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ABSTRACT 
Calibration is the process of identifying and correcting for the 

systematic bias component of the error in sensor measurements. 

Traditionally, calibration has usually been conducted by 

considering a set of measurements in a single time frame and 

restricted to linear systems with the assumption of equal-quality 

sensors and single modality. 

The basis for the new calibration procedure is to construct a 

statistical error model that captures the characteristics of the 

measurement errors. Such an error model can be constructed 

either off-line or on-line. It is derived using the nonparametric 

kernel density estimation techniques. We propose four 

alternatives to make the transition from the constructed error 

model to the calibration model, which is represented by piece-

wise polynomials. In addition, statistical validation and 

evaluation methods such as resubstitution, is used in order to 

establish the interval of confidence for both the error model and 

the calibration model. Traces of the distance ranging 

measurements recorded by in-field deployed sensors are used as 

our demonstrative example.  

1. INTRODUCTION 

One can distinguish the two components of error: systematic bias
and random noise. Systematic bias is the time-invariant amplitude 

offset of the correct value and can be express by some 

deterministic function of the correct value. Random noise is time 

dependent and can be contributed by many factors such as 

environmental conditions and hardware noise. It is beneficial to 

separate the two components and address each individually, since 

each behaves differently. The random noise can be studied and 

modeled over time once the systematic bias is properly addressed.  

In wireless sensor networks, calibration has been mainly 

addressed as a step of sensor fusion. Generally, it is common for 

the Gaussian distribution model to be assumed and the least 

linear-squares norm to be used in order to minimize discrepancy. 

However, a number of recent experiments indicate that errors in 

sensor systems do not follow the Gaussian distribution and often 

have complex behavior that cannot be captured using the standard 

distributions and parametric statistical methods. Our goal is to 

first study the error behavior using nonparametric statistical 

techniques where no assumption on error distribution is required. 

As we demonstrate with the distance (acoustic signal strength) 

measurements, the error behavior can only be accurately captured 

by nonparametric statistical techniques. The error model is 

constructed using the kernel density estimation technique. The 

approach is generic in that the error model can depend on an 

arbitrary number of measured parameters. Such an error model not 

only provides one single most probable correct value for a given 

measurement, it provides the complete probability distribution of 

all possible correct values for that single given measurement. 

Once the error model is available, we demonstrate that the 

calibration model used to map the recorded values to the correct 

values in order to compensate for sensor bias can be defined in 

several different ways. Furthermore, we are also able to derive the 

interval of confidence for any particular measurement value and 

for all values overall. 

2. RELATED WORK 

In this Section, we survey the related work along the following 

lines of statistical modeling and sensor data calibration. Least 

linear-squares fitting is one of the most popular parametric 

techniques for fitting a set of data to a particular compressed form. 

The technique is optimal under the assumption that the error 

distribution follows the Gaussian distribution. The standard 

technique for conducting least squares fitting is to use the 

Singular Value Decomposition (SVD) approach. In addition, there 

are a various available techniques that can be applied to determine 

whether the least squares model is appropriate of the given set of 

data. [3][1][8] provide the detailed description of these methods. 

In addition to parametric techniques, recently nonparametric 

techniques that do not depend on any underlying assumptions 

have been gaining popularity. The standard references include 

[4][5][6][11]. 

Calibration in sensor networks has a unique set of requirements 

and constraints due to the specifics of how sensor networks are 

deployed and operated. In particular, needs for low power 

operation and low bandwidth communication, harsh environments 

that accelerate degradation of sensors, and the cost of sensitivity 

pose unique challenges. Some of the existing state-of-the-art 

calibration techniques for sensor networks include 

[2][9][10][14][16][17]. Until now, calibration was addressed in 

sensor networks mainly in relationship to location discovery. The 

first two efforts that have been reported in this domain are Madusa 

system from UCLA and SpotON system from University of 

Washington. The emphasis in both efforts is on building models 
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Figure 2. The similarity window.

of the signal strength and the distance for a specific set of radio 

transceivers and receivers in off-line calibration. Both [9][14] 

reported comprehensive sets of experiments. Neither reports 

statistical evaluation of the developed models in terms of interval 

of confidence. 

Another calibration project that targets location discovery is [17]. 

The authors use least linear-squares to fit experimental data to the 

manually selected linear model. The method has three phases. In 

the first step, they parameterize each individual radio and develop 

a model of the overall system using these parameters. In the 

second phase, they collect data from the system, and in the last 

phase they select the parameters for individual device in such a 

way that the behavior in the entire system has the lowest 

discrepancy. Several types of calibration techniques are discussed 

including iterative, mean, joint and autocalibration. 

Bychkovskiy et al. [2] attempted to eliminate or reduce systematic 

error by first considering pairs of close sensors. During the next 

phase, they consider a large number of pairs of sensors and try to 

find the most consistent way to simultaneously satisfy all pair-

wise relationships. The basis for their work is an observation that 

two sensors that are spatially close often have temporarily 

correlated recordings.  

More recently, Ihler et al. [10] proposed a localized self-

calibration approach that formulates the problem within a 

graphical model in the framework of location estimation. Then 

nonparametric belief propagation can applied to obtain an 

approximate solution. In addition, with the assumption that the 

noise in distance measurements follows the Gaussian distribution, 

self-calibration may be formulated as a nonlinear least-squares 

optimization problem. 

3. STATITICAL ERROR MODELING 

In this Section, we present the techniques to construct the 

nonparametric statistical model of the measurement errors 

represented in terms of the probability density functions. These 

techniques leverage the concept of kernel density estimation and 

the maximal likelihood principle. We first state the assumptions 

the techniques are based upon. Then we introduce the generic 

methodology for constructing the error model. After that, we 

provide evaluation metrics and validation techniques. We 

demonstrate the model construction process on a set of acoustic 

signal-based distance measurements (i.e. ranging measurements) 

generated by a set of deployed sensors [12][13]. It is important to 

note that these techniques are not limited to distance 

measurements, but also can be applied to a diverse range of data.  

When the error model is constructed off-line, we assume the 

availability of golden standard, which can be either calculated by 

obeying physical laws (e.g. the distance formula in the case of 

distance measurements) or obtained by introducing additional 

calibrated and accurate equipment/sensors to serve as the 

reference values for the uncalibrated sensors. When the error 

model is constructed on-line and in field, no available standard is 

assumed. In this case, the system is first solved by using other 

optimization targets without explicitly specifying any error model 

(e.g. L1 norm, L2 norm), then the initial solutions serve as the 

correct values along with the measurements to construct the error 

model. After that, the system is solved again by adopting the on-

line constructed error model. This process is repeated, and the 

error model is modified and tuned iteratively so that it is a better 

representation of the actual error distribution.  

3.1 Model Construction and Evaluation 

The distance ranging measurements that we use as the 

demonstrative example in this section was recorded by sensors 

deployed in a minefield test facility over the course of several 

days [12][13]. For the sake of simplicity, we explain the error 

construction off-line and the standard in this case is the calculated 

Euclidian distances for each measured distance given the 

coordinates of the sensors.  

Figure 1. The measured vs. correct distances. 

The first step towards building the error model is to examine the 

suitability of the measurements for modeling. The essence of 

suitability is to inspect whether there exists consistency among the 

measurements and to what extent the consistency is quantified. 

We first plot the pairs of measured and the corresponding 

calculated distance (i.e. the correct distances). Figure 1 shows 

2,000 such pairs. In the case of distance measurements, we define 

consistency as longer measured distances imply longer 

corresponding correct distances. For this set of 2,000 data, the 

consistency is 92.93%. Two observations show the consistency 

can be drawn from this figure: i) The majority of the 

measurements have low discrepancy when compared to the correct 

distance. ii) As the measured values increase, particularly when 

the measured distance >40, a substantially higher percentage of 

incorrect measurements is observed. Clearly, this set of distance 

measurements appears to be adequate for modeling since it has a 

high consistency and there are patterns and characteristics that can 

be generalized. 

The essence of constructing measurement error model is to 

examine the frequency of different correct values given a single 

measured value. However, one difficulty towards constructing an 

accurate error model is the lack of sufficient number of 

measurement data. To address this limitation, the kernel density 

estimation technique [15] is used, where the probability of a 

measurement is estimated by considering other similar 
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                                                                                       Figure 4(b). Close up view.                               Figure 4(c). Close up view. 

                 Figure 4(a). PDF surface.                             Measured distance  [0, 40].                            Measured distance  [30, 40]. 

Figure 5. Predictability error given various % of 

the training data.

Figure 6. Consistency in terms of the 

interval of confidence.

measurements. More specifically, we use 3-dimensional 

probability density functions (PDF) to represent the likelihood of 

errors. Consider a set of n pairs of measured and correct distances 

{(xi, yi), i=1,…,n}. For each measured distance X, we define a 

window of size X±(
� �

x), and consider all the measurements within 

this window to construct a 2-dimensional probability distribution 

curve of the correct distance for X. Furthermore, this 2-d curve is 

constructed by applying the same technique again on the correct 

distances. For each correct distance Y, we define another window 

of size Y±(
� �

y), all values fall within both of these two windows 

(i.e. {(xi, yi) | xi X±(
� �

x), yi Y±(
� �

y)}) are used to estimate the 

probability of the correct distance Y given the measured distance 

X. The concept of similarity window is pictorially presented in 

Figure 2. Note that even values within the similarity windows, 

{(xi, yi) | xi X±(
� �

x), yi Y±(
� �

y)}, have different degrees of 

similarity with respect to X and Y. Thus different weights should 

be assigned to (xi, yi) according their similarity to X and Y towards 

estimating the probability of (X, Y). Figure 3 gives an example of 

the possible weight function. The pyramid-shaped weight function 

has volume 1, with the center of the pyramid being (X, Y), and the 

sides being the window sizes X±(
� �

x) and Y±(
� �

y). Note that the 

further (xi, yi) is from (X, Y), the smaller weight is assigned to (xi,

yi). For all the values outside of either window, a weight zero is 

given which implies no contribution is made towards estimating 

the probability of (X, Y). Figure 4(a) shows the 3-d PDF surface 

constructed upon the same set of 2,000 distance measurements 

using the pyramid weight function of window size 2.0. The x-axis 

shows the measured distances; the y-axis shows the correct 

distances; and the z-axis indicates the likelihood of a particular 

correct distance for a particular measured distance. Figure 4(b) 

gives a closer view when the measured distance [0, 40]; Figure 

4(c) gives a further closer view when the measured distance [30, 

40].  

The ultimate metric for evaluating the error model is the ability to 

accurately estimate the correct values that are not in the training 

data used to construct the error model. Therefore, it is crucial to 

study the relationship between the percentage of the training data 

and the modeling accuracy. Figure 5 shows the prediction error 

defined as the difference between the value proposed by the error 

model and the actual correct value, given different percentage of 

the training data varied from 30% to 80%. As the plot indicates, 

even with only 30% of the training data, the error model still 

achieves only an error of 8.27% when compared to the correct 

values. 

Another metric – consistency, provides a measure of how often 

the error model is within a certain bound of accuracy. It is done 

using the resubstitution method [5], where 70% of the original 

data is randomly selected to construct the error model, and the 

remaining 30% of the data is used to evaluate the model. This 

process is repeated 200 times to construct the interval of 

confidence. For example, Figure 6 shows the interval of 

confidence represented in terms of histograms of the prediction 

error when 70% of the training data is given. We can conclude 

from the figure that with 80% of confidence, the error model 

yields a prediction error of 5.5%±1.5%. 

4. CALIBRATION 

Another way to interpret the 3-d PDF surface is that it is a 

collection of 2-d PDF curves for each measured distance. For 

example, Figure 7 shows the 2-d PDF curve for the measured 

distance 30.26. This measured distance can be calibrated by 

selecting a correct distance based on this 2-d PDF plot. Given a 

measured distance X, we consider the following four alternatives: 

1. Average:  find the smallest (Min) and 

the largest (Max) correct distances that 

have PDF values greater than zero or a 

threshold; calculate the average of the 

two values. 

2. Peak:  select the real distance that has 

the highest PDF value. 

3. 50%:  normalize the area under the 2-d 

PDF curve to 1; select the correct 

distance that partitions the area into 

two equal portions. 

4. Weighted_Error: for each real distance 

Y, calculate the summation of weighted 
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Figure 8. Calibration model presented as two 

piece-wise polynomials.

Figure 9. The confidence interval of 

the calibration error.

error defined as ]),([

1

�
n

i
ii yXPDFYy , where yi, i=1,…,n

are the correct distances; and PDF(X, yi) is the PDF value of a 

specific real distance yi given the measured distance X.

Figure 7. Probability density distribution of the correct 

distances of measured distance 30.26. 

We first select the correct values (i.e. the calibrated values) for all 

measured distances based on one of the above four alternatives, 

then piece-wise polynomials are used to obtain an approximation 

of the calibration model using the least linear-squares. If the 

model is constructed on-line, a Dijkstra’s shorted path-based 

algorithm [7] can be used to optimally determine the breaking 

point and the degree of each piece-wise polynomial function 

(Figure 8). Figure 9 shows the interval of confidence of the 

calibration error, which is defined as the difference between the 

correct values and the polynomial function estimate of the 

calibrated values. We can conclude from the figure that with 86% 

of the confidence, the calibration model, i.e. the two piece-wise 

polynomials, yields an error of 5.5%±0.5%.

5. SUMMARY 

We have developed a calibration approach that employs the 

maximal likelihood principle for summarizing and representing 

the error model. The error model is derived using the 

nonparametric kernel density estimation techniques. 

Resubstitution validation method is applied in order to establish 

the interval of confidence for all results. We demonstrate the 

generic error model construction and evaluation techniques on a 

set of distance ranging measurements recorded by deployed 

sensors and the four calibration candidates. The calibration model 

is represented using piece-wise polynomial functions. 

Experimental results show not only that the statistical error model 

can accurately capture the behavior of the measurement errors 

with less than 50% of the training data; but also the calibration 

model derived from the error model yields an average of 5.5% 

error with high confidence. 
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