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A Networked Control System (NCS) is a control system in which the sensors

and actuators are connected to a feedback controller via a shared communication

medium. In an NCS, the shared medium can only provide a limited number of

simultaneous connections for the sensors and actuators to communicate with the

controller. As a consequence, the design of an NCS involves not only the specifica-

tion of a feedback controller but also that of a communication policy that schedules

access to the shared communication medium. Up to now, this task has posed a sig-

nificant challenge, due in large part to the modeling complexity of existing NCS ar-

chitectures, under which the control and communication design problems are tightly

intertwined.

This thesis proposes an alternative NCS architecture, whereby the plant and

controller choose to “ignore” the actuators and sensors that are not actively com-

municating. This new architecture leads to simpler NCS models in which the design

of feedback controller and communication polices can be effectively decoupled. In



that setting, we propose a set of medium access scheduling strategies and accom-

panying controller design methods that address a broad range of stabilization, esti-

mation, and optimization problems for a general class of NCSs. The performance

of the proposed methods is illustrated through a set of simulations and hardware

experiments.
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Chapter 1

Introduction

In the last two decades, advances in communication, control, and computation tech-

nologies have fueled the rise of a modern control system architecture in which

sensors and actuators exchange information with a feedback controller through a

shared communication medium. Control systems having this configuration have

been termed Networked Control Systems (NCSs). Compared to conventional sys-

tem architectures, the advantages of NCSs include reduced system wiring, ease of

diagnosis and maintenance, low cost, and increased system flexibility.

NCSs are rapidly becoming ubiquitous, and have made inroads in a broad range

of applications. Most modern aircrafts are now built with the “fly-by-wire” [3] tech-

nology, which relies on a databus (e.g., MIL-STD-1553 and ARINC-629) to connect

various sensors, actuators, and controllers within an airplane. The Controller Area

Networks (CAN) are widely used to close a series of important feedback loops in

the control systems of modern automobiles. NCSs can also be found in modern

factories, where Fieldbuses [4] play an important role to connect physically sep-

arated devices in machinery and instruments; in modern office buildings, where

special-purpose networks are used to control and monitor various security and en-
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vironmental functions. More recently, NCSs have become the enabling architecture

for many emerging applications which require coordination of significant numbers of

spatially distributed sensors and actuators. These include tele-surgery, satellite ar-

rays, sensor networks [5], swarms of unmanned aerial and underwater vehicles [6] [7],

arrays of micro-valves [8], optical switches [9], RF switches [10], and MEMS-based

spatial light modulators [11], to name only a few.

The rise of NCSs stems in part from necessity. Traditionally, control systems

have been implemented using point-to-point wiring, i.e., each sensor and actuator is

connected to a centralized controller (often a micro-processor) via a designated wire

(Fig.1.1). This configuration ensures real-time communication between components

of a control system. However, as the complexity and scale of a control system

increase, point-to-point wiring becomes cumbersome or impractical: the increased

wiring burden brings problems involving weight, cost, maintenance, and reliability.

At the same time, the microprocessor in which the controller is implemented provides

a limited number of input/output (I/O) ports and limited computing capability, so

that point-to-point wiring becomes impossible when the number of sensors and

actuators is greater than the number of I/O ports or when the computation load

needed exceeds the capability of the processor.

....Actuator Actuator

Sensor

Actuator Actuator

Sensor SensorSensor

Actuator

Sensor

Actuator

Sensor

Plant

Controller

....

.... ....

Figure 1.1: A control system with a point-to-point wiring configuration.
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An alternative to point-to-point wiring is to introduce additional controllers and

allow decisions to be made “locally”. This idea gave rise to the “decentralized”

(Fig. 1.2) and the “hierarchical”(Fig. 1.3) control system configurations. Decentral-

ized control is well-suited in applications where the plant consists of multiple sub-

systems which have little or no coupling with each other. In the cases where control

decisions must be made by considering information that is not locally available, one

can add controllers to the decentralized configuration, resulting in a hierarchical

structure where proper actuation of the plant relies on the intelligence of both local

and high-level decision makers. Both the decentralized and hierarchical configura-

tions require a certain degree of “decoupling” in the dynamics of the plant, so that

some decisions can in fact be made locally. This is often not the case in modern com-

plex systems. Moreover, the introduction of decentralized or hierarchical controllers

increases the costs of such systems and creates other design difficulties.

Controller

Actuator

Sensor

ActuatorActuator

Sensor Sensor

Actuator Actuator

Sensor Sensor

Actuator

Sensor

Plant

.... ....

....

....

Controller Controller Controller

Figure 1.2: A control system with a decentralized control configuration.

The introduction of NCSs (Fig. 1.4) in the 1970s provided a neat solution to the

problems highlighted above. In an NCS, the controller is connected to a communi-

cation medium that provides access to all the sensors and actuators; the medium

is shared by all its users, so that only a limited number of connections can be sup-

ported simultaneously. The NCS configuration has proved remarkably flexible, en-

abling many novel features in feedback control systems. For example, using wireless

3



Controller

Actuator

Sensor

Actuator

Sensor Sensor

Actuator

Sensor

Actuator

Sensor

Actuator Actuator

Sensor

Plant

.... ....

....

....

Controller Controller Controller

Controller Controller

Controller

Figure 1.3: A control system with a hierarchical control configuration.

communication, sensors and actuators in an NCS can easily change their locations

to form different ad hoc groups that are customized for different tasks.

Controller

Actuator Actuator

Sensor Sensor

Actuator Actuator

Sensor SensorSensor

Actuator

Sensor

Actuator.... ....

Plant

Shared Communication Medium

Figure 1.4: A control system with an NCS configuration: sensors and actuators are
connected to the controller via a shared communication medium.

1.1 Fundamental Issues in NCSs

Despite its flexibility and effectiveness, the NCS architecture also introduces new

problems which have until recently been beyond the scope of traditional control

4



systems theory. Classical systems theory was developed based largely on the as-

sumptions of real-time, unlimited exchanges of data between sensors, actuators, and

the feedback controller. However, in an NCS, data exchanges are always subject to

various communication constraints. These include [12]:

• Communication delays that arise in the data exchanges between components

(e.g., from a controller to an actuator). Depending on the protocol that is used

in the communication medium, these delays can be constant, time varying, or

randomly distributed.

• Bandwidth limitations that depend on the communication protocol used, the

network equipment, and the physical properties of the communication medium.

• The possibility of data packet loss. Data packet loss can be caused by hardware

failure or by the communication protocol (TCP/IP is an well-known example).

• The maximum number of simultaneous medium access channels allowed by

the medium. This number could be much smaller than the number of sensors

and actuators in the system. This medium access constraint will be the focus

of this thesis.

These constraints all present potential problems whose effects on closed-loop per-

formance and controller design must be understood and dealt with. In Chapter 2,

we will give a detailed review of recent theoretical advances in the analysis and de-

sign of NCS under the above listed constraints. Furthermore, we remark that, aside

from communication medium related constraints, similar limitations on information

exchanges within a control system may also arise because of the limited computing

capability of the controller or the performance of the sensors and actuators. Thus,

the fundamental issues addressed in the study of NCSs in fact concern Feedback
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Control using Limited Information. This is a relatively new aspect of systems the-

ory, which had received little attention before NCSs became a prominent topic of

research. In today’s information-centric world, the efforts made in studying the in-

terplays between communication and control are likely to continue to contribute in

a broad range of problems involving technological, scientific, and social-economical

systems.

1.2 Scope and Contributions

The aim of this thesis is to explore the design of NCS control and communication

policies under the presence of medium access constraints. Specifically, we study

NCSs in which the communication medium can only provide a limited number of

simultaneous medium access channels. As a consequence, at any one time, only

a limited number of actuators and sensors are able to access the communication

medium to exchange information with the controller, while others must wait. We

address the following basic problems:

1. Schedule the access to a shared communication medium among multiple sensor

and actuators.

2. Design feedback controllers that achieve various control objectives (e.g., stabi-

lization, estimation) with limited access to the system’s sensors and actuators.

In previously proposed NCS architectures, the interaction between control and

communication gave rise to models whose complexity made it difficult to design

controllers and communication policies. Existing methods only address the design

of a controller for a fixed communication sequence or the selection of a stabilizing
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medium access policy given a controller that was designed in advance without con-

sidering communication constraints. The co-design of the controller and the medium

access scheduling strategy remains an open problem. Moreover, most previous re-

sults only address simple NCS configurations where the plant is block-diagonal [13]

or the access constraints only exist on the output side of the plant [14, 15].

This thesis will show that the difficulties encountered in previous works were

partly due to the use of a zero order hold (ZOH) at the “receiving end” of a com-

munication medium (i.e., at the plant’s and controller’s input stages). The use of

ZOH elements greatly increases the complexity of the closed-loop NCS because it

introduces time-varying delays and leads to closed-loop dynamics in which commu-

nication and control are tightly coupled (see, for example, the “extensive form” in

[14]).

The main contribution of this thesis is to propose an alternative NCS architec-

ture, whereby the plant and controller forgo the use of a ZOH and instead choose

to “ignore” (in a manner to be made precise) the actuators and sensors that are not

actively communicating. We will show that the new architecture leads to simpler

NCS models and elucidates the interaction between medium access scheduling and

the dynamics of the underlying plant and controller. Moreover, the new architecture

allows one to concurrently design the access scheduling strategy and the feedback

controller, and can be used to analyze and design for a more general class of NCSs

in which the plant has fully coupled dynamics, and medium access constraints ex-

ist in both the input and output stages of the plant. For this new configuration,

we will present a set of medium access scheduling policies and accompanying con-

troller design methods that address the fundamentals of stabilization, estimation,

and optimization in NCSs.
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1.3 Thesis Outline

Chapter 2: We give a brief history of NCSs, and present a detailed literature

review of the state of the art in the design and analysis of NCSs under various

communication constraints.

Chapter 3: We introduce a new NCS protocol, in which the plant and controller

forgo the use of ZOHs, and instead choose to “ignore” the actuators and sensors that

are not actively communicating. A pair of “communication sequences” are used to

describe the instantaneous medium access status of the sensors and actuators. We

show that, under the new protocol, the effect of medium access constraints can be

modeled by cascading the underlying plant with a pair of “communication sequence

matrices”.

Chapter 4: We study the stabilization of NCSs under periodic medium ac-

cess scheduling. We show that, for continuous-time systems, the controllability and

observability of a linear plant can be preserved as long as the communication se-

quences grant each input and output a finite interval of medium access during every

period; in the discrete-time case, one can always find (via a simple algorithm) peri-

odic communication sequences that preserve the reachability and observability of a

reversible linear plant. Using these effective communication sequences, an NCS can

be exponentially stabilized by an observer-based controller.

Chapter 5: We study the stabilization of NCSs under dynamic medium access

scheduling strategies. In this case, the communication sequences are determined on-

line, based on instantaneous state information of the plant. We present an algorithm

that provides a straightforward method for simultaneously determining stabilizing

gains and the scheduling policy. We introduce several feedback-based scheduling

policies that quadratically stabilize an NCS while achieving various objectives re-
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lated to the system’s rate of convergence, the priorities of different sensors and

actuators, and the avoidance of chattering.

Chapter 6: We discuss Kalman filtering and LQ optimal control of a discrete-

time NCS under periodic medium access scheduling. We show that these problems

can be formulated as a standard LQG problem for an equivalent periodic system.

Moreover, there always exist periodic communication sequences that preserve the

detectability and stabilizability of the NCS, and thus make it possible to guarantee

the existence of a stabilizing LQG controller.

Chapter 7: We describe two NCS experiments which were designed to illustrate

the design techniques introduced in Chapter 5 and Chapter 6. The communication

medium we chose in these experiments was a RS232 serial channel. The medium

access scheduling strategies and the accompanying feedback controllers in the exper-

iments were designed within the SimuLinux-RT environment and were implemented

in the real-time operating system RT-Linux.

Chapter 8: We summarize the contributions of the thesis and discuss the pos-

sibilities of future research.
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Chapter 2

Networked Control Systems

In this chapter, we first give a brief history of the use of communication networks

as part of a control system. We then continue with a literature review of recent

theoretical developments concerning the analysis and design of NCSs.

2.1 A Brief History on NCSs

The beginnings of NCSs can be traced at least as far back as the 1970s, when the

nuclear science community developed a parallel bus protocol called CAMAC [16].

CAMAC allowed a wide range of modular instruments to be interfaced to a stan-

dardized backplane called a DATAWAY. All modules could then be controlled by a

centralized controller by interfacing the DATAWAY to a computer. In 1973, another

bus protocol MIL-STD-1553 was released to meet the needs of aviation electronics

(referred to as avionics) applications. MIL-STD-1553 used “Time Division Multi-

plexing (TDM)” to allow data transfers between multiple avionics units over a single

communication medium. Using MIL-STD-1553, navigation, weapon control, flight

control, and various other avionics subsystems in an airplane were able to share
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their information without increasing the complexity of wiring. MIL-STD-1553 was

used in the U.S. Air Force’s F-16 and the Army’s attack helicopter AH-64A Apache

[17].

By the 1980s, engineers had realized that in the light of numerous new func-

tionalities added to a control system by the use of shared networks, the reduction

or elimination of wiring harnesses was just a convenient by-product. Since then, a

number of successful industrial control network protocols have been developed and

widely implemented in different industries. The Controller Area Network (CAN)

[18] was first developed by Robert Bosch GmbH, Germany in 1986 to connect ECUs

(electronic control units) in automobiles. The use of CAN networks in an automobile

enabled information exchange between power train and body subsystems such as en-

gine, transmission, brake, air-conditioning and lighting (Fig. 2.1). The earliest CAN

was based on a non-destructive arbitration mechanism, referred to as CSMA/CR

(Carrier Sense, Multiple Access, with Collision Resolution), which would grant bus

access to the message with highest priority without delay; there was no central bus

master. Today’s CAN can be implemented in topologies which are far more complex

than a single data bus. The latest version of CAN (Ver 2.0) uses a multi-master

bus configuration, and runs at a baud-rate of up to 1Mbit/s. The first CAN chip

was fabricated in 1987 by Intel, and more than 100 million CAN devices were sold

in the year 2000. Today, almost every new passenger car manufactured in Europe

is equipped with at least one CAN network. CAN is now an international standard

(ISO11898), its application is growing from vehicles to factory automation, building

automation, and beyond. New generations in the CAN family include DeviceNet

and CANopen.

Another family of industrial control network is Fieldbus. Fieldbus is a digital,

bi-directional, multidrop, serial communication network used to connect isolated
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Figure 2.1: Controller Area Networks (CAN) in automobiles.

field devices, such as controllers, transducers, actuators and sensors in a machine or

instrument. Fieldbuses were first installed in early 1970s; by late 1980s, the most

popular field buses in Europe were French FIP (Factory Instrumentation Protocol)

and German ProfiBus (Process Field Bus). ProfiBus, for example, is a token-passing

network, it allows transfer speed of up to 500Kbit/s and the maximum length of

the bus is 1200m [4]. In 1995, after a long wait for the European Fieldbus protocols

to be standardized, the American companies decided to define their own field-bus,

named the Foundation Fieldbus (FF), which was optimized for the process control

industry. In 2000, a comprehensive standard, IEC61158, was finally released to

accommodate all field bus systems. Newer members in the Fieldbus family include

ControlNet, WorldFIP, P-Net, InterBus, and the family is still growing.

Building automation is also an important application area of control networks

and has given rise to communication protocols tailored to buildings and large struc-

tures. Released in 1995, BACnet (ANSI/ASHRAE135-1995) is “a data communi-

cation protocol for Building Automation and Control Networks. It was designed to

control and monitor various equipments such as air-conditioning, lighting, alarm-

ing, and elevators in a modern office building. Being a new generation of control

network, BACnet is object-oriented. It also provides 35 BACnet services which are

standard messages that can be sent across a computer network for monitoring and

12



control of standard objects which specify the functionality of the various hardware

connected to the network. A BACnet can be implemented on common local area

networks (LAN) such as Ethernet, ARCNET and LonTalk [19] and hence can have

rather complex topologies.

As a result of the accelerating technological convergence of communications,

control, and computing, more recently, standard communication network protocols

such as daisy-chained RS232 [20], Ethernet [21], and IEEE802.11 wireless Ethernet

[22] are also making their way into the area of control systems. See [22] for a

detailed comparison of these network protocols from an NCS perspective and see

[21] for performance evaluations of these protocols.

2.2 Literature Review

Shared Communication Medium

sensor 2

sensor 1

...
sensor p

actuator 1

actuator 2
...

Plant

actuator m

Controller

Figure 2.2: Generic configuration of an NCS: sensors and actuators of an MIMO
plant are connected to a centralized feedback controller via a shared communication
medium.

The generic configuration of an NCS is illustrated in Fig. 2.2. As mentioned in

Chapter 1, data exchanges between sensors, actuators, and the feedback controller

of an NCS are always subject to various constraints that are imposed by the com-
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munication medium. These constraints often manifest themselves in the forms of:

i) time delays, ii) data-rate limit, iii) data-packet dropout, and iv) medium access

constraints. The field of NCSs began to draw the attention of academic researchers

in the 1990s. Since then, a considerable volume of theoretical tools and results have

been produced. In this section, we give a literature review of some of the works

most relevant to this thesis. For organizational convenience, these works have been

categorized according to the communication constraints they address.

2.2.1 Time Delays

An obvious constraint likely to be imposed by the presence of a communication

medium is the time delay that occurs between the transmission and reception of a

data packet over that medium. Important components that contribute to the time

delays in an NCS include preprocessing time, waiting time, transmission time, post-

processing time, and et. al. [23]. The effects of all these delay components can be

typically captured by the sensor-to-controller delay τsc and the controller-to-actuator

delay τca (Fig. 2.3).

Communcation
MediumCommuncation

Medium

Plant sensoractuator

Controller
τscτca

Figure 2.3: A control system with time delays in its feedback loop.

In state-space models, time delays in the feedback loop of a control system can

be effectively captured by introducing additional states to keep track of the delayed

information. This technique is often termed “state augmentation”(also known as
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“state lifting” or “state extensification”). For example, it is shown [24] that , for

a sampled-data control systems with constant feedback and a sample period h, a

constant delay τ of (r − 1)h < τ < rh (where r ∈ N) will increase the system order

by a factor of r. For scalar linear systems, the relationship between the sampling

period and allowable time delay can be illustrated by a stability region plot [25],

which can be obtained via analytical or numerical methods.

Bounded time-varying delays in a control system’s feedback loop can also be

modeled by proper state augmentation to include the plant’s state and all the delayed

control information; the details of this technique is illustrated in [25] and [26]. Also

using the augmented state model, some stability and performance analysis tools are

given in [27] for MIMO systems having multiple time delays in different feedback

loops. In [28], an LQR optimal control problem is formulated and studied based on

the same model.

A particularly thorough investigation of NCSs with random time delays can

be found in [4], where two classes of random delays are identified: independently

random delay and Markovian delay. For both cases, it is assumed that a time-stamp

is used to mark all transfered data with the time when they were generated, so that

the delay is always known to the controller. If the delays are independently random,

it is shown that the stability of the closed loop system under linear controller can

be checked with a criterion based on Kronecker product; if the random delays are

Markovian, then the state of the NCS can be modeled as a Markov chain and the

stability of the closed loop system can be checked with a similar criterion. Also in [4],

LQG optimal controllers are developed for systems having independently random or

Markovian delays, respectively. It is shown that, for both cases, the LQG optimal

controller is the combination of an optimal state feedback gain and a Kalman filter,

i.e., the separation principle applies.
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It is possible to compensate known time delays in the feedback loop: if the

delays τsc and τca are always known to the controller, the controller can propagate

its estimations of the plant’s states (based on a good model of the plant’s dynamics)

to the time when the control signals arrive at the actuators. The control signals

can then be calculated based on the adjusted state estimation. An example of such

a delay compensator is given in [25] for NCSs having fixed transmission delays.

Important results on time delays in dynamic systems are recently collected in [29],

another good survey on this topic can be found in [30].

2.2.2 Data Rate Constraints

Communication constraints also manifest themselves in the form of data rate limits

on the communication medium. The effects of data rate limits on networked control

systems have typically been studied from information theoretic perspectives, and

the communication medium is often modeled as a coded channel with a bandwidth

limit.

The work in [31] investigates state estimation in NCSs where the observations are

transmitted to an estimator with a finite data rate. The authors introduce a recur-

sive coder-estimator scheme, in which the coding decision can be dependent on the

whole past history of the observation process, and the estimator can be dependent

on the whole sequence of past codewords. Necessary and sufficient conditions are es-

tablished for the existence of stable and asymptotically convergent coder-estimator

schemes. Under the coder-estimator framework, feedback stabilization under data

rate constraint is investigated in [32], where the NCS configuration studied is illus-

trated Fig. 2.4. It is shown that, if the plant is a continuous-time LTI system, then

memoryless coding and control suffice to ensure the containability of the system,
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meaning that given small enough initial conditions, the trajectory of the system will

lie in an n-dimensional sphere of an arbitrary size.

Communication medium with data−rate limit

actuator Plant sensor
Control

codeword
decoder

Quantizer/

Encoder

Controller

Codeword−based

Figure 2.4: An NCS having data-rate constraints in the communication medium.

The work in [33] investigates the stabilizability of infinite-dimensional linear

discrete-time plant when the controller receives observation data at a known rate.

It is shown that, under a finite horizon cost equal to the m-th output moment, the

problem reduces to quantizing the initial output. As the horizon approaches infinity,

asymptotic quantization theory can be applied to directly obtain the limiting coding

and control scheme. Necessary and sufficient conditions can then be derived for the

system to be asymptotically stabilizable in the m-th moment at a given data rate.

Under some restrictions on the initial condition distribution, a coding-estimation

scheme is presented in [34]; this scheme works for finite dimensional, time-varying

nonlinear system that satisfy a Lipschitz-type condition.

In [35], a sequential rate distortion function is used to study the achievable per-

formance of a discrete-time LQG system having a noisy observation channel with

limited bandwidth. By assuming equimemory on the encoder and decoder, it is

shown that the separation principle holds (i.e., the encoder-estimator and the con-

troller can be designed independently) and the optimal control law can be obtained
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by solving the Riccati equation for a deterministic counterpart of the original prob-

lem. Based on this frame work, one can obtain the minimum data rate that ensures

the stability of the closed-loop system.

2.2.3 Quantized Feedback

An analog signal must be quantized before being transmitted via a digital commu-

nication medium. A quantizer acts as a functional that maps a real-valued function

into a piecewise constant function taking on a finite set of values [36]. Effective

quantization of sensor and actuator signals can help reduce the sizes of data packets

and thus reduce the data-rate in the communication medium.

A recursive quantized feedback stabilization policy is presented in [36], in which

the sensitivity of a quantizer increases as the system state approaches to zero. It

is shown that if a linear system can be stabilized by linear time-invariant feedback,

then it can be stabilized by quantized feedback with the presented policy. It is also

shown that choices of sampling period are decoupled from the issues regarding the

implementation of the quantized feedback control policy. This idea is independently

explored in [37].

In [38], it is shown that the coarsest quantizer that quadratically stabilize a SISO

discrete-time linear time-invariant system is a logarithmic quantizer, which can be

computed by solving an expensive control LQR problem. Moreover, a closed form

expression of the smallest logarithmic base can be derived exclusively in terms of

unstable eigenvalues of the system. The minimum densities for both sampling and

quantization that ensures stability were also discussed.

The work in [16] analyzes the effects of a general class of quantizers in the

sampled-data system setting, where a weaker notion of stability (similar to “con-
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tainability”) of the system is studied. The authors present analytical methods for

designing an effective quantizer, a sampled data controller, and to find the bound

on the sampling period that guarantee quadratic stability (the weaker notion) of the

closed-loop control system at a given decay rate. Related work can also be found in

[39], where the worst-case analysis and design of sampled-data control systems was

investigated.

The problem of jointly optimization of quantization, estimation and control is

studied in [40], where the plant to be controlled is modeled as a Hidden Markov

chain. Dynamic programming method is used to find the optimal quantization and

control scheme that minimize a cost function related to the estimation error, running

cost, the communication cost, and delay.

The work in [41] shows that, for the scalar case, binary control (a quantization

with only two admissible control values) is the most robust control strategy under a

time-varying data-rate constraint and asynchronism of sampling and control actu-

ation. A control synthesis approach based on binary control is also explored. This

approach uses a side channel (whose bandwidth can be arbitrarily low) to adjust

the magnitude of the binary control.

2.2.4 Data Packet Dropout

In real-world NCSs, data packets transmission between the plant and controller

may be “dropped out” due to network congestion, unreliable hardware, or because

of the transmission protocol used (the transmission control protocol (TCP) and the

user datagram protocol (UDP) are two well-known examples). Also, sometimes it

is desirable to drop “old” data-packets that fail to arrive in time and use newly-

generated data instead.

19



In [25], it is shown that an NCS with data packet dropout can be modeled as an

asynchronous dynamical system (ADS) with rate constraints on events [42]. Using

that model, one can calculate the minimum transmission rate that guarantees the

stability of an NCS whose closed-loop dynamics are stable without the presence of

packet dropout. Another possibility for addressing dropped data packets is to model

the arrival of data as a random process. For example, the work in [43] studies state

estimation of SISO NCSs, in which scalar observations arrive according to a Poisson

process; the work in [44] presents a Kalman Filter scheme for MIMO systems in

which the arrival of output information (all outputs as a packets) is modeled as a

Bernoulli process. These works are generalized in [45] where outputs are divided into

two parts each of which can be received or lost by the Kalman Filter independently.

In the case when packet dropout also exists in the data transmission from the

controller to the actuators, the design of estimator and controller depends strongly

on whether the communication protocol includes “acknowledgment” (ACK) packets

that allow the controller to know whether the data was received by the actuator or

not. It can be shown that [46], if all successful data transmission is acknowledged,

the controller and the estimation can be designed separately, i.e., the separation

principle holds. In this case, if the data arrival from the controller to the plant and

from the plant to the controller are modeled as i.i.d. Bernoulli, then the relationship

between the maximum data packet dropout rate and the stability of a linear NCS

under a LQR controller can be related by a condition provided in [46]. The problem

of LQG optimal control with a similar NCS setup is discussed in [47].
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2.2.5 Medium Access Constraints

One of the fundamental communication constraints in a communication network-

and indeed the one this thesis focuses on - is that of medium access. It comes about

because a communication medium can only provide limited number of simultaneous

medium access channels for its users. As a consequence, in an NCS, only limited

number of sensors and actuators are allowed to communicate with the controller at

any one time.

In modern communication networks, medium access constraints are often re-

solved via various Medium Access Control (MAC) protocols which define the access

scheduling and collision arbitration policies in the network. MAC protocols can be

roughly divided into two categories, namely sequential MAC protocols and random

MAC protocols. Under sequential MAC protocols, each user of the network accesses

the shared medium according to a pre-configured sequence. Under random MAC

protocols, every user attempts to access the media whenever it has a packet to trans-

mit; if there are other users wanting to access the medium at the same moment, an

arbitration policy is used to resolve the packet collision.

The advantages of sequential MAC protocols are low latency, bounded time delay,

and guaranteed data rate. They are well-suited for those applications where every

user in the network has a fixed bit-rate and small data packets. Examples of sequen-

tial MAC protocols includes polling, token passing (used in ProfiBus), TDMA(Time

Division Multiplexing Access, used in T1 telephone systems and GSM cellular phone

systems). On the other hand, random MAC protocols allow real-time medium ac-

cess arbitrations based on the priority (importance) of the data packages. These

protocols suit well in the applications where users in a network have burst trans-

mission and relatively large data packet. The first random MAC protocol, ALOHA,
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was developed by the University of Hawaii for wireless communication. Successors

to the ALOHA protocol are many variations of the Carrier Sense Multiple Access

(CSMA) protocol. For example, Carrier Sense Multiple Access/Collision Detec-

tion (CSMA/CD) is used in Ethernet and Carrier Sense Multiple Access/Collision

Avoidance (CSMA/CA) is used in IEEE802.11 Wireless LAN.

NCSs with medium access constraints

Due to access constraints in the communication medium, the design of an NCS in-

volves not only a feedback controller but also a medium access scheduling strategy,

which defines the to the MAC protocol implemented in the underlying communica-

tion medium. Another related problem is to determine what information the plant

or controller should assume when an actuator or sensor losses access to the commu-

nication medium. Most previous works (detailed in the next paragraphs) assume

that there is a zero order hold (ZOH) implemented at the “receiving end” of the

communication medium (i.e., at the plant’s and controller’s input stages), if a sensor

or actuator fails to access the medium, the most recently updated values stored in

the ZOH will be used by the plant or the controller. In this thesis, we will intro-

duce an alternative way of handling medium access disruptions so that if a senor

or actuator is not actively accessing the communication medium, their input to the

controller or plant will be ignored.

Static medium access scheduling

One possible scheduling strategy is to let the medium access of different sensors

and actuators follow a pre-defined sequence, termed communication sequence [48].

Medium access scheduling strategies of this kind are often called static scheduling.

The work in [48] studies an NCS in which a collection of uncoupled discrete-time
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linear plants send their sensors’ information to a controller via a shared serial com-

munication medium. The medium access status of the sensors at each discrete time

instance is described by a fixed periodic communication sequence. Assuming ZOH

at the receiving side of the communication medium, a state augmentation technique

called extensification is used to model the closed loop NCS dynamics under a con-

stant feedback gain matrix. It is shown that any periodic communication sequence

defines an affine subspace of matrices in an augmented matrix space. Each matrix

in this space corresponds to a specific choice of feedback gains. In general, given

a periodic communication sequence, a stabilizing feedback gain can not be found

analytically and in fact the question of its existence has been proved to be NP-hard

[49].

The work in [48] is generalized in [14] where the plant studied is a coupled MIMO

system (Fig.2.5). Using the state extensification technique, the closed-loop system

is shown to define an affine matrix space of higher dimension. A more general NCS

configuration is studied in [50] where the medium access constraints are extended

to both sensors and actuators. To account for the effects of ZOHs at both the

plant and the controller’s input stages, a higher dimensional state extensification is

needed to model the closed-loop dynamics, which again define an affine matrix space.

Under this formulation, it is shown that [14, 50], given a periodic communication

sequence, the solution for a stabilizing feedback gain may be obtained via a simulated

annealing algorithm that seeks to minimize the spectral radius of the closed-loop

systems, however the computation cost related to this algorithm is very high, and

the existence of a solution is not guaranteed.

If the feedback controller of an NCS is given in advance, the problem of design-

ing a stabilizing communication sequence is also challenging. Previously proposed

methods only handle NCS whose dynamics are “block-diagonal”, in the sense that
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Figure 2.5: An MIMO plant with medium access constraints existing only on the
output side. A ZOH is used at the receiving end of the communication medium.

the sensors and actuators are connected to uncoupled sub-plants. The work in [13]

studies a block-diagonal NCS configuration where a collection of uncoupled contin-

uous linear systems share a communication medium to close their feedback loops

(shown in Fig. 2.6). It is shown that the existence of a stabilizing communication

sequence can be linked a condition that is related to the decay/growth rate of the

Lyapunov functions of the closed/open-loop dynamics of these subsystems.

...

actuator Plant 1 sensor

Controller 1

...

Communication
Medium

actuator sensor

Controller 2

actuator sensor

Controller N

Plant 2

Plant N

...

Figure 2.6: A “block-diagonal” NCS: a collection of uncoupled continuous linear
systems share a communication medium to close their feedback loops.
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A similar NCS configuration is discussed in [51, 15], it is shown that, depending

on the parameters of their dynamics, each subsystem needs to close its feedback loop

at a specific rate in order to achieve stability. Based on these rate requirements,

the Rate Monotonic (RM) [52] algorithm is then used to schedule the access to the

shared communication medium. The idea of RM scheduling is that the subsystem

that needs to close its loop at a higher rate obtains higher medium access priority.

Under the RM scheduling rule, the schedulability of a set of non-preemptive periodic

tasks can be checked by a sufficient condition given in [53].

An effective communication sequence can also be obtained by solving an opti-

mization problem that searches over all possible choices of communication sequence

over a finite horizon. It is shown [54] that a finite horizon optimal communica-

tion sequence can be found by performing backwards recursion of an LQ (Linear

Quadratic) cost function combined with tree pruning. The work in [55] uses a sim-

ilar optimization setup but the optimal communication sequence is obtained via

exhaustive search.

Dynamic medium access scheduling

Under static scheduling, the controller may not be able to respond quickly to a

sensor or actuator that requires immediate attention, and thus an NCS may be

less robust when the plant is subject to unpredictable disturbances. Moreover,

when implementing a static communication sequence, a global timer is needed to

synchronize all the sensors, actuators, and the controller. These restrictions have

given rises to research on dynamic medium access scheduling strategies in which the

access to the medium is determined “on-line” based on a feedback-based arbitration

policy. Dynamic medium access scheduling policies can be implemented via various

random MAC protocols.
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The “CLS-ǫ” dynamic access scheduling policy is introduced in [56] for NCSs

having block-diagonal configurations. This policy, which seeks to “Contain Largest

State”, is inspired by the “Clear Largest Buffer” policy originally introduced in [57]

for distributed manufacturing system. According to the CLS-ǫ policy, the subsystem

whose state is farthest from the origin wins medium medium access; the medium

access is re-determined when the norm of the state of that subsystem is driven to a

small positive real number ǫ. It is shown that, by gradually decreasing the value of

ǫ, the NCS can be asymptotically stabilized by the CLS-ǫ policy.

The works in [58, 59] proposed the MEF-TOD (Maximum Error First, Try Once

Discard) policy which can be used to stabilize a general NCS in which the plant is a

coupled MIMO system. According to the MEF-TOD policy, i) at any time, the input

or output with the greatest weighted error from its most recently transmitted value

win the access of the medium; ii) if an input or output fails to win the competition

for the network access, it discards its current value, real-time access arbitration of

medium access is always based on real-time value of the inputs and outputs. An

important assumption made in the MEF-TOD policy is that, for each sensor and

actuator, the maximum interval between its two successful transmission is bounded

by a small number, τm, referred to as the “Maximum Allowable Transfer Interval”

(MATI). Treating the network induced error as a vanishing perturbation, the work

in [58] shows that an NCS is asymptotically stable under the MEF-TOD policy if

the MATI is less than a given bound, which can be obtained by applying Bellman-

Gronwall Lemma [60] to the closed-loop system. This result is extended to nonlinear

NCSs in [61]. It is shown [62, 13] that, due to the conservativeness of Bellman-

Gronwall Lemma, the bound obtained in [58, 59] on MATI is very conservative.

Neither the “CLS-ǫ” nor the “MEF-TOD’ policy guarantees an upper-bound for

the switching rate of medium access. High-speed switching is often impractical in
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communication networks and may bring undesirable high frequency disturbances in

the feedback loop. An effective way to bound the switching rate is to introduce a

minimum dwell time τ > 0 and restrict the time interval between any two consec-

utive access switches to be no smaller than τ [63]. In Chapter 5 of this thesis, we

will introduce a dynamic medium access scheduling policy that ensures a dwell-time

between consecutive switches.

Relationships with this thesis

For NCSs under static access scheduling, previously proposed NCS synthesis meth-

ods only allow one to design a controller for a given communication sequence, or to

find a stabilizing communication sequence while assuming that the controller was

designed without considering communication constraints; the co-design of communi-

cation sequence and the feedback controller in NCSs has thus far been a challenging

task. When designing a stabilizing communication sequence, it is also often assumed

that the plant is block-diagonal, or that the medium access constraints exist only

on the output side of the plant, in order to simplify the analysis. When it comes to

controller design, the methods introduced in [14] and [48] used simulated annealing

algorithm which is complicated and does not guarantee the existence of a solution.

In dynamic scheduling of NCSs, most previous results only address simple con-

figurations where the plant is block-diagonal [13]; the work in [58] discusses NCSs

with coupled plant dynamics, but it is attached to very conservative assumptions

on the MATI.

In the following chapters, we describe a new model for NCS under medium

access constraints. We will show that this new model avoids the complexities in

previously proposed NCS models and elucidates the interaction between medium

access scheduling and the underlying dynamics of the control system. Based on this
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new model, we will present a set of theoretical tools that allow one to concurrently

design the medium access scheduling strategy (static or dynamic) and the feedback

controller that stabilize a general class of NCSs in which the plant has “fully coupled”

dynamics and the medium access constraints exist on both input and output side

of the plant.

28



Chapter 3

Medium Access Constraints in

NCSs

The focus of this thesis is NCS design under medium access constraints. As we

have already mentioned, previously proposed synthesis methods do not provide a

complete solution to the NCS stabilization problem. The difficulties encountered in

previous works are partly due to the complexities introduced by assuming zero order

holds (ZOHs) at the “receiving end” of a communication medium. In this chapter,

we introduce a new NCS architecture, in which the plant and controller forgo the

use of a ZOH, and instead choose to “ignore” the actuators and sensors that are not

actively communicating. This new architecture leads to simpler NCS models and

elucidates the interaction between medium access scheduling and the dynamics of

the underlying plant and the feedback controller.
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3.1 Problem Formulation

Consider the NCS configuration shown in Fig. 3.1, in which the plant is a linear

time-invariant (LTI) system and communication constraints exist on both input

and output side of the plant. Let the dynamics of the plant be given by:

ẋ(t) = Ax(t) + Bu(t), x ∈ R
n, u ∈ R

m, (3.1)

y(t) = Cx(t), y ∈ R
p,

where the state of the plant x = [x1, · · · , xn]T ∈ R
n consists of n scalar components;

the input u = [u1, · · · , um]T ∈ R
m consist of m scalar components; and the output

y = [y1, · · · , yp]
T ∈ R

p consists of p scalar components. Each of the plant’s m scalar

inputs receives its control signal ui from a designated actuator; each output yi is

measured by a designated sensor.

actuator 1

actuator 2
...

actuator m

sensor 2

sensor 1

...
sensor p

Controller

Input Channels Output Channels

Shared Communication Medium

Plant

yp

u2

um

u1 y1

y2

Figure 3.1: An NCS having m actuators and p sensors, with medium access con-
straints existing on both sensor and actuator sides.

In the sequel, we will use the terms input channel and output channel to refer

to communication links that enable data transmission from controller to actuators
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and from sensors to controller, respectively, through the communication medium.

We assume that the shared communication medium can simultaneously provide wσ

(1 ≤ wσ < p) output channels and wρ (1 ≤ wρ < m) input channels. In such an

NCS, only wσ of the p sensors can access these channels to communicate with the

controller at any one time, while others must wait. Similarly, at the input side of

the plant, the controller can only communicate with wρ of the m actuators at any

one time to update their control signals.

It is important to note that the proposed NCS model does not capture settings

where sensors and actuators share a single communication channel. However, the

results presented in Chapter 4 and Chapter 6 can be modified to apply to those

settings.

We also remark that the central issue addressed in this thesis is medium access

constraints in an NCS. The effects of any other communication constraints, such as

data-rate limits, transmission delays, and possible data-packet have been neglected

for simplicity. However, the NCS model proposed in this chapter can be augmented

to include the effects of other communication constraints.

3.2 Communication Sequence

An effective way to model medium access constraints in NCSs is to use the notion

of a communication sequence [48, 14], which specifies the order in which the sensors

and actuators are to access the communication medium. Let us first consider the

output side of the plant. For i = 1, · · · , p, let the binary-valued function σi(t) denote

the medium access status of sensor i at time t, i.e. σi(t) : R 7→ {0, 1}, where 1 means

“accessing” and 0 means “not accessing”. The medium access status of the p sensors
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over time can then be represented by the p-to-wσ communication sequence

σ(t) =



















σ1(t)

σ2(t)

...

σp(t)



















.

Definition 3.1. An M-to-N (N < M) communication sequence η is a map, η(t) :

R 7→ {0, 1}M , satisfying ‖η(t)‖2 = N , ∀t.

Similarly, at the plant’s input side, we use a binary-valued function ρi(t) to

denote the medium access status of actuator i at time t. The medium access status

of the plant’s m actuators can then be described by an m-to-wρ communication

sequence ρ(t) with

ρ(t) =



















ρ1(t)

ρ2(t)

...

ρm(t)



















.

In the sequel, we will refer to the ρ and σ as the “input” and “output” commu-

nication sequences, respectively.

3.3 Effects of Medium Access Constraints

We now go on to investigate the effects of medium access constraints on the dynamics

of an NCS. A sensor’s output, say yi(t), is available to the controller only when the

sensor i is accessing the communication medium, i.e., σi(t) = 1. When that is not
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the case (σi(t) = 0), we let the controller ignore that sensor by assuming a zero

output value for its output. Let ȳi(t) denote the output signal that is assumed by

the controller for sensor i at time t. The above protocol leads to:

ȳi(t) = σi(t) · yi(t), ∀i.

To simplify the notation, it is also convenient to define the matrix form of a

communication sequence (or the communication sequence matrix ).

Definition 3.2. Let η(t) be an M-to-N communication sequence, the “matrix form”

of η(t), Mη(t) , is defined as

Mη(t) , diag(η(t)).

Now let ȳ(t) denote the output vector that is assumed by the controller at time

t, based on the above communication protocol. We thus have

ȳ(t) = Mσ(t) · y(t), (3.2)

where ȳ = [ȳ1, ȳ2, · · · , ȳp]
T .

Similarly, at the plant’s input side, when actuator j loses its access to the com-

munication medium, the control signal generated by the controller for that actuator

will be unavailable to and hence ignored by that actuator. Instead, the actuator

sets uj = 0 until it obtains medium access again. Let ū = [ū1, · · · ūm]T denote the

control signals generated by the controller and u(t) denote the input signals actually

used by the actuator, we thus have

u(t) = Mρ(t)ū(t). (3.3)
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3.4 The Extended Plant

Combining (3.1), (3.3), and (3.3), we obtain a linear time-varying (LTV) system

with ū as its inputs and ȳ as its outputs:

ẋ(t) = Ax(t) + BMρ(t)ū(t), (3.4)

ȳ(t) = Mσ(t)Cx(t).

The last equations describe the plant from the controller’s point of view. We call

(3.4) the extended plant, and note that it incorporates the dynamics of the plant

together with the two communication sequences. The block diagram of the extended

plant is shown in Fig. 3.2.

Plant

Controller

Extended plant

y(t)

ū(t) ȳ(t)

Mσ(t)Mρ(t)
u(t)

Figure 3.2: The extended plant

The properties of the extended plant can be summarized as follows:

1. The extended plant (3.4) is a linear time varying system with a constant A

matrix.

2. The extended plant (3.4) has fewer “effective” inputs and outputs than the

original plant (3.1).

3. The state of the extended plant (3.4) coincides with that of the original plant

(3.1). Hence the NCS can be stabilized by designing a feedback controller that
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stabilizes the extended plant (3.4).

3.4.1 Remark

Previous works have often assumed that, when a sensor or actuator loses medium

access, the latest available values stored in the ZOHs will be fed into the controller

or plant. Aside from increasing the system’s complexity by introducing time-varying

delays (see, for example, the “extensive form” in [14] and other similar construc-

tions), the use of ZOHs may not necessarily benefit system performance: Consider

the scalar system ẋ = x + u stabilized by the feedback law u = −2x. Suppose that

the medium access of u is cut off when x = 1. With a ZOH, the system will then

evolve according to ẋ = x − 2 thereafter. When x becomes negative, the control

u = −2 would result in a greater divergence rate than a zero control. In this work,

we have chosen to “ignore” the sensors or actuators that are not actively communi-

cating. We have shown that, doing this, the effect of medium access constraints can

be captured by simply cascading the original plant with a pair of communication

sequence matrices.

3.4.2 Switched System Expression

Note that according to Definition 3.1, ρ(·) and σ(·) can only take on
(

m

wρ

)

and
(

p

wσ

)

possible values, respectively. This makes the extended plant (3.4) essentially a

switched system [63] switching between
(

m

wρ

)

·
(

p

wσ

)

LTI systems. Using the switched

system notation, the extended plant can also be expressed as:

ẋ(t) = Ax(t) + Bρ(t)ū(t), (3.5)

ȳ(t) = Cσ(t)x(t),
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where the communication sequences ρ(t), σ(t) are now serving as the switching

signals of the switched system. Also, (3.5) represents a special class of switched

systems because the dynamics A are always constant. In Chapter 5, this property

will allow us to develop a group of dynamic medium access scheduling strategies

that asymptotically stabilize NCSs under constant feedback gains.

3.5 A Discrete-time Formulation

Feedback controllers of modern control systems are often implemented via digital

computers, especially when it comes to NCSs. In that setting, the plant’s outputs

are sampled periodically by an Analog-to-Digital (A/D) converter; a Digital-to-

Analog (D/A) converter is used to convert the digital control signals generated at the

controller to analog ones for the actuators. A dynamical system with synchronized

D/A and A/D converters at its inputs and outputs is often referred to as a “sampled-

data system”. It is well-known that a sampled-data system can be modeled as a

discrete-time dynamical system. Suppose therefore, that the plant in the NCS of

Fig. 3.1 is a sampled-data system, and let the dynamics of the plant be given by

the discrete-time LTI system

x(k + 1) = Ax(k) + Bu(k), x ∈ R
n, u ∈ R

m, (3.6)

y(k) = Cx(k), y ∈ R
p.

Suppose also that data transmissions and receptions via the communication medium

only take place at discrete-time instances. Then, the medium access status of the p

sensors and m actuators over time can be represented by the discrete-time p-to-wσ

36



and m-to-wρ communication sequences

σ(k) =



















σ1(k)

σ2(k)

...

σp(k)



















, and ρ(k) =



















ρ1(k)

ρ2(k)

...

ρm(k)



















, respectively.

Definition 3.3. A discrete-time M-to-N communication sequence η is a map, η(k) :

Z 7→ {0, 1}M , satisfying ‖η(k)‖2 = N , ∀k.

Based on the same communication protocols we introduced in Section 3.3, the

extended plant to be controlled by the controller is the discrete-time linear time-

varying (LTV) system:

x(k + 1) = Ax(k) + BMρ(k)ū(k), (3.7)

ȳ(k) = Mσ(k)Cx(k),

where Mρ(k) , diag(ρ(k)), and Mσ(k) , diag(σ(k)) are the communication se-

quence matrices.

3.6 NCSs with Nonlinear Plants

Although we will not discuss the design of NCSs with non-linear dynamics, the

modeling techniques introduced in this chapter easily extends to those systems. For

example, if the plant is described by

ẋ(t) = f(x(t), u(t), t), (3.8)

y(t) = g(x(t), u(t), t),
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then, under the communication sequences ρ(·) and σ(·), the extended plant can be

expressed as:

ẋ(t) = f(x(t), Mρ(t)ū(t), t), (3.9)

ȳ(t) = Mσ(t)g(x(t), Mρ(t)ū(t), t).
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Chapter 4

Static Medium Access Scheduling

In this chapter, we study the stabilization of NCSs under static medium access

scheduling. We show that, in the continuous-time case, the controllability and

observability of a linear plant can be preserved under periodic communication se-

quences as long as each input and output are granted a finite interval of medium

access during every period; in the discrete-time case, there always exist periodic

communication sequences (can be found via a simple algorithm) that preserve the

reachability and observability of a reversible plant. Using these effective commu-

nication sequences, one can easily design observer-based feedback controllers that

exponentially stabilize an NCS at an arbitrary decay rate.

4.1 Continuous-time Case

We begin with studying static medium access scheduling in continuous-time. Let

the plant be the LTI system
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ẋ(t) = Ax(t) + Bu(t), x ∈ R
n, u ∈ R

m, (4.1)

y(t) = Cx(t); y ∈ R
p.

Suppose that the medium access of the actuators and sensors is governed by the m-

to-wρ input communication sequence ρ(t) and the p-to-wσ output communication

sequence σ(t), respectively. Based on our NCS model from Chapter 3, the dynamics

of the extended plant are:

ẋ(t) = Ax(t) + BMρ(t)ū(t), (4.2)

ȳ(t) = Mσ(t)Cx(t).

For convenience, we re-write the dynamics of the extended plant as

ẋ(t) = Ax(t) + B̄(t)ū(t), (4.3)

ȳ(t) = C̄(t)x(t).

where C̄(t) , Mσ(t)C, B̄(t) , BMρ(t). Without loss of generality, we assume that

the plant (4.1) is controllable and observable, i.e.,

rank
(

[B, AB, · · · , An−1B]
)

= rank





































C

CA

...

CAn−1





































= n. (4.4)
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Note that, in the presence of medium access constraints, the controllability and

observability of the plant may be “lost” if the communication sequences are not

chosen carefully, as would be the case, for example, if one of the inputs never ob-

tained medium access. In the continuous-time case, this scenario will turn out to be

the only one that we must guard against; on the other hand, the discrete-time case

will require a more sophisticated choice of communication sequences, as we shall see

in the sequel. In order to stabilize the NCS under consideration, our strategy will

be to first find communication sequences which preserve the controllability and ob-

servability in the extended plant (4.2), and then design an observer-based feedback

controller that will stabilize the extended plant. Before proceeding with our analy-

sis, we review several definitions regarding the controllability and observability of

LTV systems, such as (4.2). These definitions can be found in most standard linear

system theory texts (e.g., [64]).

Definition 4.1. The extended plant (4.2) is controllable on [t0, tf ] if starting from

any initial condition at t0, there exists an input ū(t) that steers x(t) to zero at tf .

Definition 4.2. The extended plant (4.2) is controllable if there exists δ > 0 such

that (4.2) is controllable on [t, t + δ] for all t.

Definition 4.3. The extended plant (4.2) is observable on [t0, tf ] if any initial

condition at t0 can be uniquely determined from the output ȳ(t) on [t0, tf ].

Definition 4.4. The extended plant (4.2) is observable if there exist a δ > 0 such

that (4.2) is observable on [t, t + δ] for all t.
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4.1.1 Communication Sequences that Preserve

Controllability and Observability

To investigate the controllability and observability of the extended plant (4.2), we

will begin with the worst-case communication condition, where there is only one

input channel and one output channel available at the communication medium (i.e.,

wρ = wσ = 1). Later we will generalize those results to the general multiple in-

put/output channels cases.

Let us first study the controllability of the extended plant. Consider the case

where wρ = 1. Now, ρ(t) is an m-to-1 communication sequence. By definition, ρ(t)

only takes values on the set of m-dimensional standard basis vectors,

Em = {e1
m, e2

m, · · · , em
m},

where e1
m = [1, 0 · · ·0]T , e2

m = [0, 1, 0 · · ·0]T , · · · em
m = [0 · · ·0, 1]T . Let B =

[b1, b1, · · · , bm], then for all t, B̄(t) takes values on a finite set,

B̄(t) ∈ {B1, B2, ..., Bm},

where Bi = B ·diag(ei
m) = [0, · · · , 0, bi, 0, · · · , 0], i.e., Bi only retains the ith column

of B, and sets all the other columns to zero.

Note that the LTV system (4.2) is controllable on [t0, tf ] if and only if the

controllability Gramian

W (t0, tf ) =

∫ tf

t0

Φ(t0, t)B̄(t)B̄(t)T ΦT (t0, t)dt (4.5)

is invertible, where Φ(t0, t) = eA(t0−t). Inspired by a similar problem studied in [65],
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we have the following:

Theorem 4.1. Suppose that the plant (4.1) is controllable. Let t0 < t1 < · · · <

tm = tf , then the m-to-1 communication sequence

ρ(t) = ei
m; ti−1 ≤ t < ti (i = 1, 2, · · ·m), (4.6)

is such that the extended plant (4.2) is controllable on [t0, tf ].

Proof. Under the communication sequence (4.6), the controllability Gramian of (4.2)

over [t0, tf ] can then be written as

W (t0, tf ) =

∫ t1

t0

Φ(t0, t)B1B
T
1 ΦT (t0, t)dt +

∫ t2

t1

Φ(t0, t)B2B
T
2 ΦT (t0, t)dt+ (4.7)

· · ·+

∫ tm

tm−1

Φ(t0, t)BmBT
mΦT (t0, t)dt.

We prove the controllability of the extended plant by contradiction. If the control-

lability Gramian (4.7) were not invertible, then there should exit a vector xa 6= 0

such that xT
a W (t0, tm)xa = 0. This would imply for all i = 1, · · · , m

xT
a Φ(t0, t)Bi = 0 ; ti−1 ≤ t < ti (4.8)

because each integrand in the RHS of (4.7) is symmetric and non-negative definite.

Now differentiate both sides of (4.8) for n − 1 times with respect to t, and evaluate

the resulting equation at t = t0 to obtain

xT
a [Bi, ABi, · · · , An−1Bi] = 0, ∀i = 1, · · · , m.

This would imply xT
a [B, AB, · · · , An−1B] = 0, meaning that [B, AB, · · · , An−1B]
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has rank less than n; this contradicts the assumption that (4.1) is controllable.

The proof of Theorem 4.1 suggests that the extended plant is controllable on

the time interval [t0, tf ] if every input obtains some finite amount of medium access

during that time interval. This is summarized in the following corollary, whose proof

follows easily from that of the previous theorem:

Corollary 4.1. Suppose that the plant (4.1) is controllable. If the m-to-1 commu-

nication sequence ρ(t) satisfies:

• for all i = 1, · · · , m, there exist t0 ≤ ti1 < ti2 ≤ tf , such that ρi(t) = 1 for all

t ∈ [ti1, ti2], where ρi(t) is the i-th component of ρ(t),

then the extended plant (4.2) is controllable on [t0, tf ].

The above theorem illustrate the extended plant’s controllability during a time

interval [t0, tf ]; we now extend it to its controllability for all time.

Corollary 4.2. Suppose that the plant (4.1) is controllable, and that T > 0 is a real

number. If the m-to-1 communication sequence ρ(t) satisfies:

1. ρ(t) = ρ(t + T ), for all t;

2. for all i = 1, · · · , m, there exist 0 ≤ ti1 < ti2 ≤ T , such that ρi(t) = 1 for all

t ∈ [ti1, ti2], where ρi(t) is the i-th component of ρ(t);

then the extended plant (4.2) is controllable on [t, t + T ] for all t, and is hence

controllable.

Proof. Under the given communication sequence ρ(·), during each period [t, t + T ],

each input obtains a chance of medium access. In the spirit of Corollary 4.1, the

extended plant is controllable at [t, t + T ] for all t.
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For an NCS with more than one input channels (wρ > 1), each possible value

taken by B̄(t) will consist of wρ columns from B. An argument similar to those in the

proof of Theorem 4.1 shows that, the controllability of the plant (4.1) is preserved

in the extended plant (4.2), if every input obtains a finite interval of medium access

periodically.

Lemma 4.1. Suppose that the plant (4.1) is controllable and that T > 0 is a real

number. If the m-to-wρ (1 ≤ wρ < m) communication sequence ρ(·) is T -periodic

and gives each of the m actuators a chance to access the communication medium

during every period T , i.e.,

1. for all t, ρ(t) = ρ(t + T );

2. for all i = 1, · · · , m, there exist ti1, ti2, such that 0 ≤ ti1 < ti2 ≤ T , and

ρi(t) = 1 for all t ∈ [ti1, ti2], where ρi(t) is the i-th component of ρ(t);

then the extended plant (4.2) is controllable on [t, t + T ], for all t, and is hence

controllable.

Because observability is a dual property of controllability, the results we just

proved for controllability can be extended to the following statements regarding the

observability of the extended plant. The proofs are straightforward (they follow the

”dual” arguments from the proof of Theorem 4.1) and will not be included here.

Lemma 4.2. Suppose that the plant (4.1) is observable and that T > 0 is a real

number. if, for all t, the p-to-wσ (1 ≤ wσ < p) communication sequence σ(·) is

T -periodic and gives each of the p sensors a chance to access the communication

medium during every period T, i.e.,

1. for all t, σ(t) = σ(t + T );
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2. for all i = 1, · · · , p, there exist ti1, ti2, such that 0 ≤ ti1 < ti2 ≤ T , and

σi(t) = 1 for all t ∈ [ti1, ti2], where σi(t) is the i-th component of σ(t);

then the extended plant (4.2) is observable on [t, t + T ], for all t, and is hence

observable.

4.1.2 Output Feedback Stabilization

Under periodic communication, the extended plant (4.2) becomes a linear periodic

time-varying system. The stabilization of such systems has been extensively studied

in the controls literature, see, for example, [66], [67], and [68]. Here we use an

observer-based controller described in [64].

From the two lemmas stated in the previous section, we know that the the con-

trollability and observability of the plant can be preserved in the extended plant if

the communication sequences are chosen properly. Using those “effective” commu-

nication sequences, the extended-plant can be stabilized at an arbitrary decay rate

via output feedback. The feedback controller consists of a state observer followed

by a time varying feedback gain K(t) (shown in Fig. 4.1).

Observer

Plant

ū(t)
K(t)

Mσ(t)Mρ(t)
u(t) y(t)

x̂(t) ȳ(t)

Figure 4.1: Output feedback stabilization of an NCS: The controller consists of an
observer followed by a time-varying feedback gain K(t).
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Define an observer for the extended plant (4.2) by

˙̂x(t) = Ax̂(t) + B̄(t)ū(t) + H(t)[ȳ(t) − C̄(t)x̂(t)], (4.9)

where x̂ is the observer’s state, C̄(t) = Mσ(t)C, B̄(t) = BMρ(t), and H(t) is the

time-varying observer gain. Suppose that the extended plant is controlled by the

time-varying feedback law:

ū(t) = K(t)x̂(t).

We then have the following:

Theorem 4.2. Let the plant (4.1) be controllable and observable, and the commu-

nication sequences ρ(t) and σ(t) satisfy the conditions stated in Lemma 4.1 and

Lemma 4.2. Then given α > 0, for any η > 0 the feedback and observer gains

K(t) = −B̄T (t)W−1
α+η(t, t + T ), (4.10)

H(t) = [e−AT TMα+η(t − T, t)e−AT ]−1C̄T (t), (4.11)

are such that the closed-loop system is uniformly exponentially stable with rate α,

where

Wα+η(t0, tf ) ,

∫ tf

t0

2e4(α+η)(t0−τ)eA(t0−τ)B̄(τ)B̄T (τ)eAT (t0−τ)dτ, (4.12)

Mα+η(t0, tf) ,

∫ tf

t0

2e4(α+η)(τ−tf )eAT (τ−t0)C̄T (τ)C̄(τ)eA(τ−t0)dτ. (4.13)

Proof. As defined in [64], the controllability and observability Gramians of the ex-

47



tended plant (4.2) are

W(t0, tf) =

∫ tf

t0

eA(t0−τ)B̄(τ)B̄T (τ)eAT (t0−τ)dτ,

M(t0, tf) =

∫ tf

t0

eAT (τ−t0)C̄T (τ)C̄(τ)eA(τ−t0)dτ.

If the communication sequences ρ(t) and σ(t) satisfy the conditions of Lemmas

4.1 and 4.2, the extended plant will be controllable and observable on [t, t + T ) for

all t. Hence, the Gramians of the extended plant (4.2), W(t, t + T ) and M(t −

T, t), are positive definite for all t. Also it is easy to show that, under T-periodic

communication sequences, the Gramians W(t, t + T ), and M(t − T, t) are both T-

periodic in t. Therefore, we can find positive constants ǫ1 and ǫ2 such that, for all

t,

ǫ1I ≤ W(t, t + δ) ≤ ǫ2I, (4.14)

ǫ1I ≤ ΦT (t − T, t)M(t − T, t)Φ(t − T, t) ≤ ǫ2I, (4.15)

because Φ(t − T, t) = e−AT is constant for all t.

Moreover, since B̄(t) is piecewise constant, and it always takes value on a finite

set, there exist positive constants β1, β2 such that, for all t, τ with t ≥ τ ,

∫ t

τ

‖B̄(σ)‖2dσ ≤ β1 + β2(t − τ). (4.16)

Given (4.14)-(4.16), we can apply Theorem 15.5 in [64] for the extended plant (4.2)

to obtain the desired result.
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4.1.3 Remarks

We remark that under the T-periodic communication sequences, σ(t) and ρ(t), the

feedback and observer gains K(t) and H(t) given in Theorem 4.2 are also T-periodic.

Hence, when implementing the proposed observer-based controller, one only needs

to calculate H(t) and K(t) for t0 ≤ t < T + t0, where t0 is the initial time. The

Gramians (4.12), (4.13), can be computed by integrating a pair of linear ordinary

differential equations (ODEs). In particular, one can show that Wα+η(t, t + T )

satisfies a differential equation similar to that satisfied by (4.7):

d

dt
Wα+η(t, t + T ) = (A + 2(α + η)I)Wα+η(t, t + T )+

Wα+η(t, t + T )(A + 2(α + η)I)T − 2B̄(t)B̄T (t)+

2e−(A+2(α+η)I)T B̄(t)B̄T (t)e−(A+2(α+η)I)T T . (4.17)

The initial condition of Wα+η(t, t + T ) at t = 0, Wα+η(0, T ), is obtained by inte-

grating the differential equation:

d

dt
Wα+η(t, T ) = (A + 2(α + η)I)Wα+η(t, T ) − 2B̄(t)B̄T (t) + (4.18)

Wα+η(t, T )(A + 2(α + η)I)T ; (4.19)

Wα+η(T, T ) = 0. (4.20)

The matrix Mα+η(t− T, t) satisfies a similar differential equation. The detailed

derivations of the ODEs satisfied by the Gramians, (4.12) and (4.13), are given in

Appendix A.
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4.2 Discrete-time Case

We now revisit static medium access scheduling and the accompanied controller de-

sign problem in discrete-time. Recall the discrete time NCS formulation introduced

in Chapter 3, where the plant is the discrete-time LTI system

x(k + 1) = Ax(k) + Bu(k), x ∈ R
n, u ∈ R

m, (4.21)

y(k) = Cx(k); y ∈ R
p.

Suppose that the medium access of the actuators and sensors is governed by the

m-to-wρ input communication sequence ρ(k) and p-to-wσ output communication

sequence σ(k), respectively. Then the dynamics of the extended are

x(k + 1) = Ax(k) + BMρ(k)ū(k), (4.22)

ȳ(k) = Mσ(k)Cx(k).

Without loss of generality, we assume that the plant (4.21) is reachable and observ-

able, i.e.,

rank
(

[B, AB, · · · , An−1B]
)

= rank





































C

CA

...

CAn−1





































= n. (4.23)

Following our analysis for the continuous-time case, in order to stabilize the

extended plant, our strategy will be to first find communication sequences which

preserve the reachability and observability in the extended plant (4.22), and then
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design an observer-based feedback controller that stabilizes the extended plant. It

will turn out to be the case that designing effective communication sequences is

more difficult in discrete-time than in continuous-time; in particular, it will not be

sufficient to simply give every sensor and actuator some amount of medium access

periodically. Before proceeding, we review some relevant definitions that concern

the reachability and observability of discrete-time LTV systems [64].

Definition 4.5. The extended plant (4.22) is reachable on [k0, kf ] if given any xf ,

there exists an input ū(k) that steers (4.22) from x(k0) = 0 to x(tf) = xf .

Definition 4.6. The extended plant (4.22) is l-step reachable if l is a positive integer

and (4.22) is reachable on [k, k + l] for any k.

Definition 4.7. The extended plant (4.22) is observable on [k0, kf ] if any initial

condition at k0 can be uniquely determined by the corresponding response ȳ(k) for

k ∈ [k0, kf ].

Definition 4.8. The extended plant (4.22) is l-step observable if l is a positive

integer and (4.22) is observable on [k, k + l] for any k.

4.2.1 Communication Sequences that Preserve

Reachability and Observability

We continue by studying the reachability of the extended plant. Suppose that

x(0) = 0, and let the extended plant (4.22) evolve from k = 0 to k = kf . Then

x(kf) = R(0, kf) ·

[

ū(0) ū(1) · · · ū(kf − 1)

]T

,
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where

R(0, kf) = [Akf−1BMρ(0), Akf−2BMρ(1), · · · , BMρ(kf − 1)]. (4.24)

The extended plant (4.22) is reachable on [0, kf ] if rank(R(0, kf)) = n. Notice

that for each k, ρ(k) is an m-dimensional vector consisting of wρ ones and m − wρ

zeros. Hence, at each step k, the communication sequence matrix Mρ(k) has the

effect of “selecting” wρ columns from the m columns of the term Akf−k−1B on the

RHS of (4.24). The matrix R will have full rank if the kf · wρ columns that Mρ(k)

selects for k = 0, · · · , kf − 1 contain n linearly independent columns.

We now prove that if the plant (4.21) is “reversible” (i.e., A is an invertible

matrix), then it is always possible to design a communication sequence ρ(·), such

that the extended plant is also reachable.

Theorem 4.3. Suppose that A is invertible and that the plant (4.21) is reachable.

For any integer 1 ≤ wρ < m, there exists an m-to-wρ communication sequence ρ(·)

and an integer kf ≤
⌈

n
wρ

⌉

· n, such that the extended plant (4.22) is reachable on

[0, kf ].

Proof. First, consider the worst-case scenario where wρ = 1. The theorem holds if

it is always possible to design an m-to-1 communication sequence ρ(k), such that

the sequence Mρ(k) selects n independent columns (RHS of (4.24)) by picking one

column from the term Akf−k−1B at each step k = 0, · · ·kf − 1, where kf ≤ n2.

Let Γi =

[

AniB, Ani+1B, · · · , Ani+n−1B

]

. The matrix Γi has rank n for all

i = 0, · · ·n− 1 because A is invertible and the extended plant is reachable. Now let

γ0
i , · · · , γn−1

i be any n linearly independent columns from Γi and let Li be the set

{γ0
i , · · · , γn−1

i }. Consider the following algorithm
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1. Let L = L0.

2. Replace γ1
0 in L by a column from L1, while keeping the rank of L equal to n.

Such a replacement can always be found because rank(L1) = n.

3. For i = 2, · · · , n − 1, replace γi
0 in L by a column from Li while keeping the

rank of L fixed.

The resulting matrix L includes one column from each Γi (i = 0, · · · , n − 1) and

has rank n. The above algorithm ensures that it is possible to select n linearly

independent columns as long as one can select one column from each Γi. However,

on the RHS of (4.24), Mρ(·) can actually select n columns from each Γi, hence there

always exists an Mρ(·) that selects n independent columns in at most n2 steps.

Now consider the less restrictive case wρ > 1. The sequence Mρ(·) can select at

least wρ independent columns from each Γi (i = 0, 1, · · · ). Using a similar algorithm

as in the single-channel case (This time, replace wρ columns in L at each step

while keeping the rank of L equal to n. It is easy to prove that such replacements

can always be found because rank(Li) = n.), one can thus design an m-to-wρ

communication sequence ρ such that Mρ(·) selects n independent columns from the

Γi’s for i = 0, 1, · · · ,
⌈

n
wρ

⌉

− 1 in at most
⌈

n
wρ

⌉

· n steps.

Remark 4.1. The bound for kf in Theorem 4.3 is conservative. Also notice that

for each k, ρ(k) can only have
(

m

wρ

)

possible values. Thus it is possible to find the

minimum kf by searching (off-line) over all possible communication sequences ρ(·)

in the interval k =
[

0,
⌈

n
wρ

⌉

· n
]

.

We now extend the result in Theorem 4.3 to the “l-step reachability” of the

extended plant (4.22).
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Definition 4.9. A discrete-time communication sequence η(·) is called N-periodic

if η(k) = η(k + N) for all k.

Corollary 4.3. Suppose that A is invertible and that the plant (4.21) is reachable.

For any integer 1 ≤ wρ < m, there exist integers l, N > 0 and an N-periodic

m-to-wρ communication sequence ρ(·) such that the extended plant (4.22) is l-step

reachable.

Proof. From Theorem 4.3, there exists an integer kf and a communication se-

quence ρ(k) such that the extended plant is reachable on [0, kf ]. Hence the se-

quence Mρ(k) can select n independent columns from the matrices Akf−k−1B dur-

ing k = 0, · · · , kf − 1. Now let N = kf and extend ρ(k) for k ≥ kf by setting

ρ(k) = ρ(k+N), ∀k. Because A is invertible, the N-periodic sequence Mρ(k) will se-

lect n independent columns in every interval k = [jN, (j+1)N−1] (j = 0, 1, 2 · · · ).

Now, let l be any integer greater than or equal 2N−1, then for all i ≥ 0 there always

exists an integer j ≥ 0, such that [jN, (j + 1)N − 1] ∈ [i, i + l]. Hence the periodic

sequence Mρ(k) will select n independent columns on [i, i + l] for all i. We conclude

that the extended plant is l-step reachable under the N-periodic communication

sequence ρ(k).

We now address the observability of the extended plant (4.22). It is easy to show

that the extended plant (4.22) is observable on [k0, kf ] if the matrix

O(k0, kf) =



















Mσ(0)C

Mσ(1)CA

...

Mσ(kf − 1)CAkf



















(4.25)
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satisfies

rank(O(k0, kf)) = n. (4.26)

Notice that, on the RHS of (4.25), at each step k, Mσ(k) selects wσ rows from the

term CAk. Then, the duality of reachability and observability leads to the following

results.

Theorem 4.4. Suppose that A is invertible and that the plant (4.21) is observable.

For any integer 1 ≤ wσ < p, there exists a p-to-wσ communication sequence σ(·)

and an integer kf ≤
⌈

n
wσ

⌉

· n, such that the extended plant (4.22) is observable on

[0, kf ].

Corollary 4.4. Suppose that A is invertible and that the plant (4.21) is observable.

For any integer 1 ≤ wσ < p, there exist integers l, N > 0 and an N-periodic p-to-wσ

communication sequence σ(·) such that the extended plant (4.22) is l-step observable.

The proofs of Theorem 4.4 and Corollary 4.4 are similar to those in the proofs of

Theorem 4.3 and Corollary 4.3, one only need to switch from column manipulations

to row manipulations.

Remark 4.2. The invertibility of A is necessary if one wants to preserve the reach-

ability and observability in the extended plant. A counterexample is:

A =













1 1 1

0 0 0

0 0 0













, B =













1

1

1













.

Here, (A, B) is reachable but there is no 3-to-1 communication sequence ρ(k) such

that the extended plant is reachable on [0, kf ], for any kf . Of course, the invertibil-

ity of A is guaranteed if A is obtained by discretizing a continuous-time LTI plant.

55



In Chapter 6, we will show that if A is not invertible (thus reachability or observ-

ability may be lost), we can still find communication sequences that preserve the

stabilizability and detectability in the extended plant.

4.2.2 Choosing Communication Sequences

We have shown that, in continuous-time NCSs, an LTI plant’s controllability and

observability are preserved in the extended plant if each sensor and actuator obtains

some finite amount of medium access during every period of the communication se-

quence. However, this is not always sufficient in discrete-time NCSs, as the following

examples illustrate

Example 4.1. Consider the case when the plant (4.21) has 2 inputs, and the plant’s

dynamics are given by

A =







1 0

0 1






, B = [b1, b2] =







1 0

0 1






.

Since A is the identity matrix, the reachability testing matrix (4.24) will have the

form

R(0, kf) = [[b1, b2]Mρ(0) · · · , [b1, b2]BMρ(kf − 2), [b1, b2]Mρ(kf − 1)].

Then matrix R(0, kf) will have full rank if each of the two inputs, u1, u2, is granted

a chance of medium access during the period [0, kf − 1].
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Example 4.2. Now consider the case when

A =







0 1

1 0






, B = [b1, b2] =







1 0

0 1






.

For this choice of A, B, we have Ab1 = b2, Ab2 = b1. Hence the reachability testing

matrix (4.24) will have the form

R(0, kf) = [Akf−1[b1, b2]Mρ(0) · · · , [b2, b1]BMρ(kf − 2), [b1, b2]Mρ(kf − 1)].

If the communication sequence is chosen as the 2-periodic sequence

{ρ(0), ρ(1), · · · } = {[1, 0]T , [0, 1]T , [1, 0]T , [0, 1]T , · · · }.

then the matrix R(0, kf) will only consist of b1 or b2 (depending on whether kf is an

odd or even number), and hence lose rank. However, if we choose the communication

sequence as

{ρ(0), ρ(1), · · · } = {[1, 0]T , [1, 0]T , [1, 0]T , [1, 0]T , · · · },

i.e., only u1 gets medium access, then the matrix R(0, kf) will be full rank.

Example 4.3. Now consider the plant whose dynamics are obtained by combining
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the previous two cases:

A =



















1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



















, B =



















1 0

0 1

1 0

0 1



















.

Now, neither the communication sequence

{ρ(0), ρ(1), · · · } = {[1, 0]T , [0, 1]T , [1, 0]T , [0, 1]T , · · · },

nor the sequence

{ρ(0), ρ(1), · · · } = {[1, 0]T , [1, 0]T , [1, 0]T , [1, 0]T , · · · },

yields full rank in R(0, kf). In order for R(0, kf) to obtain full rank, one have to

stick to one input for more than 1 step and grant both input a chance of medium

access. For example, the 3-periodic communication sequence,

{ρ(0), ρ(1), · · · } = {[1, 0]T , [1, 0]T , [0, 1]T , [1, 0]T , [1, 0]T , [0, 1]T , · · · },

will work.

4.2.3 Output Feedback Stabilization

It is known that a discrete-time LTV system can be stabilized via output feedback

if it is l-step reachable and l-step observable [64]. A controller that guarantees

exponential decay rate of the closed-loop system consists of a state observer and a
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time varying feedback gain K(k) (shown in Fig. 4.2).

Observer

Plant

ū(k)
K(k)

Mσ(k)Mρ(k) u(k) y(k)

x̂(k) ȳ(k)

Figure 4.2: Output feedback stabilization of an NCS: The controller consists of a
discrete-time observer and a time-varying feedback gain K(k).

The observer of the extended plant (4.22) is given by the following dynamical

system:

x̂(k + 1) = Ax̂(k) + B̄(k)ū(k) + H(k)[ȳ(k) − C̄(k)x̂(k)], (4.27)

where C̄(k) , Mσ(k)C, B̄(k) , BMρ(k), and x̂ is the state estimation generated

by the observer. The observer-based feedback law is:

ū(k) = K(k)x̂(k).

Theorem 4.5. Let the extended plant (4.22) be l-step reachable, l-step observable

under the periodic communication sequences ρ(k) and σ(k), and suppose that A is

invertible. Then given a constant α > 1 and η > 1 the feedback and observer gain

K(k) = −B̄T (k)(A−1)TW−1
ηα (k, k + l), (4.28)

H(k) = [(A−l)TMηα(k − l + 1, k + 1)A−l]−1(A−1)T C̄T (k), (4.29)

are such that the closed-loop system is uniformly exponentially stable with rate α,
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where

Wηα(k0, kf) ,

kf−1
∑

j=k0

(ηα)4(k0−j)Ak0−j−1B̄(j)B̄T (j)(Ak0−j−1)T ,

Mηα(k0, kf) ,

kf−1
∑

j=k0

(ηα)4(j−kf+1)(Aj−k0)T C̄T (j)C̄(j)Aj−k0.

Proof. The reachability and observability Gramians of (4.22) are defined as

W(k0, kf) =

kf−1
∑

j=k0

Akf−j−1B̄(j)B̄T (j)(Akf−j−1)T ,

M(k0, kf) =

kf−1
∑

j=k0

(Aj−k0)T C̄T (j)C̄(j)Aj−k0.

If the extended plant (4.22) is l-step reachable and l-step observable under the

periodic communication sequences ρ(k) and σ(k), then, for all k, the reachability

and observability Gramians of (4.22), W(k, k+l) and M(k−l+1, k+1), are positive

definite and periodic in k. Hence there exist positive constants ǫ1,ǫ2 such that

ǫ1I ≤ A−lW(k, k + l)(A−l)T ≤ ǫ2I, (4.30)

ǫ1I ≤ (A−l)TM(k − l + 1, k + 1)A−l ≤ ǫ2I. (4.31)

Moreover, since B̄(k) only takes values on a finite set, there exist positive constants

β1, β2 such that for all k, j, with k ≥ j + 1

k−1
∑

i=j

‖B̄(i)‖2‖A−1(i)‖ ≤ β1 + β2(k − j − 1). (4.32)

Given (4.30)-(4.32), apply Theorem 29.5 in [64] for the extended plant (4.22) to

obtain the desired result.
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We remark that the feedback and observer gains given in Theorem 4.5 are in-

dependent of the system’s state and hence can be calculated off-line according to

their update equations. Under N-periodic communication sequences, the feedback

and observer gains K(k) and H(k) are also N-periodic. Hence, when implementing

the observer-based controller, one only needs to calculate these gains for 0 ≤ k < N

and store them in a time-indexed look-up table.

4.3 Examples

In this section, we give two examples that illustrate the medium access scheduling

and controller design methods introduced in this chapter.

4.3.1 Example 1: Continuous-time

Consider an NCS in which the plant is a 4-th order unstable batch reactor having

two inputs and two outputs [69]:

ẋ =



















1.38 −0.2077 6.715 −5.676

−0.5814 −4.29 0 0.675

1.067 4.273 −6.654 5.893

0.048 4.273 1.343 −2.104



















x +



















0 0

5.67 0

1.136 −3.146

1.136 0



















u,

y =







1 0 1 −1

0 1 0 0






x.

The plant is being controlled by a controller via a shared communication medium

which has only one input channel and one output channel (i.e., wρ = wσ = 1).

We chose the communication period to be T = 0.5s, and the input and output
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communication sequences to be

ρ(t) =















[1, 0]T : 0 ≤ t < .3T

[0, 1]T : .3T ≤ t < T

, (4.33)

and

σ(t) =















[1, 0]T : 0 ≤ t < .7T

[0, 1]T : .7T ≤ t < T

. (4.34)

Under these sequences, 30% of the input medium access time was given to u1, 70%

was given to u2, the reverse held true for the outputs y1 and y2.

For the given ρ(t) and σ(t), we calculated the observer and state feedback gains

from the formulas of Theorem 4.2 with α = 1 and η = .2. We then implemented the

observer-based controller to stabilize the batch reactor under limited communica-

tion. The plant’s and the observer’s initial conditions were set to x(0) = [10, 5, 2, 1]T

and x̂(0) = [10, 10, 10, 10]T , respectively. Fig. 4.3 illustrates the simulation results

of the state and error evolutions of the batch reactor under the above communication

sequences and controller.

To evaluate the robustness performance of this NCS design strategy, we per-

formed a second simulation in which we added a white noise of 0.01W and a fixed

transmission delay of 0.02 second at each input and output of the plant, and used

the same communication sequence and feedback controller as in the previous sim-

ulation. Fig. 4.4 illustrates the simulation results of the state and observer error

evolution of the closed-loop NCSs under noise and delays. The simulation results

showed that the system remained stable in the presence of unmodeled noise and

transmission delays.
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(b) Observer error evolution, e(t) = x(t) − x̂(t).

Figure 4.3: Simulation results: Stabilization of an NCS using an observer-based
continuous-time controller. The plant was an LTI system with two inputs and two
outputs. The communication medium provided one input channel and one output
channel. The communication sequence ρ(t) assigned 30% of the input channel access
time to u1 and 70% to u2; while the communication sequence σ(t) assigned 70% of
the output channel access time to y1 and 30% to y2.
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(b) Observer error evolution, e(t) = x(t) − x̂(t).

Figure 4.4: Simulation results: Stabilization of the same NCS under the same com-
munication sequences and controller as in Fig. 4.3, while a white noise of 0.01W as
well as a 0.02s fixed transmission delay was added at each input and output of the
plant.
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4.3.2 Example 2: Discrete-time

Consider the NCS in which the plant is a 4-th order unstable discrete-time LTI

system having 2 inputs and 2 outputs:

x(k + 1) =



















1 1/5 0 0

0 11/4 0 1/5

1 1/5 1/3 3/4

0 −1 0 1/4



















x(k) +



















0 0

1 1

0 0

1 1



















u(k),

y(k) =







1 1 0 0

0 0 1 0






x(k).

Suppose that the communication medium connecting the plant and the controller

provides only one input channel and one output channel (i.e., wρ = wσ = 1). Using

the algorithm presented in Section 4.2.1, we found that, using the 2-periodic input

and output communication sequences

{σ(0), σ(1), · · · } = {[0, 1]T , [1, 0]T , · · · },

{ρ(0), ρ(1), · · · } = {[1, 0]T , [0, 1]T , · · · },

the extended plant is 7-step reachable and 7-step observable.

We then design the observer-based output feedback controller described in Sec-

tion 4.2.3. The observer gains H(k) and the feedback gains K(k) were calculated

from the formulas in Theorem 4.5, where α and η were chosen as α = 2, η = 1.2.

The resulting periodic feedback and observer gains are
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K(2i) =







−6.4042 −3.9222 −0.0036 −0.2097

0 0 0 0






,

K(2i + 1) =







0 0 0 0

−6.4042 −3.9222 −0.0036 −0.2097






,

H(2i) =



















0 0.1953

0 −5.3283

0 1.1311

0 2.1968



















, H(2i + 1) =



















0.1963 0

2.6818 0

−0.1400 0

−1.1059 0



















, i ∈ Z.

In this example, the plant and the observer’s initial conditions were set to x(0) =

[3, 5, 7, 6]T , x̂(0) = [1, 1, 3, 4]T , respectively. The simulation results on the evolution

of the plant’s states and the observer error of the closed-loop NCS are shown in

Fig. 4.5, from which we can see that the NCS is effectively stabilized by using the

communication sequences and the output feedback controller.
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(b) Observer error evolution, e(k) = x(k) − x̂(k).

Figure 4.5: Simulation results: Stabilization of an NCS using an observer-based
discrete-time controller. The plant was a discrete-time LTI system with two inputs
and two outputs. The communication medium provided one input channel and one
output channel.
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Chapter 5

Dynamic Medium Access

Scheduling

Static medium access scheduling is easy to implement but it may be less robust

when the plant is subject to unpredictable disturbances, because the controller may

not be able to respond quickly to a sensor or actuator that requires immediate

attention. Moreover, when implementing a static communication sequence, a global

timer is needed to synchronize all the sensors, actuators, and the controller. These

limitations give rise to the idea of dynamic medium access scheduling, where the

medium access of the sensors or actuators is determined on-line based on the real-

time information of the plant.

In this chapter, we take the advantage of the NCS model introduced in Chapter 3

to study dynamic access scheduling without any requirements on the structure of

the plant, other than it being LTI. We present an algorithm for simultaneously de-

signing stabilizing gains and communication policies and avoids the computational

complexity and limitations associated with previously proposed methods. We in-

troduce a set of dynamic access scheduling policies that quadratically stabilize the
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closed-loop NCS while achieving various objectives related to the system’s rate of

convergence, the priorities of different sensors and actuators, and the avoidance of

chattering.

5.1 Problem Formulation

Plant

Mρ(t)

K

Mσ(t)

ū x̄

u1

u2

um

x1

x2

xn

Figure 5.1: An NCS in which the plant’s state information is available, and the
controller is constant feedback.

Consider the continuous-time NCS shown in Fig. 5.1, where the dynamics of the

plant are given by the MIMO LTI system

ẋ(t) = Ax(t) + Bu(t), x ∈ R
n, u ∈ R

m. (5.1)

For now, we will assume state feedback, meaning that the state x = [x1, · · · , xn]T

are available (although not simultaneously) for measurement at the plant’s outputs.

Let the medium access status of the actuators and sensors be governed by the m-

to-wρ input communication sequence ρ(t) and the p-to-wσ output communication

sequence σ(t), respectively. Let x̄ = [x̄1, x̄2, · · · , x̄n]T , denote the output signals

that are available to the controller. Based on the NCS model we introduced in
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Chapter 3, we have

x̄(t) = Mσ(t) · x(t). (5.2)

Then the dynamics of the extended plant can be expressed as

ẋ(t) = Ax(t) + BMρ(t)ū(t), (5.3)

x̄(t) = Mσ(t)x(t).

We will adopt a constant-gain feedback controller

ū(t) = K · x̄(t). (5.4)

From (5.1)-(5.4), we see that the closed-loop dynamics of the NCS are

ẋ(t) = (A + BMρ(t)KMσ(t))x(t). (5.5)

The remainder of this chapter will address the following problem:

Problem 5.1. Find a feedback gain K and a dynamic medium access scheduling

policy

[ρ(t), σ(t)] = [ρ(x(t)), σ(x(t))] , (5.6)

such that the closed-loop system (5.5) is asymptotically stable.

5.2 An Equivalent Switched System

Under constant feedback, the closed loop NCS (5.5) is essentially a switched system

[70, 71, 63], as we will illustrate shortly. Recall [63], that a switched system can be
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described by a differential equation of the form:

ẋ(t) = fs(t)(x), (5.7)

where {fp : p ∈ P} is a family of sufficiently regular functions from R
n to R

n that is

parametrized by some index set P, and s : R 7→ P is a piecewise constant function of

time, called the switching signal. In the special case where all the fp(·)’s are linear,

we obtain a switched linear system:

ẋ = As(t)x. (5.8)

First, consider the general case where the communication medium provides wρ

(1 < wρ < m) input channels and wσ (1 < wσ < n) output channels. Now ρ(t) and

σ(t) are m-to-wρ and n-to-wσ communication sequences, respectively. For simplicity,

it will be helpful to introduce one additional piece of notation.

Let η(t) be a p-to-w (1 < w < p) communication sequence. Then, η(t) is an p-

dimensional vector that takes
(

p

w

)

possible different values. Denote one permutation

of the
(

p

w

)

different values by

{

η1, η2, · · · , η(p
w)

}

.

Definition 5.1. The “scalar form” of the p-to-w communication sequence η(t) is

the map

η̄(t) : R 7→

{

1, 2 · · · ,

(

p

w

)}

,

such that η(t) = ηη̄(t), ∀t. In other words, η̄(t) equals i if η(t) = ηi.

Now let the scalar forms of the communication sequences ρ(t) and σ(t) be ρ̄(t)
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and σ̄(t), respectively, and define the switching signal s(t) as:

s(t) = [ρ̄(t), σ̄(t)].

Then the closed-loop dynamics of the NCS (5.5) can be described by the following

switched system

ẋ = As(t)x, (5.9)

where the switching signal

s(t) = [ρ̄(t), σ̄(t)]

is defined as:

s(t) : R 7→

{

1, 2, · · ·

(

m

wρ

)}

×

{

1, 2, · · ·

(

n

wσ

)}

.

Governed by the signal s(t), the system (5.9) switches between
(

m

wρ

)

·
(

n

wσ

)

possible

dynamics:

As(t) ∈

{

Aij : i = 1, · · · ,

(

m

wρ

)

; j = 1, · · · ,

(

n

wσ

)}

,

with

Aij = A + BKij , (5.10)

where Kij = diag(ρi) · K · diag(σj).

In the special case where the communication medium only provides one input

channel and one output channel (i.e., wσ = wρ = 1), the scalar form communication

sequences can be defined such that [ρ̄, σ̄] = [i, j] corresponds to ρ = ei
m and σ = ej

n,

where ei
m and ei

n denote the i-th standard basis vector in R
m and R

n, respectively.

Doing so, Aij denotes the linear system dynamics when actuator i and sensor j are

72



accessing the communication medium. From (5.5), it clear that

Aij = A + BKij , (5.11)

where Kij = diag(ei
m) · K · diag(ej

n).

Without loss of generality, we will assume wσ = wρ = 1 in the rest of this

chapter. All of the analysis and results that follow apply to the multiple channel

case with a few straightforward modifications.

5.3 Stable Convex Combinations

Definition 5.2. [72] The switched system (5.9) is said to be quadratically stable

if there exists a positive definite quadratic function V (x(t)) = xT (t)Px(t), a posi-

tive number ǫ and a switching rule s(t) such that d
dt

V (x(t)) < −ǫxT (t)x(t) for all

trajectories x(·) of the system (5.9).

Fact 5.1. [70] The switched system (5.9) can be quadratically stabilized under a

feedback-based switching rule s(t) if there exist positive real numbers αij, i = 1, · · · , m,

j = 1, · · · , n, satisfying
m

∑

i=1

n
∑

j=1

αij = 1, (5.12)

such that the convex combination of Aij’s,

A ,

m
∑

i=1

n
∑

j=1

αijAij, (5.13)

is stable.

Proof. We give here a sketch of the proof, as it will be useful in proving subsequence

results. For additional details, see [70].
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If A is stable, then there exist positive definite matrices P, Q such that

ATP + PA = −Q. (5.14)

Hence, for all x(t) 6= 0,

xT (t)(AT P + PA)x(t) = −xT (t)Qx(t) < 0.

The last equation can be rewritten as

∑

i,j

αijx
T (t)(AT

ijP + PAij)x(t) = −xT (t)Qx(t) < 0,

for all x(t) 6= 0. Because αij > 0, it follows that, for all x(t) 6= 0, there always exist

indices i(x) ∈ {1, · · ·m}, and j(x) ∈ {1, · · ·n} such that

xT (t)(AT
i(x)j(x)P + PAi(x)j(x))x(t) < 0.

Notice that the Lyapunov function V = xT (t)Px(t) is continuous and piecewise

differentiable along trajectories of (5.9). Then between any two consecutive switches

d

dt
V = xT (t)(AT

s(t)P + PAs(t))x(t). (5.15)

Hence if the switched system is switched according to s(t) = [i(x(t)), j(x(t))], the

Lyapunov function V (x(t)) = xT (t)Px(t) will always be decreasing.

From Fact 5.1, the stabilizability of the switched system (5.9) relies on the exis-

tence of a stable convex combination (5.13). However, if the Aij’s are given and the

number of possible dynamics (in our case, m · n) is greater than two, the question
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of whether such a stable convex combination exists is NP-hard [72]. Fortunately,

in an NCS, we also have the freedom to choose the controller in addition to the

communication policy, in order to obtain a stable convex combination (5.13). From

(5.11), we see that the A matrix in (5.13) can be expressed as

A ,
∑

i,j

αijAij = A + BK, (5.16)

where

K =



















α11k11 α12k12 · · · α1nk1n

α21k21 α22k22 · · · α2nk2n

· · · · · ·

αm1km1 αm2km2 · · · αmnkmn



















, (5.17)

and kij is the (i, j) entry of the feedback gain K. Now a feedback gain K that

guarantees a stable convex combination (5.13) can be found by the following

Algorithm:

1. Choose m · n positive real numbers αij ’s such that (5.12) is satisfied.

2. Choose a set of desired (stable) eigenvalues for A.

3. Solve the pole-placement problem for K, such that A = A+BK has the desired

eigenvalues, provided that (A, B) is controllable.

4. Solve for K = [kij]m×n from (5.17).

Notice that for the same choice of A, different choices of αij ’s results in different

values of the feedback gain K. A larger αij leads to a smaller kij. This fact gives

us additional freedom in the design of K. By properly choosing the αij ’s we can
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make the controller K meet certain optimization or design criteria, for example,

maxi,j |kij| < km, where km is the highest gain a controller may provide.

5.4 Dynamic Medium Access Scheduling Policies

Assume now that the feedback gain K is designed such that the convex combination

A (5.16) is stable. In this section, we introduce a set of dynamic medium access

scheduling policies (equivalently, feedback-based switching signals for (5.9)) that

quadratically stabilizes the closed-loop NCS (5.5).

Definition 5.3. Weighted Fastest Decay* (WFD*) rule:

For all t, let the switching signal s(t) be determined by

s(t) = arg min
i,j

αijx
T (t)[AT

ijP + PAij]x(t), (5.18)

where Aij is defined in (5.11), and P satisfies the Lyapunov equation (5.14).

Theorem 5.1. If A is stable, the system (5.9) is quadratically stable under the

switching rule WFD*.

Proof. Because A is stable, there exist positive definite matrices P , Q such that

(5.14) holds. Then,

m
∑

i=1

n
∑

j=1

αijx
T (t)[AT

ijP + PAij]x(t) = −xT (t)Qx(t). (5.19)

Equations (5.21) and (5.19) imply that, for all t,

αs(t)x
T (t)[AT

s(t)P + PAs(t)]x(t) ≤ −
xT (t)Qx(t)

m · n
.
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Hence,

V̇ (x(t)) = xT (t)(AT
s(t)P + PAs(t))x(t)

≤ −
xT (t)Qx(t)

m · n · αs(t)
≤ −ǫ∗xT (t)x(t),

where

ǫ∗ ,
λmin(Q)

m · n · αmax

, (5.20)

and λmin(Q) denotes the smallest eigenvalue of Q, and αmax , maxi,j αij .

From (5.18), we see that each αij acts as a weight associated with the dynamics

Aij. A greater αij will result in a greater chance that (5.9) is switched to Aij, all

else being equal. Note that Aij corresponds to the NCS dynamics when ui and

xj are accessing the communication medium. Hence, the choice of αij ’s, is akin to

assign “priorities” to every input and output of the NCS. Furthermore, from the

gain design algorithm introduced in Section 5.3, we notice that the choice of αij’s

also affects the value of the feedback gain, K: a greater αij will result in a smaller

gain kij . In order to decouple the controller design and medium access weighting, we

can modify the WFD* rule by replacing αij in (5.21) with a different set of weights,

wij, (i = 1 · · ·m, j = 1 · · ·n), this leads to the “WFD” switching rule.

Definition 5.4. Weighted Fastest Decay (WFD) rule:

For all t, let the switching signal s(t) be determined by

s(t) = arg min
i,j

wijx
T (t)[AT

ijP + PAij]x(t), (5.21)

where Aij is defined in (5.11), P satisfies the Lyapunov equation (5.14), and wij > 0,

(i = 1 · · ·m, j = 1 · · ·n) are real numbers defining the relative weight assigned to
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the Aij dynamics.

Theorem 5.2. If A is stable, the system (5.9) is quadratically stable under the

switching rule WFD.

Proof. Suppose that the switching signal s(t) of the switched system (5.9) is gov-

erned by the WFD rule (5.21). Let the switching signal s∗(t) be determined by the

WFD* rule (5.18). Then, by the definition of the WFD rule, we have, for all t,

ws(t)x
T (t)[AT

s(t)P + PAs(t)]x(t) ≤ ws∗(t)x
T (t)[AT

s∗(t)P + PAs∗(t)]x(t).

From the proofs of Theorem 5.1, we know that

xT (t)[AT
s∗(t)P + PAs∗(t)]x(t) ≤ −ǫ∗xT (t)x(t).

Hence, we have

ws(t)x
T (t)[AT

s(t)P + PAs(t)]x(t) ≤ −ws∗(t)ǫ
∗xT (t)x(t),

and

xT (t)[AT
s(t)P + PAs(t)]x(t) ≤ −

ws∗(t)

ws(t)
ǫ∗xT (t)x(t) ≤ −

wmin

wmax

ǫ∗xT (t)x(t),

where wmin = mini,j wij , and wmax = maxi,j wij.

As suggested in [70], the following switching rule ensures maximum instantaneous

decay of the Lyapunov function V :

Definition 5.5. Fastest Decay (FD) rule:
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For all t, let the switching signal s(t) be determined by

s(t) = arg min
i,j

xT (t)[AT
ijP + PAij]x(t), (5.22)

where Aij is defined in (5.11), and P satisfies the Lyapunov equation (5.14).

Theorem 5.3. If A is stable, the system (5.9) is quadratically stable under the

switching rule FD.

Proof. Under the FD rule, at any time t, system (5.9) is switched to the set of

dynamics that gives the fastest decay of V (x(t)). The instantaneous value of V̇ (see

(5.15)) is, by definition, less than or equal to that when (5.9) is under any other

switching rules, including WFD*. Hence, for all t, V̇ (x(t)) ≤ −ǫ∗xT (t)x(t), where

ǫ∗ is defined in (5.20).

Although Theorems 5.3 and 5.2 provide switching rules (equivalently feedback-

based medium access scheduling policies) that guarantee quadratic stability, the

medium access switching rate under the FD or WFD rule is not bounded. Under

these policies, it is theoretically possible that the medium access is switched for

infinitely many times in a finite time interval (“chattering”). High-speed switching

is often impractical and may result in undesirable high frequency actuator inputs.

One way to bound the switching rate is to introduce a minimum dwell time [63],

τ > 0, restricting the time interval between any two consecutive switches to be no

smaller than τ . The GD switching rule we will introduce in the next guarantees a

dwell time between switchings. The idea is to let the system evolve with one set

of dynamics until the decay rate of the Lyapunov function V is less than a certain

threshold.

Definition 5.6. Guaranteed Dwell-time (GD) rule:
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Let ǫ0 be a number satisfying 0 < ǫ0 < ǫ∗, where ǫ∗ is defined in (5.20);

1. Denote the current switch time by t0, choose s(t0) according to (5.22);

2. Let s(t) = s(t0) for all t ∈ [t0, t1), where t1 is the next switch time determined

by

t1 = inf
t>t0

xT (t)(AT
s(t0)P + PAs(t0))x(t) ≥ −ǫ0x

T (t)x(t); (5.23)

3. Repeat from step 1 for t1.

Theorem 5.4. If A is stable, the system (5.9) is quadratically stable under the

switching rule GD. Moreover, there exists τ > 0, such that the time between any

consecutive switches is no less than τ .

Proof. The quadratic stability of (5.13) is immediate because, according to the GD

rule, V̇ < −ǫ0x
T (t)x(t) for all t. We only need to prove boundedness of the dwell

time. Let t0 and t1 (t0 < t1) be any two consecutive switching times. For t ∈ [t0, t1),

define

φ(t) = −
xT (t)(AT

s(t0)
P + PAs(t0))x(t)

xT (t)x(t)
,

where φ(·) is continuous and differentiable in [t0, t1). Let AT
s(t0)P +PAs(t0) = −Qs(t0),

then for all t ∈ [t0, t1)

φ̇(t) =
xT Rs(t0)x · xT x − xT Qs(t0)x · xT Ss(t0)x

(xT x)2
, (5.24)
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where Rs(t0) , AT
s(t0)Qs(t0) + Qs(t0)As(t0) and Ss(t0) , AT

s(t0) + As(t0). Now let

γQ = max
i,j

r(Qij),

γR = max
i,j

r(AT
ijQij + QijAij), and

γS = max
i,j

r(AT
ij + Aij),

where Qij , −(AT
ijP + PAij), and r(B) denotes the spectral radius of the square

matrix B:

r(B) , max
i

(|λi(B)|).

From (5.24), it is easy to verify that for all t ∈ [t0, t1),

|φ̇(t)| ≤ γR + γQ · γS.

Hence,

|φ(t−1 ) − φ(t0)| ≤ (γR + γQ · γS)(t1 − t0),

where t−1 denotes the instant immediately before the switch taking place at t1.

Notice that φ(t0) ≥ ǫ∗ because, at the beginning of each switch, s(t) is determined

by (5.22). Also φ(t−1 ) = ǫ0 according to the GD policy. Hence

|φ(t−1 ) − φ(t0)| ≥ ǫ∗ − ǫ0,

and

t1 − t0 ≥
ǫ∗ − ǫ0

γR + γQ · γS

. (5.25)
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5.5 An Example

We now present an example in which we stabilize an MIMO plant using the dynamic

medium access scheduling policies and the controller design algorithm introduced

in the previous sections. Consider the NCS in which the plant is the 2-input 4-th

order unstable batch reactor[69]:

ẋ =



















1.38 −0.2077 6.715 −5.676

−0.5814 −4.29 0 0.675

1.067 4.273 −6.654 5.893

0.048 4.273 1.343 −2.104



















x +



















0 0

5.67 0

1.136 −3.146

1.136 0



















u.

Suppose that state feedback is available, and that the plant is controlled by a con-

stant feedback gain K via a shared communication medium which has only one

input and one output channel. The closed-loop NCS is equivalent to a switched

system that transitions between eight possible linear dynamics

ẋ = Aijx, (i = 1, 2, j = 1, 2, 3, 4).

We chose the weights αij to be

[αij ] =







1/8 1/8 1/8 1/8

1/8 1/8 1/8 1/8






, (5.26)

and placed the eigenvalues of the convex combination A (see (5.13)) at [−5,−6,−4

,−3]. Solving the pole-placement problem (5.16) for K, and then solving for K from

(5.17), we obtained the feedback gain
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K =







0.7285 −4.2600 −1.1423 −2.9334

15.3458 2.8926 6.9400 −1.7744






.

We then chose Q = I, and solved for P in the Lyapunov equation (5.14). The

resulting P matrix was

P =



















0.4665 −0.0871 0.2263 −0.3208

−0.0871 0.1378 −0.0348 0.1576

0.2263 −0.0348 0.1967 −0.1438

−0.3208 0.1576 −0.1438 0.4805



















.

Using the calculated feedback gain K and the matrix P , we first used the FD

rule as the medium access scheduling policy. Fig. 5.2 illustrates the evolution of the

plant’s state x(t) and the communication sequences under the FD scheduling rule.

With the same K and P , we next used the GD rule as the medium access

scheduling policy. From (5.20), we calculated ǫ∗ = 1. We then chose ǫ0 = 0.1

in the GD rule. Fig. 5.3 illustrates the plant’s state evolution and the resulting

communication sequences under the GD rule. Compared with the results in Fig. 5.2,

we see that the GD rule significantly reduced the switch rates in the communication

sequences ρ̄(t) and σ̄(t). Not surprisingly, as a trade-off, the converging rate is slower

with the GD rule than with the FD rule.

Finally, we used the WFD rule to schedule medium access in the NCS, and

demonstrated how the wij’s act as medium access priorities. Initially, we chose

[wij] = W1 =







1/6 1/6 1/6 1/6

1/12 1/12 1/12 1/12






.
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(b) Evolution of communication sequences ρ̄(t) and σ̄(t).

Figure 5.2: Simulation results: Stabilization of an NCS using the FD rule. The
plant was an LTI system with 2 inputs and 4 outputs. The communication medium
provided one input channel and one output channel.
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Figure 5.3: Simulation results: Stabilization of an NCS using the GD rule (ǫ0 =
0.1, ǫ∗ = 1). The plant was an LTI system with 2 inputs and 4 outputs. The
communication medium provided one input channel and one output channel.
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Notice that the first row in [wij ] corresponds to the priority of u1, while the second

row corresponds to the priority of u2. Thus, by using W1, we assigned to the input

u1 a higher access priority than u2. Fig. 5.4 illustrates the the plant’s state evolution

and associated communication sequences using the WFD rule with [wij ] = W1. The

resulting communication sequence in Fig. 5.4 shows that 90.5% of medium access

time to the input channel was assigned to u1 under this choice of [wij].

Exchanging the rows of W1, we formed the weight matrix

[wij] = W2 =







1/12 1/12 1/12 1/12

1/6 1/6 1/6 1/6






,

which give u2 higher priority to access the input communication medium. Fig. 5.5

illustrates the state evolution and associated communication sequences when using

the WFD rule with [wij] = W2. This time, 96.5% of the medium access time to the

input channel was allocated to u2.
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Figure 5.4: Simulation results: Stabilization of an NCS using the WFD rule. The
plant was an LTI system with 2 inputs and 4 outputs. The communication medium
provided one input channel and one output channel. The input u1 was given higher
access priority.
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Figure 5.5: Simulation results: Stabilization of an NCS using the WFD rule. The
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Chapter 6

LQG Control in NCSs

In this chapter, we study state estimation and optimal control of NCSs under the

classical LQG (linear quadratic Gaussian) framework. Using existing results on

periodic Riccati equations, together with properly chosen periodic communication

sequences, we show that the estimation error covariance and the Kalman gain as-

sociated with the LQG problem both converge to unique periodic solutions. Fur-

thermore, the resulting LQG controller renders both the estimation error dynamics

and the closed-loop NCS dynamics asymptotically stable. The LQG design method

presented in this chapter avoids the complexity associated with previously proposed

models and addresses MIMO NCSs whose dynamics are “fully coupled”.

6.1 An Equivalent NCS Model

In the NCS model presented in Chapter 3, unavailable inputs and outputs are set to

zero and are thus effectively ignored by the plant and the controller. In this chapter,

we introduce a new NCS model where unavailable outputs and inputs are simply

removed from the output and input vectors of the extended plant. This new model
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will turn out to be equivalent to the one discussed in Chapter 3. This modified

model will simplify the solution of the LQG problem, as we will illustrate in Section

6.4.3. A similar technique is mentioned in [73] for multi-rate systems.

We begin with a deterministic NCS setting, which will be generalized to the

stochastic setting in Section 6.4, whereupon the LQG optimal estimation and control

problem will be formulated. Consider the NCS in which the plant is the discrete-time

LTI system:

x(k + 1) = Ax(k) + Bu(k), (6.1)

y(k) = Cx(k),

where x = [x1, · · · , xn]T ∈ R
n, u = [u1, · · · , um]T ∈ R

m, and y = [y1, · · · , yp]
T ∈ R

p

are the plant’s states, inputs, and outputs, respectively. Suppose that the communi-

cation medium connecting the plant and the can only accommodate wσ (1 ≤ wσ < p)

output channels and wρ (1 ≤ wρ < m) output channels. Also suppose that the

medium access of the actuators and sensors is governed by the m-to-wρ input com-

munication sequence (see Definition 3.3) ρ(k) and p-to-wσ output communication

sequence σ(k), respectively.

6.1.1 Effects of Medium Access Constraints

At the output side of the plant, only wσ of the p outputs, y1, y2 · · · , yp are granted

medium access at any time k, and all other outputs are effectively ignored by the

controller. Let the output information received by the controller at time k be de-

noted by

ỹ(k) = [ỹ1(k), ỹ2(k), · · · , ỹwσ
(k)]T .

90



For all k, ỹ(k) contains those elements from y(k) for which σi(k) = 1. To establish

the relationship between y(k) and ỹ(k), we will make use of the following definition:

Definition 6.1. Let η(k) be an M-to-N communication sequence. Then, for all

k ∈ N, the N × M matrix µη(k) is obtained by removing the M − N all-zero rows

from the M × M matrix diag(η(k)).

Example 6.1. Let η(1) = [1, 1, 0, 1]T , then

µη(1) =













1 0 0 0

0 1 0 0

0 0 0 1













.

Using the last definition, we can express ỹ(k) as

ỹ(k) = µσ(k)y(k), (6.2)

where σ(k) is the output communication sequence.

Similarly, at the input side of the plant, only wρ of the m inputs, u1, · · · , um,

can be updated by the controller at any time k. When an input uj loses its access

to the communication medium, the plant ignores that input until the corresponding

actuator regains medium access. This is equivalent to setting uj = 0 while ρj = 0.

Let

ũ(k) = [ũ1(k), ũ2(k) · · · , ũwρ
(k)]T

denote the wρ update input values to be sent to the plant from the controller at

time k. Under the protocol outlined above, u(k) can be expressed as

u(k) = µρ(k)T ũ(k). (6.3)
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6.1.2 The Extended Plant

Combining (6.1),(6.2), and (6.3), we obtain a new expression of the extended plant:

x(k + 1) = Ax(k) + Bµρ(k)T ũ(k), (6.4)

ỹ(k) = µσ(k)Cx(k).

Notice that (6.4) is a time-varying system with wρ inputs and wσ outputs, and it

describes the dynamics of the plant from the controller’s point of view. A block

diagram of the extended plant is shown in Figure 6.1. This new extended plant

formula should be compared with the formula (3.7) presented in Chapter 3: Equation

(6.4) is obtained by removing from ū and ȳ (in (3.7)) the input and output elements

that are ignored by the plant and the controller due to their being unavailable. These

two extended formulas are essentially equivalent.

Extended Plant

Plant

Controller

µσ(k)µT
ρ (k) u(k) y(k)

ỹ(k)ũ(k)

Figure 6.1: The extended plant under the new NCS formulation.
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6.2 LQG Problem Formulation

We now go on to formulate the main problem we will investigate in this Chapter.

Consider the NCS in which the plant is the discrete-time stochastic LTI system:

x(k + 1) = Ax(k) + Bu(k) + v(k) (6.5)

y(k) = Cx(k) + w(k), k = 0, 1, · · ·N − 1,

where x ∈ R
n, u ∈ R

m, y ∈ R
p, N ∈ Z

+, and the process noise v(·) and the

measurement noise w(·) are each Gaussian i.i.d.. Without loss of generality, we

assume that x(0), v(0), · · ·v(N − 1), w(0), · · ·w(N − 1) are independent random

variables with

v(·) ∼ N (0, G), w(·) ∼ N (0, Ip×p),

where Ip×p is the p × p identity matrix and G is a positive definite n × n matrix.

We will also assume that the plant’s initial condition x(0) is Gaussian with

x(0) ∼ N (x0, Σ0).

As before, suppose that the communication medium connecting the plant and

the controller provides wρ (1 ≤ wρ < m) input channels, and wσ (1 ≤ wσ < p)

output channels. Using the model presented in the previous section with the pair

of communication sequences ρ(·) and σ(·), we obtain the dynamics of the extended

plant:
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x(k + 1) = Ax(k) + BµT
ρ (k)ũ(k) + v(k), (6.6)

ỹ(k) = µσ(k)Cx(k) + µσ(k)w(k).

or, equivalently

x(k + 1) = Ax(k) + B̃(k)ũ(k) + v(k), (6.7)

ỹ(k) = C̃x(k) + w̃(k).

where B̃(k) = BµT
ρ (k), C̃ = µσ(k)C, and w̃(k) = µσ(k)w(k). The remainder of this

chapter will give solutions to the following problem:

Problem 6.1. Design an optimal controller for the extended plant (6.7), such that

the quadratic cost function

J = E

[

xT (N)Qx(N) +

N−1
∑

k=0

xT (k)Qx(k) + ũT (k)ũ(k)

]

(6.8)

is minimized.

Note that, if σ(·) is determined off-line, w̃(0), · · · w̃(N−1), x(0), v(0), · · ·v(N−1)

are independent random variables because w̃(k) is a sub-vector of w(k) for all k.

Moreover, because of the linearity of µσ(k), w̃(k) is also Gaussian with

w̃(k) ∼ N (0, Iwσ×wσ
), ∀k.

Thus Problem 6.1 is essentially a standard LQG problem for the stochastic discrete-

time extended plant (6.7).
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6.3 Communication Sequences that Preserve

Stabilizability and Detectability

Under periodic communication sequences, B̃(k) and C̃(k) are both periodic as well.

The extended plant (6.7) is thus a stochastic periodic linear time-varying (LTV)

system. We know [74] that, the stability of such a system under an LQG controller

depends on the stabilizability and detectability of its deterministic counterpart,

which, in our case, is the extended plant (6.4). Before going further, we review the

following relevant concepts for discrete-time LTV systems.

Definition 6.2. The system (6.4) is controllable on [k0, kf ] if, given any x0, there

exists an input ũ(·) that steers (6.4) from x(k0) = x0 to the origin at time kf . We

say that (6.4) is l-step controllable (or “controllable”) if, for any k, there exists a

positive integer l such that (6.4) is controllable on [k, k + l].

In discrete-time systems, the dual concept of controllability is reconstructibility.

Definition 6.3. The system (6.4) is reconstructible on [k0, kf ] if x(kf) can be

determined by the corresponding response ỹ(k) for k ∈ [k0, kf ]. We say that (6.4)

is l-step reconstructible (or “reconstructible”) if, for any k, there exists a positive

integer l such that (6.4) is reconstructible on [k, k + l].

Recall that, controllability and reconstructibility are weaker notions than reach-

ability and observability. A linear system is controllable if it is reachable, and is

reconstructible if it is observable (see, for example, [64]). In the case where A is

invertible, the controllability and reachability of the extended plant (6.4) are equiv-

alent, as are observability and reconstructibility. Another pair of dual concepts are

stablizability and detectablility.
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Definition 6.4. A discrete-time linear system is called stabilizable if its uncontrol-

lable subspace is asymptotically stable.

Definition 6.5. A discrete-time linear system is called detectable if its unrecon-

structible subspace is asymptotically stable.

6.3.1 Controllability and Reconstructibility

We have shown in Chapter 4 (for an equivalent extended plant expression (4.22))

that, if A is invertible, there always exist periodic communication sequences ρ(·) and

σ(·) that preserve the reachability and observability of the plant. We will show that

these results still hold for the controllability and reconstructibility of our modified

NCS model. Moreover, the requirement for A being invertible can be removed.

Case 1: “A” Invertible

Let us begin with the case where the matrix A in (6.4) is invertible. Now, con-

trollability and reachability are equivalent notions, so are observability and recon-

structibility. Let

R(0, kf) = [Akf−1BµT
ρ (0), Akf−2BµT

ρ (1), · · · , BµT
ρ (kf − 1)]. (6.9)

The system (6.4) is controllable on [0, kf ] iff rank(R(0, kf)) = n. Notice that, at

each step k, µT
ρ (k) has the effect of “selecting” wρ columns from the m columns of

the term Akf−k−1B on the RHS of (6.9).

We are now encountering the same situation in the proof of Theorem 4.3, where

we analyzed the reachability of an equivalent extended plant expression (4.22). We

can follow the same arguments given in Theorem 4.3 and Corollary 4.3 to arrive at

the following:
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Corollary 6.1. Let A be invertible and the pair (A, B) be controllable. For any

integer 1 ≤ wρ < m, there exist integers l, N > 0 and an N-periodic m-to-wρ

communication sequence ρ(·) such that the extended plant (6.4) is l-step controllable.

By switching from column manipulations to row manipulations, we obtain the

dual result for reconstructibility.

Corollary 6.2. Let A be invertible and the pair (A, C) be reconstructible. For

any integer 1 ≤ wσ < p, there exist integers l, N > 0 and an N-periodic p-to-wσ

communication sequence σ(·) such that the system (6.4) is l-step reconstructible.

Case 2: “A” Non-invertible

Suppose A contains q (1 ≤ q < n) zero eigen-values. Then, there exists an invertible

matrix L such that

L−1AL =







A1 0

0 A0






, L−1B =







B1

B0






,

where A1 is an (n− q)× (n− q) invertible matrix, A0 is a q × q square matrix with

only zero eigenvalues, B1 is a (n− q)×m matrix, and B0 is a q ×m matrix. Define

a new state variable

x′ = L−1x =







x1

x0






,

where x1 denotes the (n − q)-dimensional subspace corresponding to A1, and x0

is the q-dimensional subspace corresponding to A0. Then, under the similarity
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transformation L, the dynamics of the extended plant (6.4) can be rewritten as







x1(k + 1)

x0(k + 1)






=







A1 0

0 A0













x1(k)

x0(k)






+







B̃1(k)

B̃0(k)






ũ(k), (6.10)

where B̃0 , B0µT
ρ (k) and B̃1 , B1µT

ρ (k). In (6.10), the extended plant (6.4) has

been decomposed into two uncoupled sub-plants: the (n− p)-dimensional sub-plant

with dynamics (A1, B̃1(·)) and state variable x1, and the p-dimensional sub-plant

with dynamics (A0, B̃0(·)) and state variable x0. The following is a well-know fact

from linear system theory:

Fact 6.1. The controllability (or reachability, stabilizability) and reconstructibility

(or observability, detectability) of a linear (time-varying) system do not change un-

der similarity transformations (i.e., replacing the state variable x with x′ = L−1x,

where L is an invertible matrix).

It should therefore be clear that, in order to study the controllability and recon-

structibility of the extended plant (6.4), one only needs to study the controllability

and reconstructibility of (6.10). Suppose therefore, that the pair (A, B) is control-

lable; then, (A1, B1) must be controllable as well. Moreover, because A1 is invertible,

the results we derived for the A-invertible case imply that there exists an integer

k1 > 0 and a communication sequence ρ(k), for k = [0, k1], such that the pair

(A1, B̃1(·)) is controllable in [0, k1]. Hence, for any initial condition, there exist a

control sequence ũ(k), for k = [0, k1], that drives the state x1(k) to zero at k = k1.

We use that particular communication sequence ρ(k) and control sequence ũ(k),

for the time interval [0, k1]; after k1, we set ũ(k) to zero and let the communication

sequence ρ(·) be arbitrary. Then, there must exist kf > k1, such that x0(kf) = 0

because A0 has all zero eigen-values. Also, notice that x1(kf) = 0 as well because
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no control will be fed into the plant during [k1 + 1, kf ]. We have thus constructed

a control sequence ũ(k) and a communication sequence ρ(k) for the time interval

[0, kf ], such that the new state variable x′ is driven to zero at time kf regardless of

initial conditions. This is equivalent to stating that (6.10) is controllable in [0, kf ]

under the communication sequence ρ(k). The above discussion, combined with an

argument similar to that in Corollary 4.3, yields the following results, which do not

require the invertibility of A.

Theorem 6.1. Let the pair (A, B) be controllable. For any integer 1 ≤ wρ < m,

there exist integers l, N > 0 and an N-periodic m-to-wρ communication sequence

ρ(·) such that the extended plant (6.4)is l-step controllable.

Then the duality of controllability and reconstructibility gives the following

Theorem 6.2. Let the pair (A, C) be reconstructible. For any integer 1 ≤ wσ < p,

there exist integers l, N > 0 and an N-periodic p-to-wσ communication sequence

σ(·) such that the system (6.4) is l-step reconstructible.

6.3.2 Stabilizability and Detectability

We now generalize the results developed in the previous section, to cover the notion

of stabilizability and detectability. Suppose that the pair (A, B) is stabilizable; then,

there exist an invertible matrix Γ, which transforms the pair (A, B) into its Kalman

controllability canonical form:

Γ−1AΓ =







Ac A′

c

0 Ac̄






, Γ−1B =







Bc

0






,
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where (Ac, Bc) and (Ac̄, 0) corresponds to the controllable and uncontrollable sub-

spaces of the pair (A, B), respectively. We define the new state variable

x′′ = Γ−1x =







xc

xc̄






,

so that the dynamics of the extended plant (6.4) can be rewritten as







xc(k + 1)

xc̄(k + 1)






=







Ac A′

c

0 Ac̄













xc(k)

xc̄(k)






+







B̃c(k)

0






u(k), (6.11)

where B̃c(k) , Bcµ
T
ρ (k). Because (Ac, Bc) is controllable, we know from Theo-

rem 6.1 that there exists a periodic communication sequence ρ(·) such that the pair

(Ac, B̃c(·)) is also controllable. Moreover, the uncontrollable subsystem Ac̄ is stable

because we have assumed the pair (A, B) to be stabilizable. We can thus obtain the

following:

Theorem 6.3. Suppose the pair (A, B) is stabilizable. For any integer 1 ≤ wρ < m,

there exist an integer N > 0 and an N-periodic m-to-wρ communication sequence

ρ(·) such that the pair (A, B̃(·)) is stabilizable.

A dual theorem for detectability is the following:

Theorem 6.4. Suppose the pair (A, C) is detectable. For any integer 1 ≤ wσ < p,

there exist an integer N > 0 and an N-periodic p-to-wσ communication sequence

σ(·) such that the pair (A, C̃(·)) is detectable.
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6.4 The LQG Controller

With the above results in hand, we can now give a complete solution to Problem 6.1.

Note that the extended plant (6.5) is an LTV system. It is well known that (e.g.,

[75]) the LQG optimal controller for an LTV system, such as the extended plant

(6.7), consists of two parts (Fig. 6.2):

1. A Kalman filter that provides the optimal state estimate x̂(k) based on the

outputs ỹ(·).

2. The LQ gain L(k), obtained by solving an LQR (linear quadratic regulator)

problem for the the extended plant (6.7)’s deterministic counterpart, (6.4).

Kalman Filter

Plant

ũ(k)
−L(k)

µσ(k)µρ(k) u(k) y(k)

x̂(k) ỹ(k)

Figure 6.2: An NCS stabilized by the LQG controller.

The separation principle ensures that the two sub-problems can be solved inde-

pendently. The resulting optimal control law ũ∗ is:

ũ∗(k) = −L(k)x̂(k).

6.4.1 Kalman Filtering

The optimal estimator for the extended plant (6.7) is the discrete-time Kalman

filter, which can be described with the following recursive algorithm, starting with
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initial conditions x̂(0) = x̂0, Σ(0) = Σ0.

1. Time update

x̂(k−) = Ax̂(k − 1) + B̃(k − 1)ũ(k − 1), (6.12)

P (k) = AΣ(k − 1)AT + G, (6.13)

where x̂(k−) is the prediction of the state variable x(k) before the measure-

ment of ỹ(k), and P (k) is the variance of the prediction error:

x̂(k−) , E[x(k)|ỹ(0) · · · ỹ(k − 1)],

P (k) , E[(x(k) − x̂(k−))(x(k) − x̂(k−))T ].

2. Measurement update

H(k) = P (k)C̃T (k)(C̃(k)P (k)C̃T (k) + I)−1, (6.14)

x̂(k) = x̂(k−) + H(k)(ỹ(k) − C̃(k)x̂(k−)), (6.15)

Σ(k) = (I − H(k)C̃(k))P (k), (6.16)

where x̂(k)is the estimation of state variable x(k) conditioned on the mea-

surements ỹ(0) · · · ỹ(k), Σ(k) is the covariance of the estimation error:

x̂(k) , E[x(k)|ỹ(0) · · · ỹ(k)],

Σ(k) , E[(x(k) − x̂(k))(x(k) − x̂(k))T ].
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From (6.13), (6.16), and (6.14), it is easy to verify that the sequence P (·) satisfies

the time varying discrete time Riccati equation

P (k + 1) =AP (k)AT + G−

AP (k)C̃T (k)[I + C̃(k)P (k)C̃T (k)]−1C̃(k)P (k)AT . (6.17)

Let e(k) denote the “one-step prediction” error, e(k) = x(k) − x̂(k−). We have

e(k + 1) = (A − Γ(k)C̃(k))e(k) + v(k) − Γ(k)w(k),

and

E[e(k + 1)] = (A − Γ(k)C̃(k))E[e(k)], (6.18)

where Γ(k) = AH(k) is termed the “Kalman gain”. The error equation (6.18) is

stable if A − Γ(k)C̃(k) is stable.

6.4.2 LQ Regulator

The LQ optimal gain L(k) is obtained by solving an LQR problem for the extended

plant (6.7)’s deterministic counterpart, (6.4). The gain matrix L(k) satisfies the

equation:

L(k) = (B̃T K(k + 1)B̃(k) + I)−1B̃(k)T K(k + 1)A, (6.19)

and the symmetric positive semidefinite matrix K(·) satisfies the backwards Riccati

equation
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K(N) =Q, (6.20)

K(k) =AT K(k + 1)A + Q−

AT K(k + 1)B̃(k)(B̃T (k)K(k + 1)B̃(k) + I)−1B̃T (k)K(k + 1)A. (6.21)

With state feedback, the closed loop dynamics of the system (6.4) under the LQR

optimal gain L(k) are:

x(k + 1) = (A − B̃(k)L(k))x(k). (6.22)

The closed loop system is stable if (A − B̃(k)L(k)) is stable.

6.4.3 Periodic Riccati Equations

Because of the periodicity imposed by the communication sequences ρ(·) and σ(·),

B̃(·), C̃(·) are periodic as well; hence, the Riccati equations, (6.17) and (6.21),

both become Discrete-time Periodic Riccati Equations (DPREs). DPREs have been

extensively studied in the 80s and early 90s (see [74, 73, 76] and the references

therein). We go on to review some fundamental results from [74].

Definition 6.6. [74] A Discrete-time Periodic Riccati Equation (DPRE) is a dif-

ference equation of the form

P(k + 1) = A(k)P(k)AT (k) + B(k)B(k)T− (6.23)

A(k)P(k)CT (k)[I + C(k)P(k)CT (k)]−1C(k)P(k)AT (k),

where A(k) : Z 7→ R
n×n, B(k) : Z 7→ R

n×m, C(k) : Z 7→ R
p×n and A(·), B(·), and
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C(·) are T -periodic.

Theorem 6.5. ([74], Theorem 5) Consider the Kalman gain,

K(k) = A(k)P(k)CT (k)(C(k)P(k)CT (k) + I)−1,

associated with any symmetric positive semidefinite solution P(·) of (6.23). If (A(·),

B(·)) is stabilizable and (A(·), C(·)) detectable, then the corresponding closed-loop

matrix Â(·) = A(·) −K(·)C(·) is exponentially stable.

In the last theorem, the exponential stability of a time varying matrix A(·) is to

be understood as the exponential stability of the associated LTV system with the

dynamics x(k + 1) = A(k)x(k).

Theorem 6.6. ([74], Theorem 6) There exists a unique Symmetric Periodic Positive

Semidefinite (SPPS) solution P̄(·) of the DPRE (6.17) and ˆ̄A(·) = A(·) − K̄(·)C(·)

is asymptotically stable iff (A(·),B(·)) is stabilizable and (A(·), C(·)) is detectable,

where K̄(·) is the Kalman gain associated with P̄(·).

Theorem 6.7. ([74], Theorem 7) Suppose that (A(·), B(·)) is stabilizable and (A(·),

C(·)) detectable. Then, every symmetric and positive semidefinite solution of the

DPRE converges to the unique SPPS solution.

The above results give a necessary and sufficient condition (Theorem 6.6) for the

existence and uniqueness of an SPPS solution as well a stability condition (Theorem

6.5) for the closed-loop system. An asymptotic convergence theorem (Theorem 6.7)

is provided to guarantees the convergence of a solution to the unique SPPS solution.

It is also shown that the closed-loop system is asymptotically stable under the SPPS

solution.
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6.4.4 Convergence of the LQG Controller

Theorems 6.3, 6.4 combined with the facts we reviewed in Section 6.4.3 and applied

to the DPREs (6.17) and (6.21), imply the following:

Theorem 6.8. Suppose that, for the extended plant (6.7),

1. the communication sequence σ(·) is N-periodic, and the pair (A, C̃(·)) is de-

tectable;

2. the pair (A, g) is stabilizable, where G = ggT is the variance of the noise term

v(k) in (6.5);

then, starting from any positive definite initial conditions, as k → ∞, the Riccati

equation associated with the Kalman filter (6.17) converges to a unique N-periodic

solution Σ̄(k). Moreover, the Kalman filter’s one-step prediction error dynamics

(6.18) are exponentially stable.

Theorem 6.9. Suppose that, for the extended plant (6.7),

1. the communication sequence ρ(·) is N-periodic, and the pair (A, B̃(·)) is sta-

bilizable;

2. the pair (A, qT ) is detectable, where Q = qqT is the weight matrix in the

quadratic cost function (6.8);

Then, starting from any positive definite initial conditions, as k → ∞, the Riccati

equation associated with the LQ regulator (6.21) converges to a unique N-periodic

solution K̄(k). Moreover, the closed-loop dynamics (6.22) under the LQ regulator

are exponentially stable.
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6.4.5 Remark

The matrices B̃(k) and C̃(k) are N-periodic under N-periodic communication se-

quences ρ(·) and σ(·). Hence, if the extended plant (6.7) is stabilizable and de-

tectable, the optimal feedback gain L(k) in (6.19) and the optimal observer gain

H(k) in (6.14) will also converge to unique periodic solutions, for all initial condi-

tions. One can therefore construct a sub-optimal LQG controller by implementing

the two periodic solutions. By virtue of Theorem 6.6, we know that both the Kalman

filter’s one-step prediction error dynamics (6.18) and the closed-loop dynamics (6.22)

are asymptotically stable under this sub-optimal controller.

6.5 An Example

We simulated a 4-th order unstable stochastic LTI plant with 2 inputs and 2 outputs.

The dynamics of the plant were of the form (6.5), with

A =



















1 1/5 0 0

0 11/4 0 1/5

1 1/5 1/3 3/4

0 −1 0 1/4



















, B =



















0 0

1 0

0 0

0 1



















,

C =







1 1 0 0

0 0 1 0






.

The process noise v(·) and the measurement noise w(·) satisfied v(·) ∼ N (0, 4I4×4)

and w(·) ∼ N (0, I2×2). The plant was controlled remotely via a shared communica-

tion medium which had only one input and one output channel (i.e., wρ = wσ = 1).

Using the algorithm introduced in Section 4.2.1, we found that the extended plant
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is stabilizable and detectable under the 2-periodic input and output communication

sequences

{σ(0), σ(1), · · · } = {[0, 1]T , [1, 0]T , · · · }, and

{ρ(0), ρ(1), · · · } = {[0, 1]T , [1, 0]T , · · · }.

We formulated the LQG problem described in Section 6.4, where Q = 25I4×4

and the initial conditions were x(0) = [100, 50, 7, 6]T , x̂(0) = [1, 1, 3, 4]T , and Σ(0) =

4I4×4. The simulation results illustrate what was developed earlier in this chapter:

the solution of the periodic Riccati equation (6.17), which is associated with the

Kalman filter error covariance, converged to a 2-periodic SPPS solution P̄ (·) in

5 steps; the solution of the periodic backwards Riccati equation (6.21), which is

associated with the LQ optimal gain, converged to a 2-periodic SPPS solution K̄(·)

in 15 steps. The evolutions of tr(P (k)) and tr(K(k)) are shown in Fig. 6.3. Finally,

the SPPS solutions to the Riccati equations (6.17) and (6.21) were

P̄ (2i) =



















8.92 1.15 5.00 −0.40

1.15 267.59 −21.96 −105.34

5.00 −21.96 14.12 10.06

−0.40 −105.34 10.06 46.61



















,

P̄ (2i + 1) =



















9.53 −17.70 9.01 7.29

−17.70 71.87 −29.46 −27.60

9.01 −29.46 23.52 13.57

7.29 −27.60 13.57 15.79



















,
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K̄(2i) =



















456.09 62.55 12.61 34.65

62.55 79.70 0.33 −7.34

12.61 0.33 28.10 7.54

34.65 −7.34 7.54 45.73



















,

K̄(2i + 1) =



















496.33 284.55 11.30 39.56

284.55 715.87 3.60 53.81

11.30 3.60 27.98 6.83

39.56 53.81 6.83 43.83



















, for i ∈ Z
+.

Using the solutions for P̄ (·) and K̄(·), the Kalman filter and LQ regulator were

constructed based on the formulas in Sections 6.4.1, 6.4.2. The state evolution of

the closed-loop system is shown in Fig. 6.4(a). The evolution of the Kalman filter’s

one-step prediction error, e(k), is shown in Fig. 6.4(b).
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Figure 6.3: Evolution of tr(P (k)) and tr(K(k)). The P (k) satisfy the Riccati equa-
tion (6.17), while K(k) satisfy the backwards Riccati equation (6.21). Both P (k)
and K(k) converge to SPPS solutions.
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(b) Evolutions of Kalman filter’s one-step prediction error e(k) = x(k)−x̂(k−).

Figure 6.4: Simulation Results: Stabilization of an NCS under the LQG controller.
The plant was a stochastic LTI system with 2 inputs and 2 outputs. The commu-
nication medium provided 1 input channel and 1 output channel.
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Chapter 7

NCS Experiments

In this chapter, we describe two NCS experiments which were designed to illustrate

the design techniques introduced in this thesis. The first experiment exercised our

dynamic medium access scheduling policies with a constant feedback controller; the

second experiment used a static medium access strategy and an LQG controller.

7.1 Experiment Platform

We begin with a general description of the hardware and software configurations of

our experiment platform. This platform provided a friendly NCS design and rapid

prototyping interface, and can be used for implementing various medium access

scheduling strategies and controller design methods that are proposed in this thesis.

7.1.1 Hardware Configuration

The hardware configuration of the experiment platform is depicted in Fig. 7.1. It

consisted of two personal computers, henceforth referred to as PC1 and PC2, which

were connected to each other via a RS232 serial communication channel. The two
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PCs were equipped with Intel Pentium-4 CPUs running at 1GHz, and had 1G byte

RAM each. PC1 was also equipped with a data acquisition (DAQ) card which could

be used to connect the sensors and actuators of a physical plant to the computer.

The DAQ card used in the experiment platform (a MultiQ-PCI by Quanser Consult-

Figure 7.1: Hardware configuration of the NCS experiment platform.

ing Inc.) provided sixteen 14-bit A/D input channels and four D/A output channels

with a conversion time of 17µs. It also had six 24-bit encoder input and forty-eight

digital I/O channels. The DAQ card could communicate with its host PC via the

PCI interface running at 33MHz.

In an NCS experiment involving a physical plant, the outputs of the plant’s

sensors were first sampled by PC1 via the DAQ card. Then, following a user-

specified medium access scheduling strategy, those outputs were sent to PC2, over

a RS232 serial channel. Using the output information it receives from PC1, the

controller running in PC2 calculated the control signals needed by the plant; then,
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those control signals were sent to PC1, over the RS232 channel, again following a

user-specified medium access scheduling strategy. The control signals were finally

applied to the appropriate actuator of the plant via the DAQ card.

7.1.2 Software Configuration

RTLinux

The operating systems used in both PC1 and PC2 were Real-Time Linux (RTLinux).

It works by treating the “usual” Linux kernel as a task executing under a small real-

time OS kernel. In RTLinux, all interrupts are initially handled by the real-time

kernel and passed to the Linux task only when there are no real-time tasks to run.

Thus, Linux is the idle task for the real-time kernel, executing only when there are

no real-time tasks to run. The Linux task can never block interrupts or prevent

itself from being preempted. The technical key to all this is a software emulation

of interrupt control hardware. When Linux tells the hardware to disable interrupts,

the real-time kernel intercepts the request, records it, and returns to Linux. Linux

is never allowed to really disable hardware interrupts. No matter what state Linux

is in, it cannot add latency to the real-time system interrupt response time [1]. A

diagram that illustrates the block level design of RTLinux is shown in Fig. 7.2. The

kernel version of the RTLinux OS that was used in the experiment platform we

developed was Linux2.2.14-rtl2.3.

SimuLinux-RT

The controller and medium access scheduler design interface used in the experiment

platform was the SimuLinux-RT environment, developed by Quanser Consulting

Inc. and Mathworks Inc.. SimuLinux-RT is a hard real-time control system rapid-
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Figure 7.2: Flow of data and controls in RTLinux [1].

prototyping environment that runs “on top of” RTLinux, Matlab-Simulink, and

Realtime-Workshop.

As illustrated in Fig. 7.3, when designing a control system in SimuLinux-RT, the

system is first modeled in Simulink. After the modeling is completed, the Realtime-

Workshop is used to first generate the necessary C codes based on the Simulink

model, and then compile that codes into executable binary programs that runs in

RTLinux [2]. The SimuLinux-RT environment allows the user to examine real-time

data in virtual scopes and to record the time histories of model variables. Moreover,

some design parameters, such as feedback gains and constants, can be adjusted

on-line in the Simulink model without interrupting the real-time process.
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Figure 7.3: The SimuLinux-RT real-time control system prototyping environment
[2].

7.2 Experiment 1: Stabilization under Dynamic

Medium Access Scheduling

Using the infrastructure described in Section 7.1, we first built an NCS in which

the plant consisted of two rotary inverted pendulums. The pendulums shared a

RS232 communication medium to communicate with a remote feedback controller.

The goal of this experiment was to stabilize the two pendulums at their unstable

equilibria using the dynamic medium access policies and controller design methods

discussed in Chapter 5. The experiment setup is shown in Fig. 7.4.

As shown in Fig. 7.5, the actuator in each inverted pendulum was a servo motor
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Figure 7.4: Experiment 1: Stabilizing two rotary inverted pendulums at their un-
stable equilibria.

which drove the pendulum rod via a set of gears and a rotary arm. The input

voltages applied to the two servo motors were denoted u1 and u2. Each inverted

pendulum was equipped with two sensors which measured the angles of the rotary

arm θ and the pendulum rod α, with α = 0 corresponding to the upright position.

Fig. 7.6 depicts the NCS configuration of this experiment: the two inverted pen-

dulums shared a RS232 communication medium to communicate with the controller

running in PC2. The medium access constraints were such that, at any one time,

only one of the two actuators was able to receive control updates from the controller;

furthermore, only one of the two pendulums could transmit their states, x1 or x2

to the controller.

As will be shown shortly, the dynamics of each rotary inverted pendulum can be
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(a) Assembly schematic. (b) Photo.

Figure 7.5: Configuration of a rotary inverted pendulum: a pendulum rod connects
with a rotary arm via a hinge, and the rotary arm is driven by a servo motor. Two
encoders output the angles of the rotary arm and the pendulum rod.

described by a 4-dimensional state-space model, with states (θ, α, θ̇, α̇). However,

the encoders of each inverted pendulum only provided the angles θ and α. In order

to retrieve θ̇ and α̇ from θ and α, we implemented a series of software differentiators

in the (“state reconstruction” block of Fig. 7.6) to reconstruct the full states x1 and

x2 of the two pendulums.

7.2.1 Inverted Pendulum Model

Fig. 7.7 depicts a simplified model of the rotary inverted pendulum. The pendulum

rod is considered a point mass m, the length of the pendulum is denoted by l, and

the radius of the rotary arm is denoted by r. The moment of inertia of the rotary
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Figure 7.6: NCS configuration of Experiment 1: the plant consisted of two uncoupled
rotary inverted pendulums. The two inverted pendulums communicated with a
remote controller via a shared RS232 medium.

arm, gears, and motor about the rotary axis of the arm are represented by a single

rotary disc with an equivalent moment of inertia J . The rotation of the rotary

arm is driven by a geared servo motor (Fig. 7.5), which provides the torque T . It

can be shown (see Appendix B) that the linearized dynamics of the rotary inverted

pendulum in Fig. 7.7 can be described by the following LTI system:



















θ̇

α̇

θ̈

α̈



















=



















0 0 1 0

0 0 0 1

0 −mrg

J
−
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u (7.1)
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Figure 7.7: A simplified model of rotary inverted pendulum.

Parameter Symbol Rod 1 Rod 2 Units
Pendulum Length lp = 2 · l 0.399 0.267 m
Pendulum Weight m 0.1529 0.1064 kg

Table 7.1: Parameters of the two pendulum rods.

The parameters of the servo plant and the two pendulum rods are given in

Table 7.2 and Table 7.1. Using these parameters, we obtained the dynamics of the

two rotary inverted pendulums:

Parameter Symbol Value Units
Motor Torque Constant Km 0.00767 Nm/amp
Motor Back EMF Constant Kb 0.00767 V/(rad/sec)
Armature Resistance Rm 2.6 Ω
Arm Length r 0.210 m
Internal Gear Ratio Kgi 14:1 -
External Gear Ratio Kge 5:1 -
Gear Ratio Kg = Kgi · Kge 70:1 -
Servo Plant Equivalent Inertia J 0.004 kgm2

Table 7.2: Electro-mechanical parameters of the servo motor the gear set, and the
rotary arm.
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Pendulum 1 (longer rod):

ẋ1 = A1x1 + B1u1

=



















0 0 1 0

0 0 0 1

0 −65.4 −27.6 0

0 141.1 34.8 0



















x1 +



















0

0

51.5

−64.8



















u1

Pendulum 2 (shorter rod):

ẋ2 = A2x2 + B2u2

=



















0 0 1 0

0 0 0 1

0 −54.6 −27.6 0

0 159.3 43.5 0



















x2 +



















0

0

51.5

−81.0



















u2

Hence, the dynamics of the plant of the NCS was described by the LTI system:

ẋ =







A1

A2






x +







B1

B2






u,

where x =







x1

x2






, and u =







u1

u2






.
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7.2.2 NCS Design

We let the controller for the pair of pendulums be made of two uncoupled constant

feedback gains

ū =







K1

K2






x̄.

Using our results from Chapter 5, the closed-loop NCS can be modeled as a switched

system that switches between four possible dynamics:

ẋ = As(t)x; As(t) ∈ {Aij : i = 1, 2; j = 1, 2}. (7.2)

where

A12 = A21 =







A1

A2






,

A11 =







A1 + B1K1

A






, A22 =







A2

A2 + B2K2






.

However, observe that one should never switch to the A12 and A21 dynamics because,

in these two cases, the feedback loops of both pendulums are open. Since the open-

loop dynamics, A1 and A2, are both unstable, it is always better for one feedback

loop to be closed. Thus our switching policy only allowed (7.2) to switch between

A11 and A22. Note that, by ruling out A12 and A21, the input communication

sequence (see definition in Chapter 5) ρ(t) and the output communication sequence

σ(t) will be identical at all times, i.e.,

ρ(t) = σ(t), ∀t.

To simplify the notation, we define A1 , A11 and A1 , A22. Now the closed-loop
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NCS is equivalent to

ẋ = As(t)x; As(t) ∈ {Ai : i = 1, 2}. (7.3)

We chose α1 = α2 = 0.5 and denoted the convex combination of the two dynamics

by

A = α1A1 + α2A2 =







A1 + 0.5B1K1

A2 + 0.5B2K2






.

Based on the controller design method from Chapter 5, we obtained the following

feedback gains,

K1 = [8.94, 66.83, 6.27, 9.64],

K2 = [8.94, 56.51, 5.94, 6.98],

which were designed such that the eigenvalues of the convex combination A were

placed at [−115.53, − 3.88 ± 2.78i, − 4.3, − 144.88, − 4.08 ± 3.03i, − 4.52].

In this experiment, we studied the stabilization of the system under both the

WFD and the GD rules. For the two-pendulum system, the WFD rule was:

Weighted Fastest Decay (WFD):

σ̄(t) = ρ̄(t) = arg min
i=1,2

wix
T (t)[AT

i P + PAi]x(t), ∀t (7.4)

In the last expression, x(t) = [x1(t), x2(t)]
T , wi > 0 is the medium access priority

of pendulum i, the “bar” notation denotes the scalar form of a communication

sequence (see Definition 5.1). The matrix P is obtained by solving the Lyapunov

equation

AT P + PA = −I.
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The resulting P was the block diagonal matrix P =







P1

P2






with

P1 =



















2.19 4.34 0.60 0.57

4.34 30.71 3.68 3.60

0.60 3.68 0.50 0.48

0.57 3.60 0.48 0.47



















,

P2 =



















2.17 3.34 0.53 0.33

3.34 21.71 2.75 1.80

0.53 2.75 0.42 0.27

0.33 1.80 0.27 0.18



















.

The GD scheduling rule for this NCS can be expressed as follows:

Guaranteed Dwell-time (GD):

Let ǫ0 be a number satisfying 0 < ǫ0 < ǫ∗, where

ǫ∗ ,
λmin(Q)

2 · αmax

=
1

2 · 0.5
= 1. (7.5)

1. Denote the current time by t0, choose σ(t0) and ρ̄(t0) according to

σ̄(t0) = ρ̄(t0) = arg min
i=1,2

xT (t0)[A
T
i P + PAi]x(t0). (7.6)

2. Let σ̄(t) = σ̄(t0) and ρ̄(t) = ρ̄(t0) for all t ∈ [t0, t1), where t1 is the next switch

time determined by

t1 = inf
t>t0

xT (t)(AT
s(t0)P + PAs(t0))x(t) ≥ −ǫ0x

T (t)x(t). (7.7)
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3. Repeat from step 1 for t1.

7.2.3 Simulink Implementation

Figure 7.8: Simulink implementation of Experiment 1.

The Simulink implementation of this experiment is shown in Fig. 7.8. At PC1,

the outputs θ, α of each pendulum were first measured by the DAQ card, then

angular velocities, θ̇ and α̇, are obtained by differentiating the angles in software.

The transfer functions of the differentiators were chosen as s/(0.05s+1). The WFD

and GD access scheduling rules were implemented in the scheduler block, which

generated the communication sequences σ and ρ based on the feedback from the

states, x1 and x2. According to the communication sequence σ(t), one of the state

variables, x1 and x2, was selected and sent to the controller via the RS232 channel,

as was the value of σ(t) itself. At PC2, the plant’s outputs and the communication

sequence were first sent to the “select x” block, which calculated x̄1 and x̄2 based

on the communication sequence and the states x1 and x2. The control signals ū1
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and ū2 were then calculated by multiplying x̄1 and x̄2 with the feedback gains K1

and K2. Depending on the value of the communication sequence, one of the control

signals, ū1 and ū2 , was selected and sent to PC1 via the RS232 channel according

to the communication sequence. In order to account for the time delays in the

RS232 channel, we also transmitted the communication sequence ρ back from the

controller (PC2) to the plant (PC1) via the RS232 channel. By doing so, the control

signal and the input communication sequence could be synchronized.

Figure 7.9: The WFD rule switching logic.

The switching logic of the scheduler under the WFD rule is shown in Fig. 7.9,

in which, the output of the scheduler is a binary valued signal with “1” meaning

σ̄(t) = ρ̄(t) = 1, i.e., pendulum 1 should access the medium, and “0” meaning

σ̄(t) = ρ̄(t) = 2, i.e., pendulum 2 should access the medium. Also in this subsystem,

V1 = xT (t)(AT
1 P + PA1)x(t)

V2 = xT (t)(AT
2 P + PA2)x(t)

The switching logic of the scheduler under the GD rule is implemented via a D

flip-flop with asynchronous clear(CLR). The detailed diagram of the GD scheduling
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logic is shown in Fig. 7.10 in which

V1 = xT (t)(AT
1 P + PA1)x(t)

V2 = xT (t)(AT
2 P + PA2)x(t)

e = −ǫ0x
T (t)x(t)

Figure 7.10: The GD rule switching logic.

7.2.4 Experiment Results

Each run of the experiment was performed as follows: i) start the real time code in

PC1 and PC2, ii) hold the two pendulum rods at their up-right position, iii) release

the two pendulum rods to let the controller “take over”. After a transient period

of 5 second, states of the two pendulums and the communication sequence began

to be recorded. The system sampling rate was set at 0.005 sec, and the experiment

was stopped when 5000 data points (corresponding to 25 sec) were collected.

WFD Rule

We first used the WFD medium access scheduling rule and experimented with three

different choices of medium access priorities (w1, w2). The experiment data plotted
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in Fig. 7.11 and Fig. 7.12 illustrate the evolution of the states and the communication

sequence when the access priorities were chosen as w1 = 0.1 and w2 = 0.9; in

Fig. 7.13 and Fig. 7.14, the priorities were chosen as w1 = w2 = 0.5; in Fig. 7.15 and

Fig. 7.16, we chose w1 = 0.9 w2 = 0.1. Each curve was plotted based on the data

collected in a 5 sec time window, corresponding to 1000 data points. From these

data, it is clear that, i) the two inverted pendulums were effectively stabilized by the

controller and the accompanying WFD switching rule, and ii) the medium access

percentage of each pendulum could be adjusted by changing their medium access

priorities. Table 7.3 gives the average medium access percentages under different

choices of access priorities; each number was calculated based on the data collected

from three runs of the experiment (5000 data points in each run).

w1 = 0.1 w1 = 0.5 w1 = 0.9
w2 = 0.9 w2 = 0.5 w2 = 0.1

Medium access percentage
of Pendulum 1 28.28% 48.64% 64.89%
Medium access percentage
of Pendulum 2 71.72% 51.36% 35.11%

Table 7.3: Average medium access percentage of two pendulums under the WFD
rule. The average shown are taken over time and over three runs of the experiments
(5000 data points in each run).

GD Rule

We then used the GD medium access scheduling rule while choosing ǫ0 = 0.05. The

plots in Fig. 7.17 and Fig. 7.18 illustrate the state evolution and the communication

sequence generated (in a 5 sec time window, 1000 data points) under the GD rule.

The communication sequence in Fig. 7.18 is to be compared with those in the WFD

rule cases, where the σ(t) switches much more frequently.

Table 7.4 compares the average dwell-time of the GD rule and the WFD rule.
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Figure 7.11: Experiment data: Evolution of the states under the WFD rule. The
access priorities were chosen as w1 = 0.1, w2 = 0.9.
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Figure 7.12: Experiment data: Evolution of the communication sequence (ρ̄(t) =
σ̄(t)) under the WFD rule. The access priorities were chosen as w1 = 0.1, w2 = 0.9.
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Figure 7.13: Experiment data: Evolution of the states under the WFD rule. The
access priorities were chosen as w1 = 0.5, w2 = 0.5.
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Figure 7.14: Experiment data: Evolution of the communication sequence (ρ̄(t) =
σ̄(t)) under the WFD rule. The access priorities were chosen as w1 = 0.5, w2 = 0.5.
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Figure 7.15: Experiment data: Evolution of the states under the WFD rule. The
access priorities were chosen as w1 = 0.9, w2 = 0.1.
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Figure 7.16: Experiment data: Evolution of the communication sequence (ρ̄(t) =
σ̄(t)) under the WFD rule. The access priorities were chosen as w1 = 0.9, w2 = 0.1.
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Figure 7.17: Experiment data: Evolution of the states under the GD rule with
ǫ0 = 0.05.
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Figure 7.18: Experiment data: Evolution of the communication sequence (ρ̄(t) =
σ̄(t)) under the GD rule with ǫ0 = 0.05.
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Each number in this table was calculated based on the data collected from three

runs of the experiment (5000 data points in each run). It can be seen that, compared

with the WFD rule, the GD rule effectively increased the average dwell-time of the

NCS.

Average dwell-time (s)
WFD (w1 = w2 = 0.5) 0.047

GD (ǫ0 = 0.05) 0.115

Table 7.4: Average dwell-times under the WFD rule and GD rule. The average
shown are taken over time and over three runs of the experiments (5000 data points
in each run).

7.3 Experiment 2: LQG Control under

Static Access Scheduling

In a second experiment, we set out to stabilize an MIMO plant via a shared RS232

channel by using static medium access scheduling and the LQG controller presented

in Chapter 6. The NCS configuration of this experiment is shown in Fig. 7.19, where

the plant was a discrete time 8-th order LTI system with 4 inputs, 4 outputs, and

subject to additive Gaussian noise. The medium access constraints in this NCS were

designed such that, at any one time, only one of the inputs and one of the outputs

were allowed to access the shared communication medium. This time, the dynamics

of the plant were simulated in PC1, and the LQG controller was implemented in PC2.

The controller consisted of a periodic Kalman filter and a periodic LQ regulator.

In order to synchronize the dynamics of the plant and the controller, a global clock

was generated at PC1 and also sent to PC2 via the RS232 channel.
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Figure 7.19: NCS configuration of Experiment 2: the plant is a simulated LTI system
with 4 inputs and 4 outputs; the plant communicates with an LQG controller via
the shared RS232 communication channel. A global clock is used to synchronize the
dynamics of the plant and the controller.

The LTI plant simulated in PC1 was

x(k + 1) = Ax(k) + Bu(k) + v(k),

y(k) = Cx(k) + w(k),
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The random disturbances, v(·) and w(·), are designed to be Gaussian i.i.d., with

v(·) ∼ N (0, I8×8) and w(·) ∼ N (0, I4×4). The updates of the plant and controller

were synchronized by the global clock signal whose frequency was set at 10 Hz.

7.3.1 NCS Design

We designed an LQG controller to minimize the quadratic cost function:

J = E[xT (N)Qx(N) +

N−1
∑

k=0

xT (k)Qx(k) + ũT (k)ũ(k)] (7.8)
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with Q = 4I8×8.

The plant dynamics (A, B, C) were chosen such that the obvious “round-robin”

communication sequences ρ̄(·) = 1, 2, 3, 4, 1, 2, 3, 4 · · · and σ̄(·) = 1, 2, 3, 4, 1, 2, 3, 4 · · ·

would not preserve the stabilizability and detectability of the plant. Based on the

algorithms introduced in Section 4.2.1, the input and output communication se-

quences were chosen as the 5-periodic sequences

ρ̄(·) = σ̄(·) = 2, 4, 3, 1, 1, 2, 4, 3, 1, 1, · · · (7.9)

At each time k, the controller performs the following LQG control algorithm:

1. Kalman filter time update:

x̂(k−) = Ax̂(k − 1) + B̃(k − 1)ũ(k − 1) (7.10)

2. Kalman filter measurement update:

x̂(k) = x̂(k−) + H(k)(ỹ(k) − C̃(k)x̂(k−)) (7.11)

3. Feedback computation:

ũ(k) = −L(k)x(k) (7.12)

The periodic time-varying gains H(k)’s and L(k)’s were computed off-line by

solving their associated Riccati equations (see Section 6.4). Because the extended

plant was both stabilizable and detectable under the periodic communication se-

quences (7.9), H(k) and L(k) each converged to a steady-state solution with a
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period of 5 steps. The periodic gains we calculated were, for i ∈ Z:

H(5i) = [0.2578, 0.2604, 0.0091,−0.0940, 0.1872,−0.0187,−0.1794,−0.2735]T ,

H(5i + 1) = [−0.0879, 0.2756,−0.1118,−0.1894, 0.3805, 0.2214,−0.1695, 0.2031]T ,

H(5i + 2) = [−0.2439, 0.0842, 0.0380, 0.0512,−0.1018,−0.0750,−0.0671, 0.3014]T ,

H(5i + 3) = [−0.0198,−0.2497,−0.0027,−0.0168, 0.0343, 0.0078, 0.3803, 0.0770]T ,

H(5i + 4) = [0.2418, 0.0791,−0.0754,−0.1145, 0.2266, 0.1509,−0.0497,−0.1898]T .

L(5i) = [3.6090, 1.4186,−0.1438,−0.0271,−0.0184,−0.1428, 0.6527, 1.6510],

L(5i + 1) = [0.5889, 3.1470,−0.0080,−0.0689,−0.0682,−0.0070, 1.5464, 0.2793],

L(5i + 2) = [−0.0675, 0.7660, 0.0221, 0.0109, 0.0099, 0.0232, 0.8818,−0.0183],

L(5i + 3) = [−3.8455,−4.7714, 1.8934,−0.1303,−0.1064, 1.8501,−1.9300,−1.7821],

L(5i + 4) = [2.6672, 2.8737,−0.0655, 0.0110, 0.0124,−0.0659, 1.1564, 1.4160].

7.3.2 Simulink Implementation

The Simulink implementation of our second experiment is illustrated in Fig. 7.20. In

order to synchronize the controller and the plant, a global clock signal ,“CLK”, was

generated at the plant side and was sent to the controller over the communication

medium. At the plant side, “CLK” triggered the updates of the output communica-

tion sequence σ(·) and the LTI plant. At the controller side, “CLK” triggered the

updates of the Kalman Filter, LQ regulator, and the input communication sequence

ρ(·). Based on the output communication sequence σ generated at PC1, at each
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Figure 7.20: Simulink implementation of Experiment 2.

time step, one of the 4 outputs of the plant was selected (by the “select” block) and

sent to the controller. The output communication sequence was also sent to the

controller from the PC1 via the RS232 channel. From the output ỹ and the output

communication sequence, the LQG controller calculated the optimal control ũ and

transmitted it to the plant. The input communication sequence ρ was generated at

the controller side and was used to calculate the LQ gains. As Experiment 1, we ac-

counted for the transmission delays in the RS232 channel by sending ρ back to PC1

in order to synchronize the control signal and the input communication sequence.

The sampling periods of the real-time code running in PC1 and PC2 were both set

to 0.005 second; the period of the global update clock, “CLK”, was set to 0.1 second.

The reason for doing so was to account for the delays caused by the RS232 channel

and the computation times needed by the controller and the simulated plant (we

measured that, the total delays was up to 8 times of the sampling period of the

real-time code).
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7.3.3 Experiment Results

We set the initial condition of the plant at x(0) = [15, 50, 7, 6, 100, 20, 4, 3]T , and

the initial condition of the Kalman filter at x̂(0) = [1, 1, 3, 4, 1, 1, 0, 0]T . Fig. 7.21(a)

shows the state evolution of the NCS under the selected communication sequences

and the LQG controller. It can be seen that, after an initial transient process

of about 15 steps (1.5 sec), the state of the plant was effectively attenuated, and

remained stable afterwards. The evolution of the Kalman filter estimation error is

shown in Fig. 7.21(b).
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(b) Evolution of the Kalman filter’s one-step prediction error e(k) =
x(k) − x̂(k−).

Figure 7.21: Experiment data: Stabilization of an NCS using LQG controller. The
plant was an LTI system with 2 inputs and 2 outputs. The communication medium
provided 1 input channel and 1 output channel.
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Chapter 8

Conclusions and Future Work

This thesis studied networked control systems (NCSs) in which the sensors and

actuators of an MIMO plant communicate with a feedback controller via a network

or other shared communication medium. The medium can only provide a limited

number of simultaneous access channels, so that the plant’s sensors and actuators

must be scheduled to gain access to the shared medium. The fundamental point

made in this thesis is that, in an NCS, the sensors and actuators that are not

actively accessing the communication medium should be ignored by the controller

and the plant. Doing so has the effect of greatly simplifying matters by decoupling

the selection of communication policies from that of controllers.

In this spirit, an MIMO plant with medium access constraints at its inputs and

outputs can be effectively modeled by an “extended plant” which is constructed

by cascading the plant dynamics with a pair of time-varying matrix operators that

encode the medium access policy governing controller-plant communication. The

extended plant has fewer effective input and output ports than the original plant,

and describes the “image” of the original plant viewed over the communication

medium. Moreover, the state of the extended plant coincides with that of the plant,
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hence the problem of stabilizing an MIMO plant under medium access constraints

can be solved by designing a feedback controller that stabilizes the extended plant.

Our results show that:

• If the plant is a continuous-time LTI system, the controllability and observ-

ability of the plant can be preserved if the communication sequences grant

each sensor and actuator some finite amount of medium access periodically;

• If the plant is a reversible (A invertible) discrete-time LTI system, there always

exist periodic communication sequences that preserve the reachability and

observability of the plant;

• If the plant is an irreversible (A not invertible) discrete-time LTI system, there

always exist periodic communication sequences that preserve the controllabil-

ity (or stabilizability) and reconstructibility (or detectability) of the plant.

Such communication sequences can be obtained via the algorithm presented in Sec-

tion 4.2.1, and enable the solution of state estimation and feedback control of NCSs

when combined with the controller design tools introduced in Chapters 4 and 6.

Furthermore, for continuous-time NCSs in which all states can be measured

(although not simultaneously), we have proposed a class of “dynamic” scheduling

policies that decide on-line (based on state feedback) which sensors and actuators

should be granted access. These policies are accompanied by a design method

for computing stabilizing feedback control gains, based on solving a standard pole

placement problem. The proposed feedback-based scheduling policies also allow one

to assign different medium access priorities to different inputs and outputs and to

ensure a minimum dwell-time between each change in medium access.
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8.1 Opportunities of Future Work

In designing periodic communication sequences, in this thesis, we have been guided

by the requirement that they must preserve the controllability (or reachability, sta-

bilizability) and observability (or reconstructibility, detectability) of the plant. Al-

though we have proved the existence of such sequences, their design requires further

investigation. In fact, it is easy to show that the number of communication se-

quences satisfying our requirements guideline is infinite; it is thus important to

study optimal communication sequence design, which involves both the choice of

communication period (i.e., the length of “T”) and that of the communication pat-

tern (e.g., choice between “122,122,...” and “112,112,...”). The communication

sequence design problem becomes particularly interesting when the plant is subject

to random disturbances. In that case, choices of communication sequence will affect

the optimal control cost and the variance of the state estimation. The methods

introduced in [54] and [55] show that an optimal communication sequence that min-

imize an LQ cost in a finite horizon can be found via exhaustive search or dynamic

programming. However, the problem of designing optimal periodic communication

sequences over an infinite time horizon is still open.

Furthermore, if an NCS’s feedback controller has been designed in advance, one

can treat the choices of communication sequences as inputs to the closed-loop sys-

tem; these inputs take values on a finite set. Thus, an optimal communication

sequence may be obtained by solving an optimal control problem (finite or infi-

nite horizon) via the Maximum Principle (continuous-time) or Dynamic Program-

ming (discrete-time). In both cases, the resulting optimal communication sequences

should yield a feedback-based switching law. This sequence design method may also

reveal some fundamental rules that have yet been discovered for dynamic medium
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access scheduling.

Throughout this thesis, we have assumed that the number of input and output

channels (i.e., “wρ” and “wσ”) are fixed. However, in a real-world NCS, the commu-

nication medium may be shared by the inputs and outputs jointly. Thus, one may

need to determine (either off-line or on-line) how many channels should be assigned

to the inputs versus the outputs. Furthermore, many communication protocols, such

as CAN and TCP/IP, are essentially serial, and provide only one physical channels

to all users. It is thus important to study the case where a single communication

channel is shared by both inputs and outputs of the plant. Using the theory de-

veloped in Chapter 4, one can easily find a communication sequence that preserves

the controllability (reachability, stabilizability) and observability (reconstructibility,

detectability) of the plant. However, a scenario worth studying involves a plant

which is subject to random disturbances and modeling uncertainties. In that case,

more medium access granted to the inputs yields a lower control cost, while more

medium access granted to the outputs yields smaller state estimation covariance.

The dynamic access scheduling and controller design schemes introduced in

Chapter 5 can not be used to stabilize an NCS if the inputs and outputs share

a single communication channel. This is because the controller uses a constant

feedback gain; when the shared channel is used to transmit an input, no output

information can be used to calculate the control, therefore the input to the plant

is constantly zero. In that case, it might be desirable to let the controller have a

“state” (i.e., be a dynamical system) that retains certain information from the plant.

In the dynamic scheduling policies introduced in Chapter 5, one has the freedom

to choose the parameters αij ’s, and wij’s. The choice of αij affects the value of

the (i, j) entry of the feedback gain matrix K, while the wij affects the medium

access priorities of the i-th inputs and the j-th outputs. It would be interesting to
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investigate how these parameters could be chosen to meet various design criteria,

e.g., system trajectory bound, avoidance of actuator saturation, or minimizing the

feedback gain.

One limitation of our proposed dynamic scheduling policies is that they all re-

quire real-time state information of the plant which is not always available in real-

world NCSs. A straightforward extension is to address the output feedback case,

where the plant output is y(t) = Cx(t), with C a p-by-n matrix (p < n). In

this case, an observer may be used to reconstruct the state at either the plant or

the controller side of the communication medium. For that purpose, it will be

necessary to develop theoretical results on the stability of NCSs having this config-

uration. Moreover, in this thesis, we have only discussed dynamic access scheduling

in continuous-time. Most NCSs operate in discrete-time (under the sampled-data

configuration); it would thus be useful to find the discrete-time counterpart of the

NCS design method developed in Chapter 5. The results presented in [77] and the

references therein may be a useful starting point in studying quadratic stability of

a discrete-time switched system.

In Chapters 4 and 5, we have addressed the NCS design problem in the classical

system theoretical framework where stability is the only design objective. The

modern view of control sees feedback as a tool for uncertainty management [78], it

is necessary to re-examine the NCS design problem from the modern robust control

view point. The LQG design method developed in Chapter 6 gives a good starting

point for H2 synthesis of NCSs; it is also desirable to investigate NCS design (both

the communication sequence and the controller ) in the H∞ framework.

This thesis did not address transmission delays in the communication medium.

If the transmission delays are always known to the controller, it may be possible to

design a model-based predictor (e.g., the one introduced in [25]) that compensates
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for the delay. The case where the delays are random and not known by the controller

is more complex and requires further study.

Finally, it is worth studying the controllability and observability of a non-linear

NCS using the extended plant formulation introduced in Section 3.6. In that case,

the analytical method introduced in the proof of Theorem 4.1 may be a good starting

point.
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Appendix A

Calculating the Time-varying

Feedback and Observer Gains

In Chapter 4, we show that designing the feedback controller that exponentially

stabilize the continuous time extended plant (4.2) involves calculating periodic time

varying gains having the forms of

K(t) = −B̄T (t)W−1
a (t, t + T ), (A.1)

H(t) = [e−AT TMa(t − T, t)e−AT ]−1C̄T (t), (A.2)

where the two Gramians Wa and Ma are defined as follows [64]

Wa(t0, tf) ,

∫ tf

t0

2e4a(t0−τ)eA(t0−τ)B̄(τ)B̄T (τ)eAT (t0−τ)dτ, (A.3)

Ma(t0, tf) ,

∫ tf

t0

2e4a(τ−tf )eAT (τ−t0)C̄T (τ)C̄(τ)eA(τ−t0)dτ. (A.4)

In this appendix, we derive the ordinary differential equations (ODEs) that are

are needed for calculating these gains. With these ODEs, the gains can be calculated
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numerically off-line using standard ODE solvers (e.g., Matlab “ode45”), and then

stored in a time-indexed look-up table (since both gains are T-peridic) when the

system is running.

A.1 Solving for the Gramian Wa(t, t + T )

A.1.1 Preliminaries

To solve for the Gramian Wa(t, t + T ), it is helpful to first study the derivative

of the controllability Gramian of the extended plant (4.2) during the time period

[t, t + T ]. The controllability Gramian of the extended plant (4.2) during [t0, tf ],

denoted W(t0, tf), is defined as follows:

W(t0, tf) =

∫ tf

t0

Φ(t0, τ)B̄(τ)B̄T (τ)ΦT (t0, τ)dτ, (A.5)

where Φ(t0, τ) is the transition matrix of the extended plant (4.2), defined as

Φ(tf , t0) = eA(tf−t0). (A.6)

Note that

W(t, t + T ) =

∫ t+T

t

Φ(t, τ)B̄(τ)B̄T (τ)ΦT (t, τ)dτ

= Φ(t, t0) ·

∫ t+T

t

Φ(t0, τ)B̄(τ)B̄T (τ)ΦT (t0, τ)dτ · ΦT (t, t0), (A.7)

where t0 could be any real number. It is well known that the transition matrix

Φ(t, t0) satisfies

d

dt
Φ(t, t0) = A · Φ(t, t0). (A.8)
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Hence we have

d

dt
W(t, t + T ) = AW(t, t + T ) + W(t, t + T )AT

+ Φ(t, t0)[Φ(t0, t + T )B̄(t + T )B̄T (t + T )ΦT (t0, t + T ) (A.9)

− Φ(t0, t)B̄(t)B̄T (t)ΦT (t0, t + T )]ΦT (t, t0).

Remark A.1. To obtain the above equation, we need to use the following fact: “For

an integrable function f(·), d
dt

∫ t+T

t
f(τ)dτ = f(t + T ) − f(t)”.

Based on the spirit of Lemma 4.1, we will always let communication sequence

ρ(·) be T-periodic. Therefore B̄(t) is also T-periodical, then the above reduce to

d

dt
W(t, t + T ) = AW(t, t + T ) + W(t, t + T )AT

+ Φ(t, t + T )B̄(t)B̄T (t)ΦT (t, t + T ) − B̄(t)B̄T (t). (A.10)

Using the fact that for the extended plant, Φ(t, t + T ) = e−AT , we can further

reduce the above ODE to

d

dt
W(t, t + T ) = AW(t, t + T ) + W(t, t + T )AT

+ e−AT B̄(t)B̄(t)T e−AT T − B̄(t)B̄(t)T . (A.11)

Equation (A.11) is the ODE satisfied by the controllability Gramian W(t, t+T ).

In order to solve it numerically, we also need to know the initial conditions of the

matrix valued function W(t, t + T ) at t = 0, which is W(0, T ).

W(0, T ) can be calculated in two ways. First, it is easy to prove that (Ex.9.4 in
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[64]) W(t, T ) satisfies the following ODE

d

dt
W(t, T ) = A(t)W(t, T ) − B̄(t)B̄T (t) + W(t, T )AT (t), (A.12)

with W(T, T ) = 0. We can then integrate the above ODE backwards to find W(0, T )

(the Matlab function “ode45” can do this job).

An alternative way is to observe that

d

dt
W(0, t) = Φ(0, t)B̄(t)B̄T (t)ΦT (0, t) (A.13)

= e−AtB̄(t)B̄T (t)e−At. (A.14)

Using W(0, 0) = 0, we can then can obtain W(0, T ) by integrating the above ODE

for t ∈ [0, T ].

A.1.2 The Gramian ODEs

Now, let’s return to the problem of calculating the Gramian Wa(t, t + T ). By

definition,

Wa(t0, tf ) =

∫ tf

t0

2e4a(t0−τ)eA(t0−τ)B̄(τ)B̄T (τ)eAT (t0−τ)dτ

= 2

∫ tf

t0

e(A+2aI)(t0−τ)B̄(τ)B̄T (τ)e(A+2aI)T (t0−τ)dτ.

Define Aa = A + 2aI, we see that Wa(t0, tf) is nothing but two times the con-

trollability Gramian (A.11) defined based on the new dynamics Aa instead of A.

To clarify notation, we will now add a subscript to the controllability Gramian

W(t0, tf), denoting which dynamics it is referred to, e.g., W(t0, tf)Aa
meaning that

the controllability Gramian (A.11) is calculated based on Aa. Hence the above
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analysis gives

Wa(t0, tf ) = 2W(t0, tf)Aa
. (A.15)

Differentiating the above equation, and applying the ODEs given in (A.11), we

obtain the ODE satisfied by the Gramian Wa(t, t + T ).

d

dt
Wa(t, t + T ) = 2

d

dt
W(t, t + T )Aa

= 2(AaW(t, t + T )Aa
+ W(t, t + T )Aa

AT
a

− B̄(t)B̄T (t) + e−AaT B̄(t)B̄T (t)e−AT
a T ).

The above then reduces to

d

dt
Wa(t, t + T ) = AaWa(t, t + T ) + Wa(t, t + T )AT

a

− 2B̄(t)B̄T (t) + 2e−AaT B̄(t)B̄T (t)e−AT
a T , (A.16)

which is the ODE we need for calculating the Gramian Wa(t, t + T ).

To solve for the initial condition of Wa(t, t + T ) at t = 0, i.e., Wa(0, T ), which

equals to 2W(0, T )Aa
, we can directly use the ODEs we developed for W(t, T ) of

W(0, t) and obtain the following:

d

dt
Wa(t, T ) = AaWa(t, T ) − 2B̄(t)B̄T (t) + Wa(t, T )AT

a , (A.17)

Wa(T, T ) = 0. (A.18)
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or alternatively,

d

dt
Wa(0, t) = 2e−AatB̄(t)B̄T (t)e−AT

a t, (A.19)

Wa(0, 0) = 0. (A.20)

A.2 Solving for the Gramian [e−AT TMa(t−T, t)e−AT ]

A.2.1 Preliminaries

Again, to solve for the Gramian [e−AT TMa(t−T, t)e−AT ], it is helpful to first study

the observability Gramian of the extended plant (4.2). The observability Gramian

M(t0, tf) of the extended plant is defined as

M(t0, tf ) =

∫ tf

t0

ΦT (τ, t0)C̄
T (τ)C̄(τ)Φ(τ, t0)dτ, (A.21)

and for the extended plant (4.2), Φ(tf , t0) = eA(tf−t0). Then

Ma(t0, tf) =

∫ tf

t0

2e4a(τ−tf )ΦT (τ, t0)C̄
T (τ)C̄(τ)Φ(τ, t0)dτ. (A.22)

To simplify notation, we define

N(t0, tf) , ΦT (t0, tf)M(t0, tf )Φ(t0, tf) (A.23)

=

∫ tf

t0

ΦT (τ, tf )C̄
T (τ)C̄(τ)Φ(τ, tf )dτ, (A.24)

and, imitating the definitions of Wa, we also define
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Na(t0, tf) , ΦT (t0, tf)Ma(t0, tf )Φ(t0, tf) (A.25)

=

∫ tf

t0

2e4a(τ−tf )ΦT (τ, tf )C̄
T (τ)C̄(τ)Φ(τ, tf )dτ. (A.26)

Based on the above definition, the Gramian [e−AT TMa(t − T, t)e−AT ] can be ex-

pressed as follows

e−AT TMa(t − T, t)e−AT = Na(t − T, t). (A.27)

Using the fact that d
dt

∫ t

t−T
f(τ)dτ = f(t)−f(t−T ) , and similar techniques used

in Section A.1.1, we obtain that

d

dt
N(t − T, t) = −AT N(t − T, t) − N(t − T, t)A

+ C̄T (t)C̄(t) − e−AT T C̄T (t)C̄(t)e−AT . (A.28)

A.2.2 The Gramian ODEs

Again, define Aa = A+2aI. It is easy to prove that the Gramian matrix Na(t0, tf ) is

nothing but 2 times the matrix N(t0, tf ), calculated based on Aa (denoted N(t0, tf)Aa
),

i.e.,

Na(t0, tf ) = 2N(t0, tf)Aa
. (A.29)

Then using the result in (A.28) we obtain

d

dt
Na(t − T, t) = −Aa

T Na(t − T, t) − Na(t − T, t)Aa

+ 2C̄T (t)C̄(t) − 2e−AT
a T C̄T (t)C̄(t)e−AaT . (A.30)
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which is the ODE we need to calculate Na(t − T, t).

In order to obtain the initial condition of Na(t − T, t) at t = 0, i.e., Na(−T, 0),

we can integrate the ODE satisfied by Na(−T, t). Using the definitions of Na(t0, tf)

the following ODE can be easily obtained

d

dt
Na(−T, t) = −AT

a Na(−T, t) − Na(−T, t)Aa + 2C̄T (t)C̄(t),

Na(−T,−T ) = 0. (A.31)

Alternatively, Na(−T, 0) can also be obtained by integrating backwards the ODE

satisfied Na(t, 0):

d

dt
Na(t, 0) = −2eAT

a T C̄T (t)C̄(t)eAaT ,

Na(0, 0) = 0. (A.32)
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Appendix B

The Dynamics of a Rotary

Inverted Pendulum

Consider the simplified model of the rotary inverted pendulum shown in Fig. 7.7

(b). The kinetic energy of the pendulum and the rotary arm are given by:

KEpendulum =
1

2
m[(rθ̇ cos α + lα̇)2 + (lα̇ sin α)2 + (rθ̇sinα)2], (B.1)

KEarm =
1

2
Jθ̇2. (B.2)

The potential energy of the system is given by

PE = PEpendulum = mgl cos α. (B.3)

Since we are considering the case when α is very small, we omit the the terms
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associated with sin α2, then the Lagrangian of the system can be expressed as:

L = KEpendulum + KEarm − PE, (B.4)

=
1

2
(mr2 + J)θ̇2 +

1

2
ml2α̇2 + mrl cos αθ̇α̇ − mgl cos α. (B.5)

Using the Lagrangian formulation we obtain the following differential equations

ml2α̈ + mrl cos αθ̈ − mgl sin α = 0, (B.6)

mrl cos α̈ + (mr2 + J)θ̈ − mrl sin α sin αα̇2 = T. (B.7)

Linearize the above differential equation about the equilibrium point [θ, α, θ̇, α̇]T =

[0, 0, 0, 0]T , we obtain the linear model of the rotary inverted pendulum.
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T. (B.8)

In the servo plant, the arm is drive by an electrical DC motor via a gear box.

The equations that govern a DC-motor are

V = IRm + Kbωm, (B.9)

Tm = KmI, (B.10)

in which Rm is the motor’s armature resistance, Kb is the motor’s back EMF con-

stant, Km is the torque constant, Tm is the torque produced by the motor at its

shaft, ωm is the angular velocity of the motor shaft, u is voltage applied to the
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motor, I is the motor’s current. Denote the gear ratio by Kg, we also have

ωm = Kg θ̇, (B.11)

T = KgTm. (B.12)

Hence the relation between T and u can be expressed as

T =
KmKg

Rm

u −
KmKbK

2
g

Rm

θ̇. (B.13)

We thus obtain the dynamics of a rotary inverted pendulum
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