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Abstract

In this paper, we consider a class of loss networks where multiple tra�c classes are present,
each has di�erent bandwidth requirement, and each tra�c stream is routed according to
an adaptive routing scheme. We propose a �xed-point method, a.k.a. reduced load ap-
proximation, to estimate the end-to-end blocking probability for such networks. The ap-
proximation scheme is shown to be asymptotically correct in a natural limiting regime, and
it gives conservative estimates of blocking probabilities under heavy tra�c load. Simula-
tion results are provided to compare performance estimates obtained from our analytical
approximation scheme and discrete event simulations. We also show how this analytical
approximation scheme can be linked with numerical mathematical programming tools to
help design a network, by selecting network design parameters via trade-o� analysis, even
with several design objectives. In one application we use the multi-objective optimization
tool CONSOL-OPTCAD to design trunk reservation parameters and balance link capac-
ity. In another application we use automatic di�erentiation to get sensitivities of blocking
probabilities w.r.t. o�ered tra�c load.
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1 Introduction

This paper is focused on the evaluation of end-to-end call blocking probabilities in a class
of loss networks, as well as applying such evaluation to network design. A loss network is a
circuit switched network, where a call requires a �xed amount of bandwidth on every link on
a path between the source and destination. A more detailed de�nition of loss networks can
be found in [1]. If the network has the required bandwidth on those links when the request
arrives, the call is admitted and it will be holding the requested capacities for some time;
otherwise the call is rejected. The blocking probability associated with a loss network is the
probability that a call �nds the network unavailable when it arrives and is thus rejected. A
telephone system is a typical loss network. An ATM network can also be viewed as a loss
network and the connection level blocking probabilities can be calculated by applying the
concept of e�ective bandwidth [2],[3].

The Erlang formula:

E(�; C) =
�C

C!
[
CX
n=0

�n

n!
]�1; (1)

established the loss probability of a single link with C units of bandwidth when calls arrive
as a single Poisson process with rate �. When a �xed route is associated with each source-
destination node pair, a loss network can be modeled as a multidimensional Markov process
with the dimension of the process state space being the product of the number of routes
allowed in the network and the number of service/call classes. When alternative routes are
present in addition to �xed routes, the Markov process no longer has a product form, and
solving it exactly [1] is not practical, when dealing with large networks with hundreds of
thousands of routes and integrated services with multiple service rates, since the computa-
tional complexity is both exponential in the number of routes and exponential in the number
of service classes. This leads to the need for the development of computational techniques
that provide accurate estimates within reasonable time frame.

The reduced load approximation, also called the Erlang �xed-point method, has been
proposed for this scenario and has been studied intensively [1],[4],[5],[6]. It is based on two
assumptions:

(a) link independence assumption: Blocking occurs independently from link to link.

(b) Poisson assumption: Tra�c 
ow to each individual link is Poisson and the corre-
sponding tra�c rate is the original external o�ered rate thinned by blocking on other links
on the path, thus called the reduced load.

Most of the earlier works in �xed-point method either studied the multirate tra�c situ-
ation with �xed routing, such as the Knapsack approximation and Pascal approximation in
[5], or focused on state-dependent routing schemes with single tra�c rate [4], or multirate
service with single link (resource) [7]. In [6] Greenberg and Srikant proposed a �xed-point
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method to approximate blocking probabilities in a multirate multihop network using sequen-
tial routing, but additional computational e�ort in solving the associated network reliability
problem is needed. It is also a common assumption that there exist a direct or two-hop
routes between sources and destinations.

We focus our attention on the evolving integrated service networks which have the fol-
lowing characteristics:

(a) The networks are typically much sparser and have a more hierarchical topology. Thus,
the assumption of the existence of a direct route between source and destination nodes does
not hold in most instances.

(b) Routes can comprise a much larger number of hops (typically around 5 or 6) and
there are typically a large number of possible routes between source and destination nodes.

(c) The presence of di�erent tra�c classes characterized by widely varying bandwidth
requirements and di�erent mean holding times must be considered.

Motivated by the above, we propose to use adaptive routing in combination with the
�xed-point method to calculate call blocking probabilities. Most of our work is motivated by
[6] and [8]. One of the main reasons we are interested in developing an analytical approxi-
mation algorithm is to use it for network design and optimization. Mitra etc. [3],[9],[10] has
developed an approximation scheme for VPN design based on loss network models. In this
paper we link our algorithm to mathematical programming tools to get trade-o�s on load
balancing, resource allocation and call admission control.

The organization of the paper is as follows: The next section describes the network
model and the adaptive routing schemes proposed for the approximation. Section III is the
proposed �xed-point approximation method. Asymptotic correctness analysis is given out in
Section IV and Section V we present approximation results compared to simulation results.
In Section VI and VII we give two applications of linking the approximation scheme to
the optimization tool CONSOL-OPTCAD and the automatic di�erentiation package ADIC,
respectively. Section VIII concludes the paper.

2 Network Model

Consider a network with N nodes and J links, each indexed by j. Cj denotes the capacity of
link j, in unit bandwidth/circuit. R is the set of all node pairs, each indexed by r. The total
number of node pairs is thus N(N � 1)=2. For each node pair r, there is an associated set
of M ordered routes, each indexed by m, representing the mth route in that set. Therefore,
pair (r;m) uniquely de�nes a speci�c route. The network supports a total of S classes of
tra�c, indexed by s, and thus (r; s) uniquely de�nes a speci�c incoming call request. The
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bandwidth requirement of such a call on link j is denoted by bjs. Note that for di�erent
node pairs the classi�cation of calls does not have to be the same. So strictly speaking calls
(r1; s) and (r2; s) can have di�erent bandwidth requirement on a same link if we allow r1 and
r2 to have di�erent sets of tra�c classes. However, we choose to use this notation because a
single uniform classi�cation can always be achieved by increasing the number of classes.

Calls arrive at the network as Poisson processes with an o�ered load �rs. A call is
accepted if some route has available bandwidth on each of its links to accommodate this
call, and the call is routed on that route and holds the bandwidth for a duration with mean
time �rs. If none of the routes are available, the call is rejected. The end-to-end blocking
probability of a call (r; s) is denoted by Brs. Throughout this paper the links are considered
to be duplex and bi-directional. We use trunks, units of circuits and units of bandwidth
interchangeably.

The type of call admission control considered in our model is trunk reservation. As Kelly
pointed out in [1], if alternative routes use more network resources than �rst-choice routes,
then allowing a blocked call to attempt an alternative route may actually increase the loss
probability of a network, and this e�ect may become even more pronounced if a blocked call
can attempt a sequence of alternative routes. An explanation for this phenomenon is that
if a link accepts an alternatively routed call, it may later have to block a directly routed
call which will then attempt to �nd a two-hop or multihop route elsewhere in the network.
A natural response would be for the link to reject an alternatively routed call if the free
circuits on the link are below a certain level. This is the call admission control of the trunk
reservation type. An attempted alternatively routed call is only accepted if on each link of
the alternative route the number of occupied circuits is less than Cj � bjs � rs where rs is
the trunk reservation parameter, which may vary with link and class.

The common routing policies which have been studied are �xed routing, alternative
routing, sequential alternative routing and adaptive alternative routing. We focus on the
last. One important scheme of this kind is called the Least Loaded Routing (LLR), where
the call is �rst tried on the direct route, if there is one. If it cannot be setup along the direct
route, the two-link alternative route with the largest number of point-to-point free circuits
is chosen. A version of LLR was implemented in the AT&T long-distance domestic network
[1].

A direct extension of LLR to networks where routes tend to have a larger number of
hops instead of direct or two-hop routes is a min-max scheme: Pick the link which has the
minimum free bandwidth for each route, then pick the route which has the maximum free
bandwidth on this link.

Each source-destination node pair r is given a list of alternative routes Mr. When a call
arrives, each route on the list is evaluated to determine the number of free circuits on its
links.

Let Cf
j denote the free/available bandwidth on link j when the call of type (r; s) arrives
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and consider a route (r;m). Then the route is in a state of admitting this call if and only if

Cf
j � bjs; for allj 2 (r;m)

under no trunk reservation admission control, or

Cf
j � bjs + rs; for allj 2 (r;m)

under trunk reservation admission control.

Consider a route (r;m) which is presently available for a type (r; s) call. The most
congested link on the route is de�ned as the link with the fewest free circuits on this route:

Lrm = argminj2(r;m)C
f
j : (2)

When there are more than one routes available in the alternative route set, the one with
the maximum free bandwidth on its most congested link is selected for accepting the call. If
none of the routes are admissible, then the call is blocked.

This maximal residual capacity routing scheme tries to avoid bottlenecks on a route.
However, while choosing the route which has the most free bandwidth, we might end up
taking the longer or the longest routes in the available set and thus using more network
resources. This could eventually force calls arriving later to be routed on their longer/longest
route as well. Therefore, using trunk reservation along with this routing scheme is a valid
choice especially when tra�c is heavy.

A more general way of deciding the routing can be expressed as a cost function which
takes into account both the length of the route and the congestion level of the route. (For
optimization on routing and blocking, Mitra and Morrison present an elaborate form of
network revenue in [3] and investigate a network optimization problem. Our focus here is
limited to admission control.) A simple cost function for route (r;m) could be:

w1

X
j2(r;m)

bjs � w2C
f
Lrm

(3)

where the �rst term is the total bandwidth that would be occupied if the route is chosen,
and the second term indicates the level of congestion on the route. w1 and w2 are weighting
parameters. The route which minimizes this cost is chosen. Clearly a longer route will
increase the cost. And if w1 is zero, this becomes the min-max routing we just described.

3 The Fixed Point Method

The �xed point is achieved by mappings between the following four sets of unknown variables:

�js: the reduced load/arrival rate of class-s calls on link j;
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ajs: the probability that link j is in a state of admitting class-s calls;

pj(n): the steady state occupancy probability distribution of link j, i.e., the probability
that exactly n units of circuits are being used on link j. n takes any integer value between
0 and Cj, the capacity of link j;

qrms: the probability that a call request (r; s) is attempted on route (r;m). This originates
from the fact that di�erent routes have di�erent levels of congestion.

First, we �x ajs and qrms to get �js. Then we let �js be �xed to get pj(n) and ajs. Finally
we �x pj(n) to get qrms. By repeated substitution, the equilibrium �xed point can be solved
for all four sets of unknowns. The mappings are illustrated in the �gure bellow:

pν j

a

q

(n)

js

js

rms

Figure 1: Mappings between variables.

3.1 Mapping 1: ajs, qrms �! �js

De�ne �jrms as the arrival rate on link j contributed by tra�c (r; s) on route (r;m), given
that link j is in a state of admitting a class-s call. Then it is given by the reduced load
approximation as:

�jrms = �rsqrmsI[j 2 (r;m)]
Y

i2(r;m);i6=j

ais (4)

where I is the indicator function. The aggregated load of class-s calls on link j is given by

�js =
X
(r;m)

�jrms: (5)

3.2 Mapping 2: �js �! ajs, pj(n)

Given �js, we can compute the link occupancy probabilities pj(n) for each link in the network.
This can be done by either using Kaufman's simple recursion [11] when there is no trunk
reservation present, or using approaches proposed by Bean, Gibbens and Zachary in [12] and
[7] as suggested by Greenberg in [6]. By the link independence assumption, this mapping is
conducted on a per-link basis, and each link is calculated separately and similarly.

In the absence of admission control, classical product-form holds for describing the equi-
librium call blocking probabilities [1]. In [11], Kaufman gives a simple one dimensional
recursion for calculating the link occupancy distribution probabilities.
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The probability that a class-s call is admitted to link j is given by

ajs = 1�
CjX

n=Cj�bjs+1

pj(n) =
Cj�bjsX
n=0

pj(n): (6)

Admission control destroys the product form of the link occupancy probabilities pj(n),
which in turn destroys the e�cient exact computation of those probabilities in [11]. To solve
for these probabilities, we need to solve for the equilibrium distribution of the associated
Markov chain, whose state space is a lattice embedded in the simplex

P
s bjsns � C; ns � 0.

The computational cost is prohibitive, even for moderate C and S = 2. A method to compute
the aggregated occupancy probabilities p(n) at a cost linear in C is needed. Approaches
proposed in [12],[7] transform the problem into a one-dimensional one by assuming that
while ns, the number of calls in progress of a class s varies, the proportion of such calls in
progress remains �xed (or varies slowly).

In [6] the following method is used. Let �js denote the average number of calls of type s
in progress on link j,

�js = ajs�js=�rs; (7)

since calls enter into service at rate ajs�js and depart at rate �js�rs.

Consider the one-dimensional Markov chain, for any given state n and call class s, with
the following state transition rates:
From state n to state n+ bjs, �jsI(Cj � n � rs + bjs);
From state n to state n� bjs, �rsn

�jsP
t
�jt

I(n � bjs).

The probability of admitting a call of class s is given by

ajs = 1�
CjX

n=Cj�bjs�rs+1

pj(n) =
Cj�bjs�rsX

n=0

pj(n): (8)

Note that pj(n) �! �js �! pj(n) forms another �xed-point problem, which can be
solved by iteration to get the equilibrium distribution pj(n) and thus ajs.

If we use the cost function presented in the previous section to make routing decisions,
a trunk reservation scheme will no longer be necessary since the idea of trunk reservation
admission control is to prevent routing calls onto those longer routes and the cost function
has already taken the length of the route into consideration.

7



3.3 Mapping 3: pj(n) �! qrms

Given pj(n), de�ne for link j, the probability of no more than n trunks are free (at most n
trunks are free) as:

tj(n) =
nX

k=0

pj(Cj � k): (9)

Consider the case of no trunk reservation admission control, and use the min-max routing
scheme extended from LLR described in the previous section, the probability of attempting
a call of (r; s) on route (r;m) is the probability that all routes before the mth route on the
routing list have fewer free trunks on their most congested links, and all routes after the mth

route have at most the same number of free trunks on their most congested links, which can
be expressed as:

qrms =
CLrmX
n=1

pLrm(CLrm � n)
m�1Y
k=1

tLrk(n� 1) �

MY
k=m+1

tLrk(n): (10)

We consider steady state and the free bandwidth on link j Cf
j is replaced by E[Cf

j ], the
expected average free capacity. Thus Lrm, the most congested link on a route, becomes the
statistically most congested link as:

Lrm = argmaxj2(r;m)zj (11)

where zj is de�ned as the link load of link j:

zj =
X
rms

�jrmsbjs
�rsCj

; (12)

which is also the long term average of link utilization.

When there is admission control with trunk reservation parameter rs, this probability
becomes:

qrms =
CLrmX
n=1

pLrm(CLrm � n)tLr1(n� 1) �

m�1Y
k=2

tLrk(n + rs � 1) �

MY
k=m+1

tLrk(n+ rs) (13)

assuming that we do not impose trunk reservation on the �rst route in a set, since naturally
that would be the shorted one among all even if it is not the direct route.
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If we use the cost function proposed in the previous section, then since the choice of mth

route for routing the call indicates that all the routes before mth route have a higher cost
than the mth route, and all the routes after the mth route have at least the same cost, the
probability of attempting the call on the mth route can be expressed as:

qrms =
CLrmX
n=1

pLrm(CLrm � n) �

m�1Y
k=1

tLrk[
w1

w2
(
X

j2(r;k)

bjs �
X

j2(r;m)

bjs) + n� 1] �

MY
k=m+1

tLrk [
w1

w2
(
X

j2(r;k)

bjs �
X

j2(r;m)

bjs) + n]: (14)

3.4 End-to-end blocking probabilities

Finally, the end-to-end blocking probability for calls of class s between source-destination
node pair r is given by

Brs = 1�
X
m

qrms

Y
j2(r;m)

ajs: (15)

Repeated substitution is used to obtain the equilibrium �xed point. And the end-to-end
blocking probabilities can be calculated from the �xed point.

4 Asymptotic Correctness

By using Brouwer's �xed point theorem, it's easy to show that there exists a �xed point
under the proposed �xed point approximation. In this section, we analyze the asymptotic
correctness of our �xed point approximation. First we give a steady state explanation for
qrms, and formulate an optimization problem to solve for the most probable state for a single
link. Then we establish an limiting regime and show that under the speci�ed limiting regime,
the blocking probability converges to our �xed point approximation.

We make the following observations. Under steady state, for tra�c stream (r; s), the
probability of attempting the call on the mth route is qrms. In reality, when a call request
comes, using an adaptive routing scheme, the call is routed according to the actual tra�c load
in the network at that point in time. This type of tra�c dispersement is called \metering"
[13]. However, in our approximation the routing is modeled as if that each tra�c stream
has �xed probabilities to be routed onto a set of routes, and those probabilities add up to
1. This method is called \randomization". The metering method generally gives a better
performance over randomization. Therefore, our approximation represents a conservative
estimate, especially under heavy tra�c, of the end-to-end call blocking probabilities.
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Accepting this assumption, since random splitting of a Poisson process according to a
�xed probability distribution results in processes which are individually Poisson, we have
�rms = �rs � qrms, the equivalent o�ered load onto route (r;m) from tra�c (r; s), which is still
a Poisson process.

De�ne a vector n = fnrmsg, where nrms is the number of calls in progress on route
(r;m) from tra�c stream (r; s). For clearer notation purposes, let bjrms be the bandwidth
requirement on link j from call (r; s) on route (r;m), and de�ne vector b = fbjrmsg. Also
de�ne vector C = fCjg to be the link capacity. For a single link the stationary distribution
�(n) is given by:

�(n) = G(n)�1
Y
(r;m)

Y
s

�nrms
rms

nrms!
; n 2 A(C); (16)

where
A(C) = fn > 0 : b � n � Cg (17)

de�nes the set for all feasible n under the link capacity constraint, and G(n) is the normal-
izing factor:

G(n) =
X
n

(
Y
(r;m)

Y
s

�nrms
rms

nrms!
): (18)

Following Kelly's method in [1], we form the optimization problem of maximizing �(n)
to �nd the most probable state n:

Max
X
(r;m)

X
s

(nrmslog�rms � log�rms!)

S.t. n � 0; b � n � C: (19)

Using Sterling's formula logn! � nlogn � n, and replacing n by real vector x = fxrmsg, the
primal problem becomes:

Max
X
(r;m)

X
s

xrms(log�rms � logxrms + 1)

S.t. x � 0; b � x � C: (20)

The objective function is di�erentiable and strictly concave over xrms � 0; the feasible region
is a closed convex set. Therefore there exists a unique maximum. Using Lagrangian method,
the maximum can be found to be:

xrms(y) = �rms � exp(�
X
j

yjbjrms): (21)

where y = fyjg is the Lagrangian multiplier. The constraints become

x(y) � 0; C� b � x(y) � 0: (22)

By introducing transformed variables

dj = 1� exp(�yj) (23)
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we can rewrite the maximum in (21) as

xrms = �rms �
Y

j2(r;m)

(1� dj)
bjrms ; (24)

and dj is any solution to the following:X
(r;m)

X
s

bjrms�rms �
Y
i

(1� di)
birms

(
= Cj if dj > 0
� Cj if dj = 0

(25)

and dj 2 [0; 1).

Using the limiting scheme due to Kelly [1], we consider a sequence of networks indexed
by N with increasing link capacity and o�ered tra�c load. In addition, we also allow the
number of alternative routes for each source-destination node pair to increase with N . This
results in the following limiting regime:

�rs(N)

N
�! �rs;

Cj(N)

N
�! Cj as N �!1

and
X
M

qrms = 1 M �!1 (26)

with �rs=Cj �xed, and M is the total number of alternative routes. Let

kjrms =
�rms

Cj

=
�rsqrms

Cj

(27)

also be �xed based on our assumption with qrms.

Following from [1], the blocking probability Brms(N), which is the stationary probability
that a call from source (r; s) is accepted by route (r;m) is given by:

1� Brms(N) = qrms

Y
j

(1� dj)
bjrms + o(1) (28)

where dj is the solution to (24).

We observe that dj = pj(Cj) forms a set of valid solution to (24), which is the probability
that the link is fully occupied. Denote n; as the number of free circuits on link j (n is the
number of circuits occupied), and p; as the distribution of n;. AsN �!1 and Cj(N) �!1,
the distribution p;j(n

;) = pj(Cj(N)�n) converges weakly to the geometric distribution given
by [14]:

p;j(n
;) = (1� p)pn

;

(29)

where p is the positive root of

1 =
X
rms

bjrms

�rs
kjrmsp

bjrms : (30)
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Hence

ajs =
Cj(N)X

n;=bjrms

p;j(n
;) = pbjrms � pCj(N)+1

=Cj(N)!1 pbjrms = (1� dj)
bjrms : (31)

Then the asymptotic form (28) can be written as

1� Brms(N) = qrms

Y
j

(1� dj)
bjrms + o(1)

= qrms

Y
j

ajs + o(1) (32)

Therefore we get the approximation

Brs(N) = 1�
X
m

(1�Brms(N))

= M;N�!11�
X
m

qrms

Y
j

ajs; (33)

which is the form we presented (15) in the algorithm.

Similarly, from (24), load on route (r;m) from source (r; s) becomes

xrms = �rms �
Y

j2(r;m)

ajs = qrms�rs
Y

j2(r;m)

ajs: (34)

Therefore, as seen by any individual link i,

xirms = qrms�rs
Y

j2(r;m);j 6=i

ajs; (35)

which is our �rst mapping in the algorithm.

5 Experiments And Evaluation

In this section we give two network examples to compare the approximation results with
that of discrete event simulation.

The �rst example is a �ve-node fully connected network depicted in Figure 2.

Capacity for each link is set to be 100. There are three classes of connections, which are
indexed 1, 2, and 3. They have bandwidth requirements of 1, 2, and 3, respectively. When
call admission control is used under heavy tra�c, the trunk reservation parameter for each
class is 2, 4, and 6, respectively.
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Figure 2: Topology of Example One.

For each node pair, the direct route and all two-hop routes are allowed. The direct route
is listed �rst in the routing list, and the two-hop routes are listed in random order.

The detailed tra�c rates are given in the Appendix of [15]. We have medium and heavy
tra�c. Heavy tra�c rates are set to be double the medium rates. Simulation models were
built using OPNET (OPtimized Network Engineering Tool). Both simulation and �xed point
algorithm were run on a SunSparc 20 workstation.

We only display three node pairs here for comparison between �xed-point approximation
(FPA) and discrete event simulation (DES). All simulations were run to get a 95% con�dence
interval. The results are listed in Table 1 through Table 3, with Table 1 showing results for
medium tra�c, and Tables 2 and 3 for heavy tra�c with and without trunk reservation,
respectively.

Although the tra�c in this case is highly asymmetric, since routing is \symmetric", we
observe that connections of the same class, with the same bandwidth requirement, encounter
approximately the same blocking probability regardless of their source-destination node pair
and input rate. However, they do vary slightly from one to another re
ecting the random
order in which the two-hop routes are listed.

The second example is borrowed from [6] with minor changes. The topology is derived
from an existing commercial network and is depicted in Figure 2 below.

There are 16 nodes and 31 links, with link capacity ranging from 60 to 180 trunks. The
detailed link-by-link tra�c statistics and link capacities can be found in the Appendices of
[6] and [15]. The tra�c in the network consists of four types, namely class-1, 2, 3, and 4, and
require bandwidth of 1, 2, 3, and 4 trunks, respectively. No admission control is employed
in this experiment.

In routing, any node pair is allowed routes that have at most 4 hops. Multiple routes for
one node pair are listed in order of increasing hops, with ties broken randomly. Each link is
considered to have same unit length, so only the hop number is counted.
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Table 1: Ex.1 with Medium Tra�c

Pair Class FPA DES

(0,3) 1 0.2234 (0.0341, 0.0348)

2 0.3986 (0.2274. 0.2276)

3 0.5354 (0.4730, 0.4735)

(1,2) 1 0.2239 (0.0358, 0.0360)

2 0.3992 (0.2209, 0.2212)

3 0.5357 (0.4701, 0.4710)

(2,4) 1 0.2224 (0.0336, 0.0340)

2 0.3969 (0.2300, 0.2303)

3 0.5333 (0.4673, 0.4677)

# Iterations 11

CPU (sec.) 1.55 7:1� 103

Table 2: Ex.1 with Heavy Tra�c and no Trunk Reservation

Pair Class FPA DES

(0,3) 1 0.4321 (0.1921, 0.1923)

2 0.6720 (0.6059, 0.6070)

3 0.8067 (0.8340, 0.8342)

(1,2) 1 0.4295 (0.1941, 0.1942)

2 0.6680 (0.6076, 0.6078)

3 0.8024 (0.8257, 0.8261)

(2,4) 1 0.4253 (0.1849, 0.1851)

2 0.6633 (0.6002, 0.6004)

3 0.7983 (0.8290, 0.8291)

# Iterations 9

CPU (sec.) 1.24 1:3� 104
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Table 3: Ex.1 with Heavy Tra�c and Trunk Reservation

Pair Class FPA DES

(0,3) 1 0.0667 (0.0023, 0.0024)

2 0.5494 (0.6117, 0.6120)

3 0.8636 (0.9763, 0.9764)

(1,2) 1 0.0650 (0.0019, 0.0020)

2 0.5446 (0.6041, 0.6043)

3 0.8557 (0.9741, 0.9743)

(2,4) 1 0.0592 (0.0014, 0.0016)

2 0.5249 (0.5765, 0.5766)

3 0.8455 (0.9709, 0.9711)

# Iterations 12

CPU (sec.) 10.86 1:3� 104

Figure 3: Topology of Example Network
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Results for some selected node pairs and classes are listed in Table 4 through 8, each
corresponding to a di�erent tra�c load. Table 4 corresponds to the \nominal" tra�c which
is provided in Appendix A. Tables 5 through 8 show the results for tra�c 1.4, 1.6 and 1.8
times the nominal tra�c, respectively.

The proposed �xed-point approximation gives conservative estimations generally, and
it improves as the load gets heavier. These results strengthen the argument that these
approximations are indeed very useful as estimators of worst case performance.

Table 4: Ex.2 Nominal Tra�c.

Pair Class FPA DES

(0,4) 4 0.0001 (0.0, 0.0)

(0,13) 1 0.0063 (0.0021, 0.0034)

(1,6) 1 0.0064 (0.0030, 0.0034)

(5,6) 3 0.0204 (0.0189, 0.0201)

(6,10) 2 0.0132 (0.0109, 0.0138)

(9,13) 4 0.0284 (0.0185, 0.0245)

# Iterations 18

CPU (sec.) 94.1 3:7� 104

Table 5: Ex. 2 1.2 Times The Nominal Tra�c.

Pair Class FPA DES

(0,4) 4 0.0032 (0.0, 0.0)

(0,13) 1 0.0365 (0.0351, 0.0369)

(1,6) 1 0.0369 (0.0303, 0.0311)

(5,6) 3 0.1146 (0.1103, 0.1137)

(6,10) 2 0.0735 (0.0543, 0.0573)

(9,13) 4 0.1641 (0.1213, 0.1268)

# Iterations 23

CPU (sec.) 120.35 3:9� 104

6 Application In Network Design Using CONSOL-OPTCAD

One of the main reasons that we are interested in developing an analytical approximation
algorithm is because such an algorithm can be easily linked to mathematical programming
tools to get network performance optimization and trade-o� analysis. In this section, we link
the proposed reduced load approximation method with CONSOL-OPTCAD [16], which is a
tool for optimization-based design of large class of systems, and show how network parameter
design can be realized.
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Table 6: Ex. 2 1.4 Times The Nominal Tra�c.

Pair Class FPA DES

(0,4) 4 0.0182 (0.0122, 0.0179)

(0,13) 1 0.0744 (0.0729, 0.0766)

(1,6) 1 0.0773 (0.0697, 0.0701)

(5,6) 3 0.2295 (0.2262, 0.2278)

(6,10) 2 0.1474 (0.1420, 0.1483)

(9,13) 4 0.3071 (0.2794, 0.2848)

# Iterations 28

CPU (sec.) 145.43 4:3� 104

Table 7: Ex. 2 1.6 Times The Nominal Tra�c.

Pair Class FPA DES

(0,4) 4 0.0553 (0.0512, 0.0549)

(0,13) 1 0.1075 (0.0987, 0.1012)

(1,6) 1 0.1172 (0.1113, 0.1121)

(5,6) 3 0.3322 (0.3137, 0.3142)

(6,10) 2 0.2125 (0.2164, 0.2210)

(9,13) 4 0.4245 (0.3380, 0.3465)

# Iterations 24

CPU (sec.) 125.55 5:6� 104

Table 8: Ex. 2 1.8 Times The Nominal Tra�c.

Pair Class FPA DES

(0,4) 4 0.1126 (0.0025, 0.0026)

(0,13) 1 0.1355 (0.1492, 0.1500)

(1,6) 1 0.1563 (0.1445, 0.1466)

(5,6) 3 0.4197 (0.3922, 0.3940)

(6,10) 2 0.2691 (0.2572, 0.2583)

(9,13) 4 0.5190 (0.4791, 0.4793)

# Iterations 24

CPU (sec.) 125.11 2:3� 106
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6.1 Design of Trunk Reservation Parameters

As a way of call admission control, trunk reservation regulates individual classes of tra�c as
well as their interrelationship. How to choose the combination of fr1; r2; :::; rSg, where rs is
the trunk reservation parameter of class-s tra�c and S is the total number of di�erent classes
the network carries, to get the best network performance is important. Here the network
performance of interest is the average blocking probability of the network as a whole and
the blocking probabilities that each individual class of tra�c experiences.

This design problem is formulated as follows:

Design parameters: r1; r2; :::; rS.

Min

P
(r;s) �rs � [1�Brs] �BrsP

(r;s) �rs � [1� Brs]

S.t. Brs < boundrs; all (r; s) (36)

where boundrs is the desired upper bound for blocking probability.

Note that the objective function is a weighted average blocking probability over each
class of tra�c and each source-destination node pair.

In CONSOL-OPTCAD, we can provide two values, namely the good value and bad value,
for each boundr;s, indicating our level of satisfaction. Trade-o� analysis can be carried out
between minimizing the objective function value and satisfying the constraints, and thus
decide the combination of fr1; r2; :::; rSg.

By applying this model to our Example One of Section V, in the case with trunk reserva-
tion admission control, and by restricting the trunk reservation parameters to be less or equal
to 5, we get the trade-o� between the blocking probability of each class vs. the weighted
average blocking probability, which is shown in Table 9(Numbers in bold are individual
minima).

Because of the symmetry of Example One's topology, the same class of tra�c encounters
approximately the same blocking probability regardless of their source-destination node pair
and input rate, although their input rates are counted in calculating the weighted average
blocking probability. So the numbers displayed here are only distinguished by their classes
but not their associated source-destination node pairs.

As we can see from Table 9, the weighted average blocking probability and the blocking
probability of class-1 type of tra�c achieve their optimum at the same time with trunk
reservation parameter choice of 1,4 and 5. The reason is obvious: since class-1 has much
smaller trunk reservation requirement than class-2 and 3, together with its lowest bandwidth
requirement, it has the highest priority and chances of being admitted into the network.

18



Table 9: Trunk Reservation Parameter Design

Wgtd Avg B1 B2 B3 (r1; r2; r3)

0.265 0.036 0.580 0.803 (1,4,5)

0.273 0.062 0.526 0.840 (1,3,5)

0.290 0.067 0.562 0.792 (2,4,5)

0.292 0.112 0.467 0.861 (1,2,5)

0.307 0.116 0.485 0.819 (1,2,4)

0.309 0.119 0.492 0.824 (2,3,5)

0.420 0.571 0.284 0.565 (4,1,2)

0.406 0.319 0.671 0.322 (3,5,1)

We can also get the optimal value of the weighted average blocking probability over one
of the trunk reservation parameter while �xing the other two.

6.2 Design of Link Capacity

Similar to the �rst application, link capacities are another set of parameters which is critical
in network design, since link capacities greatly a�ect network performance. It is natural to
expect that we should assign higher capacities to more frequently congested links, and save
capacities on rarely used ones.

The formulation of the problem is similar to that of the trunk reservation parameter
design, except that the design parameters are fCjg, all j.

We applied this model to Example One of Section V, in the case of heavy tra�c with-
out trunk reservation admission control, and set the link capacities of all peripheral links
((0,1),(1,2),(2,3),(3,4),(4,0)) to be � and all non-peripheral links ((0,2),(0,3),(1,4),(1,3),(2,4))
capacities to be �. By varying � and � independently from 80 to 120, we found that the
weighted average blocking probability decreased from 0.608660 to 0.511441 while � increases
from 80 to 120 but it does not change subject to the change in �.

We have shown that the proposed �xed-point approximation scheme can be applied to
optimization tools to get trunk reservation parameter design and link capacity design anal-
ysis. Since the proposed �xed-point approximation generally gives conservative estimates,
we are sure that the optimization constraints will be satis�ed.
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7 Sensitivity Analysis Using Automatic Di�erentiation

The idea behind automatic di�erentiation (AD) is not a new one. Since di�erentiation of
functions de�ned by formulas is a mechanical process done according to �xed rules, e.g.
the chain rule, it is highly suitable for automation along the same lines as function eval-
uation. However, the technique of automatic di�erentiation did not become popular and
really applicable until pretty recently, due to the remarkable work by Andreas Griewank
and Christian Bischof, who is also the major contributor of the AD package ADIFOR for
FORTRAN and the recently available ADIC for C [17]. They take the form of preprocessors,
which take user's function evaluation code as input and generate output code that evaluate
both function and function derivatives at the same time.

However, just because the derivatives computed by automatic di�erentiation are those
de�ned by the statements that were executed by a particular program run, what was actually
computed may di�er signi�cantly from the derivative of the function one intended to compute
[18]. This is especially true in the iterative evaluation of a function de�ned implicitly or
otherwise. Usually the iteration continues until the value of f(x) meet certain criteria.
However, this may not be true of the value of f

0

(x) or higher derivatives. On the other hand,
many engineering problems are impossible or impractical to be expressed in an explicit or
exact form, and we have to turn to approximations which often take an iterative form. The
problems lie in the design of programs to which AD is to be applied and can be handled
most e�ectively by the programmer, especially for pitfalls arising from branching or iteration.
Interested readers are referred to [19] for convergence of derivatives of functions de�ned
implicitly or iteratively, and [20] for an example of automatic di�erentiation procedure for
(single) �xed point problems.

Our interest here is to use AD to compute derivatives of the blocking probabilities w.r.t.
o�ered tra�c load. Our approximation for blocking probabilities is an iterative process
involving implicit function de�nition and multiple �xed points, shown as follows:

� = f1(x; a); f1 : R
m �Rn ! Rl

a = f2(x; �); f2 : R
m �Rl ! Rn (37)

where a denotes the vector of link admissibility probabilities, � denotes the vector of link
tra�c load, and x denotes the set of independent variables including the distribution of
tra�c load, network resource allocation(link capacities) and admission control parameters.
The �xed points are (a�; ��) and the blocking probabilities B� = B(a�; ��).

Based on the approximation scheme described in Section III, given x, � ! �� and a! a�
in the following way:

Given x and a0,

Until k�k � �k�1k � Tol� or kak � ak�1k � Tola
�k = f1(x; ak)
ak+1 = f2(x; �k)
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k = k + 1
B� = f(a�; ��)

where Tol� and Tola are stopping criteria.

Naturally we are interested in @B
@x
, the sensitivity of blocking probability with respect to

network design parameters, and eventually we would like to solve the following optimization
problem:

min f(B); S.t. g(x) � 0;

where f(�) is some cost/penalty function and g(�) is the constraints on network designs.

Ideally we would want the derivative evaluation code generated by an AD preprocessor
to take the form of the following:

Given x, a0 and a
0

0,

Until k�k � �k�1k � Tol�
or kak � ak�1k � Tola

Until k�
0

k � �
0

k�1k � Tol�0

or ka
0

k � a
0

k�1k � Tol
a
0

�k = f1(x; ak)
�
0

k =
@f1
@x

+ @f1
@a
� a

0

k

ak+1 = f2(x; �k)
a
0

k+1 =
@f2
@x

+ @f2
@�
� �

0

k

k = k + 1
B� = f(a�; ��)
B

0

x
= f

0

a
a
0

x
+ f

0

x
�
0

x

In this experiment, the AD package ADIC [17] is chosen to generate derivative code to
calculate @B

@x
for Example One described in Section V. There is no separate stopping criterion

generated for derivative iteration by ADIC. The whole iteration is terminated when the
function convergence criterion is satis�ed. So additional stopping criterion for derivatives
are added to the ADIC generated code.

The computational results are quite satisfying, and correspond to previous discussions,
B

0

x
did converge but was slower than B itself, 18 iterations vs. 11 iterations. Selected results

are listed in Table 10. Independent variable x is chosen to be the o�ered tra�c load of three
tra�c classes between source-destination node pair (0; 1), so each blocking probability has
three derivative values.
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Table 10: Blocking Probability Derivatives
Pair,Class @B

@x1

@B
@x2

@B
@x3

(0; 1)0 5:66e� 04 8:85e� 04 1:03e� 03
(0; 2)2 7:91e� 04 1:20e� 03 1:36e� 03
(0; 3)0 6:68e� 04 1:01e� 03 1:15e� 03
(2; 3)0 3:32e� 04 5:04e� 04 5:71e� 04
(3; 4)1 4:19e� 04 6:40e� 04 7:29e� 04

8 Conclusions

In this paper we presented an approximation scheme of calculating the end-to-end, class-
by-class blocking probability of a loss network with multirate tra�c and adaptive routing
scheme. It provides fairly good estimates of call blocking probabilities under normal and
heavy tra�c orders of magnitude faster than discrete event estimation. We also presented
asymptotic analysis of the �xed point algorithm and showed that this algorithm gives conser-
vative estimates in general. Two applications are provided as examples of how such analytical
approximation schemes can be easily linked with mathematical programming tools to provide
e�ective means for network design and trade-o� analysis.
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