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With the advent of the DNA microarray technology, it became possible to 

study the expression of entire cellular genomes. Tanscriptional profiling alone 

can not provide a comprehensive picture of the cellular physiological state 

and it should be complemented by other cellular fingerprints. Transcriptional 

profiling combined with metabolic information of a systematically perturbed 

system can unravel the relationship between gene and metabolic regulation. 

In this context the transcriptional response of Arabidopsis thaliana liquid 

cultures (grown for 12 days under light and 230C) to 1-day treatment with 1% 

CO2 was measured by full genome cDNA microarrays. The Time series gene 

expression profiles were analyzed in the context of the known Arabidopsis 



  

thaliana physiology using multivariate statistics. Data analysis revealed an 

increase in the rate of CO2 fixation, biomass production and cell wall growth. 

The breadth of the information obtained from a single experiment validated 

the significance of the high throughput transcriptional profiling. 
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1. Introduction 
 

Advent of DNA microarray [Brown P. et al., 1999; Fodor et. al., 1997; 

Schena et. al., 1996] enables the simultaneous measurement of the expression 

of thousands of genes. DNA microarray provides vast amount of data which 

has to be processed and analyzed effectively to obtain underlying biological 

information. Several multivariate statistical techniques are used for data 

analysis [Quackenbush, 2002]. Data analysis can identify patterns of gene 

expression. Grouping of genes according to the expression pattern can 

provide greater insight about their biological function because, genes that are 

functionally related are expected to have similar expression pattern [Eisen, 

1998].  

 Transcriptional profiling alone cannot delineate the cellular function 

[Klapa et al, 2003]. A comprehensive analysis of the biological systems 

requires finger printing of the cellular responses at different levels of cellular 

function  

To study a system, whose comprehensive first principle model is not 

known, it is a common practice to systematically perturb the system and see 

how it behaves. Systematically perturbing a system means, intentionally 

perturbing one or combination of input variables of the system to a certain 
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level, keeping others constant, so that its effect in the output variables can be 

observed. This helps to find a relation between the variable that was 

perturbed and the variables that reflected the change. Similarly studying 

multiple perturbations involving different variables can be used to generate a 

comprehensive idea of the system.    

1.1 Motivation: 

High throughput analysis has driven the research from hypothesis based to 

data driven. The advantage of data driven analysis is, no prior hypothesis is 

required. Full genome DNA microarray being a high-throughput technology, 

can be used for simultaneous measurement of the _expression of all the genes 

of a cellular genome. The results obtained from a single experiment can not 

only verify the results obtained from multiple conventional experiments, but 

can also reveal lot of new information.  

 Genes that have similar expression pattern have a very high chance to 

be co-expressed or functionally related. So, comparison of expression patterns 

can reveal valuable information about transcriptional regulation and gene 

interaction. To the best of our knowledge, this was the first effort, to conduct 

a time series experiment in plants which can study dynamic response in 
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terms of expression profiles. Time series analysis also reveals the time scale 

response of genes and metabolites and difference between them. 

 Existing information about the metabolic pathways was used in 

conjunction with gene annotation to make use of the metabolic information 

for better understanding of the transcriptional profiling results. Arabidopsis 

thaliana was chosen as model plant because, it has fully sequenced genome 

and it is well studied. So the obtained results can be compared with the 

existing literature. CO2 perturbation allowed the known central carbon 

metabolism to be perturbed, so that effect of the perturbation can be studied 

at the transcriptional level in the context of the known metabolic pathways 

 

1.2 Objective and specific aims: 

Main objective of this thesis is to study the transcriptional profiling 

analysis of short term Arabidopsis thaliana response to elevated CO2 and how 

the knowledge about the metabolic network structure and regulation might  

be used in improving transcriptional profiling. To achieve this objective the 

following specific aims were pursued: 

 

1) To study short term time series response of A. thaliana liquid 

cultures to elevated  CO2  
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2) Use of full genome DNA microarray to study the response at 

genomic level. 

a) Use of TIGR TM4 open-source software for DNA microarray 

data analysis.  

3) Use of information obtained from well characterized metabolic 

pathways to better elucidate the clustering obtained from statistical 

techniques. 

4) Discuss the results in the context of the known Arabidopsis Thaliana 

physiology.  

 

1.3 Description of the thesis: 

Chapter 1: Describes the main objective and specific aims of the presented 

work, in the context of the transcriptional profiling research. A short 

description of each chapter of the thesis is also provided. .  

Chapter 2: It provides a brief introduction to DNA microarray technology 

and a detailed description of different normalization and clustering 

techniques used for microarray data processing and analysis. The 

techniques described were used to analyze the data of the present study.   
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Chapter 3: It describes the mechanism of the CO2 fixation in plants how it 

is affected by elevated CO2 based on previous studies. The consequences 

of the elevated CO2 to other pathways of the plants are also discussed.  

Chapter 4: Experimental design was explained. Data analysis steps were 

discussed in detail in the context of TIGR TM4 software. Results obtained 

were discussed in reference to established metabolic pathways and 

metabolic profiling results obtained for the same experiment.  

Chapter 5: The results obtained in chapter 4 was discussed in the context 

of the known Arabidopsis thaliana physiology and were compared with 

these from previous studies (as the latter were discussed in Chapter 2). 

Possible limitations of the statistical techniques used in data analysis and 

the experimental setup are also mentioned. 

Chapter 6: Ideas for future work based on the conclusions derived in the 

present one, concerning both the experimental design and the data 

analysis, are discussed. 
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2. Transcriptional Profiling: 
 

 The advent of oligo-nucleotide arrays and cDNA microarrays has 

enabled biologists to measure the expression levels of thousands of genes 

[Brown et al., 1999] in parallel. The wealth of data generated from DNA 

microarray can be used to develop a more complete understanding of the 

gene function, regulation and interactions. The most powerful applications of 

expression data (gene expressions obtained from microarray) is to study of 

patterns of gene expression across many experiments that study a wide array 

of cellular responses, phenotypes and conditions [Quackenbush 2001]. 

Identifying patterns of gene expression and grouping the genes according to 

the pattern might provide us much greater insight about their biological 

function and relevance. The genes with similar expression pattern are called 

co-expressed.  

 

Gene expression analysis is based on two main “assumptions”: 

1. Genes that are functionally related are expected to be co-expressed. For 

example Eisen et al. (1998) has shown that genes encoding for parts of a 

protein complex had similar expression patters.  
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2. Genes that are co-regulated in the gene regulation network are 

expected to be co-expressed.  

 

2.1   DNA microarray technology: 

Two different technologies are used for microarray slide preparation 

[Vivian et al., 1999]. Commercially it is manufactured by Affymetix [ 

http://www.affymetrix.com ]. It is produced by adding nucleotides 

sequentially using photolithographic technique to get desired sequence of 

oligo-nucleotides attached to the plate. The other technology cDNAs are 

printed onto chemically modified glass slides with the help of an arraying 

robot [Brown et al., 1999] and called spotted arrays. For this experiment 

spotted arrays printed in TIGR were used. In the rest of the document 

microarray refers to spotted array.  

The first step in the preparation of microarray slides is proper probe 

(the sequence that are arranged on the microarray) selection. Then the probes 

are spotted. The arrayed genes are probes that can be used to query pooled, 

differentially labeled targets derived from RNA samples from different 

cellular phenotypes to determine the relative expression levels of each gene. 

Two mRNA samples, one for control and another for query, from the 

tissues of interest are labeled with two different fluorescent dyes Cy3 and 
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Cy5. Then they are purified and hybridized on the arrays. After 

hybridization, slides are scanned and independent images for control and 

query channels are generated. The relative fluorescence intensities give us a 

measure of relative amount of mRNA in control and query. After image 

processing data are normalized. Normalization adjusts for differences in 

labeling and detection efficiencies for fluorescent labels and for difference in 

the quantity of initial mRNA from the two samples [Quackenbush, 2001]. 

The normalized value of the expression level for a particular gene in 

the query sample divided by its normalized value for the control is called 

“expression ratio” [Quackenbush, 2001]. Logarithm of the expression ratio is 

used because it is easy to understand. Genes that are up-regulated by a factor 

of two have a expression ratio of 2, hence log2(expression ratio) will have a 

value of 1. Similarly the genes that are down-regulated by the same factor 

will have a expression ratio 0.5 and log2(expression ratio) as -1. If the 

logarithm of expression level ranges between 1 to -1 then the expression level 

varies within 2 fold. So taking the logarithm of the expression makes the 

expression profile symmetric for a certain factor of up and down regulation.  

There are number of data analysis steps followed in sequence after the 

microarray slides are hybridized and scanned. TIGR TM4 software was used 

for microarray data analysis and the steps will be discussed in this context. 
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2.2 Image Processing 

 TIGR TM4 software spotfinder was used for image processing. The 

TIFF image files generated from the scanning of hybridized files is used for 

image processing. Image processing software takes the scanned image of both 

the dyes corresponding to each slide. Spotfinder generates TAV file which 

contains the information like position of the spot on the slide, intensity of the 

two dyes for each spot and whether the spot should be rejected or not.  

 

2.3 Data Normalization 

In many field comparisons are needed to extract conclusions, for an effective 

comparison appropriate normalization of the data is needed. In the context of 

DNA microarray analsis there is need for comparison among  

i. Two different dyes 

ii. Gene spots on the same slide 

iii. Gene spots on different slides 

In this process the source of systematic error that introduces difference 

between comparable data should be taken into consideration, so that data are 

compared only with respect to experimental perturbation. In the case of 

cDNA microarray analysis, such sources of systematic error arise in the 
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experimental process of cDNA microarray development and hybridization. 

Following are sources of systematic error: 

• Unequal quantities of starting RNA: in cDNA microarray RNA 

concentration of sample set is measured with respect to a reference. 

Equal amount of sample and reference RNA is taken so that they can 

be compared get relative expression of the sample with respect to 

reference.  

• Difference in labeling efficiencies: fluorescent dye is attached to a 

mRNA sample through a biochemical reaction. Some dye can have 

preferential binding to one of the mRNA samples. Hence that mRNA 

sample will always be shown at higher abundance compared to the 

other mRNA sample.  

• Difference in scanning efficiencies: sample and reference are attached 

with two different dyes and after hybridization the slide is scanned for 

two different dye intensities in two different channels. Difference in 

sensitivity of the scanner for the two dyes can cause one of the dyes to 

be detected more effectively.  

• Variation of the intensity across the slide: cDNA microarray is printed 

by a pen assembly and different parts (metablocks) of a microarray are 
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printed by different pens. If there is variation among pens, this will 

translate into variation in the spots printed by different pens.  

 

To account for the systematic errors various normalization methods have 

been proposed. In the rest of the text only those used in the present 

analysis in the context of MIDAS (TIGR TM4 software for normalization) 

are explained in greater detail.  

2.3.1 Total intensity normalization: 

Total intensity normalization can eliminate the biases caused by difference in 

labeling and scanning efficiencies of the two dyes. It can also compensate for 

the unequal quantities of starting mRNA of the two sets. The total intensity 

normalization is based on the following hypothesis [Quackenbush 2002]. If 

the two samples to be compared have equal weight of mRNA, if the average 

mass of each molecule is approximately the same then each sample will have 

equal number of mRNA. It is also assumed that arrayed genes on the 

microarray slide equally interrogate the two mRNA samples. Hence the total 

number of mRNA molecules attached to the microarray slide is same for the 

two samples. Intensity of a spot is proportional to the amount of mRNA 

bound to the spot. As the total amounts of mRNA with two different dies are 

equal, the total fluorescent intensity for each die will also be equal. This can 
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be checked by calculating the ratio of sum of intensities of two dyes, called 

normalization factor and is given by  

 

∑

∑

=

==
array

array

N

j
j

N

i
i

total

G

R
N

1

      ……………………….. (2.1) 

where Ri and Gi corresponds to the intensity of the red and green dye (two 

dyes used for two samples) for ith gene and Narray is total number of genes in 

the slide. In absence of any systematic error Ntotal value should be 1. When the 

value is not 1, then one of the samples (depending on which one is taken as 

reference) is scaled up or down depending on the value of Ntotal, so that, after 

the scaling the sum of the intensities of both the dyes are same.  This process 

is equivalent to subtracting a constant from the logarithm of expression ratio.  

log2(ti) = log2(Ti) – log2(Ntotal)   …..…………………….(2.2) 

where, ti is normalized expression ratio and is given by 

i

i
i G

R
t

totalN
=       …………………………(2.3) 

Ti is expression ratio before normalization and is given by 

i

i
i G

R
T =           …………………………(2.4) 

Narray can be the number of genes on a section of the slide, a whole slide or 

number of slides. In the same way as above, in stead of comparing mean 

intensities, median intensities of the two samples can also be equated.  
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Figure 2.1: RI plot before after total intensity normalization. (R-I plot obtained 
from the data of one of the time points of the experiment, 
displaying the ratio of the intensities (log2(Ri/Gi) ) as a function of 
the product of the intensities ( log10(Ri*Gi) ) before and after total 
intensity normalization.)   

2.3.2 Lowess: 

It is observed very often that log2(Ri/Gi) values can have a systematic 

dependence on intensity [Yang Y. et al., 2002 and Yang I. et al., 2002], which 

most commonly appears as a deviation from zero for low or high intensity 

spots. This leads to a long tail in R-I plot (plot of ratio of the intensities 

(log2(Ri/Gi) ) as a function of the product of the intensities, log10(Ri*Gi)). 

Locally weighted regression (Lowess) [Cleveland et al 1979] can take care of 

this systematic error in microarray data. It carries out a locally weighted 

regression between log10(Ri*Gi)and log2(Ri/Gi) and gets the best fit curve 

which predicts log2(Ri/Gi) as a function of log10(Ri*Gi). Best fit curve, which 

captures the systematic error in the data, is subtracted from each data 

(log2(Ri/Gi)) point to remove the systematic error in the data. The weights 
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assigned in this locally weighted regression are function of the distance of the 

data points from the fitted curve. If a point is far from the curve then it has 

very low weight, as the point has more chance of being an outlier. Lowess 

carries out the regression for each block of the microarray slide separately. 

Lowess can also be applied globally by considering whole data set (all the 

spots of the microarray slide).   

 

Figure 2.2: RI plot before and after lowess normalization  
 

The data after total intensity normalization in Fig 2.2 shows a systematic bias 

in RI plot. The plot is showing a small tail at low intensity values due to 

systematic error. This error is eliminated in the data after lowess 

normalization (Fig 2.2).   
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2.3.3 Standard Deviation Regularization: 

In the above normalization methods mean intensity of the two sets are 

equated. How the points are scattered around the mean is also an important 

criterion to study. In a spotted array different meta-blocks are printed by 

different pens, so the spots may vary slightly from meta-block to meta-block 

due to difference in pen. Standard deviation regularization scales the data so 

that there is same variation for all the meta-blocks. [Yang Y. et al., 2002], 

It is assumed that the mean of log2(ratio) is already zero for each meta block, 

by applying the normalization methods discussed above. So the variance of 

the nth meta-block will be given by 

( )∑= N

i in T 2
2

2 )(logσ    ….…….………………..(2.5) 

where Ti is ratio of the dye intensity for ith gene and is given by 

i

i
i G

R
T =      …………………………(2.6) 

N is the number of spots in a meta-block. Appropriate scaling factor for the jth 

meta-block is given by 

metablock
metablock

NN

k
k

j
ja /1

1

2

2









=

∏
=

σ

σ
   …………………………(2.7) 

where Nmetablock is the number of meta-blocks in a slide. All the elements of the 

jth meta-block is scaled by dividing them with the scaling factor. Hence  

j

i
i a

T
T

)(log
)(log 2

2 =     …………………………(2.8) 
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Where, Ti is the ratio of red to green dye intensity for the ith gene in the jth 

meta-block. This is same as taking the aj th root of all the intensities of the jth 

meta block. So the transformed intensities after the normalization become:  

Or [ ] ja
ii GG /1'=   and   [ ] ja

ii RR /1'=    …………………………(2.9) 

 

 

Figure 2.3: RI plot before and after standard deviation normalization.   
 

2.3.4 Flip dye analysis: 

By performing a flip dye analysis biases that may occur during labeling and 

scanning, for example, some die may preferentially bind to mRNAs, can be 

eliminated [Quackenbush, 2002]. If one of the dyes has higher average 

intensity over the other, then the sample tagged with that dye will show 



 

 17 
 

higher expression, which is misleading. So the same experiment is carried out 

by swapping the dyes among the samples. If there are two samples A and B, 

then they can be tagged by two possible combinations, red and green or green 

and red dye respectively. In the first case when A and B are attached with red 

and green dye respectively, the ratio will be given by 

i

i

i

i
i B

A
G
R

T
1

1

1

1
1 ==      …..……………………(2.10) 

After the dyes are reversed the ratio will become 
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As the same experiment is being performed and only the dyes are reversed, 
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If the measurements are consistent then the value of log2(Ti1*Ti2) is expected to 

be zero, if it is not zero then close to zero. But if the value is far from zero, 

then the measurements are inconsistent. Either one of the measurements or 

both could be erroneous. The user can decide how stringent the rejection 

criteria of the erroneous data would be. Stringent criteria means only a small 

range of values around zero is acceptable.  
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Figure 2.4: RI plot before and after flip dye normalization. Before 
normalization the RI plots has long tails and look like mirror image 
with respect to the line y =0 line. After normalization the dye based 
bias is gone   

 

2.4 Clustering Methods/ Statistical Analysis of DNA Microarray 
Data: 

 
Several clustering algorithms are used for the identification of the patterns in 

the gene-expression data. Clustering techniques can be classified as decisive 
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or agglomerative [Quackenbush 2001]. A decisive method begins with all 

elements in one cluster that is gradually broken down into smaller and 

smaller clusters. Agglomerative techniques start with single member clusters 

and gradually fuse them together. There are two types of clustering 

algorithms supervised or unsupervised [Quackenbush 2001]. Supervised 

methods use existing biological information about specific genes that are 

functionally related to ‘guide’ the clustering algorithm. Most of the 

algorithms described in this chapter are unsupervised. 

 

2.4.1 Distance Metrics:  
Suppose N number of experiments is conducted to study the expression 

profiles of M genes. Then the expression of a particular gene in N 

experiments can be represented by a single point in N dimensional space. 

This is called expression space, as it has the same number of dimension as the 

number of experiments. Clustering algorithms group the genes together 

based on their “distance” from each other in the expression space. Distance 

gives a measure of similarity between the genes. There are various methods 

for calculating distances.  
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1. Euclidean distance is the most commonly used distance. It is a metric 

distance. Following are the characteristic of metric distances 

[Quackenbush 2001]. If dij is the distance between two vectors i and j, 
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where, ikx and jkx  are expression level of ith and jth genes respectively 

and n is the number of experiments 

• Distance must be positive and definite, dij >o 

• Distance must be symmetric,  dij = dji 

• An object is zero distance from itself, dii = 0 

• It follows triangular inequality 

2. Manhattan distance is given by:  

 ∑
=

−=
n

k
jkikij xxd

1
||             …….…………………… (2.15) 

 where n is the dimension of the expression space [Heyer et al., 1999].  

3.     Pearson correlation is given by [Eisen et al., 1998] 
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Gi, offset is the mean and Фi is the standard deviation of observation of the 

ith gene.  

4.     Cosine correlation is given by the following expression [Eisen et al., 

1998] 

        C( ikx , jkx ) = 
jkik

n

k
jkik

xx

xx∑
=1      ….…………………… (2.18) 

Distance between two clusters can be calculated in different ways: 

Average linkage clustering: This is most frequently used. The distance between 

two clusters i and j is calculated by calculating the average of the distance 

between each gene of ith cluster with all other genes in the jth cluster. Two 

clusters with lowest average distance is joined together to form a new cluster. 

Complete linkage clustering: Complete linkage clustering is known as the 

maximum or furthest-neighborhood method. The distance between two 

clusters is calculated as the greatest distance between the members of 

relevant clusters. This method often produces clusters that are often similar in 

size.  

Single linkage clustering: The distance between two clusters is calculated as the 

smallest distance between the members of the relevant clusters. In this 

method there is a sequential addition of single samples in to an existing 
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cluster. This produces trees with many long, single addition branches 

representing clusters that have grown by accretion. 

 If the expression level of a gene at each time point is viewed as a 

coordinate, then the standardized expression level of each gene at all n time 

points describes a point in n dimensional space, and the Euclidean distance 

between any two points in this space can be computed. It can be shown that 

the two points for which the distance is minimized are precisely the points 

that have the highest correlation. In other words, genes pairs with highly 

correlated expression pairs are close in expression space. It should be noted 

that simply using Euclidean distance without standardizing the data is 

ineffective, because gene pairs whose expression patterns have the same 

shape but different magnitudes will not score well.  

 To gauge the measure of a performance, one might consider taking 

gene pairs those are known to be co-regulated or functionally related, and 

computing the score (distance or correlation) of each pair. These scores could 

then be compared with the scores of unrelated gene pairs. The measure that 

gives high scores only to related genes would be chosen. Unfortunately 

neither Euclidean distance nor Pearson Correlation consistently gives high 

scores only to related gene pairs. In fact, not all related genes are coexpressed, 

and some unrelated genes have similar expression patterns. Because there is a 
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connection between coexpression and functional relation, coexpressed genes 

provide excellent candidates for further study. However, the connection is 

complex, and it cannot be derived so easily [Heyer et al.,1999]. 

 Two genes may be close according to one distance definition but may 

be far apart according to other. So the way we define distance between two 

expression vectors has a profound effect on the cluster they produce. 

 To study gene expression patterns statistical and clustering techniques 

have been proposed. In the rest of the text only the techniques that were used 

for the resent analysis will be discussed in detail.  

2.4.2 Hierarchical Clustering:  

Hierarchical clustering is one of the first and widely used clustering 

techniques for expression data. The reason being, it is simple and the results 

can be visualized easily. Hierarchical clustering is an agglomerative approach 

in which expression profiles are joined in groups, which are further joined 

and this continues till completion, so that finally it forms a single tree. The 

algorithm of Hierarchical clustering is as follows. Initially each cluster 

contains a single gene. Then the pair-wise distance is calculated for all of the 

genes to be clustered. If they are formulated in a matrix form it forms a 

square matrix which is symmetric. This matrix is called distance matrix or 
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similarity matrix. This matrix is scanned to figure out smallest value (if 

Euclidean distance is used, because it selects the genes that are closest in the 

expression space) or highest value (if Pearson correlation distance is used, 

because it finds the genes that have most similar expression profile). These 

two genes are most similar or closest, hence they are clustered together. If 

several pairs have the same separation distance, a predetermined rule is used 

to decide between alternatives [Quackenbush, 2001].  A node is created 

joining these two genes, and gene expression profile is computed for the node 

by averaging observations for the joined elements [Eisen et al., 1998]. The 

similarity matrix is updated with this new node replacing the two joined 

element and the process for any set of n genes the process repeated n-1 times 

until only a single cluster remains.  

There are several variations in Hierarchical clustering that differs in the rule 

governing how distances should be calculated among the clusters as they are 

constructed. There are three ways of calculating distances between two 

clusters, they are average linkage, complete linkage and single linkage. They 

are explained in detail in section 2.5.1.  

There are several limitations of hierarchical clustering. Decisions to 

join two elements are based only on the distance between the two elements, 

and once the elements are joined they can not be separated [Tamayo et al., 
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1999]. This is a local decision making scheme that doesn’t consider the data as 

a whole, and it may lead to mistakes in the overall clustering. 

 

Figure 2.5: Limitation of hierarchical clustering. Hierarchical cluster start 
growing from the genes closest to each other, but they may belong 
to different cluster if overall picture is considered. 

 

The Fig 2.5 shows there are two distinct clusters and the red points 

belong to different clusters but close to each other in expression space. 

Hierarchical clustering will join the points which are closest to each other in 

expression space. So the red points will be clustered together. But these points 

belong to two different clusters. So two points might have minimum distance 

but that doesn’t necessarily mean that they have to belong to the same cluster. 

Hierarchical clustering has a shortcoming of suffering from lack of robustness 

and non-uniqueness problems [Tamayo et al., 1999]. An alternative approach 

to avoid some of the shortcomings are to use decisive clustering approach, 
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such as k-means or self organizing maps, to partition data into groups which 

has similar expression pattern.  

2.4.3 K- means clustering:  
 

This is a statistical algorithm [Velculescu et al., 1995] by which objects are 

partitioned into a fixed number (k) of clusters, such that the clusters are 

internally similar but externally dissimilar. If the advance knowledge of the 

number of clusters is known then k-means can separate the objects effectively. 

K-means clustering uses a supervised clustering algorithm that is 

conceptually simple but computationally intensive [Quackenbush 2001]. First 

all initial objects are randomly assigned to one of the k clusters. Then an 

average expression vector is calculated for each cluster which is eventually 

used to compute the distance between the clusters. Using an iterative method, 

objects are moved between clusters and intra and inter cluster distances are 

measured with each move. Objects are allowed to remain in the new cluster 

only if they are closer to it than to their previous cluster. After each move, the 

expression vectors for each cluster are recalculated. The shuffling proceeds 

until moving any more objects will increase the intra-cluster distances and 

decrease inter-cluster dissimilarity.  

Tavazoie (1999) used data gathered by Cho (1998) and applied k-

means clustering algorithm and found the members of each cluster to be 



 

 27 
 

significantly enriched for genes with similar functions. They used k means 

algorithm to cluster 3000 genes into different regulation classes. Algorithm 

was repeated for 200-400 iterations and partitioned the data into 10, 30 and 60 

clusters. It was observed that by 200 iterations the algorithm was converged. 

They finally chose 30-cluster partitioning because it provided the best 

compromise between number of clusters and separation between them. 

2.4.4 Principal Components Analysis (PCA):  
 

Principal Components Analysis (PCA) is a statistical technique that allows the 

key variables (or combination of variables) in a multidimensional data set to 

be identified. PCA determines those key variables in the data set that best 

explains the difference in the observations [Raychaudhuri et al., 2000].  

PCA is very effective when some of the data might contain redundant 

information. For example if a group of experiments are more closely related 

than we had expected, we could ignore some of the redundant experiments 

or can take some average vale of the data without losing any 

information[Qucakenbush 2001]. PCA projects a high dimensional data into a 

lower dimensional space so that we can find the view, that gives the best 

separation of the data.  

Given a matrix of expression data, A, where each row corresponds to a 

different gene and each column corresponds to one of several different 
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experimental conditions. The ait entry of the matrix corresponds to ith gene’s 

relative expression ratio with respect to a control population under condition 

t. Using PCA each of the n components can be calculated for a given gene. To 

compute the principal components, the n (smallest of the number of 

experiments or number of genes) eigenvalues and their corresponding 

eigenvectors are calculated from the n x n covariance matrix of experimental 

conditions or time points. Each eigenvector defines a principal component. 

 

Figure 2.6: PCA of genes using TIGR TM4 software.  
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A component can be viewed as a weighted sum of the conditions (or time 

points) where the coefficients of the eigenvectors are the weights. 

Consequently, the eigenvectors with large eigenvalues are the once that 

contain most of the information; eigenvectors with small eigenvalues are 

uninformative [Raychaudhuri et al., 2000]. Data can be converted in terms of 

principal components from the following relation 

   ∑
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where tjv is the tth coefficient of the jth principal component. ita  is the 

expression measurement for gene i under tth condition. A’ is the data in terms 

of principal components and V is the set of ortho-normal eigenvectors.   

2.4.5 Statistical analysis using Significance Analysis of Microarrays 
(SAM): 
 

SAM is a statistical method to identify the genes that are undergoing 

considerable change in expression between two sets of microarray data 

[Tusher et al., 2001]. SAM is a hypothesis testing based on student t test. 

Suppose n1 observations of xi and n2 observations of yi are given. It is assumed 

that xi and yi are normally distributed. Then a hypothesis is created that the 

population means are equal. Then it can be found out if the observations are 

consistent with the hypothesis [Meyer, 1975]. For unpaired SAM, a statistic is 
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defined [Tusher et al., 2001] based on the ratio of change in gene expression to 

standard deviation in data for that gene.   
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where )(ix  and )(iy  are defined as the average levels of expression for gene i 

in two different sets. s(i) is the standard deviation of repeated expression 

measurements.  
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so is a positive constant which ensures the variance of d(i) is independent of 

gene expression.  

Genes are ranked according to the magnitude of their d(i) values, therefore 

d(1) has the largest relative difference, d(2) has the second largest and d(i) has 

ith largest difference.   
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A large number of surrogate data is generated by permutation of the data 

used for analysis. For each of the permutations relative differences dp(i) were 

also calculated and the genes were ranked in the same way, so that dp(i) has 

the ith largest relative difference for pth permutation. Expected relative 

difference was calculated by  
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Where N is the total number of permutations. To identify the significant 

changes in expressions, observed relative difference d(i) is plotted against the 

expected relative difference dE(i). For vast majority of the genes d(i) and dE(i) 

values are expected to be same, hence they should be close to d(i) = dE(i) line. 

Some genes can also be far from the line. If the distance of a gene from the 

line is greater than a threshold value, say delta (Δ), that gene can be called 

significant [Tusher et al., 2001].  
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Figure 2.7: SAM graph.  
 

SAM can also give a measure of false discovery rate (FDR). It’s a measure of 

percentage of genes identified as significant by chance. To determine the 

number of falsely significant genes generated by SAM, two parallel cutoffs 

were defined. 

Cutoffs are lines on both sides of d(i) = dE(i) and parallel to it. The distance of 

the parallel lines from the line d(i) = dE(i) is given by the threshold value. The 

genes that are above the upper line can be called significantly induced and 

the genes which are lying below the lower line are called significantly 

repressed. The number of falsely significant genes corresponding to each 

∆ 

∆ 

Positively Significant 
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permutation was computed by counting the number of genes that exceeded 

the horizontal cutoffs for that permutation. The estimated number of falsely 

significant genes is the average of the significant genes found in all the 

permutations. 

2.4.5 Paired SAM: 
 
In control and perturbed experiments plants were harvested at same time 

points. So the difference in expression level of the perturbed and control 

samples should be compared for each time points separately. If unpaired 

SAM (explained in 2.4.5) is used, then it calculates the average expression 

level of the control and perturbed sets separately and finds the genes that are 

differentially expressed based on the averages calculated. Here we lose the 

information of individual time points by taking the average. Paired SAM 

computes the difference in expression of a gene between controlled and 

perturbed at each time point and calculates the statistic based on that. If there 

are K time points [1, 2, 3,… k] and xij of control  pairs with yij of perturbed, ri  

and si  are calculated from the following equations [Stanford SAM manual]: 
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Paired SAM can only be used if there is equal number of observations (time 

points) in the two sets to be compared and the samples are collected at the 

same time points. 

 
2.4.5.2. One class SAM: 
 

Both two class paired and unpaired SAM are used when there are two sets of 

data and the objective is to find out what are the genes that make the two sets 

different.  But when there is only one set of data, then the objective is to find 

out variables (here genes) that are most important (undergoing huge change 

in expression).  For calculating the SAM statistic di, for ith gene, the variables ri 

and si  are computed as follows [Stanford SAM manual]: 
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Paired SAM and one class SAM differ in the way ri and si are calculated from 

that data, but calculation of di and finding the significant genes is similar to 

that of unpaired SAM.   
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3. Plant Physiology Under Conditions of Elevated CO2. 

 

3.1 Photosynthesis and CO2 fixation in plants:  
 Plants are the central link in the transformation of the inorganic CO2 of 

the atmosphere to the organic carbon of the biosphere by photosynthesis. 

Photosynthesis is the process of converting light energy to chemical energy 

and storing it in the form of sugar, carbohydrate and lipids [Dey et al., 1996].  

C3 and C4 are two different types of photosynthesis techniques. They are 

called C3 and C4 because in these two techniques CO2 is first incorporated 

into a 3-carbon and 4-carbon compound respectively. The vast majority of 

plants we see around us assimilate carbon dioxide via C3 photosynthetic 

pathway. In brief, CO2 enters the leaf through the stomata, and diffuses into 

the mesophyll cells where ribulose bisphosphate carboxylase (RuBisCo) 

catalyzes the carboxylation (addition of CO2) of ribulose bisphosphate (RuBP) 

to form two PGA (Phosphoglycerate – a three carbon compound) molecules 

(fig 3.1). 

Although the functional essence of C4 type of CO2 assimilation is identical to 

the C3 pathway, the primary mode of CO2 capture is substantially more 

efficient. By contrast to C3 systems where the carboxylating reactions are 
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sequestered only in the mesophyll, C4 photosynthesis employs two tissue 

types, the mesophyll and the bundle sheath cells to achieve the same result. 

 
Figure 3.1: Diagrammatic representation of C4 photosynthesis.  

Figure was obtained from the website http://www.biologie.uni-
hamburg.de/b-online/e24/24b.htm  

 

C4 enzymes are located in the mesophyll, while the C3 enzymes involved in 

the Calvin cycle are specific to the bundle sheath. In short, CO2 enters through 

the stomata and diffuses into the mesophyll tissue where it is fixed by 

Phosphoenolpyruvate Carboxylase to form oxaloacetate (Fig 3.1) which is 

then converted into malate (a 4-carbon molecule), and transported into the 

bundle sheath cells. Here, the C-4 acid is decarboxylated and the released CO2 

re-fixed by Rubisco and assimilated through the enzymes of the 

photosynthetic carbon reduction cycle to form sucrose and starch. Because 
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the C4 pump is highly efficient at PEP (phosphoenolpyruvate) carboxylation, 

the Rubisco in the bundle sheath is super-saturated with CO2 such that 

photorespiration is virtually eliminated.  

 

 Photosynthesis comprises of two parts [Lehninger, 2002]: light and 

dark reactions. In light reaction plant uses light energy to produce the energy 

storing compounds, the ATP and NADPH. Subsequently in the dark 

reactions, ATP and NADPH are used in the CO2 fixation in Calvin cycle.  

 In plants CO2 fixation takes place in Calvin cycle (fig 3.2). The cycle 

spends ATP as an energy source and consumes NADPH as reducing power 

to produce the sugar. Calvin cycle comprises of three separate phases.  

• In phase 1 (Carbon Fixation), CO2 reacts with five-carbon sugar named 

ribulose bisphosphate (RuBP) to produce 3-phosphoglycerate. The 

enzyme that catalyzes CO2 fixation is called ribulose bisphosphate 

carboxylase (RuBisCo). It is the most abundant protein in chloroplasts 

and probably the most abundant protein on Earth [Lehninger, 2002].  

• In phase 2 (Reduction), ATP and NADPH produced from the light 

reactions of photosynthesis are used to convert 3-phosphoglycerate to 

glyceraldehyde 3-phosphate, the three-carbon carbohydrate precursor 

to glucose and other sugars.  
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• In phase 3 (Regeneration), more ATP is used to convert part of the 

glyceraldehyde 3-phosphate pool back to RuBP, thereby completing 

the cycle. 

 
Figure 3.2: Calving cycle reaction  

Figure was obtained from the website  
http://www.msu.edu/~smithe44/calvin_cycle_process.htm  

 

For every three molecules of CO2 that enter the cycle, the net output is one 

molecule of glyceraldehyde 3-phosphate (G3P). For each G3P synthesized, the 

cycle spends nine molecules of ATP and six molecules of NADPH 

[Lehninger, 2002]. The light reactions sustain the Calvin cycle by regenerating 

the ATP and NADPH.  

The enzyme rubisco, that catalyses the carboxylation reaction of RuBP in 

Calvin cycle, also catalyses the condensation of O2 with RuBP to form 3-
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phosphoglycerate and phosphoglycolate (fig 3.3). This process is called 

photorespiration. In photorespiration oxygen competes with CO2 for active 

sites of rubisco. If CO2 concentration increases carboxylation of RuBP will be 

preferred over oxygenation, leading to increase in net photosynthesis rate.  

 

Figure 3.3: Carbon fixation reactions.  
Figure was obtained from the website 

http://www.usd.edu/biol/courses/Principles/Biol164/photorespiration.gif.  
 

3.2 Plant response to elevated CO2 levels: 
 CO2 is the main source of carbon for the production of all the organic 

compounds in the plant. Therefore any changes in the ambient CO2 

concentration are expected to directly affect physiology of the plant. In light 

of the expected increase in the ambient CO2 concentration by the end of the 
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21st century, it is important to study the response of the plants to such an 

increase. Many studies have been carried out concerning this topic. 

Photosynthetic CO2 uptake and primary production increase in higher plants 

transferred to an elevated CO2 atmosphere for two reasons [Webber et al., 

1994] 1) Increased CO2 concentration will lead to relative increase in the rate 

of carboxylation reaction compared to the RuBP oxygenation reaction. This 

will lead to increase in the photosynthesis rate with respect to utilization of 

other resources like light, water and nitrogen. 2) At normal conditions 

Rubisco is not saturated, thus, a further increase in carboxylation rate can be 

achieved by increased CO2 concentration. But this effect can only operate 

when RuBP is in excess. First effect is more prominent when light is strictly 

limiting [Webber et al., 1994]. 

 Elevated CO2 will stimulate the carboxylation reaction catalyzed by 

Rubisco [Stitt et al., 1991]. However the rest of the plant may, for various 

reasons, be unable to utilize or store this additional carbohydrate. In this case, 

it is possible that long term and indirect effects become prominent, in which 

feedback regulation leads to an inhibition of photosynthesis [Stitt et al., 1991]. 

Therefore, the planning and interpretation of the experiments on the effect of 

increased CO2 levels on plant physiology clearly distinguish between the 

short and long term effects of CO2. Within each timeframe, it is important to 
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relate the results of CO2-enhancement to the basic understanding of 

photosynthetic metabolism, and how it is regulated. 

Short term effect: As mentioned earlier RuBP be used by two parallel 

reactions, i.e. carboxylation and oxygenation. It is also important to consider 

how the relative changes in the rates of carboxylation and oxygenation will 

interact with other reactions involved in photosynthesis. Here two general 

aspects need to be considered. Firstly, continued catalysis by Rubisco requires 

that a molecule of RuBP is generated for every molecule used in 

carboxylation or oxygenation. Therefore, an increased net rate of 

carboxylation will require an increased Calvin cycle activity, and increased 

supply of NADPH and ATP from the light reactions [Stitt et al., 1991]. 

Secondly an increased net rate of carboxylation will lead to an increased rate 

of carbohydrate (the end product of photosynthesis) production.   

 

Long term effect: The long term response of photosynthesis and carbohydrate 

content to elevated CO2 can be related to source sink status of the plant. 

Enhanced CO2 frequently leads to a larger stimulation of photosynthesis in 

young seedlings than in older plants [Stitt et al., 1991].  

 Continued catalysis of Rubisco requires that RuBP is regenerated at a 

higher rate to cope up with the increased rate of reaction. An increased rate of 
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carboxylation will also require an increased rate of end-product synthesis. So 

the limitation of the rate of the reaction can be classified in the following three 

cases: 

RuBisCo Limitation: This situation appears if photosynthesis is limited by 

Rubisco. “Rubisco has a very high affinity for RuBP [Andrews et al., 1987] 

and is often fully saturated in-vivo” (i.e. every active site contains a molecule 

of RuBP). When the reaction is not limited by RuBP regeneration, an 

increased rate of RuBP consumption can be matched by an increased rate of 

RuBP production, Rubisco will remain RuBP saturated. So increased reaction 

rate will require more RubisCo production. 

RuBP regeneration limitation of Photosynthesis: If carboxylation is occurring 

at a faster rate than RuBP regeneration, then the RuBP concentration will 

decrease and Rubisco activity will be restricted. This is referred to as RuBP 

regeneration limitation of photosynthesis. Enhanced CO2 will still lead to an 

increased net rate of photosynthesis when RuBP regeneration limits the rate 

of photosynthesis for the following reason. Normally, a considerable portion 

of available ATP, NADPH and Calvin cycle activity is involved in 

regeneration of RuBP which is subsequently oxygenated. In enhanced CO2 

the rate of oxygenation will be reduced leading to a more efficient use of 

RuBP.  
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Limitation of photosynthesis by end product synthesis: The rate of 

photosynthesis can also be limited by the rate at which the immediate 

products of CO2 fixation (phosphorylated intermediates) are converted into 

non-phosphorylated end products (i.e. carbohydrate, amino acids and lipids). 

The major end products are sucrose and starch. Sucrose is synthesized from 

triose-phosphate in cytosol and starch is synthesized in the chloroplast 

stroma. If these reactions occur too slowly, phosphorylated intermediated 

will accumulate and the pool of Pi in the cytosol and chloroplast will be 

depleted. This eventually leads to an inhibition of photosynthesis because Pi 

is required in chloroplast for ATP synthesis. In this kind of conditions, 

increased rate of carboxylation or suppression of oxygenation and 

photorespiration merely generate excess electron transport and Calvin cycle 

capacity.  

 Exposure of plants (especially C3) to elevated CO2 frequently results in 

an immediate increase in the rate of CO2 assimilation; however, a reduction in 

photosynthetic capacity often occurs after a prolonged period (days to weeks) 

at elevated CO2. This down regulation, also called acclimation of 

photosynthesis is accompanied by a large increase in leaf carbohydrates. On 

average, large soluble sugar increase by 52% and starch content increases by 

160% [Cheng et al., 1998]. It was found that sugars can influence many 
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metabolic and cellular processes in both prokaryotes and eukaryotes through 

modulation of gene expression [Sheen et al., 1994]. It is well established that 

increased sugar levels can trigger repression of photosynthetic gene 

transcription. It was shown [Sheen et al., 1990] that transcription of seven 

photosynthetic genes, including rbcS, is repressed by glucose and fructose. 

Cheng et. al. [Cheng et. al., 1998] conducted experiments to study the effect of 

short and long term elevated CO2 on expression of Rubisco gene. For long 

term experiment, plants were grown continuously for 40 day at ambient or 

high CO2. High CO2 grown plants on average was found to have 2 day more 

advanced developmentally. This long term growth resulted in a 2-fold or 

greater increase in Glucose and Fructose and 3.5 fold increase in starch, 

whereas Sucrose amount remained relatively constant.  It was also found 

Rubisco decreased by 34%, rbcL mRNA decreased by 38% and rbcS transcript 

decreased by 60%. In another experiment, 30 day-old ambient CO2 grown 

plants were transferred to high CO2 for up to 12 days, and leaves were 

collected at the beginning of the light period on each sampling day of 

transcript measurement. Rubisco protein, rbcL and rbcS transcripts were 

measured on 3, 6, 9 and 12th day from transfer and was found to be less in 

elevated CO2 compared to ambient CO2. Abundance of rbcS-1A, rbcS-1B, rbcS-
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2B, rbcS-3B transcripts were measured through 24 hour period on day 6 of 

exposure [Cheng et al., 1998].  

 One of the most prominent consequences of elevated CO2 enrichment 

is decrease in Nitrogen concentration [Sherwood, 2001]. The reduction of 

nitrogen concentration caused by elevated CO2 is the result of increase in 

plant total carbohydrate amount resulting from enhanced growth in CO2 

enriched air. On exposing wheat to elevated CO2 also leads to higher rate of 

CO2 fixation. Increased CO2 fixation requires more reducing power for 

reduction of 1,3-bisphosphoglycerate to glyceraldehyde-3-phosphate in 

Calvin cycle reaction. Reduction of nitrate or nitrite is required for nitrogen 

assimilation in plants. At elevated CO2 as more reducing agent is used in 

Calvin cycle less reducing agent is available for reduction of nitrate or nitrite 

leading to a decrease in nitrogen assimilation [Bloom, 2002].  

 Atmospheric CO2 enrichment may also alter the abilities of plants to 

combat diseases that periodically afflict them [Sherwood, 2001]. A good 

example of this phenomenon comes from the experiment of Malmstrom and 

Field (1997), who studied CO2-induced growth responses of healthy oat 

plants and oat plants infected with the barley yellow dwarf virus (BYDV). In 

response to a doubling of the air’s CO2 concentration, they found that after 

only sixty days, total biomass in CO2-enriched healthy plants had increased 
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by 12% over total biomass in non-CO2-enriched healthy plants. In BYDV-

infected plants, however, biomass had increased by 36%, a response that was 

three times greater than the 12% increase observed in healthy plants.  

 Masle [2000] studied effect of elevated CO2 concentrations on wheat 

plants. He has grown two sets of wheat plants one at 350 ± 10 ppm and the 

other at 900 ± 12 ppm over 4 weeks. He observed plants under 900 ppm CO2 

grew significantly more than those under 350 ppm, showing a 52% to 93% 

increase in total dry weight at the end of the experiment and a 39% to 82% 

increase in leaf area. These differences mostly caused by an increase in C 

content per unit leaf area. There was an increase in sugar contents and the 

25% increase in rate of leaf photosynthesis per unit leaf area at elevated CO2. 

Another effect of elevated CO2 was to increase the cell division rate, achieved 

by reducing the time interval between successive divisions. A similar result 

was obtained by Kinsman et al. (1997) of enhanced cell division rates in the 

shoot apex of Dactylis under 700 ppm CO2 compared with 350 ppm.  

 Chen et al. studied response of potato tuber cell division and growth to 

elevated CO2. They observed that, elevated CO2 increased accumulation of 

total net biomass, and increased tuber growth rate by about 36 %, but did not 

increase the number of tubers. They also found elevated CO2 increased 

glucose concentration and soluble invertase activity. 
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 Microarray analysis can study expression of thousands of genes 

simultaneously (detailed information is given in the transcriptional profiling 

chapter) and has become an important technology for genomic analysis 

[explained in more detail in chapter 2]. Compared to validating expression of 

annotated genes, confirming functional role assignments for putative genes 

and determining functions for hypothetical and unknown genes is 

significantly more difficult. It is not easy to find the proper condition under 

which those genes are significantly regulated. Precise functional assignments 

generally require series of biochemical and genetic analyses to confirm a gene 

product’s action. However, microarray data provides information on pattern 

of gene expression that can give some insight of plausible function which can 

be eventually tested. Another advantage of microarray data is that, they 

provide support for the genes coding proteins for putative functions.  

Microarray was used to study transcriptional profiling for Arabidopsis thaliana 

by lot of scientists. Kim et al. used microarray to study the gene expression of 

chromosome 2 of Arabidopsis Thaliana [Kim et al., 2003] under different 

biotic (4 different bacterial infection) and abiotic stresses (three different 

abiotic stress heat, cold and salt). A total of 4437 genes were used for analysis 

and 334 genes were found to be differentially expressed in response to at least 

one biotic treatment. They found 497 genes that were differentially expressed 
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at 95% confidence under one or more of the conditions, which included 43 

genes that have been previously characterized and 247 genes coding for 

putative functions. A gene encoding Glutathione-S-transferase (GST, 

At2g29450) was found to be up regulated in response to all stresses. Genes 

coding for cold-regulated protein cor15a precursor and 15b precursor were 

up regulated.  

 

3.3 Arabidopsis thaliana: A Model Plant 
 
The Arabidopsis Thaliana plant has become a model system to study C3 plant 

physiology because of the following reasons: Arabidopsis has a small genome 

of 125 Mb and 5 chromosomes and was completely sequenced in the year 

2000. It is a well studied organism as most of the genes are well annotated 

and most of the pathways (metabolic and signaling) are well characterized. 

Hence it is easy to analyze and compare the results obtained with the results 

in literature. It has a rapid life cycle (about 4/6 weeks from germination to 

mature seed) for liquid cultures. It also has advantages like prolific seed 

production and easy cultivation in restricted space.  
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4. GENE EXPRESSION PROFILING of A. thaliana under 

conditions of elevated CO2 

4.1 Overview of the Experiment: 

 Two sets of Arabidopsis thaliana (Columbia strain) plants were grown 

for 12 days in Gamborg media at 230C under constant light. At the beginning 

of the 13th day, 3 and 4 plant liquid cultures, respectively, were harvested 

from the control and perturbed sets and they were used as reference of the 

plant growth up to that stage.  On the 13th day one of the plant sets was fed 

with air of ambient composition and the other set was fed with air of 1% CO2 , 

in the rest of the text it will be termed as control and perturbed set 

respectively. Two plants from each set were harvested at the time points 

0.5hr, 1hr, 1.5hr, 2hr, 3hr, 6hr, 12hr and 23hr of the 13th day.  Each harvested 

plant was immediately weighed, frozen in liquid nitrogen and stored at –

80oC for further analysis.  

 Experimental setup was shown in Fig 4.1A. It consists of a shaker with 

20 flasks containing liquid culture. A manifold was used to supply air to the 

flasks uniformly during the experiment. For the first 12 days manifold was 

not connected and the plants were grown in ambient air condition. On the 
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13th day the flasks were connected to the manifold to supply air of 1% CO2 for 

perturbed and air of ambient composition for control.  

 

 Each of the plants harvested were ground to a state of paste. 3 gm of 

the ground plant was used to extract RNA by Trizol extraction [protocol 

attached] and used for the hybridization on cDNA microarray slide.  

 At the phase of slide hybridization, a pool of equal amounts of mRNA 

from each sample (from both control and perturbed) was used as reference. 

The relative expression of each sample compared to the reference was 

measured by 2 DNA microarrays in which the dyes (Cy3 and Cy5) of the 

reference and the plant sample were swapped. Therefore, the total number of 

DNA microarray slides to be analyzed was:  2 x 19 (control set) + 2 x 20 

(perturbed set) = 78.  

Figure 4.1: A. Picture of the experimental setup in the growth chamber.  
  B. Picture of a shake-flask in this setup.  

B.A. 
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  2 x (19+20) TIFF images  

(27648 spots each) 

 

2 x (19+20) text files  

average number of  “nonzero” spots: 18202  (control) // 22118 (perturbed)     
 

 

TM4 Spotfinder

Lowess
Standard Deviation

Flip Dye
TM4 MIDAS

(19+20) text files  

average number of  “nonzero” spots: 12211 (control) // 14922 (perturbed)   

Step 1   
  

Filtering of “biased” biological replicates // 
 Geometric mean of remaining biological replicates at each timepoint

Step 3  
  

2 x 9 text files  

average number of  “nonzero” spots: 10207 (control) // 12422 (perturbed)   

Step 2   
 

Division of the profile at each timepoint with the profile at time 0h  
 (in each plant set)

Step 4   
  

2 x 9 text files  

average number of  “nonzero” spots: 9416 (control) // 9228 (perturbed)   

Normalization of the over time gene expression profile of the 
perturbed plant set with respect to that of the contro l   

Step 5   
  

9 text files  
average number of  “nonzero” spots: 7192 (ratio)  
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Figure 4.2: Flow chart of the steps that were followed for data analysis  

4.2 Image Processing:  

From the 78 DNA microarrays, 2x 78 TIFF images were generated. These 

were processed using the TM4 Spotfinder image processing software (version 

2.2.1_NoDB) as explained in Chapter 2. In the image processing the default 

values of the software parameters were used except of the following: 

• No QC filter was used. 

• Flagged values were generated. 

• Minimum spot size used =  7 

The “flags” generated for each spot in the analyzed microarrays provide a 

measure of the “quality” of the spot based on the underlying image 

processing algorithm. Since only the spots flagged either B or C in both 

channels (Cy3 and Cy5) are used by the normalization software (TM4 

MIDAS) for further analysis, the “flagging” of spots is equivalent to filtering 

out those that contain gross errors and any potential inclusion in the rest of 

the analysis could “skew” the results. Table 4.1 shows the number of 

“acceptable” spots for each of the plant sample, which will be considered in 

the rest of the analysis (at the bottom the average number of “acceptable” 

spots for each plant set after the image processing is also depicted).  
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Table 4.1: The table shows the list of acceptable spots of all the plants after 

image processing (step 1 of fig 4.2) 

Control:  

biological replicate 1 biological replicate 2 
time point flip dye flip dye 

20945 20973 19561 20313 
0 hr 20329 21320   

.5hr 15048 16315 18713 13981 

1 hr 15281 14289 19110 16424 

1.5 hr 19275 16834 18815 19556 

2 hr 16115 20789 17642 14238 

3 hr 18606 19940 17544 17615 

6 hr 19589 21809 20156 18841 

12 hr 13594 13481 19510 17658 

23 hr 16954 19728 20992 19519 

Average 17573.6 18547.8 19115.88889 17571.66667 
 

Perturbed:  

biological replicate 1 biological replicate 2 
time point flip dye flip dye 

20366 23824 20506 20783 
0 hr 20317 24146 22504 20272 
.5hr 23644 19110 22751 18797 
1 hr 21961 19568 21445 21124 

1.5 hr 23190 18074 23507 23894 
2 hr 23831 24377 23547 21442 
3 hr 19641 20780 24092 23940 
6 hr 24080 22704 23041 20406 
12 hr 25040 24949 21267 21109 
23 hr 21821 23495 22730 22655 

Average 22389.1 22102.7 22539 21442.2 
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4.3 Data Normalization and Filtering: 

4.3.1 Normalization using TM4 MIDAS: 

The 78 textfiles (TAV format) generated from Spotfinder were normalized 

using the TIGR TM4 MIDAS (version V2.16) software as discussed in chapter 

2. The following sequence of normalization methods was applied (if non-

default values were used for some of the parameters in each method, they are 

provided next to the method’s name): 

i) lowess:  Applied block-wise   

ii) standard deviation (SD): Applied block-wise  

iii) flip dye:  Cross log ratio data keep range: ± 2SD 

Table 4.2 shows the number of spots in each plant sample, which had  non-

zero intensity after the end of the normalization process, i.e. step 2 in fig 4.2 

(at the bottom the average number of “acceptable” spots for each plant set 

after the image processing is also depicted).  
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Table 4.2 Number of spots with non-zero intensity values after normalization  

Control: 

time points 
(hr) Two biological replicates 

15778 13948 
0hr 14625  

0.5 hr 9892 7422 
1hr 7179 10460 

1.5hr 10661 13700 
2hr 12710 12254 
3hr 12250 12482 
6hr 15121 15729 
12hr 7997 14380 
23hr 11334 14088 

 
Perturbed: 

time points 
(hr) Two biological replicates 

14285 13825 
0hr 13593 11856 

0.5 hr 12982 13488 
1hr 11232 13519 

1.5hr 11591 18652 
2hr 16359 17243 
3hr 11835 17991 
6hr 18295 15950 
12hr 21860 13946 
23hr 17242 12712 

 

4.3.2 Outlier detection 
In each plant set, two liquid cultures were harvested at each time point except 

of 0hr at which 3 and 4 cultures, respectively, were harvested for the control 

and the perturbed systems. Even though there is intra species biodiversity 
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among the plants, it is expected that the plants harvested at the same time 

point for each set would be at the same physiological level and would, 

thereby, have similar expression profiles. It is expected then that the 

biological replicates at each time point will statistically form separate 

populations, allowing for the phenotypic differentiation between the various 

timepoints. This implies that in the phylogenic tree generated by HCL the 

biological replicates at the same time point should be the closest.. 

 
 The limitation in the present study was the acquisition of only 2 

replicates at most of the time points but 0hr. In this case, even though some 

replicates did not cluster with the closest distance in the hierarchy tree, it is 

not easy to decide which of the two might contain gross errors and should be 

excluded from the rest of the analysis without the possibility of making the 

wrong decision. In the present analysis, all replicates at all timepoints were 

considered in the rest of the processing.  

4.3.3 Averaging of the Biological Replicates: 
 
The gene expression profile of the plants at each time point of the sampling 

period was represented by the geometric mean of the biological replicates 

harvested at the time point. In this way, genes that are not consistently 

present in all replicates are excluded from the rest of the analysis. The 
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number of non-zero spots at each time-point after this normalizaton step is 

shown in Table 4.3 (at the bottom the average number of “acceptable” spots 

for each plant set after the image processing is also depicted).  

Table 4.3 Number of spots with non-zero intensity values after averaging 

(after step 3 in fig 4.2) 

Control 
time point 

(hr) 
number of genes that have a 

nonzero intensity value 
0 12892 

0.5 6802 
1 6925 

1.5 10265 
2 11067 
3 11253 
6 13948 
12 7840 
23 10876 

Average 10207.56 
 

perturbed 
time point 

(hr) 
number of genes that have a 

nonzero intensity value 
0 10041 

0.5 11782 
1 10942 

1.5 11201 
2 15248 
3 11520 
6 15139 
12 13564 
23 12366 

Average 12422.56 
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4.3.4 Normalization with respect to 0 h time point: 
 
To correctly compare the control and perturbed sets and identify their 

difference due to the applied perturbation, the plants should be at the same 

growth level at the initiation of the perturbation.  Taking into consideration 

that the experiments of control and perturbed sets took place on different 

days, the gene expression profile of a culture at a particular time point was 

divided by that at 0h in the same plant set. It is clear that only the genes that 

have nonzero expression at the particular timepoint and time 0h  will still 

have nonzero expression after this normalization step.. The spots that have 

nonzero expression after this normalization procedure are shown in Table 4.4 

for each of the acquired time points.This again leads to loss for information. 

At each time point number of genes that have nonzero expression value after 

division is tabulated in table 4.3(at the bottom the average number of 

“acceptable” spots for each plant set after the image processing is also 

depicted).  
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 Table 4.4 Number of spots with non-zero intensity values after normalization 

with respect to 0h time point (after step 4 in fig 4.2) 

Control 

time point 
(h) 

number of genes that have a 
nonzero intensity value 

0 12892 
0.5 6401 
1 6535 

1.5 9494 
2 10133 
3 10275 
6 11506 
12 7393 
23 10117 

Average  9416 
 

Perturbed 
time point 
(hr) 

number of genes that have a 
nonzero intensity value 

0 10041 
0.5 8576 
1 8825 

1.5 8939 
2 9351 
3 9016 
6 9475 
12 9417 
23 9412 

Average 9228 

4.3.5 Elimination of initial time points: 
 
There was huge oscillation in the gene expression both in perturbed and 

control in the initial period (first 3 hours) of the experiment. So first few time 
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points show only transient effect and doesn’t show any permanent effect in 

the gene expression. The initial time points also show a huge oscillation both 

in the genomic and metabolomic level (Fig 4.3). This oscillation was not due 

to CO2 perturbation, but because of the physical perturbation of the system. 

Therefore only the last 4 time points (3, 6, 12 and 23hr) are considered for this 

analysis.  
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   Figure 4.3: Initial response at transcriptional and metabolic level.  

- 5
- 4
- 3
- 2
- 1

0
1
2
3

0 3 6 9 12 15 18 21 24

Time (hrs)lo
g

2(P
er

tu
rb

ed
/C

on
tro

l A
re

a)
 

Aspartate

Glutamate

Fumarate

sorbitol-6-
phosphate

- 5
- 4
- 3
- 2
- 1

0
1
2
3

0 3 6 9 12 15 18 21 24

Time (hrs)lo
g

2(P
er

tu
rb

ed
/C

on
tro

l A
re

a)
 

- 5
- 4
- 3
- 2
- 1

0
1
2
3

0 3 6 9 12 15 18 21 24

Time (hrs)lo
g

2(P
er

tu
rb

ed
/C

on
tro

l A
re

a)
 

Aspartate

Glutamate

Fumarate

sorbitol-6-
phosphate

Aspartate

Glutamate

Fumarate

sorbitol-6-
phosphate



 

 61 
 

4.4 Clustering of Experiments: 

In this experiment five time points from control and perturbed were used for 

analysis. It is believed that the gene expression of the perturbed set is going to 

be different from that of control set due to environmental stress. To verify this 

hypothesis, time-points of both control and perturbed were clustered. If there 

is a huge change in gene expression due to elevated CO2, then control and 

perturbed time points are expected to cluster separately.  When the time 

points of control and perturbed are clustered together using hierarchical 

clustering following phylogenic tree was observed (Fig 4.4).  

 

Figure 4.4: Clustering of the experiments.  
 

 Optimum number of clusters was found to be 3 from FOM. K-means 

clustering was used with optimum number of clusters as 3. One cluster was 
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found to contain all the control time points and 0th time-point of perturbed. 

The second cluster was found to contain 3, 6 and 23 hr time points pf 

perturbed. 12 hr time point of perturbed was clustered separately in the third 

cluster. These three clusters obtained are marked with green, red and blue 

color in Fig 4.4. Hierarchical clustering shows the three different clusters 

obtained from k-means clustering forms three different branches of its 

phylogenic tree. 

  

 Principal component analysis (PCA) could separate the control and 

perturbed experiments effectively (fig 4.5). PCA of the experiments show that 

first three components can capture 95% of the information. So each time 

points of the experiment can be represented as a single spot in three 

dimensional space. Three dimensional view of the experimental time points 

are plotted in fig 4.5. Each point in fig 4.5 is a time-point of the experiment 

and its color is same as the color it is assigned in fig 4.4. PCA three 

dimensional diagram shows that all the green and red points are clustered 

separately. The blue point which represents time point 12hr of perturbed 

stands apart, showing similarity with hierarchical and k-means clustering.  
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Figure 4.5: PCA of the experiments show that control and perturbed 
experiments cluster separately.  

 

4.5 Clustering of Genes: 

TIGR TM4 software MultiExperiment Viewer (MeV) (version 2.1) was used 

for clustering analysis as discussed in chapter 2.  

Control 
experiments 
3, 6, 12, 23 

Perturbed 
experiments 
3, 6 and 23 

Perturbed 
experiment 
12
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4.5.1 Analysis using Paired SAM: 

TAV files generated from normalization were loaded in MeV. As only last 4 

time points are considered there are 5 TAV files (4 time points and 0th time 

point) from each of control and perturbed set. There was lot of genes whose 

data was missing in some of the time points. If there is some missing data 

then the insufficient information can lead to erroneous result. A criterion of 

90% cutoff was used for selecting the genes which are used for analysis. This 

means a gene should have its expression value present in at least 9 of the 10 

files. With 90% cutoff it was found that 7321 genes are used for analysis. 

 

Figure 4.6: Results obtained from paired SAM.  
 
SAM analysis was performed for different delta values to check what would 

be the optimum value. It is a subjective question and the judgment may vary 

Genes used 
in SAM = 7231

Non-significant genes: 6402

Negatively significant genes: 465

Positively significant genes: 454
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from person to person. Analysis was performed for delta values 0.9, 0.925, 

0.95, 0.975 and 1 and found that a delta value 0.95 is optimum. For rest of the 

analysis positively, negatively and nonsignificant genes refer to the clusters 

obtained from paired SAM with delta = 0.95. 

 

 

 

Figure 4.7: The SAM curve with delta = 0.95.  
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Figure 4.8: Expression profiles of positively, negatively and non-significant 
genes from paired SAM.  

 

4.5.2 Analysis using one class SAM:  

The ratio of the expression of genes in perturbed and control were calculated 

by dividing the expression of the perturbed set by control set and used for k-

means clustering. A total of 5 files were obtained from the ratio. These data 

were used for one class SAM analysis.  The TIGR TM4 software doesn’t have 

one class SAM function, so Stanford SAM software was downloaded from 
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Control 
time points [0-5] 
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http://www-stat.stanford.edu/~tibs/SAM/ and was used for one class SAM 

analysis. 100% cutoff was used, i.e. the genes that are present at all the time 

points were considered for analysis. There were 4703 genes that were present 

in all the time points, and hence were used for one class SAM analysis. Delta 

value 1.65 was found optimum and it gives low FDR like 0.57% (which is 

comparable to the FDR obtained from paired SAM i.e. 0.648%). Number of 

significant genes found was 589, this is comparable to the number of 

significant genes obtained from paired SAM that has no missing value. So the 

criterion of calling a gene significant remains same in both paired and one 

class SAM. 318 and 271 genes were found positively and negatively 

significant from one class SAM (Fig 4.9). 
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SAM Plot

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

-6 -4 -2 0 2 4 6

Expected

O
bs

er
ve

d
Significant: 589
Median # false significant: Delta 1.65645

 

   Figure 4.9:  The SAM plot of one class SAM. 
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4.5.3 K-means clustering: 

The ratio of the expression of genes in perturbed and control were used for k-

means analysis. 

Finding optimum number of clusters for k-means is inherent problem of 

k-means, please refer to chapter 2 of thesis. “Right” number of 

clusters were found by plotting FOM with number of clusters.  

 

Figure 4.10: FOM values plotted with number of clusters to find optimum 
number of cluster 

  

From the Fig 4.10 it is seen that FOM value falls with number of clusters 

sharply till cluster 4. From cluster 4 to 6 FOM value remains almost static. It 



 

 70 
 

again falls at cluster 7. With number of clusters as 7 following clustering was 

observed: 

  

Figure 4.11: 7-Clusters obtained from k-means clustering with ratio of 
expressions.  

 

Fig 4.11 shows that clusters obtained from k-means analysis. Clusters were 

colored accordingly: 

Red: Strongly over-expressed 

Pink: moderately over-expressed 

Cluster 1 Cluster 2 Cluster 3 

Cluster 4 Cluster 5 

Cluster 6 

Cluster 7 
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Dark green: Strongly under-expressed 

Light green: Moderately under-expressed 

The rest of the clusters are not colored and indicates genes that are not 

undergoing considerable change in expression between perturbed and 

control.  

K-means clustering of the same data set with number of clusters as 4 gives 

following clustering pattern (Fig 4.12). Coloring of the genes is based on the 

coloring done in Fig 4.11. Coloring shows that cluster 1 (strongly over-

expressed) and part of cluster 5 (moderately over-expressed) of Fig 4.11 

constitutes the cluster 4 of Fig. 4.12. Similarly cluster 7 (strongly under-

expressed) and part of cluster 6 (moderately under-expressed) of Fig 4.11 

constitute the cluster 1 of Fig 4.12. 
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Figure 4.12: 4-Clusters obtained from k-means clustering with ratio of 
expressions. (Coloring of the genes is based on the coloring of 
clusters in Fig 4.11) 

 

 4.5.4 Comparison of clustering results: 
 
4.5.4.1 Comparison of paired SAM and k-means: 
 
A study was conducted to compare the results obtained from k-means, one 

class and paired SAM as measure of separating genes that show differential 

expression from control to perturb. As different cutoff were used for paired 

Cluster 1 
Strongly Under-expressed

Cluster 2 
Moderately Over-expressed 

Cluster 3 
Moderately Under-expressed 

Cluster 4 
Strongly Over-expressed 
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SAM (90%) and one class SAM or k-means(100%) clustering, number of genes 

used for analysis were different. Number of genes used in paired SAM was 

7321 whereas in k-means one class SAM was 4703. So the genes used for k-

means clustering are a subset of genes used in paired SAM.  

 

 

 

 

 

 

Figure 4.13: Number of genes used in k-means (4703), is a subset of number 
of genes used in SAM (7321). (The yellow box represents the genes 
used for k-means analysis and the violet box represents the genes 
used in SAM but not used in k-means.) 

.  

Fig 4.14 gives pictorial representation of clusters obtained from k-means 

analysis. Clusters colored red represents over-expressed genes and clusters 

colored green represents under-expressed genes.  Colored part of the 

rectangle represents the genes used for k-means clustering. The white part of 

the rectangle represents the genes used for paired SAM but not used for k- 

means clustering. 4 clusters obtained from k-means are shown in 4 different 

colors. Dark red and orange colored squares represent clusters of strongly 

Genes used in 
SAM but not used 

in k-means: 
 2618 

Genes used in 
k-means: 4703 
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and moderately over-expressed genes. Similarly dark green and light green 

squares represent clusters of strongly and moderately under-expressed genes 

respectively.  

 

 

 

 

 

 

 

 

Figure 4.14: Pictorial representation of clusters obtained from k-means 
analysis.  

 

A pictorial representation of overlap of clusters obtained from SAM and k-

means. Numbers of genes contained in each of the small rectangles are 

written in the white box inside 
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Figure 4.15: Shows the overlap of different clusters obtained from SAM and 
k-means clustering..   

 

This figure 4.15 represents following things: 

• Overlap of significant genes of SAM with cluster 1 and 4 of K-means 

(representing strongly over or under expressed genes) is much more 

than that of cluster 2 and 3 of k-means. This is expected, because 

cluster 1 and 4 of k-means represents “significant” genes from that 

analysis.  

• There are 302 and 141 genes shows “significantly” over and under-

expressed from k-means but are found non-significant by SAM. 

• 155 and 172 positively and negatively significant genes respectively 

obtained from SAM were not used for k-means clustering.  
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4.5.4.2 Comparison of paired SAM and one class SAM: 
Results obtained from paired SAM (using TIGR TM4 software) and one class 

SAM (using Stanford SAM software) were compared to study the similarity 

and differences between their results. Unlike k-means clustering, objective of 

both the techniques is to find out genes that are differentially expressed, 

whereas, the objective of k-means clustering is to group the genes that have 

similar expression profiles. As explained earlier, one class SAM uses only one 

set of data. The expression ratio of perturbed to control was used for one class 

SAM analysis, whereas control and perturbed sets were separately used for 

paired SAM. Though the question asked is same, one class and paired SAM 

uses different data sets and the algorithms to find out the significant genes 

are slightly different (refer to section 4.5.4). So it is expected that some of the 

genes will be identified as significant by one of these methods, not by the 

other. 90% cutoff (7321 genes) was used for paired SAM and 100% cutoff 

(4703 genes) was used for one class SAM. Following figure (Fig 4.18) gives a 

pictorial diagram of the overlap of the genes between one class and paired 

SAM. Overlap of one class SAM with paired SAM is much is much more than 

overlap between k-means and paired SAM. This is expected as paired and 

one class SAM has same objective, but they act on different type of data. 
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Figure 4.16: Overlap of the positively, negatively and non-significant genes 
from one class and paired SAM.   

 

The figure 4.16 represents following things: 

• Out of 318 genes that are found positively significant from one class 

SAM (the red box), 252 genes (79%) were also found significant from 

paired SAM, whereas 42% genes from the cluster of over-expressed 

genes from k-means were found to overlap with paired SAM.  

• Similarly 239 genes out of 271 (the green box) negatively significant 

genes (88%) overlap with that of paired SAM, whereas 54% of the 

genes overlap between under-expressed cluster of k-means and 

negatively significant of paired SAM.   
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• The violet box represents the non-significant genes from one class 

SAM.  

• There are 101 (47 + 54) genes that are found non-significant from one 

class SAM but significant from paired SAM. 

• There are 98 (66 + 32) genes that are found significant by one class 

SAM but non-significant by paired SAM.  

 
4.5.4.3 Comparison of k-means and one class SAM: 
 
For both the analysis k-means and one class SAM same data set was used, 

which is the ratio of perturbed to control expression. Same cutoff (100%) was 

also used. As explained earlier, objective of one class SAM is to find out the 

genes that are differentially expressed, whereas the objective of k-means is to 

group the genes that have similar expression profiles.  

Figure 4.19 shows a pictorial diagram of the overlap of the positively and 

negatively significant genes of one class SAM with 4 clusters obtained from k-

means.  
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Figure 4.17: A pictorial diagram of the overlap of the positively and 

negatively significant genes of one class SAM with 4 clusters 
obtained from k-means.  

 
The figure 4.17 represents following things: 

• Out of 522 genes found as strongly over-expressed from k-means 

analysis, only 198 genes are found positively significant from one class 

SAM. Overlap between over-expressed cluster of k-means with 

positively significant of one class SAM (38%) is less than paired SAM 

(42%).  

• Out of 310 genes found as strongly under-expressed from k-means 

analysis, only 135 genes are found negatively significant from one class 
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SAM. Similar to the positively significant, overlap of k-means with one 

class SAM (43%) is less than paired SAM (54%).  

• The shaded part on the diagram represents the non-significant genes 

(4114) from one class SAM.  

• 120 genes were found positively significant from paired SAM that are 

not part of cluster of over-expressed genes from k-means. 

• 136 genes were found negatively significant from paired SAM that are 

not part of cluster of under-expressed genes from k-means. 

4.5.5 Functional classification of significant genes: 
 
Genes that are found significant from paired SAM were broadly classified 

based on their function. Different functional categories were enzymes, 

transcription factors, ribosomal protein, transport related proteins, disease 

related proteins and proteins of unknown function. Classification was done 

separately for positively and negatively significant genes and were 

represented by different slice of the pie in figure 4.20.   The genes that are 

encoding enzymes were further classified based on whether or not they are 

also found significant by k-means and one class SAM. There were four 

classes, i) genes that are significant by k-means, one class and paired SAM, ii) 

genes that are significant by both one class and paired SAM, iii) genes that are 
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significant by paired SAM and over-expressed by k-means, iv) genes that are 

significant by paired SAM only.  

   

Figure 4.18A: Functional classification of positively significant genes from 
paired SAM. 
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Figure 4.18B: Functional classification of negatively significant genes from 
paired SAM. 
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4.6 Use of metabolic information in the analysis of gene 

expression profiles:   

The transcriptional activity of the following pathways has been studied. In all 

the figures, the enzymes encoded by the measured genes are colored red, 

green, blue and black. Colors represent the following gene expression level: 

Red: the gene found positively significant from SAM. 

Green: the gene found negatively significant from SAM. 

Blue: the gene found non-significant from SAM. 

Black: the gene is missing and not used in SAM analysis.  

(+): the gene is present in strongly over-expressed cluster of k-means 

(-): the gene is present in strongly under-expressed cluster of k-means 

(0): the gene is missing in k-means analysis but used in SAM. 

4.6.1 Photosynthesis and Calvin Cycle 

Photosynthesis is involved in fixation of atmospheric CO2. As CO2 is a 

substrate of the reaction catalyzed by Rubisco and increase in CO2 

concentration will directly affect the rate of carbon fixation and Calvin cycle 

activity. So this pathway was studied: 
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Figure 4.19: Carbon fixation reactions in Calvin cycle and subsequent 

production of glycerol from 1,3-bisphosphoglycerate  
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Figure 4.20: logarithm of expression ratio of perturbed to control were plotted 
for the genes encoding the enzymes in the figure 4.19  
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4.6.2 Tri Carboxylic Acid Cycle: 

TCA cycle is one of the major pathways of central carbon metabolism. The 

rate of TCA cycle is directly related to respiration and amino acid 

biosynthesis.  

 

 

 

 

 

 

 

 

Corresponding enzymes are: 
1. A) ATP citrate lyase  B) citrate synthase 
2. aconitate hydratase 
3. isocitrate dehydrogenase [NADP+], 
4. isocitrate dehydrogenase [NAD+] subunit 2 
5. 2-oxoglutarate dehydrogenase, E1 subunit 
6. succinyl-CoA ligase beta subunit 
7. succinate dehydrogenase [ubiquinone], 
8. fumarase 
9. malate dehydrogenase  
10. aspartate aminotransferase 

 
Figure 4.21: TCA cycle reactions with the metabolites and enzymes (The 

enzymes catalyzing these reactions are marked with numbers ) 
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Figure 4.22: Graph shows the logarithm of the ratio of expression profile of 
perturbed and control.  
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4.6.3 Carbohydrate metabolism: 

Figure 4.23 shows the reaction network of starch and carbohydrate 

metabolism 

Corresponding enzymes are: 
1. Beta-amaylase 
2. Starch phosphorylase   
3. UDP-glucose dehydrogenase  
4. Starch synthase: 
5. Trehalose 6 phosphate synthase: 
6. Trehalose-6-phosphate phosphatase: 
7. Trehalse:  
8. Pectin methylesterase  
9. Sucrose Synthase: 
10. Alpha-glucosidase precursor  
 
Figure 4.23: Reaction network of starch and carbohydrate metabolism is 

shown (Enzymes catalyzing the reactions are numbered and are also listed)  
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Figure 4.24 logarithm of the ratio of expression profile of the genes in 
carbohydrate metabolism are plotted 

 

4.7 Plant Growth and Cell Wall Expansion: 

Under condition of elevated CO2 the rate of plant growth is expected to 

increase. In this context plant cell wall is expected to expand. To validate 

these assumptions and previous observations, the genes encoding proteins 
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catalyzing the biosynthesis of cell wall components and/or the expansion of 

cell wall were studied.  

4.7.1 Proteins Involved in Cell Wall Expansion:  

Xyloglucan molecules are bound to the surface of cellulose microfibrils by 

hydrogen bonding and it helps cellulose microfibrils in cross binding to form 

the cell wall. Four proteins Xyloglucan Endotransglycosylase, expansin, 

cellulose synthase and endo-1,4-beta glucanase are found to be responsible 

for construction and modification of the cellulose xyloglucan framework 

[Kazuhiko et al., 2002]. All the five genes in fig 4.25 are present in the cluster 

of positively significant genes from SAM. But only three of them At2g01850, 

At4g03210 and At4g30280 are present in the cluster of strongly over-

expressed genes from k-means. Other two genes have missing data at one of 

the time points, so are not used for k-means clustering. 
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Figure 4.25: Different genes encoding xyloglucan endotransglycosylase are 

showing over-expression.  
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Figure 4.26: Three genes encoding expansin is found to be over-expressed at 
a longer time frame.  

 

All three genes in fig 4.26 are present in cluster of strongly over-expressed 

genes from k-means. But the gene At2g39700 is found to be non-significant, 

while the other two are positively significant from SAM. 
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Figure 4.27: Genes encoding cellulose synthase show similar expression 
pattern.  

All the three genes in fig 4.27 out here are present in the cluster of strongly 

over-expressed genes from k-means and positively significant genes from 

SAM.  
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Figure 4.28: Genes encoding the enzyme endo-1,4-beta-glucanase are over-
expressed and show similar expression. 
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Expression of all the four proteins involved in cell modification xyloglucan 

endotransglycosylase, expansin, cellulose synthase, endo-1,4-beta-glucanase 

are found to be over-produced in perturbed set compared to control.  

4.7.2  Nucleotide and Histone production: 
Nucleotides are building blocks of DNA. Ribonucleotide reductase catalyses 

the following reaction in nucleotide production pathway [www.kegg.com]:  

ADP  dADP 

GDP  dGDP 

CDP  dCDP 

UDP  Dudp 

 

 

 

 

 

   

          

Figure 4.29: Ribonucleotide reductase catalyses the reaction in nucleotide 
production pathway found over-expressed.   
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The gene encoding this enzyme is found to be strongly over-expressed (fig 
4.29). 

 

DNA is wrapped around the Histone proteins. Histone has 4 subunits H2A, 

H2B, H3 and H4 [Albert et al., 2002]. Production of all the different subunits 

of Histone proteins are found to be increased (Fig 4.30) in perturbed set 

compared to control set. In fig 4.30 only the two genes encoding H2A are 

positively significant from SAM but the rest of the genes are non-significant. 
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Figure 4.30: Genes encoding all the four subunits H2A, H2B, H3 and H4 of 
Histone protein are over-expressed. 

As DNA is wrapped around Histone protein, increase in both the nucleotide 

production and Histone protein production is believed to be in agreement 

with each other.  

Mei2 [Hirayama et al., 1997] has been thought to be a key protein for 

switching the mitotic cell cycle to meiosis. Mei2 has three putative RNA-



 

 95 
 

recognition motifs (RRM) and actual RNA binding activity that is necessary 

for Mei2 function. The activity of Mei2 is thought to be regulated at the 

transcriptional and post-translational level [Hirayama et al., 1997]. Expression 

of Mei2 and RRM are decreasing (Fig 4.31). All the genes (in Fig 4.31) except 

At2g42890 are found negatively significant from SAM.  
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  Figure 4.31: Genes encoding meiosis protein Mei2 and RRM containing 
proteins are under-expressed.  

 

Hexose like D-Glucose, D-mannose, D-fructose, sorbitol are converted to their 

corresponding phosphate by hexokinase [Lehninger et al., 2002]. Both the 

genes producing hexokinase (At2g19860) and fructokinase (At1g06030) in fig 
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4.32 was found to be present in the cluster of strongly under-expressed genes 

from k-means and negatively significant genes from SAM 

hexokinase and fructokinase

-1.5

-1

-0.5

0

0.5

0 5 10 15 20 25

time(hr)

lo
g(

ex
pr

es
si

on
 ra

tio
)

At1g06030
At2g19860

 

  Figure 4.32:. Hexokinase and fructokinase are found under-expressed  
  

Phosphoenolpyruvate carboxylase catalyses the Anaplerotic pathway 

reaction from phosphoenolpyruvate to oxaloacetate..  In Mesophyll cells 

carbon fixation reaction takes place, which produces oxaloacetate from 

pyruvate is also catalyzed by phosphoenolpyruvate carboxylase [Lehninger 

et al., 2002]. Both the genes in Fig 4.33 belong to the cluster of strongly over-

expressed genes from k-means, but they were found non-significant from 

SAM.  
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  Figure 4.33: Two genes encoding phosphoenolpyruvate carboxylase were 
found over-expressed in perturbed system.  

 

Pyruvate decarboxylase catalyses the reaction from pyruvate to AcetylCoA in 

glycolysis pathway.  It also catalyses the reduction of private to acetaldehyde 

[www.kegg.com ]. The pyruvate decarboxylase gene belongs to the cluster of 

strongly under-expressed genes from  k-means, but it was found non-

significant from SAM 
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  Figure 4.34: Gene encoding pyruvate decarboxylase-like protein shows a 
strong under-expression. 

 
Nitrate reductase catalyses the reduction of nitrate to nitrite in the nitrogen 

assimilation pathway [www.kegg.com]. Nitrate reductase gene in fig 4.35 

belongs to the cluster of strongly under-expressed genes from k-means and 

negatively-significant from paired SAM.  
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  Figure 4.35: The gene encoding nitrate reductase is under-expressed.  
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Four genes encoding heat shock proteins are over-expressed (Fig 4.38) and 

belong to cluster of positively significant genes from SAM analysis. However, 

expression at 6hr is missing for the gene At5g56010. So this gene was not 

considered for k-means clustering. The remaining three genes are present in 

cluster of strongly over-expressed genes from k-means clustering.  
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Figure 4.36: Heat shock proteins are over-expressed and show similar 
expression profiles    

 

In each cluster from paired SAM and k-means there was considerable number 

of genes whose function can not be characterized. In the TIGR annotation 

either they are marked as expressed protein, hypothetical protein, putative 

protein, unknown protein or no function is assigned at all. For lot of genes 
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putative function is assigned. It is debatable how sure one can be about the 

function of putative functions.  

 

In the following chapter biological significance of the results obtained in this 

chapter will be discussed.  
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5. Discussion: 

 Transcriptional profiling analysis of two sets of data indicates that 

even during the short term treatment of the plants gene expression responds. 

Using full genome DNA microarray analysis of Arabidopsis thaliana 

physiology allowed us to study genomic response of the plants to the applied 

perturbation.  

5.1 Data Normalization and Filtering: 

 Tables 4.2-4 depict the number of spots with non-zero intensity after 

normalization, multiplication of the biological replicates and division by 0th 

time point respectively. After normalization, average number non-zero spots 

are 12211 for control and 14922 for perturbed set. After the geometric mean of 

the biological replicates are taken, average number of spots for control and 

perturbed set are 10207 and 12422 respectively. Around 16% of the spots 

obtained after normalization were lost in both control and perturbed when 

geometric mean was taken. Due to division by 0th hr time point control and 

perturbed incur 7% and 26% loss of spot respectively.  

 Outlier analysis conducted in section 4.4 was not used to eliminate any 

experiment, when biological replicates were not clustering together. In this 

experiment there were two biological replicates at each time points. When the 
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biological replicates are found inconsistent, then it can not be concluded 

which of the replicates are outlier. But if there are more than two bio-

replicates, then if two replicates are inconsistent, then the third replicate can 

provide information to determine which one of these two is an outlier.  

5.2 Data Analysis:  
Results obtained using the algorithms k-means, paired and one class SAM 

was compared (section 4.5.4). Cluster of strongly over and under expressed 

genes obtained from k-means clustering is equivalent to significant genes of 

k-means (marked with blue box in Fig 4.14). Dataset used for k-means 

analysis is a subset of dataset used for SAM (Fig 4.13). There are 302 AND 141 

genes that were found over and under-expressed by k-means but non-

significant by paired SAM. Though these genes were used for SAM analysis 

but SAM algorithm do not consider them as significant. Fig 5.1 shows gene 

encoding phosphoenolpyruvate carboxylate is much strongly over-expressed 

compared to expression of the gene encoding 40S ribosomal protein –like, but 

the later is positively significant whereas the gene coding for 

phosphoenolpyruvate carboxylate is non-significant from SAM. In another 

similar example, Fig 5.1 shows gene encoding pyruvate decarboxylase is 

much strongly under-expressed compared to expression of the gene encoding 

3-hydroxyisobutyryl-coenzyme A hydrolase, but the later is negatively 
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significant whereas gene coding for pyruvate decarboxylase is non-significant 

from SAM. Both phosphoenolpyruvate carboxylate and pyruvate 

decarboxylase are present in the over and under-expressed cluster of k-

means.  Apparently, the genes that have sudden increase in expression at the 

last time point, is likely to be considered as non-significant by SAM.  So 

analysis using only one clustering technique is not enough to find out the 

genes that are differentially expressed. k-means clustering helps to get lot of 

gene which are actually “significant” but found non-significant by SAM. 

SAM only calculates the difference in expression between control and 

perturbed set, but it does not take into account how the expression changes 

with time. as k-means compares expression profiles it inherently considers 

how the time sequence of the expression.  
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 Figure 5.1 Limitation of SAM. 
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There are 155 and 172 genes that are found positively and negatively 

significant by SAM, but k-means do not find them significant because they 

were not used for k-means analysis. Only SAM provides information about 

these genes. There are 79 and 124 genes that are found positively and 

negatively significant by SAM but non-significant by k-means. These genes 

would have rejected if only k-means is used, but is able to find them 

significant.  

5.3 Analysis of gene expression profiles in the context of A. 

thaliana physiology:  

Elevated CO2 will stimulate the carboxylation reaction catalyzed by Rubisco 

[Stitt et al., 1991]. Genes coding for Rubisco small chain 1b and 2b precursors 

were moderately over-expressed [Fig 4.20]. Increased carboxylation reaction 

also increases other reactions in Calvin cycle. Another enzyme of Calvin cycle 

Phosphoglycerate kinase was also found strongly over-produced from the 

results of both SAM and k-means [Fig 4.20]. Increased rate of carbon fixation 

causes increased rate of glycerol production which is used in cell wall. Gene 

coding for Glycerol-3-phosphate dehydrogenase and Glycerol kinase, two 

enzymes involved in glycerol production (Fig 4.19) are over-expressed (Fig 

4.20). From metabolic analysis it is observed that glycerol is over produced. 
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Cheng et al.(1998) studied the short term effect of elevated CO2. 30 day-old 

ambient CO2 grown plants were transferred to high CO2 for up to 12 days. A 

decrease in the transcription of Rubisco gene was observed. However, in our 

results we have found that the expressions of two small subunits of Rubisco 

are increasing. The plausible reason could be, we have studied the expression 

in first 23 hours, i.e. the immediate response of the plant to elevated CO2 is to 

increase carbon fixation by increasing the transcription of Rubisco gene. But 

after a certain time, when substantial amount of carbon fixation has taken 

place, the reaction becomes limited by RuBP regeneration or end product 

synthesis. The time scale that Cheng et al. has considered, 12 day, is much 

larger than the time scale of our experiment. The contradiction shows how 

the time frame of the experiment should be taken into consideration when 

comparing the data from the literature. 

 Current view of plant cell wall model envisaged xyloglucan molecules 

to be bound to the surface of cellulose microfibrils by hydrogen bonding 

[Keegstra et al., 1973]. Some xyloglucan molecules are further linked 

covalently through certain cross linking poly-sacccharides. Therefore, a 

cellulose microfibril coated with xyloglucan molecules is interconnected to 

two or more microfibrils, thereby forming a single super-molecular 

framework structure surrounding the cell [Keegstra et al., 1973]. Following 
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proteins are found to be responsible for construction and modification of the 

cellulose xyloglucan framework [Kazuhiko et al., 2002]. These proteins 

include (1) xyloglucan endotransglucosylase/hydrolases (XTH) [Fry et al., 

1992], [Nishitani et al., 1992] [Okazawa et at., 1993], (2) expansins [McQueen-

Mason et al., 1992] [Shcherban et al., 1995] (3) cellulose synthases [Pear at al., 

1996], [Arioli et al., 1998], [Taylor et al., 1999] (4) membrane-anchored endo-

(1–4)glucanases [Brummell et al., 1998], [Nicol et al., 1998].  Genes encoding 

all four enzymes were found over-expressed  (Fig 4.25, 4.26, 4.27, 4.28) 

leading to the conclusion that cell wall synthesis is going on. From the 

metabolic analysis it was also observed that cell wall material xylitol and 

arabinose are over produced at elevated CO2.  

 It was observed at elevated CO2 cell division increases and time 

interval between two successive division decreases Masle [2000]. Chen et al. 

[2003] observed at elevated CO2 net rate of biomass accumulation increases. 

From this study, it was found nucleotide production (Fig 4.29) as well as 

different subunits of Histone production increases (Fig 4.30), which implies 

faster rate of DNA replication. On the basis of increased rate of cell wall 

production and nucleotide biosynthesis it is speculated that rate of cell 

division is increasing.  
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 One of the most prominent consequences of elevated CO2 enrichment 

is decrease in Nitrogen concentration [Sherwood, 2001]. Nitrate reductase 

catalyses the reduction of nitrate to nitrite in the nitrogen assimilation 

pathway [www.kegg.com]. In this study it was observed that gene coding for 

nitrate reductase (Fig 4.35) is under-expressed. So it can be concluded that 

nitrogen assimilation is reduced at elevated CO2, which is in conjunction with 

the previous study [Sherwood, 2001]. 

 Genes encoding meiosis protein Mei2 was found to be under-

expressed (Fig 4.31). Four genes coding for RNA recognition motifs (RRM) 

(Mei2 has three putative RNA-recognition motifs) were also found to belong 

to cluster of strongly under-expressed genes obtained from k-means analysis. 

As Mei2 protein is an essential component of the switch from mitotic to 

meiotic growth, under-production of this protein implies that cells had 

prolonged mitotic growth. So the plants stayed in the vegetative growth 

phase for a longer period.  

 The enzyme UDP-glucose dehydrogenase, catalyzing the reaction from 

UDP-glucose to UDP-glucuronate is also overproduced (Fig 4.24). So the net 

flux in the pathway from starch to UDP-glucuronate is possibly increasing. 

UDP-glucuronate can produce trehalose 6-phosphate, pectin, sucrose or 

Amylose. All the enzymes catalyzing these reactions, except the enzyme 
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catalyzing the reaction from UDP-glucuronate to pectin, are under-produced. 

So the flux through those reactions is expected to decrease. But the flux to 

UDP-glucuronate from UDP-glucose is increasing. Assuming that there is not 

much accumulation of UDP-glucuronate, it is speculated that the reaction 

from UDP-glucuronate to pectin will increase. Though it was not possible to 

verify this fact as the gene encoding this enzyme is missing. However pectin 

to pectate formation, the next reaction of that pathway is increasing as pectate 

methylesterase is over-produced (Fig 4.24). Pectin also has to be produced at 

a higher rate so that it can be converted to pectate. Which supports the 

hypothesis that, the flux from UDP-glucuronate to pectin is increasing. Pectin 

molecules are synthesized in the Golgi complex and secreted at the cell 

surface, where they cross-link the cellulose microfibrils into the matrix of the 

cell wall [Lodish et al.].  

 Hexokinase converts Hexose like D-Glucose, D-mannose, D-fructose, 

sorbitol to their corresponding phosphate. Fructokinase converts fructose to 

fructose-6-phosphate. Genes encoding both the enzymes were found to be 

under-expressed (Fig 4.32). 
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6. Future Work: 

6.1 Integration of genomic and metabolomic data: 

 With the advent of the DNA microarray technology, it became possible 

to study the expression of entire cellular genomes. Tanscriptional profiling 

alone can not provide a comprehensive picture of the cellular physiological 

state and it should be complemented by other cellular fingerprints. One of the 

essential aspects of systems biology is integration of different fingerprints of 

cellular responses. In this project genomic and metabolomic profiling of a 

systematically perturbed system was studied. Even though these studies were 

conducted independently, but essentially they reflect the physiological 

condition and response of the same system.  

6.1.1 Clustering Gene Expression and Metabolite Concentration 
Profiles: 
 Similarity in expression profile of a gene and concentration profile of a 

metabolite could be due to functional relation between the gene and the 

metabolite. Two examples were shown in Fig 6.1, where 3-phosphoglycerate 

mutase catalyses the reversible reaction from glycerate3-phosphate to 

glycerate-2-phosphate and Glucose-6P isomerase catalyses the reversible 

reaction from glucose-6P to fructose-6P.  
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 Transcription and metabolic profiles can be clustered together using 

TIGR MeV software to find the profiles that have similar pattern. Magnitude 

change in metabolite concentration due to elevated CO2 is larger [Kanani et 

al., 2004] than that of gene expression change. When metabolites and genes 

are clustered together using Euclidian distance, metabolites form a separate 

cluster. Use of Pearson correlation distance will cluster on the basis of 

expression profiles rather than the absolute expression value, which will find 

the genes and metabolites that have similar pattern.  
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Figure 6.1 Transcription and metabolic profiles of genes and metabolites that 
are functionally related show similarity.  

 

6.1.2 Model to Correlate Genomic and Metabolomic Data: 
 
The experiment generated time series data of gene expression and metabolite 

concentration. Expression of genes control concentration of metabolites in the 

cell, metabolite concentration can also regulate gene expression. As the 
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functional relationship between genes and metabolites is not completely 

understood, till date no mathematical model was proposed to correlate them.  

The wealth of data generated by DNA microarray and GC-MS can be used for 

developing a mathematical model. Gene expression and metabolic data can 

be viewed as input and output variables of a systematically perturbed 

system, where the functional relationship between the variables is not 

completely known. Partial Least Square (PLS) can be used for correlating 

gene and metabolic data.  

6.2 Proposed Modifications in Experimental Design: 

Following modifications are suggested for future experiments: 

6.2.1 Increased number of biological replicates: 

For the current experiment two biological replicates were used at each time 

point except time 0. It was observed quite often that expressions of genes in 

two different biological replicates are considerably different. As there were 

only two experiments it can not be concluded, which of the replicates is an 

outlier. At least three biological replicates should be considered for analysis, 

as the third replicate can help to conclude about the outlier.    
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6.2.2 Time point of sample collection: 
In this project plants were not harvested at a constant time interval. At the 

initial period they were harvested at short time interval or 0.5hr and at longer 

period they were harvested in 12hr difference. Last two time points were 12 

and 23 hrs, there should have at least one time point between them.  If the 

plants are harvested at constant time interval modeling of the time series gene 

expression data will be easier.  

6.3 Multiple Perturbations: 

In this experiment sucrose was growth media of the plants. The same 

experiment can be conducted but with glucose or galactose as growth media 

in stead of sucrose. The response of the plant to CO2 stress grown at different 

media can be compared at genomic level. This will provide a better 

understanding of gene regulation.  
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