,
t)

−
P

c
(b

ar
)

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−2

−1

0

1

2

3

4

5

6

time (ms)

P
(r
,t
)
−

P
c
(b
ar
)

A

B C

Figure A.1: Each line represents one of the eight meridian pressure sensors for
B2D25r2. Three still frames from the high-speed video are shown at the times
corresponding to the minimum pressure peak, first small positive peak and the
maximum positive peak. As the walls close in, there is a drop in pressure (A). The
first small positive peak occurs when the walls first impact each other (B). The large
positive pressure peak occurs when the walls make full contact and the collapse is
complete (C).
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Figure A.2: B2D25r1
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Figure A.3: B2D25r3
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Figure A.4: B2D16r1
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Figure A.5: B2D16r2
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Figure A.6: B2D16r3
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Figure A.7: A2A2r1
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Figure A.8: A2A2r2
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Figure A.9: A2A2r3
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Figure A.10: A2A2r4
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Figure A.11: A2A2r5
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Figure A.13: A2A3r2
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Figure A.16: B4D25r1

174



−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−10

−5

0

5

10

15

20

25

time (ms)

P
(r
,
t)

−
P
c
(b
a
r
)

A B C

Figure A.17: B4D25r2
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Appendix B
Natural Implosion Figures
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