University of Maryland College Park

Institute for Advanced Computer Studies UMIACS-TR-94-59
Department of Computer Science CS-TR-3275

KASSANDRA:
THE AUTOMATIC GRADING SYSTEM*

Urs von Mattf

January, 1994

Abstract. An automatic grading system is presented for grading assignments in scientific comput-
ing. A student can interactively use this system to check the correctness of his program assignments.
The grade for a correct solution is automatically recorded. This paper also considers the security
problems with such an automatic grading system.

Key words. Computerized grading, science education, computer aided instruction.

* This report is available by anonymous ftp from cs.umd.edu in the directory /pub/papers/TRs.
It also appears in SIGCUE Outlook, 22 (1994), pp. 26—40.

! Institute for Scientific Computing, ETH Ziirich, CH-8092 Ziirich, Switzerland; current address:
Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742; e-mail:
na.vonmatt@na-net.ornl.gov.



KASSANDRA: THE AUTOMATIC GRADING SYSTEM

Urs von Matt*

Abstract. An automatic grading system is presented for grading assignments in scientific comput-
ing. A student can interactively use this system to check the correctness of his program assignments.
The grade for a correct solution is automatically recorded. This paper also considers the security
problems with such an automatic grading system.

Key words. Computerized grading, science education, computer aided instruction.

1. Introduction. At ETH Ziirich an undergraduate course in scientific comput-
ing is lectured by W. Gander every year. About six teaching assistants have to handle
up to 200 students. The grading of assignments represents a major activity for the
teaching assistants. Kassandra was designed to alleviate this problem.

Kassandra is based on the observation that numerical assignments can be tested
fairly easily. Typically the student has to implement a procedure which operates on
given input data and generates some output. If this procedure computes the right
answers for different inputs we assume it to be correct, and the student gets credit for
it.

We use the software packages Maple [2] and Matlab [5] in the aforementioned
course in scientific computing. Consequently, the student must express his solution
in terms of these languages. Besides, we also make use of a classical programming
language, namely Oberon [9, 14], the successor of Modula-2 [13].

Section 2 of this paper gives a short overview of the history of automatic grading.
In section 3 we discuss the functionality of Kassandra from the student’s point of
view. Section 4 is devoted to the security aspects that such a grading system has to
meet. From these requirements we can derive the internal structure of Kassandra in
section 5. We discuss in section 6 how assignments are incorporated into Kassandra.
Finally, section 7 reports our experiences with Kassandra.

2. History. There are a number of publications concerned with assisting teachers
in checking the homework of their students. An approach, which is closely related to
Kassandra, was described in 1965 by Forsythe and Wirth [3]. Their system was used
for numerical analysis courses at Stanford University. As part of their homework the
students had to write subroutines in the BALGOL language, a dialect of ALGoL 58.
Their solutions were turned in on punched cards. Then, the teacher ran a grader
program which called each of the solutions in turn. Forsythe and Wirth give an
example of a grader that tries to evaluate the quality of integration subroutines written
by the students.

In 1969, J. Joss also developed a similar system at ETH Ziirich. Unfortunately,
his work has never been published.

Outside the area of computer science, several papers have been published on the
grading of homework assignments. In most cases these systems check the numerical
values that have been computed by the students. The data is usually entered into the
computer by some sort of reading device.

* Institute for Scientific Computing, ETH Ziirich, CH-8092 Zirich, Switzerland; current address:
Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742; e-mail:
na.vonmatt@na-net.ornl.gov.



2 Urs von Matt

Taylor and Deever [12] describe a system used in physics and mathematics courses
at Otterbein College in Westerville, Ohio. They generate a unique set of data for each
student’s homework. The students turn in their assignments on porta-punch cards,
and their responses are evaluated in a batch mode on a daily basis.

In 1983, Rottmann and Hudson [10] presented a system that supports the teacher
in grading multiple choice assignments. They used their system for the instruction of
physics courses at the University of Houston, Texas. A mark-sense device serves to
input the data into the computer. Then, the computer is used to analyse the results
and generate reports that are posted in the classroom.

Myers [6] describes a system for the grading of freshman chemistry laboratory ex-
periments at the West Virginia Institute of Technology at Montgomery, West Virginia.
The students turn in their homework on special mark-sense cards. Then, these cards
are input into an Apple II computer with the use of a card reader. The computer
checks the answers and generates reports for the teacher and the students.

Several papers discuss the automation of multiple-choice tests. In [8], Posteraro,
Blackwell and Huddleston present the computer program TECHSCORE which tab-
ulates the responses to multiple choice questions, calculates the percentage of each
response and displays the information in tabular form. This system is used to anal-
yse the responses to employee evaluation questionnaires and the results of student
examinations at the Texas Tech University School of Medicine in Lubbock, Texas.

Lira, Bronfman and Eyzaguirre [4] describe Multitest II, a system for the gener-
ation, correction, and analysis of multiple choice examinations. The tests are graded
by means of a user-definable numerical grading system. This system is used at the
Catholic University of Chile at Santiago.

A related system for multiple choice tests has also been developed by S. Barton [1]
from the University of Agriculture and Forestry Brno, Czech Republic. However, his
work has not yet been published.

Sometimes the grading of assignments is also supported by computer-assisted
instruction (CAI) systems. Two such systems are described by Piotrowski [7] and by
Schreihofer, Foster, Gleason, Harting, and Hiltz [11].

3. Functionality of Kassandra. The main function of Kassandra consists in
checking the correctness of program assignments. A student can interactively call
Kassandra and specify the number of the assignment. By that he triggers the following
activities:

1. A test program is started which calls the student’s procedure with a number
of different test data.

2. The results are analysed.

3. In case of errors the test program tries to figure out the causes and reports
them to the student. If the solution passes all the tests it is assumed to be
correct, and the grade is given (provided the deadline of the assignment has
not yet expired).

This mechanism is depicted as Fig. 1.

Kassandra also provides some auxiliary functions. Above all the student can
inquire the assignments that have already been credited. Thus he can keep track of
his progress.

Finally, the student can also make himself known to Kassandra. This feature
is useful, because an assignment is credited to the account from where it has been



Kassandra: The Automatic Grading System 3

Test
program

read and generate
analyse results test data

compute read
output input data

Solution

Fia. 1. Design of Kassandra

turned in. Such an account is likely to be an (anonymous) numbered course account.
Therefore the assistant needs to know which students are actually working on these
accounts. This feature is even more important in the case of teamwork where all the
members of a group are using the same account.

4. Security. An automatic grading system must meet a few security require-
ments. The following two problems are of special importance:

1. The test program must be protected against unauthorized access by the stu-
dent because it contains the reference solution with which the student’s solu-
tion is compared. Consequently, the student must not read this program, but
nevertheless he should be able to execute it in order to check his assignment.

2. All the credits are stored in a file. Obviously this file must not be writable to
the student. For reasons of privacy it also should not be readable. Nonetheless
this file must be updated if an assignment is turned in successfully.

These two problems are fundamental. There are many half-hearted solutions that
rather hide the problem than solve it. All of these approaches are characterized by
the fact that they offer a so-called “security by complexity”. They try to disguise
the structure of the test program to a degree where it can only be deciphered by an
inordinate amount of work. The following “solutions” may serve as an illustration:

1. In the case of a conventional programming language the test program is im-
plemented as a main program. Only the object file is available to the student,
and at run time the student’s solution is linked to the main program.

2. In the case of Maple or Matlab the test program is stored in a file that is
readable to the student but whose name is unknown. Additionally this file is
located in a directory where the student has no search permission.

3. Under Unix, these “solutions” can be refined even further if so-called set-uid
programs are used. When the student executes such a program he gets the
same privileges as the assistant who owns the program. In particular he can
read and write files that would be inaccessible otherwise.

This security problem can be solved only if a strict separation between assistant
and student is adhered to. A good solution consists of two test programs exchanging



4 Urs von Matt

Assistant Student
send read
test data test data

Kassandr. [Kassandr.
read send
results results

read call solution with
results test data
Solution

Fia. 2. Conceptional Design of Kassandra

data. This is depicted as Fig. 2. Note that the test program on the assistant’s side is
accessible just to the assistant. It can establish connections to arbitrary many students
and test their assignments. Furthermore, it is this test program that decides on the
success of the test and credits the assignment.

The test program on the student’s side, however, is readable and executable to
the student. If a student calls Kassandra he essentially starts this test program on his
side. Its sole purpose is to establish the connection to the other test program and to
guarantee the data transfer.

The security of this approach is based on the fact that only data is exchanged
between the assistant and the student. The assistant asks a number of questions
to the student (i.e. he transmits test data), and the student tries to answer these
questions (i.e. he send his results back). It is irrelevant how the student gets at his
answers. He is only judged by his results. There is no other way to influence the test
program on the assistant’s side.

5. Internal Structure of Kassandra. Assignments in scientific computing in-
clude the use of the software packages Maple and Matlab. Therefore we must provide
a means to incorporate them into Kassandra. In general such packages provide no
direct support for interprocess communication; however, we can assume that all these
packages support input and output on files. Under Unix this feature can be used to
contrive a simple interprocess communication scheme.

Unix supports so-called named pipes. These are buffers (first-in-first-out queues)
between a producer and a consumer process. Thus we can accomplish the necessary
synchronization between two communicating processes. Such a pipe has also an entry
in the file system and can therefore be handled like an ordinary file. This means
that from the point of view of the software package there is no difference between an
ordinary file and a named pipe, except that reading from an empty pipe or writing on
a full pipe will block the current process.

For the data transfer between student and assistant, named pipes are not the best
choice. Kassandra works with sockets (bidirectional links between two independent
processes). In this way the solutions of different students can be tested simultaneously.
Furthermore, it is possible for the assistant’s processes to run on a different computer.



Kassandra: The Automatic Grading System )

Assistant Student

/bin/sh /bin/sh

f% &{ f% \Ork

DataSocket
Maple named plpes / MessageSocket named plpes Maple

Kassandra Kassandra
stdout stdout stdout

dev/tty

Fia. 3. Detailed Design of Kassandra

This represents the ultimate separation between assistant and student. The final
scheme is depicted as Fig. 3.
The following remarks will illuminate this figure:

1.
2.

Circles represent Unix processes. Rounded rectangles stand for terminals.
The process “Kassandra” on the assistant’s side is running permanently as a
daemon. It is waiting for a student to establish a connection and check an
assignment.

. As soon as the student starts Kassandra the sockets between the two processes

are set up. If the student wants to check an assignment the named pipes
are created in the filesystem. Then on both sides a Bourne shell is started
executing a script file. These scriptfiles contain the proper test programs
(e.g. Maple code).

. After these initializations the two Kassandra processes only ensure the data

transfer between student and assistant. For practical reasons we not only
use a single socket to transfer the test data, but also another one to forward
messages from the assistant’s test program to the student.

. We use a pseudo terminal (pty) to forward messages from the assistant’s test

program to the student. In this way the test program (e.g. Maple) behaves
interactively. Otherwise the output would be buffered and transferred only
when a certain block size has been reached.

It is possible to check the syntax of the data flowing in the DataSocket. This
is especially important for software packages like Maple that directly execute
their input from a file.

6. Extensibility. A main feature of Kassandra is its extensibility. It is easy
enough to add new assignments to the system. We achieve this by a division of
Kassandra into a kernel and a collection of test programs. The kernel remains the
same for all the assignments.

In order to install a new assignment in Kassandra the assistant only needs to write



6 Urs von Matt

the two test programs and update a configuration file. In this configuration file he can
specify a deadline for each assignment.

Things become a bit more complicated if one wants to grade programs written
in another software package. Basically such a package must meet the requirements
discussed in section 5. If the data stream in Fig. 3 need not be checked, only minor
modifications to Kassandra are necessary. Otherwise one needs to specify the exact
syntax of the data stream and implement a corresponding parser. In the case of a
sufficiently simple syntax this can be done with a moderate amount of work.

7. Experiences with Kassandra. The undergraduate course in scientific com-
puting is lectured every year, and it is attended by up to 200 students. There are
six teaching assistants giving classes. During this course, about 50 assignments are
handed out to the students. Consequently, up to 10* positive grading decisions are
made by Kassandra each year. We do not record the number of unsuccessful trials
by the students, but we may assume this number to be substantially higher than the
number of accepted assignments.

The main design goal of Kassandra was to alleviate the work load on the teaching
assistants. Since up to 10* grading decisions are now performed automatically each
year, Kassandra has been a great success in this respect.

In the winter term of 1992/93, the students’ opinions about the course in scientific
computing were gathered via a questionnaire. A total of 74 students have answered the
questions, and we now give their answers concerning the two questions on Kassandra.
The first question relates to the acceptance of Kassandra:

How do you feel about the use of Kassandra?
15 % | I am against Kassandra. The assignments should be checked
by the teaching assistants.
36 % | It does not matter whether the assignments are checked by

Kassandra or by the teaching assistants.

49 % | 1 prefer it if my assignments are checked by Kassandra.
The use of Kassandra is endorsed by the majority of the students. As a matter of
fact there are also a number of advantages to the students that contribute to the good
reception of the system. For instance, the student is free to decide when to solve his
homework. Kassandra is available to check his assignments at any time. In particular
he can also work at home and access the system by a modem. It is possible to test
the assignments even after the deadline, but without getting a credit, of course.

The second question is concerned with the quality of the automatic grading;:
How well does Kassandra check your assignments?

46 % | A teaching assistant would check my assignments better
than Kassandra does.

26 % | Kassandra checks my assignments as well as a teaching
assistant.

28 % | Kassandra checks my assignments better than a teaching
assistant does.

Many students, who are not satisfied by the grading quality of Kassandra, complain
on the error messages they get. They wish that Kassandra would also recognize
and comment on fundamental misconceptions in their solutions. Many students also

struggle because their solutions have to comply with the strict syntactic and semantic
requirements of such an automatic grading system.



Kassandra: The Automatic Grading System 7

The work to develop good test programs should not be underestimated. First, the
assignments must be designed in such a way that they are well suited for automatic
checking. This includes a very concise description of the problem and its intended
solution. Then the test programs must be devised such that they not only generate
test data for the average case of the problems but also for the special cases.

If sophisticated test programs are available, however, Kassandra can often judge
an assignment better than an assistant could. For a human it is easy to miss some
subtle details if one merely analyses the program itself. Only the execution of such a
program will reveal these hidden bugs.

We should also warn the reader against exaggerated expectations about such an
automatic grading system. For instance, it is no longer possible to judge the program-
ming style of the student. Even complicated or inefficient solutions are accepted. It
has also become easier for the student to copy assignments. But in our opinion it
cannot be the aim of such a grading system to detect plagiarism, and we count on the
self-responsibility of the student in this respect.

8. Conclusions. The automatic grading system Kassandra has been introduced
in the course on scientific computing at ETH Ziirich in order to alleviate the work
load of the teaching assistants. The students can interactively check their homework
assignments on the computer, and correct solutions are graded automatically. The
teaching assistants no longer need to undergo the tedious chore of grading assignments.
Rather, they can now invest their time in the much more attractive job of developing
sophisticated test programs. As soon as the test programs have been implemented
this initial effort quickly pays off when the same course is offered repeatedly. Thus,
Kassandra has been very effective in reducing the work load on the teaching assistants.

Kassandra has proved its considerable flexibility, as it is capable of checking as-
signments implemented in such diverse languages as Fortran, Maple, Matlab, and
Oberon. It would not be difficult to include even further software packages.

Kassandra is also received well by the students. Such an automatic grading system
is much more impartial in grading than a human, and it is infinitely patient with lazy
students.

Since Kassandra is used on a regular basis, appropriate security precautions must
be taken in order to avoid unauthorized access to the system. We have proposed a
safe solution to this problem, which consists in separating the test programs into two
parts. The test program on the assistant’s side contains the reference solution, and
it generates the data for the test runs. On the student’s side we have the other part
of the test program which is in charge of calling the student’s solution. Since these
two parts can only communicate by exchanging data, we can guarantee the integrity
of the system.

9. Appendix. In this appendix we present more details related to the actual
implementation of the test programs. In section 9.1 we discuss the two test programs
on the student’s and the assistant’s side for a sample Maple assignment. These com-
ments, however, also apply to assignments in Matlab and in conventional compiled
languages, as we will see in sections 9.2 and 9.3.

The quality of Kassandra stands and falls with the quality of the test programs.
Ideally, the test data should comprise “typical” problems along with a number of spe-
cial cases. To illustrate the point we assume that the student must write a procedure
to solve the linear system of equations Ax = b for x. Here, the test program would



8 Urs von Matt

first generate a couple of well-conditioned matrices as test data. Afterwards, it analy-
ses the accuracy of the solver with the help of a few ill-conditioned matrices. Matrices
of size 1 and 2 make sure that these special cases are handled correctly. Finally, the
test program would set up linear systems that can only be solved with a proper pivot
strategy.

Our sample test programs in sections 9.1 and 9.3 have been reduced to the bare
essentials in order to fit into the limited space. A real-life test program would run more
test cases and analyse and comment the results in more detail. First a few general
remarks are in order:

1. There are a number of Unix environment variables available in order to param-
eterize the test programs. This allows to easily install Kassandra in another
directory, and to change the number of an assignment. The following variables
are used:

KASSANDRA HOME Kassandra’s home directory.

KASSANDRA USER The username of the student who is checking an assign-
ment.

KASSANDRA EX The number of the assignment that is being checked.

KASSANDRA PID The process identification of Kassandra.

2. It proves to be practical to effect tests both in the assistant’s and the stu-
dent’s test program. On the student’s side we check that the desired result is
computed and that the type of the result meets the requirement. Only then
the assistant’s test program makes sure that the numerical values agree with
the exact values.

3. When the student passes the test successfully he gets his credit by means of a
program called “Update”. Here we check that the deadline of the assignment
has not yet expired. If the assistant calls Update interactively he can also
credit an assignment after the deadline.

9.1. Sample Assignment in Maple. Let us now present the implementation
of the test programs with the help of a sample Maple assignment. For the sake of
simplicity we assume that the student only has to implement a Maple procedure for
the evaluation of the Chebyshev polynomials 7, (z). They can be defined by the
recurrence relationship

TO(x) = 17
Tl(x) =,
To(x) = 22T,—1(x) — Th—o(2), n > 1.

A possible solution would be the following Maple code which the student is asked to

store in the file Chebyshev.maple:
Chebyshev := proc (n, x);
if n = 0 then
RETURN (1)
elif n = 1 then
RETURN (x)
else
RETURN (collect (2*x*Chebyshev (n-1, x) - Chebyshev (n-2, x), x))
fi;
end:



Kassandra: The Automatic Grading System 9

Now, let us first have a look at the test program on the student’s side:
#!/bin/sh
# Initializations
. $KASSANDRA_HOME/src2/maple.sh

#Hfd Rt RS HE R4 #E Begin of Preamble ###t#t####didastaiis

echo "Test of Assignment $KASSANDRA_EX"
echo

if test ! —-f Chebyshev.maple

then
echo "File Chebyshev.maple not found!"
exit

fi

HHfAHFH RS ER SRR EESE End of Preamble ######4S4S4SHSSHEHE 11

echo "starting maple ..."
maple -q << EOF_maple

fifo_out_filename := \‘$FIFO_OUT\‘:
fifo_in_filename := \‘$FIFO_IN\‘:
read (\‘$KASSANDRA_HOME/src2/Kassandra.maple\‘):

HHfd Rt RS HE R4 E Begin of Testprogram #####fdttddasttiis
read (\‘Chebyshev.maple\):
if not assigned (Chebyshev) then

lprint (\‘The variable Chebyshev is not defined!\):

stop:

fi:

if not type ([Chebyshev], [procedure]) then
lprint (\‘Chebyshev is not a procedure!\‘):

stop:
fi:
n := Receivelnteger ():
x := ReceiveFloat ():

result := Chebyshev (n, x):

if not type ([result], [float]) then
lprint (\‘Chebyshev does not compute a floating-point number:\‘):
print (result):
stop:

fi:

SendFloat (result):

#itdddH#A#EER#####E End of Testprogram fftftftdtdssddttiadiidts

# synchronization with other Maple

request := ReceiveInteger ():

quit:

EOF_maple
This test program on the student’s side consists of a Bourne shell script. First it
makes sure that the file Chebyshev.maple exists. Then the Maple program on the

student’s side is started. For the sake of convenience the Maple code is also contained



10 Urs von Matt

within the shell script. This enables us to perform certain preprocessing on the test
program. For instance, the names of the pipes, that are necessary for the interprocess
communication (cf. Fig. 3), are stored in the global variables fifo_out_filename
and fifo_in_filename. Furthermore, the procedures for sending and receiving data
(SendInteger, Receivelnteger, SendFloat, and ReceiveFloat) are defined by the
first read-statement.

After these initializations the file Chebyshev.maple is read, and it is checked
whether the variable Chebyshev has been assigned a procedure. If all has gone well
up to now the actual test data is received. In our case only a single test is performed.
Of course, a real test program would carry out a number of tests with carefully selected
test data.

We call the student’s procedure with the test data. If no floating-point number
is returned an error is signalled. Otherwise, the result is sent to the assistant’s test
program for further analysis. At the end we have a short piece of synchronization code
to make sure that both test programs terminate at the same time.

We are now ready to present the corresponding test program on the assistant’s
side:

#!/bin/sh

# Initializations
. $KASSANDRA_HOME/srcl/maple.sh

maple -q << EOF_maple

# Initializations

fifo_out_filename := \‘$FIFO_OUT\‘:
fifo_in_filename := \‘$FIFO_IN\‘:

read (\‘$KASSANDRA_HOME/srcl/Kassandra.maple\‘):

HHfd Rt RS HE R4 E Begin of Testprogram #####fdttddasttiis

Chebyshev := proc (n, x)
local T2, T1, T;

if n = 0 then

RETURN (1)
elif n = 1 then
RETURN (x)

else
T2 :=1;
Tl := x;

for k from 2 to n do
T := collect (2%x*T1 - T2, x);
T2 :=T1; T1 :=T;
od;
RETURN (T)
fi;
end:

# Initialization of the random number generator
_seed := ‘date +/m%d/HYM/S‘: # date is evaluated by the shell

n :=2 + rand (10)();

(rand (4%10°10) () - 2*10°10) / Float (1, 10);
SendInteger (n):

SendFloat (x):

X



Kassandra: The Automatic Grading System 11

ref := Chebyshev (n, x):
result := ReceiveFloat ():

if abs (result - ref) <= Float (1, -7) * abs (ref) then
lprint (\‘Your procedure Chebyshev is working all right.\‘):
system (\‘Update -user $KASSANDRA_USER -ex $KASSANDRA_EX\‘):
else
lprint (\‘Your procedure Chebyshev is still erroneous.\‘):
fi:

#itdddH#A#EER#####E End of Testprogram fftftftdtdssddttiadiidts

# synchronization with other Maple

SendInteger (0):

quit:

EOF_maple
This test program also consists of a Bourne shell script. As soon as Maple is started
and the necessary initializations have been performed, we define the reference solution.
Notice that this procedure Chebyshev is coded non-recursively in contrast to the
student’s implementation. But since we are assessing programs by executing them
this does not cause any problems.

In order to generate random numbers for n and z that differ from one test run to
the next we initialize the _seed of Maple’s random number generator by the current
time of day. The command date is a program under Unix which is called by the
Bourne shell prior to the execution of Maple.

Afterwards, the actual test data is generated and transferred to the student’s
test program. While the student is computing his answer the reference solution is
calculated by a call of the procedure Chebyshev. The student’s result is received
and analysed. If the answer is accurate enough the assignment is graded by a call
of the program Update. Otherwise an error message is issued. Finally, the test pro-
gram terminates after executing the synchronization code which corresponds to the
synchronization code in the student’s test program.

For this assignment a sample Kassandra session appears as follows:
$ Kassandra -ex 991
Test of Assignment 991

starting maple ...
n:=7

X := -.636596708

Your procedure Chebyshev is working all right.
Assignment 991 has been accepted.

As soon as the student has started Kassandra, the test data for this run is displayed.
When his solution has passed this test the assignment is immediately graded. By
executing the Unix command Kassandra -ex the student can also obtain a list of all
his assignments that have already been credited.

9.2. Sample Assignment in Matlab. Matlab assignments can be checked in
very much the same way as Maple assignments. Since Matlab has only a single data
type, the matrix, we only need the two procedures SendMatrix and ReceiveMatrix to
transfer data back and forth between the assistant’s and the student’s test program.



12 Urs von Matt

9.3. Assignments in Compiled Languages. Kassandra is also well suited to
test programs written in a conventional programming language like Modula-2, C,
or Fortran. In this case we want to implement the test programs also in the same
programming language. Still we can use the process structure of Fig. 3.

The student has to implement his solution as a procedure stored in a designated
file. The shell script on the student’s side contains the Unix commands to compile and
link the student’s procedure to a main program. This main program is provided by
the assistant, and it is responsible for the data transfer and the calling of the student’s
procedure.

On the assistant’s side we also need to write a test program in the same pro-
gramming language. For this task a set of data transfer procedures is available. The
corresponding shell script does little more than call the precompiled test program.

These comments apply equally to programming languages like C, Fortran, Pascal,
or Modula-2. In the case of Oberon, however, a few modifications to Kassandra become
necessary. In Oberon it is not possible to write stand-alone programs that are executed
by a Unix shell. Rather the entire Oberon system consists of a single process, as far as
Unix is concerned. Furthermore, Oberon comes with its own user interface, and all the
procedures have to be activated from within this interface by interactive commands.
As a consequence of this design philosophy we have implemented the student’s side of
Kassandra in Oberon as a set of modules. This means that the process structure on
the student’s side in Fig. 3 is now realized in Oberon by means of different modules.
Thus the module Kassandra represents the interface to the assistant. Similarly, the
test programs on the student’s side are also implemented as modules.

On the other hand the test programs on the assistant’s side are written in Modula-
2, since they have to run as independent processes under Unix. Consequently, Fig. 3
remains unchanged on the assistant’s side.

To illustrate this scheme we assume that the student has to implement the error
function

2 x
erf(z) := ﬁ/o e~ dt

around the origin by means of the taylor series
22k

2 o0
erf(z) = 7 Ig(—l)km.

The student is asked to implement his solution as a module Erf, which could look as

follows:
MODULE Erf;

IMPORT Aufgabe993, Math;

PROCEDURE# Erf (x: REAL): REAL;

VAR k : INTEGER;
term, sum, suml: REAL;
BEGIN
sum := x; term := x; k := 0;
REPEAT
INc (ky;

term := -term*x*x / k;



Kassandra: The Automatic Grading System 13

suml := sum;
sum := sum + term / (2%k + 1)
UNTIL sum = suml;
RETURN 2*sum / Math.sqrt (Math.pi)
END Erf;

PROCEDURE Test993%;
BEGIN

Aufgabe993.Test (Erf)
END Test993;

END Erf.

System.Free Erf ~
Erf.Test993

The student is provided with a skeleton of this module, and all he has to do is to fill in
the code for the procedure Erf. In order to check his solution the student only needs
to compile his module and to activate the command Erf.Test993 by a simple mouse-
click. Note that the module Erf imports the module Aufgabe993 which represents

the test program on the student’s side. This module looks as follows:
MODULE Aufgabe993; (* Student *)

IMPORT Kassandra;
TYPE ErfProc* = PROCEDURE (x: REAL): REAL;

PROCEDURE Test#* (proc: ErfProc);
VAR ok : BOOLEAN;
b'd : REAL;
request: LONGINT;
BEGIN
Kassandra.StartTestExercise (993, ok);
IF ok THEN
Kassandra.ReceiveReal (x);
Kassandra.SendReal (proc (x));
(* synchronization with Assistant *)
Kassandra.ReceiveInteger (request);
Kassandra.SendInteger (0);
Kassandra.EndTestExercise
END
END Test;

END Aufgabe993. (* Student *)
The module Kassandra, which is imported by Aufgabe993, provides the procedures to
initiate and terminate a test run. Furthermore, it implements the mechanism for the
data exchange between the test program on the student’s side and the assistant’s side.
It should also be pointed out that the student has to pass his solution as a procedural
parameter (parameter proc in Test). It is checked by the compiler whether the
student’s procedure matches its declaration in the module Aufgabe993.

Finally, we can present the test program on the assistant’s side:
MODULE Aufgabe993; (* Assistant *)

IMPORT Kassandra, MathLib, Reall0, SimplelO;

VAR x, ref, result: REAL;
receipt : INTEGER;



14

This test program is written in Modula-2. An auxiliary module Kassandra provides
the necessary procedures for transferring data and accepting an assignment. A snap-

Urs von Matt

PROCEDURE Erf (x: REAL): REAL;
CONST Pi = 3.14159265358979323846264338328;

VAR k : INTEGER;
term, sum, suml: REAL;
BEGIN
sum := x; term := x; k := 0;
REPEAT
INc (ky;
term := -term*x*x / FLOAT (k);
suml := sum;

sum := sum + term / FLOAT (2%k + 1)
UNTIL sum = suml;
RETURN 2.0*sum / MathLib.Sqrt (Pi)
END Erf;

BEGIN (* Aufgabe993, Assistant *)
x := Kassandra.Random () * 2.0 - 1.0;
SimpleI0.WriteString ("x = ");
ReallO.WriteReal (x, 9, 6);
SimplelO0.WritelLn;

Kassandra.SendReal (x);
ref := Erf (x);
Kassandra.ReceiveReal (result);

SimpleI0.WriteString ("Your result: ");
ReallO.WriteReal (result, 9, 6);
SimpleI0.WriteString (" correct value: ");
ReallO.WriteReal (ref, 9, 6);
SimplelO0.WritelLn;

IF ABS (result - ref) <= 1.0E-5 THEN
SimpleI0.WriteString ("ok.");
SimplelO0.WriteLn;

Kassandra.AcceptExercise

ELSE
SimpleI0.WriteString ("You’re out of luck.");
SimplelO0.Writeln

END;

(* synchronization with Student #)

Kassandra.SendInteger (0);

Kassandra.ReceiveIlnteger (receipt)
END Aufgabe993. (* Assistant *)

shot of Oberon-Kassandra is presented as Fig. 4.

[1] S. BarToN, LEARN and SIFLEARN, University of Agriculture and Forestry, Brno, Czech
[2] B. CHAR, K. GEDDES, G. GONNET, B. LEONG, M. MONAGAN AND S. WATT, Maple V Language

[3] G. E. ForsYTHE AND N. WIRTH, Automatic Grading Programs, Comm. ACM, 8 (1965),

REFERENCES

Republic, 1991.
Reference Manual, Springer-Verlag, New York, 1991.

pp. 275-278.



Kassandra:

The Automatic Grading System

Grove Edit Locate Edit.Store

15

MODULE Erf;
IMPORT aufgahed33, Math;

PROCEDURE* Erf (x: REAL): REAL;

VAR k . INTEGER;
term, sum, suml: REAL;

BEGIN

sum;
sum = sum + term / (2xk + 1)

gystem. Free Exf ~
Erf.Test593

[ 9

ndra.Log

X = — 603854
Your result: —. 611568
4

correct value:

ok,
Assignment 993 has heen accepted.

-, 611568

Write.Open +

System.Time 13,1291 10:21:04
Virite 201 (cas 21-Aug-91

7-91)
OPZ W/ Hin / RO/ T 13,691
compiling EA 240
Begin of test 993.
End of test.

m.Toal | 1 Edit.Search Edif.Store

Copyright Text readme  hello.ad
Write.Recall

WriteTools. StoreAscii #

glg%ﬁh]s‘ﬂsﬁms‘}lmﬁléth. sgrt (Math.pi) compiler.Compile = Compiler.Campile %5 OheronErrarsText
END Erf; System.Dpen
Edit.Tool EdiT Tool WriteTaol  Mailer.Tool
. Frofiler.Tool Compiler.Tool AiscellaneousTool My Tool
FROCEDNURE Testiddx; Shell.Taol FoldElemsTool  ColarsTool - BackupTaal ©
EEGIN Kassandra.Tool  Asaple.Tool Matlab.Tool
Aufgabed93. Test (Erf) & .
; ystem. CopyFiles = ~
END Test333; System Renamefiles = ~
System.DheleteF\Ies ~
System. ChangeDirectary
END Erf, System.Re:aﬁ

System.Directory +
witod  wTest Tool =Fnt sBak %Obj =Sym

System.Execute
SystemNatch  System.Shownhodules  System.Collact
System.ShowCommands

System.Frae ~

System.State ~

System.Time

1System. Quit
ScreenSaver.Start

em.Grow Edit.Search Edit.Store

Kassandra, Too|

Kassandra.InquireExercises
kassandralnquireName Kassandra.SetMame +

OberonErrors.Test

Compiler.Compile #
ErrorElems.LocateMext

Compiler.Compile #ys
ErrorElems.itark

ErrorElems.Unmark
\Write.Open +  Wirite.Locate T

Series99

Write.Open Exf.fhod  System Free Exf -
EH.Test903

C.
R.

Fi1c. 4. Oberon-Kassandra

. Lira; M. BRONFMAN AND J. EYZAGUIRRE, MULTITEST II: a program for the generation,

correction, and analysis of multiple choice tests, IEEE Transactions on Education, 33 (1990),
pp. 320-325.

MOLER ET AL., MATLAB User’s Guide, The MathWorks Inc., South Natick, 1990.

MyEeRrs, Computerized Grading of Freshman Chemistry Laboratory Experiments, Journal of
Chemical Education, 63 (1986), pp. 507-509.

J. PioTROWSKI, The small computer assisted lecturing system, SIGCSE Bull., 20 (1988), pp. 8—

R.

12.

PosTERARO, D. BLACKWELL AND A. HUDDLESTON, Techscore: A program for tabulating the
results of multiple choice questions and correcting multiple choice examinations, Comput.
Biol. Med., 16 (1986), pp. 259-265.

. REISER, The Oberon System, User Guide and Programmer’s Manual, ACM Press, New York,

1991.

. M. RortMANN AND H. T. HubpsoN, Computer Grading As an Instructional Tool, Journal

of College Science Teaching, 12 (1983), pp. 152-156.

. SCHREIHOFER, J. FOsSTER, B. GLEAsON, H. HARTING AND S. HiLTz, Software tools for a

virtual classroom, in Proc. of NECC 88, ed. W. Ryan, Int. Council Comput. Educ., Fugene,
1988, pp. 230-236.

TAYLOR AND D. DEEVER, Constructed-Response, Computer-Graded Homework, American
Journal of Physics, 44 (1976), pp. 598-599.

. WIRTH, Programming in Modula-2, Springer-Verlag, Berlin, 1985.

WIRTH AND J. GUTKNECHT, The Oberon System, Software—Practice and Experience,
19 (1989), pp. 857-893.



