
University of Maryland College ParkInstitute for Advanced Computer Studies UMIACS-TR-94-59Department of Computer Science CS-TR-3275
KASSANDRA:THE AUTOMATIC GRADING SYSTEM�Urs von MattyJanuary, 1994Abstract. An automatic grading system is presented for grading assignments in scienti�c comput-ing. A student can interactively use this system to check the correctness of his program assignments.The grade for a correct solution is automatically recorded. This paper also considers the securityproblems with such an automatic grading system.Key words. Computerized grading, science education, computer aided instruction.

� This report is available by anonymous ftp from cs.umd.edu in the directory /pub/papers/TRs.It also appears in SIGCUE Outlook, 22 (1994), pp. 26{40.y Institute for Scienti�c Computing, ETH Z�urich, CH-8092 Z�urich, Switzerland; current address:Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742; e-mail:na.vonmatt@na-net.ornl.gov.

KASSANDRA: THE AUTOMATIC GRADING SYSTEMUrs von Matt�Abstract. An automatic grading system is presented for grading assignments in scienti�c comput-ing. A student can interactively use this system to check the correctness of his program assignments.The grade for a correct solution is automatically recorded. This paper also considers the securityproblems with such an automatic grading system.Key words. Computerized grading, science education, computer aided instruction.1. Introduction. At ETH Z�urich an undergraduate course in scienti�c comput-ing is lectured by W. Gander every year. About six teaching assistants have to handleup to 200 students. The grading of assignments represents a major activity for theteaching assistants. Kassandra was designed to alleviate this problem.Kassandra is based on the observation that numerical assignments can be testedfairly easily. Typically the student has to implement a procedure which operates ongiven input data and generates some output. If this procedure computes the rightanswers for di�erent inputs we assume it to be correct, and the student gets credit forit. We use the software packages Maple [2] and Matlab [5] in the aforementionedcourse in scienti�c computing. Consequently, the student must express his solutionin terms of these languages. Besides, we also make use of a classical programminglanguage, namely Oberon [9, 14], the successor of Modula-2 [13].Section 2 of this paper gives a short overview of the history of automatic grading.In section 3 we discuss the functionality of Kassandra from the student's point ofview. Section 4 is devoted to the security aspects that such a grading system has tomeet. From these requirements we can derive the internal structure of Kassandra insection 5. We discuss in section 6 how assignments are incorporated into Kassandra.Finally, section 7 reports our experiences with Kassandra.2. History. There are a number of publications concerned with assisting teachersin checking the homework of their students. An approach, which is closely related toKassandra, was described in 1965 by Forsythe and Wirth [3]. Their system was usedfor numerical analysis courses at Stanford University. As part of their homework thestudents had to write subroutines in the Balgol language, a dialect of Algol 58.Their solutions were turned in on punched cards. Then, the teacher ran a graderprogram which called each of the solutions in turn. Forsythe and Wirth give anexample of a grader that tries to evaluate the quality of integration subroutines writtenby the students.In 1969, J. Joss also developed a similar system at ETH Z�urich. Unfortunately,his work has never been published.Outside the area of computer science, several papers have been published on thegrading of homework assignments. In most cases these systems check the numericalvalues that have been computed by the students. The data is usually entered into thecomputer by some sort of reading device.� Institute for Scienti�c Computing, ETH Z�urich, CH-8092 Z�urich, Switzerland; current address:Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742; e-mail:na.vonmatt@na-net.ornl.gov. 1

2 Urs von MattTaylor and Deever [12] describe a system used in physics and mathematics coursesat Otterbein College in Westerville, Ohio. They generate a unique set of data for eachstudent's homework. The students turn in their assignments on porta-punch cards,and their responses are evaluated in a batch mode on a daily basis.In 1983, Rottmann and Hudson [10] presented a system that supports the teacherin grading multiple choice assignments. They used their system for the instruction ofphysics courses at the University of Houston, Texas. A mark-sense device serves toinput the data into the computer. Then, the computer is used to analyse the resultsand generate reports that are posted in the classroom.Myers [6] describes a system for the grading of freshman chemistry laboratory ex-periments at the West Virginia Institute of Technology at Montgomery, West Virginia.The students turn in their homework on special mark-sense cards. Then, these cardsare input into an Apple II computer with the use of a card reader. The computerchecks the answers and generates reports for the teacher and the students.Several papers discuss the automation of multiple-choice tests. In [8], Posteraro,Blackwell and Huddleston present the computer program TECHSCORE which tab-ulates the responses to multiple choice questions, calculates the percentage of eachresponse and displays the information in tabular form. This system is used to anal-yse the responses to employee evaluation questionnaires and the results of studentexaminations at the Texas Tech University School of Medicine in Lubbock, Texas.Lira, Bronfman and Eyzaguirre [4] describe Multitest II, a system for the gener-ation, correction, and analysis of multiple choice examinations. The tests are gradedby means of a user-de�nable numerical grading system. This system is used at theCatholic University of Chile at Santiago.A related system for multiple choice tests has also been developed by S. Barto�n [1]from the University of Agriculture and Forestry Brno, Czech Republic. However, hiswork has not yet been published.Sometimes the grading of assignments is also supported by computer-assistedinstruction (CAI) systems. Two such systems are described by Piotrowski [7] and bySchreihofer, Foster, Gleason, Harting, and Hiltz [11].3. Functionality of Kassandra. The main function of Kassandra consists inchecking the correctness of program assignments. A student can interactively callKassandra and specify the number of the assignment. By that he triggers the followingactivities:1. A test program is started which calls the student's procedure with a numberof di�erent test data.2. The results are analysed.3. In case of errors the test program tries to �gure out the causes and reportsthem to the student. If the solution passes all the tests it is assumed to becorrect, and the grade is given (provided the deadline of the assignment hasnot yet expired).This mechanism is depicted as Fig. 1.Kassandra also provides some auxiliary functions. Above all the student caninquire the assignments that have already been credited. Thus he can keep track ofhis progress.Finally, the student can also make himself known to Kassandra. This featureis useful, because an assignment is credited to the account from where it has been

Kassandra: The Automatic Grading System 3& %' $Testprogram
& %' $Solution? generatetest datareadinput data6computeoutputread andanalyse results

Fig. 1. Design of Kassandraturned in. Such an account is likely to be an (anonymous) numbered course account.Therefore the assistant needs to know which students are actually working on theseaccounts. This feature is even more important in the case of teamwork where all themembers of a group are using the same account.4. Security. An automatic grading system must meet a few security require-ments. The following two problems are of special importance:1. The test program must be protected against unauthorized access by the stu-dent because it contains the reference solution with which the student's solu-tion is compared. Consequently, the student must not read this program, butnevertheless he should be able to execute it in order to check his assignment.2. All the credits are stored in a �le. Obviously this �le must not be writable tothe student. For reasons of privacy it also should not be readable. Nonethelessthis �le must be updated if an assignment is turned in successfully.These two problems are fundamental. There are many half-hearted solutions thatrather hide the problem than solve it. All of these approaches are characterized bythe fact that they o�er a so-called \security by complexity". They try to disguisethe structure of the test program to a degree where it can only be deciphered by aninordinate amount of work. The following \solutions" may serve as an illustration:1. In the case of a conventional programming language the test program is im-plemented as a main program. Only the object �le is available to the student,and at run time the student's solution is linked to the main program.2. In the case of Maple or Matlab the test program is stored in a �le that isreadable to the student but whose name is unknown. Additionally this �le islocated in a directory where the student has no search permission.3. Under Unix, these \solutions" can be re�ned even further if so-called set-uidprograms are used. When the student executes such a program he gets thesame privileges as the assistant who owns the program. In particular he canread and write �les that would be inaccessible otherwise.This security problem can be solved only if a strict separation between assistantand student is adhered to. A good solution consists of two test programs exchanging

4 Urs von MattAssistant Student& %' $Kassandra & %' $Kassandra& %' $Solution-sendtest data readtest data� readresults sendresults ? call solution withtest datareadresults 6Fig. 2. Conceptional Design of Kassandradata. This is depicted as Fig. 2. Note that the test program on the assistant's side isaccessible just to the assistant. It can establish connections to arbitrary many studentsand test their assignments. Furthermore, it is this test program that decides on thesuccess of the test and credits the assignment.The test program on the student's side, however, is readable and executable tothe student. If a student calls Kassandra he essentially starts this test program on hisside. Its sole purpose is to establish the connection to the other test program and toguarantee the data transfer.The security of this approach is based on the fact that only data is exchangedbetween the assistant and the student. The assistant asks a number of questionsto the student (i.e. he transmits test data), and the student tries to answer thesequestions (i.e. he send his results back). It is irrelevant how the student gets at hisanswers. He is only judged by his results. There is no other way to in
uence the testprogram on the assistant's side.5. Internal Structure of Kassandra. Assignments in scienti�c computing in-clude the use of the software packages Maple and Matlab. Therefore we must providea means to incorporate them into Kassandra. In general such packages provide nodirect support for interprocess communication; however, we can assume that all thesepackages support input and output on �les. Under Unix this feature can be used tocontrive a simple interprocess communication scheme.Unix supports so-called named pipes. These are bu�ers (�rst-in-�rst-out queues)between a producer and a consumer process. Thus we can accomplish the necessarysynchronization between two communicating processes. Such a pipe has also an entryin the �le system and can therefore be handled like an ordinary �le. This meansthat from the point of view of the software package there is no di�erence between anordinary �le and a named pipe, except that reading from an empty pipe or writing ona full pipe will block the current process.For the data transfer between student and assistant, named pipes are not the bestchoice. Kassandra works with sockets (bidirectional links between two independentprocesses). In this way the solutions of di�erent students can be tested simultaneously.Furthermore, it is possible for the assistant's processes to run on a di�erent computer.

Kassandra: The Automatic Grading System 5Assistant Student
" !# KassandraJJJJJ] fork" !# /bin/sh

�fork" !# Maple " !# Kassandra

�fork " !# /bin/shJ J J J J^fork" !# Maple- -�� named pipes - -�� named pipes
 	� �ptyJ J J J J^stdout

�
 	� �/dev/ttyJ J J J J^stdout

� stdout-� DataSocket-���� -HHHY-MessageSocket� �: X XzFig. 3. Detailed Design of KassandraThis represents the ultimate separation between assistant and student. The �nalscheme is depicted as Fig. 3.The following remarks will illuminate this �gure:1. Circles represent Unix processes. Rounded rectangles stand for terminals.2. The process \Kassandra" on the assistant's side is running permanently as adaemon. It is waiting for a student to establish a connection and check anassignment.3. As soon as the student starts Kassandra the sockets between the two processesare set up. If the student wants to check an assignment the named pipesare created in the �lesystem. Then on both sides a Bourne shell is startedexecuting a script �le. These script�les contain the proper test programs(e.g. Maple code).4. After these initializations the two Kassandra processes only ensure the datatransfer between student and assistant. For practical reasons we not onlyuse a single socket to transfer the test data, but also another one to forwardmessages from the assistant's test program to the student.5. We use a pseudo terminal (pty) to forward messages from the assistant's testprogram to the student. In this way the test program (e.g. Maple) behavesinteractively. Otherwise the output would be bu�ered and transferred onlywhen a certain block size has been reached.6. It is possible to check the syntax of the data
owing in the DataSocket. Thisis especially important for software packages like Maple that directly executetheir input from a �le.6. Extensibility. A main feature of Kassandra is its extensibility. It is easyenough to add new assignments to the system. We achieve this by a division ofKassandra into a kernel and a collection of test programs. The kernel remains thesame for all the assignments.In order to install a new assignment in Kassandra the assistant only needs to write

6 Urs von Mattthe two test programs and update a con�guration �le. In this con�guration �le he canspecify a deadline for each assignment.Things become a bit more complicated if one wants to grade programs writtenin another software package. Basically such a package must meet the requirementsdiscussed in section 5. If the data stream in Fig. 3 need not be checked, only minormodi�cations to Kassandra are necessary. Otherwise one needs to specify the exactsyntax of the data stream and implement a corresponding parser. In the case of asu�ciently simple syntax this can be done with a moderate amount of work.7. Experiences with Kassandra. The undergraduate course in scienti�c com-puting is lectured every year, and it is attended by up to 200 students. There aresix teaching assistants giving classes. During this course, about 50 assignments arehanded out to the students. Consequently, up to 104 positive grading decisions aremade by Kassandra each year. We do not record the number of unsuccessful trialsby the students, but we may assume this number to be substantially higher than thenumber of accepted assignments.The main design goal of Kassandra was to alleviate the work load on the teachingassistants. Since up to 104 grading decisions are now performed automatically eachyear, Kassandra has been a great success in this respect.In the winter term of 1992/93, the students' opinions about the course in scienti�ccomputing were gathered via a questionnaire. A total of 74 students have answered thequestions, and we now give their answers concerning the two questions on Kassandra.The �rst question relates to the acceptance of Kassandra:How do you feel about the use of Kassandra?15 % I am against Kassandra. The assignments should be checkedby the teaching assistants.36 % It does not matter whether the assignments are checked byKassandra or by the teaching assistants.49 % I prefer it if my assignments are checked by Kassandra.The use of Kassandra is endorsed by the majority of the students. As a matter offact there are also a number of advantages to the students that contribute to the goodreception of the system. For instance, the student is free to decide when to solve hishomework. Kassandra is available to check his assignments at any time. In particularhe can also work at home and access the system by a modem. It is possible to testthe assignments even after the deadline, but without getting a credit, of course.The second question is concerned with the quality of the automatic grading:How well does Kassandra check your assignments?46 % A teaching assistant would check my assignments betterthan Kassandra does.26 % Kassandra checks my assignments as well as a teachingassistant.28 % Kassandra checks my assignments better than a teachingassistant does.Many students, who are not satis�ed by the grading quality of Kassandra, complainon the error messages they get. They wish that Kassandra would also recognizeand comment on fundamental misconceptions in their solutions. Many students alsostruggle because their solutions have to comply with the strict syntactic and semanticrequirements of such an automatic grading system.

Kassandra: The Automatic Grading System 7The work to develop good test programs should not be underestimated. First, theassignments must be designed in such a way that they are well suited for automaticchecking. This includes a very concise description of the problem and its intendedsolution. Then the test programs must be devised such that they not only generatetest data for the average case of the problems but also for the special cases.If sophisticated test programs are available, however, Kassandra can often judgean assignment better than an assistant could. For a human it is easy to miss somesubtle details if one merely analyses the program itself. Only the execution of such aprogram will reveal these hidden bugs.We should also warn the reader against exaggerated expectations about such anautomatic grading system. For instance, it is no longer possible to judge the program-ming style of the student. Even complicated or ine�cient solutions are accepted. Ithas also become easier for the student to copy assignments. But in our opinion itcannot be the aim of such a grading system to detect plagiarism, and we count on theself-responsibility of the student in this respect.8. Conclusions. The automatic grading system Kassandra has been introducedin the course on scienti�c computing at ETH Z�urich in order to alleviate the workload of the teaching assistants. The students can interactively check their homeworkassignments on the computer, and correct solutions are graded automatically. Theteaching assistants no longer need to undergo the tedious chore of grading assignments.Rather, they can now invest their time in the much more attractive job of developingsophisticated test programs. As soon as the test programs have been implementedthis initial e�ort quickly pays o� when the same course is o�ered repeatedly. Thus,Kassandra has been very e�ective in reducing the work load on the teaching assistants.Kassandra has proved its considerable
exibility, as it is capable of checking as-signments implemented in such diverse languages as Fortran, Maple, Matlab, andOberon. It would not be di�cult to include even further software packages.Kassandra is also received well by the students. Such an automatic grading systemis much more impartial in grading than a human, and it is in�nitely patient with lazystudents.Since Kassandra is used on a regular basis, appropriate security precautions mustbe taken in order to avoid unauthorized access to the system. We have proposed asafe solution to this problem, which consists in separating the test programs into twoparts. The test program on the assistant's side contains the reference solution, andit generates the data for the test runs. On the student's side we have the other partof the test program which is in charge of calling the student's solution. Since thesetwo parts can only communicate by exchanging data, we can guarantee the integrityof the system.9. Appendix. In this appendix we present more details related to the actualimplementation of the test programs. In section 9.1 we discuss the two test programson the student's and the assistant's side for a sample Maple assignment. These com-ments, however, also apply to assignments in Matlab and in conventional compiledlanguages, as we will see in sections 9.2 and 9.3.The quality of Kassandra stands and falls with the quality of the test programs.Ideally, the test data should comprise \typical" problems along with a number of spe-cial cases. To illustrate the point we assume that the student must write a procedureto solve the linear system of equations Ax = b for x. Here, the test program would

8 Urs von Matt�rst generate a couple of well-conditioned matrices as test data. Afterwards, it analy-ses the accuracy of the solver with the help of a few ill-conditioned matrices. Matricesof size 1 and 2 make sure that these special cases are handled correctly. Finally, thetest program would set up linear systems that can only be solved with a proper pivotstrategy.Our sample test programs in sections 9.1 and 9.3 have been reduced to the bareessentials in order to �t into the limited space. A real-life test program would run moretest cases and analyse and comment the results in more detail. First a few generalremarks are in order:1. There are a number of Unix environment variables available in order to param-eterize the test programs. This allows to easily install Kassandra in anotherdirectory, and to change the number of an assignment. The following variablesare used:KASSANDRA HOME Kassandra's home directory.KASSANDRA USER The username of the student who is checking an assign-ment.KASSANDRA EX The number of the assignment that is being checked.KASSANDRA PID The process identi�cation of Kassandra.2. It proves to be practical to e�ect tests both in the assistant's and the stu-dent's test program. On the student's side we check that the desired result iscomputed and that the type of the result meets the requirement. Only thenthe assistant's test program makes sure that the numerical values agree withthe exact values.3. When the student passes the test successfully he gets his credit by means of aprogram called \Update". Here we check that the deadline of the assignmenthas not yet expired. If the assistant calls Update interactively he can alsocredit an assignment after the deadline.9.1. Sample Assignment in Maple. Let us now present the implementationof the test programs with the help of a sample Maple assignment. For the sake ofsimplicity we assume that the student only has to implement a Maple procedure forthe evaluation of the Chebyshev polynomials Tn(x). They can be de�ned by therecurrence relationshipT0(x) := 1;T1(x) := x;Tn(x) := 2xTn�1(x)� Tn�2(x); n > 1:A possible solution would be the following Maple code which the student is asked tostore in the �le Chebyshev.maple:Chebyshev := proc (n, x);if n = 0 thenRETURN (1)elif n = 1 thenRETURN (x)elseRETURN (collect (2*x*Chebyshev (n-1, x) - Chebyshev (n-2, x), x))fi;end:

Kassandra: The Automatic Grading System 9Now, let us �rst have a look at the test program on the student's side:#!/bin/sh# Initializations. $KASSANDRA_HOME/src2/maple.sh##################### Begin of Preamble #####################echo "Test of Assignment $KASSANDRA_EX"echoif test ! -f Chebyshev.maplethenecho "File Chebyshev.maple not found!"exitfi###################### End of Preamble ######################echo "starting maple ..."maple -q << EOF_maplefifo_out_filename := \`$FIFO_OUT\`:fifo_in_filename := \`$FIFO_IN\`:read (\`$KASSANDRA_HOME/src2/Kassandra.maple\`):#################### Begin of Testprogram ###################read (\`Chebyshev.maple\`):if not assigned (Chebyshev) thenlprint (\`The variable Chebyshev is not defined!\`):stop:fi:if not type ([Chebyshev], [procedure]) thenlprint (\`Chebyshev is not a procedure!\`):stop:fi:n := ReceiveInteger ():x := ReceiveFloat ():result := Chebyshev (n, x):if not type ([result], [float]) thenlprint (\`Chebyshev does not compute a floating-point number:\`):print (result):stop:fi:SendFloat (result):##################### End of Testprogram ##################### synchronization with other Maplerequest := ReceiveInteger ():quit:EOF_mapleThis test program on the student's side consists of a Bourne shell script. First itmakes sure that the �le Chebyshev.maple exists. Then the Maple program on thestudent's side is started. For the sake of convenience the Maple code is also contained

10 Urs von Mattwithin the shell script. This enables us to perform certain preprocessing on the testprogram. For instance, the names of the pipes, that are necessary for the interprocesscommunication (cf. Fig. 3), are stored in the global variables fifo_out_filenameand fifo_in_filename. Furthermore, the procedures for sending and receiving data(SendInteger, ReceiveInteger, SendFloat, and ReceiveFloat) are de�ned by the�rst read-statement.After these initializations the �le Chebyshev.maple is read, and it is checkedwhether the variable Chebyshev has been assigned a procedure. If all has gone wellup to now the actual test data is received. In our case only a single test is performed.Of course, a real test program would carry out a number of tests with carefully selectedtest data.We call the student's procedure with the test data. If no
oating-point numberis returned an error is signalled. Otherwise, the result is sent to the assistant's testprogram for further analysis. At the end we have a short piece of synchronization codeto make sure that both test programs terminate at the same time.We are now ready to present the corresponding test program on the assistant'sside: #!/bin/sh# Initializations. $KASSANDRA_HOME/src1/maple.shmaple -q << EOF_maple# Initializationsfifo_out_filename := \`$FIFO_OUT\`:fifo_in_filename := \`$FIFO_IN\`:read (\`$KASSANDRA_HOME/src1/Kassandra.maple\`):#################### Begin of Testprogram ###################Chebyshev := proc (n, x)local T2, T1, T;if n = 0 thenRETURN (1)elif n = 1 thenRETURN (x)elseT2 := 1;T1 := x;for k from 2 to n doT := collect (2*x*T1 - T2, x);T2 := T1; T1 := T;od;RETURN (T)fi;end:# Initialization of the random number generator_seed := `date +%m%d%H%M%S`: # date is evaluated by the shelln := 2 + rand (10)();x := (rand (4*10^10)() - 2*10^10) / Float (1, 10);SendInteger (n):SendFloat (x):

Kassandra: The Automatic Grading System 11ref := Chebyshev (n, x):result := ReceiveFloat ():if abs (result - ref) <= Float (1, -7) * abs (ref) thenlprint (\`Your procedure Chebyshev is working all right.\`):system (\`Update -user $KASSANDRA_USER -ex $KASSANDRA_EX\`):elselprint (\`Your procedure Chebyshev is still erroneous.\`):fi:##################### End of Testprogram ##################### synchronization with other MapleSendInteger (0):quit:EOF_mapleThis test program also consists of a Bourne shell script. As soon as Maple is startedand the necessary initializations have been performed, we de�ne the reference solution.Notice that this procedure Chebyshev is coded non-recursively in contrast to thestudent's implementation. But since we are assessing programs by executing themthis does not cause any problems.In order to generate random numbers for n and x that di�er from one test run tothe next we initialize the _seed of Maple's random number generator by the currenttime of day. The command date is a program under Unix which is called by theBourne shell prior to the execution of Maple.Afterwards, the actual test data is generated and transferred to the student'stest program. While the student is computing his answer the reference solution iscalculated by a call of the procedure Chebyshev. The student's result is receivedand analysed. If the answer is accurate enough the assignment is graded by a callof the program Update. Otherwise an error message is issued. Finally, the test pro-gram terminates after executing the synchronization code which corresponds to thesynchronization code in the student's test program.For this assignment a sample Kassandra session appears as follows:$ Kassandra -ex 991Test of Assignment 991starting maple ... n := 7x := -.636596708Your procedure Chebyshev is working all right.Assignment 991 has been accepted.As soon as the student has started Kassandra, the test data for this run is displayed.When his solution has passed this test the assignment is immediately graded. Byexecuting the Unix command Kassandra -ex the student can also obtain a list of allhis assignments that have already been credited.9.2. Sample Assignment in Matlab. Matlab assignments can be checked invery much the same way as Maple assignments. Since Matlab has only a single datatype, the matrix, we only need the two procedures SendMatrix and ReceiveMatrix totransfer data back and forth between the assistant's and the student's test program.

12 Urs von Matt9.3. Assignments in Compiled Languages. Kassandra is also well suited totest programs written in a conventional programming language like Modula-2, C,or Fortran. In this case we want to implement the test programs also in the sameprogramming language. Still we can use the process structure of Fig. 3.The student has to implement his solution as a procedure stored in a designated�le. The shell script on the student's side contains the Unix commands to compile andlink the student's procedure to a main program. This main program is provided bythe assistant, and it is responsible for the data transfer and the calling of the student'sprocedure.On the assistant's side we also need to write a test program in the same pro-gramming language. For this task a set of data transfer procedures is available. Thecorresponding shell script does little more than call the precompiled test program.These comments apply equally to programming languages like C, Fortran, Pascal,or Modula-2. In the case of Oberon, however, a few modi�cations to Kassandra becomenecessary. In Oberon it is not possible to write stand-alone programs that are executedby a Unix shell. Rather the entire Oberon system consists of a single process, as far asUnix is concerned. Furthermore, Oberon comes with its own user interface, and all theprocedures have to be activated from within this interface by interactive commands.As a consequence of this design philosophy we have implemented the student's side ofKassandra in Oberon as a set of modules. This means that the process structure onthe student's side in Fig. 3 is now realized in Oberon by means of di�erent modules.Thus the module Kassandra represents the interface to the assistant. Similarly, thetest programs on the student's side are also implemented as modules.On the other hand the test programs on the assistant's side are written in Modula-2, since they have to run as independent processes under Unix. Consequently, Fig. 3remains unchanged on the assistant's side.To illustrate this scheme we assume that the student has to implement the errorfunction erf(x) := 2p� Z x0 e�t2 dtaround the origin by means of the taylor serieserf(x) = 2p� 1Xk=0(�1)k x2k+1(2k+ 1) � k! :The student is asked to implement his solution as a module Erf, which could look asfollows: MODULE Erf;IMPORT Aufgabe993, Math;PROCEDURE* Erf (x: REAL): REAL;VAR k : INTEGER;term, sum, sum1: REAL;BEGINsum := x; term := x; k := 0;REPEATINC (k);term := -term*x*x / k;

Kassandra: The Automatic Grading System 13sum1 := sum;sum := sum + term / (2*k + 1)UNTIL sum = sum1;RETURN 2*sum / Math.sqrt (Math.pi)END Erf;PROCEDURE Test993*;BEGINAufgabe993.Test (Erf)END Test993;END Erf.System.Free Erf ~Erf.Test993The student is provided with a skeleton of this module, and all he has to do is to �ll inthe code for the procedure Erf. In order to check his solution the student only needsto compile his module and to activate the command Erf.Test993 by a simple mouse-click. Note that the module Erf imports the module Aufgabe993 which representsthe test program on the student's side. This module looks as follows:MODULE Aufgabe993; (* Student *)IMPORT Kassandra;TYPE ErfProc* = PROCEDURE (x: REAL): REAL;PROCEDURE Test* (proc: ErfProc);VAR ok : BOOLEAN;x : REAL;request: LONGINT;BEGINKassandra.StartTestExercise (993, ok);IF ok THENKassandra.ReceiveReal (x);Kassandra.SendReal (proc (x));(* synchronization with Assistant *)Kassandra.ReceiveInteger (request);Kassandra.SendInteger (0);Kassandra.EndTestExerciseENDEND Test;END Aufgabe993. (* Student *)The module Kassandra, which is imported by Aufgabe993, provides the procedures toinitiate and terminate a test run. Furthermore, it implements the mechanism for thedata exchange between the test program on the student's side and the assistant's side.It should also be pointed out that the student has to pass his solution as a proceduralparameter (parameter proc in Test). It is checked by the compiler whether thestudent's procedure matches its declaration in the module Aufgabe993.Finally, we can present the test program on the assistant's side:MODULE Aufgabe993; (* Assistant *)IMPORT Kassandra, MathLib, RealIO, SimpleIO;VAR x, ref, result: REAL;receipt : INTEGER;

14 Urs von MattPROCEDURE Erf (x: REAL): REAL;CONST Pi = 3.14159265358979323846264338328;VAR k : INTEGER;term, sum, sum1: REAL;BEGINsum := x; term := x; k := 0;REPEATINC (k);term := -term*x*x / FLOAT (k);sum1 := sum;sum := sum + term / FLOAT (2*k + 1)UNTIL sum = sum1;RETURN 2.0*sum / MathLib.Sqrt (Pi)END Erf;BEGIN (* Aufgabe993, Assistant *)x := Kassandra.Random () * 2.0 - 1.0;SimpleIO.WriteString ("x = ");RealIO.WriteReal (x, 9, 6);SimpleIO.WriteLn;Kassandra.SendReal (x);ref := Erf (x);Kassandra.ReceiveReal (result);SimpleIO.WriteString ("Your result: ");RealIO.WriteReal (result, 9, 6);SimpleIO.WriteString (" correct value: ");RealIO.WriteReal (ref, 9, 6);SimpleIO.WriteLn;IF ABS (result - ref) <= 1.0E-5 THENSimpleIO.WriteString ("ok.");SimpleIO.WriteLn;Kassandra.AcceptExerciseELSESimpleIO.WriteString ("You're out of luck.");SimpleIO.WriteLnEND;(* synchronization with Student *)Kassandra.SendInteger (0);Kassandra.ReceiveInteger (receipt)END Aufgabe993. (* Assistant *)This test program is written in Modula-2. An auxiliary module Kassandra providesthe necessary procedures for transferring data and accepting an assignment. A snap-shot of Oberon-Kassandra is presented as Fig. 4.REFERENCES[1] S. Barto�n, LEARN and SIFLEARN, University of Agriculture and Forestry, Brno, CzechRepublic, 1991.[2] B. Char, K. Geddes, G. Gonnet, B. Leong, M. Monagan and S. Watt,Maple V LanguageReference Manual, Springer-Verlag, New York, 1991.[3] G. E. Forsythe and N. Wirth, Automatic Grading Programs, Comm. ACM, 8 (1965),pp. 275{278.

Kassandra: The Automatic Grading System 15

Fig. 4. Oberon-Kassandra[4] P. Lira, M. Bronfman and J. Eyzaguirre, MULTITEST II: a program for the generation,correction, and analysis of multiple choice tests, IEEE Transactions on Education, 33 (1990),pp. 320{325.[5] C. Moler et al., MATLAB User's Guide, The MathWorks Inc., South Natick, 1990.[6] R. Myers, Computerized Grading of Freshman Chemistry Laboratory Experiments, Journal ofChemical Education, 63 (1986), pp. 507{509.[7] J. Piotrowski, The small computer assisted lecturing system, SIGCSE Bull., 20 (1988), pp. 8{12.[8] R. Posteraro, D. Blackwell and A. Huddleston, Techscore: A program for tabulating theresults of multiple choice questions and correcting multiple choice examinations, Comput.Biol. Med., 16 (1986), pp. 259{265.[9] M. Reiser, The Oberon System, User Guide and Programmer's Manual, ACM Press, New York,1991.[10] R. M. Rottmann and H. T. Hudson, Computer Grading As an Instructional Tool, Journalof College Science Teaching, 12 (1983), pp. 152{156.[11] E. Schreihofer, J. Foster, B. Gleason, H. Harting and S. Hiltz, Software tools for avirtual classroom, in Proc. of NECC '88, ed. W. Ryan, Int. Council Comput. Educ., Eugene,1988, pp. 230{236.[12] J. Taylor and D. Deever, Constructed-Response, Computer-Graded Homework, AmericanJournal of Physics, 44 (1976), pp. 598{599.[13] N. Wirth, Programming in Modula-2, Springer-Verlag, Berlin, 1985.[14] N. Wirth and J. Gutknecht, The Oberon System, Software|Practice and Experience,19 (1989), pp. 857{893.

