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Configuration management is critical to correct and efficient operation of large 

networks. In those cases where the users and networks are dynamic and ad hoc, 

manual configuration quickly becomes too complex. The combination of the sheer 

number of nodes with the heterogeneity and dynamics makes it almost impossible for 

the system administrator to ensure good configuration or even ensure correct 

operation.  To achieve the vision of pervasive computing, nodes must automatically 

discover their environment and self-configure, then must automatically reconfigure to 

adapt to changes.  

Protocols such as DHCP, DDNS and mDNS provide some degree of host 

autoconfiguration, but network administrators must still configure information such 

as address pools, routing protocols, or OSPF routing areas. Only limited progress has 

been made to automate the configuration of routers, servers and network topology. 

This dissertation proposes the autoconfiguration of most host, router and server 

information, including the automatic generation and maintenance of hierarchy, under 

the same architectural, algorithmic and protocol framework. The proposed unified 

framework consists of modules (DRCP, DCDP, YAP, ACA) responsible for the 



  

entity autoconfiguration and from a modified and well adjusted general optimization 

(Simulated Annealing) based algorithm for the domain autoconfiguration. Due to the 

generality of the optimization algorithm, the generated hierarchy can improve 

dynamically selected network performance aspects represented by appropriately 

designed objective functions and constraints. An indicative set related to the physical 

characteristics of the domains and node mobility is provided. 

Even though SA has been adjusted for faster convergence, it may still be unable 

to capture the dynamics of rapidly changing networks. Thus, a faster but suboptimal 

distributed hierarchy generation mechanism that follows the design philosophy of 

SA-based mechanism has also been introduced. 

Inevitably, due to network dynamics, the quality of the hierarchy will degrade. In 

such scenarios, the frequent reapplication of the expensive optimization based 

hierarchy generation is prohibitive. Hence, for extending the domain formation 

framework, distributed maintenance mechanisms have been proposed for 

reconstructing the feasibility and quality of the hierarchy by enforcing localized 

decisions.  

The proposed framework has been applied to provide solutions on some realistic 

network problems related to hierarchical routing and topology control. 
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Chapter 1: Introduction 
 
 
 

1.1 Introduction 
 

Configuration management is critical to correct and efficient operation of large 

networks. In those cases where the users and networks are dynamic and ad hoc, 

manual configuration quickly becomes too complex. The combination of the sheer 

number of nodes with the heterogeneity and dynamics makes it almost impossible for 

the system administrator to ensure good configuration or even ensure correct 

operation.  To achieve the vision of pervasive computing, nodes must automatically 

discover their environment and self-configure, then must automatically reconfigure to 

adapt to changes. Protocols such as DHCP, DDNS and mDNS provide some degree 

of host autoconfiguration, but network administrators must still configure information 

such as address pools, routing protocols, or OSPF routing areas. Only limited 

progress has been made to automate the configuration of routers, servers and network 

topology. We propose the first unified attempt to combine both the self configuration 

of much of the host, router and server information, together with the automatic 

generation and maintenance of hierarchy under the same algorithmic framework. 

Testbed implementations show the approach is practical, while analysis reveals its 

scalability, rapidness and efficiency with respect to network performance. 

Future commercial, military and emergency networks require changes to 

traditional network management. Configuration management, in particular, must 

ensure correct and efficient network operation through setting parameters such as: 
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• IP Addresses of an interface. 

• Network Parameters (e.g., Default MTU size). 

• Server addresses (e.g., for DNS or Certificate Authority server). 

• Routing information (e.g., default route or routing protocols).  

• IP Address pools (e.g., for DHCP or MADCAP server). 

• Security keys. 

While protocols such as DHCP, DDNS and mDNS have allowed more 

autoconfiguration, network administrators must still manually configure much of this 

information. We need new protocols that are able to configure all these parameters 

especially in routers and servers.  

In many cases configuration management must also construct hierarchies (e.g., 

routing areas and security domains) for scalability, efficiency and manageability. 

Today, the construction of hierarchies is a manual process, performed off-line by 

experts, because it requires difficult optimizations. For example, in the creation of 

OSPF areas in dynamic networks, the savings in reduced routing overhead must be 

balanced with the overhead of hierarchy maintenance and mobile node 

reconfiguration. Figure 1.1.1 shows an example of how OSPF areas, with aggregation 

at area boundaries, reduce the number of OSPF LSA packets in a network (routing 

overhead). When all nodes are placed into one area, the routing overhead grows 

quadratically with the number of nodes ( n ); however, with a two-level hierarchy with 

n  nodes per OSPF area, overhead grows much less rapidly. This does not mean, 

however, that, for example, a 25 node network should be divided into 5 domains with 

5 nodes in each domain. The configuration management must take into account the 
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increased hierarchy maintenance and mobility management overheads. Further 

adding to complexity, Figure 1.1.1 shows that the lowest routing overhead is achieved 

by keeping nodes with similar velocities into the same areas. 
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Figure 1.1  Reducing routing overhead using a two level hierarchy  

 

We believe configuration management must be cheaper (e.g., more plug and 

play), more robust (e.g., no human intervention), faster (e.g., in seconds), and better 

optimized (e.g., to the link error rate) than current approaches. Moreover, 

configuration management must be able to deal with more network dynamics (e.g., 

varying topology) and be more scalable (e.g., to support 10K nodes). In some cases 

the configuration must be done with little or no fixed infrastructure. 

This dissertation proposes the autoconfiguration of most host, router and server 

information, including the automatic generation and maintenance of hierarchy, under 

the same architectural, algorithmic and protocol framework. The framework that will 

be presented and analyzed throughout the dissertation, consists of two parts, the 

communication part and the decision making part. The decision making part is 
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responsible for obtaining the appropriate network and hierarchy configuration with 

respect to the imposed network performance objectives and the communication part is 

responsible for the distribution of the configuration decisions and the collection of the 

required information utilized from the decision making part of the framework. 

Namely, the modules that constitute the communication part of the proposed 

framework are the modules: 

• Dynamic Configuration Distribution Protocol (DCDP) 

• Dynamic and Rapid Configuration Protocol (DRCP) 

• Yelp Announcement Protocol (YAP) 

These modules are part of the introduced IP Autoconfiguration Suite (IPAS), which is 

responsible for the network configuration.  

Furthermore, the decision making part is based on an enriched, modified and well 

adjusted SA optimization (SA is a randomized general approximation algorithm, 

which asymptotically behaves as a global optimization algorithm – provably SA 

asymptotically obtains the global optimal) algorithm. The selection of a general 

optimization algorithm for obtaining configuration decisions is justified from the 

philosophy behind the proposed general configuration framework. The generality of 

the framework is with respect to the performance objectives imposed to the network. 

These objectives can be selected dynamically or change during the lifespan of the 

network. The same framework can obtain dynamically the appropriate network and 

hierarchy configuration that satisfies the new performance objectives, without the 

need to utilize a different set of algorithmic modules and functions, which are tailored 

to this new set of objectives.  
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The biggest challenge on the network and hierarchy framework design is the 

design of lightweight, scalable, robust and efficient communication modules and the 

adaptation of the optimization (SA) algorithm to the dynamic nature of the network 

environments (i.e. mobile wireless ad hoc networks) under consideration, by reducing 

its convergence time considerably without affecting its high quality optimization 

ability. On the same lines, another challenge is the ability of SA to handle efficiently 

the dynamics of the network, since its continuous reapplication for every topological 

change is not suggested due to the overhead and latency costs involved. Thus, the 

decision making mechanism has been enriched with suboptimal distributed 

(localized) heuristics, which have been designed following the same spirit of 

generality and independence of the performance objectives imposed.  

The detailed description and analysis of the proposed unified network and 

hierarchy configuration framework are provided in this dissertation. Specifically, 

chapter 2 presents the IP Autoconfiguration Suite (IPAS) and its modules, which are 

responsible for the network configuration and additionally provide communication 

capabilities utilized from the general configuration framework. Chapters 3 and 4 

discuss the introduced dynamic hierarchy generation mechanism. This discussion 

involves the presentation of the cornerstone algorithm for the decision making part of 

the configuration framework. Namely, the functionality and properties of the general 

randomized approximation algorithm (SA) are provided along with its most 

significant parameters responsible for its performance. Furthermore, the indicative set 

of the metrics, cost functions and optimization constraints utilized for the description 

and evaluation of the hierarchy generation framework are being provided. Chapter 5 
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deals with the detailed description of the techniques enforced for the enrichment, 

modification and adaptation of the SA algorithm on the dynamic nature of the 

wireless mobile ad hoc networks. The main objective of the latter techniques is the 

improvement of convergence time of the SA algorithm without penalizing its 

optimality. Even though the performance characteristics of the cornerstone algorithm 

(SA) were adjusted appropriately, in cases of rapidly changing networks, the 

algorithm might not be able to capture their dynamics. Thus, a suboptimal distributed 

generation mechanism that follows the design philosophy of the SA-based 

mechanism is being introduced and evaluated in chapter 6. The hierarchy generation 

framework attempts to optimize the imposed hierarchical structure by involving the 

entire network on the decision making process. Due to the dynamics of the network, 

this is not practical (expensive and slow) in cases of frequent and localized changes. 

Hence, chapter 7 presents and analyzes the localized (distributed) maintenance 

mechanisms introduced for providing to the network the ability of adapting to the 

changes by acting and rebuilding the optimality of the hierarchical structure locally. 

Finally, chapter 8 applies the proposed framework on some realistic network 

problems related to hierarchical routing and topology control for optimizing the 

power consumption by adjusting appropriately the transmission power.  
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Chapter 2: Autoconfiguration of MANETs 
 
 
 
 

2.1 Introduction 

The networking capabilities and the number of devices that will constitute the future 

commercial, military and emergency networks suggest change in the spirit of their 

traditional management. One aspect of this management is the configuration of these 

devices so that they can be part of the network. The most important requirements of 

the new way of configuring networks are the speed of configuration (e.g., large 

number of nodes can be configured and communicate in few seconds) and the 

dynamic nature of the management (e.g., human intervention is not anymore 

required). Traditionally, the network manager was responsible for the configuration 

of the various network entities and this is a costly procedure with respect to the 

required time and human effort. The future network systems indicate that this amount 

of time or human resources may not be available so the network and the various 

entities must have the intelligence to configure themselves.  

The problem becomes even more complicated and significant when the network 

environments under consideration are dynamic (e.g., varying topology) due to area 

conditions and node mobility. Even this is the most difficult interpretation of the 

autoconfiguration problem; this is the most interesting one. The future networks, 

especially the military and the emergency networks have been mainly envisioned to 

consist of large number of wireless mobile devices, in topological areas with 

obstacles and high interference characteristics.  
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2.2 Related Work 

The problem of network autoconfiguration is very important for the general 

acceptance and correct functionality of MANETs. Due to the characteristics of this 

type of networks, the static configuration (i.e. pre-assigned IP addresses) of the 

participating nodes is meaningless. The topology of the network is changing 

dynamically and part(s) of it may become unavailable from time to time. The 

importance of this problem has been understood from the researchers and studies 

have been performed for the design of efficient autoconfiguration solutions. In this 

section we present the various approaches that have been proposed.   

Network autoconfiguration is a new problem for network environments like the 

MANETs but is not new for the INTERNET community. There, the efforts for an 

efficient solution have so far focused on the more limited objective of 

autoconfiguring static hosts and small networks. Subnet configuration protocols, such 

as PPP and DHCP [1][2][3][4] allow clients (hosts) to dynamically request an address 

and other configuration parameters when they first establish a communication link. 

Due to the static nature of the networks under consideration, the solutions (DHCP, 

PPP) are based on a client- server protocols. For example, in order a host to get 

configured requires an online DHCP server, which is pre-assigned from the network 

administrator to provide configuration information to the hosts requesting it. In 

networks like MANETs, a dedicated configuration server may not be available all the 

time. Also, DHCP can configure only hosts but is not useful for router nodes. By 

definition all nodes in a MANET are considered routers, so DHCP cannot handle this 
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type of nodes. So, solutions from the hardwired network world cannot be applied in 

dynamic and infrastructureless environments.   

On going research for dynamic networks’ autoconfiguration is being performed 

by a dedicated IETF Working Group called Zeroconf, which mainly focuses on 

environments that lack online configuration servers. The solutions provided by 

Zeroconf are not directly applicable to MANETs due to the type of dynamic networks 

they consider. The study performed by Zeroconf working group focuses on single 

segment networks, where all the participating nodes can communicate directly 

through link-layer broadcasts/ multicasts or multiple such networks which are 

connected on the same router. Obviously, these types of networks are subcategories 

of MANETs. The latter networks as opposed to the Zeroconf networks are considered 

multihop networks, so link level broadcasts do not guarantee their reception from all 

the participating nodes. Moreover, the Zeroconf approaches for Duplicate Address 

Detection (DAD) cannot be applied in MANETs. 

The problem is far more complicated and demanding compared to hardwired and 

Zeroconf networks and has been categorized [5] in the following four subproblems: 

• Address Autoconfiguration 

 Address configuration involves the configuration of network interfaces with 

unique addresses and the selection of the appropriate subnet mask to be used. The 

subnet mask identifies the network address and, among other things, allows an IP 

stack to determine whether it can deliver a datagram directly. Furthermore, and 

due to the dynamics of the networks under consideration, address configuration 
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mechanisms should be able to detect duplicate address assignment and cope with 

the collisions of this kind.  

• Name-to-Address Translation 

 IP applications typically identify endpoints by name rather than by address. This 

provides operational stability when the address of the endpoint changes, since the 

name will remain the same. From the name-to-address translation mechanisms, it 

is required that the IP address to be obtained is associated with a name and the 

selection of the name is associated with an IP address.  

• Service Discovery 

 Clients should be able to discover services on the network without prior 

configuration, and without any administered configuration management services 

(such as directories) on the network. Furthermore, the service discovery 

mechanism has to be lightweight in terms of the overhead imposed into the 

network (e.g. must no cause broadcast storms or other non scalable behavior). 

There are two categories of services, the indistinct and the distinct ones. In the 

indistinct services any server will perform the exact same function, as opposed to 

the distinct services where the service provided depends on the server that will be 

contacted. Indistinct services include services like DNS, Web proxies, SMPT 

relays and examples of distinct services are the IP-enabled printers, file servers, 

non-replicated databases. The network entities have to be able to find and contact 

the server that best meets their needs. 

• Multicast Address Allocation 
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 Some multicast applications require a unique multicast address to prevent other 

applications from conflicting with them. A multicast address conflict can cause 

the applications to fail. The assignment of multicast addresses to applications is 

analogous to the assignment of unique addresses to the network entities, where 

address conflict must be prevented. The Zeroconf working group has introduced 

the Zeroconf Multicast Address Allocation Protocol (ZMAAP), which allocates 

unique addresses to multicast applications, prevents the reallocation of already 

assigned addresses and notifies the applications in case of multicast address 

collision.  

The subproblem of address configuration is the most important, since it is the 

essential step for a network interface to become part of the communication network. 

Most of the studies being performed are related to this problem. The existing 

solutions can be classified [6] into three large categories. These categories are: 

• Conflict Detection Allocation 

• Best Effort Allocation 

• Conflict Free Allocation 

Many of the existing address assignment protocols belong into the first category 

(conflict detection allocation). The main characteristic of these protocols is that the 

non configured network entities are assigned an address and then the duplicate 

address detection module checks if there is a collision with another node, by 

requesting the approval of this assignment from the configured nodes of the network. 

If the conflict is found by veto from a node with the same address, the procedure is 

repeated until there is no collision detected. The main differences between the 
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protocols of this category are the selection of the address to be assigned and the 

mechanism they apply for duplicate address detection (DAD).  In the conflict 

detection allocation category belongs the protocol proposed in [7], which is based on 

the adaptation of the stateless IETF Zeroconf autoconfiguration protocol for 

MANETs [8]. A node randomly chooses an address and performs a DAD by flooding 

the network with an address request (AREQ) message, which contains the selected 

address. A node having the same address defends it by replying with an address reply 

(AREP) message, which is sent over the reverse path established by the AREQ 

message. If there is not another node with the same address in the network, a 

dedicated timer expires at the originator and the address is considered unique. The 

DAD mechanism proposed by [7] is query-based. The drawbacks of the approach are 

that network merging is not supported and the DAD mechanism is not scalable due to 

the overhead imposed by the flooding. 

  Another approach presented in [9], which also belongs to the conflict detection 

allocation category, is based on the Weak DAD (WDAD) mechanism. WDAD is 

integrated with the routing protocol and can continuously detect duplicate addresses 

due to the information added and carried from the underlying routing protocol. This 

mechanism requires modification of the routing protocol packets format, where a key 

related to each address is added. The key can be of arbitrary length and is chosen 

once by each node either randomly or with respect to a Universal Unique ID (UUID). 

A node detects a conflict if it receives two address-key pairs with the same address, 

but different keys. Obviously, a collision cannot be detected if two different network 

entities choose the same address and the same key. In the case of randomly selected 
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keys, the probability of something like that happening decreases with increasing key 

length. On the other hand, increasing the key length imposes extra overhead on the 

routing protocol. So, there is a trade-off between non-detectable collisions and 

overhead.   

In the proposed algorithms of the best effort allocation category, the nodes 

responsible for assigning addresses to the non configured ones, try to allocate unused 

addresses based on their knowledge of the set of addresses being assigned so far. At 

the same time the new node utilizes conflict detection to guarantee that the assigned 

address is free. The protocols presented in [10] and [11] are the best representatives 

of the best effort allocation category. In the protocol proposed in [10] each configured 

node is able to assign addresses to new nodes and therefore maintains an allocation 

table of already assigned addresses in the network. A new node called “requester” 

searches for an already configured node called “initiator” be sending a special 

broadcast message. The “initiator” chooses an unassigned address with respect to its 

addresses allocation table, and ensures the uniqueness of this address by a mutual 

exclusion algorithm, where it requests from all the configured nodes to approve this 

selection and mark this address as allocated on their address allocation tables. If all 

the configured nodes reply positive about the address then the “initiator” commits and 

assigns the address to the “requester”. In the case where there are non-replying nodes, 

the “initiator” after a number of retries assumes that these nodes have left the network 

and removes their addresses from its allocation table. This protocol is claimed that 

can handle successfully network merges by identifying each partition with a unique 

ID. This ID is composed of the smallest address in the network and a Universal 
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Unique ID (UUID) that is provided by the node with the smallest address. The 

partition ID is advertised periodically, so when nodes receive such messages with 

different partition ID they assume that the two partitions have merged. In this case the 

nodes exchange their allocation tables. The nodes that find that their addresses in the 

allocation table of the other partition, have to give up their addresses.  The drawback 

of the protocol is that bases its functionality on global states (address allocation 

tables). In order the method to be successful, these tables have to be maintained 

updated, which requires reliable message exchange (reliable broadcast). 

The other protocol (PACMAN) that belongs in the best effort allocation category 

is presented in [11] where the addresses are assigned in probabilistic way to the non 

configured entities. A passive DAD (PDAD) mechanism, which relies on address 

allocation tables and the routing protocol, is utilized to check for collisions. A node 

running PACMAN assigns an address to itself using a probabilistic algorithm. Based 

on a pre-defined collision probability, an estimation of the number of nodes and an 

address allocation table, the algorithm calculates the size of the virtual address space, 

randomly selects an address from this space. If with respect to the local address 

allocation table, the address has not been assigned before, the node immediately gets 

configured with this address. The calculation of collision probability is computed in 

analogy to the well known birthday paradox. Since the address allocation table may 

be out-of-date, a passive DAD (PDAD) mechanism investigates the existence of a 

collision. The DAD mechanism is passive because it relies on the processing of the 

routing protocol messages received by the node. In [11] many types of PDAD 

mechanisms are proposed, depending on the underlying routing protocol. These 
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mechanisms demand global clock synchronization and their functionality is based on 

various assumptions (i.e. routing information received from each node can never be 

older than a time span dt , which can be estimated accurately). PACMAN is heavily 

depends on the underlying routing protocol, which has to be present to the non 

configured network and belong to the proactive class of routing protocols. In case of 

reactive routing protocols the approach cannot be applied, since there is not periodic 

exchange of information that can be utilized for the update of address allocation 

tables and the functioning of PDAD mechanism.  

Last but not least is the category of conflict free allocation protocols. These 

protocols assign unallocated addresses to the new nodes. The latter is achieved by the 

assumption that the nodes taking part in the configuration process have disjoint 

address pools. Thus they can be sure that the addresses to be allocated are different. 

The more representative protocols of this category are presented in [12] and [6]. In 

[12] the disjoint pools of unallocated addresses are maintained based on the idea of 

binary splitting, presented initially in [13]. They extend binary splitting by relying on 

the binary buddy system for managing the pools. Buddy systems [14] are a type of 

segregated lists that support an efficient kind of splitting and coalescing. Binary 

buddies are the simplest and best known kind of buddy system. In this scheme, all 

buddy sizes are a power of two, and each size is divided into two equal parts. As in 

[13], these parts represent the unallocated addresses and are distributed throughout 

the network, so that can be utilized for assigning addresses to the non configured 

network entities. The assigned addresses are removed from these sets, so that they 

contain only non-assigned addresses. Due to this property, DAD is obsolete for the 
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conflict free allocation protocols. The main assumption of [12] is that there are no 

conflicts on the initial pool(s) of addresses. A weakness is that in scenarios where two 

previously unrelated networks merge, the assumption might not hold, and address 

conflicts may exist. 

The idea presented in [6] belongs also in the category of conflict free allocation 

protocols. The main idea differs from the previous one, since the conflict free 

allocation is not based on splitting the pools into disjoint parts but on a function 

( )f n that generates sequences of different integers in a range R. The sequences of 

( )f n  satisfy the following two properties, if R is large enough: 

• The interval between two occurrences of the same number in a sequence 

is extremely long. 

• The probability of more than one occurrence of the same number in a 

limited number of different sequences initiated by different seeds during 

some interval is extremely low. 

Initially the first node A selects a random number as its address and a random value 

as a seed for ( )f n  (e.g. the value of this function at each instance at every node is 

called the “state” of the corresponding node). When another node B requests to be 

configured from A, then A utilizes ( )f n  to generate an address for B and a seed to 

be used from B for its ( )f n  and also A updates its state. In that fashion the network 

gets configured with addresses from the range R. Node A is called the “prophet” since 

it knows in advance which addresses are going to be allocated and which of them will 

collide. In the latter case it can initialize local conflict detection before the allocation 
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of the corresponding addresses. The scalability and the correctness of [6] depend on 

the effectiveness of ( )f n , which has to produce very long conflict free sequences of 

integers. Problems can also appear in the case where multiple isolated nodes appear 

into the network simultaneously and get initialized with the same random numbers. In 

such cases the algorithm fails, since the participating nodes do not have the means to 

detect this phenomenon. 

The following table has been presented in [6] and provides some interesting 

comparison highlights between the three categories of configuration (address 

assignment) algorithms. For the communication overhead and latency complexities of 

the various algorithms, it can be assumed that the number of mobile nodes is n, the 

number of links is l, the average transmission time is t, the network diameter is d (in 

terms of nodes) and the retry time is k. 

 Conflict Detection 
Allocation 

Best Effort 
Allocation 

Conflict Free 
Allocation 

Network 
Organization 

Flat / Hierarchical Flat / Hierarchical Flat 

State Maintenance Stateless Stateful Partially Stateful 
[12] 

Stateful  
[6] 

Address Conflict Yes Yes No 
Address 

Reclamation 
Unneeded Needed Needed  

 
Complexity Low High Low 

Communication 
Overhead 

( )( )O n l k+ ×  ( )( )O n l k+ ×  2lO
n

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Latency ( )2O t d k× × ×  ( )2O t d k× × ×  ( )2O t  
Scalability Low Low High 

Table 2.1. Comparison Highlights between the various address assignment 
approaches 
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The approach presented in this dissertation belongs in the conflict free allocation 

category, since it bases its functionality on splitting and distributing disjoint pools of 

available addresses throughout the network. When a non configured node requests an 

address then by selecting and assigning addresses from these pools, it is certain that 

there is no collision with a previously allocated address. Details on the approach are 

presented in later sections in this chapter.   

2.3 Problem Description 

Even though the autoconfiguration of MANETS can be described easily as the 

problem of providing the various network entities with the appropriate information so 

that they can become active members of the communication network, the internal 

specifications and requirements imposed by the problem are far more complicated. 

What is the appropriate information required by a network entity to become part of 

the communication network and how this information can reach this entity, are the 

most important questions we have to answer.  

The problem becomes even more difficult and more realistic when we consider 

multihop networks where configuration information has to traverse paths that are 

larger than one hop to reach the non configured nodes. The routing of this 

information might be required to happen without the involvement of routing protocol 

and probably through nodes that do not possess an IP address. These are issues that 

will be addressed from the solutions provided in this dissertation. As we have 

mentioned the problem of autoconfiguration consists of many sub-problems due to 

the nature of the network, where many entities and modules have to be configured 

(i.e., IP addresses, DNS, routing, gateways) so that we can exploit its correct and full 
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functionality. Among the various sub-problems the most important one is the conflict 

free assignment of IP addresses to the participating network entities. The importance 

of the assignment of IP address is that the functionality of every networking module 

in the TCP/IP stack is based on the individual address of the various network entities. 

If the assignment can happen efficiently and correctly across the network then this 

will decrease the level of difficulty for the configuration of the remaining networking 

modules and entities. 

One of the existing approaches is based on the Dynamic and Rapid Configuration 

Protocol (DRCP). The limitation of DRCP as a standalone module is that can 

configure only network entities that belong on the same link. Since the solution we 

want to provide focuses on layer 3, the network environments under consideration 

consist of multiple links and for that reason we had to extend the DRCP module. We 

have suggested the Dynamic Configuration Distribution Protocol (DCDP), which 

extends the functionality of DRCP by interacting with the latter. The functionalities 

of the two protocols had left intentionally orthogonal, so that can be easily separated 

and applied to any future autoconfiguration module that requires their support. The 

next section gives a brief overview of DRCP, and in section 5 we describe DCDP, 

which is our contribution to the developed IP autoconfiguration suite. 

The rest of this chapter consists of sections 6, where we provide a complete 

overview of the IP Autoconfiguration Suite (IPAS) and section 7, where we analyze 

and evaluate DCDP protocol. The presentation of network autoconfiguration 

solutions and their evaluation is being conducted in section 8.  
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2.4 Dynamic and Rapid Configuration Protocol (DRCP) 

This section describes an IP link autoconfiguration protocol, called the Dynamic 

and Rapid Configuration Protocol (DRCP). Like the popular Dynamic Host 

Configuration Protocol (DHCP) on which it is based, DRCP configures nodes on a 

single link; however, DRCP also adds many features critical to future wireless 

dynamic networks [15]. Although now being developed for commercial 3G wireless 

networks [16], DRCP maintains the features needed for dynamic battlefield networks, 

such as allowing all nodes to be servers. 

Designed for IPv4 and IPv6, DRCP is a link autoconfiguration protocol for 

wireless environments. DRCP is focused solely at layer 3 (L3). The assumption is 

that layer 2 (L2) protocols autoconfigure nodes into IP links, where each node can be 

reached in one IP hop from any other node in the same link. Also, another assumption 

on the functionality of DRCP is that the autoconfiguration protocols should be 

independent of the routing and mobility management protocols. 

Although based on DHCPv6, DRCP has many extensions to: 

• Provide rapid client configuration and reconfiguration after a move 

• Make efficient use of wireless bandwidth 

• Not require clients to broadcast to another clients 

Also, a DRCP server can configure all interfaces on a link, including its own and 

those of any routers on the link. All DRCP nodes have a management interface for 

applications such as dynamic link reconfiguration and configuration management. 

A node running DRCP is initially assumed only to know, which of its interfaces 

configure using DRCP. If there are multiple interfaces may be configured by DRCP, 
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others using alternative techniques (e.g., using locally stored addresses or using 

DHCP). 

All DRCP nodes run the same code: there is no separate client and server 

program (as there are in DHCP). After boot-up, a node assumes all its DRCP 

interfaces are configured to be DRCP clients. As a client the interface will attempt to 

discover a DRCP node acting as the DRCP server on the corresponding link. After a 

random time, however, interfaces that are not configured (e.g., cannot locate a node 

acting as a DRCP server) will check if they can become a DRCP server. A node 

becomes a DRCP server for an interface when it has configuration information, 

including a pool of available IP addresses. A DRCP node does not get this 

information through DRCP, but from: 

1. Preset information (i.e., configuration file) 

2. Management interface (i.e., from a configuration manager) 

If a node becomes a DRCP server, then it will take the first available address from its 

address-pool and other configuration information to configure its own interface for 

that link. The node is then ready to serve other nodes on that link. A node can act as a 

DRCP server on a subset of its interfaces and as a DRCP client on another subset of 

them. Whether a node acts as a DRCP server or DRCP client for an interface can 

change due to the dynamic changes that will happen into the network overtime. 

2.4.1 DRCP Client-Server Messages 

DRCP-to-DRCP messages between clients and servers use UDP as its transport 

protocol. All messages from a client are sent to the well known 

DRCP_SERVER_PORT port. All messages from a server are sent to the 
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DRCP_CLIENT_PORT port. Although there are some differences between DRCP for 

IPv6 (such as the use of multicast or broadcast), we will describe DRCP generically. 

DRCP messages have similar names and meanings to DHCPv6, but with 

important differences in their operation and syntax. The four principal messages are: 

• DRCP_SOLICIT: Broadcast or multicast by a client to locate servers. There is 

no requirement for this message to reach all clients on the link. 

• DRCP_ADVERTISE: Broadcast, multicast or unicast by servers to advertise 

their location, either periodically or in response to a DRCP_SOLICIT. 

• DRCP_REQUEST: Unicast by clients to request configuration parameters from 

a server or to extend the lease on an address. 

• DRCP_REPLY: Unicast by servers responding clients to a DRCP_REQUEST or 

DRCP_RELEASE message. When responding to a DRCP_REQUEST, the 

message contains the client’s new configuration parameters. 

DRCP also has the following messages: 

• DRCP_RELEASE: Unicast by clients to relinquish an IP address and cancel 

remaining lease 

• DRCP_RECONFIGURE: Unicast or multicast by server to offer client new 

configuration information (the client is assumed not to be in sleep mode).  

• DRCP_RESET: Unicast or multicast by a server to reset the client (the client is 

assumed not to be in sleep mode). 

2.4.2 Basic Call Flow 

The basic operation of DRCP can be demonstrated by assuming the simple 

network of two nodes as it is shown in figure 2.1. The DRCP process is running on 



 23

both Node A and Node B for the configuration of their interfaces on Link x. Initially 

both Node A and Node B listen as clients and send out DRCP_SOLICIT messages on 

Link x. Since both nodes have not been configured they cannot claim the role of the 

DRCP server on the link. Assume that Node B has a pool of available IP addresses 

and other configuration information; therefore, after checking that there are no other 

servers, it will become a DRCP server for Link x. Once it is a server, Node B will 

configure its own interface and start sending out periodic DRCP_ADVERTISE 

messages. 

 

 

 

 

 

 

 

Figure 2.1. DRCP basic call flow 

 
In figure 2.1 the time axis starts when Node A first becomes active (or moves 

onto Link x). If the latter node has not seen a DRCP_ADVERTISE message (either 

gratuitously or in response to the DRCP_SOLICIT message). Node A sends a 

DRCP_REQUEST to Node B requesting configuration information. Node B sends a 

DRCP_REPLY with configuration information, which Node A can immediately use 

to configure its interface on Link x. 
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Even though the participating nodes utilize the same DRCP module, they can 

behave as servers or clients onto a particular link, depending on the pre-configuration 

information they had acquired and the status of the configuration onto the 

corresponding link. The basic functionality of clients and servers is described briefly 

in the following two sections. 

2.4.3 Basic DRCP Client Operation 

The description of the DRCP client operation is best described by referring on 

Figure 2.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Simplified DRCP Client State Diagram 
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Initially all non-configured nodes behave as DRCP clients. A client starts in the 

INIT state and waits to hear DRCP_ADVERTISE messages on the 

DRCP_CLIENT_PORT. If it hears no messages, then the client may broadcast (or 

multicast) a DRCP_SOLICIT message to discover DRCP server nodes. Although the 

message is broadcast, it is not required the message to be received from all DRCP 

clients on the link. The latter assumption is important for meeting the performance 

requirements (e.g., robust and rapid dynamic configuration) being set for the 

autoconfiguration of MANETs. 

  After some time with no DRCP_ADVERTISE message, the client assumes that 

the DRCP server is not reachable anymore so it will move into the PRECONFIG 

state. If it has any preconfigured configuration information, the client will become a 

server for the corresponding link. Otherwise, the client moves to the SERVER_FIND 

state where it continues waiting for DRCP_ADVERTISE messages and sending 

DRCP_SOLICIT messages. 

If a non-configured client receives a DRCP_ADVERTISE message, then it will 

go to the BINDING state. In the BINDING state it unicasts a DRCP_REQUES 

message to the source address of the DRCP_ADVERTISE message until it gets a 

DRCP_REPLY message. Once it receives a DRCP_REPLY message, the client 

moves to the BOUND state and cam immediately configure its interface with the 

received configuration information. There in no requirement for doing Duplicate 

Address Detection (DAD), as there is in DHCP, since the server does preemptive 

DAD. After being configured the client may periodically attempt to renew the lease 

by moving into the RENEWING state. It renews by a REQUEST-REPLY 
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transaction. If it fails to get renewed, it moves to the SERVER_CHK state, where it 

attempts to find any DRCP server.  

2.4.4 Basic DRCP Server Operation 

There is no distinct DRCP module that separates the servers from the clients. 

Initially, all DRCP nodes function as clients. The configuration state on the 

corresponding Link and the configuration information being carried from the node, 

can acquire DRCP server privileges to the DRCP interface of this node that is directly 

connected on the Link. Specifically, if a DRCP node carries configuration 

information (including a pool of available IP addresses) for the non-configured 

interface under consideration, then it can become a DRCP server, in the case where 

there is not another DRCP server already configured on this Link. It can also become 

a server through receiving configuration information on its external management 

interface. 

 

 

 

 

 

 

 

 

 

Figure 2.3. Simplified DRCP Server State Diagram 
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Figure 2.3 presents the functionality of a DRCP node once it becomes server. 

First, it enters the SELF_CONFIG state, where it assigns the first address from the 

local pool of available addresses to its own non configured interface. It then moves 

into the DAD state, where: 

a) Listens on the DRCP_SERVER_PORT port 

b) Checks the addresses to assign on the non-configured interfaces on the Link 

c) Broadcasts or multicasts DRCP_ADVERTISE messages on the Link 

The server performs preemptive DAD for addresses in its address pool, both for those 

it has leased as well as for those that are available for lease. This preemptive checking 

is done either by utilizing the Address Resolution Protocol (ARP) (for IPv4) or 

Neighboring Discovery (ND) (for IPv6). The checking of the leased addresses is also 

beneficial for the reclaiming of the unused such addresses. 

Upon the reception of DRCP_REQUEST message, the server moves to the 

NEXT_ADDRESS state, where it associates the next available address with the client 

requesting it. Then, the server moves to the REPLY state and immediately sends a 

DRCP_REPLY message, where the configuration information intended for the client 

requested it (e.g., with a DRCP_REQUEST message), is included. In addition to the 

address assignment, the server also provides other configuration parameters, such as 

the location of default routers and network servers (i.e., DNS). The server does not 

expect an acknowledgment after sending the DRCP_REPLY message. The message 

will be retransmitted in the case where the server receives another DRCP_REQUEST 

message with the same transaction id. 
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  Immediately, following the reception of a DRCP_REPLY message, the client 

can configure its interface. The application of DAD at the DRCP server has a 

threefold effect, the configuration time decreases, the broadcast/multicast messages to 

the clients are reduced and the client-to-client broadcast/multicast messages are 

eliminated. This elimination is highly desirable on some wireless links that are 

characterized from limited link broadcast. For example a roaming node’s power level 

in CDMA2000 is set to reach its base station. This level may not be high enough for 

the node to reach the rest of the nodes. If the configuration server were placed at the 

base station, then it would be possible to broadcast from the server to all clients and 

from the client to the server but not from the client to the rest of the clients. 

2.4.5 DRCP Message Format 

The DRCP messages closely resemble those of DHCPv4; however the message 

size has been drastically reduced to preserve wireless bandwidth. 

 

 

 

 

 

 

 

 

 

Figure 2.4. DRCP message format 
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Figure 2.4 shows, he DRCP_REQUEST and DRCP_REPLY message formats. In 

the case of IPv4, the basic DRCP message without options is 16 bytes, as opposed to 

the standard message format for DHCP without options, which totals to 236 bytes. 

Obviously, this results in substantial wireless bandwidth savings. Furthermore, if the 

DRCP server does not send periodic DRCP_ADVERTISE messages, then it can 

register a mobile host, provide it with a valid IP address, and configure it with the 

default router location in less than 100 bytes, which is half the size of a single DHCP 

message. 

Depending on the speed and error rate of the wireless access networks, reducing 

the configuration overhead can be critical. The error rate can be important since larger 

messages result in higher probability of loss, which results in increased latency and 

bandwidth requirements. Clearly, it is undesirable to have per packet overhead; 

however, reducing the size and number of configuration messages can also 

significantly improve bandwidth efficiency for roaming users. DRCP minimizes 

configuration message size and the total number of messages.   

2.4.6 Client Mobility 

A node may require reconfiguration because it moves onto a new link or due to 

changes in other parts of the network. After detecting an external trigger, such as a 

layer 2 hand-off indication or a SNMPv3 request message, a node can reset its 

autoconfiguration process. Although it reduces the autoconfiguration protocol 

complexity, these external triggers may not always: 

a) Be available 

b) Be standardized 
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c) Have enough information (e.g., about whether it needs to reconfigure) 

Moreover, completely resetting state may be inefficient. It may be useful, therefore, 

for the autoconfiguration protocol to determine the reconfiguration of a node using its 

own protocol. A key requirement for DRCP is configuration of roaming clients 

without requiring layer 2 support. DRCP does this mainly through the 

DRCP_ADVERTISE message. 

If a configured DRCP client receives a DRCP_ADVERTISE message, it checks 

to determine the source id (by looking at the IP header). If the message has been 

originated from its configuration server, then it merely saves the current time as 

DRCP_TIME_LAST_ADVERTISE. If the message has been originated from a 

different server, then the client checks to determine if the new server is from an 

address on what it believes is its current link. If the DRCP_ADVERTISE comes from 

a server that it is not believed to be on the client’s current link, then the client must 

perform new request-reply transaction with the new server (and return to the 

BINDING state). 

2.5 Dynamic Configuration Distribution Protocol (DCDP) 

The Dynamic and Rapid Configuration Protocol (DRCP) provides the 

mechanisms for the configuration of the nodes on a single link. The configuration 

information utilized from DRCP has to be preconfigured to the DRCP server of each 

link so that the corresponding link can be autoconfigured. Clearly, even though the 

DRCP protocol looks promising, does not have the ability to autoconfigure an entire 

network (e.g., a collection of large number of links and nodes).  
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Apart from DRCP, the efforts in the Internet community have so far focused on 

autoconfiguring hosts and small networks. The link configuration protocols, such as 

DRCP, PPP and DHCP still require server preconfiguration, which is geared towards 

environments where network dynamics are restricted to one hop at the network edge. 

DCDP has been proposed for the expungement of the latter limitation, expanding the 

functionality of the link configuration protocols, to larger and more dynamic 

networks. 

The Dynamic Configuration Distribution Protocol’s (DCDP) operational 

characteristics are orthogonal to those of the link configuration protocols. The latter 

focuses on the configuration of the nodes on a single link utilizing stored 

configuration information, as opposed to DCDP which is responsible for the 

management and distribution of the configuration information across a network of 

multiple links. DCDP has been designed independently of the link configuration 

protocols, so that it can be applied conjointly with anyone of these and expand their 

functionality to multiple links networks. By separating the distribution and 

management of configuration information, from the utilization of this information, we 

improve the robustness of the configuration approach. The dual protocol approach is 

attractive since it allows the improvement of each of the protocols separately and 

provides flexibility on the selection of the link configuration protocol.  

DCDP does not require server-client preconfiguration among the DCDP nodes. 

They utilize the same software module and depending on the configuration 

information they own and the configuration state they are, can become from 

distributors (servers) to requestors (clients) and vice versa. Their communication 
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module can be separated into three larger submodules, responsible for the exchange 

of intra-node and inter-node configuration information. 

 

 

 

 

 

 

 

Figure 2.5. DCDP Communication Modules Diagram 

 

These three submodules as they appear in figure 2.5 are: 

a) The DCDP to DCDP submodule for the communication between different 

DCDP nodes 

b) The DCDP to link configuration submodule (i.e., DRCP module), for 

providing the link configuration protocol with the appropriate configuration 

information required for the autoconfiguration of the links. 

c) The DCDP to Network Manager submodule, which is utilized for 

bootstrapping and updating the DCDP protocol with the configuration 

information to be distributed across the network.     

The DCDP functionality is presented in more detail in the following sections, 

where without loss of generality, we assumed that the underlying link configuration 

protocol is the DRCP. This assumption is useful to describe the specifics (e.g., format 

of messages and interaction with the link configuration protocol) of the protocol. This 
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selection was done since we had already implemented DRCP, which fits better the 

MANETs compared to DHCP, PPP and SA.  The implementation of DCDP was done 

with respect to DRCP module. Without loss of generality, the description of the 

DCDP messages and its functionality will be given with respect to this 

implementation. The application and interaction of DCDP with other link 

configuration protocols can happen in the same manner, with slight implementation 

modifications. 

2.5.1 Basic DCDP-to-DRCP Communication 

For the configuration of a link, DRCP requires preexisting configuration 

information. Without DCDP this information had to be stored in the DRCP node, so it 

could be utilized in case it was needed.  With the addition of DCDP module, the 

configuration information is managed and distributed dynamically across the 

network, to be utilized from the DRCP modules that demand it for the link 

configuration.  

When the configuration information reaches the DCDP node where the requestor 

DRCP module lies, then the DCDP module has to communicate with the DRCP 

module to transfer the appropriate configuration information. The basic message flow 

between the DCDP and DRCP modules is represented from figure 2.6. 

Initially, DRCP requests (DRCP_POOL_REQUEST) configuration information 

(e.g., pool of available IP addresses, address of DNS) from the local DCDP process 

utilizing the DRCP_TO_DCDP_PORT port. If the DCDP module has configuration 

information available, it provides it to DRCP by sending a DRCP_POOL_REPLY 

message to the DCDP_TO_DRCP_PORT port. Otherwise, DCDP initiates the 
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configuration information discovery phase by contacting neighboring DCDP 

modules, requesting configuration information. If this information is available, gets it 

and responds back to the local DRCP by sending a DRCP_POOL_REPLY message 

to the DCDP_TO_DRCP_PORT port, so that DRCP can proceed with the link 

configuration. 

 

 

 

 

 

 

Figure 2.6. DCDP-to-DRCP Message Flow Diagram 
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DRCP module. When the DCDP module succeeds on reserving configuration 

information for the DRCP module requesting it, transmits this message. The 

DRCP_POOL_REPLY message contains the configuration information that will 

be utilized from DRCP and is issued only in case of success. Otherwise the DCDP 

is not issuing any message to DRCP, which will eventually timeout. 

Part of the configuration information that DRCP requests from DCDP is a pool of 

available IP addresses for the configuration of the nodes onto its link. The DCDP 

responds to DRCP by sending a subset of the set of available addresses that owns. 

The management and sharing of the pool of addresses is presented in more detail in 

section 5.5. 

2.5.2 DCDP-to-DCDP Communication 

  The communication between DCDP and DRCP mainly happens via interprocess 

communication on the same node. There are cases where this may not be the case 

(e.g. when a node activates only one of the DCDP, DRCP modules), but these are 

special cases. The communication between DCDP modules happens always over the 

network and is more demanding in terms of designing. The communication between 

the DCDP modules is initiated when a DRCP module requests configuration 

information by sending a DRCP_POOL_REQUEST message to its local DCDP 

module. If the DCDP module has already obtained configuration information (e.g. 

pool of available addresses, addresses of routers and DNS), replies immediately to 

DRCP with a DRCP_POOL_REPLY message. Otherwise, DCDP has to search for 

available configuration information by querying its neighboring DCDP modules. The 

basic message flow diagram is presented on figure 2.7  
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Figure 2.7. DCDP-to-DCDP Message Flow Diagram 
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• DCDP_POOL_REQUEST: The DCDP module broadcasts this message to its 

neighboring DCDP modules for discovering available configuration information. 

The transmission of this message is triggered from the reception of a 

DRCP_POOL_REQUEST message from the local DRCP process, or from the 

reception of a DCDP_POOL_REQUEST message from a neighboring DCDP 

module. In the latter case, the received DCDP_POOL_REQUEST message is 

forwarded further when there is not available configuration information to the 

local DCDP module. 

• DCDP_POOL_REPLY: This message is issued from a DCDP module that had 

received a DCDP_POOL_REQUEST and it has available configuration 

information to be transferred to the requestor DCDP. The message contains the 

available configuration information (i.e. pool of available IP addresses, DNS 

address). 

• DCDP_POOL_REJECT: When the DCDP requestor module receives a 

DCDP_POOL_REPLY message but the configuration information is not required 

anymore (e.g., will utilize earlier offer) issues a DCDP_POOL_REJECT message. 

The destination is the DCDP module offered the configuration information, so 

that it can recollect this information for future use. This message is important for 

the efficient utilization of the pool of available configuration information.  

The DCDP-to-DCDP communication happens over UDP. Due to the dynamics of the 

environment under consideration, messages can be lost. For overcoming this problem, 

the configuration time and efficient utilization of the available configuration 

information have been traded off with the robustness of the approach. The approach is 
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based on the combined utilization of negative acknowledgements and timeouts. When 

a DCDP module sends configuration information (i.e. pool of available addresses) it 

assumes that this information has been transferred to the requestor DCDP module, 

unless it receives a DRCP_POOL_REJECT message. The robustness of DCDP is 

improved compared to the case where the requestor DCDP had to acknowledge the 

acceptance of the offer. If DCDP was operating based on positive acknowledgment it 

would have been possible to offer addresses that already being used for the 

configuration of another part of the network. The latter could happen when the 

requestor DCDP receives the offer but its positive acknowledgment gets lost. By 

using negative acknowledgments, even if the acknowledgments get lost, the 

configuration information is assumed that has been accepted from the requestor 

DCDP and cannot be reused. The latter may not be true so we may end up utilizing 

inefficiently the available configuration information but the robustness of the protocol 

is more important, especially when we assume IPv6 (e.g. larger number of available 

IP addresses).  

The DCDP module that offers the configuration information has to wait for time: 

( )_ _min ,waiting DCDP POOL REJECTTime TIMEOUT Time=  

When most of the offers get accepted, the TIMEOUT waiting time dominates, so the 

configuration time of the network increases. The configuration information does not 

flow fast enough around the network due to the waiting time of the DCDP nodes to 

decide which of the configuration information they had offered can be reused and 

which of this information cannot.  
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2.5.3 DCDP-to-Network Manager Communication 

The configuration information owned by a DCDP module is stored locally to the 

node in a file. This information is preconfigured to the node or it is obtained from 

other DCDP modules in response to DCDP_POOL_REQUEST messages. Obviously, 

the configuration information that flows into the network must have been 

preconfigured into at least one DCDP node.  

What happens when the environment changes and the configuration information 

provided is not sufficient to configure appropriately the participating nodes? In that 

case the network configuration mechanism must be robust enough to allow new 

configuration information to be incorporated into the network from a Network 

Manager (NM). For that reason the DCDP module maintains the DCDP-to-Network 

Manager submodule through where new configuration information can flow into the 

DCDP module from a NM and from there can be distributed across the network via 

the DCDP-to-DCDP submodule.  

2.5.4 State Flow Diagrams and Messages Format 

The DCDP description we provided in earlier sections reveals the principal 

operation of DCDP module. In this section a more detailed description of the module 

is given, via the use of state flow diagram. The DCDP state flow diagram has been 

split into two parts. The one part describes the sequence of actions related to the 

interaction of DCDP module with its local DRCP module and the other part is 

dedicated to the interaction between cooperating DCDP modules   

In both cases the DCDP module is initialized by checking (CHECK_INFO) the 

quantity of the configuration information that has available either for self utilization 
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or for distribution. Once it has gone through this initialization and depending on the 

availability or not of configuration information the DCDP module resides in the 

HAVE_INFO or DO_NOT_HAVE_INFO state, respectively; until the arrival of a 

message. This message can have three possible sources of originations: 

• The local DRCP module 

• A Neighboring DCDP module 

• The Network Manager 

When the message has been originated from the DRCP module, the functionality 

of DCDP is represented from the following state flow diagram in figure 2.8. 

Currently the only message that triggers some action in DCDP is the 

DRCP_POOL_REQUEST. With this message DRCP requires configuration 

information to configure its interfaces and the nodes residing onto the corresponding 

links. Upon the reception of this message, DCDP reacts appropriately depending on 

its current state (HAVE_INFO or DO_NOT_HAVE_INFO). If DCDP is in the 

HAVE_INFO state then checks (AVAILABILITY_DRCP) if the configuration 

information available suffices to fulfill the DRCP request. If the configuration 

information is adequate, DCDP enters the SEND_INFO state and a 

DRCP_POOL_REPLY is transmitted to local DRCP, which contains the 

configuration information offer. Following that, DCDP checks its configuration 

information repositories (CHECK_INFO) and returns to HAVE_INFO or 

DO_NOT_HAVE_INFO states. In the case where DCDP is in the 

DO_NOT_HAVE_INFO state upon the reception of a DRCP_POOL_REQUEST 

message, then the configuration information discovery phase is initiated. This is done 
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by transmitting a DCDP_POOL_REQUEST message to  its  DCDP   neighbors. The   

DCDP 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.8. DCDP state flow diagram (interaction with local DRCP)   

 

waits for time: 

( )_ _min ,waiting DCDP POOL REPLYTime TIMEOUT Time=  

before its next action. If there is not any configuration information offers (e.g. there is 

not any DCDP_POOL_REPLY message) then the returns to the 

DO_NOT_HAVE_INFO state without replying to the DRCP module. The DRCP 

module will eventually timeout and will have to reenter the DRCP server discovery 

phase. In case of the reception of DCDP_POOL_REPLY message then the DCDP 

TIMEOUT / 0 REPLIES

CHECK_INFO HAVE_INFOYES

NO

DO_NOT_HAVE_INFO

DRCP_POOL_REQUEST

AVAILABILITY_DRCPNO

YES

SEND_INFO
DRCP_POOL_REPLY

REQUEST_INFO
DCDP_POOL_REQUEST

DRCP_POOL_REQUEST

DCDP_POOL_REPLY

REJECT_OFFER
DCDP_POOL_REJECT

DCDP_POOL_REPLYstart

TIMEOUT / 0 REPLIES

CHECK_INFO HAVE_INFOYES

NO

DO_NOT_HAVE_INFO

DRCP_POOL_REQUEST

AVAILABILITY_DRCPNO

YES

SEND_INFO
DRCP_POOL_REPLY

REQUEST_INFO
DCDP_POOL_REQUEST

DRCP_POOL_REQUEST

DCDP_POOL_REPLY

REJECT_OFFER
DCDP_POOL_REJECT

DCDP_POOL_REPLYstart



 42

updates its configuration information repositories and replies to DRCP request 

(SEND_INFO) by sending a DRCP_POOL_REPLY message. After this reply, 

checks (CHECK_INFO) the amount of configuration information available and 

returns to the HAVE_INFO or DO_NOT_HAVE_INFO states respectively. In the 

case that more than one replies arrive at DCDP in response to the 

DCDP_POOL_REQUEST message, then these offers are getting rejected 

(REJECT_OFFER) by transmitting a DCDP_POOL_REJECT message to the source 

of the offer. 

When a DCDP module receives a message originated from another DCDP 

module, this event triggers the DCDP interaction functions, which are described from 

the following figure 2.9. Similarly, the DCDP module after checking 

(CHECK_INFO) its configuration information repositories lies in HAVE_INFO or 

DO_NOT_HAVE_INFO state. Depending on which of these two states it is, when it 

receives a DCDP_POOL_REQUEST message, DCDP acts accordingly. If it is in 

HAVE_INFO state, DCDP checks (AVAILABILITY_DCDP) if the available amount 

of configuration information suffices to provide an offer. In the case where the 

configuration information is enough for an offer, then enters the SEND_INFO state 

where it constructs and transmits a DCDP_POOL_REPLY message destined to the 

requestor DCDP module. Following this action, the DCDP rechecks its configuration 

information repositories (CHECK_INFO) and depending on the availability resides 

on the HAVE_INFO or the NOT_HAVE_INFO state.  
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In the case where the DCDP module was on the HAVE_INFO state but the 

available configuration info is not enough for providing an offer then the module 

enters the REQUEST_INFO state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9. DCDP state flow diagram (interaction with DCDP)  
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If there are no configuration information offers then the module enters the 

DO_NOT_HAVE_INFO state and does not respond to the DCDP_POOL_REQUEST 

message that originally triggered the discovery phase. In the case where there is an 

offer then it constructs a DCDP_POOL_REPLY message and sends it (SEND_INFO) 

to the requestor DCDP process as a response to the previously received 

DCDP_POOL_REQUEST message. As before the DCDP module checks 

(CHECK_INFO) the amount of the remaining available configuration information 

and resides in the HAVE_INFO or the DO_NOT_HAVE_INFO state.   

When DCDP module requests configuration information then multiple offers can 

be received. If this happens, then the DCDP module enters the REJECT_OFFER 

state. It transmits a DCDP_POOL_REJECT message to inform the provider of the 

offer about its decision not to utilize the offered configuration information. 

The scenario remaining to be explored is when the DCDP module receives a 

DCDP_POOL_REQUEST message but does not have any configuration information 

(DO_NOT_HAVE_INFO state). The reaction to a DCDP_POOL_REQUEST 

message is the same as before, when there is not enough available configuration 

information, so a discovery phase is initiated.  

The format of the messages that are exchanged during the DCDP-DRCP or 

DCDP-DCDP interactions is similar to the format of the DRCP messages described 

earlier. These messages are lightweight aiming on the overhead reduction, which is 

critical for the characteristics of the network environments under consideration 

(MANETs). Figure 2.10 shows the standard DCDP header (with sizes of fields shown 

in bytes). 
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Figure 2.10. DCDP Header Format 

 

The fields are defined as follows: 

• Ver: Version number 

• OP: Indicates DCDP message type (i.e., DCDP_POOL_REPLY) 

• hlen: Length ofbss header in 4 byte words 

• CP: Configration Information Priority 

If CP < 0 private (e.g., 10.x.x.x) 

If CP > 0 globally unique (e.g. 112.4.1.61) 

• ID: 64 bit configuration identifier 

• Body: message (i.e., for a DCDP_POOL_REPLY message this segment contains 

the offer of the available IP addresses) 

2.5.5 Pool of Available Addresses Management   

There are two types of requests for available configuration information. These 

two types are classified with respect to their originator module (e.g. DRCP or DCDP). 

Important part of the configuration information being requested is a pool of available 

addresses. The way the pool of available addresses is managed is very important for 

their efficient distribution throughout the network. The importance of the 

management of available addresses is expressed from the following two lemmas: 
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Lemma 2.1: If the pool S of available address has cardinality S , the network `  to 

be configured has size ` and the relation between S  and ` is: 

( ) ( )O O= `S  

then the distribution of the available addresses has to resemble the topology of the 

network, so that the distribution is efficient and all the nodes are configured. 

 

Lemma 2.2: If the network considered is an IP network and the available addresses 

to be distributed are IP addresses, then the interfaces of each link has to be configured 

with IP addresses of the same netmask, so that the routing table’s\ size \  will not 

grow linearly with the network size. 

 

The management of available addresses in the current distribution of DCDP is 

described in this section. The management depends on the request received from the 

DCDP module. There are two types of requests, the DRCP_POOL_REQUEST (from 

the local DRCP module) and the DCDP_POOL_REQUEST (from a neighboring 

DCDP module). Since we considered IP networks, the management has been 

customized for IP addresses and aims on satisfying the conditions imposed from the 

above mentioned lemmas (2.1 and 2.2).  

When the DCDP module has a pool of available IP addresses and receives a 

DRCP request for offering configuration information, the reply consists of a subset of 

the owned pool of available IP addresses. The offered pool V has two characteristics: 

• It is continuous 
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• It has size *2 ,nV n += ∈]  

These properties satisfy the condition imposed by Lemma 2.2. The addresses offered 

to the local DRCP module will be utilized for the configuration of the local interfaces 

and of the network entities that belong on the same link. Due to the functionality of 

DRCP in terms of assigning addresses and the properties of the offered pool, the 

addresses assigned on the network entities of the same link can be represented by a 

single netmask. This reduces significantly the size of the IP routing tables. 

Currently, the offer from the DCDP to DRCP module has size of 256 addresses 

and is of the form X.X.X.0 to X.X.X.255 so that the netmask representing this link is 

255.255.255.0. The benefit of selecting this type of offer is obvious when we consider 

the two scenarios where in the first one the offer is 10.1.2.0 to 10.1.2.255 and in the 

second one is 10.1.1.128 to 10.1.2.127. In the first scenario the addresses can be 

represented from a single netmask (e.g. 255.255.255.0). The addresses of the second 

offer require two different netmasks for their representation (e.g., 255.255.255.128 

for the 10.1.1.128 network and 255.255.255.0 for the 10.1.1.2.0 network). Since the 

nodes that belong on the same link, appear to be on different networks, require 

distinctive representation on the routing table, which unavoidably will increase the 

size of the routing tables carried from the individual routers across the network. 

The DCDP module response to a request for an offer originated by another 

DCDP module (DCDP_POOL_REQUEST) differs from the corresponding response 

originated from the local DRCP module. The size of the pool DCDPV  of available 

addresses offered to a DCDP module is larger than the size of the pool DRCPV  offered 

to DRCP. The relation of the cardinalities between the two sets of addresses is: 
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*,DCDP DRCPV K V K += ∈]                                         (2.1) 

The DCDP to DCDP offer involves larger pool of addresses because this pool will be 

used from the DCDP module to respond to the local DRCP’s request for an offer so it 

is required that DCDP DRCPV V≥ . The relation (2.1) can be justified further because it is 

possible the same DCDP module to respond to requests from multiple DRCP 

modules, since the same DCDP module can be responsible for multiple DRCP 

processes (e.g. multiple links).     

The justification of (2.1) is straight forward except from the precise definition of 

the parameter K . In the optimal scenario, the selection of the parameter K is different 

for each DCDP module and depends on the number of DRCP server processes for 

which the DCDP module is responsible. If *K is the optimal selection for K for a 

single DCDP module then the effects due to its suboptimal selection are: 

• If  *K K>  then this will result in the inefficient utilization of  the global pool of 

available addresses, since many of the addresses offered will not be requested 

from DRCP server processes, but also will not be available to parts of the network 

that demand them. This effect is more severe when the global pool of addresses 

has size on the order of the network size. 

• If *K K<  then the configuration time and overhead will increase significantly, 

since DCDP will not be adequate to satisfy the all the DRCP requests. This will 

result on extra DCDP to DCDP requests for available addresses so that the local 

DRCP requests can be satisfied. The extra DCDP to DCDP requests 

(DCDP_POOL_REQUEST) will increase the overhead imposed from the 
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configuration process and the configuration time will increase due to the time 

required for the extra requests to get served.  

The optimal selection of K requires both knowledge of the topology of the network 

and the status (server or client) of the DRCP processes. Since neither of this 

information is known while the network configuration is taking place, it is impossible 

to specify the optimal parameter value *K .  

Due to the lack of *K knowledge, the DCDP adopts a suboptimal heuristic for 

determining the size of the pool to be offered as a response to a 

DCDP_POOL_REQUEST. The heuristic is based on splitting the available pool of 

addresses into two equal size subsets. The one subset is retained from the DCDP 

module for its future needs and the second subset constitutes the pool to be offered. 

Due to the requirements of the DCDP to DRCP offers, the splitting has to be done in 

such a way that the resulting subsets have size as similar as possible and these 

requirements are met. As it was mentioned above, when IP addresses are considered, 

the latter requirements are best satisfied when the DCDP to DRCP offers are of the 

form X.X.X.0 to X.X.X.255. The combination of the DCDP to DRCP offer with (2.1) 

and the heuristic of splitting the available pool into two subsets of equal size, 

provides the general guidelines of the splitting method for generating the DCDP to 

DCDP offer (DCDP_POOL_REPLY). Along these guidelines the general form of the 

pool to be offered is: 

. . .0 . . .255A B C D E F′′ ′′ ′′ −                                         (2.2) 

where                          [ ], , , , , 0, 255  and , , , , ,A B C D E F A B C D E F′′ ′′ ′′ ′′ ′′ ′′∈ ∈]  
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The heuristic method followed by the DCDP module to construct an offer of this type 

which also satisfies the imposed requirements can de described by assuming the 

existence of an available pool of the form: 

. . .0 . . .255A B C D E F−                                             (2.3) 

where                          [ ], , , , , 0, 255  and , , , , ,A B C D E F A B C D E F∈ ∈]  

When this DCDP module receives a DCDP_POOL_REQUEST message, checks if 

there is available configuration information to be offered for the fulfillment of the 

request. Part of the available configuration information is the pool of available 

addresses. We assume that the DCDP module has available configuration information 

included the pool (2.3). For the construction of the DCDP_POOL_REPLY, the 

DCDP module has to split the available pool of addresses into two subsets of almost 

equal size, and of the following form: 

. . .0 . . .255 and . . .0 . . .255A B C A B C A B C D E F′ ′ ′ ′′ ′′ ′′− −                   (2.4) 

where                          

[ ], , , , , , , , , , , 0, 255  and , , , , , , , , , , ,A B C A B C A B C D E F A B C A B C A B C D E F′ ′ ′ ′′ ′′ ′′ ′ ′ ′ ′′ ′′ ′′∈ ∈]
 

The DCDP module has to determine the values of , , , , ,A B C A B C′ ′ ′ ′′ ′′ ′′ , so that it can 

determine the pool offer. The computation for each of these parameters is done as 

follows and is based on the knowledge of the parameters , , , , ,A B C D E F , which 

determine the owned pool.  

Step I: Determine the size of the pool 

The computation is based on the following base-256 subtraction: 

( ) ( ) ( )3 2256 256 256 255D A E B F C= − × + − × + − × +S  
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Step II: Determine the size of each resulting subset of the pool 

The size of each one of the two resulting pools of IP addresses is: 

1 2
⎢ ⎥

= ⎢ ⎥
⎣ ⎦

S
S  and 2 1= −S S S  

Step III: Convert the sizes of the resulting subsets into base-256 numbers 

Use base-256 arithmetic conversion to convert the base-10 sizes ( 1S , 2S ) 

of the resulting pools ( 1S , 2S ) into base-256 numbers: 

1 3 2 1 0256
K K K K=S  and 2 7 6 5 4256

K K K K=S  

where           

[ ]7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0, , , , , , , 0, 255  and , , , , , , ,K K K K K K K K K K K K K K K K∈ ∈]
 

If 0 255K ≠ then go to step IV, else continue to step V. 

Step IV: Adjust the sizes (if required)  

Since 0 255K ≠ we have to adjust the sizes of the pools defined at step II, so 

that 0 255K = . This is done by adding the appropriate number to 0K  and 

subtracting the same number from 2S . 

0 0 2 2 4255 255 and 0ffset ffsetO K K O K′ ′ ′= − ⇒ = = − ⇒ =S S  

After the adjustment the base-256 size of each one of the two pools is: 

1 3 2 1 2 6 5 4256 256
255 and 0K K K K K K′ ′= =S S  

where      [ ]6 5 4 3 2 1 6 5 4 3 2 1, , , , , 0, 255  and , , , , ,K K K K K K K K K K K K∈ ∈]  

Step V: Determine the exact subsets of the initial pool 

Having determined the size of the subsets of the initial pool  
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1 3 2 1 2 6 5 4256 256
255 and 0K K K K K K= =S S  

where      [ ]6 5 4 3 2 1 6 5 4 3 2 1, , , , , 0, 255  and , , , , ,K K K K K K K K K K K K∈ ∈] , 

the two resulting pools can be exactly described: 

( ) ( )

( )
1 1256 256 256

256256

. . .0 ... . . .0

    . . .0 ...( . . .255)

A B C A B C

A B C A B C

⎡ ⎤⎡ ⎤= + =⎣ ⎦⎣ ⎦
′ ′ ′⎡ ⎤= ⎣ ⎦

S S
 

( ) ( ) ( ) ( )

( ) ( )
2 2256 256 256

256 256

. . .255 1 ... . . .255 1

    . . .0 ... . . .255  

A B C A B C

A B C D E F

⎡ ⎤′ ′ ′ ′ ′ ′⎡ ⎤⎡ ⎤= + + + =⎣ ⎦ ⎣ ⎦⎣ ⎦
′′ ′′ ′′⎡ ⎤= ⎣ ⎦

S S
 

The 2S pool will be included in the DCDP_POOL_REPLY message and the 

1S  will be stored for the future needs of the local DCDP module. 

 

The format of the offered pools is justified from the requirements imposed from 

the lemmas 2.1 and 2.2 for the efficient utilization of the available IP addresses and 

the minimization of the size of the routing tables. What has not been justified yet is 

the selection of splitting the initial pool into subsets of equal size. Since the optimal 

*K in (2.1) cannot be determined in real time, then a suboptimal K has to be selected. 

By offering half of the owned pool as a response to a DCDP_POOL_REQUEST 

message, a suboptimal value for K is indirectly selected. This value is the optimal in 

the special case where the network grows symmetrically (e.g., in a tree fashion). 

When the network topology does not grow symmetrically, the effect of the 

suboptimality of K will be noticeable on the time of the configuration process and not 

on the efficient utilization of the available addresses. The addresses will still be 

utilized efficiently due to the capability of DCDP module to request configuration 
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information from neighboring DCDP modules whenever this information is needed 

and is not available locally. If a DCDP module offers the largest part of its initial pool 

to satisfy DCDP_POOL_REQUEST messages and there is not available 

configuration information to satisfy its own needs, then it will issue a 

DCDP_POOL_REQUEST message, asking the neighboring DCPD modules for 

available configuration information. The DCDP_POOL_REPLY message that will be 

received may contain part of the pool that initially was owned from this DCDP 

module or a new pool. By acting in that fashion the available addresses are 

transferred to the parts of the network where are needed for the configuration of the 

network entities. Obviously, the efficiency of address utilization does not depend 

much on the selection of K but mostly depends on the format of the offer, which has 

to match the format of the DCDP to DRCP offers. As we mentioned, the 

configuration delay is the only aspect of the process that will be affected from the 

selection of K. The delay imposed from the selection of K is strongly correlated with 

the topology of the network and the order the various network entities require 

configuration. 

The above description of the splitting of the initial pool it is based on the fact that 

the pool is of the form:  

. . .0 . . .255A B C D E F−  

where                          [ ], , , , , 0, 255  and , , , , ,A B C D E F A B C D E F∈ ∈]  

If the pool is not of this form then the heuristic method of splitting cannot produce 

subsets of the form imposed by the lemmas 2.1 and 2.2. For that reason, some 

modifications have to be made so that the heuristic can be applied independently of 
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the form of the initial pool. The modification was applied on the description of the 

pool instead on the splitting heuristic. This is because the heuristic satisfies the 

requirements for the efficient utilization of the available addresses and the 

minimization of the routing tables. The modification applied on the description of the 

pool can be described from the adjustment of its size so that it can be described of the 

form (2.3). To achieve this, the limits of the pool have to be extended appropriately, 

so that the new pool is larger and follows the format (2.3). If the initial pool is of the 

general form: 

. . . . . .A B C L D E F M−  

where                          
[ ]

( ]( ) [ )( )
, , , , , 0, 255  and , , , , , , ,

                 0, 255  || 0, 255

A B C D E F A B C D E F L M

L M

∈ ∈

∈ ∈

]
 

then we subtract from L the appropriate offset so that it becomes 0 and we add to M 

the appropriate offset so that it becomes 255. 

1 2 and 255ffset ffsetO L O M= = −  

Since we have added to the pool, addresses that cannot be used, we have to mark 

these addresses as unusable.  

 

 

 

 

 

Figure 2.11. Adjustment of irregular initial pool 
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Even though these addresses will be offered, they could never be utilized for the 

configuration of the network entities, but the heuristic can be applied without any 

modification and will satisfy the splitting requirements. 

2.6 Overview of the Complete IP Autoconfiguration Suite 

The DRCP and DCDP modules constitute the core of the autoconfiguration suite. 

The complete autoconfiguration suite consists of more modules that are of equivalent 

importance for the successful application of the autoconfiguration process. Apart 

from the DRCP and DCDP modules, the developed suite consists of the following 

modules, which will briefly describe in this section: 

• Adaptive Configuration Agent (ACA) 

• Yelp Announcement Protocol (YAP) 

• Configuration Information Database  

Figure 2.12 shows the IPAS components that instantiate each of the main 

functions of a complete autoconfiguration suite. The Dynamic Configuration 

Distribution Protocol (DCDP) and Dynamic and Rapid Configuration Protocol 

(DRCP) perform the configuration distribution. The Configuration Database stores 

the configuration and network information reported by the Update Protocol (YAP). 

And, the Adaptive Configuration Agent (ACA) is the “brains” in the configuration 

process.  

The configuration process can be pictured as a closed feedback loop. The ACA 

distributes new configuration through DCDP to nodes in each subnet. DRCP 

configures the interfaces within a subnet. Interfaces configured by DRCP, report 

configuration information and nodes capabilities to the configuration server via the 
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YAP protocol. The configuration server stores this information in the Configuration 

Database. To complete the cycle, the ACA node contacts the Configuration Database 

locally or remotely to get the latest configuration information. After processing this 

configuration information, the ACA may decide to reconfigure the network and 

distribute new configuration information, starting the cycle once more. 

Config Server

ACA

Preconfigured
node capabilitiesInterface

YAP low-bandwidth
configuration reports

Config Database

MySQL
DCDP distributes
new configuration

Node
DRCP configures
subnet interfaces

 

Figure 2.12. IPAS Components 

 

The following paragraphs explain in more detail what are the functionalities of 

each of the IPAS modules and how they interoperate (a short description of DRCP 

and DCDP modules is included). 

Dynamic Configuration Distribution Protocol (DCDP) 

At the heart of IPAS (see Figure 2.12) is the Dynamic Configuration Distribution 

Protocol (DCDP). DCDP is a robust, scalable, low-overhead, lightweight (minimal 

state) protocol designed to distribute configuration information on address-pools and 

other IP configuration information (e.g., DNS Server’s IP address, security keys, or 

routing protocol). Designed for dynamic wireless battlefield, it operates without 
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central coordination or periodic messages. Moreover, DCDP does not rely on a 

routing protocol to distribute information. 

 

Dynamic Registration and Configuration Protocol (DRCP) 

DCDP relies on the Dynamic and Rapid Configuration Protocol (DRCP) to 

actually configure the interfaces. DRCP borrows heavily from DHCP, but adds 

features critical to roaming users. DRCP can automatically detect the need to 

reconfigure (e.g., due to node mobility) through periodic advertisements. In addition, 

DRCP allows for: a) efficient use of scarce wireless bandwidth, b) dynamic addition 

or deletion of address pools for supporting server fail over, c) message exchange 

without broadcast, and d) clients to be routers.  

 

Yelp Announcement Protocol (YAP) 

The Configuration Database Update Protocol (YAP) is a simple bandwidth 

efficient reporting mechanism for dynamic networks. YAP has three elements: 1) 

Clients running on every node periodically report its node’s capabilities, 

configuration, and operational status, 2) Relays forwarding information from clients 

to a server, and 3) Server storing the information in a configuration database (see 

Figure 2.13). The capabilities say, for example: “This node can be a DNS server with 

priority 0” or “a YAP server with priority 3” (priority reflecting a node’s willingness 

to perform a function).  Other YAP information includes name and IP address, Rx/Tx 

packets, bit rate, link quality, routing table, and address pool. 
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Configuration Information Database 

The Configuration Information Database can be centralized or distributed depending 

on the type and requirements of the network under consideration. It is used for storing 

and accessing information related to the configuration status of the network, and of its 

participating network entities. The database is accessed from YAP for storing the 

collected configuration information and from ACA for obtaining future configuration 

decisions. The configuration information stored in this database, is the information 

collected from YAP and includes but is not limited to the capabilities of the 

participating network entities, their names and IP addresses, the number of Rx/Tx 

packets, the bit rate, the link quality, the routing tables and the pools of available 

addresses. 

 

Adaptive Configuration Agent (ACA) 

The brain of IPAS is the Adaptive Configuration Agent (ACA). The ACA can 

even reset the network and distribute a new address pool from human input or from a 

predefined private address pool (e.g., 10.x.x.x). The configuration decisions are 

distributed to the network’s nodes through the DCDP process. Through the 

Configuration Database (filled by YAP), ACA observes the state of the network, 

which allows it to initiate reconfiguration based on its rules or policies. The rules in 

the ACA are specific to the mission and network characteristics. Currently, ACA has 

a few simple and general rules, such as selecting a new DNS server if the current one 

does not report. 
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Interoperation of IPAS Modules 

In each subnet there is at least one DRCP server responsible to configure 

interfaces. The rest of nodes in the subnet may perform as DRCP clients. The ACA 

runs on a dedicated node in the network.  The YAP server, the ACA and the 

Configuration Database can either be located in the same node or be distributed. 

However, for load balancing and fault tolerance reasons those entities is better to be 

distributed, when the network environment under consideration is dynamic.  

In each node, independently of its capabilities, there are three processes running: 

• DCDP  

• DRCP (server or client)   

• YAP (client, relay or server) 

Figure 2.13 shows how these processes communicate on a single node and how 

interoperate in different nodes in the network. If the node is the ACA, then its ACA 

process passes information to DCDP. The DCDP processes communicate with other 

nodes to distribute configuration information. At each DRCP server, the DCDP 

process passes configuration information to the DRCP process, so this can configure 

interfaces in the corresponding subnet. If there is a change or update in configuration 

information the DRCP process informs the local YAP client, which sends the 

information to the YAP relay for the subnet, which in turn relays the information to 

the YAP server. If the node is the YAP server it collects the information and stores it 

either locally or remotely on a configuration database. The ACA node can contact the 

Configuration Database locally or remotely to get the latest configuration 

information. 
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Figure 2.13. IPAS inter-process and inter-node communication 

 

2.7 Implementation Based Performance Analysis 

This section presents large scale performance results based on the 

implementation of the autoconfiguration algorithms and protocols in a small testbed. 

To study the feasibility of the approach to network configuration, IPAS modules were 

implemented in a lab testbed. Five Linux laptops were connected, each equipped with 

two 802.11 cards, as shown in figure 2.14 and a scenario to validate the capabilities of 

IPAS was set up. IP address configuration, dynamic routing protocol configuration 

and dynamic hierarchy configuration was presented. Node “a” performs the ACA 

function, initiating the distribution of IP addresses (initial pool was 192.1.1.1-

192.1.38.255) and other configuration information. Figure 2.14 shows how the 

interfaces and subnets get configured and figure 2.15 demonstrates the configuration 

information flows between the IPAS modules. The DCDP modules distribute the pool 
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of addresses and the DRCP modules utilize the pool of addresses obtained from 

DCDP to configure interfaces in their subnet. 
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Figure 2.14. Network Autoconfiguration Testbed and IPAS Message Flow 
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Figure 2.15. IPAS Message Flow 

 

Based on experimental and simulation results, figure 2.16 shows the IPAS 

configuration time and overhead as a function of the number of nodes in the network. 
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Figure 2.16. IPAS Configuration Time and aggregate overhead 

 

The above figure shows the configuration time (primarily due to DCDP) for a typical 

“distributed network” configuration (with subnets connected in a mesh pattern) grows 

relatively slowly with the size of the network. The configuration distribution 

overhead is small (under 2 Kbytes per link) since the information is essentially sent 

on a spanning tree and the DCDP and DRCP headers and configuration information 

have been carefully optimized. The periodic overhead (primarily due to YAP and 

DRCP periodic advertisements) grows more rapidly, but can be contained to 

reasonable levels by the introduction of hierarchical structures (i.e. domains) where 

the corresponding domains are limited to have under 100 member nodes and 

refreshing network metrics at most every 30 seconds. 
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Chapter 3: Dynamic Domain Generation: A Centralized 
Approach 
 
 
 
 

3.1 Introduction 

In recent years there has been an increasing interest in ad hoc networks. The 

infrastructureless nature of these networks makes them extremely important in 

scenarios were the fixed infrastructure cannot be used (emergency scenarios) or there 

is not time availability to set up the appropriate infrastructure (on-the-move military 

scenarios). The ability to deploy these networks quickly and have them work through 

rapid changes makes them ideal for battlefield and emergency situations. There have 

been many good solutions proposed to deal with topology management, 

autoconfiguration, routing and QoS in ad hoc networks; however, most of these 

solutions do not scale well (e.g., only to about 50 nodes). To build ad hoc networks 

with hundreds or even thousands of nodes, such as that required for the Future 

Combat System (FCS), the network must be split into relatively independent layer 3 

clusters or domains. 

The assumption related to the creation of layer 3 clusters or domains is that it is 

done after layer 2 topology management has set local parameters such as the link 

frequencies, spreading code, transmit power and antenna direction. At this point, 

when the ad hoc network is simply an interconnected mesh of potentially thousands 

of nodes, the domain generation divides node interfaces into different layer 3 
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domains. The domain generation then continuously adjusts the domain as nodes and 

links change to maintain good network performance. 

Smaller domains allow routing, QoS and other networking protocols to operate 

on fewer nodes, with cross-domain interaction only through a few border nodes. This 

division has two key benefits. First, it reduces overall protocol overhead. In most 

routing protocols, for example, the route update overhead grows as ( )2O n  as the 

number of routers in a domain increases. Using smaller domains, with inter-domain 

interaction through a single border router per domain, we can reduce overall overhead 

to ( )logO n n . Second, if the domains are well designed, then networking protocols 

can be tuned to more homogenous conditions. For example, if part of the network has 

links constantly going up and down, then it can be put in a separate routing domain 

whose border router does not propagate internal changes. 

The domain generation can be done using either local or global information. The 

two approaches are complementary since local domain generation reacts faster, 

requires less overhead, and is more robust; while global domain generation provides 

better overall domains. Most existing work on domain generation, however, has used 

only very limited local information. Indeed, the majority of the approaches simply 

elect a “cluster-head” within each subnet based on node attributes like the node ID 

(lowest ID [17][20], highest ID [19]) or node degree (highest degree [18]). Some 

proposals use local metrics during cluster generation, but the metrics are utilized just 

for the selection of cluster-heads; the generation of clusters is completed by assigning 

the non cluster-head nodes to the cluster-heads. The assignment is performed with 
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respect to the distance (hops) between the non cluster-head nodes and the cluster-

heads and the weight assigned to the latter ones [21][22].  

The central objective of this work is to take into account the network 

environment and its dynamics, and by optimally grouping together nodes based on 

the appropriate metrics to improve a priori selected aspects of its performance. The 

proposed approach is based on a modified version of Simulated Annealing, which is a 

global optimization algorithm. The selection of a global optimization algorithm as the 

core of the domain generation algorithm can be justified from the design objectives. 

Even though it is expected that the algorithm will be more demanding in terms of 

time and network resources compared to a distributed clustering algorithm, its 

benefits will be observed as improvements on the selected aspects of network 

performance. Apart from that, the selected algorithm is very general in optimizing 

with respect to various objectives, which is not the case for the tailored to specific 

clustering objectives, distributed algorithms. The generality of the proposed 

clustering framework becomes more significant in cases where the network 

conditions change, so the clustering objectives have to change dynamically to reflect 

the new conditions and requirements. Due to the importance of designing a clustering 

algorithm able to handle such dynamic changes on the hierarchy generation 

objectives, the proposed algorithmic framework has been designed with respect to 

this specification.  

The selection of general approximation algorithm (Simulated Annealing) as the 

core of the hierarchy generation framework inherits to the proposed approach the 

capability for dynamic adaptation to the performance requirements of the network. 
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The adaptation is performed by the application of the appropriate cost function that 

represents the network performance requirements at any time instance. SA operates 

independently of the characteristics of the cost function, which makes it a powerful 

algorithm. The only drawback of SA considering the environment under 

consideration is its slow convergence times. As it will be exploited in chapter 5, SA 

has been modified and adjusted appropriately so that its convergence time becomes 

must faster without significant loss in the quality of the provided clustering solutions. 

This is done by adjusting some of the core parameters of SA and modifying some of 

its functional components.   

This work is motivated from real world examples that set the specifications for 

the efficient design of hierarchy generation algorithms. Most of the existing clustering 

techniques generate clusters without taking into consideration the network 

environment (i.e. link and node characteristics) since they do not aim on the 

improvement of specific performance aspects of the network. The justification of 

those techniques lies on the generation of hierarchical environment that will 

potentially improve the scalability or robustness of the network, since existing ad hoc 

protocols, like the ad hoc routing protocols, perform better when they are applied to 

small number of nodes, because they can capture better the dynamics of the smaller 

subgroups. Apart from the latter justification of why to cluster (e.g., create hierarchy), 

they do not impose any other stronger argument.  

The proposed work has been motivated, not only from the potential advantages 

resulting from the application of hierarchical structures, but mainly the motivation 

arises from the side effects that can negatively affect the performance of the network 
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due to the application of such structures. If the hierarchical structure is not generated 

appropriately with respect to the network environment and if it is not specifically 

customized to the network performance characteristics to be improved, then the 

resulted hierarchy instead of improving the functionality of the network may result in 

degrading its performance. The network performance could become worse compared 

to the corresponding performance of the flat structured network, since the 

maintenance of the constructed hierarchy requires extra overhead. This work targets 

on the minimization of this overhead through the incorporation of the network 

environment characteristics and the network performance aspects required to be 

improved, into the generation process. The objective of the approach can be described 

better by elaborating more on: 

• the algorithm that will be responsible for the generation of the hierarchical 

structure, which has to be aware of the performance aspect(s) to be 

improved and must be able to incorporate them into the decision process  

• the translation of the network environment characteristics and 

performance aspects of interest into entities (cost functions, metrics) that 

can be exploited from the introduced algorithm  

The proposed approach on cluster generation differs from the existing ones on 

the fact that the network characteristics are taken into consideration a priori from the 

clustering methods. Those methods along with the appropriate metrics or combination 

of metrics can generate clusters that have the ability to improve the targeted 

performance aspects of the network. Thus, in order to take advantage of the benefits 

provided by the application of hierarchical structure, the network environment and the 
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performance to be improved has to be taken into consideration in the generation 

process. The importance of the approach is justified from the following motivation 

examples. 

Motivation Example I (Metric of Interest: mobility) 

Assume the following network environment, where the nodes 1-7 are static 

sensor nodes. The nodes 8-11 are mobile nodes, which are moving as a group so they 

are relatively static (i.e., group of soldiers). The latter group of nodes is moving on a 

predefined cyclic trajectory around the sensor field. 

 

 

 

 

 

Figure 3.1. Dynamic Clustering Motivation Example I (mobility vs. proximity) 

 

In that case if we attempt to cluster based on proximity or utilizing the traditional 

methods of clustering (lower ID, highest degree) then we may end up with continuous 

re-clustering, due to the network dynamics for maintaining the clusters consistent to 

the chosen scheme. If instead we cluster based on the mobility of the nodes then we 

will not need any re-clustering because although the positions of the nodes change, 

their mobility characteristics remain the same. 
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Figure 3.2. Mobility vs. Proximity Based Hierarchical Structures 

 
 By taking into consideration the network environment and utilizing the mobility as 

criterion for cluster generation we can achieve the following: 

• Minimize re-clustering/maintenance overhead 

• We end up with more stable and robust to network dynamics clusters 

Motivation Example II (Metric of interest: power) 

In this example the network environment consists of two classes of nodes (figure 

3.3). The one class involves static sensor nodes, which have been placed to strategic 

places on a surface for the collection of important information. These nodes are 

characterized from finite power. The second class involves the mobile nodes that can 

move towards any point on the surface. These nodes have rechargeable source of 

power, so they can be characterized as infinite power nodes (i.e. UAVs).  

The objective in this case is to move the mobile nodes to points on the surface, 

where the generated clusters will improve the network performance of interest. For 

example in this scenario we are interested in improving the cost associated to the 

proximity of the nodes. The proximity of the nodes can be related to the transmission 
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power of the nodes and the intra-cluster delay. Also, we are interested in extending 

the lifetime of the network. By following each one of the above directions, it is 

possible to end up with different clustering maps, as it is demonstrated in figure 3.3. 

In the case where the cost function targets the decrease of the distance between 

the nodes, we may end up with a clustering map that does not protect the finite power 

of the sensor nodes, thus this can result in a very short network lifetime. The latter 

can happen because some of the border routers are finite power sensor nodes, which 

means that they will have to forward all the traffic for inter-cluster communication, so 

their available power will be drained very fast, causing network partitioning.  

 

 

 

 

 

 

 

 

Figure 3.3. Dynamic Clustering Motivation Example II (proximity vs. power) 

 

By assigning the infinite power nodes in strategic places, we can extend the 

lifetime of the network. A promising approach would be to assign the infinite power 

nodes to positions where they can have connectivity with each other, and the network 

is connected. In other words, we create a backbone (e.g. connected dominating set) 

which is consisted of the infinite power nodes. Each finite power node is connected to 
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at least one infinite power node, so the forwarding of traffic is done mostly through 

the backbone. The rest of the nodes (e.g., finite power nodes) save their energy, 

which results in prolonging the lifespan of the network. 

By identifying the network environment, it is preferable to generate a hierarchy 

that fits better this environment and its dynamics. For the specific example, the 

lifespan (survivability) of the network, it is more important than the improvement of 

intra-cluster delay or the minimization of the number of collisions in the MAC layer 

due to the density of the network. The latter two aspects can be improved by grouping 

together the nodes that are topologically closer. 

In the former example (e.g., Example I) the metric of interest is the stability of 

the generated clusters with respect to the mobility characteristics of the nodes. For the 

latter example, the metric of interest is the lifetime of the network with respect to the 

power constraints of the participating nodes. Obviously, depending on the 

environment and the requirements imposed from the functionality of the network, the 

hierarchy generation mechanism will adapt accordingly the network metrics being 

utilized depending on the corresponding cost functions. The generality of the 

approach proposed in this work is capable of dealing with a huge diversity of cost 

functions and metrics without changing its core functionality. Hence, the same 

algorithmic framework can be applied to generate clusters that satisfy a large variety 

of hierarchy generation objectives.  

The importance of incorporating the network environment and the desired 

performance characteristics into the hierarchy generation process has been 

highlighted but this is not the only aspect of the proposed approach that distinguishes 
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it from the exiting ones. There are algorithms that attempt to incorporate indirectly 

some of the network environment characteristics by assigning corresponding weights 

to the participating nodes. The assignment of weights to the nodes is done solely for 

the selection of clusterheads. These algorithms even though they claim their network 

environment awareness, they differ in two important points from the approach 

proposed in this work: 

• The utilization of characteristics of network environment is done for the 

assignment of weights to the nodes so that clusterhead nodes are selected. The set 

of characteristics taken into consideration and their utilization do not focus on the 

improvement of any specific network aspect.  

• The set of characteristics that are taken into consideration for the assignment of 

weights to the nodes cannot change dynamically. These algorithms are tailored to 

specific characteristics. 

The algorithm proposed in this dissertation improves the existing approaches by 

avoiding the above weaknesses. The algorithm is not tailored to specific network 

characteristics (they can be selected dynamically) and operates so that the network 

performance due to the constructed hierarchy is improved with respect to a set of pre-

specified objectives.  Furthermore, the algorithm can be utilized for both the 

generation of multiple hierarchies at the same time that target different performance 

aspects of the network and a unique hierarchy that attempts to satisfy multiple design 

objectives. The tuning of the algorithm to the network conditions and the hierarchy 

generation objectives is accomplished via the appropriate adaptation of its 

corresponding modules (metrics, cost functions, constraints).  
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  As we have already mentioned, the general applicability and versatility of the 

proposed approach results from the application of SA as the core of the hierarchy 

generation framework. Since SA can operate on any cost function and under any 

constraint, the characteristics of the generated clustering maps depend on the applied 

cost functions and constraints. The set of cost functions and constraints are defined 

with respect to the clustering objectives and the given network environment. Briefly 

the modules that constitute the proposed hierarchy generation framework are: 

• Optimization Algorithm (Simulated Annealing) 

• Metrics   

• Cost functions 

• Constraints 

This chapter describes in detail the general approximation algorithm, namely the 

Simulated Annealing (SA) algorithm, which has been utilized as the cornerstone of 

the proposed hierarchy generation framework. Its functionality and convergence 

characteristics are being presented throughout the chapter. This chapter is preparatory 

for the two following chapters where the indicative network metrics and cost 

functions introduced are being presented and the modifications and adjustments 

applied to SA for improving its convergence characteristics are being exploited, 

respectively.   

Section 2 overviews some of the most interesting work in the area of hierarchy 

generation from the mobile networks perspective. In section 3, SA algorithm is 

described in details (parameters and functionality) and in section 4 the constraints 

imposed on the hierarchical structure generation are described.  
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3.2 Background 

The idea of generating hierarchy for scaling and making more robust the network 

exist for many years. In wireless ad hoc networks the idea of clustering emerged 

when the packet radio networks were introduced, which are the ancestors of ad hoc 

networks. In this area, Ephremides [19][20] introduced the idea of clustering through 

the concept of a distributed linked cluster architecture. The clustering objective of this 

work was the hierarchical application of routing in a more robust to topological 

changes environment. Also, the latter work was trying to take advantage of the spatial 

reuse and communication isolation due to clustering, by assigning different codes and 

frequencies to the various clusters.  

The idea of clustering in ad hoc networks was revisited in the context of mobile 

multimedia wireless networks [17] [18]. One of the most popular clustering schemes 

among the existing works in the area of ad hoc networks is the Lowest-ID scheme. 

This scheme used in [20] as well as in [17][18]is the point of reference and of 

comparison for many recently introduced clustering schemes. In [17] Gerla et al., 

propose a simple distributed algorithm that yields clusters that are at most two hops in 

diameter. In each cluster the node with the lowest ID among its one hop neighbors 

becomes the clusterhead and maintains the cluster memberships of the other nodes in 

the cluster. 

An algorithm based on the degree (e.g. number of 1-hop neighbors) of the nodes 

was proposed in [17]. The nodes having the highest degree among their 1-hop 

neighbors were selected to be the clusterheads. This algorithm, namely the Highest 

Degree clustering algorithm performed much worse than the Lowest-ID (LID) in 
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terms of the robustness of the generated clusters. The robustness was measured by the 

average number of membership changes per unit of time.  

After the initial approaches and the fact that the researchers were convinced 

about the impact and importance of hierarchy on the performance of the mobile ad 

hoc networks specifically, many clustering schemes have been proposed. The most 

significant work among other published in the area can be categorized into six 

classes.  

The first class consists of the Dominating Set (DS) based clustering. In this class 

belong the Connected Dominating Set (CDS) by Wu [23] and the Weakly Connected 

Dominating Set (WCDS) by Chen [24] algorithms. Wu proposed a distributed 

algorithm for the construction of CDS in order to design efficient routing schemes for 

a MANET. The main objective of this scheme is to find a minimum number of nodes 

as dominating nodes to construct a CDS. By minimizing the number of CDS nodes, 

the number of nodes participating in routing decreases. The reduction of DS size is 

performed such that the unnecessary dominating nodes are being eliminated without 

breaking the direct connection between neighboring dominating nodes. Chen’s 

WCDS has the same objectives but it relaxes the direct connection requirement 

between the dominating nodes. The problem with the DS based schemes is that the 

network dynamics (node mobility, node failures) will cause ripple effects, so the 

entire topology will have to be readjusted in order to maintain the structure. Hence, 

such schemes are more feasible in static or low mobility networks.  

The second class consists of the low maintenance clustering schemes. In this 

class 3 approaches are highlighted. The Least Cluster Change (LCC) [25] approach is 
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considered to be a significant enhancement of Lowest ID Clustering (LID) or Highest 

Degree Clustering. In LCC, hierarchy generation is separated into two phases, the 

hierarchy generation which follows the LID algorithm and the hierarchy maintenance, 

which is event driven (i.e. when two CHs obtain a direct connection or a node cannot 

access any CH). Previously the hierarchy construction was executing periodically, 

introducing unnecessary overhead into the network. In the low maintenance 

clustering schemes belongs also the 3-hops Between Adjacent Clusterhead (3hBAC) 

[26] approach. 3hBAC forms a 1-hop non-overlapping cluster structure with three 

hops between neighboring clusterheads by the introduction of a new node status, 

named clusterguest. Clusterguest is mobile node that cannot directly connect to any 

clusterhead, but can access some cluster with the help of a clustermember. By 

introducing the concept of clusterguest, a non-overlapping cluster structure can be 

achieved, which can reduce the number of clusters and eliminate the ripple effect and 

the small unnecessary clusters formed in maintenance phase of LCC. Another low 

maintenance clustering scheme is the Passive Clustering (PC) [27]. PC’s differs from 

the conventional clustering schemes, which require all the mobile nodes to advertise 

cluster-dependent information repeatedly to build and maintain the cluster structure, 

and thus clustering is one of the main sources of control overhead. PC is a clustering 

protocol that does not use dedicated clustering-protocol-specific control packets or 

signals. The elimination of explicit control messages for clustering is achieved by 

forming and maintaining a cluster structure only when mobile nodes have packets to 

send. Furthermore, PC attempts to reduce the number of gateways in order to achieve 

flooding efficiency.  
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The third class of clustering schemes consists of the mobility aware protocols. In 

this class belongs the MOBIC [28] clustering scheme. MOBIC suggests clusterhead 

election, should take mobility into consideration. For this purpose, an aggregate local 

mobility metric is proposed for the cluster formation process such that mobile nodes 

with low speed relative to their neighbors have the chance to become clusterheads. 

MOBIC appears to be effective for MANETs with group mobility behavior, in which 

a group of mobile nodes moves with similar speed and direction. However, if mobile 

nodes move randomly and change their speeds from time to time, MOBIC will 

degrade the performance of the network due to the reclustering and reaffiliation 

overhead.   

The energy efficient clustering approaches designate the fourth class of clustering 

schemes for mobile ad hoc networks. Three representative approaches are being 

mentioned here. The ID Load Balanced Clustering (IDLBC) [30] assumes that the 

clusterhead nodes deplete more energy compared to the rest of the nodes, so its 

objective is to avoid possible node failure due to energy depletion caused by 

excessively shouldering the clusterhead role. The approach is based on limiting the 

time that a node can serve continuously as clusterhead. The major weaknesses of the 

approach are that the assumption may not be valid or in the case it is valid, the time 

alone cannot guarantee balanced depletion of the nodes’ energy. Another approach of 

this class of schemes has been proposed by Wu [31] and is an extension of his 

previously Connected Dominating Set (CDS) [23] approach mentioned in the first 

class of schemes. The distributed construction of the CDS in [31] is energy aware by 

attempting to eliminate from the DS unnecessary nodes with low residual energy. The 
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weakness of this approach is its assumption that the energy of the nodes in the DS 

will be depleted faster compared to the rest of the nodes. The third approach in this 

class of schemes has been proposed by Ryu [32]. The specific objectives of Ryu’s 

approach are to minimize the transmission energy consumption summed by all 

master-slave pairs and to serve as many slaves as possible in order to operate the 

network with longer lifetime and better performance. However, master node election 

is not adaptive, and the method of selecting the master node is not specified. Peer-to-

peer communication between slaves is forbidden. In addition, the method of 

maintaining the cluster structure when master or slave nodes move is not addressed. 

Because of these restrictions, Ryu’s scheme may not be feasible for a typical 

MANET.  

Another class of clustering schemes for MANETs is defined by the load 

balancing approaches. The motivation of this class’s algorithms is that there are an 

optimum number of mobile nodes that a cluster can handle, especially in a 

clusterhead-based MANET. Load-balancing clustering schemes set upper and lower 

limits on the number of mobile nodes that a cluster can deal with. When a cluster size 

exceeds its predefined limit, re-clustering procedures (i.e. merging, splitting of 

clusters) are invoked to adjust the number of mobile nodes in that cluster. Such an 

approach is followed by the Adaptive Multi-hop Clustering (AMC) [33] algorithm. 

AMC does not describe how the clusters are initially constructed. However, for 

cluster maintenance each mobile node periodically broadcasts its information, 

including its ID, cluster ID, and status (clusterhead/member/gateway) to others within 

the same cluster. By such message exchange, each mobile node obtains the topology 
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information of its cluster. Each gateway also periodically exchanges information with 

neighboring gateways in different clusters and reports to its clusterhead. Thus, a 

clusterhead can recognize the number of mobile nodes of each neighboring cluster. 

AMC sets upper and lower bounds (U and L ) on the number of clustermembers that a 

clusterhead can handle. The establishment of the values U and L  is not provided in 

the description of the AMC algorithm. Another algorithm which is based on the load 

balancing principle (e.g. balance the traffic load in each cluster by limiting the 

number of mobile nodes that a cluster can handle around a predefined value) is the 

Degree Load Balancing Clustering (DLBC) presented in [30]. DLBC periodically 

attempts to maintain the number of mobile nodes in each cluster around a system 

parameter, ED, which indicates the optimum number of mobile nodes that a 

clusterhead can handle. A clusterhead degrades to an ordinary member node if the 

difference between ED and the number of mobile nodes that it currently serves 

exceeds some threshold value. However, since the clusterhead change is still based on 

node degree, DLBC likely will cause frequent re-clustering and ripple effects because 

of the network dynamics. 

Finally, the sixth class of MANETs clustering schemes is based on the concept of 

combined metrics. The algorithms of this class take into account a variety if metrics, 

which correspond to node degree, residual energy capacity, moving speed, etc. The 

algorithms of this category aim on electing the most suitable clusterheads in a local 

area, and do not give preference to mobile nodes with certain attributes, such as other 

algorithms (i.e. LID, highest degree). A representative combined metrics based 

algorithm is the On Demand Weighted Clustering Algorithm (WCA) [21], which 
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involves four parameters for each mobile node i  in the clusterhead election 

procedure. These parameters are the degree-difference iD , the sum of the distance 

with all neighbors iP , the average moving speed iM , and the clusterhead serving time 

iT . The combined weight factor iI  is calculated as:  

1 2 3 4i i i i iI c D c P c M c T= + + +                                             (3.1) 

where 1c , 2c , 3c  and 4c  are the weighting factors that satisfy equation (3.2). 
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=∑                                                          (3.2) 

In On-Demand WCA the clusterhead in a local area is chosen to be the node with the 

minimum combined weight factor iI . All mobile nodes covered by elected 

clusterheads cannot participate in further clusterhead selection. This procedure is 

repeated until each mobile node is assigned to a cluster. The weakness of the WCA 

algorithm is its maintenance phase, which does not take into consideration the 

combined weight factor. This may destroy the effectiveness of the hierarchical 

structure. 

In general, the core objective of all the above algorithms is the selection of 

clusterheads for the generation of clusters. The majority of them do not take into 

consideration the network environment for reducing the membership changes and the 

related overhead. Those algorithms (e.g. WCA) that they take into consideration the 

network environment utilize this information just for the selection of clusterheads, so 

they diversify the nodes. The metric utilized for the cluster formation is the proximity 

of the rest of the nodes (non-clusterhead) from the selected clusterhead nodes. The 

design objectives of the algorithms that will be introduced in this dissertation takes 
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into consideration the network environment characteristics for the formation of robust 

and efficient groups. The utilization of the network environment information is not 

utilized to diversify the nodes (clusterhead and non-clusterhead nodes) but to group 

nodes that present similarities on their characteristics and objectives for establishing 

hierarchical structures more homogeneous and robust to network dynamics. 

Furthermore, the generated hierarchy does not depend on the selection of clusterhead 

and non-clusterhead nodes, since all the nodes are given similar importance in the 

process. 

The only work that differs in spirit from the approaches referred above since the 

network environment is taken into consideration and all the nodes are given similar 

importance is the approach presented in [29]. This approach can be classified in the 

mobility aware clustering schemes and is know as ( ), tα clustering. In this algorithm, 

a bound to the probability α  of path availability is attempted to be obtained. 

Specifically, a mobility model was developed and used to derive analytical 

expressions for the probability of the path availability α  with respect to time t . The 

proposed mobility model is a Random Walk based model which assumes that if the 

distance between two nodes is less than a system dependent threshold, then it is also 

possible to determine the conditional probability that the nodes will be within range 

of each other at time 0t t+ , given that they are within range at time 0t . Even though 

this is the first attempt of clustering nodes based on the characteristics of the network 

instead of just selecting clusterheads and generating 2-hop clusters, this probability 

based model fails to capture the real mobility model of nodes with respect to its 
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neighbors and therefore it is not a sufficient approach for clustering in an 

environment that cannot be described from the assumed probabilistic mobility model. 

The proposed clustering framework in this dissertation takes into consideration 

the network environment such as the mobility characteristics (speed, direction) of the 

nodes but the clustering decisions do not depend on metrics related to any specific 

mobility model. These algorithms utilize the mobility characteristics of the nodes, 

which are collected and processed dynamically, for robust hierarchy generation 

decisions.  More details for the algorithmic framework that has been developed are 

provided in the following section. 

3.3 Algorithmic Framework for Hierarchy Generation 

The main objective of this work is to propose an algorithmic framework for 

hierarchy generation capable of capturing the characteristics of the underlying 

network environment and improving its performance. Adding to the challenge of 

designing such an algorithm, is that the algorithmic framework must be flexible and 

general so that it can be applied as it is in conditions of varying hierarchy generation 

objectives. The hierarchy generation objectives represent the network environment 

and the performance aspects of the network to be improved.  

Additionally, due to the dynamics of the network environments under 

consideration (e.g. MANETs) the algorithmic framework must be capable to produce 

rapidly, efficient hierarchy generation solutions. The requirements on the speed of the 

algorithm are imposed from the degree of dynamics of the network (e.g. rate of 

topology changes due to mobility or node failure). In conclusion, the required 
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characteristics of the hierarchy generation algorithmic framework to be developed 

are: 

 Incorporate the network environment characteristics 

 Generate the hierarchy for improving a set of pre-specified performance 

aspects 

 General, so that any type of network environment and set of performance 

aspects can be incorporated to the algorithm without change in its 

functionality 

 Generate efficient hierarchy solutions fast enough, so that it can capture 

the dynamics of networks like MANETs. 

3.3.1 Combinatorial Optimization 

The problem of hierarchy generation can be formulated as a combinatorial 

optimization problem.  

Definition 3.1 A combinatorial optimization problem is either a minimization or 

maximization problem and is specified from a set of problem instances. 

Definition 3.2 An instance of combinatorial optimization problem can be formalized 

as a pair ( ),S f , where the solution space S denotes the finite set of all possible 

solutions and the cost function f is the mapping defined as 

: .f S →\                                                          (3.3) 

In the case of minimization, the problem is to find a solution opti S∈ which satisfies 

( ) ( ) , .optf i f i i S≤ ∀ ∈                                                (3.4) 

In the case of maximization, opti satisfies 
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( ) ( ) , .optf i f i i S≥ ∀ ∈                                               (3.5) 

Such a solution opti is called a globally-optimal solution, either minimal or maximal, 

or simply an optimum, either a minimum or a maximum; ( )opt optf f i= denotes the 

optimal cost, and optS is the set of optimal solutions. 

A combinatorial optimization problem is solved by finding the “best” or 

“optimal” solution among a finite or countably infinite number of alternative 

solutions [34]. Considerable effort has been devoted to constructing and investigating 

methods for solving to optimality or proximity combinatorial optimization problems. 

Integer, linear and non-linear programming, as well as dynamic programming have 

seen major breakthroughs in recent years.   

An important achievement in the field of combinatorial optimization, obtained in 

the late 1960’s, is the conjecture – which is still unverified – that there exists a class 

of combinatorial optimization problems of such inherent complexity that any 

algorithm, solving each instance of such a problem to optimality, requires a 

computational effort that grows superpolynomially with the size of the problem. This 

conjecture resulted in a distinction between hard and easy problems. During 1970’s 

advances in theoretical computer science have provided a rigorous formulation of this 

conjecture. The resulting theory of NP-completeness has greatly increased the insight 

in the relationship between hard problems. 

Over the years many practical and theoretical combinatorial optimization 

problems has been shown that belong in the class of NP-complete problems. One such 

a problem is the graph partitioning problem (e.g. hierarchy generation). The 
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complexity and the difficulty of the problem are increased further due to the design 

requirements imposed on the general applicability and the speed of the algorithm.   

3.3.1.1 General Classes of Algorithms 

Even though the hierarchy generation problem is NP-complete, still must be 

solved and in constructing appropriate algorithms one might choose between two 

options. Either one goes for optimality at the risk of very large, possibly impractical 

amounts of computational times or one goes for quickly obtainable solutions at the 

risk of sub-optimality.  

The first option requires the utilization of optimization algorithms like the 

enumeration methods using cutting plane, branch and bound or dynamic 

programming techniques [34]. The second option involves approximation algorithms 

(heuristic algorithms). The approximation algorithms can be categorized into two 

classes, the local search and randomization algorithms. There are algorithms, which 

based on their configuration can behave as optimization or as approximation 

algorithms. So, between these two categories there is an overlap area. For example, 

by introducing heuristic bounding rules, the branch-and-bound algorithm can behave 

as an approximation algorithm instead of optimization algorithm.  

The optimization and approximation algorithms can be further categorized into 

two larger classes, the tailored and general classes of algorithms. The general class 

involves algorithms that are problem independent, so they can solve a wide variety of 

problems, as opposed to the tailored class of algorithms, which are being designed to 

solve a specific class of problems. The intrinsic problem of tailored algorithms is that 
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each type of combinatorial optimization problem a new algorithm must be 

constructed that is customized to that problem. 

With respect to the design requirements imposed to the hierarchy generation 

algorithmic framework and by exploring the various categories of existing 

optimization algorithms, the best matching category is the general approximation 

class of algorithms. Specifically, the randomization algorithms of the latter class seem 

capable to provide the cornerstone for the design of the targeted hierarchy generation 

algorithmic framework. That is due to the general applicability of these algorithms, 

their speed compared to the optimization class of algorithms and the quality of the 

provided solutions compared to the local search class of algorithms.  

The general applicability of the algorithms is important because the same 

framework can be applied for different network environments and hierarchy 

generation objectives (e.g. for the improvement of specific network performance 

metrics). The optimal for the same network over time might change, either due to the 

varying network topology or due to changes on the utilization of the network (e.g. 

different network objectives). In such cases we do not want to apply different 

hierarchy generation protocol, but it is preferable to dynamically adapt the existing 

one.  

The speed of convergence of the approximation algorithms with respect to the 

optimization algorithms makes this class of algorithms more favorable for scenarios 

where the solution has to be obtained fast. Characteristic examples of such scenarios 

are the network environments under consideration (MANETs), due to their inherent 

dynamics (topology changes due to mobility and node failures). 
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The selection of randomization algorithms instead of the class of local search 

algorithm is justified from the quality of solutions provided from each class of 

algorithms. The randomization algorithms provide better solutions compared to the 

local search ones because the quality of the solution does not depend on the initial 

solution and instead of accepting only moves that result in cost improvement, at 

limited extend the accept also moves that result in cost deterioration. The latter is 

extremely important when there are local optimal points, because the randomization 

algorithms are able to avoid these points and converge to the global optimal solution 

as opposed to the local search algorithms. This is one of the most important reasons 

for the high quality solutions provided from the randomization algorithms. 

Having specified what is the type of algorithm that best matches the 

characteristics of the hierarchy generation framework the next step is to locate a 

specific algorithm that will serve as the backbone for the design of the appropriate 

algorithmic framework. For this purpose, the more promising general approximation 

randomization algorithm is the Simulated Annealing (SA) algorithm. A modified 

version of SA has been used as the core for the hierarchy generation algorithmic 

framework, introduced in this dissertation.  

3.3.2 Simulated Annealing (SA) algorithm 

The (SA) algorithm was independently introduced by Kirkpatrick, Gelatt and 

Vecchi [35] and Cerny [36]. Other names that have been used to denote the Simulated 

Annealing algorithm are: 

 Monte Carlo annealing 

 Probabilistic hill climbing 
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 Statistical cooling 

 Stochastic relaxation 

The name “simulated annealing” originates from the analogy with the physical 

annealing process of solids. In condensed matter physics, annealing is known as a 

thermal process for obtaining low energy states of a solid in a heat bath. The process 

contains the following two steps: 

Step 1: Increase the temperature of the heat bath to a maximum value at which the 

solid melts. 

Step 2: Decrease carefully the temperature of the heat bath until the particles arrange 

themselves in the ground state of the solid. 

In step 1, where the solid is in a liquid phase, all the particles of the solid arrange 

themselves randomly. In step 2 when the configuration of the particles reaches the 

ground state, the particles are arranged into a highly structured lattice and the energy 

of the system is minimal. The minimal energy state (ground state) of the system is 

obtained only if the maximum temperature is sufficiently high and the cooling is done 

sufficiently slow.  

In 1953, Metropolis et al. [37] introduced a simple algorithm for simulating the 

evolution of a solid in a heat bath to thermal equilibrium. The algorithm introduced 

generates a sequence of states that resemble the different phases of the physical 

system (e.g. solid). Given a current state i of the solid with energy iE , then a 

subsequent state j is generated by applying a perturbation mechanism which 

transforms the current state i into a new state j with energy jE . Based on the energy 
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difference j iE E− , the new state j is accepted of rejected probabilistically according 

to the following rule: 

( )1       

1             ,if  
|

,if  
i j

B

j i

E Et t
k T

j i

E E
P X j X i

e E E
−⎛ ⎞+ ⎜ ⎟⎜ ⎟

⎝ ⎠

<⎧
⎪= = = ⎨
⎪ ≥⎩

                              (3.6) 

where tX , 1tX +  are stochastic variables denoting the current and next state of the solid 

respectively. T denotes the temperature of the heat bath and Bk is a physical constant 

known as the Boltzmann constant. The acceptance rule (3.6) is known as the 

Metropolis criterion and the algorithm based on this criterion is known as the 

Metropolis algorithm. 

In Metropolis algorithm if the temperature is being lowered sufficiently slow, the 

solid can reach thermal equilibrium at each temperature. Algorithmically this is 

achieved by generating a large number of states at each temperature. Thermal 

equilibrium is characterized from the Boltzmann distribution and provides the 

probability of the solid being in state i with energy iE at temperature T. The 

Boltzmann distribution is given by 

{ } ( )
1 i
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E
k T

T tP X i e
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( )Z T is the partition function given by 

( )
j
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⎝ ⎠= ∑                                                (3.8) 

where j represents all the possible states of the solid.  



 90

The Metropolis algorithm, the corresponding Metropolis criterion and Boltzmann 

distribution play central role in the description of Simulated Annealing algorithm, 

since they constitute its core functional module. The Metropolis algorithm was 

designed to simulate the evolution of a solid in a heat bath, but the Simulated 

Annealing algorithm was introduced in a more general framework for the solution of 

combinatorial optimization problems. The analogy of combinatorial optimization 

problem with a physical many particle system is defined from the following 

equivalences. 

 Solutions in a combinatorial optimization problem are equivalent to states of a 

physical system. 

 The cost of a solution is equivalent to the energy of a physical system’s state. 

Important role to the effectiveness of the physical annealing process plays the 

temperature (e.g. initial temperature, cooling schedule). In SA the role of temperature 

is resembled from the control parameter c , which is also very important for the 

quality of the obtained optimization solutions. At each temperature a number of 

solutions are generated following the transition mechanism of SA. A transition is 

defined as: 

 

Definition 3.3 A transition is a combined action resulting in the transformation of a 

current solution into a subsequent one. The action consists of the following two steps: 

(i) application of the generation mechanism, (ii) application of the acceptance 

criterion. 
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The acceptance criterion is defined in analogy to the metropolis criterion in 

Metropolis algorithm. 

 

Definition 3.4 Let ( ),S f denote an instance of a minimization combinatorial 

optimization. If i is the current solution with cost ( )f i and j is the new solution 

generated from i with cost ( )f j , then the acceptance criterion determines whether j is 

accepted from i by applying the following acceptance probability: 

( )
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,                      (3.9) 

where c +∈\ denotes the control parameter.  

In the case of maximization combinatorial optimization problem the acceptance 

criterion is the same by substituting the cost function values with their negative 

values.  

The pseudo C algorithm that describes the SA algorithm is provided in figure 3.4. 

Some of the important parameters portrayed in this algorithm are the kc and kL , 

which denote the value of the control parameter and the number of transitions 

generated at the thk iteration, respectively. Parameter starti  represents the initial 

solution bootstrapping the SA algorithm.  
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Figure 3.4. Pseudo C description of SA algorithm 

 

A strong feature of SA, with respect to the initial solution starti , is that it finds 

high quality solutions which do not strongly depend on the choice of starti . Due to this 

attribute the algorithm is characterized effective and robust. This characteristic 

mainly results from a typical feature of SA, where the algorithm besides accepting 

improvements in cost, it also to a limited extend accepts deteriorations in cost based 

on the acceptance criterion. For large values of the control parameter c the probability 
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of accepting deteriorations in cost is high. As the value of c decreases towards 0, the 

acceptance probability for deterioration in cost decreases and becomes 0 when the 

control parameter c becomes also 0. The latter feature of SA is important both for the 

asymptotic convergence of the algorithm to the global optimal, since the algorithm 

can escape from local minima. Because of this feature the algorithm combines the 

simplicity and generality of local search methods and the ability to provide high 

quality solutions, since it has the mechanism to avoid low quality local minima 

solutions.  

The ability of SA to escape local minima using the acceptance criterion (3.6) and 

the Boltzmann distribution (3.7) play the most important roles for the asymptotic 

behavior of the algorithm. The SA algorithm, which belongs in the class of 

randomization general approximation algorithms, asymptotically behaves as an 

optimization algorithm, since it converges to the set of globally optimal solutions. 

Specifically, the following conjecture and corollary formalize better the asymptotic 

global optimality provided from the algorithm. 

 

Conjecture 3.1 Given an instance ( ),S f of combinatorial optimization problem and 

a suitable neighborhood structure then, after sufficiently large number of transitions at 

a fixed value of c, applying the acceptance probability (3.6), the simulated annealing 

(SA) algorithm will find a solution i S∈ with a probability equal to 
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where X is a stochastic variable denoting the current solution obtained by the 

simulated annealing algorithm and 

( )
( )
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f j
c

j S

N c e
⎛ ⎞
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⎝ ⎠

∈

=∑                                                (3.11) 

denotes a normalization constant.  

The neighborhood structure depends on the generation mechanism one is applying to 

obtain new solutions. More details on this follow, when the adjustment of the various 

parameters of the algorithm is presented. The probability (3.10) is also called the 

stationary or equilibrium distribution and the normalization constant ( )0N c is 

equivalent of the partition function ( )Z T  given from (3.8).  

 Before stating the corollary for the asymptotic global optimality of the solution 

provide from SA algorithm, we define the characteristic function ( )Aχ ′  of the set A′ . 

 

Definition 3.5 Let A  and A A′ ⊂  be two sets. Then the characteristic function 

( ) { }: 0,1A Aχ ′ → of the set A′  is defined as ( ) ( ) 1Aχ α′ =  if Aα ′∈ , and ( ) ( ) 0Aχ α′ = , 

otherwise. 

 

Corollary 3.1 Given an instance ( ),S f  of a combinatorial optimization problem and 

a suitable neighborhood structure. Furthermore, let the stationary distribution be 

given by (3.10), then 

( ) ( ) ( )
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opt

def

i i Sc
opt

q c q i
S

χ
→

= =                                     (3.12) 
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where optS  denotes the set of globally optimal solutions. 

 

Proof: 

 Using the fact that 0α∀ ≤ , 
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Corollary 3.1 guarantees asymptotic convergence of the SA algorithm to the set of 

globally optimal solutions under the condition that the stationary distribution of (3.10) 

is attained at each value of the control parameter c. The result of this corollary is very 

important with respect to the asymptotic behavior of the SA algorithm and its 

capability to obtain high quality solutions.  

The ability of SA to provide high quality solutions is one of the characteristics 

that make the algorithm favorable as the backbone of the clustering framework 
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developed in this dissertation. The other important characteristic of SA that makes the 

algorithm suitable is the generality of the algorithm with respect to the cost functions 

optimized and the constraints imposed to these cost functions. Particularly, SA 

algorithm is able to deal with cost functions with quite arbitrary degrees of non-

linearity, discontinuity, and randomness and can process quite arbitrary boundary 

conditions and constraints imposed on these cost functions. The significance of the 

latter characteristic of SA is located to the generality of the proposed clustering 

framework. The decoupling of the algorithmic details from the clustering objectives 

and the characteristics of network environment can be achieved by utilizing any type 

of cost function and constraint on demand, which represent a set of clustering 

objectives and the network environment dynamics. Since these parameters might 

change dynamically during the course of the network lifetime, the cost functions and 

constraints representing them will also have to change. The clustering algorithm has 

to be able to optimize the new cost functions under the new constraints without any 

modifications on the functionality of the algorithm. SA can provide this flexibility 

due to its generality and the high quality of the clustering solutions it can obtain. 

Simulated Annealing algorithm has been applied successfully for the solution of 

complex optimization problems in various areas and it has been shown to perform 

well with respect to the quality of the solutions obtained. Some of the performance 

results, which are consistently reported, are: 

 SA outperforms time equivalent local search algorithms (LSA) with respect to 

the quality of the provided solutions. Time equivalent local search algorithms 
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run multiple times during a single run of SA, by starting from different initial 

solutions. 

 For engineering problems (image processing, VLSI design, code design) there 

no tailored algorithms exist, so SA is a panacea because solves complex 

problems by converging to high quality solutions. 

 In graph partitioning problems SA behaves better with respect to error and 

running time than classical edge interchange algorithms introduced by 

Kerningham and Lin [37]. 

Apart from the consistent performance results of SA, there are have been reported 

many that are inconsistent between different studies. The inconsistencies have to do 

with the convergence times and degree of suboptimality of the provided solutions on 

solving the same problem. SA algorithm is a simple to implement powerful tool for 

solving optimization problems. The simplicity of the implementation is responsible 

for the performance evaluation inconsistencies, since the various modules of the 

algorithm, which solve the same problem, could have been implemented in many 

different ways, resulting in different convergence times and solution qualities. In 

general, experience shows that SA performance depends on the skill and effort of its 

application. In this dissertation we focus on the latter observation, in order to 

implement and configure appropriately for its application in dynamic environments 

(e.g. fast convergence times allowing a small degree of suboptimality). More details 

on the configuration of SA are provided in chapter 5, after the presentation of the cost 

functions introduced in chapter 4. This is because part of the configuration process 

depends on the clustering objectives (cost functions), so we have initially to give the 
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set of cost functions applied and then to describe the customization process of the 

various SA parameters.  

3.4 Topological Constrains 

Apart from the optimization algorithm (SA) and the cost functions, the developed 

clustering framework also consists of constrains enforced to the generated 

hierarchical structures. The main constrain imposed is the generation of topological 

clusters.   Topological clusters are defined as: 

Definition 3.6 (Topological Cluster): A cluster consisting of the set S  of nodes is 

called topological if ,i jnode node∀ ∈S  and i j≠ , there is always a path ijP  from inode  

to jnode  such that knode∀ ∉S  holds that k ijnode P∉ . All the members of a cluster can 

communicate between them without the need to use inter-cluster links, which are 

links that involve non-member nodes. 

The clusters that satisfy this constrain are also called feasible clusters, using the 

optimization algorithms terminology. Example of topological (feasible) and not 

topological clusters (non feasible) clusters is provided in Figure 3.5.   

 

 

 

 

 

 

Figure 3.5. Topological (feasible) and non topological (non feasible)  
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The group of nodes that constitute the topological clusters is better isolated from 

the rest of the groups. This structural constrain is important for the aggregation and 

abstraction of the clusters for reducing the utilization of network resources (e.g. less 

communication and control information is required by the applied hierarchical 

protocols since each group of nodes can be represented from a single node). Also the 

isolation can improve the security of the network since each group can be shielded 

better from various attacks. The latter characteristic is an indicative example of the 

easier network manageability due to the existence of topological clusters.  

Non topological clusters are considered the logical clusters which are constructed 

without taking into consideration the topology of the network. The construction of 

such clusters is mainly based on the logical characteristics of the nodes (i.e. the rank 

or the squad of the users in the case of military networks).  Even though we do not 

consider this class of clusters in this dissertation, the same algorithmic framework 

could be utilized for the generation of logical hierarchical structures. The only change 

would be the removal of the topological clusters constraint and the introduction of the 

appropriate cost function that represent the corresponding logical clustering 

objectives and are based on the logical characteristics of the participating nodes.  
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Chapter 4: Dynamic Domain Generation: Metrics and Cost 
Functions 

 
 
 
 

4.1 Introduction 

Apart from the optimization algorithm, the hierarchy generation framework 

consists of more components: 

• Collection of the Appropriate Metrics 

• Definition of Cost Functions 

• Constraints 

The main thrust of this work is the optimization of the generated hierarchy with 

respect to a set of pre-specified objectives related to the performance improvement of 

the network. The generality provided by the utilization of SA, uncouples this work 

from specific metrics and objectives, as opposed to other algorithms. The hierarchy 

generation objectives are selected dynamically, depending on factors, like the 

network environment and the performance of the applied protocols. The objectives 

selected have to be translated into a form coherent to the optimization algorithm. 

Such form is the outcome of the translation of objectives into mathematical formulas 

(cost functions) that represent the cost of a specific hierarchical configuration. If the 

translation is accurate then the optimization of the cost functions will result into 

clustering maps that satisfy the targeted objectives. The success of the scheme is 

based on defining the appropriate cost functions that represent precisely the 

performance objectives to be accomplished. In this chapter two sets of indicative cost 
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functions are introduced and evaluated. The one set is related to the physical structure 

of the generated clusters and the other set corresponds to the robustness (stability) of 

the constructed hierarchy with respect to mobility. There are also cost functions that 

represent only one clustering objective or a combination of these objectives (multi-

objective cost functions). The latter group has significant importance in environments 

where multiple protocols are applied and the combined optimization of their 

performance is required. 

The building blocks of the cost functions are parameters (metrics) that can be 

collected in real time from the network and are related to the targeted objective(s). 

The definition and selection of metrics of interest are important, so that by combining 

them with the hierarchy generation objectives, the appropriate representative cost 

functions can be introduced. The real time availability of the metrics is important for 

the application of the hierarchical generation framework in dynamic environments. In 

this chapter we present two sets of metrics that can be measured online from the 

network, related to the characteristics of the generated clusters and the mobility of the 

participating nodes. The cost functions emerging from these sets of metrics are 

presented and their ability to meet the pre-specified objectives is evaluated in the 

performance evaluation section.  

4.2 Metrics 

The SA algorithm even though is the core of the proposed scheme, is irrelevant 

with the performance objectives required to be met from the generated hierarchy. SA 

provides the optimization framework but the linkage of this framework with the 

network environment is done through the application of the appropriate cost 
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functions. The optimization of these cost functions results in the hierarchical structure 

that satisfies the performance objectives. The building blocks of the cost functions are 

various metrics (parameters) that describe in a mathematical fashion the 

characteristics of the network environment. This section presents the most important 

metrics that have been applied for defining the cost functions introduced in this 

dissertation.  

The set of metrics presented in this section can be classified into two large 

categories. In the first category belong the metrics that are related to the 

characteristics of the generated clusters. We refer to this category as cluster-

information metrics. The second category involves metrics that are related to the 

characteristics of the participating nodes and more specifically are related to their 

mobility attributes. We refer to the second category of metrics as node-mobility 

metrics. The in-depth description of metrics is given in the following two subsections. 

4.2.1 Cluster-Information Metrics  

This class of metrics represents information related to the characteristics of the 

generated clusters. The utilization of metrics of this type in the definition of cost 

functions aims on the construction of hierarchical structures that consist of clusters 

with specific properties with respect to their topological characteristics. The cluster-

information metrics introduced into the cost functions are: 

•  Cluster size 

•  Cluster diameter 

•  Number of border routers 
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More in depth explanation of the metrics and their importance in the construction of 

cost functions are given in the following paragraphs. 

 

Cluster Size 

The size of a cluster depends on its membership information. The number of 

nodes that constitute the cluster determines its size. A more precise definition of the 

metric is: 

 

Definition 4.1 (Cluster Size): If the ith cluster iC consists of the nodes :
iC in n C∈ then 

the size of the cluster iC is given from its cardinality iC . 

 

Some examples related to the utilization of cluster size metric as part of hierarchy 

generation objectives are the construction of balanced size clusters and the generation 

of clusters with specific requirements on their size (e.g. lower and/or upper bounded 

size). The enforcement of such requirements on the generated hierarchy may target 

network performance objectives related to the behavior of the applied networking 

protocols, like the routing or MAC protocols. Specifically, it has been shown that 

some MANET routing protocols can perform optimally when applied to specific size 

networks. Taking into consideration metrics like the cluster size can be very helpful 

for scenarios like the latter one, where different instances of the same routing protocol 

can be applied in the various generated clusters. These clusters could have been sized 

with respect to the optimal functionality of the corresponding routing protocol. 
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Cluster Diameter 

The cluster diameter is characterized from the longest path, with respect to the 

number of hops, defined between nodes that belong in the corresponding cluster. A 

more precise definition of the metric is: 

 

Definition 4.2 (Cluster Diameter):  If the distance in number of hops between two 

nodes ,k wn n is ,k wn nd , then the thi  cluster’s iC  diameter 
iCd  is defined between the 

nodes ,i i
k w in n C∈ such that ( ),,

max i ii i i k wk w i
C n nn n C

d d
∈

=   

 

The utilization of cluster diameter metric in the design of cost functions can be 

useful when the hierarchy design objectives are related to the diameters of the 

generated clusters. Sample objectives of this kind could be the design of balanced 

diameter clusters or clusters that have to be bounded in terms of their diameter. As in 

the case of cluster size metric, objectives related to the cluster characteristics may be 

required for improving the functionality of the various networking protocols (routing, 

MAC, security). For example, by imposing specific requirements on the cluster 

diameter could affect the overhead of the applied routing protocol (i.e. limit the 

flooding for the establishment of a path in the case of reactive (on-demand) routing 

protocols). Specific examples of the application of the metric into cost functions will 

be given in the next section, when we present the corresponding cost functions. 
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Number of Border Routers 

The nodes that have links to more than one cluster are considered to be border 

routers. Each cluster has a set of such nodes. The size of this set defines the number 

of border routers for the specific cluster. A more precise definition of this metric is: 

 

Definition 4.3 (Number of Border Routers): If 
,i j

k wn n
l defines a link between node 

i
k in C∈ and node j

w jn C∈  and { },i i j
k k wn n n

L l= is the set of links of node i
k in C∈ , then the 

set of border routers i
rB  of thi cluster iC is defined as: 

{ },
: ,i j i

k w k

i i
r k n n n

B n l L i j= ∃ ∈ ≠                                             (4.1) 

The cardinality i
rB  of i

rB  defines the number of border of routers for the iC cluster. 

 

Similarly to the previously mentioned cluster information metrics, the number of 

border routers can be useful when the performance objectives are related to the 

topological characteristics of the generated clusters. Indicative example for the usage 

of the number of border routers metric is when the size of the set i
rB  for each cluster 

needs to be controlled. The requirement for specific number of border routers could 

be imposed from various network performance objectives. Examples of such 

performance objectives could be the load balancing of inter-cluster traffic (i.e. more 

border routers is better) or the isolation of the cluster with respect to security (i.e. 

small number of border routers is better). Specific usage examples of the metric as 

part of cost functions are provided in a later section where the designed cost functions 

are explained. 
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4.2.2 Node-Mobility Metrics 

As opposed to the previous class of metrics, this class involves metrics that are 

related to the characteristics of the participating nodes. Specifically, the metrics are 

related to the mobility of the nodes and their high significance can be justified from 

the characteristics of the network environments under consideration. In MANETs the 

traditional networking protocols fail due to mobility. The newly introduced protocols 

cannot handle the dynamics of these networks. Thus, mobility is very important when 

the performance of MANETs is considered, and it is definitely one of the most 

significant characteristics to be taken into account for efficient hierarchy generation. 

This section elaborates on the node-mobility metrics, which have been introduced 

through this work, in the generation of hierarchical structures. Namely these metrics 

are: 

• Node Speed 

• Node Direction and Relative Direction 

• Node Velocity and Relative Velocity 

• Link Expiration Time 

 

The in depth explanation of these metrics will be presented in the following 

paragraphs along with some representative applications of them with respect to the 

generation of hierarchical structures that meet a set of pre-specified objectives. 
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Node Speed 

The speed 
knS of a node kn is a scalar quantity which refers to "how fast an object 

is moving." A fast-moving object has a high speed while a slow-moving object has a 

low speed. An object with no movement at all has a zero speed. A more precise 

definition of the speed of a node is: 

 

Definition 4.4 (Node Speed): The speed 
knS of a node kn  is defined as the magnitude 

of the distance that is covered by kn  in a unit of time (i.e. meters per second). 

 

The speed of the node at any instance time is only part of its mobility 

characteristics, but it provides an indication of the impact that this node can have on 

the dynamics of the network. Even though, the mobility level of a node can be 

determined out of the speed metric, the precise impact of this node can be determined 

only by collecting knowledge related to the rest of the nodes into the network (e.g., 

even if a node presents high speed, it may by static with respect to the rest of the 

nodes). This metric is important for the evaluation of other more precise metrics 

related to the mobility of the nodes. A node can determine its speed utilizing tools 

like Global Positioning System (GPS) devices or tachometer sensors. 

 

Node Direction and Relative Direction 

The direction 
knθ of the node kn  determines the coordination of the node’s 

movement into the space. It can be defined as the space between two lines or planes 

that intersect or as the inclination of one line to another. The following figure and the 
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precise definition of the metric provide a better understanding of direction and its 

significance in describing the mobility characteristics of a node. 
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Figure 4.1. Definition and estimation of the node’s direction 

 

Definition 4.5 (Node Direction): If the trajectory in
rt  of a node in , belongs to a 

rectangular Cartesian coordinate system ( )xy plane− , the direction iθ of a node in at 

the point ( )1 1,x y , can be described as the counter-clockwise angle represented from 

the straight line defined from two consecutive points ( )1 1,x y , ( )2 2,x y on the trajectory 

of the node and the straight line 1y y= . The direction iθ is measured in degrees or 

radians. 

 

The direction of a node and its speed suffice to describe its instantaneous 

mobility characteristics. The utilization of this metric is very important whenever the 

design objectives are related with the mobility of the participating nodes. Even 

though the application of this metric alone may not be sufficient for the construction 

of effective cost functions representing the various clustering objectives, but similarly 
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to the significance of the speed metric, the direction of a node is utilized indirectly in 

the computation of other more complete node-mobility metrics.  

A more complete metric in terms of characterizing the dynamics of the network, 

is the relative direction ,i j

r
n nθ  between a pair ,i jn n of the participating nodes. The 

completeness of this metric compared to the node’s direction or speed is due to the 

fact it captures the relative mobility characteristics of the participating nodes. By 

taking into account the direction of a single node, no conclusions can be drawn about 

the network dynamics. Hence, the mobility characteristics of the various nodes have 

to be evaluated with reference to the rest of the participating nodes. The evaluation of 

the more complete metrics like the relative direction requires knowledge about the 

individual mobility characteristics of the nodes – for this specific metric knowledge 

of the nodes’ direction is required. The relative direction provides an estimate of the 

relative coordination of movement between two nodes. When the value of the metric 

is large then the larger is the difference in the direction of the nodes, which results in 

higher probability that these nodes if they are connected, they will get disconnected 

soon or if they are not connected they will not establish a direct communication link. 

The opposite happens when the value of the metric is small. A more comprehensive 

definition of the relative direction metric is given with respect to figure 4.2. 
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Figure 4.2. Definition and estimation of the relative direction between the nodes ,i j  
 

Definition 4.6 (Relative Direction): If a node in is moving with direction iθ  and a 

node jn  is moving with direction jθ  then we define as the relative direction 
ijrθ  

between the nodes in , jn  the angle: 

( ),
min ,360 ,  

i jr i j i jθ θ θ θ θ= − − −                                    (4.2) 

where 
ijrθ is measured in degrees and ) ,

, 0 ,360 ,  0 ,180
i j

o o o o
i j rθ θ θ⎡ ⎡ ⎤∈ ∈⎣ ⎣ ⎦ . In case 

where the relative direction is measured in radians the definition becomes: 

( ),
min ,2 ,  

i jr i j i jθ θ θ π θ θ= − − −                           (4.3) 

where, 

ijrθ is measured in radians and [ ) [ ]
,

, 0, 2 ,  0,
i ji j rθ θ π θ π∈ ∈  

The value of the relative direction for two nodes partially characterizes the 

similarity of their movement. The smaller is the value of 
ijrθ the more similar is the 

movement of the nodes. This characterization is partial since the mobility of the 

nodes depends also on their speeds. An indicative objective related to the relative 

direction of the participating nodes is the grouping of nodes that present similar 
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mobility characteristics. Such grouping can provide more robust hierarchy, which will 

result in fewer membership changes and less overhead related to the maintenance of 

the clusters. The nodes can compute their relative direction to the rest of the nodes by 

just exchanging their direction of movement. A node can get information about its 

direction by utilizing tools such as compasses or GPS devices.  

Node Velocity and Relative Velocity 

The relative direction metric, can partially characterize the mobility of a node 

with respect to others. The partial characterization is due to the lack of speed 

parameter in the definition of the relative direction. In this paragraph we present a 

more useful metric that combines the speed and direction characteristics of the nodes. 

Prior to presenting the relative velocity metric, the node velocity metric is defined. 

The velocity of a node is a vector quantity and not scalar as the speed is. The velocity, 

as opposed to speed, is “aware” of the direction of the node. The node velocity at any 

instance is characterized from the speed of the node and the vector of its direction. 

The formal definition of the metric is provided with respect to figure 4.3. 

In the following graph d represents the distance of the node and t the time. The 

distance covered from a node is a function of time ( )d f t= . For the specific time 

instances 1 2,  t t , the distances covered from a node can be expressed 

as ( )1 1d f t= , ( )2 2d f t= respectively. The time instance 2t can expressed with respect 

to 1t  as 2 1t t t= + Δ , where the difference 2 1 0t t tΔ = − → . On the graph, for smaller 

and smaller values of tΔ , the slope of the line segment through ( )1 1,t d and 
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( )2 2,t d should approach that of a tangent line touching  the  curve  at  the 

point ( ) ( )( )1 1 1 1, ,t d t f t= . With         

 

Figure 4.3. A sample distance-time graph for defining the velocity of a node 

 

respect to the latter description we define the slope m at the point 

( ) ( )( )1 1 1 1, ,t d t f t= of the above curve.  

 

Definition 4.7 (Slope of a curve at a fixed point): The slope tangentm m=  of the 

tangent line through ( ) ( )( )1 1 1 1, ,t d t f t= is defined by: 

( ) ( ) ( )2 1
tangent 1 0 0

2 1

lim lim
t t

f t f t dm m f t
t t tΔ → Δ →

− Δ′= = = =
− Δ

                      (4.4) 

 

The slope tangentm  defines the limiting value of average velocity over the time interval 

1t  and 2 1t t t= + Δ as 0tΔ → . This physical interpretation provides motivation for the 

definition of node velocity. 
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Definition 4.8 (Node Velocity):  The velocity 
1,in tu of a node in at a time instant 1t  is 

given by: 

( ) ( ) ( )
1

2 1
, tangent 1 0 0

2 1

lim lim
in t t t

f t f t du m f t
t t tΔ → Δ →

− Δ′= = = =
− Δ

                   (4.5) 

 

Due to the speed and direction “awareness” of the metric, can be considered 

more complete in describe the mobility characteristics of a node compared to 

direction or speed. A node can determine its velocity in the same fashion it 

determines its speed and direction, by utilizing devices like a tachymeter, a compass 

or a GPS module.  

On the other hand, as is the case with node speed and node direction metrics, the 

node velocity metric cannot capture by itself the dynamics of the network due to 

mobility. For this to happen, the values of the metric for the various participating 

nodes have to be evaluated in correlation with each other. Thus, the metric of relative 

velocity is introduced to eliminate the weakness of the node velocity. The relative 

velocity ,i j

r
n nu of the nodes ,i jn n characterizes the difference of the movement patterns 

of these nodes. A more precise definition of the metric is: 

 

Definition 4.9 (Relative Velocity): The relative velocity ,i j

r
n nu of two nodes ,i jn n  is 

the velocity with which the one node approaches or recedes from the other node. If 

the nodes ,i jn n have speeds ,
i jn nS S  and directions ,

i jn nθ θ  respectively, then the 

relative velocity is defined as: 
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( ) ( )2 2

, , ,i j i j i j

r X Y
n n n n n nu S S= Δ + Δ                                                  (4.6) 

where ,i j

X
n nSΔ and ,i j

Y
n nSΔ  are the differences of the nodes speeds on the x-axis and y-

axis respectively.  The ,i j

X
n nSΔ , ,i j

Y
n nSΔ are defined as: 

, cos cos
i j i i j j

X
n n n n n nS S Sθ θΔ = −                                             (4.7) 

, sin sin
i j i i j j

Y
n n n n n nS S Sθ θΔ = −                                              (4.8) 

By substituting (4.7) and (4.8) in (4.6) we obtain a more detailed definition of relative 

velocity: 

2 2
, ( cos cos ) ( sin sin )

i j i i j j i i j j

r
n n n n n n n n n nu S S S Sθ θ θ θ= − + −                         (4.9) 

The larger is the value of the metric, the more different is the movement of the 

nodes and vice, versa. The value of the metric characterizes the stability of the link 

between the nodes, if a communication link exists. If such a link does not exist, the 

value of the metric can be indicative for the stability of the network topology. The 

relative velocity can be utilized in cases where the clustering design objectives are 

related to the robustness of the generated hierarchy. Similarly, to the relative direction 

metric, the relative velocity could you be used for the generation of robust clusters, 

which consist of nodes with similar velocities (e.g. small relative velocities). Such 

objectives have been used for the design of some of the cost functions that will be 

presented in the following section. The significance of generating robust clusters, 

with respect to their membership, is due to the expected reduction on the hierarchy 

maintenance overhead. The hierarchy maintenance overhead is not related only to the 

managing and reforming of the hierarchical structure but also and most importantly to 

the effect that it has on the functionality of the applied networking protocols (i.e. 
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require reconfiguration – they have to go through a transient state until they reach 

again their steady state operation – these transitions can cause irregularities in the 

functionality of the entire network). The less are the number of membership changes, 

the better the performance and the more stable the network is expected to be.  

The relative velocity can be computed with respect to the knowledge of the node 

velocity metric. The participating nodes can exchange their velocity (speed and 

direction) characteristics and then locally, using (4.9), can compute their relative 

velocity with any other node into the network.  

Link Expiration Time 

One more interesting mobility metric utilized in the construction of cost functions 

is the Link Expiration Time (LET) metric.  Even though this metric is related to the 

life expectancy of a link between two nodes ,k jn n , it has been included in the node-

mobility class of metrics, because it depends on the mobility characteristics of the 

corresponding nodes. Namely, it depends on the speed and direction of the nodes. 

LET can be defined as the estimated lifetime of a link that exists between two 

nodes ,k jn n , given their speeds and directions. A more precise definition of the metric 

is given with respect to figure 4.4. 
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Figure 4.4. Speed, direction and transmission range characteristics between two 
directly communicating nodes ,k jn n . 

 

Definition 4.10 (Link Expiration Time):  If for a time instance t , ,j ku u  characterize 

the speeds, ,j kθ θ  characterize the directions, ,  j kTxRange TxRange  characterize the 

transmission ranges and ( ) ( ), , ,j j k kx y x y  are the coordinates of the nodes ,j kn n  

respectively, the link expiration time jkLET  for the direct link between these 

nodes  and j kn n is defined as: 

( ) ( ) ( )22 2 2

2 2

( )

,nodes ,  are in range 
0 ,nodes ,  are not in range

,nodes ,  are relatively static
jk t j k

ab cd a b r ad bc
j ka c

LET D j k
j k

↔

⎧− + + + − −⎪
⎪ +
⎪= = ⎨
⎪ ∞⎪
⎪
⎩

  (4.10) 

where  

, (  in this case is assumed the same for every node)

cos cos

sin sin
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Similar to the relative velocity metric, LET is aware of both the speed and 

direction of the nodes. Thus, the metric can be utilized in cost functions that attempt 

to meet hierarchy generation objectives related to the dynamics of the network. Such 

an objective is the reduction of hierarchy maintenance overhead for the reasons 

mentioned above. The fulfillment of such an objective can be realized by generating 

robust clusters with respect to the network dynamics. In terms of LET metric, the 

latter objective can be translated as the grouping of nodes that define links with large 

LET values. The larger is the LET value for a link, the longer are expected to remain 

connected the nodes that define it. 

The metrics presented in this section are the building blocks for the design of 

representative cost functions, whose optimization will generate the hierarchy that 

satisfies a set of pre-specified performance objectives. The set of cost functions that 

has been proposed in this work along with the corresponding performance objectives 

that have been served as the source of inspiration for the design of these cost 

functions, are presented in the following section. 

4.3 Cost Functions 

One of the advantages of the proposed hierarchy formation framework is its 

independence from the design objectives. The algorithm can be adjusted to any set of 

requested objectives. The adaptation process is done through the utilization of metrics 

and the introduction of the appropriate cost functions. If the optimization of these cost 

functions is performed appropriately from the optimization algorithm, a hierarchical 

structure that meets the targeted objectives will be formed.  
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The cost functions have to be designed carefully with respect to the available 

metrics and the set of objectives. In this work various cost functions are presented, 

which can be categorized in two large classes with respect to the targeted objectives. 

Through these classes of cost functions the effectiveness of the selected optimization 

(SA) algorithm is demonstrated and the quality of the functions in accordance to the 

pre-specified objectives is validated. Namely, the two classes of cost functions are: 

• Cluster characteristics based cost functions 

• Node mobility based cost functions 

The two defined categories of cost functions fall under the same lines of the 

taxonomy utilized to classify the metrics. Thus, the functions that constitute these two 

categories of cost functions depend on the metrics that define the corresponding class 

of metrics. The cost functions that belong into the cluster characteristics class 

represent objectives that are related with the topological characteristics of the 

generated clusters. Accordingly, the cost functions that define the node mobility class 

represent hierarchy generation objectives related to the network dynamics. The 

existence of these network dynamics is due to the mobility of the participating nodes. 

In depth description and presentation of the introduced cost functions along with their 

formal definition is provided in the following subsections. 

4.3.1 Cluster characteristics based cost functions 

The hierarchy design objectives represented from this class of cost functions are 

related to the characteristics of the physical structure of the generated clusters. These 

characteristics have to do with the size, the diameter and the number of input/output 

points to/from the cluster. The control of the physical characteristics of the clusters, 
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affects the performance of the applied networking protocols. As it has been shown 

from various studies [38][39] the size and diameter of the network affects the 

performance of the applied protocols. The various protocols present different 

performance characteristics with respect to the varying size and diameter of the 

network, due to their functionality (i.e. use of flooding, number of messages 

exchanges, etc.). When hierarchy is introduced in the network, then these protocols 

will be applied per generated cluster. By knowing the performance characteristics of 

the applied protocol and for which network size and/or diameter the corresponding 

protocol achieves its best performance then by adjusting these characteristics of the 

generated clusters to the optimal values, the desired protocol performance could be 

achieved. 

This category of cost functions can be further classified into two subcategories 

with respect to the number of metrics they involve. These two subcategories are: 

• Single objective cost functions 

• Multi-objective cost functions 

The single objective subcategory includes the cost functions that are based on a single 

metric and the multi-objective subcategory includes those that involve combination of 

metrics. The former set targets the fulfillment of a single objective related to the 

physical characteristics of the generated clusters and equally the latter set aims on 

accomplishing a mixture of objectives.  

In the following paragraphs, the both the single objective and the multi-objective 

cost functions that attempt the adjustment of the physical structure of the hierarchy 

are being introduced. Furthermore, the reasoning behind their design is explained. 
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The evaluation of the ability of the proposed cost functions to meet the pre-specified 

objectives is presented in a later section of this chapter.  

Single objective cluster characteristics cost functions 

The cost functions of this category have been designed to control the physical 

characteristics of the generated clusters. The metrics involved in the construction of 

these cost functions belong to the cluster information category and are selected with 

respect to the clustering objectives set. Namely, the objectives that trigger the cost 

functions of this class are:  

• Balanced Size Clusters 

• Balanced Size Cluster Diameters 

• Minimization of Border Routers 

• Optimal Cluster Size 

A more detailed explanation of these objectives and the presentation of the 

corresponding cost functions that attempt to accomplish these objectives upon their 

optimization follow. Initially, a brief overview of the parameters that represent the 

metrics involved in the construction of these cost functions is provided. 

Parameter Definition 
K  Number of generated clusters 

iC  Cluster i 

iC  Size of cluster i 

iCd  Diameter of cluster i 

iCBR  Number of border routers of cluster i 

iC ∗  Optimal size for cluster i 

Table 4.1. Representation of the metrics involved in the construction of cluster 
characteristics based cost functions 
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Balanced Size Clusters 

The objective of this class’ cost functions is the generation of balanced size 

clusters. The requirement for equal size clusters across the network can be beneficial 

in the functionality of many networking protocols. When each cluster consists of 

almost the same number of nodes, the distribution of network resources across the 

generated clusters is fair and better load balancing is achieved. Furthermore, as we 

have already mentioned, the applied networking protocols present preferences in 

terms of the network characteristics (including network size), so that they can achieve 

the desired performance characteristics. If instances of these protocols are going to be 

applied to each of the generated clusters, then each one of these clusters must present 

the preferred physical characteristics so that the performance of the applied protocol 

is optimal. In that case and specifically for preferences related to the cluster size, each 

cluster must have identical size if the same protocol is going to be applied. The 

following cost functions have been defined for the generation of such clusters with 

respect to the balanced size requirement: 

 

Definition 4.11 (Cost Function for the Generation of Balanced Size Clusters):  

The optimization of the cost function: 

( )( )2 2
1( ) min ,...., KC

J C Var C C=                                 (4.11) 

results in the generation of balanced size clusters (cluster with equivalent size with 

respect to their membership characteristics). 
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Definition 4.12 (Cost Function for the Generation of Balanced Size Clusters):  

The optimization of the cost function: 

2

1
( ) min

K

iC i
J C C

−

= ∑                                            (4.12) 

results in the generation of balanced size clusters (cluster with equivalent size with 

respect to their membership characteristics). 

 

Balanced Size Cluster Diameters 

Similarly, the objective that is represented from this set of cost functions is 

related to the physical structure of the generated clusters. Specifically, the proposed 

cost functions attempt to accomplish the generation of clusters that present similar 

diameter with respect to hops, across the network. The significance of such an 

objective is similar to the importance of generating balanced size clusters. There are 

protocols whose desired performance favors specific requirements. Such 

requirements are related to the physical characteristics of the network among others. 

Apart from the network size, another physical characteristic is the network diameter. 

When hierarchy is present, then instead of applying a single instance of the protocol 

throughout the network, multiple instances of the same protocol can be applied – an 

instance per generated cluster. Since the requirements for the desired performance of 

the applied protocol have been known, if any of these requirements is related to the 

diameter of the network, the latter can be adjusted accordingly. Due to the application 

of the same protocol at each cluster, the recommended diameter must be the same at 

every generated cluster. The optimization of the following cost functions (4.13), 
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(4.14) is expected to provide the desired clustering map that satisfies the balanced 

cluster diameters objective. 

 

Definition 4.13 (Cost Function for the Generation of Balanced Diameter 

Clusters): 

 ( )2

1
( ) min

i

K

CC i
J C d

−

= ∑                                                   (4.13) 

results in the generation of balanced diameter clusters (cluster with equivalent 

diameter characteristics). 

 

Definition 4.14 (Cost Function for the Generation of Balanced Diameter 

Clusters): 

( ) ( )( )1 2

2 2 2min , ,....,
KC C CC

J C Var d d d=                                   (4.14) 

results in the generation of balanced diameter clusters (cluster with equivalent 

diameter characteristics). 

 

Optimal Size Clusters 

The objective represented from the cost function of this category is similar to the 

balanced size clusters objective, but more general. Each generated cluster is treated 

separately in terms of its size requirements. This generalization of the objective of 

balanced size clusters comes with the extra constraint that the sum of the clusters size 

is equal with the network size. Apart from this constraint the generation of clusters 

with pre-specified requirements on their size (optimal size of the cluster), can be very 
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useful in cases where different protocols are applied in the various clusters. If the 

favorable performance for each of these protocols is achieved in different cluster size, 

then the size of the corresponding cluster must be adjusted accordingly. The balanced 

size clusters objective cannot handle such scenarios. The cost function that formalizes 

the optimal size cluster objective is defined as: 

Definition 4.15 (Cost Function for the Generation of Optimal Size Clusters):  The 

optimization of the cost functions: 

( )2

1
( ) min

K

i iC i
J C C C ∗

−

= −∑                                         (4.15a) 

( ) ( ) ( )2 2* *
1 1min ,..., K KC

J C Var C C C C⎡ ⎤= − −⎢ ⎥⎣ ⎦
                 (4.15b) 

result in the generation of clusters with pre-specified requirement on their size  

(optimal cluster size). 

Minimization of Border Routers 

Along the same lines as the previously defined classes of cost functions, this one 

involves cost functions that control another aspect of the physical structure 

characteristics of the generated clusters. The objective that the introduced cost 

functions attempt to accomplish is related to the number of “entrances” (“exits”) to 

(from) the generated clusters. The building block of these functions is the metric 

related to the number of border routers per cluster. The objective is the generation of 

clusters with minimum number of border routers. 
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Definition 4.16 (Cost Function for the Generation of Clusters with Minimum 

Number of Border Routers): 

( )
1

min
i

K

CC i

J C BR
−

= ∑                                                (4.16) 

results in the generation of clusters with equivalent number of border routers. 

 

Multi-objective cluster characteristics cost functions 

The cost functions above aim on the satisfaction of a single hierarchy generation 

objective.  Even though the ability of the algorithm to optimize these cost functions 

and generate the desired hierarchy is very important, sometimes is not sufficient for 

the performance improvement of the network. That is because the overall 

performance of the network depends on the efficient functionality of many protocols 

and is described from many parameters. The optimization with respect to one 

parameter may affect negatively any of the other network parameters, resulting in the 

degradation of the network performance. Sometimes the combined improvement of 

the network performance is required with respect to multiple parameters (multiple 

objectives). Taking advantage of the ability of SA to optimize complex cost 

functions, the above objectives can be combined into single cost functions for multi-

objective optimization of the network. Such cost functions that portray multiple 

objectives have been proposed through this work. The following ones are 

representative of the cluster characteristics class since they are combining single 

objectives presented earlier. 
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Balanced Size Clusters and Minimization of Border Routers 

The cost function that represents the complex objective, involves both the 

generation of balanced size clusters and the minimization of the border routers of the 

network. The reasoning of this combination of objectives is to achieve simultaneously 

the advantages resulting from the generation of balanced size clusters and the 

minimization of border routers as they were presented earlier in this section. The cost 

function that realizes this combination of objectives is: 

( ) ( )2 2 3
1

1
min ,...., 10

i

K

K CC i
J C Var C C BR

=

⎛ ⎞⎛ ⎞
= + ∗⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑                           (4.17) 

where the definitions of parameters involved are provided in  Table 4.1. The effect of 

the multi-objective cost function on the generated hierarchy compared to the 

corresponding single objective ones is described in the performance evaluation 

section. Also the ability of SA to optimize complex cost function is verified from the 

simulation results. 

Balanced Diameter Clusters and Minimization of Border Routers 

Similarly, with the previous cost function, this one represents a combination of 

hierarchy generation objectives. It belongs in the category of the clustering 

characteristics based cost functions since both of the targeted objectives involved are 

related with the structure of the generated clusters. These two objectives are the 

generation of balanced diameter clusters and the minimization of border routers. The 

advantages from the application of such a scheme are expected to be the combination 

of the advantages of each of the objectives separately. These advantages have been 

highlighted earlier. The combination of these objectives is represented from the 

following cost function: 



 127

( ) ( ) ( ) ( )( )2 2 2 2
1 2

1
min , ,...., 10

i

K

K CC i
J C Var d C d C d C BR

=

⎛ ⎞⎛ ⎞
= + ∗⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑          (4.18) 

The optimization of cost function (3.13) from SA results in a hierarchical structure 

which complies with the objectives set.  

• Optimal Cluster Size and Minimization of Border Routers 

The complex objective represented from cost function (4.19) below, is a 

combination of two single objectives, the generation of optimal size clusters and the 

minimization of border routers. The effect of this type of hierarchy is expected to 

have the combined advantages provided from each one of the targeted objectives. The 

cost function that formalizes the combinational objective is: 

( )2

1 1
( ) min 10

i

K K

i i CC i i
J C C C BR∗

= =

⎡ ⎤
= − + ∗⎢ ⎥⎣ ⎦

∑ ∑                                (4.19) 

The verification of the ability of (4.19) to meet the complex objective is provided in 

the performance evaluation section of this chapter. 

4.3.2 Node mobility characteristics based cost functions 

In this category belong the cost functions that are related with the mobility 

characteristics of the generated clusters. The metrics that constitute these cost 

functions are those in the node mobility class. The targeted objective is related to the 

robustness of the generated hierarchical structure. The robustness is defined from the 

stability of the clusters’ membership. The advantage of generating a hierarchical 

structure that remains stable in a dynamic environment is the minimization of the 

membership changes. The topology modifications due to nodes mobility impose extra 

overhead in maintaining the hierarchical structure. This overhead may be harmful to 
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the overall network performance, so if we want to take advantage of the hierarchy 

benefits then it is preferable to eliminate it. A way to do it is to incorporate network 

environment characteristics into the hierarchy generation mechanism. Such 

characteristics are the mobility of the participating nodes. If we group together nodes 

that present similar mobility characteristics, then it is expected that these groups will 

remain connected for larger periods of time compared to those obtained without 

taking into account the similarities on the mobility patterns of the nodes. Adopting the 

philosophy behind the generation of robust to mobility clusters, we introduce the 

following cost functions.  

The objectives represented from the cost functions of this class aim on the 

generation of robust to mobility clusters. For achieving the latter, the grouping of the 

nodes with similar mobility characteristics is attempted. Each of the introduced cost 

functions involves exactly one of the node-mobility metrics defined earlier. The 

parameters that represent these metrics in the definitions of the cost functions of this 

class are provided in Table 4.2: 

Parameter Definition 
K  Number of generated clusters 

iC  Cluster i 

iC  Size of cluster i 

,i jrθ  Relative direction of nodes i, j 

,i jrU  Relative Velocity of nodes i, j 

ijLET  Expiration Time of Link between nodes i, j 

iU  Scalar speed of node i 

Table 4.2. Representation of the metrics involved in the construction of cluster 
characteristics based cost functions 
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The hierarchy generation objectives requested and the corresponding cost functions 

defined are: 

Groups of Nodes with Similar Direction 

Since the main objective of this class of cost functions is the generation of robust 

clusters, this can be achieved by grouping together nodes with similar mobility 

characteristics. These groups of nodes are expected to remain connected for longer 

periods of time, reducing the hierarchy maintenance overhead and increasing the 

effectiveness of the applied hierarchy. A cost function that attempts to meet the 

requested objective upon its optimization is defined as: 

( )
,

2

1 , 1
min

z

i j

CK

rC z i j
J C θ

= =

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑                                            (4.20) 

The mobility metric utilized for the introduction of this cost function is the relative 

direction of the nodes in a cluster. Even though the cost is affected from the relative 

direction of every pair of nodes in a cluster, independently from the existence of a 

direct link or not between them, the constraint of topological clusters is still imposed. 

The enforcement of the constraint is done during the generation of new clustering 

maps from SA. More details about the generation mechanism of the candidate 

clustering maps and its importance on the performance of the algorithm are provided 

in a later section of this chapter, where we describe the implementation. 

Groups of Links with Similar Velocity 

Similarly, with the previous cost function, the hierarchy generation objective 

represented from this cost function is the generation of robust to mobility clusters. In 

this case, instead of using the direction of the nodes as the mobility metric of choice, 
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their velocity is used. Specifically, the cost function introduced involves the relative 

velocity of the nodes in a cluster and attempts the grouping of nodes with similar 

velocity characteristics. This cost function is defines as: 

( )
,

2

2

1 , 1
min

z

z
i j

CK

rC z i j
J C U

= =

⎛ ⎞⎡ ⎤
⎜ ⎟= ⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠
∑ ∑                                             (4.21) 

The difference of (4.21) compared to (4.22) is that the latter involves only the 

direction of the nodes, as opposed to the former which is based on velocity, which is 

aware of both the speed and direction of the nodes. Thus, (4.22) is expected to be 

more accurate on the grouping of nodes with similar characteristics, resulting in more 

robust hierarchical structures. The latter expectation turns to be true, as it will be 

presented on the simulation analysis section of the introduced cost functions. 

Groups of Links with Large LET 

Another node mobility metric that is involved in the definition of cost functions 

that pursue the generation of robust hierarchy is the Link Expiration Time (LET). The 

cost function based on LET attempts to group together nodes so that the links they 

define are characterized from high LET. The higher is the LET value of a link, the 

longer is expected to remain on. The definition of metric is given by (4.11) and the 

corresponding cost function is formalized by (4.22), below. 

( ) ( )
2

1 , 1
min

zCK

ijC z i j
J C LET

= =

⎡ ⎤⎛ ⎞
⎢ ⎥= − ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑                                    (4.22) 

Since LET involves the direction and speed of the nodes that define the various links, 

(4.22) as (4.21) is aware of the combined mobility metrics of the nodes. It is expected 

to recognize more accurately and group more efficiently than (4.20), the nodes with 
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similar mobility characteristics. Its performance with respect to (4.20) and (4.21) on 

the grouping of the nodes and the construction of robust hierarchical structures is 

provided in a later section in this chapter. 

4.4 Performance Evaluation 

Even though the algorithmic details of the hierarchy generation framework have 

been presented, its ability to fulfill the pre-specified objectives has not been shown 

yet. This ability is mostly related to the definition of the cost functions from the 

available metrics so that the targeted objectives are represented accurately. In this 

section the effectiveness of the introduced cost functions is demonstrated through a 

sequence of emulation results. The results were collected by optimizing the various 

cost functions using the modified SA algorithm and then the consistency of the 

generated clustering maps with respect to the targeted objectives was being checked. 

Prior to the presentation of the results, the configuration of the optimization algorithm 

(SA) which was used is provided in the next section. 

4.4.1 Configuration of modified SA 

The SA algorithm was configured with respect to the modifications and 

adjustments that were presented in the previous chapter. Even though the simulation 

analysis of the SA algorithm with these modifications and adjustments showed that 

the convergence time is significantly improved with small or no loss in the quality of 

the generated solution, the quality of the obtained solution was not studied for a larger 

set of cost functions (objectives).  Before presenting the ability of the optimization 

algorithm to produce clustering map solutions in accordance to the pre-specified 
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objectives, the configuration details of the SA algorithm utilized for the optimization 

of the corresponding cost functions will be given. These details refer to the selection 

of the cooling schedule, the StopRepeat number, the transition probabilities, the 

iterations per temperature, and the initial temperature. A brief overview of the rest 

modules of SA algorithm is also given. These modules are related to the generation of 

new feasible clustering maps per iteration and the evaluation of their cost. The 

algorithm that describes the functionality is given in figure 4.5.  

yes (downhill move)

No (uphill move)

Current Temperature
Current Cluser map 
New cluser map to test 
Champion cluster map 
Current cost
Cost of new cluster map
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Figure 4.5. Simulated Annealing algorithm for network partitioning 
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Table 4.3 presents the values for the various parameters of the SA algorithm, as they 

were selected for the optimization of the various cost functions. These values will be 

justified in chapter 5, as part of the modification and adjustment of the optimization 

algorithm so that it can be applied in dynamic environments. 

Parameters Configuration Values 

Cooling Schedule Geometric Cooling Schedule 

StopRepeats 100 

State Transition Probabilities Uniform 

Initial Temperature 40 

Iterations Per Temperature 100 

Table 4.3. Configuration values of the SA parameters for the optimization of the 
introduced cost functions 

 
Apart from the parameters, important role in the optimization algorithm is the 

generation of new feasible clustering maps and their cost evaluation modules. The 

generation of new feasible maps is performed as it will be described in chapter 5, 

based on the migration of one randomly selected node from a randomly selected 

cluster to a new randomly selected cluster. After this move is being performed, the 

old and new host clusters of the node are being checked for feasibility (topological 

clusters). If both are feasible the cost of the new clustering is evaluated with respect 

to the optimized cost function. If not then a new migration move is performed until a 

feasible clustering map is obtained. The cost evaluation of the feasible clustering 

maps in each round of SA is performed using the energy update method (see chapter 

5), where the new cost is evaluated as an update from the previous cost by taking only 

into account the changes on the previous clustering map (e.g. currently optimal map). 
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The following section presents the ability of the algorithm to converge into 

hierarchical structures that satisfy the pre-specified generation objectives. Initially, 

the cost functions based on the cluster characteristics are optimized and then the node 

mobility cost functions are plugged into SA for the generation of optimal clustering 

maps.  

4.4.2 Cluster characteristics based cost functions 

The importance of the results to be presented here is twofold. Initially, to 

investigate the efficiency of the cost functions of the cluster characteristics based cost 

functions class and secondly to evaluate the ability of the adjusted SA algorithm to 

optimize these cost functions as fast as possible. The former is extremely critical, 

because a carefully designed cost function has to be exact on accomplishing the 

hierarchy generation objectives and at the same time has to be optimized 

comparatively faster than other cost functions that represent the same objectives. The 

evaluation of the introduced cost functions becomes even more interesting in the case 

of multi-objective cost functions. The efficiency of this type of cost functions is 

evaluated with respect to their ability to meet all the involved hierarchy generation 

objectives. The experimental results presented here for the introduced multi-objective 

cost functions are analyzed for efficiency. These results are highly correlated to the 

effectiveness of the optimization method in the case where multiple objectives have 

to be met and complex cost functions have to be optimized. 

The evaluation of the cost functions was performed with respect to a large 

number of networks of different characteristics (size, degree of nodes) and number of 

generated clusters. Some representative graphs were selected to be demonstrated here, 
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that capture the ability of the cost functions to accomplish the pre-specified 

objectives. These results were obtained for a network of 100 nodes that were 

dispensed randomly in an area of 500m x 500m. The average node degree ndgr  and 

the variance of the node degree ( )nVar dgr are shown in the following table: 

 

Statistics Values 

ndgr  5.78 neighbors/node 

( )nVar dgr  4.27 

Table 4.4. Statistics of the network (fig. 4.7) 

 

 

The density of the nodes per 4 210  m  is represented by the following 3-D graph: 
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Figure 4.6. Density of nodes per 
4 210  m  

 
 

The topology and the connectivity of the nodes of this network are shown in figure 
4.7. 
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Figure 4.7. Network topology (100 nodes) of the demonstrated results 

For the specific experiments performed for the collection of the demonstrated 

results the number of clusters generated was 5. Initially the results related to the 

single objective cost functions are presented and evaluated. Then the results 

associated with the multiple criteria cost functions are also demonstrated and 

analyzed.  

4.4.2.1 Single Objective Cost Functions 

The graphs for the introduced cluster information based cost functions are 

presented here. The following table recapitulates these functions and the hierarchy 

generation objectives that represent – the parameters are explained in table 4.2. 
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Cost Function Objective 
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Minimization of Border Routers 
 

Table 4.5. Single Objective Cluster Information Based Cost Functions. 

 
From the large scale experiments performed, the clustering maps generated upon the 

optimization of these cost functions were complying on the objectives set. Some 

indicative results related to this category of cost functions are: 
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Figure 4.8. Balanced Size Clusters 
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Figure 4.8 demonstrates a group of results related to the generation of balanced 

size clusters and specifically to cost function (4.11). The upper left corner of the 

graph is the optimal clustering map outcome from SA, where the nodes that belong 

into the same cluster are marked with the same color. On the upper right corner each 

column corresponds to the cardinality of the generated clusters. This sub-graph 

presents the ability of the cost function to meet the pre-specified objectives. 

Obviously, (4.11) generates perfectly balanced size clusters upon its optimization 

(e.g., for 100 nodes network, 5 clusters of 20 nodes have been generated). The bottom 

sub-graph (energy vs. iterations) demonstrates the evolution of cost (energy) in each 

iteration of the optimization process. This result is an indication of the speed of the 

cost function in meeting the pre-specified objectives. Further analysis of the latter 

type of results is being performed later in the chapter. 
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Figure 4.9. Balanced Diameter Clusters 
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In the same fashion as in figure 4.8, the above figure 4.9, involves a group of 

subgraphs related to the ability of the cost function (4.14) to generate balanced 

diameter clusters upon its optimization from SA. As it can be observed from the 

upper right corner subgraph, (4.14) is capable of meeting the hierarchy generation 

objectives that represents. In the specific experiment of figure 4.9, 5 clusters of 

diameter 7 hops each has been generated.  Considering the large scale 

experimentation with this cost function and its optimization from SA, it appears to be 

very accurate on producing balanced diameter clusters and in small number of SA 

iterations (~400) as the bottom subgraph of the above figure demonstrates. 
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Figure 4.10.  Optimal Cluster Size Assignments Cost Function 
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Figure 4.10 demonstrates results related to the optimal cluster size assignment 

cost function (4.15). For the specific experiment, the requested sample cardinalities 

for the 5 clusters to be generated were: 

Optimal Cluster Size Assignments 25 15 30 20 10 

Table 4.6. Requested cardinality for each generated cluster 

 
The upper right subgraph represents the resulted cardinalities upon the optimization 

of (4.15). These cardinalities match perfectly the requested ones from Table 4.6, 

which is an indication of the ability of the specific cost function to accomplish the 

corresponding hierarchy generation objectives. Large scale experimentation with 

(4.15) has shown that it is systematic on converging to clustering maps that match the 

requested cardinalities. 

4.4.2.2 Multiple Objectives Cost Functions 

The resulting clustering maps related to single objective cluster information 

based cost functions, have demonstrated their ability to construct hierarchical 

structures that comply with the requested objective. By collecting similar groups of 

results related to the corresponding multiple objective cost functions, the ability of 

SA to optimize such functions is demonstrated. Also, the results presented in this 

subsection illustrate the effectiveness of these functions to meet the multiple pre-

specified objectives that they represent. Before the presentation of the results, an 

overview table of the multiple objective cluster information based cost functions that 

have been introduced, is provided. 
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Cost Function Objectives 
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Table 4.7: Multiple Objectives Cluster Information Based Cost Functions. 

 

The results that follow represent a small subset of the above cost functions but the 

conclusions drawn are representative for the performance of this category of cost 

functions, as it has been observed from the large number of experiments performed. 

The following results correspond to the cost functions for the generation of balanced 

size clusters along with the minimization of border routers (BRs) and for the 

generation of balanced size and diameter clusters along with the minimization of 

BRs, respectively. 
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Figure 4.11. Multiple objectives cost function: Balanced Size Clusters and 
Minimization of Border Routers 

 

A representative group of results for the two objectives cost function (4.17) is 
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subgraphs. The former provides the number of BRs per generated cluster and the 

latter demonstrates the cardinality of the generated clusters. About the cardinality 

subgraphs, the blue columns are the optimal values and the red represent the values 
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obtained from the optimization. There is a small deviation from the optimal value but 

still the sizes of the generated clusters are very close to each other, almost balanced. 

When the minimization of BRs was the only targeted objective, the average number 

of BRs was ~30, with 26 the minimum observed. The same objective as part of a 

multi-objective cost function defined a slightly larger number of BRs in the network. 

For the specific experiment this number is 32. Due to the complexity of the cost 

function compared to the corresponding single objective ones, the solution obtained is 

suboptimal with respect to each objective individually. Whereas, the generated 

clustering map almost satisfies both of the objectives. By comparing the optimal 

clustering map of figure 4.8, which corresponds to the balanced size clusters, with 

this one, the effect of the multi-objective optimization is obvious. The generated 

clusters in the multi-objective case appear to be more isolated (e.g., less inter-cluster 

links). The observations made from the optimization of multi-objective cost functions 

illustrate the ability of adjusted SA to provide high quality clustering solutions very 

fast, even in complex situations. This observation becomes more noticeable in the 

following case where the optimization involves three objectives. 
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As with the previous cost function, this one involves more than one hierarchy 

generation objectives. Specifically, three are involved: the generation of balanced size 

clusters, balanced diameter clusters and the minimization of border routers. The 

collection of subgraphs demonstrating the effectiveness of this cost function on 

meeting all three objectives simultaneously is provided in figure 4.12. Similarly, the 
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results obtained for each individual objective are suboptimal (e.g., slightly 

unbalanced cluster sizes and diameters and little higher number of border routers). 

This slight suboptimality is due to tuning of SA for its faster convergence, but as 

expected this has effect on the optimality of the generated solutions. The solution  

obtained   is   still   of   high  quality  especially   for   the   dynamic  networks   under  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12. Multiple objectives cost function: Balanced Size Clusters, Balanced 
Diameter Clusters and Minimization of Border Routers 
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consideration, since the topology changes unavoidably will degrade the quality of the 

solution with respect to time. It is preferable to get a high quality suboptimal solution 

fast rather than getting an optimal which might require large amount of processing 

time. In dynamic environments the latter approach might construct hierarchical maps 

that are no longer feasible with respect to the topological constraints, if the solution 

has not been obtained fast enough compared to the network dynamics. 

4.4.3 Node mobility characteristics based cost functions 

The performance of this class of cost functions is being evaluated with respect to 

their ability to identify accurately groups of nodes that have similar mobility 

characteristics. The significance in forming clusters out of such groups of nodes is on 

the robustness of the generated hierarchy. These clusters are expected to maintain 

their membership stable for long periods of time due to the similar moving patterns of 

their members. The performance of the network will improve due to the reduction of 

the hierarchy maintenance overhead and the benefits provided from the application of 

the hierarchical structure. 

The evaluation of the introduced node mobility cost functions involves their 

ability to identify different mobility groups of nodes, when these groups present 

different levels of distinctiveness (e.g., difference in speed and direction of 

movement) in their mobility characteristics. The experimental set up for the analysis 

of the proposed cost functions and the results collected are provided in the following 

sections. 
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4.4.3.1 Experimental Set Up 

The effectiveness of the combination of SA with the proposed cost functions is 

evaluated by setting up carefully the experimental environment. The main element of 

the experimental set up is that the networks consist of predefined mobility groups 

with distinct mobility characteristics and the clustering framework had to identify 

these mobility groups as accurately as possible. The clustering framework applied for 

the identification of the mobility groups consists of the SA algorithm and the class of 

node mobility cost functions.  

Since we are interested in group mobility we had to select the appropriate group 

mobility model. In our experiments we utilized the Reference Point Group Mobility 

(RPGM) Model. In RPGM we define a number of Reference Points (RPs) equal to 

the number of mobility groups we want to establish. To complete the definition of 

mobility groups, each node is assigned to a RP. The movement of the nodes is 

characterized from the mobility patterns of their corresponding RPs. These mobility 

patterns are assigned manually to the various RPs in the form of trajectories. When a 

RP moves to a new location each corresponding node is assigned to a random radius 

and direction around the new position of the RP. Because of the functionality of 

RPGM model and the randomness in the selection of the new node position, it is 

obvious that nodes that belong into the same group may have different speeds and 

directions, which makes the clustering of the various mobility groups more 

challenging but improves the significance of the experimental analysis of the 

proposed cost functions.  



 147

Two mobility groups were predefined by splitting the network of figure 4.11 into 

two topological clusters of same size (50 nodes each). The RP for each of the groups 

was selected as the center of gravity of their members coordinates. The trajectory of 

these points defines the new position of the corresponding group nodes. 

The RP trajectories were predefined so that the RPs where moving on a straight 

line with constant relative direction
1 2,RP RPθ  and constant relative speed 1, 2RP RPS , as it is 

indicated in figure 4.13.  

 

 

 

 

 

 

 

Figure 4.13. Experimental set up:  Based on the RPGM model, 2 mobility groups are 
defined with respect to RP1 and RP2 
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assigned to. The average percentage of incorrect assignments of 100 runs for each 

1 2,RP RPθ  is provided in figures 4.14 and 4.15 for the introduced node mobility based 
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function (4.21). The effect of 1, 2RP RPS  is investigated only for the latter cost function 

since it involves this metric, as opposed to the former (4.20) cost function which 

involves only the relative direction of the participating nodes. 

Figure 4.14 indicates that the cost function (4.20) can identify accurately the 

various mobility groups especially when the groups are moving in relative directions 

such that 
1 2, 30 ...330o o

RP RPθ ⎡ ⎤∈⎣ ⎦. When 
1 2, 30 ...330o o

RP RPθ ⎡ ⎤∉⎣ ⎦ then the proposed cost function   has 
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Figure 4.14. Incorrectly assigned nodes percentage (%) with respect to relative angle 

1 2,RP RPθ for cost function (4.20)  
MisAssigned Nodes (%) vs.               vs.  

(100 nodes,2clusters,1000 StopRepeats)

                                                            (6)

0

5

10

15

20

25

30

35

40

45

0 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

Relative Angle (deg)

M
is

A
ss

ig
ne

d 
N

od
es

 (%
)

RelSpeed=9 RelSpeed=4 RelSpeed=1  
Figure 4.15. Incorrectly assigned nodes percentage (%) with respect to relative angle 

1 2,RP RPθ for cost function (4.21) for various relative speeds 1, 2RP RPS . 
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difficulty on accurately identifying the pre-specified the mobility groups. This is not a 

limitation of the accuracy of the cost function since in this scenario the accurate 

selection of mobility groups is not restricted to the original mobility groups, because 

of the similarity in their directions. But still we can do better if we incorporate the 

speed of the participating nodes into the cost function. By doing so, figure 4.15 

indicates that cost function (4.21) presents much better accuracy than cost function 

(4.20) which depends solely on the nodes direction. For 1, 2 1 /RP RPS m s> the mobility 

groups are identified with accuracy 100%. The latter illustrates the effectiveness of 

the cost function (4.21) and the optimality of the decisions taken from SA algorithm. 

4.5 Importance of Cost Function Selection 

The same objective can be represented from various cost functions. Upon the 

optimization of the latter, the obtained clustering map may satisfy equally well the 

pre-specified objective. Such cost functions have been introduced earlier for the 

generation of balanced size clusters (4.11, 4.12), balanced diameter clusters (4.13, 

4.14) and the optimal cluster size assignments (4.15a, 4.15b). Even though multiple 

cost functions exist for the same objective, only one can be applied. Further 

evaluation of these cost functions has to be made to determine which of these are the 

most appropriate to represent the corresponding objectives. 

Since it has been shown that satisfy equally well the targeted objectives, the 

selection metric has to be something different but of equivalent importance. Such a 

metric is the speed of convergence of the SA algorithm. As it is shown in figure 4.16,  
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Figure 4.16. Energy behavior per iteration with respect to the cost function selection 
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the behavior of the cost functions that represent the same objectives result into 

different convergence speeds and energy behaviors when are optimized from the SA 

algorithm. The evaluation of the energy behavior and the convergence characteristics 

of SA with respect to equivalent cost functions, aims on the selection of the most 

efficient cost function.  

The general forms of the contender cost functions are: 

• Sum of squares: ( )2∑  

• Variance of squares: ( ) ( )( )2 2,...,Var  

Figure 4.17 renders two major observations about these contender cost functions. 

The first observation is related to the required SA iterations until convergence and the 

second to the degradation rate of the energy with respect to the number of iterations.   

 

 

 

 

 

 

 

Figure 4.17. Average number of iterations required for reaching a solution 10% worse 
than the optimal 
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sum of squares based cost functions. The significance of this behavior is that in cases 

of early termination of the optimization process, the suboptimal solution obtained 

utilizing ( ) ( )( )2 2,...,Var will be better than the one obtained using ( )2∑  for the 

same number of iterations.  Figure 4.17 presents the average number of iterations 

required for SA to reach a solution that is 10% worse than the optimal, for each one 

of the contender cost functions. With respect to this indicative graph, 

( ) ( )( )2 2,...,Var  outperforms ( )2∑ , since for much less iterations in average, a 

better solution is obtained. 

About the convergence speed of the contender cost functions, a more conclusive 

picture can be constructed from figure 4.18 where the average number of required 

iterations is provided. These results were collected from 100 SA applications on each 

of the cost functions. 

 

 

 

 

 

 

 

 

Figure 4.18. Average number of iterations required for convergence with respect to 
the cost function selection 
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( ) ( )( )2 2,...,Var illustrates more promising characteristics in terms of the required 

convergence iterations compared to ( )2∑ . For the majority cost functions 

convergences in fewer SA iterations. In two of the cases (balanced size clusters, 

balanced diameter clusters) examined here, ( ) ( )( )2 2,...,Var appears to converge 

much faster – in 50% to 70% less iterations. For the optimal size assignments to 

clusters, ( ) ( )( )2 2,...,Var appears to be slightly slower.  

By combining the conclusions for the energy behavior and the convergence 

iterations, ( ) ( )( )2 2,...,Var seems to have more promising performance, even 

though in special cases, ( )2∑ has been shown to be the winner. It is important to 

select the cost function that speeds up the SA algorithm, satisfies the pre-specified 

objectives and presents the best energy degradation rate. Comparative study of the 

introduced cost functions is required to determine their characteristics, so that they 

can be applied accordingly. 

4.6 Conclusions 

This chapter presents the metrics considered, a sample set of hierarchy generation 

objectives and the corresponding cost functions introduced as part of the proposed 

clustering framework. The metrics considered are values related to the characteristics 

of the clusters to be generated, and the mobility of the participating nodes. An 

important attribute is that the values of the metrics can be measured in real time from 

the network. These metrics are the building blocks of the cost functions that represent 

the hierarchy generation objectives, which could be indicated from the current 
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network conditions or be pre-specified from a network coordinator. A set of 

indicative cost functions has been introduced with respect to a set of objectives. These 

objectives are related to the characteristics of the clusters generated (e.g., size, 

diameter, number of BRs) or the mobility of the participating nodes (e.g. similar 

directions, similar velocity). 

The evaluation of the cost functions introduced was performed with respect to 

their ability to satisfy the objectives they represent and their effect on the 

convergence time of SA algorithm. For the former as it has been indicated from the 

extensive experimental results, the cost functions introduced are very accurate on 

satisfying the targeted objectives, even for the cases where multiple (combination of) 

objectives are involved. This is also due to the ability of SA to perform successfully 

the optimization of very complicated cost functions. In the case of multiple objectives 

optimization, extra care must be taken for the assignment of weights to the various 

involved objectives in the cost function. 

Last but not least, a very important observation is the significance of selecting the 

appropriate cost function among those that represent the same objectives. This is due 

to the effect the different functions may have on the convergence speed of SA, even 

though similar objectives are accomplished. Since speed of convergence is crucial for 

the effectiveness of the proposed clustering framework, special care must be taken to 

select the appropriate cost function. A representative case appeared among the set of 

the introduced cost functions. The evaluation between the functions consisting of the 

variance of squares and those involving the sum of squares, indicated that the 
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variance of squares is the preferable option for accomplishing the pre-specified 

objectives while also the speed of convergence improves. 
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Chapter 5: Customizing Simulated Annealing (SA) for Dynamic 
Environments 

 

 

5.1 Introduction 

The design objective is to speed up the convergence of the algorithm. During this 

process, it is expected that the solution provided from the algorithm will not be the 

globally optimal. The more we speed up the algorithm, by forcing it to converge 

faster, the smaller is the surface of the solutions it explores and the lower the quality 

of the obtained solutions. Since the main objective of this work is the generation of 

hierarchical structures capable of improving the performance of the network, the 

algorithmic framework will be incapable of achieving this objective if the quality of 

the obtained solutions is sacrificed for the speed of convergence. Ideally, someone 

would prefer to obtain from SA the globally optimal solution as fast as possible. In 

general, due to the functionality of the algorithm, this cannot be guaranteed, so we 

have to trade off the optimality with speed of convergence. On the other hand, the 

adjustments of the various parameters and the modifications of the SA modules have 

to be performed such that the optimality of the solutions provided is not totally 

sacrificed for improving the speed of the algorithm. Still, high quality solutions are 

required so that the hierarchy generated satisfies the pre-specified set of clustering 

objectives.  

The speed of convergence is more important for the network environment we 

consider, since the topology will be changing in accordance to the network dynamics 
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(i.e. mobility and failures of the participating nodes, interference on the links). In 

such scenarios even if the globally optimal solution is obtained, after some time it 

may not anymore be sufficient for the network performance improvement. For that 

reason rapid convergence is more preferable rather than optimality. The various 

parameters and modules have been tuned in accordance to these design objectives. 

For adjusting and modifying the algorithm, the basic SA functionality was 

implemented with respect to figure 3.4 provided in chapter 3. The block diagram of 

the algorithm implemented is shown in figure 5.1.  The details on the tuning of the 

parameters and modules of SA are given in the following subsections. 
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Figure 5.1. Flow Diagram for the Implemented Simulated Annealing algorithm 

for network partitioning 
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5.2 Simulated Annealing: Tunable Parameters 

In the simple nature of annealing, there lies the challenge in constructing efficient 

and effective implementations of the algorithm. There are many algorithmic 

parameters that have to be adjusted appropriately for obtaining the desired 

performance from the optimization algorithm. The ability to adjust the algorithmic 

parameters provides flexibility to the users so that they can configure the 

characteristics of the SA algorithm, in accordance to their performance preferences. 

On the other hand, this flexibility may be disadvantageous, since it requires a lot of 

effort to configure the algorithm appropriately for the solution of various classes of 

optimization problems. In this section we briefly present the tunable parameters and 

modules of SA algorithm, which have been configured appropriately in order the 

desired performance of the algorithm to be achieved.  

The performance of the SA algorithm can lie between two extremes, which are 

controlled from the appropriate tuning of its parameters. These extremes are 

a) Global optimality with the risk of large convergence times.  

b) Speed of convergence with the risk of obtaining suboptimal solutions 

The parameters of the algorithm that control the performance characteristics of the 

algorithm and require configuration are: 

 Cooling Schedule: How the temperature (control parameter) decreases from an 

initial value towards a pre-specified final value or until the stop criterion is 

satisfied. 

 Cooling Factor: In combination with the cooling schedule, determines the speed 

at which the temperature (control parameter) decreases. 
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 Initial Temperature: The initial value of the control parameter. This value has to 

be sufficiently high so that almost all transitions are accepted.   

 Termination Condition: Determines the criterion for the algorithm to converge 

(stop criterion) 

 State Transition Probabilities: How the new solutions are generated from the 

existing ones (generation mechanism) 

 Initial Solution: The initial clustering map that is fed to the SA algorithm for its 

bootstrapping. 

 Length Plateau: The number of iterations at every value of the temperature 

(control parameter). The value of this parameter has to be sufficiently large so that 

the stationary distribution holds (equilibrium) for every value of the control 

parameter (temperature). 

 Energy (Cost) Updates: How the cost of the newly generated clustering maps is 

obtained in each iteration of the SA algorithm. 

 

Due to the dynamics of the network environment under consideration, the 

objective is to tune the SA algorithm, so that optimality is trade off with speed of 

convergence. Furthermore, the provided solutions must still be of high quality (low 

cost) with respect to the hierarchy generation objectives. The following subsections, 

describe the tuning of the above parameters, so that the design objectives for the 

introduced hierarchy generation algorithmic framework are satisfied. 
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5.3 Customizing Simulated Annealing (SA) for Dynamic Environments  

In this section the configuration of the SA algorithm is presented. The 

configuration is done through the adjustment of the various parameters of the 

algorithm so that a balanced trade off is maintained between the convergence time 

and the quality of the solutions obtained. 

5.3.1 Termination Condition (Stop Criterion) 

One of the most important parameters for speeding up the convergence time 

characteristics of the algorithm is the convergence criterion to be applied. The 

appropriate selection of this criterion will determine the ability of SA algorithm to 

terminate quickly but also to converge in clustering solution, which satisfies the 

hierarchy generation objectives. It is crucial to configure appropriately the 

termination condition so that the trade off between the convergence time and the 

optimality of the obtained solution is balanced. Our objective is to adjust the SA 

algorithm so that it can converge in real time on a high quality hierarchical structure – 

lowest (highest) cost solution possible in the case of minimization (maximization) 

optimization problem. 

In theory the algorithm terminates when the temperature (control parameter) 

becomes zero. The algorithm at that point converges to the global optimal solution 

(reaches the global equilibrium in terms of the physical annealing process) nd for that 

reason is considered asymptotically as an optimization algorithm. In practice this will 

take an infinite number of iterations, so does not suite the practical implementation of 

the algorithm. Due to the latter, in practical implementations the algorithm is 

considered as an approximation algorithm. The method utilized as the termination 
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condition of the algorithm is related to the improvement of the cost achieved by the 

subsequent iterations. Specifically the general practical termination condition can be 

defined as follows: 

 

Definition 5.1 (Termination Condition): If the cost of the optimal solution obtained 

at the thk  iteration is *
kC , which is more than %ε better compared to the optimal 

solution *
1kC −  of the ( )1 thk − iteration, then the algorithm terminates if in the 

( )thk n+ iteration the optimal solution *
k nC +   as not improve the cost more than %ε . 

 
From the above definition, the termination condition is precisely formalized 

when specific values for the parameters ε  and n are provided. These values depend 

on the required optimality of the solution and on the convergence time of the 

algorithm, as the study performed shows. In this study several of the cost functions 

introduced in the previous chapter were involved. The objective was to understand 

the trade off between optimality of the obtained solution and the resulting 

convergence time with respect to ε  and n parameters. Since the objective was to 

speed up considerably the convergence time of SA but in such degree where the 

solutions obtained satisfy the pre-specified hierarchical generation objectives,ε  was 

selected to be equal to 0. This design decision along with the selection of a small 

number of subsequent iterations n results in forcing the algorithm to converge faster 

without considerable degradation on the optimal solution obtained. This observation 

is highlighted also from the collection of results presented in the following graphs, 

where the optimality of the solutions obtained with respect to the selection of 
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parameter n  is provided. The version of the algorithm utilized for the collection of 

the results of this study is described from the block diagram of figure 5.1. The 

following graphs are for networks of 100 nodes where 5 domains were generated. 

  

 

 

 

 

 

  

 

 

Figure 5.2. Convergence Time vs. stop-repeats ( n ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

Figure 5.3.  Deviation from optimal value with respect to the number of stop-repeats 
( n ) 
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Figure 5.2 presents the convergence time of the algorithm for different values of 

n . The larger this number becomes the longer it takes to the algorithm to converge. 

This is expected since for large n the algorithm has to perform many more iterations 

to meet the termination condition. On the other hand the smaller the n , the higher the 

probability to obtain solutions that do not meet the hierarchy generation objectives 

(low quality clustering solutions). Figure 5.3 provides a representative snapshot of the 

solution’s suboptimality for different values of n . The larger the value of the cost, the 

lower the quality of the clustering solutions obtained, with respect to the 

minimization problems introduced in the previous chapter. Obviously, the larger the 

n , the more optimal the solution.  

The selection of n depends both on the quality of the clustering solution expected 

and on the dynamics of the network environment. The latter is the regulator factor 

since it may limit the quality of the achievable clustering solutions. For example if the 

topology of the network is fast changing then it may not be possible for the algorithm 

to obtain clustering solutions that satisfy the hierarchy generation objectives. On the 

other hand if the network remains unchanged for long periods of time then the SA 

algorithm can be applied with very large n so solutions close to the globally optimal 

ones can be obtained.   

5.3.2 Cooling Schedule and Cooling Factor 

Apart from the termination condition, an equally important parameter for the 

efficient functionality of the SA algorithm is the cooling schedule. As we have 

mentioned in chapter 3, the cooling schedule defines the rate at which the control 
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parameter (temperature) is lowered. The importance of this rate lies on how 

effectively the solution space will be explored for the best solution. The effectiveness 

of traversing the solution space is linked on the Metropolis criterion (5.1) and 

specifically on the part of the criterion for the acceptance of deteriorations in cost 

instead of improvements only.  

( )
1

*
1

1                   if 0

exp     if 0tc t

J
P C C J J

c
+ +

Δ >⎧
⎪← = Δ⎨ ⎛ ⎞ Δ ≤⎜ ⎟⎪ ⎝ ⎠⎩

                               (5.1) 

The Metropolis criterion determines if the clustering solution 1tC +  obtained in the 

( )1 tht +  will be able to substitute the currently optimal solution *C  given that the cost 

difference JΔ , with respect to cost function J , between the two solutions is 

( )*
1( )tJ J C J C +Δ = − and the value of the control parameter is c . 

The larger the value of the control parameter the higher the probability 

The relation of the control parameter c with the efficient traversing of the 

solution space is explained from the Metropolis criterion (5.1). The larger the value of 

the control parameter c , the higher is the probability that the algorithm will accept 

deteriorations in cost. Evidently, the longer the algorithm iterates for large values of 

the control parameter the better the surface of solutions is traversed since temporarily 

worse solutions may lead to better final solutions (e.g. avoidance of low quality 

locally optimal solutions). 

On the other hand the longer the large values of c are maintained the less possible 

is the algorithm to converge quickly, since new clustering solutions will be accepted 

all the time, so the termination condition will be difficult to be satisfied. Even if the 



 165

algorithm converges, the quality of the solution obtained will be questionable. The 

design objective indicates the utilization of a cooling schedule such that the rate of 

control parameter’s decrease is neither very slow (better traversing of the solutions’ 

surface but very slow for real time application of the algorithm) nor very fast (running 

into the risk of converging to very low quality clustering solution).  

The asymptotic convergence of the SA algorithm was proven with respect to the 

logarithmic cooling schedule.  

 

Definition 5.2 (Logarithmic Cooling Schedule): When the decrease rate of the 

control parameter (temperature) c  follows the logarithmic cooling schedule, then the 

value of c is determined from the following function: 

0

1 lnt
cc

t
=

+
                                                              (5.2) 

where tc  and 0c are the current and initial values of the control parameter, 

respectively and t specifies the number of iterations. 

 

Even though the effectiveness of the logarithmic cooling schedule is proven, it is very 

slow in practice, so it is prohibitive with respect to the design objectives of this work. 

In order the SA algorithm to converge in real time another cooling schedule is 

required, so that the algorithm is faster but also the solutions obtained are of high 

quality. A cooling schedule that meets these requirements is the geometric cooling 

schedule which was adopted for the specific realization of the algorithm. The 

geometric cooling schedule is defined as follows. 
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Definition 5.3 (Geometric Cooling Schedule): When the decrease rate of the control 

parameter (temperature) c follows the geometric cooling schedule, then the value of 

c is determined from the following function: 

0
t

tc a c= ⋅  

where tc  and 0c are the current and initial values of the control parameter, 

respectively, t specifies the number of iterations and ( )0 1α α< <   is the cooling 

factor, which determines the decrease rate. 

 

Oppositely to the logarithmic cooling schedule, the effectiveness of the geometric 

cooling schedule has not been proved theoretically. Many experimental studies have 

indicated that the utilization of the latter cooling schedule in SA algorithms is very 

effective on obtaining solutions that are either optimal or very close to the optimal. 

This observation has been made for values of the cooling factor α , which are 

between 0.95 and 0.99. For these values of α  both the decrease rate is slow enough 

for the more efficient traversing of the solutions’ surface and the convergence times 

achieved are faster compared to the logarithmic cooling schedule. The characteristics 

of the geometric cooling schedule satisfy the design objectives of this work, where 

speed of convergence is preferred rather than global optimality, even though high 

quality of clustering solutions are required.  

Studying the logarithmic and geometric cooling schedules on the optimization of 

several of the introduced cost functions, we obtained two graphs representative of the 

effect of each of the cooling schedules on the optimization process. These graphs are 

provided below in figures 5.4 and 5.5. 
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Figure 5.4. Typical relative rate of cost evolution with respect to iterations performed, 
by applying SA with the logarithmic and geometric cooling schedules, respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. Typic relative rate of cost evolution with respect to iterations performed 
and optimality of solution obtained, by applying SA with the logarithmic and 

geometric cooling schedules, respectively. 
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Both figures 5.4 and 5.5 provide the typical behavior of cost evolution by applying 

the SA algorithm with each of the two cooling schedules on the same optimization 

problem. As it was expected, when SA utilizes the geometric cooling schedule the 

cost value improves much faster compared to the logarithmic cooling schedule. The 

faster rate of geometric cooling schedule does not favor the global optimality of the 

obtained solution compared to the logarithmic cooling schedule. This fact is 

highlighted from figure 5.5, where even though the progress of the optimization is 

faster with respect to the geometric cooling schedule, the algorithm converges to an 

inferior solution compared to the solution obtained from the version of SA algorithm 

that utilizes the logarithmic cooling schedule.  Whereas, the suboptimality due to the 

utilization of the geometric cooling schedule does not degrade the ability of the SA 

algorithm to obtain solutions that satisfy the hierarchy generation objectives. 

Especially for the dynamic network environments under consideration the speed of 

convergence is more important rather than obtaining the globally optimal solution, 

since the quality of such a solution will not last very long due to the network 

dynamics.  

From the experimental analysis the main conclusion is that the geometric cooling 

schedule satisfies the design objectives. The geometric cooling schedule based SA 

algorithm obtains clustering solutions fast (in combination with the termination 

condition), which are also satisfy the hierarchy generation objectives (sufficient 

optimization of the cost functions).   
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5.3.3 State Transition Probabilities 

On every iteration the SA algorithm obtains and compares new solutions to the 

currently optimal one, with respect to their cost as it is evaluated from the objective 

function being optimized. Vital part of the SA algorithm is the generation of new 

solutions, which is defined from the transition mechanism. The effectiveness of the 

transition mechanism is important for the convergence properties of the algorithm, 

since it will be responsible for the speed and effectiveness of the solutions space 

traversing. The transition mechanism defines also the neighborhood structure of a 

solution. 

 

Definition 5.4 (Neighborhood Structure): If iC is a clustering solution and 

M defines the transition mechanism, then the neighborhood structure iV  of the 

solution iC is defined as 

{ }|i j i jV C C C= ⎯⎯→M . 

iV  includes all the solutions jC  that are generated directly from the solution iC by 

applying the transition mechanism M . 

 

The transition mechanism involved in the design of the SA algorithm utilized in this 

work is based on selecting and migrating a node from one cluster to another, if this 

migration results in a feasible clustering solution (the clustering map consists of 

topological clusters, see 3.4). There are two parameters to be defined for the complete 

description of the corresponding transition mechanism applied. These parameters are: 
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• The selection method of the cluster iC and the node ,i kn to be migrated. 

• The selection method of the cluster jC , where the node ,i kn will be migrated 

to. 

Since the SA algorithm is considered a general approximation algorithm, for both of 

the above selections, the original implementation guidelines suggest methods that 

preserve the generality of the approach. In the dynamic network environments the 

main concern is the minimization of the time for obtaining a solution. For that reason, 

it is preferable to adjust the parameters of the algorithm appropriately, even though its 

generality properties might have to be relaxed. For the transition mechanism, the 

selection methods involved have been adjusted appropriately so that the algorithm 

converges faster without affecting the optimality of the solutions obtained. This 

adjustment trades off part of the generality of the algorithm for improving its speed of 

convergence. 

In the original, generalized implementation of SA the selections for the iC , ,i kn , 

jC  entities were based on the uniform distribution. Specifically, a node ,i kn  was 

selected randomly among the participating nodes. So, if the number of participating 

nodes is N  the probability for selecting any of the nodes to migrate is: 

( ) 1
lP n

N
=                                                          (5.3) 

Based on these probabilities and by selecting a random number [ )~ 0,1r U , the node 

,i k ln n≡  is determined as follows: 

( ) [ )1 1: 1 , ,1 , ~ 0,1ln l l r l l l N r U
N N

⎧ ⎫= − ≤ < ∈ ≤ ≤⎨ ⎬
⎩ ⎭

]                       (5.4) 
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Along with the selection of the node ,i k ln n≡ , the source cluster iC is also designated, 

since each node belongs to a cluster. The selection of the destination cluster jC  

follows also the uniform distribution and is similar to the selection of the node to 

migrate ln . If the number of generated clusters is K  - included the source cluster iC - 

the probability for each cluster to be selected as the destination cluster jC  is: 

( ) 1
1jP C

K
=

−
                                                 (5.5) 

The source cluster iC is excluded from this selection process (e.g. there is no progress 

being made on the optimization process if the node is not assigned to a different 

cluster from its original one). With respect to the above probability and by selecting a 

random number [ )~ 0,1r U  as before, the destination cluster jC  is decided as 

follows: 

[ )1 1: ( 1) , ,1 1, ~ 0,1
1 1jC j j r j j j K r U

K K
⎧ ⎫= − ≤ < ∈ ≤ ≤ −⎨ ⎬− −⎩ ⎭

]      (5.6) 

The above selection mechanisms that correspond to the original SA algorithm are 

independent of the cost function (hierarchy generation objectives) being optimized, in 

order to preserve the general nature of the algorithm. In this work, the design 

objectives suggest that the generality of the SA algorithm could be traded off for the 

improvement of the speed of convergence. Following the spirit of the latter 

suggestion, instead of utilizing the uniform probabilities for selecting  iC , ,i kn , jC , 

customized probabilities can be applied. These probabilities could improve the 

convergence characteristics of the SA algorithm if they can be tailored on the cost 

function (hierarchy generation objectives) being optimized. The transition 
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probabilities have to be customized appropriately so that the new solutions generated 

are biased towards the optimal one, with respect to the cost function optimized. By 

biasing the new solutions obtained and also in correlation with the termination 

condition the algorithm is expected to converge faster (compared to the uniform 

probabilities) in a clustering solution that accomplishes the hierarchy generation 

objectives (high quality clustering solution).  

For the evaluation of the approach, one of the introduced cost functions from 

chapter 4 was assumed. This cost function is: 

( )( )2 2
1( ) min ,...., KC

J C Var C C=                                         (5.6) 

where,  

Parameter Definition 
K  Number of generated clusters 

iC  Cluster i 

iC  Size of cluster i 

 

The hierarchy generation objective represented from cost function (5.6) is the 

construction of balanced size clusters. The transition probabilities have to be adjusted 

to this objective by becoming aware of the cost function being optimized. For the 

specific cost function and hierarchy generation objectives the adjustment can be 

accomplished by adopting the following intuitive rules: 

a) For the selection of source cluster iC , assign higher probabilities to clusters of 

larger size than the optimal.  

b) For the selection of destination cluster jC , assign higher probabilities to 

clusters of size smaller than the optimal. 
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The motivation for a) as for b) is the assignment of higher probability to the migration 

of nodes from larger size clusters to smaller size clusters, so that the generation of 

balanced size clusters can be achieved faster. For the corresponding hierarchy 

generation objectives the probabilities assigned to the generated clusters for the 

selection of the source cluster iC  from where a node will be migrated depend on their 

sizes and are given from the following expression: 

( )
N

i
i

C
P C =                                                            (5.7) 

Similarly the probabilities assigned to the generated clusters for the selection of the 

destination cluster jC are described as follows: 

( )
K

z
z=1
z i

N-
,   

(K - 1) N- C

0               ,    

j

j

C
i j

P C

i j
≠

⎧
≠⎪

⎪ ⋅= ⎨
⎪
⎪ =⎩

∑                                              (5.8) 

where, 

Parameter Definition 
N  Number of nodes 
K  Number of generated clusters 

iC  Source cluster i 

iC  Size of source cluster i 

jC  Destination cluster j 

jC  Size of destination cluster j 

 

In each of the selections, a random number [ )~ 0,1r U  is generated as in the original 

implementation. This random number along with the assigned probabilities (5.7) and 

(5.8) determines the source iC and destination jC  clusters for the migration of a node 
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and the generation of a new clustering map. Specifically, if the random number 

generated for the selection of the source cluster iC is [ )~ 0,1ir U then iC is determined 

as follows: 

( ) ( ) [ )
1

1 1

: , ,1 , ~ 0,1
i i

i z z
z z

C i P C r P C i i K r U
−

= =

⎧ ⎫= ≤ < ∈ ≤ ≤⎨ ⎬
⎩ ⎭
∑ ∑ ]                    (5.9) 

The ( )zP C probabilities are given from equation (5.7). 

Similarly if the random number obtained for the selection of the destination cluster 

jC  is [ )~ 0,1jr U  then jC  is specified as described below. 

( ) ( ) [ )
1

1 1

: , ,1 , ~ 0,1
j j

j z z
z z

C j P C r P C j j K r U
−

= =

⎧ ⎫
= ≤ < ∈ ≤ ≤⎨ ⎬
⎩ ⎭
∑ ∑ ]                (5.10) 

The ( )zP C  probabilities for the selection of destination cluster are provided from 

equation (5.8) above. 

For the generation of balanced size clusters, the customized transition probabilities 

determine the selection mechanism for the source and destination clusters but not for 

the node ,i kn  to be migrated. Since the source cluster iC  has been specified, the 

selection of node ,i kn  relies on the uniform distribution. Particularly, if the source 

cluster iC  has size iC  then each node ,i k in C∈ , ,1 ik k C∈ ≤ ≤]  has the same 

probability to be selected for migration. 

( ),
1

i k
i

P n
C

=                                                              (5.9) 

 The selection process of the node is completed by generating a random number 

[ )~ 0,1r U  and applying the probabilities (5.9) to determine the node to be migrated. 
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( ) [ ),
1 1: 1 , ,1 , ~ 0,1i k i

i i

n k k r k k k C r U
C C

⎧ ⎫⎪ ⎪= − ≤ < ∈ ≤ ≤⎨ ⎬
⎪ ⎪⎩ ⎭

]               (5.10) 

 

The indicative speed up of SA algorithm by applying transition probabilities tailored 

to the cost function being optimized is represented from the following figures.  

 

 
 
 
 
 
 
 
 
 

 

 

 

Figure 5.6. Resulting SA convergence times by applying the original (uniform) and 
customized (non-uniform) transition probabilities for several network sizes. 

 

 

 

 

 

 

 

 

Figure 5.7. Iterations to convergence required by applying the original (uniform) and 
customized (non-uniform) transition probabilities for several network sizes. 
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Figure 5.6 presents the convergence times for several networks of various network 

sizes (100 – 1000 nodes) when the SA algorithm is applied with uniform and 

customized (non-uniform) transition probabilities. Similarly, figure 5.7 presents the 

required iterations until convergence for the SA algorithm when uniform and 

customized probabilities are being applied for the optimization of cost function (5.6) 

on networks of various sizes (100-1000 nodes). In both figures the results indicate the 

effectiveness of the approach, since the algorithm appears to converge faster when 

customized transition probabilities are being used for the generation of new clustering 

solutions. The range of the improvement is correlated with the convergence times of 

the original SA algorithm, which is based on the uniform transition probabilities. The 

larger the original convergence times, the larger is the improvement achieved. This 

observation favors more the utilization of the approach, since the design objectives 

specifically suggest the improvement of the convergence times of the algorithm when 

these times are prohibitive for its real time application. Furthermore, the optimization 

achieved from the enhanced (with the customized transition probabilities) SA 

algorithm, is of similar or higher quality compared to the original SA algorithm. As 

we have mentioned, the only drawback of the approach is that the generality of the 

original SA algorithm deteriorates, since the transition probabilities have to become 

aware of the cost function being optimized, so that they can be customized 

appropriately. The improvement on converge times achieved compensates for the 

latter compromise.  
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5.3.4 Generation Mechanism: Feasibility Test  

The mechanism for the generation of new solutions does not only consist of the 

transition mechanism (transition probabilities and neighborhood structure). An 

equally important part of the generation mechanism is the feasibility test of the newly 

generated solutions. The feasibility of these solutions is defined with respect to the 

constraints imposed to the generated hierarchical structure. In this work the only 

constraint imposed to the generated clusters is to be topological (every pair of nodes 

belonging into the same cluster can communicate utilizing only intra-domain links). 

The optimization algorithm has to obtain solutions that satisfy this constraint.  

Towards the convergence to the final solution, there are many clustering maps 

generated. Even though the final solution has to comply with the “topological 

clusters” constraint, the intermediate solutions obtained have to satisfy or not this 

constraint depending on the optimization approach. There are two classes of 

approaches: 

• Penalty cost functions approach 

• Non-penalty cost function approach 

In the penalty cost functions approach, the constraint is incorporated into the cost 

function. A general representation of penalty cost function is provided from equation 

5.11 below. 

( ) ( ) ( )( )minp C
J C J C P Cλ= +                                      (5.11) 

where, 
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Parameter Definition 
( )J C  Original cost function 

( )P C  Penalty cost  

λ  Constant parameter ( )1λ >  
 

 The cost of the generated clustering maps that do not satisfy the constraint 

(infeasible) is being penalized due to their infeasibility. Upon the optimization of the 

penalty cost function from SA algorithm, it is expected that the optimal solution 

obtained satisfies the constraint. The large cost (due to the penalty cost ( )P C  and the 

amplification parameter λ ) of the infeasible solutions makes them the less favorable 

among the clustering solutions of the solution space.  

In the non-penalty cost functions approach the penalty cost part ( ( )P Cλ ) has 

been eliminated. The constraints– if there are any – are being imposed to the 

candidate solutions at each algorithmic iteration during the generation phase. The 

algorithm allows only the generation of feasible solutions, so a mechanism that 

investigates the feasibility of the newly obtained solutions is required. This 

mechanism functions with respect to the constraints imposed. The effectiveness of the 

mechanism can be evaluated from its ability to perform the feasibility test as fast and 

as accurate as possibly on the newly obtained solutions.  

Both approaches present advantages and disadvantages. In the penalty cost 

functions approach, the new solutions generation mechanism is very simple and fast 

since it does not require any feasibility testing – the constraints have been 

incorporated into the cost function. On the other hand the solution space is much 

larger and due to the faster and lightweight version of SA algorithm, there is the risk 
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of converging to non-feasible solutions. In the non-penalty cost functions approach, 

the risk of converging to an infeasible solution does not hold. All the candidate 

solutions provided from the generation mechanism are feasible. Compared with the 

penalty cost functions approach, the generation mechanism is more complicated and 

time consuming because along with the generation of new candidate solutions, the 

feasibility of these solutions has to be examined before evaluating their cost. In each 

iteration a new candidate solution is generated with respect to the transition 

probabilities and then tested for feasibility. If this solution is not feasible, it is 

discarded and new solutions are generated until a feasible one can be obtained, so that 

the SA algorithm can continue its iterations. Even though the non-penalty cost 

functions approach eliminates the risk of converging to an infeasible solution and the 

solution space appears to be much smaller than the penalty cost functions approach, 

the former approach appears to be more time consuming and more complicated to 

implement. 

In this work, the non-penalty cost functions approach has been selected over the 

penalty cost functions one. This design choice emerged after evaluating the 

implementation of SA based on the latter approach. For the construction of 

topological clusters, a penalty ( )P C cost was introduced for the infeasible candidate 

solutions. The penalty cost is directly related to the degree of infeasibility of the 

candidate solutions and it is measured with respect to the number of topological 

partitions for each cluster.  
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Definition 5.5 (Topological Partition): If iC is the thi cluster, then iC
kT , which 

denotes the thk topological partition (subset) of iC , is defined from the maximal set of 

nodes iC
k in C∈ , which are topologically connected -  are connected only through intra-

cluster links. If the cluster iC  consists of L  topological partitions, it holds that: 

• For a node i iC C
k kn T∈  then i iC C

k zn T∉  for z k≠ . 

• 
1

i

L
C

i l
l

C T
=

= ∪ . 

 

Definition 5.6 (Topological Clusters Penalty Cost): If iC denotes the thi cluster, 

iC
kT is the thk topological partition (subset) of iC and iℑ is defined as the set of all 

subsets iC
kT : 

:i iC C
i k i k

k

T C T⎧ ⎫
ℑ = =⎨ ⎬

⎩ ⎭
∪                                            (5.12) 

then the penalty cost ( )P C is defined as: 

( ) ( )
1

1
K

i
i

P C
=

= ℑ −∑                                               (5.13) 

The term ( )1iℑ −  suggests the existence of only one topological partition per cluster. 

Any number of partitions more than one is considered undesirable and contributes to 

the penalty cost. 

 

As it appears from the above definition, the larger the number of topological 

partitions, the larger the penalty cost. Due to the type of constraint, the simplicity of 
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generating new candidate solutions in the penalty cost function approach is 

compromised from the complexity of determining the topological clusters for the 

penalty cost evaluation. Furthermore, due to the termination condition applied, the 

algorithm was converging most of the times to a non-feasible solution, which is 

undesirable.  

The infeasibility of the solutions in the penalty cost functions approach was 

crucial for adopting the non-penalty cost functions approach. Despite the more 

complicated generation of new candidate solutions mechanism, the algorithm 

guarantees the convergence to feasible solutions. Furthermore, the complexity of the 

generation mechanism in the non-penalty cost functions approach has been shifted to 

the evaluation of the cost in the penalty cost functions approach.  So, the latter 

approach does have any advantages over the former one.  

By adopting the non-penalty cost functions approach, the generation mechanism 

had to be implemented efficiently in order to have the minimal effect possible on the 

convergence time of the algorithm. As it appeared to be from the evaluation of the 

resulted convergence times, the feasibility test of the generation mechanism is the 

dominant part of the SA algorithm for the specific type of constraint imposed. Due to 

the dominating effect of the feasibility test, the convergence time of the algorithm 

was varying significantly among several implementation of the mechanism. The 

following graphs, which present the convergence times of the SA algorithm with 

respect to network size and number of clusters generated, are indicative of the latter 

observation. 
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Figure 5.8. Convergence time of SA algorithm with respect to network size and 
number of clusters generated when inefficient feasibility test mechanism is applied. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9. Convergence time of SA algorithm with respect to network size and 
number of clusters generated when efficient feasibility test mechanism is applied. 
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Figure 5.10. Pseudo code implementing the efficient feasibility test mechanism 

 

Figure 5.8 represents the convergence times The only difference between the two 

versions of SA algorithm is the implementation of the feasibility test mechanism. As 

for every cluster iC  
     begin 
 Initialize the sets  
            V , which contains the nodes  
            iC

k in C∈ not assigned to any topological partition iC
zT  of cluster iC     

             and            
            { }V ′ = ∅ , which contains the nodes iC

k in C∈  assigned to any of the  

             topological partitions iC
zT  of cluster iC     

             Initialization 
             { }: ,1i iC C

k k i iV n n C k C= ∈ ≤ ≤     
             V ′ = ∅  
              Main loop 
              Insert a node iC

jn V∈ to V ′  

              { }: ,1 ,i iC C
k k i iV n n C k C k j= ∈ ≤ ≤ ≠     

              { }iC
jV n′ =  

              
               for every node iC

zn V ′∈  
                  begin 
                     Insert in V ′  any of the one hop neighbors iC

ln of iC
zn , for 

which    
                     holds that: iC

ln V∈ ( iC
ln V ′∉ ) 

      end 
 
if V = ∅ and iV C′ =  
      iC  is feasible 

                        else      
                              iC  is infeasible  

          end  
 
if every cluster iC  is feasible 
         the candidate clustering  solution generated is feasible 
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figure 5.8 shows, the implementation that corresponds to penalty cost functions 

approach is the least efficient one and is based on processing of lists for determining 

the topological partitions for each cluster. The implementation that corresponds to 

figure 5.9 is the most efficient one and corresponds to lookup processing. Even 

though the lookup processing is based on arrays, which requires more memory 

compared to lists, it is much more effective on improving the convergence time 

performance of SA algorithm. Specifically, the convergence times between the two 

implementations differ significantly. The implementation that corresponds to figure 

5.8 and is based on lists processing requires almost 30 minutes to complete for 

networks of 1000 nodes, as opposed to the less than 20 seconds convergence time 

required from the implementation that corresponds to figure 5.9 and is based on 

lookup methods. The pseudo code that implements the efficient feasibility test that 

corresponds to figure 5.9 is provided in figure 5.10. 

5.3.5 Initial Solution 

The main design objective for the hierarchy generation framework is the real 

time convergence to clustering solutions that satisfy the pre-specified hierarchy 

generation objectives. In this section one more adjustment on the functionality of SA 

algorithm is proposed. This adjustment is related to the initial clustering solution 

utilized for bootstrapping the algorithm. In the original implementation of SA 

algorithm, the only requirement is the optimality of the solution obtained (real time 

convergence is not considered), the algorithm is bootstrapped with a randomly 

obtained initial solution. For the clustering problem at hand, the only requirement 

imposed to the randomly obtained initial solution is its feasibility with respect to the 
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constraint of topological clusters. The adjustment proposed is to bootstrap the 

algorithm with an initial solution which has better cost than a randomly obtained one 

with respect to the cost function being optimized. Even though, if we apply such an 

initial clustering solution the improvement on the convergence time of SA algorithm 

seems intuitive, it is not. Due to its randomization nature, the SA algorithm searches 

randomly the surface of solutions and at some extent accepts deteriorations in cost 

instead of only improvements. Hence, even if the SA is bootstrapped with a better 

initial solution, it might converge slower.  For this reason, prior to adopting the 

“better than random initial solution” adjustment, the effectiveness of the approach has 

to be investigated. There are two issues to be addressed:  

1. The level of the improvement we get with respect to the quality of the initial 

solution. 

2. How we can generate initial solutions that will provide us with large 

convergence time improvements. 

In this work the firs issue will mainly addressed in detail, since it is important for 

determining the effectiveness of the approach and is incorporation for enhancing the 

SA algorithm. As we have mentioned, due to the randomization character of SA, it is 

not straightforward that by starting from a better than a random initial solution will 

result to any convergence time improvement at all. The latter has been investigated by 

quantifying the convergence time effect with respect to the quality of the initial 

solution. Specifically, SA has been bootstrapped with a better than random initial 

clustering solutions and its convergence time has been determined. From the 

collection of these results has been observed that despite the randomization character 
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of the algorithm, by starting from a better than a randomly selected clustering solution 

(i.e. with respect to the cost function being optimized), the convergence time is 

improved. For quantifying the improvement on the convergence time, some indicative 

results with respect to various qualities of initial solutions are provided below. These 

results were collected for networks of 100 and 200 nodes. Samples of such networks 

are being demonstrated in figure 5.11.  

  

 

 

 

 

 

Figure 5.11. Sample networks of size 100 and 200 nodes 

 

The methodology applied for the collection of results is based on the networks 

presented above and the SA clustering algorithm implementation described from the 

block diagram of figure 5.1. The cost function (equation 5.6) for the generation of 

balanced size clusters was utilized. The cost of a random generated solution with 

respect to this cost function was computed and then sample clustering solutions with 

cost that was fraction of the cost of this random solution were generated. 

The y-axis of the following figures represents the convergence time in seconds 

for various qualities (costs) of initial solutions, and they are characterized from the 

fraction of their cost compared to the random initial solution. The x-axis is marked 

with the value of this fraction. The convergence times represented from the following 
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graphs are indicative for the cost function (equation 5.6) but they provide some very 

useful observations for the proposed adjustment. The following results have been 

averaged out after a large number of runs ( )1000O . 

Convergence Time Speedup Starting from a 
Fraction of a Random Initial Solution (100 nodes)
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Figure 5.12. SA convergence time improvement with the quality of the initial solution 
for 100 nodes network 
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Figure 5.13. SA convergence time improvement with the quality of the initial solution 
for 200 nodes network 
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The most important conclusion can be drawn from the above figures is that the 

bootstrapping of SA algorithm with a better than a random initial solution has 

advantageous effect on the convergence time of the algorithm. Both curves in figures 

5.12 and 5.13 respectively present a dropping tendency with the improvement of the 

cost of the initial solution compared to the cost of the random one. Furthermore, 

important conclusions can be drawn also from the quantification of the convergence 

time improvement. By comparing the results of figures 5.12 and 5.13 respectively, 

there is an indication that the larger the network, the larger appears to be the 

improvement on the convergence time. For the sample network of 100 nodes utilized 

in this simulation analysis, the convergence time drops ~100ms when the clustering 

solution has cost 75% better compared to the random one. Whereas, for the sample 

network of 200 nodes the convergence time improves by ~4.8s when the initial 

clustering solution presents 75% better cost compared to the random one. 

Furthermore, to quantify better this decrease (improvement) on convergence time, the 

percentage of improvement is provided in the following table. 

Network size Actual Time 
Improvement 

Percentage of 
Improvement 

100 0.1s 19.2% 
200 4.8s 82.8% 

Table 5.1. Percentage improvements on convergence time 

 

By looking at the corresponding percentages of improvement on convergence 

time when SA starts from a “better than random initial solution”, it is obvious that 

the larger the network, the larger the improvement. The latter can be explained from 

the much slower convergence times presented from the original SA algorithm when 
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the network size increases, so there is more space for improvement. The proposed 

adjustment is sufficient to improve enough the convergence time and constitute a 

traditionally slow approximation algorithm, realizable and applicable in dynamic 

environments like the MANETs. 

Since there are indications (e.g. based on the simulation analysis results), that 

despite the randomized search of SA algorithm’s towards the optimal solution, the 

convergence time is improved by starting from a good initial solution, then 

mechanisms that will generate the appropriate initial solutions have to be suggested. 

This work does not explore this problem in depth, since the applied mechanisms must 

be aware of the hierarchy generation objectives (cost function being optimized). 

Initial solutions that can improve the convergence time can be generated from 

heuristic methods customized to the hierarchy generation objectives (i.e., for the 

generation of balanced size clusters we can generate initial solutions utilizing a 

customized min-cut algorithm). Also, modified optimization algorithms can be useful 

for the generation of quality initial solutions. Furthermore, a feasible, previously 

generated optimal solution from SA can be utilized for bootstrapping. Due to the 

dynamics of MANETs environment, the clustering decisions have to undergo 

corrections in order to retain their optimality with respect to the topology changes. In 

the case where the SA have to be reapplied, then instead of generating a new initial 

solution a previously optimal one can be used for bootstrapping, under the condition 

that it is still feasible with respect to the new topology. The latter approach can 

provide quality initial solutions especially when the topology is slowly changing with 

respect to the reapplication frequency of SA algorithm. 
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An important consideration that has to be made for the selection of an efficient 

initial solution generation mechanism is that the combined time for the generation of 

the initial solution and the convergence of SA has to be smaller than the convergence 

time of SA when it is bootstrapped with a randomly selected initial solution. Hence, 

the following inequality has to be satisfied at all times in order not to eliminate the 

advantageous effect of initial solution on the convergence time of the algorithm.  

' '

                                      
nris ris gnris SA gris SA gnris gris SA SA

gis SA

T T t t t t t t t t

t t

≤ ⇒ + ≤ + ⇒ − ≤ − ⇒

⇒Δ ≤ Δ (5.14) 

where, 

Parameters Description 

 nris : Non-random initial solution 

ris : Random initial solution 

T : Complete process time 

t : Partial process time 

5.3.6 Energy Updates 

The basic functionality of SA algorithm is based on the cost evaluation of the 

candidate clustering solution ( )C t  obtained from a generation mechanism in every 

algorithmic iteration ( )t t +∈Z . The cost of the candidate solution is compared with 

the cost of the currently optimal one *
tC  and depending on their difference 

( ) ( )( )*
tE J C J C tΔ = −                                               (5.15) 

 

the Metropolis criterion 
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( )( )*
1

1                   if 0

exp     if 0tc t

t

E
P C C t E E

c
+

Δ >⎧
⎪← = ⎛ ⎞Δ⎨ Δ ≤⎜ ⎟⎪

⎝ ⎠⎩

                       (5.16) 

decides on which of the solutions ( ( )C t or *
tC ) will prevail (e.g. will be carried on as 

the optimal *
1tC +  in the ( )1 tht +  iteration).  Obviously, every time a new candidate 

solution is generated, its cost must be evaluated. This evaluation requires computation 

time, so inevitably contributes to the convergence time of the SA algorithm. 

Intuitively, the contribution becomes more significant for larger optimization 

problems (i.e. large network sizes). This is because more iterations are required for 

the convergence of the algorithm, so more candidate solutions are being generated 

whose cost has to be evaluated.  

Since the design objectives suggest the improvement of the speed of convergence 

of the algorithm, a possible adjustment that could reduce the convergence time is the 

efficient evaluation of the candidate solutions cost. Based on the generation 

mechanism principle, where in the tht  iteration a new candidate solution ( )C t  is 

obtained by perturbing the currently optimal one *
tC . The perturbation is 

characterized from the transition probabilities and the neighborhood structure 

mentioned above. The cost of the currently optimal solution *
tC  is known and is 

( )*
tJ C . In order to compute the cost ( )( )J C t  of the new candidate solution ( )C t , 

only the contribution (update) of the perturbation on the currently optimal cost 

( )*
tJ C have to be specified. Specifically, the mechanism that is proposed is instead of 

determining the cost of the candidate solution generated at each iteration, is to 
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compute the update to the cost, that results from the perturbation.  This mechanism 

can be incorporated into the functionality of SA algorithm as follows: 

Initial Iteration:  Generate an initial clustering solution C and evaluate its cost ( )J C  

with respect to the cost function being optimized. Since this is the initial iteration, SA 

marks this solution as the currently optimal one *
0C  and its cost ( )*

0J C  is the 

currently optimal one ( )*J C .  

Follow Up Iterations: Assume that on the ( 0)tht t > iteration, the optimal clustering 

solution is *
tC  and its corresponding cost is ( )*

tJ C . By perturbing *
tC  we obtain a 

new candidate solution ( )C t . The corresponding cost of this solution ( )( )J C t can be 

computed utilizing the contribution pEΔ of the perturbation p  on the cost of the 

currently optimal clustering solution: 

( )( ) ( )*
k pJ C k J C E= + Δ                                               (5.17) 

So, instead of having to compute ( )( )J C k from scratch, we just have to compute the 

difference pEΔ of the cost due to the perturbation p. 

Due to this mechanism, the only time that the entire clustering solution has to be 

taken into consideration for the cost computation ( )J C  is during the initial iteration. 

Afterwards the computation is done based on the cost differences (updates) pEΔ . 

For the evaluation of the efficiency of the adjustment on the convergence time of 

the algorithm, two cost functions for the generation of balanced size clusters have 

been utilized. Their description follows: 
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( )( )2 2
1( ) min ,...., KC

J C Var C C=                                         (5.18) 

and 

2

1
( ) min

K

iC i
J C C

=

= ∑                                                     (5.19) 

where,  

Parameter Definition 
K  Number of generated clusters 

iC  Cluster i 

iC  Size of cluster i 
 

For each of the cost function the update function pEΔ  has to be defined, so that it can 

be utilized for the computation of the new candidate solutions cost. This function 

depends on the perturbation method applied for the generation of the new candidate 

solutions in each SA iteration. As it was mentioned, the basic principle of the 

perturbation mechanism is the migration of a member node from a cluster ( )*
iC t  to 

another cluster ( )*
jC t  of the currently ( tht  iteration) optimal clustering solution 

( )*C t , subject to the constraint that the new candidate solution must be topologically 

feasible. Thus, with respect to this perturbation mechanism and the cost functions 

(equation 5.17 and equation 5.18) being optimized, the update function pEΔ is 

defined appropriately: 

For equation 5.17 

( ) ( ) ( )( )1 2
1

1pE t E t E t
K

Δ = Δ −Δ
−

                                          (5.20) 

where 
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 K: number of generated clusters 

( ) ( )( ) ( )( ) ( ) ( )
4 4 4 4* * * *

1 1 1i j i jE t C t C t C t C tΔ = − + + − −      (5.21) 

( ) ( ) 2*
2 4E t C t

K
αα ⎛ ⎞Δ = +⎜ ⎟

⎝ ⎠
                                                     (5.22) 

( ) ( )* * 1j iC t C tα = − +                                                             (5.23) 

( ) ( )2 2* *

1

1 K

i
i

C t C t
K =

= ∑                                                            (5.24) 

For equation 5.18 

( ) ( ) ( )( )* *2 1p i jE t C t C tΔ = − − −                                          (5.25) 

Using the relations above we evaluate pEΔ  which determines through the Metropolis 

criterion the optimal clustering solution of the ( )1 tht +  iteration.  

For the evaluation of the cost updates method the above expressions were applied for 

the cost computation in every iteration of SA algorithm. For both cost functions, the 

average SA convergence times for several networks  were  determined.  These  values  

 

 

 

 

 

 

 

 

Figure 5.14. Expected Convergence Times Comparison for SA and SA with Energy 
Updates (SAEU) for the generation of balanced size clusters (cost function 5.18) 
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Figure 5.15. Expected Convergence Times Comparison for SA and SA with Energy 
Updates (SAEU) for the generation of balanced size clusters (cost function 5.19) 

 

were compared with the average convergence times for the same set of networks 

when the method of cost updates is not applied (e.g. original implementation of SA 

algorithm).  

The results above indicate small improvement on the convergence time of SA 

algorithm, when the energy updates methods is utilized. Specifically, for scenarios 

(network sizes 100 and 200 nodes) where the convergence time of the algorithm is 

already fast, the improvement is negligible. For scenarios (network sizes 500 and 

1000 nodes), where the convergence time is larger, there is a noticeable improvement 
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cost computation on convergence time is not significant compared to the generation 

mechanism’s contribution. Due to this, any improvement on the cost computation 

mechanism is not expected to contribute in significant changes (improvements) on the 

convergence time of the algorithm. Moreover,  offline processing is required in order 

to obtain the update function ( )pE tΔ for every cost function being optimized. In 

conclusion, the method reduces the generalized character of SA algorithm for 

insignificant improvements on the convergence time. On the other hand, there are 

scenarios (large networks - large solution spaces – large convergence times) where 

even small improvements are important and beneficial for the real time applicability 

of the algorithm. 

5.4 Convergence Times of the Adjusted SA Algorithm 

Several adjustments on the parameters and on the functionality of the original SA 

algorithm have been proposed for reducing the time required to obtain solutions that 

satisfy a set of pre-specified hierarchy generation objectives. During the presentation 

of these adjustments, the effect on the convergence time of each one of these 

separately has been evaluated.  In this section comprehensive results for the 

convergence time of the SA algorithm are provided. These results correspond to the 

implementation of SA that has been adjusted with respect to the collection of 

adjustments suggested and are indicative of the convergence time performance of the 

algorithm. The first of the following two graphs represents the convergence time of 

the algorithm with respect to network size and number of clusters being generated. 

The second graph represents the convergence time of the algorithm with respect to 

the network size and the average node degree.  
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Specifically, figure 5.16 represents the convergence time of the adjusted SA 

algorithm for several network sizes, varying from 100 to 1000 nodes and different 

numbers of generated clusters, which vary from 2 to 10 clusters. All the networks 

utilized for the collection of the following results present average node degree 

(average number of participating nodes’ one hop neighbors) equal to 10.  

 

 

 

 

 

 

 

 

 

 

Figure 5.16. Convergence times of the adjusted SA algorithm with respect to various 
network sizes and number of generated clusters (average node degree equals to 10) 
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is the ability of the algorithm, for large number of scenarios, to converge very fast to 
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generated clusters. The larger the number of generated clusters, the larger the 
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adjusted SA algorithm can be applied successfully and efficiently in real time for a 

majority of scenarios (combination of network size and clusters generated) even for 

highly dynamic networks. For other scenarios, with larger solution spaces, the 

algorithm presents larger convergence times, which are still not prohibitive for 

networks with slower dynamics (the topology changes do not happen very 

frequently). 

As the network size and the number of generated clusters, the average node 

degree of the network is equally important for the convergence time of the algorithm. 

This is indicated from the results pictured on the following figure 5.17.   

 
 

 

 

 

 

 
 
 
Figure 5.17. Convergence times of the adjusted SA algorithm with respect to various 

network sizes and average node degrees (the number of generated clusters equals 
to5). 
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latter mechanism releases only feasible solutions to be compared against the currently 

optimal solution at every algorithmic iteration. For small average node degree the 

generation mechanism runs into the risk of becoming very slow due to the sparse 

nature of the network and the inherent difficulty to locate fast new feasible candidate 

solution. This observation along with the dominant effect of the mechanism on the 

convergence time of the algorithm result on the effect pictured on figure 5.17. In 

contrary, new feasible solutions are obtained faster in dense networks (large average 

node degree), so the algorithm is expected to converge faster (e.g. for average node 

degree 10dgr = the algorithm requires less than 20 secs to generate 10 clusters ina 

network of 1000 nodes).  

 The adjusted SA algorithm appears to be efficient, scalable and applicable in real 

time for a majority of scenarios. Furthermore, the parameters (network size, average 

node degree and number of clusters to be generated) of the network under 

consideration are important for the speed of convergence of the algorithm. The latter 

observation may lead to suggestions for modifying dynamically the network, so that 

the targeted convergence time is achieved and the network dynamics are captured. If 

such an approach could be adopted, the results of figures 5.16 and 5.17 could be 

utilized for specifying the network parameters, which achieve better convergence 

times.  
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Chapter 6: Metrics Based Distributed Domain Generation 
Algorithm 

 

 

6.1 Introduction 

The Simulated Annealing based domain generation framework presented in the 

previous chapters has been adjusted so as to provide rapidly clustering solutions that 

satisfy the instructed hierarchy generation objectives. On the other hand, due to its 

centralized nature, the SA based clustering framework will not be able to perform 

adequate in highly dynamic environments. Since the study of such environments is 

within the scope of this work, efficient hierarchy generation mechanisms must be 

provided. 

For efficiently capturing the dynamics of fast changing networks, distributed 

hierarchy generation algorithms must be designed. Their ability to generate 

hierarchical structures based only on the collection and exchange of local information 

makes them favorable for highly dynamic environments. On the other hand, the 

hierarchical structures obtained, are not expected to have the quality (cost) of the 

structures provided from the SA-based mechanism, due to the localized hierarchy 

generation decisions. In such rapidly changing environments the speed of the 

algorithm is more important that the quality of the solution, since the hierarchical 

structures generated are expected to be short-lived because of the frequent changes on 

the topological map of the network. But still, it is crucial for the hierarchical 
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structures obtained to satisfy the set of pre-specified hierarchy generation objectives, 

so that the hierarchy is beneficial to the performance of the network and not harmful.  

For dealing with highly mobile environments and aiming on accomplishing the 

hierarchy generation objectives, a distributed hierarchy generation algorithm has been 

designed, in accordance to the spirit of SA-based algorithm. The functionality of the 

designed algorithm is based on the exchange of one hop information. This 

information is related to the hierarchy generation objectives and is expressed via the 

utilization of the appropriate metrics presented in chapter 4. For the presentation of 

the distributed algorithm specific hierarchy generation objectives and the 

corresponding metrics have been selected. Specifically, the generation of similar to 

mobility domains is imposed and the utilization of the mobility metrics is required. 

Due to the enforcement of the similar mobility objective and the utilization of 

mobility metrics, the corresponding version of the distributed hierarchy generation 

algorithm is being referred as “mobility based distributed generation algorithm 

(DGA)”   

The main objective of this algorithm is the generation of stable hierarchical 

structures by grouping together the nodes that present similar mobility characteristics. 

Doing so, it is expected that the nodes of the same group will remain connected for 

long periods of time, reducing significantly the membership changes and the resulted 

maintenance overhead. If the maintenance overhead is reduced, the performance of 

the network will improve, benefiting from the hierarchical application of the various 

networking protocols onto a stable hierarchical structure. 
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The algorithm is based on one-hop information exchange and presents O(n) 

communication complexity in a network of n nodes. The generated clusters appear to 

be more robust compared to some well known existing distributed clustering 

algorithms. Furthermore, the algorithm presents very promising performance 

characteristics in cases of large and highly mobile networks, where the existing 

distributed algorithms fail. The ability of the algorithm to handle the dynamics of the 

network emerges from its inherent functionality to group the nodes with respect to 

these dynamics. 

6.2 Overview of the mobility based DGA 

In this section the principal operation of the proposed mobility based domain 

generation algorithm is presented. An example is also given, which demonstrates the 

algorithmic steps followed from DGA for generating a robust to mobility hierarchical 

structure. 

6.2.1 Mobility Based Distributed Generation Algorithm (DGA) 

The mobility based DGA is based on one-hop information exchange. The 

information is related to the mobility metrics we introduced in section 3. We assume 

that each node represented from a unique ID, can obtain information about its speed, 

direction and position (e.g., only in the case where the metric of interest is the Link 

Expiration Time (LET)). Also, the set of their one-hop neighbors can be obtained 

from the exchange of link state information or the transmission of heartbeat 

messages. 
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In the proposed algorithm each node joins a domain after having gone through 

three phases. The objective suggests that the generated domains consist of similar 

nodes with respect to their mobility characteristics. The three phases of the algorithm 

towards the generation of hierarchical structure are: 

• Phase I – Neighbor Selection 

In this phase each node broadcasts its ID and information (direction, speed, 

position) related on the decision making metric (relative direction, relative velocity, 

LET) to its one-hop neighbors. Each node, after the collection of the appropriate 

information is able to determine the value of the metrics (mobility in this case) of 

interest for each one of its neighbors. For each node, the set of these values 

determines the one hop neighbor that the corresponding node will select to join for 

the formation of a domain. Specifically for the mobility based DGA, where the 

metrics of interest could be the relative direction or the relative velocity, a node will 

select the one hop neighbor that corresponds to the lowest metric value – in the case 

of LET the neighbor that corresponds to the highest value is the dominant candidate. 

In the case where multiple dominant candidates are present (the same lowest value 

corresponds to more than one hop neighbors), a tiebreaker rule is used (e.g. ID of the 

neighbors or random selection) for resolving the conflict, since only one neighbor has 

to be selected for the formation of a domain. 

• Phase II – InfoExchange List Composition 

After having selected the most appropriate neighbor to form a domain with, each 

node informs the selected neighbor node for this decision. Each node collects the 

decisions related to him and records the IDs of the neighbor nodes who have selected 
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him. After the collection of these messages, each of the nodes generates the 

InfoExchange list, which is the union of the node IDs collected in Phase II, the ID of 

the neighbor he has selected and his own ID. The InfoExchange list is sorted in 

ascending order. The ordering of the InfoExchange list is very important for the 

convergence of the algorithm since it provides the basis for the distributed 

synchronization of the participating nodes. 

• Phase III – Domain Formation 

For the domain formation, each node does not have to communicate with every 

neighbor but only with those in the Infoexchange list. In the distributed environment 

the sorted Infoexchange list is utilized for synchronization among the nodes. A node 

has to wait for the nodes with lower ID in the Infoexchange list to decide on the 

domain to join and then has to communicate its selection. If the ID of the node is the 

lowest in the list, then forms a cluster with this ID and communicates it to its 

neighbors that exist in the list. By the completion of this phase each node belongs to a 

domain characterized by a unique domain ID – these IDs corresponds to node IDs 

which have been assumed unique.   

After the high level overview of the various phases, the pseudo-algorithm 

provided below reveals the detailed functionality of the proposed algorithm and of its 

various phases as they are performed from each one of the participating nodes: 
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Phase I 
 

Step I: (Communication) 
 
Broadcast to 1-hop neighbors a TYPE I message of the form:  
 

(myID, Information) 
 

The information values can be the speed, direction or position of the node and 
depend on the metric of interest (e.g. relative direction, relative speed, LET) 
 
Step II: (Processing) 
 
Collect the (TYPE I) messages from 1-hop neighbors. 
Based on the information collected, evaluate the metric of interest for each one of 
the neighbors. With respect to the metric values obtained determine which one of 
the neighbors is the most appropriate for grouping with in the cluster formation. 
 
 
 

Phase II 
 

Step III: (Communication) 
 
Broadcast to the selected neighbor (e.g. neighbor with the best metric value) a 
TYPE II message of the form: 

(myID, neighborID) 
 

Step IV: (Processing) 
 
Collect all TYPE II messages that are referred to my ID.  
Generate the SelectedFromList list which contains the neighborIDs that have 
selected myID as the preferred neighbor to be clustered with. Then generate the 
InfoExchangeList: 
 

InfoExchangeList
SelectedFromList neighborID myID

=
∪ ∪

 

 
Sort in ascending order the InfoExchangeList with respect to the node IDs. 
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Phase III 

 
Step V: (Communication) 
 
if myID = Head(InfoExchangeList) then 
     {    myCID = CID  
           Send to every node with  
           nodeID InfoExchangeList∈  
           a TYPE III message of the form: 

(myID, CID=myID) 
       } 
 else{ 
 
            Until the reception of a TYPE III message from the nodes with: 

  nodeID InfoExchangeList nodeID myID∈ ∧ <   
             {   Upon the reception of TYPE III message { 
                       if myCID =∅  then  
 
 
                          myCID = CID 
                      else 
                           if myCID > CID then  
                  myCID=CID  
                       } 
              My turn to transmit:              
              Send myCID to every node with  
                     nodeID InfoExchangeList∈  
 
     Until the reception of TYPE III message from all the  
      nodes with: 

  nodeID InfoExchangeList nodeID myID∈ ∧ >  
      {       
           Upon the reception of a TYPE III message {     
    if myCID > CID { 
                        myCID=CID 
            send to all nodes with  
                          nodeID InfoExchangeList∈   

                     a message revealing my cluster selection  
(myID, myCID) 

             }}}}  
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6.3 Mobility Based DGA: Example  

In this section we complete the description of the mobility based DGA by 

providing an example to demonstrate the domain generation algorithm and its various 

phases for the construction of hierarchical structure, which is robust to mobility by 

grouping together nodes with similar mobility characteristics. Assume that we have 

the network of figure 6.1, consisting of 7 nodes. Assume also that there are two 

groups of nodes, which consist of nodes with similar mobility characteristics. The one 

group consists of the nodes 1, 2, 4 and 5 and the other group consists of the nodes 3, 6 

and 7. With respect to this assumption, the mobility based DGA algorithm must 

identify these two distinct groups of nodes, so that the hierarchy generated is robust. 

Furthermore, for this example it is assumed that the metric of interest is the relative 

velocity, since the grouping of nodes with similar mobility characteristics is 

suggested from the hierarchy generation objectives. In Phase I the nodes broadcast 

their node IDs, their direction and speed to their 1-hop neighbors. Also, at the same 

time they collect the corresponding information (node ID, direction and speed) from 

their 1-hop neighbors. 

 

 

 

 

 

 

Figure 6.1. Domain generation example: Sample Network 
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After having collected the appropriate information, the participating nodes 

compute their relative velocity with each one of their 1-hop neighbors. Even though 

the relative velocity is computed locally to each node, the value computed from a pair 

of nodes (i,j) is the same, independently of whether is computed at node i or node j. 

Assume that for this example the relative velocities computed for each pair of 1-hop 

neighbors are provided from figure 6.2 below: 

 

 

 

 

 

 

 

 

 

Figure 6.2. Relative velocity values as computed pairwise from neighboring nodes 

 

Based on the above values of relative velocity, each node selects the most 

dominant one hop neighbor (e.g. lowest relative velocity - the lower the relative 

velocity, the more similar the mobility) with whom he wants to group with for the 

formation of a domain Following the selection rule of this example in combination 

with the values provided in figure 6.2, the neighbor selections of the participating 

nodes by the end of Phase I are:  
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By entering Phase II, the nodes communicate their decisions from Phase I to the 

1-hop neighbors they have selected. Each node collects and records the IDs of the 

nodes from which they have been selected into the SelectedFromList. The 

SelectedFromList for each one of the participating nodes is: 

 

 

 

Each participating node, by combining the SelectedFromList, the selection made 

in Phase I and his own ID, forms the InfoExchange list. The InfoExchange lists of the 

nodes by the end of Phase II are: 

 

 

 

Phase III completes the generation of the hierarchical structure. Each node will 

utilize the InfoExchange list in order to communicate with its neighbor nodes and 

ultimately select the domain to join. The nodes are listening to the domain selections 

of the lower ID 1-hop neighbors that belong to their InfoExchange list until their turn 

comes to decide on the domain to join. After they decide, they wait for the rest of the 

1-hop neighbors (e.g., nodes with higher IDs) in their InfoExchange list to decide. For 

the specific network of figure 6.1, the generated hierarchical structure after the 

completion of Phase III looks like: 
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Figure 6.3. The hierarchical structure established from the mobility based DGA 
algorithm 

 

If we carefully observe, the values of the relative velocities of the nodes assigned 

from the distributed algorithm into the same domain, these values are much lower 

compared to the values of the relative velocities of the nodes assigned to different 

domains. The mobility based domain generation algorithm behaves in accordance to 

the suggested hierarchy generation objectives by grouping together the nodes with 

similar mobility characteristics. By doing so, the algorithm succeeds on generating 

robust to mobility domains, since it manage to identify the two groups of nodes with 

similar mobility. The nodes in the same domain are expected to remain connected for 

longer periods of time compared to the nodes that do not belong into the same group. 

As it is shown later in the performance evaluation section, the generated domains are 

more robust to topology changes compared to other distributed domain generation 

algorithms that do not take into consideration the dynamics of the network. 

6.4 Performance Evaluation 

This section elaborates on the ability of the proposed distributed domain 

generation algorithm to establish a hierarchical structure that is robust to mobility. 

The effectiveness of the approach is evaluated by comparing it with a well known 
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distributed domain generation algorithm (lowest ID – LID) which forms domains 

without taking into consideration the dynamics of the network environment. The 

purpose of this comparison is to remark the importance of having the domain 

generation algorithm being aware of the network environment it operates into, since it 

can provide more stable hierarchical structure, which can be beneficial to the network 

instead of harmful.  

6.4.1 Robustness of the mobility based DGA  

The robustness of the mobility based DGA is measured from the stability of the 

domains’ membership with respect to the mobility of the participating nodes. In order 

to highlight the effectiveness of the proposed algorithm we are comparing it with the 

lowest-ID (LID) algorithm [1], which utilizes metrics (the domain construction is 

based on the unique IDs of the nodes) unrelated to the network environment for the 

establishment of hierarchical structures.  

LID selects cluster heads (CHs) among the participating nodes based on their 

IDs. For the domain formation, the remaining nodes (non-clusterhead nodes) are 

assigned to the CH node with the lowest ID among the CH nodes which are at most 

1-hop away. The LID algorithm does not take into consideration the dynamics of the 

network for the domain formation since the selection metrics (proximity, nodes’ ID) 

are independent from them.  

We compared the membership stability of the domains obtained from the 

mobility based DGA with the corresponding stability of the domains obtained from 

the lowest-ID (LID) algorithm. To evaluate the robustness of the hierarchical 

structures generated by the mobility based DGA compared to LID we measured the 
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average membership changes and the average number of generated domains. We 

applied both algorithms in network environments of various sizes and mobility levels. 

Namely, we generated networks of 100 to 1000 nodes and we applied the Random 

Waypoint Mobility (RWPM) model with pause time 0.  

In the RWPM model each node selects a destination in the limits of the pre-

specified area. This destination is approached with constant speed selected from the 

node at random. When the destination is reached the node selects new destination and 

new speed and the process is repeated. We investigated several scenarios 

corresponding to different maximum allowable speeds (between 1m/s and 10m/s) in 

order to evaluate the robustness of the generated hierarchies in various levels of 

mobility. We ran the algorithms (mobility based DGA, LID) for 1000s of network 

time. The statistics were sampled every 1s of network time.  

 

 

 

 

 

 

 

 

 

 

Figure 6.4. Average membership changes (LID vs. mobility based DGA) with respect 
to network size and mobility level. 
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Figure 6.4 represents the average membership changes for networks of size 100 to 

1000 nodes and maximum allowable node speeds of 1m/s to 10m/s. The left part of 

the graph represents the average membership changes for the mobility based DGA 

algorithm and the right part represents the average membership changes for the LID 

algorithm, respectively. The higher the mobility and the larger the size of the 

network, the better the performance of mobility-based DGA algorithm compared to 

the performance of the LID algorithm. For example for 1000 nodes and 10m/s 

maximum speed, mobility-based DGA requires on average 32 membership changes 

per second and LID requires on average 44 membership changes per second. For 

1000 seconds of network time, the mobility based DGA requires on average 12000 

less membership changes than LID algorithm, which is an improvement of 27.2%. 

Apart from the membership changes, a metric that indirectly characterizes the 

robustness of the proposed algorithm, is the average number of generated domains. 

The smaller the number of generated domains, the more tolerant is the hierarchical 

structure to the topological changes due to mobility (e.g. the larger the domain, the 

higher the probability of a node, whose connectivity changes, to remain connected to 

its original domain). 
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Figure 6.5. Average number of domains generated from LID and mobility based 
DGA algorithms for various network sizes and mobility levels  

 

Figure 6.5 demonstrates the average number of clusters generated from each one of 

the algorithms. The left part of the graph represents the average number of domains 

generated from the mobility based DGA and the right part represents the average 

number of domains generated from the LID algorithm, respectively. The general 

observation is that the number of domains that LID generates is more than double the 

number of domains generated from the proposed algorithm. This observation suggests 

that the average domain size of the mobility based DGA is more than double the 

average domain size of LID. The latter can also be explained from the fact that LID 

does not generate domains with diameter larger than 2-hops as opposed to mobility 

DGA, which does not have such restrictions.  
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Because LID generates domains without taking into consideration the network 

environment, it is more possible to harm the performance of the network. The larger 

the number of membership changes, the larger the introduced overhead to the applied 

protocols. The stability of the hierarchy generated from the mobility based DGA aims 

on the minimization of this overhead, so that the overall performance of the network 

is improved. 

Even though the superiority of the proposed algorithm has been presented with 

respect to the RWPM model, the stability of the hierarchical structures established 

from the mobility based DGA is expected to be even better in scenarios where group 

mobility is exploited. If we evaluate the proposed algorithm with respect to a group 

mobility model (Reference Point Group Mobility model), it is expected to establish 

more robust hierarchical structures compared to RWPM. The mobility based DGA 

was designed to identify and group together nodes with similar mobility 

characteristics, so in a network environment, where distinct mobility groups exist, the 

algorithm tends to eliminate the overhead due to the membership changes by 

accurately grouping together the nodes that present similar mobility characteristics. 
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Chapter 7: Domain Maintenance Approaches 
 

 

7.1 Introduction 

Domain autoconfiguration techniques allow the quick formation of highly 

optimized hierarchies that greatly enhance network scalability and overall 

performance. For example, instead of producing a simple two level hierarchy based 

only on topology, the optimization can produce multi-level hierarchies that take into 

account factors such as mission goals and predicted node/link heterogeneity. 

However, in dynamic networks, these highly optimized solutions degrade very 

quickly. Indeed, the application of standard local maintenance algorithms that do not 

align well with the optimization goals, may result in very fast degradation of the 

hierarchical structure’s quality (cost) with respect to the hierarchy generation 

objectives. In this chapter a new taxonomy of local maintenance algorithms into four 

basic classes is being presented. Furthermore, the performance benefits for using 

representative approaches that act in accordance with the optimization goals are being 

quantified. The classification of the local maintenance algorithms and the 

quantification of their effect on the maintained hierarchical structure can be proved 

beneficial on their design. The main trade off between the various categories of local 

maintenance mechanisms is the amount and quality of information available and the 

ability to preserve the quality of hierarchical structure with respect to the hierarchy 

generation objectives.   
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The mobile ad hoc networks (MANETs) require no fixed infrastructure, making 

them ideal for many commercial, emergency and military scenarios. An open 

question, however, is the ability of MANET networks to scale. Even for protocols 

(routing, security, QoS) designed specifically for these dynamic environments, when 

the size of the network becomes too large then these protocols either fail to capture 

the network dynamics or swamp the network in signaling traffic [17][21][22][38][40]. 

Although some protocols can scale to hundreds or even thousands of nodes in 

certain conditions, in general network scalability has always relied on the generation 

of hierarchy. For example, the wireline world divides networks into subnets and 

Autonomous Systems. The affect of hierarchy can be dramatic. For example, in 

theory, clustering can reduce the overall routing protocol overhead with n  nodes 

from ( )2O n  to ( )logO n n . Network hierarchy allows the applied protocols to operate on 

smaller subgroups of the network and not on the entire network. Their hierarchy 

allows protocols to deal with the dynamics of smaller groups of nodes. Hierarchy also 

allows protocols to be tuned to more homogenous conditions. The benefits of a good 

hierarchy have been shown to outweigh the complexity [39].  

In order to cope with the rapid deployment and rapid reconfiguration needed for 

future versatile networks, the generation of hierarchical structure must be done 

automatically.  Moreover, in mobile ad hoc networks (MANETs), such as the FCS (in 

a Unit of Action) or WIN-T (in a Unit of Employment), there is a need for 

mechanisms that not only automatically create such hierarchies but also maintain 

them as the network changes.  
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In the next section the various local maintenance approaches are categorized and 

the characteristics of each of the defined classes are being presented. In section 3 we 

evaluate the effect of the various local maintenance approaches on the preservation of 

the quality (cost) of the optimized generated hierarchy with respect to the set of 

hierarchy generation objectives. Finally, section 4 highlights the most important 

conclusions obtained from the taxonomy and study of the various classes of local 

maintenance mechanisms. The conclusions of this study can be utilized as a blueprint 

for the design of appropriate local maintenance algorithms to support the application 

of hierarchy generation mechanisms in dynamic environments. 

7.2 Hierarchy Maintenance Schemes 

Even though, the introduced domain generation framework is capable of 

generating optimized hierarchical structures, due to the dynamic nature of the 

underlying network environment, these structures will soon become sub-optimal and 

might not comply with the topological constraints (e.g. infeasible hierarchical 

structures). It would be inefficient and expensive to apply the hierarchy generation 

mechanism for every topological change happening into the network. Firstly, the 

hierarchy generation mechanism involves all the nodes, so extra network resources 

will have to be utilized frequently causing large scale reactions from the nodes with 

possible negative impact on the network performance. Secondly if the SA-based 

generation algorithm is to be used, global knowledge is required, which may 

impossible to be obtained and processed on time between each topological change, 

especially in highly dynamic networks. Thus, the maintenance of the hierarchical 

structure in case of topological changes must involve localized information for the 
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reconstruction of the domains in a distributed fashion. The objectives for designing 

and applying a distributed hierarchy maintenance approach, instead of utilizing the 

introduced hierarchy generation mechanisms are the: 

• Reduced overhead,  

• Faster hierarchy reconstruction 

Even though the distributed maintenance approach will be beneficial with respect 

to network resources and reaction time to the dynamic network changes, considering 

the spirit of the hierarchy generation framework proposed, the domains have to 

satisfy a set of objectives, so that the hierarchy can be beneficial to the network 

performance. The quality of the generated hierarchy is expressed through its cost 

computed with respect to the cost function representing the generation objectives. 

These objectives have to be preserved after the application of the maintenance 

algorithm so that the quality of the hierarchical structure is maintained throughout the 

lifetime of the network. Such a task is very challenging due to the limited availability 

of information (localized information). 

In this chapter the various local maintenance techniques have been categorized 

with respect to the amount of information available and the relevance of this 

information to the hierarchy generation objectives. Furthermore the impact of the 

defined local hierarchy maintenance classes on the preservation of the hierarchical 

structures “quality” (cost) has been studied and some very interesting observations 

are being presented. 
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7.3 Taxonomy of Local Maintenance Schemes 

The main trade off in distributed maintenance is the tradeoff between overhead and 

hierarchy quality. Four classes of local maintenance approaches have been identified: 

• A0: Zero Overhead Local Maintenance  

• A1: Objectives Independent Local Maintenance 

• A2: Node  Dependent Local Maintenance 

• A3: Domain Dependent Local Maintenance 

Figure 7.1 describes the classification of the various approaches introduced in this 

study with respect to the amount and quality (e.g. relevance with the generation 

objectives) of information involved in their decision mechanisms. 

 

 

 

 

 

 

 

 

 

 

Figure 7.1. Taxonomy of local maintenance approaches  
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In general, it is expected that the more relevant to the generation objectives (higher 

quality) the information available during the maintenance phase, the better is 

preserved the “quality” of the hierarchical structure. The maintenance decisions will 

be based on metrics related to the original hierarchy generation objectives. For 

example if the hierarchy generation objective is the construction of robust to mobility 

domains, then the local maintenance is better to utilize metrics related to the speed, 

direction and position of the participating nodes for the reconstruction of the 

hierarchy. 

In general the maintenance method is triggered locally by the nodes that become 

infeasible (e.g. the nodes lose connectivity to their original clusters) due to the 

topological changes. An overview of the amount and quality of information required 

from each class of algorithms is provided below: 

• A0. Zero Information Local Maintenance This approach does not require any 

information to be collected from the network for the reconstruction of the 

hierarchical structure. The approach in terms of overhead is optimal, since it does 

not utilize any bandwidth resources but the lack of information is expected to 

result in poor preservation of the hierarchical structure’s cost. 

• A1. Objectives Independent Local Maintenance The schemes of this approach 

collect and utilize local information for the reconstruction of the hierarchical 

structure. The information, however, is unrelated to the metrics that have been 

utilized from the hierarchy generation mechanism for the construction of the 

optimized hierarchical structure. For example when the generation objectives 

enforce the formation of robust to mobility domains, the speed and direction of 
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nodes is required so that are grouped based on their mobility similarities. To the 

contrary, during the maintenance the nodes may have access only to information 

independent of the mobility characteristics of the neighboring nodes (i.e. IDs of the 

neighboring nodes). 

• A2. Node Dependent Local Maintenance. The approach (A2), as opposed to the 

previous two, is aware of the hierarchy generation objectives and the 

corresponding schemes attempt to maintain the “quality” of the generated 

hierarchy by utilizing metrics related to these objectives. However, the 

maintenance decisions are based on information gathered only from the immediate 

neighbors (e.g. one hop neighbors). 

• A3. Domain Dependent Local Maintenance. Like scheme (A2), A3 utilizes 

relevant, to the hierarchy generation objectives, information for maintaining the 

“quality” of the hierarchical structure; but unlike A2, A3 bases its restructuring 

decisions on information collected from the entire neighboring domains. Clearly, 

this approach requires the most overhead but it is expected to have the more 

beneficial impact on the maintenance of the hierarchical structure’s quality. 

7.4 Local Maintenance Representative Schemes  

This section provides representative schemes from each of the four hierarchy 

maintenance classes. These schemes will be able to provide a better insight on the 

characteristics of the local maintenance algorithms of each of the hierarchy classes 

that constitute the taxonomy defined above. 
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• A0. Random. As its name reveals, the random maintenance mechanism is 

probabilistic. Specifically, the nodes seeking to join a domain, randomly select one of        

available neighboring domains with respect to the uniform distribution. If kV  is the 

set of neighboring domains iC  of node k  defined as: 

{ }1 hop:  s.t. k
i iV C j C j k= ∃ ∈ ←⎯⎯→  

then node k  selects a domain iC  with probability ( )k ip C , where 

( ) 1
k i k k

p C p
V

= =                                                         (7.1) 

Given the selection probabilities (7.1), node k  generates a random number 

[ )0,1kr U∼ , which defines the neighboring domain zC  to join as follows: 

( ){ }1, : 1k
z k k kC z V z p r z p+⎡ ⎤⎡ ⎤= ∈ ∩ − ⋅ ≤ < ⋅⎣ ⎦⎣ ⎦Z                           (7.2)     

This scheme belongs in class A0 since it obtains the maintenance decisions 

probabilistically, so the knowledge of any metric related to the characteristics of 

neighboring nodes is not required. 

 

• A1. Lowest ID (LID). The lowest ID (LID) scheme requires that each node owns 

a unique ID. The lowest ID node among the nodes of each domain iC  determines the 

ID of this domain. The latter domain naming approach results into conflict free 

naming of the generated domains due to the uniqueness assumption of the node IDs. 

When a node k  seeks to join a new domain, it selects the lowest ID domain zC  

among the set  kV  of its neighboring domains. 
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( )( )arg min
k

z

z z
C V

C ID C
∈

�                                                   (7.3) 

where, 

( )iID C : is the ID of the thi  cluster iC  

This scheme belongs to class A1 of local maintenance schemes due to the utilization 

of information (unique node ID) that is not related to any of the hierarchy generation 

objectives for the network performance improvement. 

• A2. Node Dependent Cost Function. This scheme relies on metrics relevant to 

the objectives of the hierarchy generation phase. Even though the metrics are 

relevant, their availability is limited. Each node is aware of the value of these metrics 

from its immediate (one hop) neighboring nodes only. For example if the hierarchy 

generation objective is to construct robust to mobility domains by grouping together 

nodes with similar mobility characteristics (speed, direction); a node, which relies on 

a maintenance scheme of A2 class, seeking to join a new domain; will join the same 

domain as its neighboring node with the more similar mobility characteristics (speed, 

direction). In cases where multiple choices exist (multiple neighbors present the same 

degree of metrics similarity), a tiebreaker rule is applied (i.e., the node joins the 

domain of the similar neighbor with the lower ID). 

• A3. Domain Dependent Cost Function. This scheme, similarly to the previous 

scheme, uses relevant metrics to the objectives enforced during the hierarchy 

generation phase. Whereas, the availability of these metrics is less limited compared 

to the schemes of class A2, since the metrics are being collected from the entire 
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neighboring domains and not just from the immediate neighboring nodes. The 

selection of the domain to join among the candidate domains happens by computing 

locally the same cost function utilized in the hierarchy generation phase, for each one 

of the candidate selections. The selection which results into the local domain 

configuration with the best cost becomes the dominant selection of the node. For 

example, assume that the hierarchy generation objective  is the construction of 

domains robust to mobility and is represented from the following cost function: 

 

( )
,

2

2

1 , 1

min
z

z
i j

CK

rC z i j

J C U
= =

⎛ ⎞⎡ ⎤
⎜ ⎟= ⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠
∑ ∑                                                    (7.4) 

where, 

 

Parameter Definition 
K  Number of generated clusters 

iC  Cluster i 

iC  Size of cluster i 

,i jrU  Relative Velocity of nodes i, j 

 

A node i , which utilizes a local maintenance scheme of class A3 and seeks to join a 

neighboring domain, will collect the appropriate metrics from all the nodes of the 

neighboring domains. Then for each possible local domain configuration it will 

compute cost function (7.4) by utilizing the metrics collected and its own metrics. 

The selection that results to the lowest cost domain configuration will become the 

dominant configuration.  
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The following section provides an indicative example on the application of the 

representative local maintenance schemes described in this section and their effect on 

the maintenance of the hierarchical structure quality, with respect to the applied cost 

function.  

7.5 Sample Application and Indicative Performance of the Representative 

Local Maintenance Schemes 

For providing both a basic understanding of the local maintenance schemes’ 

functionality and a representative view of their performance subject to the 

preservation of the hierarchical structure’s quality, this section utilizes one of the 

introduced cost functions and the corresponding metrics for the generation of 

hierarchy. Then, each of the local maintenance schemes is applied appropriately and 

the cost of the maintained structure is computed and compared to the optimal. 

7.5.1 Representative Hierarchy Generation Objective 

Consider as hierarchy generation objective the construction of robust to mobility 

domains by grouping together nodes of similar mobility characteristics. In the 

hierarchy generation phase the domains are formed by optimizing the cost function 

(7.2) using the SA algorithm. 

( )
,

2

2

1 , 1

min
z

z
i j

CK

rC z i j

J C U
= =

⎛ ⎞⎡ ⎤
⎜ ⎟= ⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠
∑ ∑                                          (7.5) 

where,  

iC : Cluster i 

iC : Size of cluster i 

,i jrU : Relative Velocity of nodes i,j 
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The relative velocity 
,i jrU of two nodes i , j is defined from (7.6), (7.7) and (7.8). 

, , ,

2 2
i j i j i jr X YU U U= +                                             (7.6) 

,
cos cos

i jX i i j jU S Sθ θ= −                                   (7.7) 

,
sin sin

i jY i i j jU S Sθ θ= −                                     (7.8) 
 

where, 

iS : Speed of node i 

iθ : Direction of node i 
 

Assume the network and optimized hierarchy of Figure 7.. Due to mobility, node 11 

changes the topological structure of the network and seeks to join a neighboring 

domain. Such an event triggers the maintenance phase. The representative schemes 

introduced above are being applied so that their impact on the “quality” (cost) of the 

maintained hierarchical structure can be evaluated.  

 

 
 
 
 
 
 

 
 
 
 

Figure 7.2. Topological change triggering the application of local maintenance 

 

Assume also that the mobility metrics - speed (Sp) and direction (Dr) - of the nodes 

are a given in Table 7.1.  
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Table 7.1. Mobility characteristics of the nodes 

 

7.5.2 Application of the Local Maintenance Schemes 

Figure 7.3 presents the domain selections made by Node 11 (from Figure 7.) by 

applying each one of the representative schemes: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3. Hierarchy resulted by the application of the representative schemes 

ID Sp Dr ID Sp Dr ID Sp Dr
1

2

3

5

6

4

5

45

60

7

8

9

5

6

45

60

10

11

124

3

3

4

45

30

45

2 30

0

0

0

0 0

0

0

0

ID Sp Dr ID Sp Dr ID Sp Dr
1

2

3

5

6

4

5

45

60

7

8

9

5

6

45

60

10

11

124

3

3

4

45

30

45

2 30

0

0

0

0 0

0

0

0

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

1
3
1
3

1
3
1
3

1
3
1
3

 

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

 

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

A0 A1

A2 A3

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

1
3
1
3

1
3
1
3

1
3
1
3

 

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

 

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

A0 A1

A2 A3



 229

The selection process followed by Node 11 by applying each one of the local 

maintenance schemes is described below: 

• A0 (Random): Node 11 detects three neighboring domains, and will decide to 

join randomly one of these with respect to uniform distribution. The probabilities 

of Node 11 ( 11p ) for joining any of the neighboring domains iC are: 

( ) ( ) ( )11 1 11 2 11 3
1
3

p C p C p C= = =  

So, Node 11 can equiprobably select each one of the neighboring domains to join, 

resulting into different hierarchy configuration costs, as it is shown later  

• A1 (Lowest ID): Node 11 will decide to join domain 1C  because it has the lowest 

ID among its neighboring domains: 

1 2 31, 5, 9C C C= = =  

• A2 (Node Dependent Cost Function): With respect to speed and direction values 

given in Table 1, Node 11 has speed 4m/s and direction of 45 degrees. The 

neighboring nodes of Node 11 and their corresponding domains are represented 

from the following (node ID, domain ID) pairs: 

( ) ( ) ( )1 2 32, 1 , 5, 5 , 9, 9C C C= = =  

Node 5 has the closest match in mobility with Node 11. Thus Node 11 will select 

to join the same domain as of Node 5 ( )2 5C = . 

• A3 (Domain Dependent Cost Function): Node 11 collects the appropriate 

metrics (e.g. speed and direction) from each one of the nodes lying in its 
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neighboring domains. Using function (7.5), Node 11 evaluates the cost of the 

resulted maintained structure in the case of joining each of its neighboring 

domains. The resulted costs are provided from the following (domain ID, cost) 

pairs: 

( ) ( ) ( )1 2 31,  81.77 , 5,  26.77 , 9,  25.13C C C= = =  

Thus Node 11 will pick to join domain ( )3 9C = , which results in the hierarchical 

structure with the lowest cost among the various choices. 

7.5.3 Cost Performance Comparison of the 4 Local Maintenance Approaches 

For this example, each scheme results in a different hierarchical structure with 

different cost (“quality”). Table 7.2 below reveals the cost of the maintained 

hierarchy for each scheme applied in this example. 

Approach Cost 
A1. Objectives Independent (LID)  A1C = 81.7689  
A2. Node Dependent (A2) A2C = 26.7673  
A3. Domain Dependent (A3) A3C = 25.1318  
A0. Zero Information (Random)  A1 A2 A3C C C∨ ∨  

Table 7.2. Cost of the hierarchy after the application of the various Local 
Maintenance schemes 

 
A couple of indicative and very important observations are: 

• The lowest cost (best hierarchy) is provided from approach A3 scheme. The 

application of approach A3 schemes is expected to perform best, because it takes 

into consideration metrics from the entire neighboring domains, which are also 

relevant to the generation objectives. The drawback of the maintenance schemes 
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of this approach is the large overhead introduced for the collection of the 

appropriate information. Whereas, the “quality” of the maintained hierarchy 

compensates for this drawback. 

• Even though, the Random scheme of approach (A0) uses no metrics for the 

selection process (zero overhead), it is statistically expected to perform better than 

the schemes of approach A1, such as the LID, with respect to the “quality” of the 

maintained hierarchy. 

7.6 Impact of Maintenance Schemes on Domain Quality 

This section shows that the impact of the schemes on the cost of the hierarchy for 

the specific example given in the previous section is representative of the generally 

expected performance of the corresponding approaches. From the cost functions 

introduced in chapter 4, two of them have been used to construct optimized 

hierarchies. Then, for a pre-specified amount of time, the various local maintenance 

schemes have been applied. The cost of the maintained hierarchy was being evaluated 

in pre-specified intervals of time, so that samples of the maintained hierarchy’s cost 

can be obtained throughout the application of each of the schemes. These samples are 

sufficient to characterize the impact of the each of the schemes and their 

representation classes on the maintained hierarchy quality. 

7.6.1 Impact of Schemes on “Balanced Size” Domains 

On a network of 100 nodes 10 domains were defined utilizing the hierarchy 

generation mechanism based on the SA algorithm. The hierarchy was generated with 
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respect to the “balanced size domains” objective. By optimizing (minimizing) the 

following cost function (see chapter 4):  

( )( )2 2
1( ) min ,...., KC

J C Var C C=                                       (7.9) 

10 domains of 10 nodes each were obtained. Then, for 500 seconds of network time, 

the representative maintenance schemes of approaches (A0), (A1) and (A3) were 

applied on the optimized hierarchy.  

 

 

 

 

 

 

 

Figure 7.4. Impact of three maintenance approaches on the “balanced size” domains 

 
 
Figure 7.3 shows the average cost per second (out of 100 applications) of the 

maintained hierarchy. The topology was changing every second with respect to 

Random Waypoint Mobility (RWPM) model, with maximum speed 10m/s and no 

pause time. For every network second, the cost of the maintained hierarchy was 

evaluated using cost function (equation 7.9). 

As expected scheme (A3) performs the best (but also causes more overhead). 

Interestingly, the Random scheme (A0) maintains better the “quality” of the hierarchy 
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than the LID scheme (A1), even though does not collect and utilize any information 

from the neighboring nodes or domains (e.g. does not require any overhead). 

7.6.2 Impact of Schemes to “Robust to Mobility” Domains 

A second experiment generated 6 domains in a network of 100 nodes. This time 

the cost function (equation 7.5) was applied, resulting into the grouping of nodes with 

similar mobility characteristics. After obtaining the optimized hierarchical structure, 

each of the introduced local maintenance schemes, representing the four maintenance 

classes, were applied for 250 seconds. The topology of the network was changing 

every second with respect to Reference Point Group Mobility (RPGM) model [66] (6 

groups of nodes with distinctive mobility characteristics were predefined, so the cost 

function applied had to locate these 6 mobility groups – optimal grouping). Figure 7.5 

presents the average cost of the maintained hierarchy per second (out of 100 

applications) for the various maintenance schemes. 

 

 

 

 

 

 

 

Figure 7.5. Impact of maintenance approaches on the “robust to mobility” domains 
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Similarly to previous scenario (e.g. “balanced size” domains), approach (A0) 

performs better than (A1), but both of them perform worse compared to (A3). Also, 

by comparing (A2) with (A3), (A3) performs better (as expected due to the larger 

amount of information it utilizes for the maintenance decisions). 

7.7 Conclusions 

This chapter categorizes various local maintenance approaches, with respect to: 

a) whether they are aware of the hierarchy generation objectives utilized during the 

generation phase, and b) the amount of information available to them. We show that 

by ignoring the local maintenance algorithm, hierarchy generation may end up 

harming the performance of the network instead of improving it. The maintenance 

algorithm has to be designed in accordance to the performance objectives required. 

The most commonly used approach applied today, the Lowest ID approach (A1), 

consistently performs the worst. Better for both quality and overhead is a Random 

Approach (A0). However, tailoring the maintenance to the hierarchy generation 

objectives consistently maintains the best quality hierarchy, even though extra 

overhead is required for the collection of the appropriate information. It is shown, for 

example, how simple a balanced size hierarchy can be maintained over 5x longer, 

while more complex hierarchies, that take into account factors such as mobility, can 

be maintained over 100x longer. This longevity is critical to maintaining the sort of 

effective and powerful network needed relying only on local information and 

decisions. In this fashion the reapplication interval of the hierarchy generation 

mechanism is prolonged, resulting in less overhead and faster reaction to the network 

dynamics. 
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Chapter 8: Network Applications of Hierarchy Generation 
Mechanisms 

 
 
 

8.1 Introduction 

The hierarchy generation and maintenance framework being developed has been 

tuned and evaluated, using a set of indicative cost functions. These cost functions 

represent hierarchy generation objectives, which are not directly related to any of the 

networking functions (e.g. routing, security, QoS). The hierarchy generation and 

maintenance framework is not customized to specific objectives and aims on the 

improvement of the network performance. To achieve the latter, the appropriate cost 

functions have to be introduced and optimized. These cost functions will represent the 

performance aspects of the network required to be improved.  

In order to apply and evaluate the ability of the introduced mechanisms to 

construct hierarchical structures that take into consideration and improve realistic 

performance aspects of the networking functions, a new set of cost functions has been 

introduced. These cost functions are directly related to the networking functions and 

performance metrics, rather than focusing on the physical characteristics of the 

participating nodes and generated domains. Specifically in this dissertation, the SA-

based framework has been applied for the generation of hierarchical structures aiming 

on the improvement of routing and topology control.  

A direct application of the developed hierarchy generation framework is the 

reduction of power consumption due to transmissions. The transmission power is one 

of the dominant elements of the node’s power consumption characteristics. 
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Specifically, the approach utilizes the SA-based mechanism to determine the optimal 

assignment of transmission power (transmission range) to each of the participating 

nodes such that the network is 2-d connected but also the average power utilized is as 

low as possible. The conservation of power in wireless environments that consist of 

finite power portable devices is crucial for the survivability and lifetime of the 

network.  If this is not taken into account, nodes soon will start failing resulting in 

partitioned networks unable to provide services to the participating users. Moreover, 

by controlling the transmission power, the performance of MAC and subsequently of 

the network improves due to the lower number of collisions and retransmissions. The 

generation of power consumption aware hierarchical structures can be beneficial for 

the connectivity, survivability and lifetime of the network. Section 2 presents the 

details of the approach along with the metrics and cost functions introduced for the 

generation of the corresponding hierarchical structures. 

Furthermore, another direct application of the hierarchy generation framework is 

on the improvement of hierarchical routing. The application of routing in a 

hierarchically organized network results into paths that are longer with respect to hop 

count than the paths that could be established in a flat network. This is the negative 

effect of abstraction resulting from the aggregation of information happening for each 

group of nodes. Due to the aggregation, the routing has an abstracted view of the 

network topology, which results in suboptimal path lengths. The latter suboptimality 

could potentially have serious consequences on the performance of the network. For 

example, the longer path lengths may harm the end-to-end delay performance and the 

throughput of the network (i.e. the transmitted packets will live longer into the 
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network causing heavier load and more collisions in MAC, resulting in larger number 

of dropped packets). The cause of the suboptimality in most of the cases is that the 

hierarchy generation mechanism does not take into account this side-effect.  Since the 

SA-based mechanism is powerful and flexible enough to combine and satisfy 

multiple objectives, the improvement of hierarchical routing path length 

suboptimality can be performed in conjunction with other objectives by optimizing 

the appropriate multi-objective cost functions. The details of the approach for the 

reduction of hierarchical routing path length suboptimality are provided in section 3. 

8.2 Hierarchy Generation for Power Control and Connectivity Assurance  

Ad hoc networks are the new networking technology trend due to their promising 

characteristics. These characteristics accommodate better the requirements imposed 

by the commercial and military world. Most of the reference applications for these 

networks assume devices that are of finite power. The validity of the latter 

assumption is justified from the characteristics of the existing technology (web 

enabled cell phones, PDAs, laptops, PPCs). The objective of the ad hoc networks 

existence is to accommodate light weight, battery powered portable devices. Because 

of the finite power limitation, the appropriate mechanisms have to be introduced for 

the efficient utilization of the available power. A first step towards this direction is 

the minimization of the unnecessary power utilization, wherever possible.  

An active networking device consumes significant portion of its power for 

communications and more specifically for transmissions. Therefore, the proposed 

approach focuses on minimizing the average transmission power by adjusting 

appropriately the transmission powers of the participating entities subject to the 
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preservation of network connectivity. The network connectivity requirement is 

essential since the utilization of lower transmission power from the participating 

entities could result in partitioned networks. The enforcement of the latter 

requirement (constraint) in the SA-based optimization process will control the 

achievable minimum average power assignments that result in connected networks. 

The fundamental principal of the mechanism introduced for optimal transmission 

power assignments, is the grouping of the participating entities with respect to their 

topological proximity. After the grouping has occurred, the intra-domain and inter-

domain connectivity of the network is ensured from the application of the appropriate 

heuristic mechanisms. Thus, both network connectivity and optimization of the 

average node transmission power assignments are achieved.  

The development of the mechanisms is based on the assumption that the 

transmitted power utilized from the nodes is proportional to the transmission range. 

The nodes are grouped with respect to their relative proximity characteristics since it 

is expected that the members of the same domain communicate with each other on a 

regular basis (e.g. intra-cluster communication for control signaling). Hence, it is 

preferable these members to be topologically close. In the case of the existence of 

information that requires inter-cluster communication, dedicated nodes (Border 

Routers - BRs) are responsible for the forwarding of this information through the 

hierarchy until it reaches the destination domain. For ensuring the inter-cluster 

connectivity the assignment of the appropriate nodes as BRs is required. The BRs 

selection mechanism has also to be aware of the transmission power optimization 

(minimization). The connectivity of BRs in this architectural framework is sufficient 
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for ensuring network connectivity, since the intra-cluster connectivity will have been 

established in an earlier stage of the mechanism. 

For the grouping of nodes the introduced SA-based algorithm has been applied 

on a representative cost function, which is related to the topological proximity of the 

nodes. The metrics required for the evaluation and optimization of the corresponding 

cost function, are related to the topological positions of the nodes. This information 

can be collected from GPS devices, attached to the nodes and can be stored in an 

accessible centralized or distributed database. Furthermore, the same information is 

required from the heuristic algorithm responsible for the assignment of transmission 

range (transmission power) to the participating network entities. The heuristic 

algorithm is initially applied locally to each one of the generated domains, so that the 

average node transmission power is minimized subject to intra-domain connectivity. 

Moreover, for ensuring network connectivity, it is necessary that the generated 

domains are connected. Towards achieving inter-domain connectivity the set of 

candidate BRs has to be determined. Upon determining this set, a heuristic algorithm 

is applied for the selection of appropriate transmission ranges to the BRs, so that both 

inter-domain connectivity can be established and minimization of the average node 

transmission power can be accomplished. The description and characteristics of the 

heuristic algorithm are provided in a subsequent section. The following section 

surveys some of the most cited work done in the area of transmission range control. 

8.2.1 Related Work on Transmission Range Control 

In this section we refer to some representative work on the power control 

problem from the perspective of network clustering. The existing work problem 
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comprises of techniques that try to identify the optimal transmit power to control the 

connectivity of the network. In [42], the power control problem is viewed as a 

network layer problem, and the COMPOW protocol is proposed. The work in [43] 

proposes that each node has to adjust its transmission power such that its connectivity 

degree (number of one-hop neighbors) is bounded. ElBatt et. al. in [41], through the 

transmit power control, make an attempt to optimize the average end-to-end 

throughput by controlling the degree of the nodes. In [44] a distributed topology 

control algorithm is proposed. The latter technique is based on the utilization of 

direction information. Kawadia and Kumar in [45] propose the CLUSTERPOW 

algorithm, which aims on the increase of network’s capacity by increasing spatial 

reuse. The algorithm consists of simply using the lowest transmit power level p , 

such that the destination is reachable (in multiple hops) by using power levels no 

larger than p . The transmission range control mechanism proposed in this 

dissertation differs from the existing ones, since it is part of a more general hierarchy 

configuration framework. The same mechanism (SA) can assign transmission ranges 

to the participating entities and configure the network hierarchy at the same time. 

Such an approach has the advantages of simplicity, efficiency and robustness, since 

the need for interfacing among different mechanisms has been eliminated. The details 

of the transmission range control mechanism are provided in the following section.  

8.2.2 Clustering and Transmission Range Control Algorithms 

This section presents the algorithms and techniques that constitute the 

transmission range control mechanism for optimizing (minimizing) the average 

transmission power. The mechanism consists of four stages: 
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• Grouping of nodes 

• Intra-cluster transmission range assignment 

• Selection of BRs  

• Inter-cluster transmission range assignment 

The details for each of the four stages follow. 

Stage 1: Grouping of Nodes 

For the grouping of nodes with respect to their topological proximity, the SA-

based framework has been applied for the optimization of the corresponding cost 

function. The metrics that constitute the cost function involve the topological 

coordinates of the nodes.. The objective is to group together nodes that are 

topologically near, since it is expected that this will reduce the average node 

transmission power (e.g., transmission range proportional to transmission power) for 

achieving domain and network connectivity. The corresponding cost function, which 

upon its optimization, will result in the grouping of the nodes with respect to their 

relative proximity is: 

( )
1 1

min
iCK

ij iC i j
J C x z

= =

= −∑∑                                              (8.1) 

where, 
C : Domains map 
K : Number of generated clusters  
iC : The cardinality of ith cluster  

ijx : The coordinates of the jth node on the ith 
 cluster 

iz : The center of mass coordinates of the ith cluster 
 

Upon the optimization of the above cost function from the SA-based mechanism, 

a corresponding hierarchical structure will be generated. This stage is followed by the 
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selection of the optimal transmission ranges to be assigned on each one of the nodes 

in the generated domains for establishing intra-domain connectivity. 

Intra-Domain Transmission Range Assignment 

After optimizing the grouping of nodes with respect to their topological 

proximity, the heuristic mechanism for assigning the optimal (minimum) transmission 

ranges to the nodes for the establishment of intra-domain connectivity takes over. The 

latter mechanism operates in each generated domain iC  separately and its objective is 

formulated from the cost function (8.2) below: 

( ) ( )
1

min
iC

i ij
j

J C TxRange node
=

= ∑                                      (8.2) 

subject to intra-domain connectivity  
 
Since the above problem is NP-complete, for the optimization of (8.2), a faster 

suboptimal heuristic algorithm has been proposed instead. The objective of the 

algorithm is to assign to every node of a specific domain the lowest possible 

transmission range so that intra-domain connectivity is ensured. The details of the 

heuristic mechanism, applied to each domain kC  separately, are provided from the 

following pseudo code: 
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Step   I: Order the distances of each pair of nodes in the domain in ascending order. Store it in 

the  
              vector SortedPairDistances 
Step II:  Pick the first entry (lowest distance) from the SortedPairDistances and then store the   
              corresponding pair of nodes in the ConnectedList list and the link in the LinksList 

list.  
              Remove this entry from the  SortedPairDistances. 
Step III: Until the kConnectedList C==  

  Step IV: Pick the first entry – link ( )node ,nodei j from the SortedPairDistances 

such   
  that one of the following is satisfied: 

1. node  & nodei jConnectedList ConnectedList∈ ∉  

2. node  & nodei jConnectedList ConnectedList∉ ∈     
  Remove this entry from the SortedPairDistances 
Step V:   Add the nodes ( )node ,nodei j  in the list ConnectedList  

Step  VI: Add the link to the LinksList list 
Step VII: Go to Step III 
   
Upon the completion of the above algorithm the selected links of the connected domain are 
stored in LinksList along with their distances. A sample entry of this list is the following: 

nodei node j ijdist
 
 

Based on the entries of LinksList the transmission range assignments for each 

domain can be determined. The assignment procedure (i.e. for the heuristic 

optimization of 8.2) is described from the following pseudo-code: 

 
   for (each entry of the form ( )jnode ,node ,i ijdist ) 
  {   if ( nodei has not been assigned a iTxRange )  

 i ijTxRange dist=  
else { 
        if ( i ijTxRange dist< ) 
 i ijTxRange dist=  
       }    } 
 

Generally, in the LinksList among all the distances of a node to its neigboring 

nodes in the domain, the assignment procedure selects the maximum of them. This 
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selection guarantees intra-domain connectivity. Whereas, in the case where the nodes 

select the lowest distance, it may result in two neighboring nodes selecting each other 

but not having connectivity to any other member of the group, resulting in partitioned 

domain.  Furthermore, the assignment procedure results also in the establishment of 

bidirectional links among the members of a particular domain.  

After having applied the above mechanisms, all the registered members of a 

domain have been assigned a transmission range, which can be translated into a 

specific transmission power. This transmission range (power) minimizes the average 

power required for intra-domain connectivity (e.g. the nodes can deliver packets to 

any other node of the domain) prolonging the lifespan (connectivity) of the 

corresponding domain.  

Having ensured intra-domain connectivity, network connectivity (i.e. inter-

domain connectivity) has to be established. The Border Routers (BRs) are responsible 

for the domains’ outbound connections. The BRs are selected among the nodes of the 

domain, which have at least one connection to a member of neighboring domain. The 

BRs serve as the exits (entrances) from (to) the domain. The following paragraphs 

describe the selection of BRs procedure and how they are assigned transmission 

ranges such that the average power required for inter-domain connectivity is 

optimized and network connectivity is quaranteed.   

Border Routers Selection Mechanism 

Having defined the domains and assigned the appropriate transmission range to 

each node for minimum power intra-domain connectivity, inter-domain connectivity 

must be established along the same lines. The domains communicate each other 
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through a set of nodes called BRs. The issue under consideration is how these BRs 

are being selected, such that the network is connected and the transmission power 

required for ensuring inter-domain connectivity is minimized.  

Firstly, the selection mechanism of BRs is presented, followed by the description 

of the heuristics that assign the appropriate transmission range to each one of the 

selected BRs. The mechanism for the selection of BRs is based on the fundamental 

principal that for a pair of domains the nodes assigned the role of BR, are the nodes 

that present the minimum distance among all the pairs of nodes between the two 

domains. The BRs selection mechanism is represented from the following pseudo 

code: 

 
   for i=1,…,K-1 (K: number of domains) 
            for j= i+1, …,K 
    determine the nodeij and the nodeji 
    among all the nodes of domain i and 
    domain j respectively, such that 
                      min(dist(nodeij – nodeji)) 
            end 
     end  
 

 
The above procedure determines the set of candidate BRs: 

{ }(1) (2) ( 1) ( ), , , ,C C C K C K−= "B B B B B     

where, 

{ }( ) : min ,C i ij ij jinode node node j i= − ∀ ≠B  

The objective is the establishment of the optimal set of candidate BRs, which will be 

a subset of set B . The above algorithm determines two BRs per every possible pair of 

domains, so this density of BRs has to be optimized (minimized) appropriately for the 



 246

establishment of the inter-domain connectivity (i.e. there is always a path from every 

domain i  to every other domain j ( i j≠ )) subject to the minimization of the average 

transmission power utilization. The description of the heuristics responsible for the 

selection of the set of BRs among the candidate ones and the assignment of the inter-

domain transmission ranges is provided in the subsequent section. 

Inter-Domain Transmission Range Assignments 

Since the candidate set B of BRs has been determined, the assignment of the 

appropriate transmission ranges to a subset of them is required for minimizing the 

average transmission power for inter-domain connectivity. By treating B  as a 

domain, the mechanism applied for the assignment of transmission ranges to the 

nodes of a domain can be reused without any major modification. The only twist on 

the functionality of the mechanism is required on the termination condition. For intra-

domain connectivity the procedure terminates when all nodes in the domain get 

connected. Whereas, the same mechanism for establishing inter-domain connectivity 

(over the BRs), has to terminate when all the domains get connected.  

The application of the set of mechanisms presented above results in a connected 

hierarchical structured network, where the average transmission power assigned to 

the participating nodes has been minimized. The latter is being validated in the next 

section, where the corresponding simulation results related to the mechanism 

proposed are being analyzed and evaluated. 

8.2.3 Performance Evaluation 

This section provides the observations and conclusions obtained from the 

simulation analysis of the transmission range control mechanism introduced earlier. 
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Specifically, indicative results for the average transmission power savings are 

presented in the form of shorter transmission ranges assignments for ensuring 

network connectivity. The proposed mechanism is being compared to the scenario 

where all the nodes utilize the same and the shorted possible transmission range so 

that the network is connected. The indicative resulting network topologies for both 

scenarios (proposed mechanism, common transmission range) are being provided in 

figures 8.1 and 8.2, respectively. These figures represent the results collected from 

experiments on networks of 100 nodes, which were uniformly distributed in an area 

of (1000m x 1000m) and were configured in 6 domains. 

The performance benefits of the proposed mechanism can be indicated by 

visually comparing the resulting topologies of figures 8.1 and 8.2.  The power 

utilization superiority of the proposed mechanism can be justified from the sparser 

resulting topology compared to the common transmission range approach. The 

sparsity of the links indicates that network connectivity can be achieved with smaller 

number of links. The proposed mechanism eliminates many of the unnecessary links 

as it can be observed by comparing figures 8.1 and 8.2. 

 

 

 

 

 

 

Figure 8.1. Network Topology by applying clustering and transmission range control 
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Figure 8.2. Resulting network topology by applying common transmission range 

 
The justification of the superiority of the proposed transmission range control 

mechanism with respect to the average required power for ensuring network 

connectivity is provided from the results of figure 8.3. The results represented from 

this figure are related to the per node transmission range assigned and average 

transmission range required from both approaches, such that network connectivity is 

guaranteed. Similarly to figures 8.1 and 8.2, the results of figure 8.3 correspond to a 

network of 100 nodes, which are uniformly distributed and organized in 6 domains in 

an area of (1000m x 1000m). 
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Figure 8.3. Transmission Range (max per cluster vs. avg. per cluster vs. node per 
cluster) 

 
The information represented from figure 8.3, is related to the performance of 

both the proposed mechanism and the common transmission range approach. 

Specifically, figure 8.3 exploits the per node transmission range assigned from the 

proposed mechanism, the average and maximum transmission range per generated 

domain and the shorted common transmission range required from the nodes for 

ensuring network connectivity. The superiority of the proposed approach over the 

assignment of a common transmission range is justified by comparing the average 

transmission range assigned with the maximum one. The lower is the transmission 

power of the nodes, the better is the energy conservation and the network 

survivability is improved considerably. Furthermore, the mechanism proposed 

benefits also the scalability of the network, since the generation of domains creates an 

inherent hierarchical structure. Equally advantageous for the network performance is 
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the lower density of the communications links, since fewer nodes will compete for 

accessing the shared media resulting in better MAC and end-to-end (delay, 

robustness) performance, due to the decrease on the number of collisions, 

retransmissions and packet drops. 

8.3 Using Multi-objective Domain Optimization for Routing in Hierarchical 

Networks 

Network hierarchy makes network protocols more scalable and robust, but also 

makes the network more complex and reduces performance. With routing protocols, 

hierarchy reduces overhead, routing table size, and convergence time, but can also 

cause sub-optimality (stretch) of the routing path length compared to the flat 

networks. With OSPF (Open Shortest Path First), for example, adding routing areas, 

with route aggregation done in Area Border Routers, can significantly reduce link 

state advertisements, link state database and convergence time, but can also increase 

inter-area path length. Existing research has produced many excellent intra- and inter-

domain routing schemes and different proposals for aggregation at border routers 

(BRs). As important, however, is the design of the routing hierarchy itself. This 

section presents quantified comparisons of different hierarchical construction 

techniques for a simple hierarchical routing protocol in a 100 node network. When 

the hierarchy does not take into account routing path length suboptimality, we show 

the potential for significant stretch (e.g., on average more than doubling the shortest 

path for nodes under 6 hops apart). When we use multi-objective optimization, that 

includes the goal of minimizing stretch, the stretch is significantly reduced (e.g., 

reducing the stretch by approximately 50% for the above example). In large or 
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dynamic environments, the introduced SA-based framework is able to produce 

optimized hierarchies quickly by trading a small loss in optimality for a large 

reduction in optimization time. The paper analyzes the choice of multi-objective cost 

function in this environment and concludes that simpler functions produce the best 

overall results. 

Most networking protocols typically only work well up to some limited size, 

whether size is measured in terms of the number of nodes, diameter (hops) or node 

density (number of neighbors). As networks get larger, scaling protocols presents 

challenges in both the relatively stable wired internet and, more recently, in the more 

dynamic wireless ad hoc networks. This is clearly a challenge for routing protocols, 

where without careful design routing performance can degrade significantly, as 

measured by: a) signaling overhead (e.g., bandwidth to send routing updates), b) 

convergence delay (e.g., to heal failed links), c) forwarding delay (e.g., due to large 

table size), and d) robustness (e.g., protection from misbehaving routers). There have 

been significant improvements in the scalability of flat routing protocols. Particularly, 

Fisheye State [48] and Hazy Sighted Link State (HSLS) [49] routing scale better than 

most flat routing protocols. Limiting link state updates by space (hop limit) or time 

(e.g., updates corresponding to far-away destinations are included with lower 

frequency than those corresponding to near-by destinations) improves scalability. 

Even these protocols, however, only scale so far before overhead or performance 

becomes prohibitive. 

Routing scalability has been a widely studied problem since the pioneering work 

by Kleinrock and Kamoun [46]. In their landmark paper [46], they discuss the 
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problems associated with scalability and the length of the route forwarding table in 

large packet switched networks. They conclude that hierarchical routing is a 

requirement for very large networks. 

In general, hierarchical routing groups routers into routing domains (also called 

clusters, Autonomous Systems, or areas) and one or more border routers (or 

landmarks) from each domain represent their entire domain to those outside. This 

process can be repeated iteratively with domains grouped into meta-domains 

represented by second level border routers. 

Creating an efficient hierarchical structure reduces the amount of information 

stored, processed, and distributed. This reduction results in bandwidth saving, faster 

healing of faults, faster table lookups, and greater robustness. For example, domains 

reduce overhead by allowing aggregation of externally advertised information (e.g., 

using an address/label prefix to identify all nodes in a domain/cluster [47]). As 

important, especially in dynamic networks, changes within a domain need only be 

propagated within the domain. Any routing algorithm that requires routers to know 

about every single destination becomes infeasible as the network grows, since the size 

of routing tables and traffic received by each node increases in direct proportion to 

the number of routers. 

The main disadvantage of hierarchy in routing is the sub-optimality of the path 

compared to shortest path routing. By isolating groups of nodes and aggregating 

control information, hierarchy causes routing to take an abstracted view of the 

network and not achieve optimal routing.  
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There has been a lot of design and analysis of hierarchical routing protocols and 

information aggregation in border routers (BRs) to provide the smallest overhead and 

routing table (compactness) for a given route suboptimality (stretch). As important, 

however, is the design of the routing hierarchy itself, which is the focus of this 

section. Choices include, for example, selecting how many levels of hierarchy, which 

nodes go in which domains, and what information to propagate at BRs.  

In most networks today, the hierarchy is manually generated and is typically 

more a function of administrative boundaries than performance optimization. In the 

Internet, for example, a hierarchy is manually created using an inter-domain routing 

protocol (typically BGP [50]) and an intra-domain routing protocol (typically OSPF 

[51]). Indeed, often, intra-domain routing protocols such as OSPF are manually 

divided into hierarchical routing areas. In dynamic networks, hierarchy is also 

increasingly being used, but is generally created automatically (e.g., [39][40][52]) and 

there is little analysis comparing different forms of hierarchy.  

This section presents quantified comparisons of different approaches to hierarchy 

construction and their effect on stretch. Initially, an overview of existing hierarchical 

routing work is given. Then the cost functions and schemes introduced for the 

minimization of the hierarchical routing stretch are presented, followed by their 

simulation analysis and evaluation. 

8.3.1 Hierarchical Routing Protocols 

The following subsections, initially overview the widely deployed OSPF 

hierarchical routing protocol, then discuss some integrated routing and distributed 

domain formation protocols (the theoretical bounded TZ and several hierarchical ad 
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hoc protocols). Finally, centralized domain formation (which can be combined with 

hierarchal routing protocols like OSPF) is presented. 

8.3.1.1 OSPF Areas 

Open Shortest Path First (OSPF) is a link-state routing protocol for a single 

Autonomous System (AS) [51].  Each router distributes its local state by flooding the 

AS with Link State Advertisements. Flooding allows all routers to maintain identical 

link-state databases describing the current AS topology. From its topology database, 

each router generates its routing table by calculating a tree of shortest paths. After the 

internal tree is created the external routing information is examined.  This external 

routing information may originate from another routing protocol such as BGP, or be 

statically configured (static routes).  External routing information is flooded unaltered 

throughout the AS.   

OSPF areas provide a two level tree, with only the special Area 0 being 

responsible for distributing routing information between non-backbone areas. 

Although all areas must be contiguous, the backbone connectivity can be established 

and maintained through the configuration of virtual links (through a non-backbone 

area).  

There are three main types of OSPF routers: Internal, Area Border, and AS 

boundary. Internal routers run a single copy of the basic routing algorithm. The Area 

border routers run multiple copies of the basic OSPF link-state algorithm (and 

separate link-state databases) for each area it is connected to. Area border routers 

condense the topological information a) of their attached areas for distribution to 

other areas, b) its cost to all networks external to the area to its internal routers. AS 
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boundary routers advertises external routing information throughout the AS.  The 

paths to each AS boundary router are known by every router in the AS. 

The topology of an area is typically invisible outside of the area. This isolation of 

knowledge enables the protocol to greatly reduce routing traffic as compared to 

treating the entire AS as a single link-state domain. Also, routing within the area 

(intra-area routing) is determined only by the area's own topology, lending the area 

protection from bad routing data. There are different kinds of non-backbone areas 

depending on the amount of aggregation at border routers [56]. This becomes a key 

choice in balancing routing overhead, table size, convergence time and routing sub-

optimality [57]. 

8.3.1.2 Thorup-Zwick (TZ) routing hierarchy 

The Thorup-Zwick (TZ) routing scheme [58] provably has worst routing path of 

no more than 3 times the optimal (flat) routing scheme (stretch-3) yet delivers a 

nearly optimal routing table size. TZ begins (step 1) by interactively selecting 

Landmarks [47] from the set of nodes. The selection itself is done in several rounds, 

with available nodes selected using a uniform random probability. At the end of each 

round, nodes join to their closest landmark. These Landmark selection rounds end 

when all clusters are below a certain size and we have a network with a two-level 

hierarchy. The essence of the TZ scheme is the right balance between the number of 

landmarks and the cluster sizes. In Step 2 every node calculates its outgoing port for 

the shortest path to every Landmark and every node in its cluster. Step 3 configures 

the node labels to reduce the table size (like CIDR address configuration). 
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Although this protocol is not practical in large dynamic networks, the importance 

of this work is that it shows that through the introduction of hierarchy in large 

networks and address/label configuration according to that hierarchy, it is possible to 

tradeoff a small loss in route optimality to significantly improve the scalability of 

networking protocols. Indeed, Krioukov, Fall and Yang [59] have shown that the 

stretch is actually much less than 3 for scale-free networks such as the Internet (i.e., 

where any of the 10,000 backbone nodes is at most approximately 6 hops from every 

other node). They show 70% of the routes are optimal and the average stretch is only 

around 1.1 (10% more than the shortest path).  

8.3.1.3 Hierarchical ad hoc routing Protocols 

There is a large diversity in the ad hoc routing protocols [60] [61], but amongst 

the most scalable are three that create a two level hierarchy. The Zone Routing 

Protocol (ZRP) [19] proactively maintaining routes to destinations within a local 

neighborhood (lowest level of the hierarchy). Reactive routing is used to determine 

routes to destinations outside the zone using peripheral nodes. Landmark Ad Hoc 

Routing (LANMAR [62] [63]) uses a combined link state and distance vector routing 

protocol using the Landmark idea [47], but without requiring predefined hierarchical 

addresses. The Optimized Link State Routing (OLSR) Protocol [64] uses multi-point 

relays to reduce the number and size of link state update messages. Each node 

determines a subset of its neighbors as multipoint relay nodes to propagate its link 

state updates. 
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8.3.1.4 Global hierarchy formation protocols 

The global approach to creating a hierarchy is a computationally-intensive 

centralized graph partitioning procedure using information from all network elements. 

While the graph partitioning problems is known to be NP-Complete, many heuristic 

solutions have been investigated including Kernighan-Lin [65] and Simulated 

Annealing [35] heuristics. Application of graph partitioning to create an efficient 

hierarchical structure began with the pioneering work by Steenstrup, Ramanathan, 

and Krishnan at BBN [52] [40]. They focused on the use of Kernighan-Lin to create a 

hierarchy for a single link state routing protocol. This work has been generalized to 

include any network functions and allow the use of different routing protocols [39]. 

Real time optimization has been shown even for large networks using Simulated 

Annealing [10] [54]. Finally, the complementary combination of global and local 

optimization to create hierarchical routing domains is described in [55]. 

8.3.2 Minimizing the hierarchical routing path length suboptimality 

It is known that the application of hierarchy introduces routing path length 

suboptimality. The objective is to propose solutions, independent of the hierarchical 

routing scheme applied, which will be able to minimize the suboptimality. The 

schemes introduced utilize the existing SA-based framework. Due to the utilization of 

the SA-based framework the difficulty of the design is mainly located on the 

introduction of the appropriate cost functions that consider the hierarchical routing 

path length (HRPL) suboptimality and attempt to minimize it. One of the novelties of 

the proposed approach is that the minimization of the routing path length 

suboptimality is attempted in conjunction with meeting also other hierarchy 
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generation objectives, unrelated to the routing suboptimality. Such an approach, 

attempts to exploit the multi-objective optimization capabilities of SA for the 

generation of hierarchies able to satisfy multiple performance objectives, 

simultaneously.  

Depending on the problem assumptions three different schemes are adopted for 

minimizing the HRPL suboptimality: 

• Scheme 1: Given the hierarchy the domains’ clusterheads (CHs) must be selected 

subject to the minimization of HRPL suboptimality. 

• Scheme 2: Given the set of CHs the hierarchical structure must be generated so 

that both the routing path length suboptimality is minimized and the hierarchy 

generation objectives are satisfied. 

• Scheme 3: This scheme combines schemes 1 and 2. The objective is the 

combined selection of CHs and generation of hierarchy so that both the HRPL 

suboptimality is minimized and other hierarchy generation objectives are 

satisfied.   

In the context of hierarchical routing, the CH as an entity is defined to be a 

special node that represents its domain in the hierarchical routing functions.  An 

example of such an entity is provided in section 3.3.1. 

8.3.2.1 Scheme 1: Selecting the CHs on a given hierarchical structure 

The assumption of this scenario is that the hierarchy has already been generated 

with respect to a set of pre-specified objectives that are not related to the routing path 

length suboptimality. Such objectives, as they have been presented in [53], could be 

the generation of balanced size or balanced diameter clusters, the minimization of 
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border routers, the grouping of nodes with similar mobility characteristics, or 

combinations of them. Given the hierarchical structure, a set S of special nodes (CHs) 

has to be selected, so that the HRPL suboptimality is minimized with respect to the 

applied hierarchical routing scheme R . The proposed cost function that represents the 

latter objective is: 

( ) ( ),
1

*

min

       subject to  

SDF

i R iS i

SD

J S HRPL FRPL

C F R
=

= −

∧ ∧

∑                                         (8.3) 

 
where, 

SDF : Set of source and destination pairs 
R : Hierarchical routing scheme applied 
,i RHRPL : Hierarchical routing path length (hops) for the ith S-D pair when R is 

applied 
iFRPL : Flat routing path length (Dijkstra’s hops) for the ith S-D pair  
*C : Optimal Clustering map with respect to a set of hierarchy generation 

objectives 
S : Set of CHs 

 
The optimization of (8.3) from the SA-based framework will provide the optimal 

set of CHs *S , which will minimize the HRPL suboptimality without affecting the 

hierarchical structure and the generation objectives it satisfies.  

8.3.2.2 Scheme 2: Generating the hierarchical structure given the set S of CHs 

As opposed to the previous scenario, in this scenario it is assumed that that set 

S of CHs is provided. The objective is to generate the hierarchical structure *C , 

which will satisfy a set of hierarchy generation objectives. These objectives can be 

independent of the HRPL suboptimality. The hierarchy generation process has to be 

aware of the HRPL suboptimality which will attempt to minimize given the set of 

CHs S  and a hierarchical routing scheme R . This scenario belongs to the multi-
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objective optimization class of problems, since the hierarchy generation objectives 

and the minimization of HRPL suboptimality is preferred to be satisfied 

simultaneously. Given that the cost function representing the non-HRPL hierarchy 

generation objectives is ( )HJ C then the cost function to be optimized for providing a 

solution to the multi-objective problem is: 

( ) ( ) ( )2
,

1

min 10

                  subject to  

SDF

H i R iC i

SD

J C J C HRPL FRPL

S F R
=

⎡ ⎤
= + ∗ −⎢ ⎥

⎣ ⎦
∧ ∧

∑                      (8.4) 

 
The optimization of (8.4) from the SA-based framework will provide that the 

hierarchical structure capable of simultaneously satisfying the set of hierarchy 

generation objectives and minimize HRPL suboptimality.  

8.3.2.3 Scheme 3: Combined HRPL minimization and hierarchy generation 

This scenario combines the two schemes described in sections 3.2.1 and 3.2.2. 

This scenario, as the scenario described in 3.2.2, can also be considered as a multi-

objective optimization problem. The difference with the scenario described in 3.2.2 is 

that the set S is not provided beforehand but needs to be optimally specified 

dynamically. The cost function that represents this scenario is: 

 
( ) ( ) ( )2

,, 1
, min 10

                           subject to  

SDF

H i R iC S i

SD

J C S J C HRPL FRPL

F R
=

⎡ ⎤
= + ∗ −⎢ ⎥

⎣ ⎦
∧

∑                                 (8.5) 

This scenario is the most complicated of the three since S  and *C  have to be 

constructed simultaneously.  
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8.3.3 Performance Evaluation of the HRPL minimization schemes 

Even though the schemes introduced are independent of the implied routing 

scheme R and the set of hierarchy generation objectives, in order to be evaluated a 

“generic” hierarchical routing protocol and a set of hierarchy generation objectives 

have to be assumed. Prior to the simulation analysis and evaluation of the proposed 

schemes, the assumptions of the experiments performed are presented. Initially, the 

HRPL suboptimality with respect to R is being quantified. Then the evaluation of the 

proposed schemes is done with respect to their ability on improving the HRPL 

suboptimality. 

 

8.3.3.1 Generic hierarchical routing protocol 

There are many different ways to route packets hierarchically. For the evaluation 

of the proposed schemes a simple generic hierarchical routing protocol is assumed. 

The behavior of the protocol differs depending on whether the source (S) and 

destination (D) belong (or not) in the same domain. In the case where the S-D pair 

belongs in the same domain, the protocol functions as an optimal flat routing protocol 

and the S-D distance (hops) is defined with respect to the S-D Dijkstra distance.  

When source S and destination D belong in different domains, the hierarchical routing 

functionality is represented from figure 8.4. 
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Figure 8.4. Simple Hierarchical Routing Scheme 

 

The important entities in this hierarchical routing scheme are the CHs and the 

border routers (BRs). The CHs abstract the domain in the inter-domain routing 

updates, and the BRs are nodes that have links to domains other than their own. The 

hierarchical routing is performed by having the source S send to its Cluster Head 

(CH), which in turn sends to a neighboring CH towards the domain of the destination 

D, through the corresponding Border Routers (BRs). 

The hierarchical route path length ( ),i j
k kHRPL S D  for the kth source destination S-D 

pair, where the source i
kS  belongs in domain i  and the destination j

kD  belongs in 

domain j ( )j i≠  is defined as: 

( ) ( ) ( ) ( ), , , ,i j i i i j j j
k k k kHRPL S D d S CH d CH CH d CH D= + +                (8.6) 

where, 
 

( ),i i
kd S CH : shortest intracluster distance from source i

kS  node to its iCH  

( ),i jd CH CH : shortest intercluster distance from the iCH  of the source node to the 
jCH  of the destination node, through neighboring CHs and BRs 

( ),j j
kd CH D : shortest intracluster distance from destination’s jCH  to the destination 

j
kD . 
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The intra-domain CH-BRs distances are defined by Dijkstra’s algorithm. Inter-

domain distances among CHs are defined by abstracting the network using only the 

CHs and BRs and then applying Dijkstra’s algorithm. 

8.3.3.2 Hierarchy Generation Objectives 

For the performance evaluation purposes a hierarchy generation objective has 

been selected from [53], which aims on the generation of balanced size clusters. The 

representative cost function is:  

( ) ( )2 2
1min ,...,H KC

J C Var C C=                                (8.7) 

 
where, 

iC : Cardinality (size) of ith cluster 

K : Number of generated clusters 
 

 

8.3.3.3 Quantifying HRPL suboptimality 

Prior to the evaluation of the proposed schemes some representative results 

related to the HRPL suboptimality will be provided, when the hierarchy generation 

process does not take it into account. For this purpose, the generic hierarchical 

routing protocol described above was applied on a hierarchical structure generated 

with respect to the balanced size clusters objective. In each generated domain the 

node with the lowest ID (LID) is selected as the CH. The following results (average 

over 100 experiments) quantify the size of the suboptimality for different optimal 

path lengths (Flat Routing Path Length - FRPL) in a network of 100 nodes where 4 

domains were generated (figure 8.5). 
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Figure 8.5. Simulated Network Topology 
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Figure 8.6. Quantification of suboptimality 

 

Figure 8.6 is representative of the effect of hierarchy on routing when it is not 

taken into account when this hierarchy is being generated. There are cases where the 

resulting hierarchical path is more than double of the optimal path length. This can 

significantly degrade the QoS performance of the network, since the packets will 

have to traverse more links causing more collisions on the MAC layer. Due to this 
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side effect, when HRPL K FRPL= ∗ , ,  1K K∈ >] , worse degradation may be 

introduced to the observed end-to-end delay endT  ( HRPL FRPL
end endT K T>> ∗ ) . 

8.3.3.4 Evaluation of the schemes 

The schemes proposed earlier have the ability to improve the HRPL 

suboptimality and at the same time to construct hierarchical structures that improve 

various other aspects of the network performance. For performance evaluation 

purposes an indicative non-HRPL hierarchy generation objective (generation of 

balanced size clusters) is enforced along with the minimization of hierarchical path 

length suboptimality. The simulation results demonstrated on figure 8.7 reveal the 

degree of effectiveness of each of the proposed schemes. These results correspond to 

a network of 100 nodes where 4 domains have been generated. The upper graph of 

figure 8.7 corresponds to the coexistence of 100 S-D pairs into the network and the 

lower graph  corresponds to the coexistence of 25 S-D pairs, respectively.  
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Figure 8.7. Comparison of the proposed schemes 

 

The main observation in terms of the schemes is that all of them improve the 

suboptimality. Scheme 1 (selection of CHs given the hierarchical structure) 

consistently outperforms the others by producing structures that provide paths that are 

at most 3 hops from the optimal, independently of the optimal path length. This can 

be explained due to the simpler form of its corresponding cost function (8.3) 

compared to the more complex (8.4) and (8.5). The SA algorithm that constitutes the 

cornerstone of the developed SA-based framework has been modified and adjusted 

for speed trading off its optimality. So, for complex cost functions with large solution 

spaces, the solutions obtained are more likely to be less optimal compared to the 

solutions obtained for simpler with smaller solutions spaces cost functions. Even 

though Scheme 3 attempts to solve a very complicated problem (simultaneously 

select the CHs and generate the hierarchy); manages to improve the HRPL 
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suboptimality and satify the non-HRPL objectives. Furthermore, it does this best 

when fewer S-D pairs coexist into the network, because of the smaller solution space 

of the optimization problem. Generally all 3 schemes perform better when less S-D 

pairs coexist (i.e. smaller solution spaces of the corresponding optimization 

problems). The performance (e.g. minimization of the HRPL stretch) difference 

among the three schemes proposed; becomes smaller because the optimization 

problem complexity is reduced, so the faster SA-based framework can converge to 

better solutions. 
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