

ABSTRACT

Title of Dissertation: NETWORK AND DOMAIN AUTOCONFIGURATION:

A UNIFIED FRAMEWORK FOR LARGE MOBILE AD
HOC NETWORKS

 Kyriakos Manousakis, Doctor of Philosophy, 2005

Directed By: Professor John S. Baras

Department of Electrical and Computer Engineering

Configuration management is critical to correct and efficient operation of large

networks. In those cases where the users and networks are dynamic and ad hoc,

manual configuration quickly becomes too complex. The combination of the sheer

number of nodes with the heterogeneity and dynamics makes it almost impossible for

the system administrator to ensure good configuration or even ensure correct

operation. To achieve the vision of pervasive computing, nodes must automatically

discover their environment and self-configure, then must automatically reconfigure to

adapt to changes.

Protocols such as DHCP, DDNS and mDNS provide some degree of host

autoconfiguration, but network administrators must still configure information such

as address pools, routing protocols, or OSPF routing areas. Only limited progress has

been made to automate the configuration of routers, servers and network topology.

This dissertation proposes the autoconfiguration of most host, router and server

information, including the automatic generation and maintenance of hierarchy, under

the same architectural, algorithmic and protocol framework. The proposed unified

framework consists of modules (DRCP, DCDP, YAP, ACA) responsible for the

entity autoconfiguration and from a modified and well adjusted general optimization

(Simulated Annealing) based algorithm for the domain autoconfiguration. Due to the

generality of the optimization algorithm, the generated hierarchy can improve

dynamically selected network performance aspects represented by appropriately

designed objective functions and constraints. An indicative set related to the physical

characteristics of the domains and node mobility is provided.

Even though SA has been adjusted for faster convergence, it may still be unable

to capture the dynamics of rapidly changing networks. Thus, a faster but suboptimal

distributed hierarchy generation mechanism that follows the design philosophy of

SA-based mechanism has also been introduced.

Inevitably, due to network dynamics, the quality of the hierarchy will degrade. In

such scenarios, the frequent reapplication of the expensive optimization based

hierarchy generation is prohibitive. Hence, for extending the domain formation

framework, distributed maintenance mechanisms have been proposed for

reconstructing the feasibility and quality of the hierarchy by enforcing localized

decisions.

The proposed framework has been applied to provide solutions on some realistic

network problems related to hierarchical routing and topology control.

NETWORK AND DOMAIN AUTOCONFIGURATION:
A UNIFIED FRAMEWORK FOR LARGE MOBILE AD HOC NETWORKS

by

Kyriakos Manousakis

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2005

Advisory Committee:

Professor John S. Baras, Chair
Professor Richard J. La
Professor Armand M. Makowski
Dr. Anthony J. McAuley
Professor A. Udaya Shankar

© Copyright by
Kyriakos Manousakis

2005

 ii

To my wonderful parents, Athanasia and Konstantinos

my beloved sisters, Ariadni and Artemis

and to my inspiration, Maria

 iii

Acknowledgements

First and foremost I would like to thank my advisor Dr. Jonh S. Baras for giving

me the opportunity to collaborate with him. Without his guidance, support and vision

this dissertation would have not been made possible. Apart from his extraordinary

technical skills, and his deep knowledge of the professional world, he provided me

with invaluable experience and views related to various aspects of professional life

that have contributed significantly to the development of my career. I will always be

grateful to him for his generosity, for having faith in my abilities and for helping me

make my first significant research experience extremely enjoyable.

I owe a debt of gratitude to Dr. Anthony J. McAuley, my mentor at Telcordia

Technologies and friend, with whom I have collaborated all the way throughout this

challenging journey. Anthony’s vast knowledge on networking and his unstinting

support and encouragement throughout the years helped me grow both mentally and

professionally. I shall always treasure his commitment to research and his willingness

to patiently guide me through this marathon endeavor.

I am thankful to my various Telcordia Technologies colleagues and supervisors,

who I was fortunate enough to meet and collaborate with during my several

internships there, gaining not only technical skills but also many friends. Special

mention must be made to Dr. Raquel Morera and Dr. Ken Young, who have always

exhibited tremendous understanding and provided me an extraordinarily supportive

work environment. I can truly say that, but (if it was not) for their support and

cooperation, I would not have successfully completed this dissertation.

 iv

I would like to thank Dr. Richard J. La, Dr. Armand M. Makowski, Dr. Anthony

J. McAuley¸, and Dr. A. Udaya Shankar for reading and commenting on my

dissertation, and also for the honor they gave me by accepting to take part in my

committee.

My special thanks, for all the memories and laughs we had, to my roommates and

friends in Stewart Court – Theodoros Salonidis, Iordanis Koutsopoulos, Nikos Kanlis

and Kostas Tsoukatos, who helped me settle in this place and made me feel like

home. I cannot forget mentioning my officemates and friends, Theodoros Salonidis,

Majid Raissi-Dehkordi and Svetlana Radosavac, who kept me company the long days

and nights in AVW3187. During my stay in Maryland, I feel blessed having made

many good friends and having wonderful memories, especially from the Graduate

Hellenic Association DIGENIS and the soccer group from the ECON department of

University of Maryland, College Park. They are so many that it would not have been

possible to mention each one of them individually but they will always have a special

place in my memories.

Towards the way to this achievement, I was fortunate enough to meet two people

that have always been a huge source of inspiration to me Mr. Michalis Karavolias and

Dr. Michalis Paterakis. The first one showed me the magic and harmony of

mathematics and the second one the beauty and precision of engineering.

I would like to thank Maria Striki for her patience, support and most importantly

love. She was there for all the good and bad times encouraging me to continue

pursuing any difficult task coming in my way, even this of losing 150 lbs. I will be

always grateful to her.

 v

 Words cannot express my most sincere gratitude to my wonderful parents

Athanasia and Konstantinos and my sisters Ariadni and Artemis. Without their love,

endless support, and understanding, this would not be possible. They are the main

reasons I have been able to reach this point. This dissertation is dedicated to them.

This work was supported through the collaborative participation in the

Communications & Networks Consortium sponsored by the U. S. Army Research

Laboratory under the Collaborative Technology Alliance Program, Cooperative

Agreement DAAD-10-01-2-0011.

 vi

Table of Contents

Table of Contents... vi

List of Tables ... xi

List of Figures ... xii

Chapter 1: Introduction ... 1

1.1 Introduction... 1

Chapter 2: Autoconfiguration of MANETs .. 7

2.1 Introduction... 7

2.2 Related Work .. 8

2.3 Problem Description ... 18

2.4 Dynamic and Rapid Configuration Protocol (DRCP) 20

2.4.1 DRCP Client-Server Messages ... 21

2.4.2 Basic Call Flow... 22

2.4.3 Basic DRCP Client Operation .. 24

2.4.4 Basic DRCP Server Operation.. 26

2.4.5 DRCP Message Format... 28

2.4.6 Client Mobility.. 29

2.5 Dynamic Configuration Distribution Protocol (DCDP) 30

2.5.1 Basic DCDP-to-DRCP Communication... 33

2.5.2 DCDP-to-DCDP Communication... 35

2.5.3 DCDP-to-Network Manager Communication 39

2.5.4 State Flow Diagrams and Messages Format....................................... 39

2.5.5 Pool of Available Addresses Management ... 45

 vii

2.6 Overview of the Complete IP Autoconfiguration Suite.............................. 55

2.7 Implementation Based Performance Analysis .. 60

Chapter 3: Dynamic Domain Generation: A Centralized Approach 63

3.1 Introduction... 63

3.2 Background... 74

3.3 Algorithmic Framework for Hierarchy Generation 82

3.3.1 Combinatorial Optimization ... 83

3.3.1.1 General Classes of Algorithms .. 85

3.3.2 Simulated Annealing (SA) algorithm ... 87

3.4 Topological Constrains ... 98

Chapter 4: Dynamic Domain Generation: Metrics and Cost Functions 100

4.1 Introduction... 100

4.2 Metrics .. 101

4.2.1 Cluster-Information Metrics ... 102

4.2.2 Node-Mobility Metrics ... 106

4.3 Cost Functions .. 117

4.3.1 Cluster characteristics based cost functions...................................... 118

4.3.2 Node mobility characteristics based cost functions 127

4.4 Performance Evaluation.. 131

4.4.1 Configuration of modified SA .. 131

4.4.2 Cluster characteristics based cost functions...................................... 134

4.4.2.1 Single Objective Cost Functions.. 136

4.4.2.2 Multiple Objectives Cost Functions... 140

 viii

4.4.3 Node mobility characteristics based cost functions 145

4.4.3.1 Experimental Set Up... 146

4.5 Importance of Cost Function Selection... 149

4.6 Conclusions... 153

Chapter 5: Customizing Simulated Annealing (SA) for Dynamic Environments 156

5.1 Introduction... 156

5.2 Simulated Annealing: Tunable Parameters... 158

5.3 Customizing Simulated Annealing (SA) for Dynamic Environments...... 160

5.3.1 Termination Condition (Stop Criterion) ... 160

5.3.2 Cooling Schedule and Cooling Factor .. 163

5.3.3 State Transition Probabilities.. 169

5.3.4 Generation Mechanism: Feasibility Test .. 177

5.3.5 Initial Solution .. 184

5.3.6 Energy Updates... 190

5.4 Convergence Times of the Adjusted SA Algorithm................................. 196

Chapter 6: Metrics Based Distributed Domain Generation Algorithm 200

6.1 Introduction... 200

6.2 Overview of the mobility based DGA .. 202

6.2.1 Mobility Based Distributed Generation Algorithm (DGA) 202

6.3 Mobility Based DGA: Example.. 207

6.4 Performance Evaluation.. 210

6.4.1 Robustness of the mobility based DGA.. 211

Chapter 7: Domain Maintenance Approaches .. 216

 ix

7.1 Introduction... 216

7.2 Hierarchy Maintenance Schemes.. 218

7.3 Taxonomy of Local Maintenance Schemes.. 220

7.4 Local Maintenance Representative Schemes.. 222

7.5 Sample Application and Indicative Performance of the Representative

Local Maintenance Schemes... 226

7.5.1 Representative Hierarchy Generation Objective 226

7.5.2 Application of the Local Maintenance Schemes 228

7.5.3 Cost Performance Comparison of the 4 Local Maintenance

Approaches ... 230

7.6 Impact of Maintenance Schemes on Domain Quality 231

7.6.1 Impact of Schemes on “Balanced Size” Domains 231

7.6.2 Impact of Schemes to “Robust to Mobility” Domains 233

7.7 Conclusions... 234

Chapter 8: Network Applications of Hierarchy Generation Mechanisms 235

8.1 Introduction... 235

8.2 Hierarchy Generation for Power Control and Connectivity Assurance.... 237

8.2.1 Related Work on Transmission Range Control 239

8.2.2 Clustering and Transmission Range Control Algorithms................. 240

8.2.3 Performance Evaluation.. 246

8.3 Using Multi-objective Domain Optimization for Routing in Hierarchical

Networks ... 250

8.3.1 Hierarchical Routing Protocols... 253

 x

8.3.1.1 OSPF Areas.. 254

8.3.1.2 Thorup-Zwick (TZ) routing hierarchy ... 255

8.3.1.3 Hierarchical ad hoc routing Protocols.. 256

8.3.1.4 Global hierarchy formation protocols.. 257

8.3.2 Minimizing the hierarchical routing path length suboptimality 257

8.3.2.1 Scheme 1: Selecting the CHs on a given hierarchical structure 258

8.3.2.2 Scheme 2: Generating the hierarchical structure given the set S of

CHs…….. ... 259

8.3.2.3 Scheme 3: Combined HRPL minimization and hierarchy

generation….. 260

8.3.3 Performance Evaluation of the HRPL minimization schemes 261

8.3.3.1 Generic hierarchical routing protocol .. 261

8.3.3.2 Hierarchy Generation Objectives... 263

8.3.3.3 Quantifying HRPL suboptimality .. 263

8.3.3.4 Evaluation of the schemes ... 265

Bibliography ... 268

 xi

List of Tables

Table 2.1. Comparison Highlights between the various address assignment

approaches... 17

Table 4.1. Representation of the metrics involved in the construction of cluster

characteristics based cost functions .. 120

Table 4.2. Representation of the metrics involved in the construction of cluster

characteristics based cost functions .. 128

Table 4.3. Configuration values of the SA parameters for the optimization of the

introduced cost functions .. 133

Table 4.4. Statistics of the network (fig. 4.7).. 135

Table 4.5. Single Objective Cluster Information Based Cost Functions. 137

Table 4.6. Requested cardinality for each generated cluster 140

Table 5.1. Percentage improvements on convergence time...................................... 188

Table 7.1. Mobility characteristics of the nodes ... 228

Table 7.2. Cost of the hierarchy after the application of the various Local

Maintenance schemes ... 230

 xii

List of Figures

Figure 1.1 Reducing routing overhead using a two level hierarchy 3

Figure 2.1. DRCP basic call flow ... 23

Figure 2.2. Simplified DRCP Client State Diagram... 24

Figure 2.3. Simplified DRCP Server State Diagram .. 26

Figure 2.4. DRCP message format ... 28

Figure 2.5. DCDP Communication Modules Diagram... 32

Figure 2.6. DCDP-to-DRCP Message Flow Diagram.. 34

Figure 2.7. DCDP-to-DCDP Message Flow Diagram.. 36

Figure 2.8. DCDP state flow diagram (interaction with local DRCP)........................ 41

Figure 2.9. DCDP state flow diagram (interaction with DCDP) 43

Figure 2.10. DCDP Header Format .. 45

Figure 2.11. Adjustment of irregular initial pool.. 54

Figure 2.12. IPAS Components .. 56

Figure 2.13. IPAS inter-process and inter-node communication................................ 60

Figure 2.14. Network Autoconfiguration Testbed and IPAS Message Flow 61

Figure 2.15. IPAS Message Flow ... 61

Figure 2.16. IPAS Configuration Time and aggregate overhead................................ 61

Figure 3.1. Dynamic Clustering Motivation Example I (mobility vs. proximity)...... 68

Figure 3.2. Mobility vs. Proximity Based Hierarchical Structures............................. 69

Figure 3.3. Dynamic Clustering Motivation Example II (proximity vs. power) 70

Figure 3.4. Pseudo C description of SA algorithm ... 92

Figure 3.5. Topological (feasible) and non topological (non feasible)....................... 98

 xiii

Figure 4.1. Definition and estimation of the node’s direction 108

Figure 4.2. Definition and estimation of the relative direction between the nodes ,i j

... 110

Figure 4.3. A sample distance-time graph for defining the velocity of a node......... 112

Figure 4.4. Speed, direction and transmission range characteristics between two

directly communicating nodes ,k jn n ... 116

Figure 4.6. Simulated Annealing algorithm for network partitioning 132

Figure 4.7. Density of nodes per
4 210 m .. 135

Figure 4.8. Network topology (100 nodes) of the demonstrated results................... 136

Figure 4.9. Balanced Size Clusters ... 137

Figure 4.10. Balanced Diameter Clusters ... 138

Figure 4.11. Optimal Cluster Size Assignments Cost Function 139

Figure 4.12. Multiple objectives cost function: Balanced Size Clusters and

Minimization of Border Routers... 142

Figure 4.13. Multiple objectives cost function: Balanced Size Clusters, Balanced

Diameter Clusters and Minimization of Border Routers .. 144

Figure 4.14. Experimental set up: Based on the RPGM model, 2 mobility groups are

defined with respect to RP1 and RP2 ... 147

Figure 4.15. Incorrectly assigned nodes percentage (%) with respect to relative angle

1 2,RP RPθ for cost function (4.20) .. 148

Figure 4.16. Incorrectly assigned nodes percentage (%) with respect to relative angle

1 2,RP RPθ for cost function (4.21) for various relative speeds 1, 2RP RPS 148

 xiv

Figure 4.17. Energy behavior per iteration with respect to the cost function selection

... 150

Figure 4.18. Average number of iterations required for reaching a solution 10% worse

than the optimal... 151

Figure 4.19. Average number of iterations required for convergence with respect to

the cost function selection... 152

Figure 5.1. Flow Diagram for the Implemented Simulated Annealing algorithm for

network partitioning.. 157

Figure 5.2. Convergence Time vs. stop-repeats (n)... 162

Figure 5.3. Deviation from optimal value with respect to the number of stop-repeats

(n)... 162

Figure 5.4. Typical relative rate of cost evolution with respect to iterations performed,

by applying SA with the logarithmic and geometric cooling schedules, respectively.

... 167

Figure 5.5. Typic relative rate of cost evolution with respect to iterations performed

and optimality of solution obtained, by applying SA with the logarithmic and

geometric cooling schedules, respectively.. 167

Figure 5.6. Resulting SA convergence times by applying the original (uniform) and

customized (non-uniform) transition probabilities for several network sizes. 175

Figure 5.7. Iterations to convergence required by applying the original (uniform) and

customized (non-uniform) transition probabilities for several network sizes. 175

 xv

Figure 5.8. Convergence time of SA algorithm with respect to network size and

number of clusters generated when inefficient feasibility test mechanism is applied.

... 182

Figure 5.9. Convergence time of SA algorithm with respect to network size and

number of clusters generated when efficient feasibility test mechanism is applied. 182

Figure 5.10. Pseudo code implementing the efficient feasibility test mechanism.... 183

Figure 5.11. Sample networks of size 100 and 200 nodes.. 186

Figure 5.12. SA convergence time improvement with the quality of the initial solution

for 100 nodes network .. 187

Figure 5.13. SA convergence time improvement with the quality of the initial solution

for 200 nodes network .. 187

Figure 5.14. Expected Convergence Times Comparison for SA and SA with Energy

Updates (SAEU) for the generation of balanced size clusters (cost function 5.18) . 194

Figure 5.15. Expected Convergence Times Comparison for SA and SA with Energy

Updates (SAEU) for the generation of balanced size clusters (cost function 5.19) . 195

Figure 5.16. Convergence times of the adjusted SA algorithm with respect to various

network sizes and number of generated clusters (average node degree equals to 10)

... 197

Figure 5.17. Convergence times of the adjusted SA algorithm with respect to various

network sizes and average node degrees (the number of generated clusters equals

to5). ... 198

Figure 6.1. Domain generation example: Sample Network...................................... 207

Figure 6.2. Relative velocity values as computed pairwise from neighboring nodes208

 xvi

Figure 6.3. The hierarchical structure established from the mobility based DGA

algorithm... 210

Figure 6.4. Average membership changes (LID vs. mobility based DGA) with respect

to network size and mobility level. ... 212

Figure 6.5. Average number of domains generated from LID and mobility based

DGA algorithms for various network sizes and mobility levels............................... 214

Figure 7.1. Taxonomy of local maintenance approaches ... 220

Figure 7.2. Topological change triggering the application of local maintenance..... 227

Figure 7.3. Hierarchy resulted by the application of the representative schemes..... 228

Figure 7.4. Impact of three maintenance approaches on the “balanced size” domains

... 232

Figure 7.5. Impact of maintenance approaches on the “robust to mobility” domains

... 233

Figure 8.1. Network Topology by applying clustering and transmission range control

... 247

Figure 8.2. Resulting network topology by applying common transmission range . 248

Figure 8.3. Transmission Range (max per cluster vs. avg. per cluster vs. node per

cluster)... 249

Figure 8.4. Simple Hierarchical Routing Scheme .. 262

Figure 8.5. Simulated Network Topology .. 264

Figure 8.6. Quantification of suboptimality.. 264

Figure 8.7. Comparison of the proposed schemes .. 266

 1

Chapter 1: Introduction

1.1 Introduction

Configuration management is critical to correct and efficient operation of large

networks. In those cases where the users and networks are dynamic and ad hoc,

manual configuration quickly becomes too complex. The combination of the sheer

number of nodes with the heterogeneity and dynamics makes it almost impossible for

the system administrator to ensure good configuration or even ensure correct

operation. To achieve the vision of pervasive computing, nodes must automatically

discover their environment and self-configure, then must automatically reconfigure to

adapt to changes. Protocols such as DHCP, DDNS and mDNS provide some degree

of host autoconfiguration, but network administrators must still configure information

such as address pools, routing protocols, or OSPF routing areas. Only limited

progress has been made to automate the configuration of routers, servers and network

topology. We propose the first unified attempt to combine both the self configuration

of much of the host, router and server information, together with the automatic

generation and maintenance of hierarchy under the same algorithmic framework.

Testbed implementations show the approach is practical, while analysis reveals its

scalability, rapidness and efficiency with respect to network performance.

Future commercial, military and emergency networks require changes to

traditional network management. Configuration management, in particular, must

ensure correct and efficient network operation through setting parameters such as:

 2

• IP Addresses of an interface.

• Network Parameters (e.g., Default MTU size).

• Server addresses (e.g., for DNS or Certificate Authority server).

• Routing information (e.g., default route or routing protocols).

• IP Address pools (e.g., for DHCP or MADCAP server).

• Security keys.

While protocols such as DHCP, DDNS and mDNS have allowed more

autoconfiguration, network administrators must still manually configure much of this

information. We need new protocols that are able to configure all these parameters

especially in routers and servers.

In many cases configuration management must also construct hierarchies (e.g.,

routing areas and security domains) for scalability, efficiency and manageability.

Today, the construction of hierarchies is a manual process, performed off-line by

experts, because it requires difficult optimizations. For example, in the creation of

OSPF areas in dynamic networks, the savings in reduced routing overhead must be

balanced with the overhead of hierarchy maintenance and mobile node

reconfiguration. Figure 1.1.1 shows an example of how OSPF areas, with aggregation

at area boundaries, reduce the number of OSPF LSA packets in a network (routing

overhead). When all nodes are placed into one area, the routing overhead grows

quadratically with the number of nodes (n); however, with a two-level hierarchy with

n nodes per OSPF area, overhead grows much less rapidly. This does not mean,

however, that, for example, a 25 node network should be divided into 5 domains with

5 nodes in each domain. The configuration management must take into account the

 3

increased hierarchy maintenance and mobility management overheads. Further

adding to complexity, Figure 1.1.1 shows that the lowest routing overhead is achieved

by keeping nodes with similar velocities into the same areas.

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0 10 20 30 40 50 60 70 80 90 100
Number of nodes (n)

R
ou

tin
g

O
ve

rh
ea

d
(b

its
)

One Domain

SQRT(n) Domains (based only on topology)

SQRT(n) Domains (based on topology and mobility)

Figure 1.1 Reducing routing overhead using a two level hierarchy

We believe configuration management must be cheaper (e.g., more plug and

play), more robust (e.g., no human intervention), faster (e.g., in seconds), and better

optimized (e.g., to the link error rate) than current approaches. Moreover,

configuration management must be able to deal with more network dynamics (e.g.,

varying topology) and be more scalable (e.g., to support 10K nodes). In some cases

the configuration must be done with little or no fixed infrastructure.

This dissertation proposes the autoconfiguration of most host, router and server

information, including the automatic generation and maintenance of hierarchy, under

the same architectural, algorithmic and protocol framework. The framework that will

be presented and analyzed throughout the dissertation, consists of two parts, the

communication part and the decision making part. The decision making part is

 4

responsible for obtaining the appropriate network and hierarchy configuration with

respect to the imposed network performance objectives and the communication part is

responsible for the distribution of the configuration decisions and the collection of the

required information utilized from the decision making part of the framework.

Namely, the modules that constitute the communication part of the proposed

framework are the modules:

• Dynamic Configuration Distribution Protocol (DCDP)

• Dynamic and Rapid Configuration Protocol (DRCP)

• Yelp Announcement Protocol (YAP)

These modules are part of the introduced IP Autoconfiguration Suite (IPAS), which is

responsible for the network configuration.

Furthermore, the decision making part is based on an enriched, modified and well

adjusted SA optimization (SA is a randomized general approximation algorithm,

which asymptotically behaves as a global optimization algorithm – provably SA

asymptotically obtains the global optimal) algorithm. The selection of a general

optimization algorithm for obtaining configuration decisions is justified from the

philosophy behind the proposed general configuration framework. The generality of

the framework is with respect to the performance objectives imposed to the network.

These objectives can be selected dynamically or change during the lifespan of the

network. The same framework can obtain dynamically the appropriate network and

hierarchy configuration that satisfies the new performance objectives, without the

need to utilize a different set of algorithmic modules and functions, which are tailored

to this new set of objectives.

 5

The biggest challenge on the network and hierarchy framework design is the

design of lightweight, scalable, robust and efficient communication modules and the

adaptation of the optimization (SA) algorithm to the dynamic nature of the network

environments (i.e. mobile wireless ad hoc networks) under consideration, by reducing

its convergence time considerably without affecting its high quality optimization

ability. On the same lines, another challenge is the ability of SA to handle efficiently

the dynamics of the network, since its continuous reapplication for every topological

change is not suggested due to the overhead and latency costs involved. Thus, the

decision making mechanism has been enriched with suboptimal distributed

(localized) heuristics, which have been designed following the same spirit of

generality and independence of the performance objectives imposed.

The detailed description and analysis of the proposed unified network and

hierarchy configuration framework are provided in this dissertation. Specifically,

chapter 2 presents the IP Autoconfiguration Suite (IPAS) and its modules, which are

responsible for the network configuration and additionally provide communication

capabilities utilized from the general configuration framework. Chapters 3 and 4

discuss the introduced dynamic hierarchy generation mechanism. This discussion

involves the presentation of the cornerstone algorithm for the decision making part of

the configuration framework. Namely, the functionality and properties of the general

randomized approximation algorithm (SA) are provided along with its most

significant parameters responsible for its performance. Furthermore, the indicative set

of the metrics, cost functions and optimization constraints utilized for the description

and evaluation of the hierarchy generation framework are being provided. Chapter 5

 6

deals with the detailed description of the techniques enforced for the enrichment,

modification and adaptation of the SA algorithm on the dynamic nature of the

wireless mobile ad hoc networks. The main objective of the latter techniques is the

improvement of convergence time of the SA algorithm without penalizing its

optimality. Even though the performance characteristics of the cornerstone algorithm

(SA) were adjusted appropriately, in cases of rapidly changing networks, the

algorithm might not be able to capture their dynamics. Thus, a suboptimal distributed

generation mechanism that follows the design philosophy of the SA-based

mechanism is being introduced and evaluated in chapter 6. The hierarchy generation

framework attempts to optimize the imposed hierarchical structure by involving the

entire network on the decision making process. Due to the dynamics of the network,

this is not practical (expensive and slow) in cases of frequent and localized changes.

Hence, chapter 7 presents and analyzes the localized (distributed) maintenance

mechanisms introduced for providing to the network the ability of adapting to the

changes by acting and rebuilding the optimality of the hierarchical structure locally.

Finally, chapter 8 applies the proposed framework on some realistic network

problems related to hierarchical routing and topology control for optimizing the

power consumption by adjusting appropriately the transmission power.

 7

Chapter 2: Autoconfiguration of MANETs

2.1 Introduction

The networking capabilities and the number of devices that will constitute the future

commercial, military and emergency networks suggest change in the spirit of their

traditional management. One aspect of this management is the configuration of these

devices so that they can be part of the network. The most important requirements of

the new way of configuring networks are the speed of configuration (e.g., large

number of nodes can be configured and communicate in few seconds) and the

dynamic nature of the management (e.g., human intervention is not anymore

required). Traditionally, the network manager was responsible for the configuration

of the various network entities and this is a costly procedure with respect to the

required time and human effort. The future network systems indicate that this amount

of time or human resources may not be available so the network and the various

entities must have the intelligence to configure themselves.

The problem becomes even more complicated and significant when the network

environments under consideration are dynamic (e.g., varying topology) due to area

conditions and node mobility. Even this is the most difficult interpretation of the

autoconfiguration problem; this is the most interesting one. The future networks,

especially the military and the emergency networks have been mainly envisioned to

consist of large number of wireless mobile devices, in topological areas with

obstacles and high interference characteristics.

 8

2.2 Related Work

The problem of network autoconfiguration is very important for the general

acceptance and correct functionality of MANETs. Due to the characteristics of this

type of networks, the static configuration (i.e. pre-assigned IP addresses) of the

participating nodes is meaningless. The topology of the network is changing

dynamically and part(s) of it may become unavailable from time to time. The

importance of this problem has been understood from the researchers and studies

have been performed for the design of efficient autoconfiguration solutions. In this

section we present the various approaches that have been proposed.

Network autoconfiguration is a new problem for network environments like the

MANETs but is not new for the INTERNET community. There, the efforts for an

efficient solution have so far focused on the more limited objective of

autoconfiguring static hosts and small networks. Subnet configuration protocols, such

as PPP and DHCP [1][2][3][4] allow clients (hosts) to dynamically request an address

and other configuration parameters when they first establish a communication link.

Due to the static nature of the networks under consideration, the solutions (DHCP,

PPP) are based on a client- server protocols. For example, in order a host to get

configured requires an online DHCP server, which is pre-assigned from the network

administrator to provide configuration information to the hosts requesting it. In

networks like MANETs, a dedicated configuration server may not be available all the

time. Also, DHCP can configure only hosts but is not useful for router nodes. By

definition all nodes in a MANET are considered routers, so DHCP cannot handle this

 9

type of nodes. So, solutions from the hardwired network world cannot be applied in

dynamic and infrastructureless environments.

On going research for dynamic networks’ autoconfiguration is being performed

by a dedicated IETF Working Group called Zeroconf, which mainly focuses on

environments that lack online configuration servers. The solutions provided by

Zeroconf are not directly applicable to MANETs due to the type of dynamic networks

they consider. The study performed by Zeroconf working group focuses on single

segment networks, where all the participating nodes can communicate directly

through link-layer broadcasts/ multicasts or multiple such networks which are

connected on the same router. Obviously, these types of networks are subcategories

of MANETs. The latter networks as opposed to the Zeroconf networks are considered

multihop networks, so link level broadcasts do not guarantee their reception from all

the participating nodes. Moreover, the Zeroconf approaches for Duplicate Address

Detection (DAD) cannot be applied in MANETs.

The problem is far more complicated and demanding compared to hardwired and

Zeroconf networks and has been categorized [5] in the following four subproblems:

• Address Autoconfiguration

 Address configuration involves the configuration of network interfaces with

unique addresses and the selection of the appropriate subnet mask to be used. The

subnet mask identifies the network address and, among other things, allows an IP

stack to determine whether it can deliver a datagram directly. Furthermore, and

due to the dynamics of the networks under consideration, address configuration

 10

mechanisms should be able to detect duplicate address assignment and cope with

the collisions of this kind.

• Name-to-Address Translation

 IP applications typically identify endpoints by name rather than by address. This

provides operational stability when the address of the endpoint changes, since the

name will remain the same. From the name-to-address translation mechanisms, it

is required that the IP address to be obtained is associated with a name and the

selection of the name is associated with an IP address.

• Service Discovery

 Clients should be able to discover services on the network without prior

configuration, and without any administered configuration management services

(such as directories) on the network. Furthermore, the service discovery

mechanism has to be lightweight in terms of the overhead imposed into the

network (e.g. must no cause broadcast storms or other non scalable behavior).

There are two categories of services, the indistinct and the distinct ones. In the

indistinct services any server will perform the exact same function, as opposed to

the distinct services where the service provided depends on the server that will be

contacted. Indistinct services include services like DNS, Web proxies, SMPT

relays and examples of distinct services are the IP-enabled printers, file servers,

non-replicated databases. The network entities have to be able to find and contact

the server that best meets their needs.

• Multicast Address Allocation

 11

 Some multicast applications require a unique multicast address to prevent other

applications from conflicting with them. A multicast address conflict can cause

the applications to fail. The assignment of multicast addresses to applications is

analogous to the assignment of unique addresses to the network entities, where

address conflict must be prevented. The Zeroconf working group has introduced

the Zeroconf Multicast Address Allocation Protocol (ZMAAP), which allocates

unique addresses to multicast applications, prevents the reallocation of already

assigned addresses and notifies the applications in case of multicast address

collision.

The subproblem of address configuration is the most important, since it is the

essential step for a network interface to become part of the communication network.

Most of the studies being performed are related to this problem. The existing

solutions can be classified [6] into three large categories. These categories are:

• Conflict Detection Allocation

• Best Effort Allocation

• Conflict Free Allocation

Many of the existing address assignment protocols belong into the first category

(conflict detection allocation). The main characteristic of these protocols is that the

non configured network entities are assigned an address and then the duplicate

address detection module checks if there is a collision with another node, by

requesting the approval of this assignment from the configured nodes of the network.

If the conflict is found by veto from a node with the same address, the procedure is

repeated until there is no collision detected. The main differences between the

 12

protocols of this category are the selection of the address to be assigned and the

mechanism they apply for duplicate address detection (DAD). In the conflict

detection allocation category belongs the protocol proposed in [7], which is based on

the adaptation of the stateless IETF Zeroconf autoconfiguration protocol for

MANETs [8]. A node randomly chooses an address and performs a DAD by flooding

the network with an address request (AREQ) message, which contains the selected

address. A node having the same address defends it by replying with an address reply

(AREP) message, which is sent over the reverse path established by the AREQ

message. If there is not another node with the same address in the network, a

dedicated timer expires at the originator and the address is considered unique. The

DAD mechanism proposed by [7] is query-based. The drawbacks of the approach are

that network merging is not supported and the DAD mechanism is not scalable due to

the overhead imposed by the flooding.

 Another approach presented in [9], which also belongs to the conflict detection

allocation category, is based on the Weak DAD (WDAD) mechanism. WDAD is

integrated with the routing protocol and can continuously detect duplicate addresses

due to the information added and carried from the underlying routing protocol. This

mechanism requires modification of the routing protocol packets format, where a key

related to each address is added. The key can be of arbitrary length and is chosen

once by each node either randomly or with respect to a Universal Unique ID (UUID).

A node detects a conflict if it receives two address-key pairs with the same address,

but different keys. Obviously, a collision cannot be detected if two different network

entities choose the same address and the same key. In the case of randomly selected

 13

keys, the probability of something like that happening decreases with increasing key

length. On the other hand, increasing the key length imposes extra overhead on the

routing protocol. So, there is a trade-off between non-detectable collisions and

overhead.

In the proposed algorithms of the best effort allocation category, the nodes

responsible for assigning addresses to the non configured ones, try to allocate unused

addresses based on their knowledge of the set of addresses being assigned so far. At

the same time the new node utilizes conflict detection to guarantee that the assigned

address is free. The protocols presented in [10] and [11] are the best representatives

of the best effort allocation category. In the protocol proposed in [10] each configured

node is able to assign addresses to new nodes and therefore maintains an allocation

table of already assigned addresses in the network. A new node called “requester”

searches for an already configured node called “initiator” be sending a special

broadcast message. The “initiator” chooses an unassigned address with respect to its

addresses allocation table, and ensures the uniqueness of this address by a mutual

exclusion algorithm, where it requests from all the configured nodes to approve this

selection and mark this address as allocated on their address allocation tables. If all

the configured nodes reply positive about the address then the “initiator” commits and

assigns the address to the “requester”. In the case where there are non-replying nodes,

the “initiator” after a number of retries assumes that these nodes have left the network

and removes their addresses from its allocation table. This protocol is claimed that

can handle successfully network merges by identifying each partition with a unique

ID. This ID is composed of the smallest address in the network and a Universal

 14

Unique ID (UUID) that is provided by the node with the smallest address. The

partition ID is advertised periodically, so when nodes receive such messages with

different partition ID they assume that the two partitions have merged. In this case the

nodes exchange their allocation tables. The nodes that find that their addresses in the

allocation table of the other partition, have to give up their addresses. The drawback

of the protocol is that bases its functionality on global states (address allocation

tables). In order the method to be successful, these tables have to be maintained

updated, which requires reliable message exchange (reliable broadcast).

The other protocol (PACMAN) that belongs in the best effort allocation category

is presented in [11] where the addresses are assigned in probabilistic way to the non

configured entities. A passive DAD (PDAD) mechanism, which relies on address

allocation tables and the routing protocol, is utilized to check for collisions. A node

running PACMAN assigns an address to itself using a probabilistic algorithm. Based

on a pre-defined collision probability, an estimation of the number of nodes and an

address allocation table, the algorithm calculates the size of the virtual address space,

randomly selects an address from this space. If with respect to the local address

allocation table, the address has not been assigned before, the node immediately gets

configured with this address. The calculation of collision probability is computed in

analogy to the well known birthday paradox. Since the address allocation table may

be out-of-date, a passive DAD (PDAD) mechanism investigates the existence of a

collision. The DAD mechanism is passive because it relies on the processing of the

routing protocol messages received by the node. In [11] many types of PDAD

mechanisms are proposed, depending on the underlying routing protocol. These

 15

mechanisms demand global clock synchronization and their functionality is based on

various assumptions (i.e. routing information received from each node can never be

older than a time span dt , which can be estimated accurately). PACMAN is heavily

depends on the underlying routing protocol, which has to be present to the non

configured network and belong to the proactive class of routing protocols. In case of

reactive routing protocols the approach cannot be applied, since there is not periodic

exchange of information that can be utilized for the update of address allocation

tables and the functioning of PDAD mechanism.

Last but not least is the category of conflict free allocation protocols. These

protocols assign unallocated addresses to the new nodes. The latter is achieved by the

assumption that the nodes taking part in the configuration process have disjoint

address pools. Thus they can be sure that the addresses to be allocated are different.

The more representative protocols of this category are presented in [12] and [6]. In

[12] the disjoint pools of unallocated addresses are maintained based on the idea of

binary splitting, presented initially in [13]. They extend binary splitting by relying on

the binary buddy system for managing the pools. Buddy systems [14] are a type of

segregated lists that support an efficient kind of splitting and coalescing. Binary

buddies are the simplest and best known kind of buddy system. In this scheme, all

buddy sizes are a power of two, and each size is divided into two equal parts. As in

[13], these parts represent the unallocated addresses and are distributed throughout

the network, so that can be utilized for assigning addresses to the non configured

network entities. The assigned addresses are removed from these sets, so that they

contain only non-assigned addresses. Due to this property, DAD is obsolete for the

 16

conflict free allocation protocols. The main assumption of [12] is that there are no

conflicts on the initial pool(s) of addresses. A weakness is that in scenarios where two

previously unrelated networks merge, the assumption might not hold, and address

conflicts may exist.

The idea presented in [6] belongs also in the category of conflict free allocation

protocols. The main idea differs from the previous one, since the conflict free

allocation is not based on splitting the pools into disjoint parts but on a function

()f n that generates sequences of different integers in a range R. The sequences of

()f n satisfy the following two properties, if R is large enough:

• The interval between two occurrences of the same number in a sequence

is extremely long.

• The probability of more than one occurrence of the same number in a

limited number of different sequences initiated by different seeds during

some interval is extremely low.

Initially the first node A selects a random number as its address and a random value

as a seed for ()f n (e.g. the value of this function at each instance at every node is

called the “state” of the corresponding node). When another node B requests to be

configured from A, then A utilizes ()f n to generate an address for B and a seed to

be used from B for its ()f n and also A updates its state. In that fashion the network

gets configured with addresses from the range R. Node A is called the “prophet” since

it knows in advance which addresses are going to be allocated and which of them will

collide. In the latter case it can initialize local conflict detection before the allocation

 17

of the corresponding addresses. The scalability and the correctness of [6] depend on

the effectiveness of ()f n , which has to produce very long conflict free sequences of

integers. Problems can also appear in the case where multiple isolated nodes appear

into the network simultaneously and get initialized with the same random numbers. In

such cases the algorithm fails, since the participating nodes do not have the means to

detect this phenomenon.

The following table has been presented in [6] and provides some interesting

comparison highlights between the three categories of configuration (address

assignment) algorithms. For the communication overhead and latency complexities of

the various algorithms, it can be assumed that the number of mobile nodes is n, the

number of links is l, the average transmission time is t, the network diameter is d (in

terms of nodes) and the retry time is k.

 Conflict Detection
Allocation

Best Effort
Allocation

Conflict Free
Allocation

Network
Organization

Flat / Hierarchical Flat / Hierarchical Flat

State Maintenance Stateless Stateful Partially Stateful
[12]

Stateful
[6]

Address Conflict Yes Yes No
Address

Reclamation
Unneeded Needed Needed

Complexity Low High Low

Communication
Overhead

()()O n l k+ × ()()O n l k+ × 2lO
n

⎛ ⎞
⎜ ⎟
⎝ ⎠

Latency ()2O t d k× × × ()2O t d k× × × ()2O t
Scalability Low Low High

Table 2.1. Comparison Highlights between the various address assignment
approaches

 18

The approach presented in this dissertation belongs in the conflict free allocation

category, since it bases its functionality on splitting and distributing disjoint pools of

available addresses throughout the network. When a non configured node requests an

address then by selecting and assigning addresses from these pools, it is certain that

there is no collision with a previously allocated address. Details on the approach are

presented in later sections in this chapter.

2.3 Problem Description

Even though the autoconfiguration of MANETS can be described easily as the

problem of providing the various network entities with the appropriate information so

that they can become active members of the communication network, the internal

specifications and requirements imposed by the problem are far more complicated.

What is the appropriate information required by a network entity to become part of

the communication network and how this information can reach this entity, are the

most important questions we have to answer.

The problem becomes even more difficult and more realistic when we consider

multihop networks where configuration information has to traverse paths that are

larger than one hop to reach the non configured nodes. The routing of this

information might be required to happen without the involvement of routing protocol

and probably through nodes that do not possess an IP address. These are issues that

will be addressed from the solutions provided in this dissertation. As we have

mentioned the problem of autoconfiguration consists of many sub-problems due to

the nature of the network, where many entities and modules have to be configured

(i.e., IP addresses, DNS, routing, gateways) so that we can exploit its correct and full

 19

functionality. Among the various sub-problems the most important one is the conflict

free assignment of IP addresses to the participating network entities. The importance

of the assignment of IP address is that the functionality of every networking module

in the TCP/IP stack is based on the individual address of the various network entities.

If the assignment can happen efficiently and correctly across the network then this

will decrease the level of difficulty for the configuration of the remaining networking

modules and entities.

One of the existing approaches is based on the Dynamic and Rapid Configuration

Protocol (DRCP). The limitation of DRCP as a standalone module is that can

configure only network entities that belong on the same link. Since the solution we

want to provide focuses on layer 3, the network environments under consideration

consist of multiple links and for that reason we had to extend the DRCP module. We

have suggested the Dynamic Configuration Distribution Protocol (DCDP), which

extends the functionality of DRCP by interacting with the latter. The functionalities

of the two protocols had left intentionally orthogonal, so that can be easily separated

and applied to any future autoconfiguration module that requires their support. The

next section gives a brief overview of DRCP, and in section 5 we describe DCDP,

which is our contribution to the developed IP autoconfiguration suite.

The rest of this chapter consists of sections 6, where we provide a complete

overview of the IP Autoconfiguration Suite (IPAS) and section 7, where we analyze

and evaluate DCDP protocol. The presentation of network autoconfiguration

solutions and their evaluation is being conducted in section 8.

 20

2.4 Dynamic and Rapid Configuration Protocol (DRCP)

This section describes an IP link autoconfiguration protocol, called the Dynamic

and Rapid Configuration Protocol (DRCP). Like the popular Dynamic Host

Configuration Protocol (DHCP) on which it is based, DRCP configures nodes on a

single link; however, DRCP also adds many features critical to future wireless

dynamic networks [15]. Although now being developed for commercial 3G wireless

networks [16], DRCP maintains the features needed for dynamic battlefield networks,

such as allowing all nodes to be servers.

Designed for IPv4 and IPv6, DRCP is a link autoconfiguration protocol for

wireless environments. DRCP is focused solely at layer 3 (L3). The assumption is

that layer 2 (L2) protocols autoconfigure nodes into IP links, where each node can be

reached in one IP hop from any other node in the same link. Also, another assumption

on the functionality of DRCP is that the autoconfiguration protocols should be

independent of the routing and mobility management protocols.

Although based on DHCPv6, DRCP has many extensions to:

• Provide rapid client configuration and reconfiguration after a move

• Make efficient use of wireless bandwidth

• Not require clients to broadcast to another clients

Also, a DRCP server can configure all interfaces on a link, including its own and

those of any routers on the link. All DRCP nodes have a management interface for

applications such as dynamic link reconfiguration and configuration management.

A node running DRCP is initially assumed only to know, which of its interfaces

configure using DRCP. If there are multiple interfaces may be configured by DRCP,

 21

others using alternative techniques (e.g., using locally stored addresses or using

DHCP).

All DRCP nodes run the same code: there is no separate client and server

program (as there are in DHCP). After boot-up, a node assumes all its DRCP

interfaces are configured to be DRCP clients. As a client the interface will attempt to

discover a DRCP node acting as the DRCP server on the corresponding link. After a

random time, however, interfaces that are not configured (e.g., cannot locate a node

acting as a DRCP server) will check if they can become a DRCP server. A node

becomes a DRCP server for an interface when it has configuration information,

including a pool of available IP addresses. A DRCP node does not get this

information through DRCP, but from:

1. Preset information (i.e., configuration file)

2. Management interface (i.e., from a configuration manager)

If a node becomes a DRCP server, then it will take the first available address from its

address-pool and other configuration information to configure its own interface for

that link. The node is then ready to serve other nodes on that link. A node can act as a

DRCP server on a subset of its interfaces and as a DRCP client on another subset of

them. Whether a node acts as a DRCP server or DRCP client for an interface can

change due to the dynamic changes that will happen into the network overtime.

2.4.1 DRCP Client-Server Messages

DRCP-to-DRCP messages between clients and servers use UDP as its transport

protocol. All messages from a client are sent to the well known

DRCP_SERVER_PORT port. All messages from a server are sent to the

 22

DRCP_CLIENT_PORT port. Although there are some differences between DRCP for

IPv6 (such as the use of multicast or broadcast), we will describe DRCP generically.

DRCP messages have similar names and meanings to DHCPv6, but with

important differences in their operation and syntax. The four principal messages are:

• DRCP_SOLICIT: Broadcast or multicast by a client to locate servers. There is

no requirement for this message to reach all clients on the link.

• DRCP_ADVERTISE: Broadcast, multicast or unicast by servers to advertise

their location, either periodically or in response to a DRCP_SOLICIT.

• DRCP_REQUEST: Unicast by clients to request configuration parameters from

a server or to extend the lease on an address.

• DRCP_REPLY: Unicast by servers responding clients to a DRCP_REQUEST or

DRCP_RELEASE message. When responding to a DRCP_REQUEST, the

message contains the client’s new configuration parameters.

DRCP also has the following messages:

• DRCP_RELEASE: Unicast by clients to relinquish an IP address and cancel

remaining lease

• DRCP_RECONFIGURE: Unicast or multicast by server to offer client new

configuration information (the client is assumed not to be in sleep mode).

• DRCP_RESET: Unicast or multicast by a server to reset the client (the client is

assumed not to be in sleep mode).

2.4.2 Basic Call Flow

The basic operation of DRCP can be demonstrated by assuming the simple

network of two nodes as it is shown in figure 2.1. The DRCP process is running on

 23

both Node A and Node B for the configuration of their interfaces on Link x. Initially

both Node A and Node B listen as clients and send out DRCP_SOLICIT messages on

Link x. Since both nodes have not been configured they cannot claim the role of the

DRCP server on the link. Assume that Node B has a pool of available IP addresses

and other configuration information; therefore, after checking that there are no other

servers, it will become a DRCP server for Link x. Once it is a server, Node B will

configure its own interface and start sending out periodic DRCP_ADVERTISE

messages.

Figure 2.1. DRCP basic call flow

In figure 2.1 the time axis starts when Node A first becomes active (or moves

onto Link x). If the latter node has not seen a DRCP_ADVERTISE message (either

gratuitously or in response to the DRCP_SOLICIT message). Node A sends a

DRCP_REQUEST to Node B requesting configuration information. Node B sends a

DRCP_REPLY with configuration information, which Node A can immediately use

to configure its interface on Link x.

Node
A

Node
B

Time

DRCP_SOLICIT

DRCP_ADVERTISE

DRCP_REQUEST

DRCP_REPLY

Link x
Node

A
Node

B

Time

DRCP_SOLICIT

DRCP_ADVERTISE

DRCP_REQUEST

DRCP_REPLY

Node
A

Node
B

Time

DRCP_SOLICIT

DRCP_ADVERTISE

DRCP_REQUEST

DRCP_REPLY

Link x

 24

Even though the participating nodes utilize the same DRCP module, they can

behave as servers or clients onto a particular link, depending on the pre-configuration

information they had acquired and the status of the configuration onto the

corresponding link. The basic functionality of clients and servers is described briefly

in the following two sections.

2.4.3 Basic DRCP Client Operation

The description of the DRCP client operation is best described by referring on

Figure 2.2.

Figure 2.2. Simplified DRCP Client State Diagram

PRECONFIG

INIT

SERVER_CHK SERVER_FIND

BINDING

BOUND

RENEWING

DRCP_RESET start DRCP_SOLICIT

SERVER

DRCP_SOLICIT

DRCP_ADVERTISE

DRCP_RECONFIGURE

DRCP_REPLY

DRCP_REQUEST

DRCP_REQUEST

DRCP_REPLY

timeout

PRECONFIG

INIT

SERVER_CHK SERVER_FIND

BINDING

BOUND

RENEWING

DRCP_RESET start DRCP_SOLICIT

SERVER

DRCP_SOLICIT

DRCP_ADVERTISE

DRCP_RECONFIGURE

DRCP_REPLY

DRCP_REQUEST

DRCP_REQUEST

DRCP_REPLY

timeout

 25

Initially all non-configured nodes behave as DRCP clients. A client starts in the

INIT state and waits to hear DRCP_ADVERTISE messages on the

DRCP_CLIENT_PORT. If it hears no messages, then the client may broadcast (or

multicast) a DRCP_SOLICIT message to discover DRCP server nodes. Although the

message is broadcast, it is not required the message to be received from all DRCP

clients on the link. The latter assumption is important for meeting the performance

requirements (e.g., robust and rapid dynamic configuration) being set for the

autoconfiguration of MANETs.

 After some time with no DRCP_ADVERTISE message, the client assumes that

the DRCP server is not reachable anymore so it will move into the PRECONFIG

state. If it has any preconfigured configuration information, the client will become a

server for the corresponding link. Otherwise, the client moves to the SERVER_FIND

state where it continues waiting for DRCP_ADVERTISE messages and sending

DRCP_SOLICIT messages.

If a non-configured client receives a DRCP_ADVERTISE message, then it will

go to the BINDING state. In the BINDING state it unicasts a DRCP_REQUES

message to the source address of the DRCP_ADVERTISE message until it gets a

DRCP_REPLY message. Once it receives a DRCP_REPLY message, the client

moves to the BOUND state and cam immediately configure its interface with the

received configuration information. There in no requirement for doing Duplicate

Address Detection (DAD), as there is in DHCP, since the server does preemptive

DAD. After being configured the client may periodically attempt to renew the lease

by moving into the RENEWING state. It renews by a REQUEST-REPLY

 26

transaction. If it fails to get renewed, it moves to the SERVER_CHK state, where it

attempts to find any DRCP server.

2.4.4 Basic DRCP Server Operation

There is no distinct DRCP module that separates the servers from the clients.

Initially, all DRCP nodes function as clients. The configuration state on the

corresponding Link and the configuration information being carried from the node,

can acquire DRCP server privileges to the DRCP interface of this node that is directly

connected on the Link. Specifically, if a DRCP node carries configuration

information (including a pool of available IP addresses) for the non-configured

interface under consideration, then it can become a DRCP server, in the case where

there is not another DRCP server already configured on this Link. It can also become

a server through receiving configuration information on its external management

interface.

Figure 2.3. Simplified DRCP Server State Diagram

SELF_CONFIG

DAD

NEXT_ADDRESS

ADD_ADDRESSES

REPLY

CLIENT

DRCP_REPLY

DRCP_REQUEST

DRCP_ADVERTISE

SELF_CONFIG

DAD

NEXT_ADDRESS

ADD_ADDRESSES

REPLY

CLIENT

DRCP_REPLY

DRCP_REQUEST

DRCP_ADVERTISE

 27

Figure 2.3 presents the functionality of a DRCP node once it becomes server.

First, it enters the SELF_CONFIG state, where it assigns the first address from the

local pool of available addresses to its own non configured interface. It then moves

into the DAD state, where:

a) Listens on the DRCP_SERVER_PORT port

b) Checks the addresses to assign on the non-configured interfaces on the Link

c) Broadcasts or multicasts DRCP_ADVERTISE messages on the Link

The server performs preemptive DAD for addresses in its address pool, both for those

it has leased as well as for those that are available for lease. This preemptive checking

is done either by utilizing the Address Resolution Protocol (ARP) (for IPv4) or

Neighboring Discovery (ND) (for IPv6). The checking of the leased addresses is also

beneficial for the reclaiming of the unused such addresses.

Upon the reception of DRCP_REQUEST message, the server moves to the

NEXT_ADDRESS state, where it associates the next available address with the client

requesting it. Then, the server moves to the REPLY state and immediately sends a

DRCP_REPLY message, where the configuration information intended for the client

requested it (e.g., with a DRCP_REQUEST message), is included. In addition to the

address assignment, the server also provides other configuration parameters, such as

the location of default routers and network servers (i.e., DNS). The server does not

expect an acknowledgment after sending the DRCP_REPLY message. The message

will be retransmitted in the case where the server receives another DRCP_REQUEST

message with the same transaction id.

 28

 Immediately, following the reception of a DRCP_REPLY message, the client

can configure its interface. The application of DAD at the DRCP server has a

threefold effect, the configuration time decreases, the broadcast/multicast messages to

the clients are reduced and the client-to-client broadcast/multicast messages are

eliminated. This elimination is highly desirable on some wireless links that are

characterized from limited link broadcast. For example a roaming node’s power level

in CDMA2000 is set to reach its base station. This level may not be high enough for

the node to reach the rest of the nodes. If the configuration server were placed at the

base station, then it would be possible to broadcast from the server to all clients and

from the client to the server but not from the client to the rest of the clients.

2.4.5 DRCP Message Format

The DRCP messages closely resemble those of DHCPv4; however the message

size has been drastically reduced to preserve wireless bandwidth.

Figure 2.4. DRCP message format

OP VERS HLEN XID

CLIENT_ID (8 bytes)

OP VERS HLEN XID

CLIENT_ID (8 bytes)

IPv4 Address

DRCP_REQUEST message

DRCP_REPLY message

OP VERS HLEN XID

CLIENT_ID (8 bytes)

OP VERS HLEN XID

CLIENT_ID (8 bytes)

IPv4 Address

DRCP_REQUEST message

DRCP_REPLY message

 29

Figure 2.4 shows, he DRCP_REQUEST and DRCP_REPLY message formats. In

the case of IPv4, the basic DRCP message without options is 16 bytes, as opposed to

the standard message format for DHCP without options, which totals to 236 bytes.

Obviously, this results in substantial wireless bandwidth savings. Furthermore, if the

DRCP server does not send periodic DRCP_ADVERTISE messages, then it can

register a mobile host, provide it with a valid IP address, and configure it with the

default router location in less than 100 bytes, which is half the size of a single DHCP

message.

Depending on the speed and error rate of the wireless access networks, reducing

the configuration overhead can be critical. The error rate can be important since larger

messages result in higher probability of loss, which results in increased latency and

bandwidth requirements. Clearly, it is undesirable to have per packet overhead;

however, reducing the size and number of configuration messages can also

significantly improve bandwidth efficiency for roaming users. DRCP minimizes

configuration message size and the total number of messages.

2.4.6 Client Mobility

A node may require reconfiguration because it moves onto a new link or due to

changes in other parts of the network. After detecting an external trigger, such as a

layer 2 hand-off indication or a SNMPv3 request message, a node can reset its

autoconfiguration process. Although it reduces the autoconfiguration protocol

complexity, these external triggers may not always:

a) Be available

b) Be standardized

 30

c) Have enough information (e.g., about whether it needs to reconfigure)

Moreover, completely resetting state may be inefficient. It may be useful, therefore,

for the autoconfiguration protocol to determine the reconfiguration of a node using its

own protocol. A key requirement for DRCP is configuration of roaming clients

without requiring layer 2 support. DRCP does this mainly through the

DRCP_ADVERTISE message.

If a configured DRCP client receives a DRCP_ADVERTISE message, it checks

to determine the source id (by looking at the IP header). If the message has been

originated from its configuration server, then it merely saves the current time as

DRCP_TIME_LAST_ADVERTISE. If the message has been originated from a

different server, then the client checks to determine if the new server is from an

address on what it believes is its current link. If the DRCP_ADVERTISE comes from

a server that it is not believed to be on the client’s current link, then the client must

perform new request-reply transaction with the new server (and return to the

BINDING state).

2.5 Dynamic Configuration Distribution Protocol (DCDP)

The Dynamic and Rapid Configuration Protocol (DRCP) provides the

mechanisms for the configuration of the nodes on a single link. The configuration

information utilized from DRCP has to be preconfigured to the DRCP server of each

link so that the corresponding link can be autoconfigured. Clearly, even though the

DRCP protocol looks promising, does not have the ability to autoconfigure an entire

network (e.g., a collection of large number of links and nodes).

 31

Apart from DRCP, the efforts in the Internet community have so far focused on

autoconfiguring hosts and small networks. The link configuration protocols, such as

DRCP, PPP and DHCP still require server preconfiguration, which is geared towards

environments where network dynamics are restricted to one hop at the network edge.

DCDP has been proposed for the expungement of the latter limitation, expanding the

functionality of the link configuration protocols, to larger and more dynamic

networks.

The Dynamic Configuration Distribution Protocol’s (DCDP) operational

characteristics are orthogonal to those of the link configuration protocols. The latter

focuses on the configuration of the nodes on a single link utilizing stored

configuration information, as opposed to DCDP which is responsible for the

management and distribution of the configuration information across a network of

multiple links. DCDP has been designed independently of the link configuration

protocols, so that it can be applied conjointly with anyone of these and expand their

functionality to multiple links networks. By separating the distribution and

management of configuration information, from the utilization of this information, we

improve the robustness of the configuration approach. The dual protocol approach is

attractive since it allows the improvement of each of the protocols separately and

provides flexibility on the selection of the link configuration protocol.

DCDP does not require server-client preconfiguration among the DCDP nodes.

They utilize the same software module and depending on the configuration

information they own and the configuration state they are, can become from

distributors (servers) to requestors (clients) and vice versa. Their communication

 32

module can be separated into three larger submodules, responsible for the exchange

of intra-node and inter-node configuration information.

Figure 2.5. DCDP Communication Modules Diagram

These three submodules as they appear in figure 2.5 are:

a) The DCDP to DCDP submodule for the communication between different

DCDP nodes

b) The DCDP to link configuration submodule (i.e., DRCP module), for

providing the link configuration protocol with the appropriate configuration

information required for the autoconfiguration of the links.

c) The DCDP to Network Manager submodule, which is utilized for

bootstrapping and updating the DCDP protocol with the configuration

information to be distributed across the network.

The DCDP functionality is presented in more detail in the following sections,

where without loss of generality, we assumed that the underlying link configuration

protocol is the DRCP. This assumption is useful to describe the specifics (e.g., format

of messages and interaction with the link configuration protocol) of the protocol. This

NODE A NODE B

NETWORK MANAGER (NM)
DCDP-to-DRCP
DCDP-to-Network Manager

DCDP-to-DCDP

Communication Modules Index

NODE A NODE B

NETWORK MANAGER (NM)
DCDP-to-DRCP
DCDP-to-Network Manager

DCDP-to-DCDP

Communication Modules Index

 33

selection was done since we had already implemented DRCP, which fits better the

MANETs compared to DHCP, PPP and SA. The implementation of DCDP was done

with respect to DRCP module. Without loss of generality, the description of the

DCDP messages and its functionality will be given with respect to this

implementation. The application and interaction of DCDP with other link

configuration protocols can happen in the same manner, with slight implementation

modifications.

2.5.1 Basic DCDP-to-DRCP Communication

For the configuration of a link, DRCP requires preexisting configuration

information. Without DCDP this information had to be stored in the DRCP node, so it

could be utilized in case it was needed. With the addition of DCDP module, the

configuration information is managed and distributed dynamically across the

network, to be utilized from the DRCP modules that demand it for the link

configuration.

When the configuration information reaches the DCDP node where the requestor

DRCP module lies, then the DCDP module has to communicate with the DRCP

module to transfer the appropriate configuration information. The basic message flow

between the DCDP and DRCP modules is represented from figure 2.6.

Initially, DRCP requests (DRCP_POOL_REQUEST) configuration information

(e.g., pool of available IP addresses, address of DNS) from the local DCDP process

utilizing the DRCP_TO_DCDP_PORT port. If the DCDP module has configuration

information available, it provides it to DRCP by sending a DRCP_POOL_REPLY

message to the DCDP_TO_DRCP_PORT port. Otherwise, DCDP initiates the

 34

configuration information discovery phase by contacting neighboring DCDP

modules, requesting configuration information. If this information is available, gets it

and responds back to the local DRCP by sending a DRCP_POOL_REPLY message

to the DCDP_TO_DRCP_PORT port, so that DRCP can proceed with the link

configuration.

Figure 2.6. DCDP-to-DRCP Message Flow Diagram

The two messages that are responsible for the transfer of configuration

information from DCDP to DRCP are:

• DRCP_POOL_REQUEST: When the DRCP module fails to get configured on

its link, timeouts. A request for configuration information follows, by sending a

DRCP_POOL_REQUEST message to its local DCDP process. The objective is to

obtain and utilize configuration information to configure its own interfaces and

become the DRCP server for the corresponding links, so that the rest of the non

configured nodes can also be configured.

• DRCP_POOL_REPLY: This message is generated from the DCDP process and

is in response to the DRCP_POOL_REQUEST message, received from the local

DRCP

Time

DRCP_POOL_REQUEST

DRCP_POOL_REPLY

DCDP

Time To Check for
Configuration
Information

DRCP

Time

DRCP_POOL_REQUEST

DRCP_POOL_REPLY

DCDP

Time To Check for
Configuration
Information

 35

DRCP module. When the DCDP module succeeds on reserving configuration

information for the DRCP module requesting it, transmits this message. The

DRCP_POOL_REPLY message contains the configuration information that will

be utilized from DRCP and is issued only in case of success. Otherwise the DCDP

is not issuing any message to DRCP, which will eventually timeout.

Part of the configuration information that DRCP requests from DCDP is a pool of

available IP addresses for the configuration of the nodes onto its link. The DCDP

responds to DRCP by sending a subset of the set of available addresses that owns.

The management and sharing of the pool of addresses is presented in more detail in

section 5.5.

2.5.2 DCDP-to-DCDP Communication

 The communication between DCDP and DRCP mainly happens via interprocess

communication on the same node. There are cases where this may not be the case

(e.g. when a node activates only one of the DCDP, DRCP modules), but these are

special cases. The communication between DCDP modules happens always over the

network and is more demanding in terms of designing. The communication between

the DCDP modules is initiated when a DRCP module requests configuration

information by sending a DRCP_POOL_REQUEST message to its local DCDP

module. If the DCDP module has already obtained configuration information (e.g.

pool of available addresses, addresses of routers and DNS), replies immediately to

DRCP with a DRCP_POOL_REPLY message. Otherwise, DCDP has to search for

available configuration information by querying its neighboring DCDP modules. The

basic message flow diagram is presented on figure 2.7

 36

Figure 2.7. DCDP-to-DCDP Message Flow Diagram

The DCDP module is triggered to discover configuration information after

receiving a DRCP_POOL_REQUEST message from the local DRCP process. DCDP

initiates the discovery phase by broadcasting a DCDP_POOL_REQUEST message.

The recipient DCDP modules of this message check the availability of configuration

information. If there is available configuration information, they reply back by

sending a DCDP_POOL_REPLY message. Otherwise they forward the request

further to their neighboring DCDP modules. In the case where the requestor receives

a DCDP_POOL_REPLY message and does not anymore requires the configuration

offer, issues a DCDP_POOL_REJECT message to inform the remote DCDP. In the

opposite case where the requestor does not receive any DCDP_POOL_REPLY

message for a TIMEOUT time, timeouts and informs the local DRCP that there is not

configuration information available.

 The messages responsible for the DCDP to DCDP communication are:

DCDP

Time

DCDP_POOL_REQUEST

DCDP_POOL_REPLY

DCDP

Time To Check for
Configuration
Information

DCDP_POOL_REJECT

DCDP

Time

DCDP_POOL_REQUEST

DCDP_POOL_REPLY

DCDP

Time To Check for
Configuration
Information

DCDP_POOL_REJECT

 37

• DCDP_POOL_REQUEST: The DCDP module broadcasts this message to its

neighboring DCDP modules for discovering available configuration information.

The transmission of this message is triggered from the reception of a

DRCP_POOL_REQUEST message from the local DRCP process, or from the

reception of a DCDP_POOL_REQUEST message from a neighboring DCDP

module. In the latter case, the received DCDP_POOL_REQUEST message is

forwarded further when there is not available configuration information to the

local DCDP module.

• DCDP_POOL_REPLY: This message is issued from a DCDP module that had

received a DCDP_POOL_REQUEST and it has available configuration

information to be transferred to the requestor DCDP. The message contains the

available configuration information (i.e. pool of available IP addresses, DNS

address).

• DCDP_POOL_REJECT: When the DCDP requestor module receives a

DCDP_POOL_REPLY message but the configuration information is not required

anymore (e.g., will utilize earlier offer) issues a DCDP_POOL_REJECT message.

The destination is the DCDP module offered the configuration information, so

that it can recollect this information for future use. This message is important for

the efficient utilization of the pool of available configuration information.

The DCDP-to-DCDP communication happens over UDP. Due to the dynamics of the

environment under consideration, messages can be lost. For overcoming this problem,

the configuration time and efficient utilization of the available configuration

information have been traded off with the robustness of the approach. The approach is

 38

based on the combined utilization of negative acknowledgements and timeouts. When

a DCDP module sends configuration information (i.e. pool of available addresses) it

assumes that this information has been transferred to the requestor DCDP module,

unless it receives a DRCP_POOL_REJECT message. The robustness of DCDP is

improved compared to the case where the requestor DCDP had to acknowledge the

acceptance of the offer. If DCDP was operating based on positive acknowledgment it

would have been possible to offer addresses that already being used for the

configuration of another part of the network. The latter could happen when the

requestor DCDP receives the offer but its positive acknowledgment gets lost. By

using negative acknowledgments, even if the acknowledgments get lost, the

configuration information is assumed that has been accepted from the requestor

DCDP and cannot be reused. The latter may not be true so we may end up utilizing

inefficiently the available configuration information but the robustness of the protocol

is more important, especially when we assume IPv6 (e.g. larger number of available

IP addresses).

The DCDP module that offers the configuration information has to wait for time:

()_ _min ,waiting DCDP POOL REJECTTime TIMEOUT Time=

When most of the offers get accepted, the TIMEOUT waiting time dominates, so the

configuration time of the network increases. The configuration information does not

flow fast enough around the network due to the waiting time of the DCDP nodes to

decide which of the configuration information they had offered can be reused and

which of this information cannot.

 39

2.5.3 DCDP-to-Network Manager Communication

The configuration information owned by a DCDP module is stored locally to the

node in a file. This information is preconfigured to the node or it is obtained from

other DCDP modules in response to DCDP_POOL_REQUEST messages. Obviously,

the configuration information that flows into the network must have been

preconfigured into at least one DCDP node.

What happens when the environment changes and the configuration information

provided is not sufficient to configure appropriately the participating nodes? In that

case the network configuration mechanism must be robust enough to allow new

configuration information to be incorporated into the network from a Network

Manager (NM). For that reason the DCDP module maintains the DCDP-to-Network

Manager submodule through where new configuration information can flow into the

DCDP module from a NM and from there can be distributed across the network via

the DCDP-to-DCDP submodule.

2.5.4 State Flow Diagrams and Messages Format

The DCDP description we provided in earlier sections reveals the principal

operation of DCDP module. In this section a more detailed description of the module

is given, via the use of state flow diagram. The DCDP state flow diagram has been

split into two parts. The one part describes the sequence of actions related to the

interaction of DCDP module with its local DRCP module and the other part is

dedicated to the interaction between cooperating DCDP modules

In both cases the DCDP module is initialized by checking (CHECK_INFO) the

quantity of the configuration information that has available either for self utilization

 40

or for distribution. Once it has gone through this initialization and depending on the

availability or not of configuration information the DCDP module resides in the

HAVE_INFO or DO_NOT_HAVE_INFO state, respectively; until the arrival of a

message. This message can have three possible sources of originations:

• The local DRCP module

• A Neighboring DCDP module

• The Network Manager

When the message has been originated from the DRCP module, the functionality

of DCDP is represented from the following state flow diagram in figure 2.8.

Currently the only message that triggers some action in DCDP is the

DRCP_POOL_REQUEST. With this message DRCP requires configuration

information to configure its interfaces and the nodes residing onto the corresponding

links. Upon the reception of this message, DCDP reacts appropriately depending on

its current state (HAVE_INFO or DO_NOT_HAVE_INFO). If DCDP is in the

HAVE_INFO state then checks (AVAILABILITY_DRCP) if the configuration

information available suffices to fulfill the DRCP request. If the configuration

information is adequate, DCDP enters the SEND_INFO state and a

DRCP_POOL_REPLY is transmitted to local DRCP, which contains the

configuration information offer. Following that, DCDP checks its configuration

information repositories (CHECK_INFO) and returns to HAVE_INFO or

DO_NOT_HAVE_INFO states. In the case where DCDP is in the

DO_NOT_HAVE_INFO state upon the reception of a DRCP_POOL_REQUEST

message, then the configuration information discovery phase is initiated. This is done

 41

by transmitting a DCDP_POOL_REQUEST message to its DCDP neighbors. The

DCDP

Figure 2.8. DCDP state flow diagram (interaction with local DRCP)

waits for time:

()_ _min ,waiting DCDP POOL REPLYTime TIMEOUT Time=

before its next action. If there is not any configuration information offers (e.g. there is

not any DCDP_POOL_REPLY message) then the returns to the

DO_NOT_HAVE_INFO state without replying to the DRCP module. The DRCP

module will eventually timeout and will have to reenter the DRCP server discovery

phase. In case of the reception of DCDP_POOL_REPLY message then the DCDP

TIMEOUT / 0 REPLIES

CHECK_INFO HAVE_INFOYES

NO

DO_NOT_HAVE_INFO

DRCP_POOL_REQUEST

AVAILABILITY_DRCPNO

YES

SEND_INFO
DRCP_POOL_REPLY

REQUEST_INFO
DCDP_POOL_REQUEST

DRCP_POOL_REQUEST

DCDP_POOL_REPLY

REJECT_OFFER
DCDP_POOL_REJECT

DCDP_POOL_REPLYstart

TIMEOUT / 0 REPLIES

CHECK_INFO HAVE_INFOYES

NO

DO_NOT_HAVE_INFO

DRCP_POOL_REQUEST

AVAILABILITY_DRCPNO

YES

SEND_INFO
DRCP_POOL_REPLY

REQUEST_INFO
DCDP_POOL_REQUEST

DRCP_POOL_REQUEST

DCDP_POOL_REPLY

REJECT_OFFER
DCDP_POOL_REJECT

DCDP_POOL_REPLYstart

 42

updates its configuration information repositories and replies to DRCP request

(SEND_INFO) by sending a DRCP_POOL_REPLY message. After this reply,

checks (CHECK_INFO) the amount of configuration information available and

returns to the HAVE_INFO or DO_NOT_HAVE_INFO states respectively. In the

case that more than one replies arrive at DCDP in response to the

DCDP_POOL_REQUEST message, then these offers are getting rejected

(REJECT_OFFER) by transmitting a DCDP_POOL_REJECT message to the source

of the offer.

When a DCDP module receives a message originated from another DCDP

module, this event triggers the DCDP interaction functions, which are described from

the following figure 2.9. Similarly, the DCDP module after checking

(CHECK_INFO) its configuration information repositories lies in HAVE_INFO or

DO_NOT_HAVE_INFO state. Depending on which of these two states it is, when it

receives a DCDP_POOL_REQUEST message, DCDP acts accordingly. If it is in

HAVE_INFO state, DCDP checks (AVAILABILITY_DCDP) if the available amount

of configuration information suffices to provide an offer. In the case where the

configuration information is enough for an offer, then enters the SEND_INFO state

where it constructs and transmits a DCDP_POOL_REPLY message destined to the

requestor DCDP module. Following this action, the DCDP rechecks its configuration

information repositories (CHECK_INFO) and depending on the availability resides

on the HAVE_INFO or the NOT_HAVE_INFO state.

 43

In the case where the DCDP module was on the HAVE_INFO state but the

available configuration info is not enough for providing an offer then the module

enters the REQUEST_INFO state.

Figure 2.9. DCDP state flow diagram (interaction with DCDP)

Upon entering this state, DCDP initiates the configuration information discovery

phase by transmitting a DCDP_POOL_REQUEST message. The module remains in

this state for time:

()_ _min ,waiting DCDP POOL REPLYTime TIMEOUT Time=

DCDP_POOL_REPLYTIMEOUT / 0 REPLIES

CHECK_INFO HAVE_INFOYES

NO

DO_NOT_HAVE_INFO

DCDP_POOL_REQUEST

AVAILABILITY_DCDPNO

YES

SEND_INFO
DCDP_POOL_REPLY

REQUEST_INFO
DCDP_POOL_REQUEST

DCDP_POOL_REQUEST

REJECT_OFFER
DCDP_POOL_REJECT

DCDP_POOL_REPLYstart

DCDP_POOL_REPLYTIMEOUT / 0 REPLIES

CHECK_INFO HAVE_INFOYES

NO

DO_NOT_HAVE_INFO

DCDP_POOL_REQUEST

AVAILABILITY_DCDPNO

YES

SEND_INFO
DCDP_POOL_REPLY

REQUEST_INFO
DCDP_POOL_REQUEST

DCDP_POOL_REQUEST

REJECT_OFFER
DCDP_POOL_REJECT

DCDP_POOL_REPLYstart

 44

If there are no configuration information offers then the module enters the

DO_NOT_HAVE_INFO state and does not respond to the DCDP_POOL_REQUEST

message that originally triggered the discovery phase. In the case where there is an

offer then it constructs a DCDP_POOL_REPLY message and sends it (SEND_INFO)

to the requestor DCDP process as a response to the previously received

DCDP_POOL_REQUEST message. As before the DCDP module checks

(CHECK_INFO) the amount of the remaining available configuration information

and resides in the HAVE_INFO or the DO_NOT_HAVE_INFO state.

When DCDP module requests configuration information then multiple offers can

be received. If this happens, then the DCDP module enters the REJECT_OFFER

state. It transmits a DCDP_POOL_REJECT message to inform the provider of the

offer about its decision not to utilize the offered configuration information.

The scenario remaining to be explored is when the DCDP module receives a

DCDP_POOL_REQUEST message but does not have any configuration information

(DO_NOT_HAVE_INFO state). The reaction to a DCDP_POOL_REQUEST

message is the same as before, when there is not enough available configuration

information, so a discovery phase is initiated.

The format of the messages that are exchanged during the DCDP-DRCP or

DCDP-DCDP interactions is similar to the format of the DRCP messages described

earlier. These messages are lightweight aiming on the overhead reduction, which is

critical for the characteristics of the network environments under consideration

(MANETs). Figure 2.10 shows the standard DCDP header (with sizes of fields shown

in bytes).

 45

Figure 2.10. DCDP Header Format

The fields are defined as follows:

• Ver: Version number

• OP: Indicates DCDP message type (i.e., DCDP_POOL_REPLY)

• hlen: Length ofbss header in 4 byte words

• CP: Configration Information Priority

If CP < 0 private (e.g., 10.x.x.x)

If CP > 0 globally unique (e.g. 112.4.1.61)

• ID: 64 bit configuration identifier

• Body: message (i.e., for a DCDP_POOL_REPLY message this segment contains

the offer of the available IP addresses)

2.5.5 Pool of Available Addresses Management

There are two types of requests for available configuration information. These

two types are classified with respect to their originator module (e.g. DRCP or DCDP).

Important part of the configuration information being requested is a pool of available

addresses. The way the pool of available addresses is managed is very important for

their efficient distribution throughout the network. The importance of the

management of available addresses is expressed from the following two lemmas:

OPVer hlen (1) CP (1)

ID (8)

Body (variable)

- (1)OPVer hlen (1) CP (1)

ID (8)

Body (variable)

- (1)

 46

Lemma 2.1: If the pool S of available address has cardinality S , the network ` to

be configured has size ` and the relation between S and ` is:

() ()O O= `S

then the distribution of the available addresses has to resemble the topology of the

network, so that the distribution is efficient and all the nodes are configured.

Lemma 2.2: If the network considered is an IP network and the available addresses

to be distributed are IP addresses, then the interfaces of each link has to be configured

with IP addresses of the same netmask, so that the routing table’s\ size \ will not

grow linearly with the network size.

The management of available addresses in the current distribution of DCDP is

described in this section. The management depends on the request received from the

DCDP module. There are two types of requests, the DRCP_POOL_REQUEST (from

the local DRCP module) and the DCDP_POOL_REQUEST (from a neighboring

DCDP module). Since we considered IP networks, the management has been

customized for IP addresses and aims on satisfying the conditions imposed from the

above mentioned lemmas (2.1 and 2.2).

When the DCDP module has a pool of available IP addresses and receives a

DRCP request for offering configuration information, the reply consists of a subset of

the owned pool of available IP addresses. The offered pool V has two characteristics:

• It is continuous

 47

• It has size *2 ,nV n += ∈]

These properties satisfy the condition imposed by Lemma 2.2. The addresses offered

to the local DRCP module will be utilized for the configuration of the local interfaces

and of the network entities that belong on the same link. Due to the functionality of

DRCP in terms of assigning addresses and the properties of the offered pool, the

addresses assigned on the network entities of the same link can be represented by a

single netmask. This reduces significantly the size of the IP routing tables.

Currently, the offer from the DCDP to DRCP module has size of 256 addresses

and is of the form X.X.X.0 to X.X.X.255 so that the netmask representing this link is

255.255.255.0. The benefit of selecting this type of offer is obvious when we consider

the two scenarios where in the first one the offer is 10.1.2.0 to 10.1.2.255 and in the

second one is 10.1.1.128 to 10.1.2.127. In the first scenario the addresses can be

represented from a single netmask (e.g. 255.255.255.0). The addresses of the second

offer require two different netmasks for their representation (e.g., 255.255.255.128

for the 10.1.1.128 network and 255.255.255.0 for the 10.1.1.2.0 network). Since the

nodes that belong on the same link, appear to be on different networks, require

distinctive representation on the routing table, which unavoidably will increase the

size of the routing tables carried from the individual routers across the network.

The DCDP module response to a request for an offer originated by another

DCDP module (DCDP_POOL_REQUEST) differs from the corresponding response

originated from the local DRCP module. The size of the pool DCDPV of available

addresses offered to a DCDP module is larger than the size of the pool DRCPV offered

to DRCP. The relation of the cardinalities between the two sets of addresses is:

 48

*,DCDP DRCPV K V K += ∈] (2.1)

The DCDP to DCDP offer involves larger pool of addresses because this pool will be

used from the DCDP module to respond to the local DRCP’s request for an offer so it

is required that DCDP DRCPV V≥ . The relation (2.1) can be justified further because it is

possible the same DCDP module to respond to requests from multiple DRCP

modules, since the same DCDP module can be responsible for multiple DRCP

processes (e.g. multiple links).

The justification of (2.1) is straight forward except from the precise definition of

the parameter K . In the optimal scenario, the selection of the parameter K is different

for each DCDP module and depends on the number of DRCP server processes for

which the DCDP module is responsible. If *K is the optimal selection for K for a

single DCDP module then the effects due to its suboptimal selection are:

• If *K K> then this will result in the inefficient utilization of the global pool of

available addresses, since many of the addresses offered will not be requested

from DRCP server processes, but also will not be available to parts of the network

that demand them. This effect is more severe when the global pool of addresses

has size on the order of the network size.

• If *K K< then the configuration time and overhead will increase significantly,

since DCDP will not be adequate to satisfy the all the DRCP requests. This will

result on extra DCDP to DCDP requests for available addresses so that the local

DRCP requests can be satisfied. The extra DCDP to DCDP requests

(DCDP_POOL_REQUEST) will increase the overhead imposed from the

 49

configuration process and the configuration time will increase due to the time

required for the extra requests to get served.

The optimal selection of K requires both knowledge of the topology of the network

and the status (server or client) of the DRCP processes. Since neither of this

information is known while the network configuration is taking place, it is impossible

to specify the optimal parameter value *K .

Due to the lack of *K knowledge, the DCDP adopts a suboptimal heuristic for

determining the size of the pool to be offered as a response to a

DCDP_POOL_REQUEST. The heuristic is based on splitting the available pool of

addresses into two equal size subsets. The one subset is retained from the DCDP

module for its future needs and the second subset constitutes the pool to be offered.

Due to the requirements of the DCDP to DRCP offers, the splitting has to be done in

such a way that the resulting subsets have size as similar as possible and these

requirements are met. As it was mentioned above, when IP addresses are considered,

the latter requirements are best satisfied when the DCDP to DRCP offers are of the

form X.X.X.0 to X.X.X.255. The combination of the DCDP to DRCP offer with (2.1)

and the heuristic of splitting the available pool into two subsets of equal size,

provides the general guidelines of the splitting method for generating the DCDP to

DCDP offer (DCDP_POOL_REPLY). Along these guidelines the general form of the

pool to be offered is:

. . .0 . . .255A B C D E F′′ ′′ ′′ − (2.2)

where [], , , , , 0, 255 and , , , , ,A B C D E F A B C D E F′′ ′′ ′′ ′′ ′′ ′′∈ ∈]

 50

The heuristic method followed by the DCDP module to construct an offer of this type

which also satisfies the imposed requirements can de described by assuming the

existence of an available pool of the form:

. . .0 . . .255A B C D E F− (2.3)

where [], , , , , 0, 255 and , , , , ,A B C D E F A B C D E F∈ ∈]

When this DCDP module receives a DCDP_POOL_REQUEST message, checks if

there is available configuration information to be offered for the fulfillment of the

request. Part of the available configuration information is the pool of available

addresses. We assume that the DCDP module has available configuration information

included the pool (2.3). For the construction of the DCDP_POOL_REPLY, the

DCDP module has to split the available pool of addresses into two subsets of almost

equal size, and of the following form:

. . .0 . . .255 and . . .0 . . .255A B C A B C A B C D E F′ ′ ′ ′′ ′′ ′′− − (2.4)

where

[], , , , , , , , , , , 0, 255 and , , , , , , , , , , ,A B C A B C A B C D E F A B C A B C A B C D E F′ ′ ′ ′′ ′′ ′′ ′ ′ ′ ′′ ′′ ′′∈ ∈]

The DCDP module has to determine the values of , , , , ,A B C A B C′ ′ ′ ′′ ′′ ′′ , so that it can

determine the pool offer. The computation for each of these parameters is done as

follows and is based on the knowledge of the parameters , , , , ,A B C D E F , which

determine the owned pool.

Step I: Determine the size of the pool

The computation is based on the following base-256 subtraction:

() () ()3 2256 256 256 255D A E B F C= − × + − × + − × +S

 51

Step II: Determine the size of each resulting subset of the pool

The size of each one of the two resulting pools of IP addresses is:

1 2
⎢ ⎥

= ⎢ ⎥
⎣ ⎦

S
S and 2 1= −S S S

Step III: Convert the sizes of the resulting subsets into base-256 numbers

Use base-256 arithmetic conversion to convert the base-10 sizes (1S , 2S)

of the resulting pools (1S , 2S) into base-256 numbers:

1 3 2 1 0256
K K K K=S and 2 7 6 5 4256

K K K K=S

where

[]7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0, , , , , , , 0, 255 and , , , , , , ,K K K K K K K K K K K K K K K K∈ ∈]

If 0 255K ≠ then go to step IV, else continue to step V.

Step IV: Adjust the sizes (if required)

Since 0 255K ≠ we have to adjust the sizes of the pools defined at step II, so

that 0 255K = . This is done by adding the appropriate number to 0K and

subtracting the same number from 2S .

0 0 2 2 4255 255 and 0ffset ffsetO K K O K′ ′ ′= − ⇒ = = − ⇒ =S S

After the adjustment the base-256 size of each one of the two pools is:

1 3 2 1 2 6 5 4256 256
255 and 0K K K K K K′ ′= =S S

where []6 5 4 3 2 1 6 5 4 3 2 1, , , , , 0, 255 and , , , , ,K K K K K K K K K K K K∈ ∈]

Step V: Determine the exact subsets of the initial pool

Having determined the size of the subsets of the initial pool

 52

1 3 2 1 2 6 5 4256 256
255 and 0K K K K K K= =S S

where []6 5 4 3 2 1 6 5 4 3 2 1, , , , , 0, 255 and , , , , ,K K K K K K K K K K K K∈ ∈] ,

the two resulting pools can be exactly described:

() ()

()
1 1256 256 256

256256

. . .00

 . . .0 ...(. . .255)

A B C A B C

A B C A B C

⎡ ⎤⎡ ⎤= + =⎣ ⎦⎣ ⎦
′ ′ ′⎡ ⎤= ⎣ ⎦

S S

() () () ()

() ()
2 2256 256 256

256 256

. . .255 1255 1

 . . .0255

A B C A B C

A B C D E F

⎡ ⎤′ ′ ′ ′ ′ ′⎡ ⎤⎡ ⎤= + + + =⎣ ⎦ ⎣ ⎦⎣ ⎦
′′ ′′ ′′⎡ ⎤= ⎣ ⎦

S S

The 2S pool will be included in the DCDP_POOL_REPLY message and the

1S will be stored for the future needs of the local DCDP module.

The format of the offered pools is justified from the requirements imposed from

the lemmas 2.1 and 2.2 for the efficient utilization of the available IP addresses and

the minimization of the size of the routing tables. What has not been justified yet is

the selection of splitting the initial pool into subsets of equal size. Since the optimal

*K in (2.1) cannot be determined in real time, then a suboptimal K has to be selected.

By offering half of the owned pool as a response to a DCDP_POOL_REQUEST

message, a suboptimal value for K is indirectly selected. This value is the optimal in

the special case where the network grows symmetrically (e.g., in a tree fashion).

When the network topology does not grow symmetrically, the effect of the

suboptimality of K will be noticeable on the time of the configuration process and not

on the efficient utilization of the available addresses. The addresses will still be

utilized efficiently due to the capability of DCDP module to request configuration

 53

information from neighboring DCDP modules whenever this information is needed

and is not available locally. If a DCDP module offers the largest part of its initial pool

to satisfy DCDP_POOL_REQUEST messages and there is not available

configuration information to satisfy its own needs, then it will issue a

DCDP_POOL_REQUEST message, asking the neighboring DCPD modules for

available configuration information. The DCDP_POOL_REPLY message that will be

received may contain part of the pool that initially was owned from this DCDP

module or a new pool. By acting in that fashion the available addresses are

transferred to the parts of the network where are needed for the configuration of the

network entities. Obviously, the efficiency of address utilization does not depend

much on the selection of K but mostly depends on the format of the offer, which has

to match the format of the DCDP to DRCP offers. As we mentioned, the

configuration delay is the only aspect of the process that will be affected from the

selection of K. The delay imposed from the selection of K is strongly correlated with

the topology of the network and the order the various network entities require

configuration.

The above description of the splitting of the initial pool it is based on the fact that

the pool is of the form:

. . .0 . . .255A B C D E F−

where [], , , , , 0, 255 and , , , , ,A B C D E F A B C D E F∈ ∈]

If the pool is not of this form then the heuristic method of splitting cannot produce

subsets of the form imposed by the lemmas 2.1 and 2.2. For that reason, some

modifications have to be made so that the heuristic can be applied independently of

 54

the form of the initial pool. The modification was applied on the description of the

pool instead on the splitting heuristic. This is because the heuristic satisfies the

requirements for the efficient utilization of the available addresses and the

minimization of the routing tables. The modification applied on the description of the

pool can be described from the adjustment of its size so that it can be described of the

form (2.3). To achieve this, the limits of the pool have to be extended appropriately,

so that the new pool is larger and follows the format (2.3). If the initial pool is of the

general form:

.A B C L D E F M−

where
[]

(]() [)()
, , , , , 0, 255 and , , , , , , ,

 0, 255 || 0, 255

A B C D E F A B C D E F L M

L M

∈ ∈

∈ ∈

]

then we subtract from L the appropriate offset so that it becomes 0 and we add to M

the appropriate offset so that it becomes 255.

1 2 and 255ffset ffsetO L O M= = −

Since we have added to the pool, addresses that cannot be used, we have to mark

these addresses as unusable.

Figure 2.11. Adjustment of irregular initial pool

1
ffsetO 2

ffsetO

. . .0A B C . . .A B C L . . .D E F M . . .255D E F

Non useable addresses
1
ffsetO 2

ffsetO

. . .0A B C . . .A B C L . . .D E F M . . .255D E F

Non useable addresses

 55

Even though these addresses will be offered, they could never be utilized for the

configuration of the network entities, but the heuristic can be applied without any

modification and will satisfy the splitting requirements.

2.6 Overview of the Complete IP Autoconfiguration Suite

The DRCP and DCDP modules constitute the core of the autoconfiguration suite.

The complete autoconfiguration suite consists of more modules that are of equivalent

importance for the successful application of the autoconfiguration process. Apart

from the DRCP and DCDP modules, the developed suite consists of the following

modules, which will briefly describe in this section:

• Adaptive Configuration Agent (ACA)

• Yelp Announcement Protocol (YAP)

• Configuration Information Database

Figure 2.12 shows the IPAS components that instantiate each of the main

functions of a complete autoconfiguration suite. The Dynamic Configuration

Distribution Protocol (DCDP) and Dynamic and Rapid Configuration Protocol

(DRCP) perform the configuration distribution. The Configuration Database stores

the configuration and network information reported by the Update Protocol (YAP).

And, the Adaptive Configuration Agent (ACA) is the “brains” in the configuration

process.

The configuration process can be pictured as a closed feedback loop. The ACA

distributes new configuration through DCDP to nodes in each subnet. DRCP

configures the interfaces within a subnet. Interfaces configured by DRCP, report

configuration information and nodes capabilities to the configuration server via the

 56

YAP protocol. The configuration server stores this information in the Configuration

Database. To complete the cycle, the ACA node contacts the Configuration Database

locally or remotely to get the latest configuration information. After processing this

configuration information, the ACA may decide to reconfigure the network and

distribute new configuration information, starting the cycle once more.

Config Server

ACA

Preconfigured
node capabilitiesInterface

YAP low-bandwidth
configuration reports

Config Database

MySQL
DCDP distributes
new configuration

Node
DRCP configures
subnet interfaces

Figure 2.12. IPAS Components

The following paragraphs explain in more detail what are the functionalities of

each of the IPAS modules and how they interoperate (a short description of DRCP

and DCDP modules is included).

Dynamic Configuration Distribution Protocol (DCDP)

At the heart of IPAS (see Figure 2.12) is the Dynamic Configuration Distribution

Protocol (DCDP). DCDP is a robust, scalable, low-overhead, lightweight (minimal

state) protocol designed to distribute configuration information on address-pools and

other IP configuration information (e.g., DNS Server’s IP address, security keys, or

routing protocol). Designed for dynamic wireless battlefield, it operates without

 57

central coordination or periodic messages. Moreover, DCDP does not rely on a

routing protocol to distribute information.

Dynamic Registration and Configuration Protocol (DRCP)

DCDP relies on the Dynamic and Rapid Configuration Protocol (DRCP) to

actually configure the interfaces. DRCP borrows heavily from DHCP, but adds

features critical to roaming users. DRCP can automatically detect the need to

reconfigure (e.g., due to node mobility) through periodic advertisements. In addition,

DRCP allows for: a) efficient use of scarce wireless bandwidth, b) dynamic addition

or deletion of address pools for supporting server fail over, c) message exchange

without broadcast, and d) clients to be routers.

Yelp Announcement Protocol (YAP)

The Configuration Database Update Protocol (YAP) is a simple bandwidth

efficient reporting mechanism for dynamic networks. YAP has three elements: 1)

Clients running on every node periodically report its node’s capabilities,

configuration, and operational status, 2) Relays forwarding information from clients

to a server, and 3) Server storing the information in a configuration database (see

Figure 2.13). The capabilities say, for example: “This node can be a DNS server with

priority 0” or “a YAP server with priority 3” (priority reflecting a node’s willingness

to perform a function). Other YAP information includes name and IP address, Rx/Tx

packets, bit rate, link quality, routing table, and address pool.

 58

Configuration Information Database

The Configuration Information Database can be centralized or distributed depending

on the type and requirements of the network under consideration. It is used for storing

and accessing information related to the configuration status of the network, and of its

participating network entities. The database is accessed from YAP for storing the

collected configuration information and from ACA for obtaining future configuration

decisions. The configuration information stored in this database, is the information

collected from YAP and includes but is not limited to the capabilities of the

participating network entities, their names and IP addresses, the number of Rx/Tx

packets, the bit rate, the link quality, the routing tables and the pools of available

addresses.

Adaptive Configuration Agent (ACA)

The brain of IPAS is the Adaptive Configuration Agent (ACA). The ACA can

even reset the network and distribute a new address pool from human input or from a

predefined private address pool (e.g., 10.x.x.x). The configuration decisions are

distributed to the network’s nodes through the DCDP process. Through the

Configuration Database (filled by YAP), ACA observes the state of the network,

which allows it to initiate reconfiguration based on its rules or policies. The rules in

the ACA are specific to the mission and network characteristics. Currently, ACA has

a few simple and general rules, such as selecting a new DNS server if the current one

does not report.

 59

Interoperation of IPAS Modules

In each subnet there is at least one DRCP server responsible to configure

interfaces. The rest of nodes in the subnet may perform as DRCP clients. The ACA

runs on a dedicated node in the network. The YAP server, the ACA and the

Configuration Database can either be located in the same node or be distributed.

However, for load balancing and fault tolerance reasons those entities is better to be

distributed, when the network environment under consideration is dynamic.

In each node, independently of its capabilities, there are three processes running:

• DCDP

• DRCP (server or client)

• YAP (client, relay or server)

Figure 2.13 shows how these processes communicate on a single node and how

interoperate in different nodes in the network. If the node is the ACA, then its ACA

process passes information to DCDP. The DCDP processes communicate with other

nodes to distribute configuration information. At each DRCP server, the DCDP

process passes configuration information to the DRCP process, so this can configure

interfaces in the corresponding subnet. If there is a change or update in configuration

information the DRCP process informs the local YAP client, which sends the

information to the YAP relay for the subnet, which in turn relays the information to

the YAP server. If the node is the YAP server it collects the information and stores it

either locally or remotely on a configuration database. The ACA node can contact the

Configuration Database locally or remotely to get the latest configuration

information.

 60

DRCP

DCDP

ACA

YAP (client/relay)

YAP (server)

Configuration Database

DRCP

DCDP

YAP (relay)

DRCP YAP (client)

Router

ACA

Host

Figure 2.13. IPAS inter-process and inter-node communication

2.7 Implementation Based Performance Analysis

This section presents large scale performance results based on the

implementation of the autoconfiguration algorithms and protocols in a small testbed.

To study the feasibility of the approach to network configuration, IPAS modules were

implemented in a lab testbed. Five Linux laptops were connected, each equipped with

two 802.11 cards, as shown in figure 2.14 and a scenario to validate the capabilities of

IPAS was set up. IP address configuration, dynamic routing protocol configuration

and dynamic hierarchy configuration was presented. Node “a” performs the ACA

function, initiating the distribution of IP addresses (initial pool was 192.1.1.1-

192.1.38.255) and other configuration information. Figure 2.14 shows how the

interfaces and subnets get configured and figure 2.15 demonstrates the configuration

information flows between the IPAS modules. The DCDP modules distribute the pool

 61

of addresses and the DRCP modules utilize the pool of addresses obtained from

DCDP to configure interfaces in their subnet.

1.x 25.x

31.x

37.x
192.1.1.1 192.1.1.2 192.1.25.1

192.1.25.2

192.1.25.3

192.1.37.1

192.1.37.2

192.1.31.2

192.1.31.1

a b

d

e

c

eth0 eth0 eth1

eth0
eth1

eth0

eth1

eth0 eth1

Figure 2.14. Network Autoconfiguration Testbed and IPAS Message Flow

31.x

1.x

25.x

37.x

e
eth0 eth1

d
eth0 eth1

c
eth0 eth1

a

DRCP

DCDP

ACA

1.1

b

DRCP

DCDP

1.2 25.

DRCP

DCDP

25. 37.

DRCP

31. 37.

DRCP

25. 31.

DCDP

DCDP
eth0 eth0 eth1

Figure 2.15. IPAS Message Flow

Based on experimental and simulation results, figure 2.16 shows the IPAS

configuration time and overhead as a function of the number of nodes in the network.

 62

0

2

4

6

8

10

12

14

16

18

10 20 30 40 50 60 70 80 90

Number of nodes

C
on

fig
ur

at
io

n
Ti

m
e

(s
ec

on
ds

)

distributed

linear

0

100

200

300

400

500

600

700

800

900

1000

20 40 60 80 100 120 140 160 180

Number of nodes

B
an

dw
id

th
 (K

bi
ts

/s
ec

on
d)

Subnet overhead (refresh=10s)

Subnet overhead (refresh=30s)

Network overhead (refresh=10s)

Network overhead (refresh=30s)

Figure 2.16. IPAS Configuration Time and aggregate overhead

The above figure shows the configuration time (primarily due to DCDP) for a typical

“distributed network” configuration (with subnets connected in a mesh pattern) grows

relatively slowly with the size of the network. The configuration distribution

overhead is small (under 2 Kbytes per link) since the information is essentially sent

on a spanning tree and the DCDP and DRCP headers and configuration information

have been carefully optimized. The periodic overhead (primarily due to YAP and

DRCP periodic advertisements) grows more rapidly, but can be contained to

reasonable levels by the introduction of hierarchical structures (i.e. domains) where

the corresponding domains are limited to have under 100 member nodes and

refreshing network metrics at most every 30 seconds.

 63

Chapter 3: Dynamic Domain Generation: A Centralized
Approach

3.1 Introduction

In recent years there has been an increasing interest in ad hoc networks. The

infrastructureless nature of these networks makes them extremely important in

scenarios were the fixed infrastructure cannot be used (emergency scenarios) or there

is not time availability to set up the appropriate infrastructure (on-the-move military

scenarios). The ability to deploy these networks quickly and have them work through

rapid changes makes them ideal for battlefield and emergency situations. There have

been many good solutions proposed to deal with topology management,

autoconfiguration, routing and QoS in ad hoc networks; however, most of these

solutions do not scale well (e.g., only to about 50 nodes). To build ad hoc networks

with hundreds or even thousands of nodes, such as that required for the Future

Combat System (FCS), the network must be split into relatively independent layer 3

clusters or domains.

The assumption related to the creation of layer 3 clusters or domains is that it is

done after layer 2 topology management has set local parameters such as the link

frequencies, spreading code, transmit power and antenna direction. At this point,

when the ad hoc network is simply an interconnected mesh of potentially thousands

of nodes, the domain generation divides node interfaces into different layer 3

 64

domains. The domain generation then continuously adjusts the domain as nodes and

links change to maintain good network performance.

Smaller domains allow routing, QoS and other networking protocols to operate

on fewer nodes, with cross-domain interaction only through a few border nodes. This

division has two key benefits. First, it reduces overall protocol overhead. In most

routing protocols, for example, the route update overhead grows as ()2O n as the

number of routers in a domain increases. Using smaller domains, with inter-domain

interaction through a single border router per domain, we can reduce overall overhead

to ()logO n n . Second, if the domains are well designed, then networking protocols

can be tuned to more homogenous conditions. For example, if part of the network has

links constantly going up and down, then it can be put in a separate routing domain

whose border router does not propagate internal changes.

The domain generation can be done using either local or global information. The

two approaches are complementary since local domain generation reacts faster,

requires less overhead, and is more robust; while global domain generation provides

better overall domains. Most existing work on domain generation, however, has used

only very limited local information. Indeed, the majority of the approaches simply

elect a “cluster-head” within each subnet based on node attributes like the node ID

(lowest ID [17][20], highest ID [19]) or node degree (highest degree [18]). Some

proposals use local metrics during cluster generation, but the metrics are utilized just

for the selection of cluster-heads; the generation of clusters is completed by assigning

the non cluster-head nodes to the cluster-heads. The assignment is performed with

 65

respect to the distance (hops) between the non cluster-head nodes and the cluster-

heads and the weight assigned to the latter ones [21][22].

The central objective of this work is to take into account the network

environment and its dynamics, and by optimally grouping together nodes based on

the appropriate metrics to improve a priori selected aspects of its performance. The

proposed approach is based on a modified version of Simulated Annealing, which is a

global optimization algorithm. The selection of a global optimization algorithm as the

core of the domain generation algorithm can be justified from the design objectives.

Even though it is expected that the algorithm will be more demanding in terms of

time and network resources compared to a distributed clustering algorithm, its

benefits will be observed as improvements on the selected aspects of network

performance. Apart from that, the selected algorithm is very general in optimizing

with respect to various objectives, which is not the case for the tailored to specific

clustering objectives, distributed algorithms. The generality of the proposed

clustering framework becomes more significant in cases where the network

conditions change, so the clustering objectives have to change dynamically to reflect

the new conditions and requirements. Due to the importance of designing a clustering

algorithm able to handle such dynamic changes on the hierarchy generation

objectives, the proposed algorithmic framework has been designed with respect to

this specification.

The selection of general approximation algorithm (Simulated Annealing) as the

core of the hierarchy generation framework inherits to the proposed approach the

capability for dynamic adaptation to the performance requirements of the network.

 66

The adaptation is performed by the application of the appropriate cost function that

represents the network performance requirements at any time instance. SA operates

independently of the characteristics of the cost function, which makes it a powerful

algorithm. The only drawback of SA considering the environment under

consideration is its slow convergence times. As it will be exploited in chapter 5, SA

has been modified and adjusted appropriately so that its convergence time becomes

must faster without significant loss in the quality of the provided clustering solutions.

This is done by adjusting some of the core parameters of SA and modifying some of

its functional components.

This work is motivated from real world examples that set the specifications for

the efficient design of hierarchy generation algorithms. Most of the existing clustering

techniques generate clusters without taking into consideration the network

environment (i.e. link and node characteristics) since they do not aim on the

improvement of specific performance aspects of the network. The justification of

those techniques lies on the generation of hierarchical environment that will

potentially improve the scalability or robustness of the network, since existing ad hoc

protocols, like the ad hoc routing protocols, perform better when they are applied to

small number of nodes, because they can capture better the dynamics of the smaller

subgroups. Apart from the latter justification of why to cluster (e.g., create hierarchy),

they do not impose any other stronger argument.

The proposed work has been motivated, not only from the potential advantages

resulting from the application of hierarchical structures, but mainly the motivation

arises from the side effects that can negatively affect the performance of the network

 67

due to the application of such structures. If the hierarchical structure is not generated

appropriately with respect to the network environment and if it is not specifically

customized to the network performance characteristics to be improved, then the

resulted hierarchy instead of improving the functionality of the network may result in

degrading its performance. The network performance could become worse compared

to the corresponding performance of the flat structured network, since the

maintenance of the constructed hierarchy requires extra overhead. This work targets

on the minimization of this overhead through the incorporation of the network

environment characteristics and the network performance aspects required to be

improved, into the generation process. The objective of the approach can be described

better by elaborating more on:

• the algorithm that will be responsible for the generation of the hierarchical

structure, which has to be aware of the performance aspect(s) to be

improved and must be able to incorporate them into the decision process

• the translation of the network environment characteristics and

performance aspects of interest into entities (cost functions, metrics) that

can be exploited from the introduced algorithm

The proposed approach on cluster generation differs from the existing ones on

the fact that the network characteristics are taken into consideration a priori from the

clustering methods. Those methods along with the appropriate metrics or combination

of metrics can generate clusters that have the ability to improve the targeted

performance aspects of the network. Thus, in order to take advantage of the benefits

provided by the application of hierarchical structure, the network environment and the

 68

performance to be improved has to be taken into consideration in the generation

process. The importance of the approach is justified from the following motivation

examples.

Motivation Example I (Metric of Interest: mobility)

Assume the following network environment, where the nodes 1-7 are static

sensor nodes. The nodes 8-11 are mobile nodes, which are moving as a group so they

are relatively static (i.e., group of soldiers). The latter group of nodes is moving on a

predefined cyclic trajectory around the sensor field.

Figure 3.1. Dynamic Clustering Motivation Example I (mobility vs. proximity)

In that case if we attempt to cluster based on proximity or utilizing the traditional

methods of clustering (lower ID, highest degree) then we may end up with continuous

re-clustering, due to the network dynamics for maintaining the clusters consistent to

the chosen scheme. If instead we cluster based on the mobility of the nodes then we

will not need any re-clustering because although the positions of the nodes change,

their mobility characteristics remain the same.

: mobile nodes relatively static (same speed, same direction)

: heterogeneous mobile nodes (small variations of their position)

1

2

3
5

6

4

7
8

9
10

11

cluster A

cluster B

: mobile nodes relatively static (same speed, same direction)

: heterogeneous mobile nodes (small variations of their position)

1

2

3
5

6

4

7
8

9
10

11

cluster A

cluster B

 69

Figure 3.2. Mobility vs. Proximity Based Hierarchical Structures

 By taking into consideration the network environment and utilizing the mobility as

criterion for cluster generation we can achieve the following:

• Minimize re-clustering/maintenance overhead

• We end up with more stable and robust to network dynamics clusters

Motivation Example II (Metric of interest: power)

In this example the network environment consists of two classes of nodes (figure

3.3). The one class involves static sensor nodes, which have been placed to strategic

places on a surface for the collection of important information. These nodes are

characterized from finite power. The second class involves the mobile nodes that can

move towards any point on the surface. These nodes have rechargeable source of

power, so they can be characterized as infinite power nodes (i.e. UAVs).

The objective in this case is to move the mobile nodes to points on the surface,

where the generated clusters will improve the network performance of interest. For

example in this scenario we are interested in improving the cost associated to the

proximity of the nodes. The proximity of the nodes can be related to the transmission

: mobile nodes relatively static (same speed, same direction)

: static nodes (i.e., sensor nodes)

: mobile nodes relatively static (same speed, same direction)

1

2

3
5

6

4

7
8

9
10

11

cluster A

cluster B1

2

3
5

6

4

7
8

9
10

11

1

2

3
5

6

4

7
8

9
10

11

cluster A

cluster B1

2

3
5

6

4

7
8

9
10

11

Clustering 1: Based on mobility Clustering 2: Based on proximity

: mobile nodes relatively static (same speed, same direction)

: static nodes (i.e., sensor nodes)

: mobile nodes relatively static (same speed, same direction)

1

2

3
5

6

4

7
8

9
10

11

cluster A

cluster B1

2

3
5

6

4

7
8

9
10

11

1

2

3
5

6

4

7
8

9
10

11

cluster A

cluster B1

2

3
5

6

4

7
8

9
10

11

1

2

3
5

6

4

7
8

9
10

11

cluster A

cluster B1

2

3
5

6

4

7
8

9
10

11

1

2

3
5

6

4

7
8

9
10

11

cluster A

cluster B1

2

3
5

6

4

7
8

9
10

11

Clustering 1: Based on mobility Clustering 2: Based on proximity

 70

power of the nodes and the intra-cluster delay. Also, we are interested in extending

the lifetime of the network. By following each one of the above directions, it is

possible to end up with different clustering maps, as it is demonstrated in figure 3.3.

In the case where the cost function targets the decrease of the distance between

the nodes, we may end up with a clustering map that does not protect the finite power

of the sensor nodes, thus this can result in a very short network lifetime. The latter

can happen because some of the border routers are finite power sensor nodes, which

means that they will have to forward all the traffic for inter-cluster communication, so

their available power will be drained very fast, causing network partitioning.

Figure 3.3. Dynamic Clustering Motivation Example II (proximity vs. power)

By assigning the infinite power nodes in strategic places, we can extend the

lifetime of the network. A promising approach would be to assign the infinite power

nodes to positions where they can have connectivity with each other, and the network

is connected. In other words, we create a backbone (e.g. connected dominating set)

which is consisted of the infinite power nodes. Each finite power node is connected to

: static sensor nodes with finite power
: mobile nodes with rechargeable power

Proximity

Life
tim

e

: static sensor nodes with finite power
: mobile nodes with rechargeable power

Proximity

Life
tim

e

 71

at least one infinite power node, so the forwarding of traffic is done mostly through

the backbone. The rest of the nodes (e.g., finite power nodes) save their energy,

which results in prolonging the lifespan of the network.

By identifying the network environment, it is preferable to generate a hierarchy

that fits better this environment and its dynamics. For the specific example, the

lifespan (survivability) of the network, it is more important than the improvement of

intra-cluster delay or the minimization of the number of collisions in the MAC layer

due to the density of the network. The latter two aspects can be improved by grouping

together the nodes that are topologically closer.

In the former example (e.g., Example I) the metric of interest is the stability of

the generated clusters with respect to the mobility characteristics of the nodes. For the

latter example, the metric of interest is the lifetime of the network with respect to the

power constraints of the participating nodes. Obviously, depending on the

environment and the requirements imposed from the functionality of the network, the

hierarchy generation mechanism will adapt accordingly the network metrics being

utilized depending on the corresponding cost functions. The generality of the

approach proposed in this work is capable of dealing with a huge diversity of cost

functions and metrics without changing its core functionality. Hence, the same

algorithmic framework can be applied to generate clusters that satisfy a large variety

of hierarchy generation objectives.

The importance of incorporating the network environment and the desired

performance characteristics into the hierarchy generation process has been

highlighted but this is not the only aspect of the proposed approach that distinguishes

 72

it from the exiting ones. There are algorithms that attempt to incorporate indirectly

some of the network environment characteristics by assigning corresponding weights

to the participating nodes. The assignment of weights to the nodes is done solely for

the selection of clusterheads. These algorithms even though they claim their network

environment awareness, they differ in two important points from the approach

proposed in this work:

• The utilization of characteristics of network environment is done for the

assignment of weights to the nodes so that clusterhead nodes are selected. The set

of characteristics taken into consideration and their utilization do not focus on the

improvement of any specific network aspect.

• The set of characteristics that are taken into consideration for the assignment of

weights to the nodes cannot change dynamically. These algorithms are tailored to

specific characteristics.

The algorithm proposed in this dissertation improves the existing approaches by

avoiding the above weaknesses. The algorithm is not tailored to specific network

characteristics (they can be selected dynamically) and operates so that the network

performance due to the constructed hierarchy is improved with respect to a set of pre-

specified objectives. Furthermore, the algorithm can be utilized for both the

generation of multiple hierarchies at the same time that target different performance

aspects of the network and a unique hierarchy that attempts to satisfy multiple design

objectives. The tuning of the algorithm to the network conditions and the hierarchy

generation objectives is accomplished via the appropriate adaptation of its

corresponding modules (metrics, cost functions, constraints).

 73

 As we have already mentioned, the general applicability and versatility of the

proposed approach results from the application of SA as the core of the hierarchy

generation framework. Since SA can operate on any cost function and under any

constraint, the characteristics of the generated clustering maps depend on the applied

cost functions and constraints. The set of cost functions and constraints are defined

with respect to the clustering objectives and the given network environment. Briefly

the modules that constitute the proposed hierarchy generation framework are:

• Optimization Algorithm (Simulated Annealing)

• Metrics

• Cost functions

• Constraints

This chapter describes in detail the general approximation algorithm, namely the

Simulated Annealing (SA) algorithm, which has been utilized as the cornerstone of

the proposed hierarchy generation framework. Its functionality and convergence

characteristics are being presented throughout the chapter. This chapter is preparatory

for the two following chapters where the indicative network metrics and cost

functions introduced are being presented and the modifications and adjustments

applied to SA for improving its convergence characteristics are being exploited,

respectively.

Section 2 overviews some of the most interesting work in the area of hierarchy

generation from the mobile networks perspective. In section 3, SA algorithm is

described in details (parameters and functionality) and in section 4 the constraints

imposed on the hierarchical structure generation are described.

 74

3.2 Background

The idea of generating hierarchy for scaling and making more robust the network

exist for many years. In wireless ad hoc networks the idea of clustering emerged

when the packet radio networks were introduced, which are the ancestors of ad hoc

networks. In this area, Ephremides [19][20] introduced the idea of clustering through

the concept of a distributed linked cluster architecture. The clustering objective of this

work was the hierarchical application of routing in a more robust to topological

changes environment. Also, the latter work was trying to take advantage of the spatial

reuse and communication isolation due to clustering, by assigning different codes and

frequencies to the various clusters.

The idea of clustering in ad hoc networks was revisited in the context of mobile

multimedia wireless networks [17] [18]. One of the most popular clustering schemes

among the existing works in the area of ad hoc networks is the Lowest-ID scheme.

This scheme used in [20] as well as in [17][18]is the point of reference and of

comparison for many recently introduced clustering schemes. In [17] Gerla et al.,

propose a simple distributed algorithm that yields clusters that are at most two hops in

diameter. In each cluster the node with the lowest ID among its one hop neighbors

becomes the clusterhead and maintains the cluster memberships of the other nodes in

the cluster.

An algorithm based on the degree (e.g. number of 1-hop neighbors) of the nodes

was proposed in [17]. The nodes having the highest degree among their 1-hop

neighbors were selected to be the clusterheads. This algorithm, namely the Highest

Degree clustering algorithm performed much worse than the Lowest-ID (LID) in

 75

terms of the robustness of the generated clusters. The robustness was measured by the

average number of membership changes per unit of time.

After the initial approaches and the fact that the researchers were convinced

about the impact and importance of hierarchy on the performance of the mobile ad

hoc networks specifically, many clustering schemes have been proposed. The most

significant work among other published in the area can be categorized into six

classes.

The first class consists of the Dominating Set (DS) based clustering. In this class

belong the Connected Dominating Set (CDS) by Wu [23] and the Weakly Connected

Dominating Set (WCDS) by Chen [24] algorithms. Wu proposed a distributed

algorithm for the construction of CDS in order to design efficient routing schemes for

a MANET. The main objective of this scheme is to find a minimum number of nodes

as dominating nodes to construct a CDS. By minimizing the number of CDS nodes,

the number of nodes participating in routing decreases. The reduction of DS size is

performed such that the unnecessary dominating nodes are being eliminated without

breaking the direct connection between neighboring dominating nodes. Chen’s

WCDS has the same objectives but it relaxes the direct connection requirement

between the dominating nodes. The problem with the DS based schemes is that the

network dynamics (node mobility, node failures) will cause ripple effects, so the

entire topology will have to be readjusted in order to maintain the structure. Hence,

such schemes are more feasible in static or low mobility networks.

The second class consists of the low maintenance clustering schemes. In this

class 3 approaches are highlighted. The Least Cluster Change (LCC) [25] approach is

 76

considered to be a significant enhancement of Lowest ID Clustering (LID) or Highest

Degree Clustering. In LCC, hierarchy generation is separated into two phases, the

hierarchy generation which follows the LID algorithm and the hierarchy maintenance,

which is event driven (i.e. when two CHs obtain a direct connection or a node cannot

access any CH). Previously the hierarchy construction was executing periodically,

introducing unnecessary overhead into the network. In the low maintenance

clustering schemes belongs also the 3-hops Between Adjacent Clusterhead (3hBAC)

[26] approach. 3hBAC forms a 1-hop non-overlapping cluster structure with three

hops between neighboring clusterheads by the introduction of a new node status,

named clusterguest. Clusterguest is mobile node that cannot directly connect to any

clusterhead, but can access some cluster with the help of a clustermember. By

introducing the concept of clusterguest, a non-overlapping cluster structure can be

achieved, which can reduce the number of clusters and eliminate the ripple effect and

the small unnecessary clusters formed in maintenance phase of LCC. Another low

maintenance clustering scheme is the Passive Clustering (PC) [27]. PC’s differs from

the conventional clustering schemes, which require all the mobile nodes to advertise

cluster-dependent information repeatedly to build and maintain the cluster structure,

and thus clustering is one of the main sources of control overhead. PC is a clustering

protocol that does not use dedicated clustering-protocol-specific control packets or

signals. The elimination of explicit control messages for clustering is achieved by

forming and maintaining a cluster structure only when mobile nodes have packets to

send. Furthermore, PC attempts to reduce the number of gateways in order to achieve

flooding efficiency.

 77

The third class of clustering schemes consists of the mobility aware protocols. In

this class belongs the MOBIC [28] clustering scheme. MOBIC suggests clusterhead

election, should take mobility into consideration. For this purpose, an aggregate local

mobility metric is proposed for the cluster formation process such that mobile nodes

with low speed relative to their neighbors have the chance to become clusterheads.

MOBIC appears to be effective for MANETs with group mobility behavior, in which

a group of mobile nodes moves with similar speed and direction. However, if mobile

nodes move randomly and change their speeds from time to time, MOBIC will

degrade the performance of the network due to the reclustering and reaffiliation

overhead.

The energy efficient clustering approaches designate the fourth class of clustering

schemes for mobile ad hoc networks. Three representative approaches are being

mentioned here. The ID Load Balanced Clustering (IDLBC) [30] assumes that the

clusterhead nodes deplete more energy compared to the rest of the nodes, so its

objective is to avoid possible node failure due to energy depletion caused by

excessively shouldering the clusterhead role. The approach is based on limiting the

time that a node can serve continuously as clusterhead. The major weaknesses of the

approach are that the assumption may not be valid or in the case it is valid, the time

alone cannot guarantee balanced depletion of the nodes’ energy. Another approach of

this class of schemes has been proposed by Wu [31] and is an extension of his

previously Connected Dominating Set (CDS) [23] approach mentioned in the first

class of schemes. The distributed construction of the CDS in [31] is energy aware by

attempting to eliminate from the DS unnecessary nodes with low residual energy. The

 78

weakness of this approach is its assumption that the energy of the nodes in the DS

will be depleted faster compared to the rest of the nodes. The third approach in this

class of schemes has been proposed by Ryu [32]. The specific objectives of Ryu’s

approach are to minimize the transmission energy consumption summed by all

master-slave pairs and to serve as many slaves as possible in order to operate the

network with longer lifetime and better performance. However, master node election

is not adaptive, and the method of selecting the master node is not specified. Peer-to-

peer communication between slaves is forbidden. In addition, the method of

maintaining the cluster structure when master or slave nodes move is not addressed.

Because of these restrictions, Ryu’s scheme may not be feasible for a typical

MANET.

Another class of clustering schemes for MANETs is defined by the load

balancing approaches. The motivation of this class’s algorithms is that there are an

optimum number of mobile nodes that a cluster can handle, especially in a

clusterhead-based MANET. Load-balancing clustering schemes set upper and lower

limits on the number of mobile nodes that a cluster can deal with. When a cluster size

exceeds its predefined limit, re-clustering procedures (i.e. merging, splitting of

clusters) are invoked to adjust the number of mobile nodes in that cluster. Such an

approach is followed by the Adaptive Multi-hop Clustering (AMC) [33] algorithm.

AMC does not describe how the clusters are initially constructed. However, for

cluster maintenance each mobile node periodically broadcasts its information,

including its ID, cluster ID, and status (clusterhead/member/gateway) to others within

the same cluster. By such message exchange, each mobile node obtains the topology

 79

information of its cluster. Each gateway also periodically exchanges information with

neighboring gateways in different clusters and reports to its clusterhead. Thus, a

clusterhead can recognize the number of mobile nodes of each neighboring cluster.

AMC sets upper and lower bounds (U and L) on the number of clustermembers that a

clusterhead can handle. The establishment of the values U and L is not provided in

the description of the AMC algorithm. Another algorithm which is based on the load

balancing principle (e.g. balance the traffic load in each cluster by limiting the

number of mobile nodes that a cluster can handle around a predefined value) is the

Degree Load Balancing Clustering (DLBC) presented in [30]. DLBC periodically

attempts to maintain the number of mobile nodes in each cluster around a system

parameter, ED, which indicates the optimum number of mobile nodes that a

clusterhead can handle. A clusterhead degrades to an ordinary member node if the

difference between ED and the number of mobile nodes that it currently serves

exceeds some threshold value. However, since the clusterhead change is still based on

node degree, DLBC likely will cause frequent re-clustering and ripple effects because

of the network dynamics.

Finally, the sixth class of MANETs clustering schemes is based on the concept of

combined metrics. The algorithms of this class take into account a variety if metrics,

which correspond to node degree, residual energy capacity, moving speed, etc. The

algorithms of this category aim on electing the most suitable clusterheads in a local

area, and do not give preference to mobile nodes with certain attributes, such as other

algorithms (i.e. LID, highest degree). A representative combined metrics based

algorithm is the On Demand Weighted Clustering Algorithm (WCA) [21], which

 80

involves four parameters for each mobile node i in the clusterhead election

procedure. These parameters are the degree-difference iD , the sum of the distance

with all neighbors iP , the average moving speed iM , and the clusterhead serving time

iT . The combined weight factor iI is calculated as:

1 2 3 4i i i i iI c D c P c M c T= + + + (3.1)

where 1c , 2c , 3c and 4c are the weighting factors that satisfy equation (3.2).

4

1
1k

k
c

=

=∑ (3.2)

In On-Demand WCA the clusterhead in a local area is chosen to be the node with the

minimum combined weight factor iI . All mobile nodes covered by elected

clusterheads cannot participate in further clusterhead selection. This procedure is

repeated until each mobile node is assigned to a cluster. The weakness of the WCA

algorithm is its maintenance phase, which does not take into consideration the

combined weight factor. This may destroy the effectiveness of the hierarchical

structure.

In general, the core objective of all the above algorithms is the selection of

clusterheads for the generation of clusters. The majority of them do not take into

consideration the network environment for reducing the membership changes and the

related overhead. Those algorithms (e.g. WCA) that they take into consideration the

network environment utilize this information just for the selection of clusterheads, so

they diversify the nodes. The metric utilized for the cluster formation is the proximity

of the rest of the nodes (non-clusterhead) from the selected clusterhead nodes. The

design objectives of the algorithms that will be introduced in this dissertation takes

 81

into consideration the network environment characteristics for the formation of robust

and efficient groups. The utilization of the network environment information is not

utilized to diversify the nodes (clusterhead and non-clusterhead nodes) but to group

nodes that present similarities on their characteristics and objectives for establishing

hierarchical structures more homogeneous and robust to network dynamics.

Furthermore, the generated hierarchy does not depend on the selection of clusterhead

and non-clusterhead nodes, since all the nodes are given similar importance in the

process.

The only work that differs in spirit from the approaches referred above since the

network environment is taken into consideration and all the nodes are given similar

importance is the approach presented in [29]. This approach can be classified in the

mobility aware clustering schemes and is know as (), tα clustering. In this algorithm,

a bound to the probability α of path availability is attempted to be obtained.

Specifically, a mobility model was developed and used to derive analytical

expressions for the probability of the path availability α with respect to time t . The

proposed mobility model is a Random Walk based model which assumes that if the

distance between two nodes is less than a system dependent threshold, then it is also

possible to determine the conditional probability that the nodes will be within range

of each other at time 0t t+ , given that they are within range at time 0t . Even though

this is the first attempt of clustering nodes based on the characteristics of the network

instead of just selecting clusterheads and generating 2-hop clusters, this probability

based model fails to capture the real mobility model of nodes with respect to its

 82

neighbors and therefore it is not a sufficient approach for clustering in an

environment that cannot be described from the assumed probabilistic mobility model.

The proposed clustering framework in this dissertation takes into consideration

the network environment such as the mobility characteristics (speed, direction) of the

nodes but the clustering decisions do not depend on metrics related to any specific

mobility model. These algorithms utilize the mobility characteristics of the nodes,

which are collected and processed dynamically, for robust hierarchy generation

decisions. More details for the algorithmic framework that has been developed are

provided in the following section.

3.3 Algorithmic Framework for Hierarchy Generation

The main objective of this work is to propose an algorithmic framework for

hierarchy generation capable of capturing the characteristics of the underlying

network environment and improving its performance. Adding to the challenge of

designing such an algorithm, is that the algorithmic framework must be flexible and

general so that it can be applied as it is in conditions of varying hierarchy generation

objectives. The hierarchy generation objectives represent the network environment

and the performance aspects of the network to be improved.

Additionally, due to the dynamics of the network environments under

consideration (e.g. MANETs) the algorithmic framework must be capable to produce

rapidly, efficient hierarchy generation solutions. The requirements on the speed of the

algorithm are imposed from the degree of dynamics of the network (e.g. rate of

topology changes due to mobility or node failure). In conclusion, the required

 83

characteristics of the hierarchy generation algorithmic framework to be developed

are:

 Incorporate the network environment characteristics

 Generate the hierarchy for improving a set of pre-specified performance

aspects

 General, so that any type of network environment and set of performance

aspects can be incorporated to the algorithm without change in its

functionality

 Generate efficient hierarchy solutions fast enough, so that it can capture

the dynamics of networks like MANETs.

3.3.1 Combinatorial Optimization

The problem of hierarchy generation can be formulated as a combinatorial

optimization problem.

Definition 3.1 A combinatorial optimization problem is either a minimization or

maximization problem and is specified from a set of problem instances.

Definition 3.2 An instance of combinatorial optimization problem can be formalized

as a pair (),S f , where the solution space S denotes the finite set of all possible

solutions and the cost function f is the mapping defined as

: .f S →\ (3.3)

In the case of minimization, the problem is to find a solution opti S∈ which satisfies

() () , .optf i f i i S≤ ∀ ∈ (3.4)

In the case of maximization, opti satisfies

 84

() () , .optf i f i i S≥ ∀ ∈ (3.5)

Such a solution opti is called a globally-optimal solution, either minimal or maximal,

or simply an optimum, either a minimum or a maximum; ()opt optf f i= denotes the

optimal cost, and optS is the set of optimal solutions.

A combinatorial optimization problem is solved by finding the “best” or

“optimal” solution among a finite or countably infinite number of alternative

solutions [34]. Considerable effort has been devoted to constructing and investigating

methods for solving to optimality or proximity combinatorial optimization problems.

Integer, linear and non-linear programming, as well as dynamic programming have

seen major breakthroughs in recent years.

An important achievement in the field of combinatorial optimization, obtained in

the late 1960’s, is the conjecture – which is still unverified – that there exists a class

of combinatorial optimization problems of such inherent complexity that any

algorithm, solving each instance of such a problem to optimality, requires a

computational effort that grows superpolynomially with the size of the problem. This

conjecture resulted in a distinction between hard and easy problems. During 1970’s

advances in theoretical computer science have provided a rigorous formulation of this

conjecture. The resulting theory of NP-completeness has greatly increased the insight

in the relationship between hard problems.

Over the years many practical and theoretical combinatorial optimization

problems has been shown that belong in the class of NP-complete problems. One such

a problem is the graph partitioning problem (e.g. hierarchy generation). The

 85

complexity and the difficulty of the problem are increased further due to the design

requirements imposed on the general applicability and the speed of the algorithm.

3.3.1.1 General Classes of Algorithms

Even though the hierarchy generation problem is NP-complete, still must be

solved and in constructing appropriate algorithms one might choose between two

options. Either one goes for optimality at the risk of very large, possibly impractical

amounts of computational times or one goes for quickly obtainable solutions at the

risk of sub-optimality.

The first option requires the utilization of optimization algorithms like the

enumeration methods using cutting plane, branch and bound or dynamic

programming techniques [34]. The second option involves approximation algorithms

(heuristic algorithms). The approximation algorithms can be categorized into two

classes, the local search and randomization algorithms. There are algorithms, which

based on their configuration can behave as optimization or as approximation

algorithms. So, between these two categories there is an overlap area. For example,

by introducing heuristic bounding rules, the branch-and-bound algorithm can behave

as an approximation algorithm instead of optimization algorithm.

The optimization and approximation algorithms can be further categorized into

two larger classes, the tailored and general classes of algorithms. The general class

involves algorithms that are problem independent, so they can solve a wide variety of

problems, as opposed to the tailored class of algorithms, which are being designed to

solve a specific class of problems. The intrinsic problem of tailored algorithms is that

 86

each type of combinatorial optimization problem a new algorithm must be

constructed that is customized to that problem.

With respect to the design requirements imposed to the hierarchy generation

algorithmic framework and by exploring the various categories of existing

optimization algorithms, the best matching category is the general approximation

class of algorithms. Specifically, the randomization algorithms of the latter class seem

capable to provide the cornerstone for the design of the targeted hierarchy generation

algorithmic framework. That is due to the general applicability of these algorithms,

their speed compared to the optimization class of algorithms and the quality of the

provided solutions compared to the local search class of algorithms.

The general applicability of the algorithms is important because the same

framework can be applied for different network environments and hierarchy

generation objectives (e.g. for the improvement of specific network performance

metrics). The optimal for the same network over time might change, either due to the

varying network topology or due to changes on the utilization of the network (e.g.

different network objectives). In such cases we do not want to apply different

hierarchy generation protocol, but it is preferable to dynamically adapt the existing

one.

The speed of convergence of the approximation algorithms with respect to the

optimization algorithms makes this class of algorithms more favorable for scenarios

where the solution has to be obtained fast. Characteristic examples of such scenarios

are the network environments under consideration (MANETs), due to their inherent

dynamics (topology changes due to mobility and node failures).

 87

The selection of randomization algorithms instead of the class of local search

algorithm is justified from the quality of solutions provided from each class of

algorithms. The randomization algorithms provide better solutions compared to the

local search ones because the quality of the solution does not depend on the initial

solution and instead of accepting only moves that result in cost improvement, at

limited extend the accept also moves that result in cost deterioration. The latter is

extremely important when there are local optimal points, because the randomization

algorithms are able to avoid these points and converge to the global optimal solution

as opposed to the local search algorithms. This is one of the most important reasons

for the high quality solutions provided from the randomization algorithms.

Having specified what is the type of algorithm that best matches the

characteristics of the hierarchy generation framework the next step is to locate a

specific algorithm that will serve as the backbone for the design of the appropriate

algorithmic framework. For this purpose, the more promising general approximation

randomization algorithm is the Simulated Annealing (SA) algorithm. A modified

version of SA has been used as the core for the hierarchy generation algorithmic

framework, introduced in this dissertation.

3.3.2 Simulated Annealing (SA) algorithm

The (SA) algorithm was independently introduced by Kirkpatrick, Gelatt and

Vecchi [35] and Cerny [36]. Other names that have been used to denote the Simulated

Annealing algorithm are:

 Monte Carlo annealing

 Probabilistic hill climbing

 88

 Statistical cooling

 Stochastic relaxation

The name “simulated annealing” originates from the analogy with the physical

annealing process of solids. In condensed matter physics, annealing is known as a

thermal process for obtaining low energy states of a solid in a heat bath. The process

contains the following two steps:

Step 1: Increase the temperature of the heat bath to a maximum value at which the

solid melts.

Step 2: Decrease carefully the temperature of the heat bath until the particles arrange

themselves in the ground state of the solid.

In step 1, where the solid is in a liquid phase, all the particles of the solid arrange

themselves randomly. In step 2 when the configuration of the particles reaches the

ground state, the particles are arranged into a highly structured lattice and the energy

of the system is minimal. The minimal energy state (ground state) of the system is

obtained only if the maximum temperature is sufficiently high and the cooling is done

sufficiently slow.

In 1953, Metropolis et al. [37] introduced a simple algorithm for simulating the

evolution of a solid in a heat bath to thermal equilibrium. The algorithm introduced

generates a sequence of states that resemble the different phases of the physical

system (e.g. solid). Given a current state i of the solid with energy iE , then a

subsequent state j is generated by applying a perturbation mechanism which

transforms the current state i into a new state j with energy jE . Based on the energy

 89

difference j iE E− , the new state j is accepted of rejected probabilistically according

to the following rule:

()1

1 ,if
|

,if
i j

B

j i

E Et t
k T

j i

E E
P X j X i

e E E
−⎛ ⎞+ ⎜ ⎟⎜ ⎟

⎝ ⎠

<⎧
⎪= = = ⎨
⎪ ≥⎩

 (3.6)

where tX , 1tX + are stochastic variables denoting the current and next state of the solid

respectively. T denotes the temperature of the heat bath and Bk is a physical constant

known as the Boltzmann constant. The acceptance rule (3.6) is known as the

Metropolis criterion and the algorithm based on this criterion is known as the

Metropolis algorithm.

In Metropolis algorithm if the temperature is being lowered sufficiently slow, the

solid can reach thermal equilibrium at each temperature. Algorithmically this is

achieved by generating a large number of states at each temperature. Thermal

equilibrium is characterized from the Boltzmann distribution and provides the

probability of the solid being in state i with energy iE at temperature T. The

Boltzmann distribution is given by

{ } ()
1 i

B

E
k T

T tP X i e
Z T

⎛ ⎞−
⎜ ⎟⎜ ⎟
⎝ ⎠= = (3.7)

()Z T is the partition function given by

()
j

B

E
k T

j
Z T e

−⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠= ∑ (3.8)

where j represents all the possible states of the solid.

 90

The Metropolis algorithm, the corresponding Metropolis criterion and Boltzmann

distribution play central role in the description of Simulated Annealing algorithm,

since they constitute its core functional module. The Metropolis algorithm was

designed to simulate the evolution of a solid in a heat bath, but the Simulated

Annealing algorithm was introduced in a more general framework for the solution of

combinatorial optimization problems. The analogy of combinatorial optimization

problem with a physical many particle system is defined from the following

equivalences.

 Solutions in a combinatorial optimization problem are equivalent to states of a

physical system.

 The cost of a solution is equivalent to the energy of a physical system’s state.

Important role to the effectiveness of the physical annealing process plays the

temperature (e.g. initial temperature, cooling schedule). In SA the role of temperature

is resembled from the control parameter c , which is also very important for the

quality of the obtained optimization solutions. At each temperature a number of

solutions are generated following the transition mechanism of SA. A transition is

defined as:

Definition 3.3 A transition is a combined action resulting in the transformation of a

current solution into a subsequent one. The action consists of the following two steps:

(i) application of the generation mechanism, (ii) application of the acceptance

criterion.

 91

The acceptance criterion is defined in analogy to the metropolis criterion in

Metropolis algorithm.

Definition 3.4 Let (),S f denote an instance of a minimization combinatorial

optimization. If i is the current solution with cost ()f i and j is the new solution

generated from i with cost ()f j , then the acceptance criterion determines whether j is

accepted from i by applying the following acceptance probability:

()
() ()

() ()

() ()

1 , if
accept from

 , if
f i f jc

c

f j f i
P j i

e f j f i
−⎛ ⎞

⎜ ⎟⎜ ⎟
⎝ ⎠

<⎧
⎪= ⎨
⎪ ≥⎩

, (3.9)

where c +∈\ denotes the control parameter.

In the case of maximization combinatorial optimization problem the acceptance

criterion is the same by substituting the cost function values with their negative

values.

The pseudo C algorithm that describes the SA algorithm is provided in figure 3.4.

Some of the important parameters portrayed in this algorithm are the kc and kL ,

which denote the value of the control parameter and the number of transitions

generated at the thk iteration, respectively. Parameter starti represents the initial

solution bootstrapping the SA algorithm.

 92

()

()
() ()()

0 0

SIMULATED_ANNEALING()
{
 INITIALIZE(, ,);
 0;
 ;
 {
 1; ;
 {
 GENERATE from ;

start

start

k

i

function

i c L
k
i i
do

for l l L l

j S

if f j f i

=
=

= <= + +

<

() ()

[)

()

 ;

 0,1

 ;
 }
 ;
 CALCULATE_LENGTH ;

 CALCULA

k

f i f j
c

k

i j
else

if e random

i j

k
L

−⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

=

⎛ ⎞
⎜ ⎟>
⎜ ⎟
⎝ ⎠
=

+ +

()TE_CONTROL ;
 } stopcriterion
}

kc
while

Figure 3.4. Pseudo C description of SA algorithm

A strong feature of SA, with respect to the initial solution starti , is that it finds

high quality solutions which do not strongly depend on the choice of starti . Due to this

attribute the algorithm is characterized effective and robust. This characteristic

mainly results from a typical feature of SA, where the algorithm besides accepting

improvements in cost, it also to a limited extend accepts deteriorations in cost based

on the acceptance criterion. For large values of the control parameter c the probability

 93

of accepting deteriorations in cost is high. As the value of c decreases towards 0, the

acceptance probability for deterioration in cost decreases and becomes 0 when the

control parameter c becomes also 0. The latter feature of SA is important both for the

asymptotic convergence of the algorithm to the global optimal, since the algorithm

can escape from local minima. Because of this feature the algorithm combines the

simplicity and generality of local search methods and the ability to provide high

quality solutions, since it has the mechanism to avoid low quality local minima

solutions.

The ability of SA to escape local minima using the acceptance criterion (3.6) and

the Boltzmann distribution (3.7) play the most important roles for the asymptotic

behavior of the algorithm. The SA algorithm, which belongs in the class of

randomization general approximation algorithms, asymptotically behaves as an

optimization algorithm, since it converges to the set of globally optimal solutions.

Specifically, the following conjecture and corollary formalize better the asymptotic

global optimality provided from the algorithm.

Conjecture 3.1 Given an instance (),S f of combinatorial optimization problem and

a suitable neighborhood structure then, after sufficiently large number of transitions at

a fixed value of c, applying the acceptance probability (3.6), the simulated annealing

(SA) algorithm will find a solution i S∈ with a probability equal to

{ } () ()

()

0

1
f i

def
c

c iP X i q c e
N c

⎛ ⎞
−⎜ ⎟⎜ ⎟
⎝ ⎠= = = (3.10)

 94

where X is a stochastic variable denoting the current solution obtained by the

simulated annealing algorithm and

()
()

0

f j
c

j S

N c e
⎛ ⎞
−⎜ ⎟⎜ ⎟
⎝ ⎠

∈

=∑ (3.11)

denotes a normalization constant.

The neighborhood structure depends on the generation mechanism one is applying to

obtain new solutions. More details on this follow, when the adjustment of the various

parameters of the algorithm is presented. The probability (3.10) is also called the

stationary or equilibrium distribution and the normalization constant ()0N c is

equivalent of the partition function ()Z T given from (3.8).

 Before stating the corollary for the asymptotic global optimality of the solution

provide from SA algorithm, we define the characteristic function ()Aχ ′ of the set A′ .

Definition 3.5 Let A and A A′ ⊂ be two sets. Then the characteristic function

() { }: 0,1A Aχ ′ → of the set A′ is defined as () () 1Aχ α′ = if Aα ′∈ , and () () 0Aχ α′ = ,

otherwise.

Corollary 3.1 Given an instance (),S f of a combinatorial optimization problem and

a suitable neighborhood structure. Furthermore, let the stationary distribution be

given by (3.10), then

() () ()
*

0

1lim
opt

def

i i Sc
opt

q c q i
S

χ
→

= = (3.12)

 95

where optS denotes the set of globally optimal solutions.

Proof:

 Using the fact that 0α∀ ≤ ,
0

lim 1x
x

e
α

→
= if 0α = , and 0 otherwise, we obtain

()

()

()0 0
lim lim

f i
c

i f jc c
c

j S

eq c

e

⎛ ⎞
−⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞→ → −⎜ ⎟⎜ ⎟
⎝ ⎠

∈

=

∑

()

()0
lim

opt

opt

f f i
c

f f jc
c

j S

e

e

−⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

−⎛ ⎞→ ⎜ ⎟⎜ ⎟
⎝ ⎠

∈

=

∑

() () ()

()

() () ()\0 0

1lim lim

opt

opt optopt opt

f f i
c

S S Sf f j f f jc c
c c

j S j S

ei i

e e

χ χ

−⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

− −⎛ ⎞ ⎛ ⎞→ →⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∈ ∈

= +

∑ ∑

() ()
1 0

optS
opt

i
S

χ= +

, Q.E.D.

Corollary 3.1 guarantees asymptotic convergence of the SA algorithm to the set of

globally optimal solutions under the condition that the stationary distribution of (3.10)

is attained at each value of the control parameter c. The result of this corollary is very

important with respect to the asymptotic behavior of the SA algorithm and its

capability to obtain high quality solutions.

The ability of SA to provide high quality solutions is one of the characteristics

that make the algorithm favorable as the backbone of the clustering framework

 96

developed in this dissertation. The other important characteristic of SA that makes the

algorithm suitable is the generality of the algorithm with respect to the cost functions

optimized and the constraints imposed to these cost functions. Particularly, SA

algorithm is able to deal with cost functions with quite arbitrary degrees of non-

linearity, discontinuity, and randomness and can process quite arbitrary boundary

conditions and constraints imposed on these cost functions. The significance of the

latter characteristic of SA is located to the generality of the proposed clustering

framework. The decoupling of the algorithmic details from the clustering objectives

and the characteristics of network environment can be achieved by utilizing any type

of cost function and constraint on demand, which represent a set of clustering

objectives and the network environment dynamics. Since these parameters might

change dynamically during the course of the network lifetime, the cost functions and

constraints representing them will also have to change. The clustering algorithm has

to be able to optimize the new cost functions under the new constraints without any

modifications on the functionality of the algorithm. SA can provide this flexibility

due to its generality and the high quality of the clustering solutions it can obtain.

Simulated Annealing algorithm has been applied successfully for the solution of

complex optimization problems in various areas and it has been shown to perform

well with respect to the quality of the solutions obtained. Some of the performance

results, which are consistently reported, are:

 SA outperforms time equivalent local search algorithms (LSA) with respect to

the quality of the provided solutions. Time equivalent local search algorithms

 97

run multiple times during a single run of SA, by starting from different initial

solutions.

 For engineering problems (image processing, VLSI design, code design) there

no tailored algorithms exist, so SA is a panacea because solves complex

problems by converging to high quality solutions.

 In graph partitioning problems SA behaves better with respect to error and

running time than classical edge interchange algorithms introduced by

Kerningham and Lin [37].

Apart from the consistent performance results of SA, there are have been reported

many that are inconsistent between different studies. The inconsistencies have to do

with the convergence times and degree of suboptimality of the provided solutions on

solving the same problem. SA algorithm is a simple to implement powerful tool for

solving optimization problems. The simplicity of the implementation is responsible

for the performance evaluation inconsistencies, since the various modules of the

algorithm, which solve the same problem, could have been implemented in many

different ways, resulting in different convergence times and solution qualities. In

general, experience shows that SA performance depends on the skill and effort of its

application. In this dissertation we focus on the latter observation, in order to

implement and configure appropriately for its application in dynamic environments

(e.g. fast convergence times allowing a small degree of suboptimality). More details

on the configuration of SA are provided in chapter 5, after the presentation of the cost

functions introduced in chapter 4. This is because part of the configuration process

depends on the clustering objectives (cost functions), so we have initially to give the

 98

set of cost functions applied and then to describe the customization process of the

various SA parameters.

3.4 Topological Constrains

Apart from the optimization algorithm (SA) and the cost functions, the developed

clustering framework also consists of constrains enforced to the generated

hierarchical structures. The main constrain imposed is the generation of topological

clusters. Topological clusters are defined as:

Definition 3.6 (Topological Cluster): A cluster consisting of the set S of nodes is

called topological if ,i jnode node∀ ∈S and i j≠ , there is always a path ijP from inode

to jnode such that knode∀ ∉S holds that k ijnode P∉ . All the members of a cluster can

communicate between them without the need to use inter-cluster links, which are

links that involve non-member nodes.

The clusters that satisfy this constrain are also called feasible clusters, using the

optimization algorithms terminology. Example of topological (feasible) and not

topological clusters (non feasible) clusters is provided in Figure 3.5.

Figure 3.5. Topological (feasible) and non topological (non feasible)

: Domain A
: Domain B

: Domain A
: Domain B

Topological Clusters Non-Topological Clusters

: Domain A
: Domain B
: Domain A
: Domain B

: Domain A
: Domain B
: Domain A
: Domain B

Topological Clusters Non-Topological Clusters

 99

The group of nodes that constitute the topological clusters is better isolated from

the rest of the groups. This structural constrain is important for the aggregation and

abstraction of the clusters for reducing the utilization of network resources (e.g. less

communication and control information is required by the applied hierarchical

protocols since each group of nodes can be represented from a single node). Also the

isolation can improve the security of the network since each group can be shielded

better from various attacks. The latter characteristic is an indicative example of the

easier network manageability due to the existence of topological clusters.

Non topological clusters are considered the logical clusters which are constructed

without taking into consideration the topology of the network. The construction of

such clusters is mainly based on the logical characteristics of the nodes (i.e. the rank

or the squad of the users in the case of military networks). Even though we do not

consider this class of clusters in this dissertation, the same algorithmic framework

could be utilized for the generation of logical hierarchical structures. The only change

would be the removal of the topological clusters constraint and the introduction of the

appropriate cost function that represent the corresponding logical clustering

objectives and are based on the logical characteristics of the participating nodes.

 100

Chapter 4: Dynamic Domain Generation: Metrics and Cost
Functions

4.1 Introduction

Apart from the optimization algorithm, the hierarchy generation framework

consists of more components:

• Collection of the Appropriate Metrics

• Definition of Cost Functions

• Constraints

The main thrust of this work is the optimization of the generated hierarchy with

respect to a set of pre-specified objectives related to the performance improvement of

the network. The generality provided by the utilization of SA, uncouples this work

from specific metrics and objectives, as opposed to other algorithms. The hierarchy

generation objectives are selected dynamically, depending on factors, like the

network environment and the performance of the applied protocols. The objectives

selected have to be translated into a form coherent to the optimization algorithm.

Such form is the outcome of the translation of objectives into mathematical formulas

(cost functions) that represent the cost of a specific hierarchical configuration. If the

translation is accurate then the optimization of the cost functions will result into

clustering maps that satisfy the targeted objectives. The success of the scheme is

based on defining the appropriate cost functions that represent precisely the

performance objectives to be accomplished. In this chapter two sets of indicative cost

 101

functions are introduced and evaluated. The one set is related to the physical structure

of the generated clusters and the other set corresponds to the robustness (stability) of

the constructed hierarchy with respect to mobility. There are also cost functions that

represent only one clustering objective or a combination of these objectives (multi-

objective cost functions). The latter group has significant importance in environments

where multiple protocols are applied and the combined optimization of their

performance is required.

The building blocks of the cost functions are parameters (metrics) that can be

collected in real time from the network and are related to the targeted objective(s).

The definition and selection of metrics of interest are important, so that by combining

them with the hierarchy generation objectives, the appropriate representative cost

functions can be introduced. The real time availability of the metrics is important for

the application of the hierarchical generation framework in dynamic environments. In

this chapter we present two sets of metrics that can be measured online from the

network, related to the characteristics of the generated clusters and the mobility of the

participating nodes. The cost functions emerging from these sets of metrics are

presented and their ability to meet the pre-specified objectives is evaluated in the

performance evaluation section.

4.2 Metrics

The SA algorithm even though is the core of the proposed scheme, is irrelevant

with the performance objectives required to be met from the generated hierarchy. SA

provides the optimization framework but the linkage of this framework with the

network environment is done through the application of the appropriate cost

 102

functions. The optimization of these cost functions results in the hierarchical structure

that satisfies the performance objectives. The building blocks of the cost functions are

various metrics (parameters) that describe in a mathematical fashion the

characteristics of the network environment. This section presents the most important

metrics that have been applied for defining the cost functions introduced in this

dissertation.

The set of metrics presented in this section can be classified into two large

categories. In the first category belong the metrics that are related to the

characteristics of the generated clusters. We refer to this category as cluster-

information metrics. The second category involves metrics that are related to the

characteristics of the participating nodes and more specifically are related to their

mobility attributes. We refer to the second category of metrics as node-mobility

metrics. The in-depth description of metrics is given in the following two subsections.

4.2.1 Cluster-Information Metrics

This class of metrics represents information related to the characteristics of the

generated clusters. The utilization of metrics of this type in the definition of cost

functions aims on the construction of hierarchical structures that consist of clusters

with specific properties with respect to their topological characteristics. The cluster-

information metrics introduced into the cost functions are:

• Cluster size

• Cluster diameter

• Number of border routers

 103

More in depth explanation of the metrics and their importance in the construction of

cost functions are given in the following paragraphs.

Cluster Size

The size of a cluster depends on its membership information. The number of

nodes that constitute the cluster determines its size. A more precise definition of the

metric is:

Definition 4.1 (Cluster Size): If the ith cluster iC consists of the nodes :
iC in n C∈ then

the size of the cluster iC is given from its cardinality iC .

Some examples related to the utilization of cluster size metric as part of hierarchy

generation objectives are the construction of balanced size clusters and the generation

of clusters with specific requirements on their size (e.g. lower and/or upper bounded

size). The enforcement of such requirements on the generated hierarchy may target

network performance objectives related to the behavior of the applied networking

protocols, like the routing or MAC protocols. Specifically, it has been shown that

some MANET routing protocols can perform optimally when applied to specific size

networks. Taking into consideration metrics like the cluster size can be very helpful

for scenarios like the latter one, where different instances of the same routing protocol

can be applied in the various generated clusters. These clusters could have been sized

with respect to the optimal functionality of the corresponding routing protocol.

 104

Cluster Diameter

The cluster diameter is characterized from the longest path, with respect to the

number of hops, defined between nodes that belong in the corresponding cluster. A

more precise definition of the metric is:

Definition 4.2 (Cluster Diameter): If the distance in number of hops between two

nodes ,k wn n is ,k wn nd , then the thi cluster’s iC diameter
iCd is defined between the

nodes ,i i
k w in n C∈ such that (),,

max i ii i i k wk w i
C n nn n C

d d
∈

=

The utilization of cluster diameter metric in the design of cost functions can be

useful when the hierarchy design objectives are related to the diameters of the

generated clusters. Sample objectives of this kind could be the design of balanced

diameter clusters or clusters that have to be bounded in terms of their diameter. As in

the case of cluster size metric, objectives related to the cluster characteristics may be

required for improving the functionality of the various networking protocols (routing,

MAC, security). For example, by imposing specific requirements on the cluster

diameter could affect the overhead of the applied routing protocol (i.e. limit the

flooding for the establishment of a path in the case of reactive (on-demand) routing

protocols). Specific examples of the application of the metric into cost functions will

be given in the next section, when we present the corresponding cost functions.

 105

Number of Border Routers

The nodes that have links to more than one cluster are considered to be border

routers. Each cluster has a set of such nodes. The size of this set defines the number

of border routers for the specific cluster. A more precise definition of this metric is:

Definition 4.3 (Number of Border Routers): If
,i j

k wn n
l defines a link between node

i
k in C∈ and node j

w jn C∈ and { },i i j
k k wn n n

L l= is the set of links of node i
k in C∈ , then the

set of border routers i
rB of thi cluster iC is defined as:

{ },
: ,i j i

k w k

i i
r k n n n

B n l L i j= ∃ ∈ ≠ (4.1)

The cardinality i
rB of i

rB defines the number of border of routers for the iC cluster.

Similarly to the previously mentioned cluster information metrics, the number of

border routers can be useful when the performance objectives are related to the

topological characteristics of the generated clusters. Indicative example for the usage

of the number of border routers metric is when the size of the set i
rB for each cluster

needs to be controlled. The requirement for specific number of border routers could

be imposed from various network performance objectives. Examples of such

performance objectives could be the load balancing of inter-cluster traffic (i.e. more

border routers is better) or the isolation of the cluster with respect to security (i.e.

small number of border routers is better). Specific usage examples of the metric as

part of cost functions are provided in a later section where the designed cost functions

are explained.

 106

4.2.2 Node-Mobility Metrics

As opposed to the previous class of metrics, this class involves metrics that are

related to the characteristics of the participating nodes. Specifically, the metrics are

related to the mobility of the nodes and their high significance can be justified from

the characteristics of the network environments under consideration. In MANETs the

traditional networking protocols fail due to mobility. The newly introduced protocols

cannot handle the dynamics of these networks. Thus, mobility is very important when

the performance of MANETs is considered, and it is definitely one of the most

significant characteristics to be taken into account for efficient hierarchy generation.

This section elaborates on the node-mobility metrics, which have been introduced

through this work, in the generation of hierarchical structures. Namely these metrics

are:

• Node Speed

• Node Direction and Relative Direction

• Node Velocity and Relative Velocity

• Link Expiration Time

The in depth explanation of these metrics will be presented in the following

paragraphs along with some representative applications of them with respect to the

generation of hierarchical structures that meet a set of pre-specified objectives.

 107

Node Speed

The speed
knS of a node kn is a scalar quantity which refers to "how fast an object

is moving." A fast-moving object has a high speed while a slow-moving object has a

low speed. An object with no movement at all has a zero speed. A more precise

definition of the speed of a node is:

Definition 4.4 (Node Speed): The speed
knS of a node kn is defined as the magnitude

of the distance that is covered by kn in a unit of time (i.e. meters per second).

The speed of the node at any instance time is only part of its mobility

characteristics, but it provides an indication of the impact that this node can have on

the dynamics of the network. Even though, the mobility level of a node can be

determined out of the speed metric, the precise impact of this node can be determined

only by collecting knowledge related to the rest of the nodes into the network (e.g.,

even if a node presents high speed, it may by static with respect to the rest of the

nodes). This metric is important for the evaluation of other more precise metrics

related to the mobility of the nodes. A node can determine its speed utilizing tools

like Global Positioning System (GPS) devices or tachometer sensors.

Node Direction and Relative Direction

The direction
knθ of the node kn determines the coordination of the node’s

movement into the space. It can be defined as the space between two lines or planes

that intersect or as the inclination of one line to another. The following figure and the

 108

precise definition of the metric provide a better understanding of direction and its

significance in describing the mobility characteristics of a node.

iθ
+

trajectory

estimated
linear path

node i

1 8 0 o
iθ =

+

trajectory

estimated
linear path

node i

iθ
+

trajectory

estimated
linear path

node i

1 8 0 o
iθ =

+

trajectory

estimated
linear path

node i

Figure 4.1. Definition and estimation of the node’s direction

Definition 4.5 (Node Direction): If the trajectory in
rt of a node in , belongs to a

rectangular Cartesian coordinate system ()xy plane− , the direction iθ of a node in at

the point ()1 1,x y , can be described as the counter-clockwise angle represented from

the straight line defined from two consecutive points ()1 1,x y , ()2 2,x y on the trajectory

of the node and the straight line 1y y= . The direction iθ is measured in degrees or

radians.

The direction of a node and its speed suffice to describe its instantaneous

mobility characteristics. The utilization of this metric is very important whenever the

design objectives are related with the mobility of the participating nodes. Even

though the application of this metric alone may not be sufficient for the construction

of effective cost functions representing the various clustering objectives, but similarly

 109

to the significance of the speed metric, the direction of a node is utilized indirectly in

the computation of other more complete node-mobility metrics.

A more complete metric in terms of characterizing the dynamics of the network,

is the relative direction ,i j

r
n nθ between a pair ,i jn n of the participating nodes. The

completeness of this metric compared to the node’s direction or speed is due to the

fact it captures the relative mobility characteristics of the participating nodes. By

taking into account the direction of a single node, no conclusions can be drawn about

the network dynamics. Hence, the mobility characteristics of the various nodes have

to be evaluated with reference to the rest of the participating nodes. The evaluation of

the more complete metrics like the relative direction requires knowledge about the

individual mobility characteristics of the nodes – for this specific metric knowledge

of the nodes’ direction is required. The relative direction provides an estimate of the

relative coordination of movement between two nodes. When the value of the metric

is large then the larger is the difference in the direction of the nodes, which results in

higher probability that these nodes if they are connected, they will get disconnected

soon or if they are not connected they will not establish a direct communication link.

The opposite happens when the value of the metric is small. A more comprehensive

definition of the relative direction metric is given with respect to figure 4.2.

 110

iθ

jθ
i jrθ

iθ

jθ

i jrθ

iθ

jθ
i jrθ

iθ

jθ
i jrθ

iθ

jθ

i jrθ

iθ

jθ

i jrθ

Figure 4.2. Definition and estimation of the relative direction between the nodes ,i j

Definition 4.6 (Relative Direction): If a node in is moving with direction iθ and a

node jn is moving with direction jθ then we define as the relative direction
ijrθ

between the nodes in , jn the angle:

(),
min ,360 ,

i jr i j i jθ θ θ θ θ= − − − (4.2)

where
ijrθ is measured in degrees and) ,

, 0 ,360 , 0 ,180
i j

o o o o
i j rθ θ θ⎡ ⎡ ⎤∈ ∈⎣ ⎣ ⎦ . In case

where the relative direction is measured in radians the definition becomes:

(),
min ,2 ,

i jr i j i jθ θ θ π θ θ= − − − (4.3)

where,

ijrθ is measured in radians and [) []
,

, 0, 2 , 0,
i ji j rθ θ π θ π∈ ∈

The value of the relative direction for two nodes partially characterizes the

similarity of their movement. The smaller is the value of
ijrθ the more similar is the

movement of the nodes. This characterization is partial since the mobility of the

nodes depends also on their speeds. An indicative objective related to the relative

direction of the participating nodes is the grouping of nodes that present similar

 111

mobility characteristics. Such grouping can provide more robust hierarchy, which will

result in fewer membership changes and less overhead related to the maintenance of

the clusters. The nodes can compute their relative direction to the rest of the nodes by

just exchanging their direction of movement. A node can get information about its

direction by utilizing tools such as compasses or GPS devices.

Node Velocity and Relative Velocity

The relative direction metric, can partially characterize the mobility of a node

with respect to others. The partial characterization is due to the lack of speed

parameter in the definition of the relative direction. In this paragraph we present a

more useful metric that combines the speed and direction characteristics of the nodes.

Prior to presenting the relative velocity metric, the node velocity metric is defined.

The velocity of a node is a vector quantity and not scalar as the speed is. The velocity,

as opposed to speed, is “aware” of the direction of the node. The node velocity at any

instance is characterized from the speed of the node and the vector of its direction.

The formal definition of the metric is provided with respect to figure 4.3.

In the following graph d represents the distance of the node and t the time. The

distance covered from a node is a function of time ()d f t= . For the specific time

instances 1 2, t t , the distances covered from a node can be expressed

as ()1 1d f t= , ()2 2d f t= respectively. The time instance 2t can expressed with respect

to 1t as 2 1t t t= + Δ , where the difference 2 1 0t t tΔ = − → . On the graph, for smaller

and smaller values of tΔ , the slope of the line segment through ()1 1,t d and

 112

()2 2,t d should approach that of a tangent line touching the curve at the

point () ()()1 1 1 1, ,t d t f t= . With

Figure 4.3. A sample distance-time graph for defining the velocity of a node

respect to the latter description we define the slope m at the point

() ()()1 1 1 1, ,t d t f t= of the above curve.

Definition 4.7 (Slope of a curve at a fixed point): The slope tangentm m= of the

tangent line through () ()()1 1 1 1, ,t d t f t= is defined by:

() () ()2 1
tangent 1 0 0

2 1

lim lim
t t

f t f t dm m f t
t t tΔ → Δ →

− Δ′= = = =
− Δ

 (4.4)

The slope tangentm defines the limiting value of average velocity over the time interval

1t and 2 1t t t= + Δ as 0tΔ → . This physical interpretation provides motivation for the

definition of node velocity.

 113

Definition 4.8 (Node Velocity): The velocity
1,in tu of a node in at a time instant 1t is

given by:

() () ()
1

2 1
, tangent 1 0 0

2 1

lim lim
in t t t

f t f t du m f t
t t tΔ → Δ →

− Δ′= = = =
− Δ

 (4.5)

Due to the speed and direction “awareness” of the metric, can be considered

more complete in describe the mobility characteristics of a node compared to

direction or speed. A node can determine its velocity in the same fashion it

determines its speed and direction, by utilizing devices like a tachymeter, a compass

or a GPS module.

On the other hand, as is the case with node speed and node direction metrics, the

node velocity metric cannot capture by itself the dynamics of the network due to

mobility. For this to happen, the values of the metric for the various participating

nodes have to be evaluated in correlation with each other. Thus, the metric of relative

velocity is introduced to eliminate the weakness of the node velocity. The relative

velocity ,i j

r
n nu of the nodes ,i jn n characterizes the difference of the movement patterns

of these nodes. A more precise definition of the metric is:

Definition 4.9 (Relative Velocity): The relative velocity ,i j

r
n nu of two nodes ,i jn n is

the velocity with which the one node approaches or recedes from the other node. If

the nodes ,i jn n have speeds ,
i jn nS S and directions ,

i jn nθ θ respectively, then the

relative velocity is defined as:

 114

() ()2 2

, , ,i j i j i j

r X Y
n n n n n nu S S= Δ + Δ (4.6)

where ,i j

X
n nSΔ and ,i j

Y
n nSΔ are the differences of the nodes speeds on the x-axis and y-

axis respectively. The ,i j

X
n nSΔ , ,i j

Y
n nSΔ are defined as:

, cos cos
i j i i j j

X
n n n n n nS S Sθ θΔ = − (4.7)

, sin sin
i j i i j j

Y
n n n n n nS S Sθ θΔ = − (4.8)

By substituting (4.7) and (4.8) in (4.6) we obtain a more detailed definition of relative

velocity:

2 2
, (cos cos) (sin sin)

i j i i j j i i j j

r
n n n n n n n n n nu S S S Sθ θ θ θ= − + − (4.9)

The larger is the value of the metric, the more different is the movement of the

nodes and vice, versa. The value of the metric characterizes the stability of the link

between the nodes, if a communication link exists. If such a link does not exist, the

value of the metric can be indicative for the stability of the network topology. The

relative velocity can be utilized in cases where the clustering design objectives are

related to the robustness of the generated hierarchy. Similarly, to the relative direction

metric, the relative velocity could you be used for the generation of robust clusters,

which consist of nodes with similar velocities (e.g. small relative velocities). Such

objectives have been used for the design of some of the cost functions that will be

presented in the following section. The significance of generating robust clusters,

with respect to their membership, is due to the expected reduction on the hierarchy

maintenance overhead. The hierarchy maintenance overhead is not related only to the

managing and reforming of the hierarchical structure but also and most importantly to

the effect that it has on the functionality of the applied networking protocols (i.e.

 115

require reconfiguration – they have to go through a transient state until they reach

again their steady state operation – these transitions can cause irregularities in the

functionality of the entire network). The less are the number of membership changes,

the better the performance and the more stable the network is expected to be.

The relative velocity can be computed with respect to the knowledge of the node

velocity metric. The participating nodes can exchange their velocity (speed and

direction) characteristics and then locally, using (4.9), can compute their relative

velocity with any other node into the network.

Link Expiration Time

One more interesting mobility metric utilized in the construction of cost functions

is the Link Expiration Time (LET) metric. Even though this metric is related to the

life expectancy of a link between two nodes ,k jn n , it has been included in the node-

mobility class of metrics, because it depends on the mobility characteristics of the

corresponding nodes. Namely, it depends on the speed and direction of the nodes.

LET can be defined as the estimated lifetime of a link that exists between two

nodes ,k jn n , given their speeds and directions. A more precise definition of the metric

is given with respect to figure 4.4.

 116

Figure 4.4. Speed, direction and transmission range characteristics between two
directly communicating nodes ,k jn n .

Definition 4.10 (Link Expiration Time): If for a time instance t , ,j ku u characterize

the speeds, ,j kθ θ characterize the directions, , j kTxRange TxRange characterize the

transmission ranges and () (), , ,j j k kx y x y are the coordinates of the nodes ,j kn n

respectively, the link expiration time jkLET for the direct link between these

nodes and j kn n is defined as:

() () ()22 2 2

2 2

()

,nodes , are in range
0 ,nodes , are not in range

,nodes , are relatively static
jk t j k

ab cd a b r ad bc
j ka c

LET D j k
j k

↔

⎧− + + + − −⎪
⎪ +
⎪= = ⎨
⎪ ∞⎪
⎪
⎩

 (4.10)

where

, (in this case is assumed the same for every node)

cos cos

sin sin

j j k k

j k

j j k k

j k

j k TxRange

a u u

b x x

c u u

d y y

r TxRange

θ θ

θ θ

= −

= −

= −

= −

=

jθ jθ
kθkθ

ju ju kuku

(),j jx y(),j jx y (),k kx y(),k kx y

jTxRange jTxRangekTxRangekTxRange

jθ jθ
kθkθ

ju ju kuku

(),j jx y(),j jx y (),k kx y(),k kx y

jTxRange jTxRangekTxRangekTxRange

 117

Similar to the relative velocity metric, LET is aware of both the speed and

direction of the nodes. Thus, the metric can be utilized in cost functions that attempt

to meet hierarchy generation objectives related to the dynamics of the network. Such

an objective is the reduction of hierarchy maintenance overhead for the reasons

mentioned above. The fulfillment of such an objective can be realized by generating

robust clusters with respect to the network dynamics. In terms of LET metric, the

latter objective can be translated as the grouping of nodes that define links with large

LET values. The larger is the LET value for a link, the longer are expected to remain

connected the nodes that define it.

The metrics presented in this section are the building blocks for the design of

representative cost functions, whose optimization will generate the hierarchy that

satisfies a set of pre-specified performance objectives. The set of cost functions that

has been proposed in this work along with the corresponding performance objectives

that have been served as the source of inspiration for the design of these cost

functions, are presented in the following section.

4.3 Cost Functions

One of the advantages of the proposed hierarchy formation framework is its

independence from the design objectives. The algorithm can be adjusted to any set of

requested objectives. The adaptation process is done through the utilization of metrics

and the introduction of the appropriate cost functions. If the optimization of these cost

functions is performed appropriately from the optimization algorithm, a hierarchical

structure that meets the targeted objectives will be formed.

 118

The cost functions have to be designed carefully with respect to the available

metrics and the set of objectives. In this work various cost functions are presented,

which can be categorized in two large classes with respect to the targeted objectives.

Through these classes of cost functions the effectiveness of the selected optimization

(SA) algorithm is demonstrated and the quality of the functions in accordance to the

pre-specified objectives is validated. Namely, the two classes of cost functions are:

• Cluster characteristics based cost functions

• Node mobility based cost functions

The two defined categories of cost functions fall under the same lines of the

taxonomy utilized to classify the metrics. Thus, the functions that constitute these two

categories of cost functions depend on the metrics that define the corresponding class

of metrics. The cost functions that belong into the cluster characteristics class

represent objectives that are related with the topological characteristics of the

generated clusters. Accordingly, the cost functions that define the node mobility class

represent hierarchy generation objectives related to the network dynamics. The

existence of these network dynamics is due to the mobility of the participating nodes.

In depth description and presentation of the introduced cost functions along with their

formal definition is provided in the following subsections.

4.3.1 Cluster characteristics based cost functions

The hierarchy design objectives represented from this class of cost functions are

related to the characteristics of the physical structure of the generated clusters. These

characteristics have to do with the size, the diameter and the number of input/output

points to/from the cluster. The control of the physical characteristics of the clusters,

 119

affects the performance of the applied networking protocols. As it has been shown

from various studies [38][39] the size and diameter of the network affects the

performance of the applied protocols. The various protocols present different

performance characteristics with respect to the varying size and diameter of the

network, due to their functionality (i.e. use of flooding, number of messages

exchanges, etc.). When hierarchy is introduced in the network, then these protocols

will be applied per generated cluster. By knowing the performance characteristics of

the applied protocol and for which network size and/or diameter the corresponding

protocol achieves its best performance then by adjusting these characteristics of the

generated clusters to the optimal values, the desired protocol performance could be

achieved.

This category of cost functions can be further classified into two subcategories

with respect to the number of metrics they involve. These two subcategories are:

• Single objective cost functions

• Multi-objective cost functions

The single objective subcategory includes the cost functions that are based on a single

metric and the multi-objective subcategory includes those that involve combination of

metrics. The former set targets the fulfillment of a single objective related to the

physical characteristics of the generated clusters and equally the latter set aims on

accomplishing a mixture of objectives.

In the following paragraphs, the both the single objective and the multi-objective

cost functions that attempt the adjustment of the physical structure of the hierarchy

are being introduced. Furthermore, the reasoning behind their design is explained.

 120

The evaluation of the ability of the proposed cost functions to meet the pre-specified

objectives is presented in a later section of this chapter.

Single objective cluster characteristics cost functions

The cost functions of this category have been designed to control the physical

characteristics of the generated clusters. The metrics involved in the construction of

these cost functions belong to the cluster information category and are selected with

respect to the clustering objectives set. Namely, the objectives that trigger the cost

functions of this class are:

• Balanced Size Clusters

• Balanced Size Cluster Diameters

• Minimization of Border Routers

• Optimal Cluster Size

A more detailed explanation of these objectives and the presentation of the

corresponding cost functions that attempt to accomplish these objectives upon their

optimization follow. Initially, a brief overview of the parameters that represent the

metrics involved in the construction of these cost functions is provided.

Parameter Definition
K Number of generated clusters

iC Cluster i

iC Size of cluster i

iCd Diameter of cluster i

iCBR Number of border routers of cluster i

iC ∗ Optimal size for cluster i

Table 4.1. Representation of the metrics involved in the construction of cluster
characteristics based cost functions

 121

Balanced Size Clusters

The objective of this class’ cost functions is the generation of balanced size

clusters. The requirement for equal size clusters across the network can be beneficial

in the functionality of many networking protocols. When each cluster consists of

almost the same number of nodes, the distribution of network resources across the

generated clusters is fair and better load balancing is achieved. Furthermore, as we

have already mentioned, the applied networking protocols present preferences in

terms of the network characteristics (including network size), so that they can achieve

the desired performance characteristics. If instances of these protocols are going to be

applied to each of the generated clusters, then each one of these clusters must present

the preferred physical characteristics so that the performance of the applied protocol

is optimal. In that case and specifically for preferences related to the cluster size, each

cluster must have identical size if the same protocol is going to be applied. The

following cost functions have been defined for the generation of such clusters with

respect to the balanced size requirement:

Definition 4.11 (Cost Function for the Generation of Balanced Size Clusters):

The optimization of the cost function:

()()2 2
1() min ,...., KC

J C Var C C= (4.11)

results in the generation of balanced size clusters (cluster with equivalent size with

respect to their membership characteristics).

 122

Definition 4.12 (Cost Function for the Generation of Balanced Size Clusters):

The optimization of the cost function:

2

1
() min

K

iC i
J C C

−

= ∑ (4.12)

results in the generation of balanced size clusters (cluster with equivalent size with

respect to their membership characteristics).

Balanced Size Cluster Diameters

Similarly, the objective that is represented from this set of cost functions is

related to the physical structure of the generated clusters. Specifically, the proposed

cost functions attempt to accomplish the generation of clusters that present similar

diameter with respect to hops, across the network. The significance of such an

objective is similar to the importance of generating balanced size clusters. There are

protocols whose desired performance favors specific requirements. Such

requirements are related to the physical characteristics of the network among others.

Apart from the network size, another physical characteristic is the network diameter.

When hierarchy is present, then instead of applying a single instance of the protocol

throughout the network, multiple instances of the same protocol can be applied – an

instance per generated cluster. Since the requirements for the desired performance of

the applied protocol have been known, if any of these requirements is related to the

diameter of the network, the latter can be adjusted accordingly. Due to the application

of the same protocol at each cluster, the recommended diameter must be the same at

every generated cluster. The optimization of the following cost functions (4.13),

 123

(4.14) is expected to provide the desired clustering map that satisfies the balanced

cluster diameters objective.

Definition 4.13 (Cost Function for the Generation of Balanced Diameter

Clusters):

 ()2

1
() min

i

K

CC i
J C d

−

= ∑ (4.13)

results in the generation of balanced diameter clusters (cluster with equivalent

diameter characteristics).

Definition 4.14 (Cost Function for the Generation of Balanced Diameter

Clusters):

() ()()1 2

2 2 2min , ,....,
KC C CC

J C Var d d d= (4.14)

results in the generation of balanced diameter clusters (cluster with equivalent

diameter characteristics).

Optimal Size Clusters

The objective represented from the cost function of this category is similar to the

balanced size clusters objective, but more general. Each generated cluster is treated

separately in terms of its size requirements. This generalization of the objective of

balanced size clusters comes with the extra constraint that the sum of the clusters size

is equal with the network size. Apart from this constraint the generation of clusters

with pre-specified requirements on their size (optimal size of the cluster), can be very

 124

useful in cases where different protocols are applied in the various clusters. If the

favorable performance for each of these protocols is achieved in different cluster size,

then the size of the corresponding cluster must be adjusted accordingly. The balanced

size clusters objective cannot handle such scenarios. The cost function that formalizes

the optimal size cluster objective is defined as:

Definition 4.15 (Cost Function for the Generation of Optimal Size Clusters): The

optimization of the cost functions:

()2

1
() min

K

i iC i
J C C C ∗

−

= −∑ (4.15a)

() () ()2 2* *
1 1min ,..., K KC

J C Var C C C C⎡ ⎤= − −⎢ ⎥⎣ ⎦
 (4.15b)

result in the generation of clusters with pre-specified requirement on their size

(optimal cluster size).

Minimization of Border Routers

Along the same lines as the previously defined classes of cost functions, this one

involves cost functions that control another aspect of the physical structure

characteristics of the generated clusters. The objective that the introduced cost

functions attempt to accomplish is related to the number of “entrances” (“exits”) to

(from) the generated clusters. The building block of these functions is the metric

related to the number of border routers per cluster. The objective is the generation of

clusters with minimum number of border routers.

 125

Definition 4.16 (Cost Function for the Generation of Clusters with Minimum

Number of Border Routers):

()
1

min
i

K

CC i

J C BR
−

= ∑ (4.16)

results in the generation of clusters with equivalent number of border routers.

Multi-objective cluster characteristics cost functions

The cost functions above aim on the satisfaction of a single hierarchy generation

objective. Even though the ability of the algorithm to optimize these cost functions

and generate the desired hierarchy is very important, sometimes is not sufficient for

the performance improvement of the network. That is because the overall

performance of the network depends on the efficient functionality of many protocols

and is described from many parameters. The optimization with respect to one

parameter may affect negatively any of the other network parameters, resulting in the

degradation of the network performance. Sometimes the combined improvement of

the network performance is required with respect to multiple parameters (multiple

objectives). Taking advantage of the ability of SA to optimize complex cost

functions, the above objectives can be combined into single cost functions for multi-

objective optimization of the network. Such cost functions that portray multiple

objectives have been proposed through this work. The following ones are

representative of the cluster characteristics class since they are combining single

objectives presented earlier.

 126

Balanced Size Clusters and Minimization of Border Routers

The cost function that represents the complex objective, involves both the

generation of balanced size clusters and the minimization of the border routers of the

network. The reasoning of this combination of objectives is to achieve simultaneously

the advantages resulting from the generation of balanced size clusters and the

minimization of border routers as they were presented earlier in this section. The cost

function that realizes this combination of objectives is:

() ()2 2 3
1

1
min ,...., 10

i

K

K CC i
J C Var C C BR

=

⎛ ⎞⎛ ⎞
= + ∗⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ (4.17)

where the definitions of parameters involved are provided in Table 4.1. The effect of

the multi-objective cost function on the generated hierarchy compared to the

corresponding single objective ones is described in the performance evaluation

section. Also the ability of SA to optimize complex cost function is verified from the

simulation results.

Balanced Diameter Clusters and Minimization of Border Routers

Similarly, with the previous cost function, this one represents a combination of

hierarchy generation objectives. It belongs in the category of the clustering

characteristics based cost functions since both of the targeted objectives involved are

related with the structure of the generated clusters. These two objectives are the

generation of balanced diameter clusters and the minimization of border routers. The

advantages from the application of such a scheme are expected to be the combination

of the advantages of each of the objectives separately. These advantages have been

highlighted earlier. The combination of these objectives is represented from the

following cost function:

 127

() () () ()()2 2 2 2
1 2

1
min , ,...., 10

i

K

K CC i
J C Var d C d C d C BR

=

⎛ ⎞⎛ ⎞
= + ∗⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ (4.18)

The optimization of cost function (3.13) from SA results in a hierarchical structure

which complies with the objectives set.

• Optimal Cluster Size and Minimization of Border Routers

The complex objective represented from cost function (4.19) below, is a

combination of two single objectives, the generation of optimal size clusters and the

minimization of border routers. The effect of this type of hierarchy is expected to

have the combined advantages provided from each one of the targeted objectives. The

cost function that formalizes the combinational objective is:

()2

1 1
() min 10

i

K K

i i CC i i
J C C C BR∗

= =

⎡ ⎤
= − + ∗⎢ ⎥⎣ ⎦

∑ ∑ (4.19)

The verification of the ability of (4.19) to meet the complex objective is provided in

the performance evaluation section of this chapter.

4.3.2 Node mobility characteristics based cost functions

In this category belong the cost functions that are related with the mobility

characteristics of the generated clusters. The metrics that constitute these cost

functions are those in the node mobility class. The targeted objective is related to the

robustness of the generated hierarchical structure. The robustness is defined from the

stability of the clusters’ membership. The advantage of generating a hierarchical

structure that remains stable in a dynamic environment is the minimization of the

membership changes. The topology modifications due to nodes mobility impose extra

overhead in maintaining the hierarchical structure. This overhead may be harmful to

 128

the overall network performance, so if we want to take advantage of the hierarchy

benefits then it is preferable to eliminate it. A way to do it is to incorporate network

environment characteristics into the hierarchy generation mechanism. Such

characteristics are the mobility of the participating nodes. If we group together nodes

that present similar mobility characteristics, then it is expected that these groups will

remain connected for larger periods of time compared to those obtained without

taking into account the similarities on the mobility patterns of the nodes. Adopting the

philosophy behind the generation of robust to mobility clusters, we introduce the

following cost functions.

The objectives represented from the cost functions of this class aim on the

generation of robust to mobility clusters. For achieving the latter, the grouping of the

nodes with similar mobility characteristics is attempted. Each of the introduced cost

functions involves exactly one of the node-mobility metrics defined earlier. The

parameters that represent these metrics in the definitions of the cost functions of this

class are provided in Table 4.2:

Parameter Definition
K Number of generated clusters

iC Cluster i

iC Size of cluster i

,i jrθ Relative direction of nodes i, j

,i jrU Relative Velocity of nodes i, j

ijLET Expiration Time of Link between nodes i, j

iU Scalar speed of node i

Table 4.2. Representation of the metrics involved in the construction of cluster
characteristics based cost functions

 129

The hierarchy generation objectives requested and the corresponding cost functions

defined are:

Groups of Nodes with Similar Direction

Since the main objective of this class of cost functions is the generation of robust

clusters, this can be achieved by grouping together nodes with similar mobility

characteristics. These groups of nodes are expected to remain connected for longer

periods of time, reducing the hierarchy maintenance overhead and increasing the

effectiveness of the applied hierarchy. A cost function that attempts to meet the

requested objective upon its optimization is defined as:

()
,

2

1 , 1
min

z

i j

CK

rC z i j
J C θ

= =

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ (4.20)

The mobility metric utilized for the introduction of this cost function is the relative

direction of the nodes in a cluster. Even though the cost is affected from the relative

direction of every pair of nodes in a cluster, independently from the existence of a

direct link or not between them, the constraint of topological clusters is still imposed.

The enforcement of the constraint is done during the generation of new clustering

maps from SA. More details about the generation mechanism of the candidate

clustering maps and its importance on the performance of the algorithm are provided

in a later section of this chapter, where we describe the implementation.

Groups of Links with Similar Velocity

Similarly, with the previous cost function, the hierarchy generation objective

represented from this cost function is the generation of robust to mobility clusters. In

this case, instead of using the direction of the nodes as the mobility metric of choice,

 130

their velocity is used. Specifically, the cost function introduced involves the relative

velocity of the nodes in a cluster and attempts the grouping of nodes with similar

velocity characteristics. This cost function is defines as:

()
,

2

2

1 , 1
min

z

z
i j

CK

rC z i j
J C U

= =

⎛ ⎞⎡ ⎤
⎜ ⎟= ⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠
∑ ∑ (4.21)

The difference of (4.21) compared to (4.22) is that the latter involves only the

direction of the nodes, as opposed to the former which is based on velocity, which is

aware of both the speed and direction of the nodes. Thus, (4.22) is expected to be

more accurate on the grouping of nodes with similar characteristics, resulting in more

robust hierarchical structures. The latter expectation turns to be true, as it will be

presented on the simulation analysis section of the introduced cost functions.

Groups of Links with Large LET

Another node mobility metric that is involved in the definition of cost functions

that pursue the generation of robust hierarchy is the Link Expiration Time (LET). The

cost function based on LET attempts to group together nodes so that the links they

define are characterized from high LET. The higher is the LET value of a link, the

longer is expected to remain on. The definition of metric is given by (4.11) and the

corresponding cost function is formalized by (4.22), below.

() ()
2

1 , 1
min

zCK

ijC z i j
J C LET

= =

⎡ ⎤⎛ ⎞
⎢ ⎥= − ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ (4.22)

Since LET involves the direction and speed of the nodes that define the various links,

(4.22) as (4.21) is aware of the combined mobility metrics of the nodes. It is expected

to recognize more accurately and group more efficiently than (4.20), the nodes with

 131

similar mobility characteristics. Its performance with respect to (4.20) and (4.21) on

the grouping of the nodes and the construction of robust hierarchical structures is

provided in a later section in this chapter.

4.4 Performance Evaluation

Even though the algorithmic details of the hierarchy generation framework have

been presented, its ability to fulfill the pre-specified objectives has not been shown

yet. This ability is mostly related to the definition of the cost functions from the

available metrics so that the targeted objectives are represented accurately. In this

section the effectiveness of the introduced cost functions is demonstrated through a

sequence of emulation results. The results were collected by optimizing the various

cost functions using the modified SA algorithm and then the consistency of the

generated clustering maps with respect to the targeted objectives was being checked.

Prior to the presentation of the results, the configuration of the optimization algorithm

(SA) which was used is provided in the next section.

4.4.1 Configuration of modified SA

The SA algorithm was configured with respect to the modifications and

adjustments that were presented in the previous chapter. Even though the simulation

analysis of the SA algorithm with these modifications and adjustments showed that

the convergence time is significantly improved with small or no loss in the quality of

the generated solution, the quality of the obtained solution was not studied for a larger

set of cost functions (objectives). Before presenting the ability of the optimization

algorithm to produce clustering map solutions in accordance to the pre-specified

 132

objectives, the configuration details of the SA algorithm utilized for the optimization

of the corresponding cost functions will be given. These details refer to the selection

of the cooling schedule, the StopRepeat number, the transition probabilities, the

iterations per temperature, and the initial temperature. A brief overview of the rest

modules of SA algorithm is also given. These modules are related to the generation of

new feasible clustering maps per iteration and the evaluation of their cost. The

algorithm that describes the functionality is given in figure 4.5.

yes (downhill move)

No (uphill move)

Current Temperature
Current Cluser map
New cluser map to test
Champion cluster map
Current cost
Cost of new cluster map
Champion cost
Inner loop counter
Outer loop counter

Initialization
T = T0

Generate K Clusters C
Calculate the cost E=Cost(C)

E*=E; C*=C; t=0

equilibrium function (T, j)

Try New Clustering
C’ = recluseringfunction (C)

E’ = Cost function (C’)
ΔE = E’ –E; j++

Cost is lower?
ΔE < 0

C = C’ ; E = E’ r < e–(ΔE /T)

r= random[0,1]

Lower Temperature
T = Cooling function (T, T0, t)

t++

Start with new temperature j=0

yes

no
no

yes

T
C
C’
C*
E
E’
E*
j
t

Definition

Inputs Examples

Variable

Equilibrium
Function

Cost function

Stop function

Reclustering
function

Constant (j = 5000);
“Stop repeats”
(function of T);…

Minimum temperature
“Stop repeat” criteria

Random move of one node

)(
1

i

K

i
CDiameter∑

−
Cooling function Geometric or logarithmic

Frozen?
stop function (T)

Done
Return (C*)

no yes

C*=C’;E*=E’
E’ < E*

yes
(new best)

no

K Number of clusters
T0 Initial Temperature

Figure 4.5. Simulated Annealing algorithm for network partitioning

 133

Table 4.3 presents the values for the various parameters of the SA algorithm, as they

were selected for the optimization of the various cost functions. These values will be

justified in chapter 5, as part of the modification and adjustment of the optimization

algorithm so that it can be applied in dynamic environments.

Parameters Configuration Values

Cooling Schedule Geometric Cooling Schedule

StopRepeats 100

State Transition Probabilities Uniform

Initial Temperature 40

Iterations Per Temperature 100

Table 4.3. Configuration values of the SA parameters for the optimization of the
introduced cost functions

Apart from the parameters, important role in the optimization algorithm is the

generation of new feasible clustering maps and their cost evaluation modules. The

generation of new feasible maps is performed as it will be described in chapter 5,

based on the migration of one randomly selected node from a randomly selected

cluster to a new randomly selected cluster. After this move is being performed, the

old and new host clusters of the node are being checked for feasibility (topological

clusters). If both are feasible the cost of the new clustering is evaluated with respect

to the optimized cost function. If not then a new migration move is performed until a

feasible clustering map is obtained. The cost evaluation of the feasible clustering

maps in each round of SA is performed using the energy update method (see chapter

5), where the new cost is evaluated as an update from the previous cost by taking only

into account the changes on the previous clustering map (e.g. currently optimal map).

 134

The following section presents the ability of the algorithm to converge into

hierarchical structures that satisfy the pre-specified generation objectives. Initially,

the cost functions based on the cluster characteristics are optimized and then the node

mobility cost functions are plugged into SA for the generation of optimal clustering

maps.

4.4.2 Cluster characteristics based cost functions

The importance of the results to be presented here is twofold. Initially, to

investigate the efficiency of the cost functions of the cluster characteristics based cost

functions class and secondly to evaluate the ability of the adjusted SA algorithm to

optimize these cost functions as fast as possible. The former is extremely critical,

because a carefully designed cost function has to be exact on accomplishing the

hierarchy generation objectives and at the same time has to be optimized

comparatively faster than other cost functions that represent the same objectives. The

evaluation of the introduced cost functions becomes even more interesting in the case

of multi-objective cost functions. The efficiency of this type of cost functions is

evaluated with respect to their ability to meet all the involved hierarchy generation

objectives. The experimental results presented here for the introduced multi-objective

cost functions are analyzed for efficiency. These results are highly correlated to the

effectiveness of the optimization method in the case where multiple objectives have

to be met and complex cost functions have to be optimized.

The evaluation of the cost functions was performed with respect to a large

number of networks of different characteristics (size, degree of nodes) and number of

generated clusters. Some representative graphs were selected to be demonstrated here,

 135

that capture the ability of the cost functions to accomplish the pre-specified

objectives. These results were obtained for a network of 100 nodes that were

dispensed randomly in an area of 500m x 500m. The average node degree ndgr and

the variance of the node degree ()nVar dgr are shown in the following table:

Statistics Values

ndgr 5.78 neighbors/node

()nVar dgr 4.27

Table 4.4. Statistics of the network (fig. 4.7)

The density of the nodes per 4 210 m is represented by the following 3-D graph:

1

2

3

4

5

1

2

3

4

5

0

2

4

6

8

10

Figure 4.6. Density of nodes per
4 210 m

The topology and the connectivity of the nodes of this network are shown in figure
4.7.

 136

Figure 4.7. Network topology (100 nodes) of the demonstrated results

For the specific experiments performed for the collection of the demonstrated

results the number of clusters generated was 5. Initially the results related to the

single objective cost functions are presented and evaluated. Then the results

associated with the multiple criteria cost functions are also demonstrated and

analyzed.

4.4.2.1 Single Objective Cost Functions

The graphs for the introduced cluster information based cost functions are

presented here. The following table recapitulates these functions and the hierarchy

generation objectives that represent – the parameters are explained in table 4.2.

 137

Cost Function Objective

()()2 2
1() min ,...., KC

J C Var C C=

2

1

() min
K

iC i

J C C
−

= ∑

Balanced Sized Clusters

() ()()1 2

2 2 2min , ,....,
KC C CC

J C Var d d d=

()2

1
() min

i

K

CC i
J C d

−

= ∑

Balanced Diameter Clusters

()2

1

() min
K

i iC i

J C C C ∗

−

= −∑

Adjusting the Cluster Size

()
1

min
i

K

CC i

J C BR
−

= ∑

Minimization of Border Routers

Table 4.5. Single Objective Cluster Information Based Cost Functions.

From the large scale experiments performed, the clustering maps generated upon the

optimization of these cost functions were complying on the objectives set. Some

indicative results related to this category of cost functions are:

• ()()2 2
1() min ,...., KC

J C Var C C=

Figure 4.8. Balanced Size Clusters

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500
Optimal Clustering Map − Nodes=100,Clusters=5

meters

m
et

er
s

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5
x 10

5 Energy − Nodes=100,Clusters=5

Iterations

En
erg

y

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

16

18

20

Cluster Size − Nodes=100 Clusters=5

 ClusterID

 N
um

be
r o

f N
od

es

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500
Optimal Clustering Map − Nodes=100,Clusters=5

meters

m
et

er
s

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5
x 10

5 Energy − Nodes=100,Clusters=5

Iterations

En
erg

y

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

16

18

20

Cluster Size − Nodes=100 Clusters=5

 ClusterID

 N
um

be
r o

f N
od

es

 138

Figure 4.8 demonstrates a group of results related to the generation of balanced

size clusters and specifically to cost function (4.11). The upper left corner of the

graph is the optimal clustering map outcome from SA, where the nodes that belong

into the same cluster are marked with the same color. On the upper right corner each

column corresponds to the cardinality of the generated clusters. This sub-graph

presents the ability of the cost function to meet the pre-specified objectives.

Obviously, (4.11) generates perfectly balanced size clusters upon its optimization

(e.g., for 100 nodes network, 5 clusters of 20 nodes have been generated). The bottom

sub-graph (energy vs. iterations) demonstrates the evolution of cost (energy) in each

iteration of the optimization process. This result is an indication of the speed of the

cost function in meeting the pre-specified objectives. Further analysis of the latter

type of results is being performed later in the chapter.

• () ()()1 2

2 2 2min , ,....,
KC C CC

J C Var d d d=

Figure 4.9. Balanced Diameter Clusters

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500
Optimal Clustering Map − Nodes=100,Clusters=5

meters

m
et

er
s

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8
Cluster Diameter − Nodes=100 Clusters=5

 ClusterID

 C
lu

st
er

 D
ia

m
et

er

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

700

800

900
Energy − Nodes=100,Clusters=5

Iterations

En
er

gy

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500
Optimal Clustering Map − Nodes=100,Clusters=5

meters

m
et

er
s

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8
Cluster Diameter − Nodes=100 Clusters=5

 ClusterID

 C
lu

st
er

 D
ia

m
et

er

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

700

800

900
Energy − Nodes=100,Clusters=5

Iterations

En
er

gy

 139

In the same fashion as in figure 4.8, the above figure 4.9, involves a group of

subgraphs related to the ability of the cost function (4.14) to generate balanced

diameter clusters upon its optimization from SA. As it can be observed from the

upper right corner subgraph, (4.14) is capable of meeting the hierarchy generation

objectives that represents. In the specific experiment of figure 4.9, 5 clusters of

diameter 7 hops each has been generated. Considering the large scale

experimentation with this cost function and its optimization from SA, it appears to be

very accurate on producing balanced diameter clusters and in small number of SA

iterations (~400) as the bottom subgraph of the above figure demonstrates.

• ()2

1
() min

K

i iC i
J C C C ∗

−

= −∑

Figure 4.10. Optimal Cluster Size Assignments Cost Function

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500
Optimal Clustering Map − Nodes=100,Clusters=5

meters

m
et

er
s

0 1 2 3 4 5 6
0

5

10

15

20

25

30

Cluster Size − Nodes=100 Clusters=5

 ClusterID

 N
um

be
r

of
 N

od
es

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700

800

900
Energy − Nodes=100,Clusters=5

Iterations

En
erg

y

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500
Optimal Clustering Map − Nodes=100,Clusters=5

meters

m
et

er
s

0 1 2 3 4 5 6
0

5

10

15

20

25

30

Cluster Size − Nodes=100 Clusters=5

 ClusterID

 N
um

be
r

of
 N

od
es

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700

800

900
Energy − Nodes=100,Clusters=5

Iterations

En
erg

y

 140

Figure 4.10 demonstrates results related to the optimal cluster size assignment

cost function (4.15). For the specific experiment, the requested sample cardinalities

for the 5 clusters to be generated were:

Optimal Cluster Size Assignments 25 15 30 20 10

Table 4.6. Requested cardinality for each generated cluster

The upper right subgraph represents the resulted cardinalities upon the optimization

of (4.15). These cardinalities match perfectly the requested ones from Table 4.6,

which is an indication of the ability of the specific cost function to accomplish the

corresponding hierarchy generation objectives. Large scale experimentation with

(4.15) has shown that it is systematic on converging to clustering maps that match the

requested cardinalities.

4.4.2.2 Multiple Objectives Cost Functions

The resulting clustering maps related to single objective cluster information

based cost functions, have demonstrated their ability to construct hierarchical

structures that comply with the requested objective. By collecting similar groups of

results related to the corresponding multiple objective cost functions, the ability of

SA to optimize such functions is demonstrated. Also, the results presented in this

subsection illustrate the effectiveness of these functions to meet the multiple pre-

specified objectives that they represent. Before the presentation of the results, an

overview table of the multiple objective cluster information based cost functions that

have been introduced, is provided.

 141

Cost Function Objectives

() ()2 2 3
1

1
min ,...., 10

i

K

K CC i
J C Var C C BR

=

⎛ ⎞⎛ ⎞
= + ∗⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑

Balanced Size Clusters
and Minimization of BRs

()
() () ()()2 2 2

1 2

2

1

, ,....,
min

10
i

K

K
C

C
i

Var d C d C d C
J C

BR
=

⎛ ⎞+
⎜ ⎟

= ⎜ ⎟⎛ ⎞
∗⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑

Balanced Diameter

Clusters and
Minimization of BRs

()2

1 1
() min 10

i

K K

i i CC i i
J C C C BR∗

= =

⎡ ⎤
= − + ∗⎢ ⎥⎣ ⎦

∑ ∑
Optimal Size

Assignment and
Minimization of BRs

()
()

() () ()()()

2 2 3
1

1

2 2 2
1 2

,...., 5 10
min

10 , ,....,

i

K

K C
i

C

K

Var C C BR
J C

Var d C d C d C
=

⎛ ⎞⎛ ⎞
+ × ∗ +⎜ ⎟⎜ ⎟
⎝ ⎠= ⎜ ⎟

⎜ ⎟⎜ ⎟∗⎝ ⎠

∑
Balanced Size Clusters,

Balanced Diameter
Clusters and

Minimization of BRs

Table 4.7: Multiple Objectives Cluster Information Based Cost Functions.

The results that follow represent a small subset of the above cost functions but the

conclusions drawn are representative for the performance of this category of cost

functions, as it has been observed from the large number of experiments performed.

The following results correspond to the cost functions for the generation of balanced

size clusters along with the minimization of border routers (BRs) and for the

generation of balanced size and diameter clusters along with the minimization of

BRs, respectively.

 142

• () ()2 2 3
1

1
min ,...., 10

i

K

K CC i
J C Var C C BR

=

⎛ ⎞⎛ ⎞
= + ∗⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑

Figure 4.11. Multiple objectives cost function: Balanced Size Clusters and
Minimization of Border Routers

A representative group of results for the two objectives cost function (4.17) is

given in figure 4.11. The effect of adjusting the SA so that it is faster but it produces

suboptimal solutions can be identified from the upper right and the bottom left

subgraphs. The former provides the number of BRs per generated cluster and the

latter demonstrates the cardinality of the generated clusters. About the cardinality

subgraphs, the blue columns are the optimal values and the red represent the values

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

9

10
Border Routers Per Cluster − Nodes=100 Clusters=5

 ClusterID

 B
or

de
r

R
ou

te
rs

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500
Optimal Clustering Map − Nodes=100,Clusters=5

meters

m
et

er
s

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3
x 10

5 Energy − Nodes=100,Clusters=5

Iterations

E
ne

rg
y

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

16

18

20

22
Cluster Size − Nodes=100 Clusters=5

 ClusterID

 N
um

be
r o

f N
od

es

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

9

10
Border Routers Per Cluster − Nodes=100 Clusters=5

 ClusterID

 B
or

de
r

R
ou

te
rs

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500
Optimal Clustering Map − Nodes=100,Clusters=5

meters

m
et

er
s

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3
x 10

5 Energy − Nodes=100,Clusters=5

Iterations

E
ne

rg
y

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

16

18

20

22
Cluster Size − Nodes=100 Clusters=5

 ClusterID

 N
um

be
r o

f N
od

es

 143

obtained from the optimization. There is a small deviation from the optimal value but

still the sizes of the generated clusters are very close to each other, almost balanced.

When the minimization of BRs was the only targeted objective, the average number

of BRs was ~30, with 26 the minimum observed. The same objective as part of a

multi-objective cost function defined a slightly larger number of BRs in the network.

For the specific experiment this number is 32. Due to the complexity of the cost

function compared to the corresponding single objective ones, the solution obtained is

suboptimal with respect to each objective individually. Whereas, the generated

clustering map almost satisfies both of the objectives. By comparing the optimal

clustering map of figure 4.8, which corresponds to the balanced size clusters, with

this one, the effect of the multi-objective optimization is obvious. The generated

clusters in the multi-objective case appear to be more isolated (e.g., less inter-cluster

links). The observations made from the optimization of multi-objective cost functions

illustrate the ability of adjusted SA to provide high quality clustering solutions very

fast, even in complex situations. This observation becomes more noticeable in the

following case where the optimization involves three objectives.

• ()
()

() () ()()()

2 2 3
1

1

2 2 2
1 2

,...., 5 10
min

10 , ,....,

i

K

K C
i

C

K

Var C C BR
J C

Var d C d C d C
=

⎛ ⎞⎛ ⎞+ × ∗ +⎜ ⎟⎜ ⎟
⎝ ⎠= ⎜ ⎟

⎜ ⎟⎜ ⎟∗⎝ ⎠

∑

As with the previous cost function, this one involves more than one hierarchy

generation objectives. Specifically, three are involved: the generation of balanced size

clusters, balanced diameter clusters and the minimization of border routers. The

collection of subgraphs demonstrating the effectiveness of this cost function on

meeting all three objectives simultaneously is provided in figure 4.12. Similarly, the

 144

results obtained for each individual objective are suboptimal (e.g., slightly

unbalanced cluster sizes and diameters and little higher number of border routers).

This slight suboptimality is due to tuning of SA for its faster convergence, but as

expected this has effect on the optimality of the generated solutions. The solution

obtained is still of high quality especially for the dynamic networks under

Figure 4.12. Multiple objectives cost function: Balanced Size Clusters, Balanced
Diameter Clusters and Minimization of Border Routers

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Border Routers Per Cluster − Nodes=100 Clusters=5

 ClusterID

 B
or

de
r R

ou
te

rs

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500
Optimal Clustering Map − Nodes=100,Clusters=5

meters

m
et

er
s

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8
Cluster Diameter − Nodes=100 Clusters=5

 ClusterID

 C
lu

st
er

 D
ia

m
et

er

0 1 2 3 4 5 6
0

5

10

15

20

Cluster Size − Nodes=100 Clusters=5

 ClusterID

 N
um

be
r o

f N
od

es

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5 Energy − Nodes=100,Clusters=5

Iterations

En
er

gy

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Border Routers Per Cluster − Nodes=100 Clusters=5

 ClusterID

 B
or

de
r R

ou
te

rs

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500
Optimal Clustering Map − Nodes=100,Clusters=5

meters

m
et

er
s

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8
Cluster Diameter − Nodes=100 Clusters=5

 ClusterID

 C
lu

st
er

 D
ia

m
et

er

0 1 2 3 4 5 6
0

5

10

15

20

Cluster Size − Nodes=100 Clusters=5

 ClusterID

 N
um

be
r o

f N
od

es

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5 Energy − Nodes=100,Clusters=5

Iterations

En
er

gy

 145

consideration, since the topology changes unavoidably will degrade the quality of the

solution with respect to time. It is preferable to get a high quality suboptimal solution

fast rather than getting an optimal which might require large amount of processing

time. In dynamic environments the latter approach might construct hierarchical maps

that are no longer feasible with respect to the topological constraints, if the solution

has not been obtained fast enough compared to the network dynamics.

4.4.3 Node mobility characteristics based cost functions

The performance of this class of cost functions is being evaluated with respect to

their ability to identify accurately groups of nodes that have similar mobility

characteristics. The significance in forming clusters out of such groups of nodes is on

the robustness of the generated hierarchy. These clusters are expected to maintain

their membership stable for long periods of time due to the similar moving patterns of

their members. The performance of the network will improve due to the reduction of

the hierarchy maintenance overhead and the benefits provided from the application of

the hierarchical structure.

The evaluation of the introduced node mobility cost functions involves their

ability to identify different mobility groups of nodes, when these groups present

different levels of distinctiveness (e.g., difference in speed and direction of

movement) in their mobility characteristics. The experimental set up for the analysis

of the proposed cost functions and the results collected are provided in the following

sections.

 146

4.4.3.1 Experimental Set Up

The effectiveness of the combination of SA with the proposed cost functions is

evaluated by setting up carefully the experimental environment. The main element of

the experimental set up is that the networks consist of predefined mobility groups

with distinct mobility characteristics and the clustering framework had to identify

these mobility groups as accurately as possible. The clustering framework applied for

the identification of the mobility groups consists of the SA algorithm and the class of

node mobility cost functions.

Since we are interested in group mobility we had to select the appropriate group

mobility model. In our experiments we utilized the Reference Point Group Mobility

(RPGM) Model. In RPGM we define a number of Reference Points (RPs) equal to

the number of mobility groups we want to establish. To complete the definition of

mobility groups, each node is assigned to a RP. The movement of the nodes is

characterized from the mobility patterns of their corresponding RPs. These mobility

patterns are assigned manually to the various RPs in the form of trajectories. When a

RP moves to a new location each corresponding node is assigned to a random radius

and direction around the new position of the RP. Because of the functionality of

RPGM model and the randomness in the selection of the new node position, it is

obvious that nodes that belong into the same group may have different speeds and

directions, which makes the clustering of the various mobility groups more

challenging but improves the significance of the experimental analysis of the

proposed cost functions.

 147

Two mobility groups were predefined by splitting the network of figure 4.11 into

two topological clusters of same size (50 nodes each). The RP for each of the groups

was selected as the center of gravity of their members coordinates. The trajectory of

these points defines the new position of the corresponding group nodes.

The RP trajectories were predefined so that the RPs where moving on a straight

line with constant relative direction
1 2,RP RPθ and constant relative speed 1, 2RP RPS , as it is

indicated in figure 4.13.

Figure 4.13. Experimental set up: Based on the RPGM model, 2 mobility groups are
defined with respect to RP1 and RP2

We varied the relative direction from 0o to 360o (e.g.,

1 2, 0 ...360o o
RP RPθ ⎡ ⎤∈ ⎣ ⎦) by a step of

15o. We repeated each step 100 times. For each run we measured the percentage (%)

of nodes that they were assigned in a group different than the one they were pre-

assigned to. The average percentage of incorrect assignments of 100 runs for each

1 2,RP RPθ is provided in figures 4.14 and 4.15 for the introduced node mobility based

cost functions (4.20) and (4.21) respectively. Furthermore, figure 4.18 illustrates also

the effect of relative speed 1, 2RP RPS of RP1 and RP2 on the accuracy of the cost

RP1

RP2

1 2RP RPθ

1RPθ
2RPθ

1RPS
2RPS

RP1

RP2

1 2RP RPθ

1RPθ
2RPθ

1RPS
2RPS

 148

function (4.21). The effect of 1, 2RP RPS is investigated only for the latter cost function

since it involves this metric, as opposed to the former (4.20) cost function which

involves only the relative direction of the participating nodes.

Figure 4.14 indicates that the cost function (4.20) can identify accurately the

various mobility groups especially when the groups are moving in relative directions

such that
1 2, 30 ...330o o

RP RPθ ⎡ ⎤∈⎣ ⎦. When
1 2, 30 ...330o o

RP RPθ ⎡ ⎤∉⎣ ⎦ then the proposed cost function has

MisAssigned Nodes (%) vs. Relative Angle (deg)

 (4)

0

5

10

15

20

25

30

35

40

45

50

0 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

Relative Angle (deg)

M
is

As
si

gn
ed

 N
od

es
 (%

)

Figure 4.14. Incorrectly assigned nodes percentage (%) with respect to relative angle

1 2,RP RPθ for cost function (4.20)
MisAssigned Nodes (%) vs. vs.

(100 nodes,2clusters,1000 StopRepeats)

 (6)

0

5

10

15

20

25

30

35

40

45

0 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

Relative Angle (deg)

M
is

A
ss

ig
ne

d
N

od
es

 (%
)

RelSpeed=9 RelSpeed=4 RelSpeed=1
Figure 4.15. Incorrectly assigned nodes percentage (%) with respect to relative angle

1 2,RP RPθ for cost function (4.21) for various relative speeds 1, 2RP RPS .

 149

difficulty on accurately identifying the pre-specified the mobility groups. This is not a

limitation of the accuracy of the cost function since in this scenario the accurate

selection of mobility groups is not restricted to the original mobility groups, because

of the similarity in their directions. But still we can do better if we incorporate the

speed of the participating nodes into the cost function. By doing so, figure 4.15

indicates that cost function (4.21) presents much better accuracy than cost function

(4.20) which depends solely on the nodes direction. For 1, 2 1 /RP RPS m s> the mobility

groups are identified with accuracy 100%. The latter illustrates the effectiveness of

the cost function (4.21) and the optimality of the decisions taken from SA algorithm.

4.5 Importance of Cost Function Selection

The same objective can be represented from various cost functions. Upon the

optimization of the latter, the obtained clustering map may satisfy equally well the

pre-specified objective. Such cost functions have been introduced earlier for the

generation of balanced size clusters (4.11, 4.12), balanced diameter clusters (4.13,

4.14) and the optimal cluster size assignments (4.15a, 4.15b). Even though multiple

cost functions exist for the same objective, only one can be applied. Further

evaluation of these cost functions has to be made to determine which of these are the

most appropriate to represent the corresponding objectives.

Since it has been shown that satisfy equally well the targeted objectives, the

selection metric has to be something different but of equivalent importance. Such a

metric is the speed of convergence of the SA algorithm. As it is shown in figure 4.16,

 150

Figure 4.16. Energy behavior per iteration with respect to the cost function selection

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

700

800

900
Energy − Nodes=100,Clusters=5

Iterations

E
n

e
rg

y

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

400
Energy − Nodes=100,Clusters=5

Iterations

E
n

e
rg

y

() ()()1 2

2 2 2min , ,....,
KC C CC

J C Var d d d=

()2

1
() min

i

K

CC i
J C d

−

= ∑

0 100 200 300 400 500 600 700 800
0

500

1000

1500

2000

2500
Energy − Nodes=100,Clusters=5

Iterations

E
n

e
rg

y

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5
x 10

5 Energy − Nodes=100,Clusters=5

Iterations

E
n
e
rg

y ()()2 2
1() min ,...., KC

J C Var C C=
2

1

() min
K

iC i

J C C
−

= ∑

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700

800

900

1000
Energy − Nodes=100,Clusters=5

Iterations

E
ne

rg
y

0 100 200 300 400 500 600 700 800 900
0

1

2

3

4

5

6

7

8
x 10

4 Energy − Nodes=100,Clusters=5

Iterations

E
n
e
rg

y()2

1
() min

K

i iC i
J C C C ∗

−

= −∑ () ()2 2

1 1() min ,..., K KC
J C Var C C C C∗ ∗⎛ ⎞= − −⎜ ⎟

⎝ ⎠

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

700

800

900
Energy − Nodes=100,Clusters=5

Iterations

E
n

e
rg

y

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

400
Energy − Nodes=100,Clusters=5

Iterations

E
n

e
rg

y

() ()()1 2

2 2 2min , ,....,
KC C CC

J C Var d d d=

()2

1

() min
i

K

CC i

J C d
−

= ∑

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

700

800

900
Energy − Nodes=100,Clusters=5

Iterations

E
n

e
rg

y

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

400
Energy − Nodes=100,Clusters=5

Iterations

E
n

e
rg

y

() ()()1 2

2 2 2min , ,....,
KC C CC

J C Var d d d=

()2

1

() min
i

K

CC i

J C d
−

= ∑

0 100 200 300 400 500 600 700 800
0

500

1000

1500

2000

2500
Energy − Nodes=100,Clusters=5

Iterations

E
n

e
rg

y

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5
x 10

5 Energy − Nodes=100,Clusters=5

Iterations

E
n
e
rg

y ()()2 2
1() min ,...., KC

J C Var C C=
2

1

() min
K

iC i

J C C
−

= ∑

0 100 200 300 400 500 600 700 800
0

500

1000

1500

2000

2500
Energy − Nodes=100,Clusters=5

Iterations

E
n

e
rg

y

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5
x 10

5 Energy − Nodes=100,Clusters=5

Iterations

E
n
e
rg

y ()()2 2
1() min ,...., KC

J C Var C C=
2

1

() min
K

iC i

J C C
−

= ∑

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700

800

900

1000
Energy − Nodes=100,Clusters=5

Iterations

E
ne

rg
y

0 100 200 300 400 500 600 700 800 900
0

1

2

3

4

5

6

7

8
x 10

4 Energy − Nodes=100,Clusters=5

Iterations

E
n
e
rg

y()2

1
() min

K

i iC i
J C C C ∗

−

= −∑ () ()2 2

1 1() min ,..., K KC
J C Var C C C C∗ ∗⎛ ⎞= − −⎜ ⎟

⎝ ⎠

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700

800

900

1000
Energy − Nodes=100,Clusters=5

Iterations

E
ne

rg
y

0 100 200 300 400 500 600 700 800 900
0

1

2

3

4

5

6

7

8
x 10

4 Energy − Nodes=100,Clusters=5

Iterations

E
n
e
rg

y()2

1
() min

K

i iC i
J C C C ∗

−

= −∑ () ()2 2

1 1() min ,..., K KC
J C Var C C C C∗ ∗⎛ ⎞= − −⎜ ⎟

⎝ ⎠

 151

the behavior of the cost functions that represent the same objectives result into

different convergence speeds and energy behaviors when are optimized from the SA

algorithm. The evaluation of the energy behavior and the convergence characteristics

of SA with respect to equivalent cost functions, aims on the selection of the most

efficient cost function.

The general forms of the contender cost functions are:

• Sum of squares: ()2∑

• Variance of squares: () ()()2 2,...,Var

Figure 4.17 renders two major observations about these contender cost functions.

The first observation is related to the required SA iterations until convergence and the

second to the degradation rate of the energy with respect to the number of iterations.

Figure 4.17. Average number of iterations required for reaching a solution 10% worse
than the optimal

With respect to the degradation rate, the variance of squares based cost functions

present better behavior, since the energy approaches the optimal value faster than the

0

50

100

150

200

250

300

Ite
ra

tio
ns

 to
 R

ea
ch

 1
0%

of

 O
pt

im
al

 S
ol

ut
io

n

() ()()2 2, ...,Var()2∑

()()2 2
1() min ,...., KC

J C Var C C=

2

1
() min

K

iC i
J C C

=

= ∑

() ()()1 2

2 2 2min , ,,
KC C CC

J C Var d d d=

()2

1
() min

i

K

CC i
J C d

=

= ∑ ()2

1
() min

K

i iC i
J C C C ∗

=

= −∑

() ()2 2

1 1() min ,..., K KC
J C Var C C C C∗ ∗⎛ ⎞= − −⎜ ⎟

⎝ ⎠

0

50

100

150

200

250

300

Ite
ra

tio
ns

 to
 R

ea
ch

 1
0%

of

 O
pt

im
al

 S
ol

ut
io

n

() ()()2 2, ...,Var()2∑

()()2 2
1() min ,...., KC

J C Var C C=

2

1
() min

K

iC i
J C C

=

= ∑

() ()()1 2

2 2 2min , ,,
KC C CC

J C Var d d d=

()2

1

() min
i

K

CC i

J C d
=

= ∑ ()2

1

() min
K

i iC i

J C C C ∗

=

= −∑

() ()2 2

1 1() min ,..., K KC
J C Var C C C C∗ ∗⎛ ⎞= − −⎜ ⎟

⎝ ⎠

 152

sum of squares based cost functions. The significance of this behavior is that in cases

of early termination of the optimization process, the suboptimal solution obtained

utilizing () ()()2 2,...,Var will be better than the one obtained using ()2∑ for the

same number of iterations. Figure 4.17 presents the average number of iterations

required for SA to reach a solution that is 10% worse than the optimal, for each one

of the contender cost functions. With respect to this indicative graph,

() ()()2 2,...,Var outperforms ()2∑ , since for much less iterations in average, a

better solution is obtained.

About the convergence speed of the contender cost functions, a more conclusive

picture can be constructed from figure 4.18 where the average number of required

iterations is provided. These results were collected from 100 SA applications on each

of the cost functions.

Figure 4.18. Average number of iterations required for convergence with respect to
the cost function selection

0

100

200

300

400

500

600

700

800

Ite
ra

tio
ns

 T
o

C
on

ve
rg

en
ce

() ()()2 2,...,Var()2∑

()()2 2
1() min ,...., KC

J C Var C C=

2

1
() min

K

iC i
J C C

=

= ∑

() ()()1 2

2 2 2min , ,....,
KC C CC

J C Var d d d=

()2

1
() min

i

K

CC i
J C d

=

= ∑ ()2

1
() min

K

i iC i
J C C C ∗

=

= −∑

() ()2 2

1 1() min ,..., K KC
J C Var C C C C∗ ∗⎛ ⎞= − −⎜ ⎟

⎝ ⎠

0

100

200

300

400

500

600

700

800

Ite
ra

tio
ns

 T
o

C
on

ve
rg

en
ce

() ()()2 2,...,Var()2∑

()()2 2
1() min ,...., KC

J C Var C C=

2

1
() min

K

iC i
J C C

=

= ∑

() ()()1 2

2 2 2min , ,....,
KC C CC

J C Var d d d=

()2

1
() min

i

K

CC i
J C d

=

= ∑ ()2

1
() min

K

i iC i
J C C C ∗

=

= −∑

() ()2 2

1 1() min ,..., K KC
J C Var C C C C∗ ∗⎛ ⎞= − −⎜ ⎟

⎝ ⎠

 153

() ()()2 2,...,Var illustrates more promising characteristics in terms of the required

convergence iterations compared to ()2∑ . For the majority cost functions

convergences in fewer SA iterations. In two of the cases (balanced size clusters,

balanced diameter clusters) examined here, () ()()2 2,...,Var appears to converge

much faster – in 50% to 70% less iterations. For the optimal size assignments to

clusters, () ()()2 2,...,Var appears to be slightly slower.

By combining the conclusions for the energy behavior and the convergence

iterations, () ()()2 2,...,Var seems to have more promising performance, even

though in special cases, ()2∑ has been shown to be the winner. It is important to

select the cost function that speeds up the SA algorithm, satisfies the pre-specified

objectives and presents the best energy degradation rate. Comparative study of the

introduced cost functions is required to determine their characteristics, so that they

can be applied accordingly.

4.6 Conclusions

This chapter presents the metrics considered, a sample set of hierarchy generation

objectives and the corresponding cost functions introduced as part of the proposed

clustering framework. The metrics considered are values related to the characteristics

of the clusters to be generated, and the mobility of the participating nodes. An

important attribute is that the values of the metrics can be measured in real time from

the network. These metrics are the building blocks of the cost functions that represent

the hierarchy generation objectives, which could be indicated from the current

 154

network conditions or be pre-specified from a network coordinator. A set of

indicative cost functions has been introduced with respect to a set of objectives. These

objectives are related to the characteristics of the clusters generated (e.g., size,

diameter, number of BRs) or the mobility of the participating nodes (e.g. similar

directions, similar velocity).

The evaluation of the cost functions introduced was performed with respect to

their ability to satisfy the objectives they represent and their effect on the

convergence time of SA algorithm. For the former as it has been indicated from the

extensive experimental results, the cost functions introduced are very accurate on

satisfying the targeted objectives, even for the cases where multiple (combination of)

objectives are involved. This is also due to the ability of SA to perform successfully

the optimization of very complicated cost functions. In the case of multiple objectives

optimization, extra care must be taken for the assignment of weights to the various

involved objectives in the cost function.

Last but not least, a very important observation is the significance of selecting the

appropriate cost function among those that represent the same objectives. This is due

to the effect the different functions may have on the convergence speed of SA, even

though similar objectives are accomplished. Since speed of convergence is crucial for

the effectiveness of the proposed clustering framework, special care must be taken to

select the appropriate cost function. A representative case appeared among the set of

the introduced cost functions. The evaluation between the functions consisting of the

variance of squares and those involving the sum of squares, indicated that the

 155

variance of squares is the preferable option for accomplishing the pre-specified

objectives while also the speed of convergence improves.

 156

Chapter 5: Customizing Simulated Annealing (SA) for Dynamic
Environments

5.1 Introduction

The design objective is to speed up the convergence of the algorithm. During this

process, it is expected that the solution provided from the algorithm will not be the

globally optimal. The more we speed up the algorithm, by forcing it to converge

faster, the smaller is the surface of the solutions it explores and the lower the quality

of the obtained solutions. Since the main objective of this work is the generation of

hierarchical structures capable of improving the performance of the network, the

algorithmic framework will be incapable of achieving this objective if the quality of

the obtained solutions is sacrificed for the speed of convergence. Ideally, someone

would prefer to obtain from SA the globally optimal solution as fast as possible. In

general, due to the functionality of the algorithm, this cannot be guaranteed, so we

have to trade off the optimality with speed of convergence. On the other hand, the

adjustments of the various parameters and the modifications of the SA modules have

to be performed such that the optimality of the solutions provided is not totally

sacrificed for improving the speed of the algorithm. Still, high quality solutions are

required so that the hierarchy generated satisfies the pre-specified set of clustering

objectives.

The speed of convergence is more important for the network environment we

consider, since the topology will be changing in accordance to the network dynamics

 157

(i.e. mobility and failures of the participating nodes, interference on the links). In

such scenarios even if the globally optimal solution is obtained, after some time it

may not anymore be sufficient for the network performance improvement. For that

reason rapid convergence is more preferable rather than optimality. The various

parameters and modules have been tuned in accordance to these design objectives.

For adjusting and modifying the algorithm, the basic SA functionality was

implemented with respect to figure 3.4 provided in chapter 3. The block diagram of

the algorithm implemented is shown in figure 5.1. The details on the tuning of the

parameters and modules of SA are given in the following subsections.

yes (downhill move)

No (uphill move)

Current Temperature
Current Cluser map
New cluser map to test
Champion cluster map
Current cost
Cost of new cluster map
Champion cost
Inner loop counter
Outer loop counter

Initialization
T = T0

Generate K Clusters C
Calculate the cost E=Cost(C)

E*=E; C*=C; t=0

equilibrium function (T, j)

Try New Clustering
C’ = reclusering function (C)

E’ = Cost function (C’)
ΔE = E’ – E; j++

Cost is lower?
ΔE < 0

C = C’ ; E = E’ r < e–(ΔE /T)

r= random[0,1]

Lower Temperature
T = Cooling function (T, T0, t)

t++

Start with new temperature j=0

yes

no
no

yes

T
C
C’
C*
E
E’
E*
j
t

Definition

Inputs Examples

Variable

Equilibrium
unction

Cost function

Stop function

Reclustering
function

Constant (j = 5000);
“Stop repeats”
(function of T);…

Minimum temperature
“Stop repeat” criteria

Random move of one node

)(
1

i

K

i
CDiameter∑

−

Cooling function Geometric or logarithmic

Frozen?
stop function (T)

Done
Return (C*)

no yes

C*=C’;E*=E’
E’ < E*

yes
(new best)

no

K Number of clusters
T0 Initial Temperature

Figure 5.1. Flow Diagram for the Implemented Simulated Annealing algorithm

for network partitioning

 158

5.2 Simulated Annealing: Tunable Parameters

In the simple nature of annealing, there lies the challenge in constructing efficient

and effective implementations of the algorithm. There are many algorithmic

parameters that have to be adjusted appropriately for obtaining the desired

performance from the optimization algorithm. The ability to adjust the algorithmic

parameters provides flexibility to the users so that they can configure the

characteristics of the SA algorithm, in accordance to their performance preferences.

On the other hand, this flexibility may be disadvantageous, since it requires a lot of

effort to configure the algorithm appropriately for the solution of various classes of

optimization problems. In this section we briefly present the tunable parameters and

modules of SA algorithm, which have been configured appropriately in order the

desired performance of the algorithm to be achieved.

The performance of the SA algorithm can lie between two extremes, which are

controlled from the appropriate tuning of its parameters. These extremes are

a) Global optimality with the risk of large convergence times.

b) Speed of convergence with the risk of obtaining suboptimal solutions

The parameters of the algorithm that control the performance characteristics of the

algorithm and require configuration are:

 Cooling Schedule: How the temperature (control parameter) decreases from an

initial value towards a pre-specified final value or until the stop criterion is

satisfied.

 Cooling Factor: In combination with the cooling schedule, determines the speed

at which the temperature (control parameter) decreases.

 159

 Initial Temperature: The initial value of the control parameter. This value has to

be sufficiently high so that almost all transitions are accepted.

 Termination Condition: Determines the criterion for the algorithm to converge

(stop criterion)

 State Transition Probabilities: How the new solutions are generated from the

existing ones (generation mechanism)

 Initial Solution: The initial clustering map that is fed to the SA algorithm for its

bootstrapping.

 Length Plateau: The number of iterations at every value of the temperature

(control parameter). The value of this parameter has to be sufficiently large so that

the stationary distribution holds (equilibrium) for every value of the control

parameter (temperature).

 Energy (Cost) Updates: How the cost of the newly generated clustering maps is

obtained in each iteration of the SA algorithm.

Due to the dynamics of the network environment under consideration, the

objective is to tune the SA algorithm, so that optimality is trade off with speed of

convergence. Furthermore, the provided solutions must still be of high quality (low

cost) with respect to the hierarchy generation objectives. The following subsections,

describe the tuning of the above parameters, so that the design objectives for the

introduced hierarchy generation algorithmic framework are satisfied.

 160

5.3 Customizing Simulated Annealing (SA) for Dynamic Environments

In this section the configuration of the SA algorithm is presented. The

configuration is done through the adjustment of the various parameters of the

algorithm so that a balanced trade off is maintained between the convergence time

and the quality of the solutions obtained.

5.3.1 Termination Condition (Stop Criterion)

One of the most important parameters for speeding up the convergence time

characteristics of the algorithm is the convergence criterion to be applied. The

appropriate selection of this criterion will determine the ability of SA algorithm to

terminate quickly but also to converge in clustering solution, which satisfies the

hierarchy generation objectives. It is crucial to configure appropriately the

termination condition so that the trade off between the convergence time and the

optimality of the obtained solution is balanced. Our objective is to adjust the SA

algorithm so that it can converge in real time on a high quality hierarchical structure –

lowest (highest) cost solution possible in the case of minimization (maximization)

optimization problem.

In theory the algorithm terminates when the temperature (control parameter)

becomes zero. The algorithm at that point converges to the global optimal solution

(reaches the global equilibrium in terms of the physical annealing process) nd for that

reason is considered asymptotically as an optimization algorithm. In practice this will

take an infinite number of iterations, so does not suite the practical implementation of

the algorithm. Due to the latter, in practical implementations the algorithm is

considered as an approximation algorithm. The method utilized as the termination

 161

condition of the algorithm is related to the improvement of the cost achieved by the

subsequent iterations. Specifically the general practical termination condition can be

defined as follows:

Definition 5.1 (Termination Condition): If the cost of the optimal solution obtained

at the thk iteration is *
kC , which is more than %ε better compared to the optimal

solution *
1kC − of the ()1 thk − iteration, then the algorithm terminates if in the

()thk n+ iteration the optimal solution *
k nC + as not improve the cost more than %ε .

From the above definition, the termination condition is precisely formalized

when specific values for the parameters ε and n are provided. These values depend

on the required optimality of the solution and on the convergence time of the

algorithm, as the study performed shows. In this study several of the cost functions

introduced in the previous chapter were involved. The objective was to understand

the trade off between optimality of the obtained solution and the resulting

convergence time with respect to ε and n parameters. Since the objective was to

speed up considerably the convergence time of SA but in such degree where the

solutions obtained satisfy the pre-specified hierarchical generation objectives,ε was

selected to be equal to 0. This design decision along with the selection of a small

number of subsequent iterations n results in forcing the algorithm to converge faster

without considerable degradation on the optimal solution obtained. This observation

is highlighted also from the collection of results presented in the following graphs,

where the optimality of the solutions obtained with respect to the selection of

 162

parameter n is provided. The version of the algorithm utilized for the collection of

the results of this study is described from the block diagram of figure 5.1. The

following graphs are for networks of 100 nodes where 5 domains were generated.

Figure 5.2. Convergence Time vs. stop-repeats (n)

Figure 5.3. Deviation from optimal value with respect to the number of stop-repeats
(n)

0
2
4
6
8

10
12
14
16

C
on

ve
rg

en
ce

 T
im

e
(s

ec
s)

10 50 100 200 500 1000

StopRepeats

Convergence Time

N100 N200 N500 N1000

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

D
ev

ia
tio

n
fro

m
 O

pt
im

al

10 50 100 200 500 1000

StopRepeats

Deviation from Optimal Value

N100 N200 N500 N1000

 163

Figure 5.2 presents the convergence time of the algorithm for different values of

n . The larger this number becomes the longer it takes to the algorithm to converge.

This is expected since for large n the algorithm has to perform many more iterations

to meet the termination condition. On the other hand the smaller the n , the higher the

probability to obtain solutions that do not meet the hierarchy generation objectives

(low quality clustering solutions). Figure 5.3 provides a representative snapshot of the

solution’s suboptimality for different values of n . The larger the value of the cost, the

lower the quality of the clustering solutions obtained, with respect to the

minimization problems introduced in the previous chapter. Obviously, the larger the

n , the more optimal the solution.

The selection of n depends both on the quality of the clustering solution expected

and on the dynamics of the network environment. The latter is the regulator factor

since it may limit the quality of the achievable clustering solutions. For example if the

topology of the network is fast changing then it may not be possible for the algorithm

to obtain clustering solutions that satisfy the hierarchy generation objectives. On the

other hand if the network remains unchanged for long periods of time then the SA

algorithm can be applied with very large n so solutions close to the globally optimal

ones can be obtained.

5.3.2 Cooling Schedule and Cooling Factor

Apart from the termination condition, an equally important parameter for the

efficient functionality of the SA algorithm is the cooling schedule. As we have

mentioned in chapter 3, the cooling schedule defines the rate at which the control

 164

parameter (temperature) is lowered. The importance of this rate lies on how

effectively the solution space will be explored for the best solution. The effectiveness

of traversing the solution space is linked on the Metropolis criterion (5.1) and

specifically on the part of the criterion for the acceptance of deteriorations in cost

instead of improvements only.

()
1

*
1

1 if 0

exp if 0tc t

J
P C C J J

c
+ +

Δ >⎧
⎪← = Δ⎨ ⎛ ⎞ Δ ≤⎜ ⎟⎪ ⎝ ⎠⎩

 (5.1)

The Metropolis criterion determines if the clustering solution 1tC + obtained in the

()1 tht + will be able to substitute the currently optimal solution *C given that the cost

difference JΔ , with respect to cost function J , between the two solutions is

()*
1()tJ J C J C +Δ = − and the value of the control parameter is c .

The larger the value of the control parameter the higher the probability

The relation of the control parameter c with the efficient traversing of the

solution space is explained from the Metropolis criterion (5.1). The larger the value of

the control parameter c , the higher is the probability that the algorithm will accept

deteriorations in cost. Evidently, the longer the algorithm iterates for large values of

the control parameter the better the surface of solutions is traversed since temporarily

worse solutions may lead to better final solutions (e.g. avoidance of low quality

locally optimal solutions).

On the other hand the longer the large values of c are maintained the less possible

is the algorithm to converge quickly, since new clustering solutions will be accepted

all the time, so the termination condition will be difficult to be satisfied. Even if the

 165

algorithm converges, the quality of the solution obtained will be questionable. The

design objective indicates the utilization of a cooling schedule such that the rate of

control parameter’s decrease is neither very slow (better traversing of the solutions’

surface but very slow for real time application of the algorithm) nor very fast (running

into the risk of converging to very low quality clustering solution).

The asymptotic convergence of the SA algorithm was proven with respect to the

logarithmic cooling schedule.

Definition 5.2 (Logarithmic Cooling Schedule): When the decrease rate of the

control parameter (temperature) c follows the logarithmic cooling schedule, then the

value of c is determined from the following function:

0

1 lnt
cc

t
=

+
 (5.2)

where tc and 0c are the current and initial values of the control parameter,

respectively and t specifies the number of iterations.

Even though the effectiveness of the logarithmic cooling schedule is proven, it is very

slow in practice, so it is prohibitive with respect to the design objectives of this work.

In order the SA algorithm to converge in real time another cooling schedule is

required, so that the algorithm is faster but also the solutions obtained are of high

quality. A cooling schedule that meets these requirements is the geometric cooling

schedule which was adopted for the specific realization of the algorithm. The

geometric cooling schedule is defined as follows.

 166

Definition 5.3 (Geometric Cooling Schedule): When the decrease rate of the control

parameter (temperature) c follows the geometric cooling schedule, then the value of

c is determined from the following function:

0
t

tc a c= ⋅

where tc and 0c are the current and initial values of the control parameter,

respectively, t specifies the number of iterations and ()0 1α α< < is the cooling

factor, which determines the decrease rate.

Oppositely to the logarithmic cooling schedule, the effectiveness of the geometric

cooling schedule has not been proved theoretically. Many experimental studies have

indicated that the utilization of the latter cooling schedule in SA algorithms is very

effective on obtaining solutions that are either optimal or very close to the optimal.

This observation has been made for values of the cooling factor α , which are

between 0.95 and 0.99. For these values of α both the decrease rate is slow enough

for the more efficient traversing of the solutions’ surface and the convergence times

achieved are faster compared to the logarithmic cooling schedule. The characteristics

of the geometric cooling schedule satisfy the design objectives of this work, where

speed of convergence is preferred rather than global optimality, even though high

quality of clustering solutions are required.

Studying the logarithmic and geometric cooling schedules on the optimization of

several of the introduced cost functions, we obtained two graphs representative of the

effect of each of the cooling schedules on the optimization process. These graphs are

provided below in figures 5.4 and 5.5.

 167

Figure 5.4. Typical relative rate of cost evolution with respect to iterations performed,
by applying SA with the logarithmic and geometric cooling schedules, respectively.

Figure 5.5. Typic relative rate of cost evolution with respect to iterations performed
and optimality of solution obtained, by applying SA with the logarithmic and

geometric cooling schedules, respectively.

C
os

t (
En

er
gy

)

0

1 lnt
cc

t
=

+

0
t

tc a c= ⋅

Number of Iterations

C
os

t (
En

er
gy

)

0

1 lnt
cc

t
=

+

0
t

tc a c= ⋅

Number of Iterations

Number of Iterations

END
END

C
os

t (
En

er
gy

)

0

1 lnt
cc

t
=

+

0
t

tc a c= ⋅

Number of Iterations

END
END

C
os

t (
En

er
gy

)

0

1 lnt
cc

t
=

+

0
t

tc a c= ⋅

 168

Both figures 5.4 and 5.5 provide the typical behavior of cost evolution by applying

the SA algorithm with each of the two cooling schedules on the same optimization

problem. As it was expected, when SA utilizes the geometric cooling schedule the

cost value improves much faster compared to the logarithmic cooling schedule. The

faster rate of geometric cooling schedule does not favor the global optimality of the

obtained solution compared to the logarithmic cooling schedule. This fact is

highlighted from figure 5.5, where even though the progress of the optimization is

faster with respect to the geometric cooling schedule, the algorithm converges to an

inferior solution compared to the solution obtained from the version of SA algorithm

that utilizes the logarithmic cooling schedule. Whereas, the suboptimality due to the

utilization of the geometric cooling schedule does not degrade the ability of the SA

algorithm to obtain solutions that satisfy the hierarchy generation objectives.

Especially for the dynamic network environments under consideration the speed of

convergence is more important rather than obtaining the globally optimal solution,

since the quality of such a solution will not last very long due to the network

dynamics.

From the experimental analysis the main conclusion is that the geometric cooling

schedule satisfies the design objectives. The geometric cooling schedule based SA

algorithm obtains clustering solutions fast (in combination with the termination

condition), which are also satisfy the hierarchy generation objectives (sufficient

optimization of the cost functions).

 169

5.3.3 State Transition Probabilities

On every iteration the SA algorithm obtains and compares new solutions to the

currently optimal one, with respect to their cost as it is evaluated from the objective

function being optimized. Vital part of the SA algorithm is the generation of new

solutions, which is defined from the transition mechanism. The effectiveness of the

transition mechanism is important for the convergence properties of the algorithm,

since it will be responsible for the speed and effectiveness of the solutions space

traversing. The transition mechanism defines also the neighborhood structure of a

solution.

Definition 5.4 (Neighborhood Structure): If iC is a clustering solution and

M defines the transition mechanism, then the neighborhood structure iV of the

solution iC is defined as

{ }|i j i jV C C C= ⎯⎯→M .

iV includes all the solutions jC that are generated directly from the solution iC by

applying the transition mechanism M .

The transition mechanism involved in the design of the SA algorithm utilized in this

work is based on selecting and migrating a node from one cluster to another, if this

migration results in a feasible clustering solution (the clustering map consists of

topological clusters, see 3.4). There are two parameters to be defined for the complete

description of the corresponding transition mechanism applied. These parameters are:

 170

• The selection method of the cluster iC and the node ,i kn to be migrated.

• The selection method of the cluster jC , where the node ,i kn will be migrated

to.

Since the SA algorithm is considered a general approximation algorithm, for both of

the above selections, the original implementation guidelines suggest methods that

preserve the generality of the approach. In the dynamic network environments the

main concern is the minimization of the time for obtaining a solution. For that reason,

it is preferable to adjust the parameters of the algorithm appropriately, even though its

generality properties might have to be relaxed. For the transition mechanism, the

selection methods involved have been adjusted appropriately so that the algorithm

converges faster without affecting the optimality of the solutions obtained. This

adjustment trades off part of the generality of the algorithm for improving its speed of

convergence.

In the original, generalized implementation of SA the selections for the iC , ,i kn ,

jC entities were based on the uniform distribution. Specifically, a node ,i kn was

selected randomly among the participating nodes. So, if the number of participating

nodes is N the probability for selecting any of the nodes to migrate is:

() 1
lP n

N
= (5.3)

Based on these probabilities and by selecting a random number [)~ 0,1r U , the node

,i k ln n≡ is determined as follows:

() [)1 1: 1 , ,1 , ~ 0,1ln l l r l l l N r U
N N

⎧ ⎫= − ≤ < ∈ ≤ ≤⎨ ⎬
⎩ ⎭

] (5.4)

 171

Along with the selection of the node ,i k ln n≡ , the source cluster iC is also designated,

since each node belongs to a cluster. The selection of the destination cluster jC

follows also the uniform distribution and is similar to the selection of the node to

migrate ln . If the number of generated clusters is K - included the source cluster iC -

the probability for each cluster to be selected as the destination cluster jC is:

() 1
1jP C

K
=

−
 (5.5)

The source cluster iC is excluded from this selection process (e.g. there is no progress

being made on the optimization process if the node is not assigned to a different

cluster from its original one). With respect to the above probability and by selecting a

random number [)~ 0,1r U as before, the destination cluster jC is decided as

follows:

[)1 1: (1) , ,1 1, ~ 0,1
1 1jC j j r j j j K r U

K K
⎧ ⎫= − ≤ < ∈ ≤ ≤ −⎨ ⎬− −⎩ ⎭

] (5.6)

The above selection mechanisms that correspond to the original SA algorithm are

independent of the cost function (hierarchy generation objectives) being optimized, in

order to preserve the general nature of the algorithm. In this work, the design

objectives suggest that the generality of the SA algorithm could be traded off for the

improvement of the speed of convergence. Following the spirit of the latter

suggestion, instead of utilizing the uniform probabilities for selecting iC , ,i kn , jC ,

customized probabilities can be applied. These probabilities could improve the

convergence characteristics of the SA algorithm if they can be tailored on the cost

function (hierarchy generation objectives) being optimized. The transition

 172

probabilities have to be customized appropriately so that the new solutions generated

are biased towards the optimal one, with respect to the cost function optimized. By

biasing the new solutions obtained and also in correlation with the termination

condition the algorithm is expected to converge faster (compared to the uniform

probabilities) in a clustering solution that accomplishes the hierarchy generation

objectives (high quality clustering solution).

For the evaluation of the approach, one of the introduced cost functions from

chapter 4 was assumed. This cost function is:

()()2 2
1() min ,...., KC

J C Var C C= (5.6)

where,

Parameter Definition
K Number of generated clusters

iC Cluster i

iC Size of cluster i

The hierarchy generation objective represented from cost function (5.6) is the

construction of balanced size clusters. The transition probabilities have to be adjusted

to this objective by becoming aware of the cost function being optimized. For the

specific cost function and hierarchy generation objectives the adjustment can be

accomplished by adopting the following intuitive rules:

a) For the selection of source cluster iC , assign higher probabilities to clusters of

larger size than the optimal.

b) For the selection of destination cluster jC , assign higher probabilities to

clusters of size smaller than the optimal.

 173

The motivation for a) as for b) is the assignment of higher probability to the migration

of nodes from larger size clusters to smaller size clusters, so that the generation of

balanced size clusters can be achieved faster. For the corresponding hierarchy

generation objectives the probabilities assigned to the generated clusters for the

selection of the source cluster iC from where a node will be migrated depend on their

sizes and are given from the following expression:

()
N

i
i

C
P C = (5.7)

Similarly the probabilities assigned to the generated clusters for the selection of the

destination cluster jC are described as follows:

()
K

z
z=1
z i

N-
,

(K - 1) N- C

0 ,

j

j

C
i j

P C

i j
≠

⎧
≠⎪

⎪ ⋅= ⎨
⎪
⎪ =⎩

∑ (5.8)

where,

Parameter Definition
N Number of nodes
K Number of generated clusters

iC Source cluster i

iC Size of source cluster i

jC Destination cluster j

jC Size of destination cluster j

In each of the selections, a random number [)~ 0,1r U is generated as in the original

implementation. This random number along with the assigned probabilities (5.7) and

(5.8) determines the source iC and destination jC clusters for the migration of a node

 174

and the generation of a new clustering map. Specifically, if the random number

generated for the selection of the source cluster iC is [)~ 0,1ir U then iC is determined

as follows:

() () [)
1

1 1

: , ,1 , ~ 0,1
i i

i z z
z z

C i P C r P C i i K r U
−

= =

⎧ ⎫= ≤ < ∈ ≤ ≤⎨ ⎬
⎩ ⎭
∑ ∑] (5.9)

The ()zP C probabilities are given from equation (5.7).

Similarly if the random number obtained for the selection of the destination cluster

jC is [)~ 0,1jr U then jC is specified as described below.

() () [)
1

1 1

: , ,1 , ~ 0,1
j j

j z z
z z

C j P C r P C j j K r U
−

= =

⎧ ⎫
= ≤ < ∈ ≤ ≤⎨ ⎬
⎩ ⎭
∑ ∑] (5.10)

The ()zP C probabilities for the selection of destination cluster are provided from

equation (5.8) above.

For the generation of balanced size clusters, the customized transition probabilities

determine the selection mechanism for the source and destination clusters but not for

the node ,i kn to be migrated. Since the source cluster iC has been specified, the

selection of node ,i kn relies on the uniform distribution. Particularly, if the source

cluster iC has size iC then each node ,i k in C∈ , ,1 ik k C∈ ≤ ≤] has the same

probability to be selected for migration.

(),
1

i k
i

P n
C

= (5.9)

 The selection process of the node is completed by generating a random number

[)~ 0,1r U and applying the probabilities (5.9) to determine the node to be migrated.

 175

() [),
1 1: 1 , ,1 , ~ 0,1i k i

i i

n k k r k k k C r U
C C

⎧ ⎫⎪ ⎪= − ≤ < ∈ ≤ ≤⎨ ⎬
⎪ ⎪⎩ ⎭

] (5.10)

The indicative speed up of SA algorithm by applying transition probabilities tailored

to the cost function being optimized is represented from the following figures.

Figure 5.6. Resulting SA convergence times by applying the original (uniform) and
customized (non-uniform) transition probabilities for several network sizes.

Figure 5.7. Iterations to convergence required by applying the original (uniform) and
customized (non-uniform) transition probabilities for several network sizes.

0

10

20

30

40

50

60

C
on

ve
rg

en
ce

 T
im

e
(s

ec
s)

100 200 300 400 500 600 700 800 900 1000

Network Size

Convergence T ime
(Uniform vs. Non Uniform State Transition Probabilities)

Uniform Non Uniform

0

500

1000

1500

2000

2500

Ite
ra

tio
ns

 to
 C

on
ve

rg
en

ce

100 200 300 400 500 600 700 800 900 1000

Network Size

Iterations To Convergence
(Uniform vs. Non Uniform State Transition Probabilities)

Uniform Non Uniform

 176

Figure 5.6 presents the convergence times for several networks of various network

sizes (100 – 1000 nodes) when the SA algorithm is applied with uniform and

customized (non-uniform) transition probabilities. Similarly, figure 5.7 presents the

required iterations until convergence for the SA algorithm when uniform and

customized probabilities are being applied for the optimization of cost function (5.6)

on networks of various sizes (100-1000 nodes). In both figures the results indicate the

effectiveness of the approach, since the algorithm appears to converge faster when

customized transition probabilities are being used for the generation of new clustering

solutions. The range of the improvement is correlated with the convergence times of

the original SA algorithm, which is based on the uniform transition probabilities. The

larger the original convergence times, the larger is the improvement achieved. This

observation favors more the utilization of the approach, since the design objectives

specifically suggest the improvement of the convergence times of the algorithm when

these times are prohibitive for its real time application. Furthermore, the optimization

achieved from the enhanced (with the customized transition probabilities) SA

algorithm, is of similar or higher quality compared to the original SA algorithm. As

we have mentioned, the only drawback of the approach is that the generality of the

original SA algorithm deteriorates, since the transition probabilities have to become

aware of the cost function being optimized, so that they can be customized

appropriately. The improvement on converge times achieved compensates for the

latter compromise.

 177

5.3.4 Generation Mechanism: Feasibility Test

The mechanism for the generation of new solutions does not only consist of the

transition mechanism (transition probabilities and neighborhood structure). An

equally important part of the generation mechanism is the feasibility test of the newly

generated solutions. The feasibility of these solutions is defined with respect to the

constraints imposed to the generated hierarchical structure. In this work the only

constraint imposed to the generated clusters is to be topological (every pair of nodes

belonging into the same cluster can communicate utilizing only intra-domain links).

The optimization algorithm has to obtain solutions that satisfy this constraint.

Towards the convergence to the final solution, there are many clustering maps

generated. Even though the final solution has to comply with the “topological

clusters” constraint, the intermediate solutions obtained have to satisfy or not this

constraint depending on the optimization approach. There are two classes of

approaches:

• Penalty cost functions approach

• Non-penalty cost function approach

In the penalty cost functions approach, the constraint is incorporated into the cost

function. A general representation of penalty cost function is provided from equation

5.11 below.

() () ()()minp C
J C J C P Cλ= + (5.11)

where,

 178

Parameter Definition
()J C Original cost function

()P C Penalty cost

λ Constant parameter ()1λ >

 The cost of the generated clustering maps that do not satisfy the constraint

(infeasible) is being penalized due to their infeasibility. Upon the optimization of the

penalty cost function from SA algorithm, it is expected that the optimal solution

obtained satisfies the constraint. The large cost (due to the penalty cost ()P C and the

amplification parameter λ) of the infeasible solutions makes them the less favorable

among the clustering solutions of the solution space.

In the non-penalty cost functions approach the penalty cost part (()P Cλ) has

been eliminated. The constraints– if there are any – are being imposed to the

candidate solutions at each algorithmic iteration during the generation phase. The

algorithm allows only the generation of feasible solutions, so a mechanism that

investigates the feasibility of the newly obtained solutions is required. This

mechanism functions with respect to the constraints imposed. The effectiveness of the

mechanism can be evaluated from its ability to perform the feasibility test as fast and

as accurate as possibly on the newly obtained solutions.

Both approaches present advantages and disadvantages. In the penalty cost

functions approach, the new solutions generation mechanism is very simple and fast

since it does not require any feasibility testing – the constraints have been

incorporated into the cost function. On the other hand the solution space is much

larger and due to the faster and lightweight version of SA algorithm, there is the risk

 179

of converging to non-feasible solutions. In the non-penalty cost functions approach,

the risk of converging to an infeasible solution does not hold. All the candidate

solutions provided from the generation mechanism are feasible. Compared with the

penalty cost functions approach, the generation mechanism is more complicated and

time consuming because along with the generation of new candidate solutions, the

feasibility of these solutions has to be examined before evaluating their cost. In each

iteration a new candidate solution is generated with respect to the transition

probabilities and then tested for feasibility. If this solution is not feasible, it is

discarded and new solutions are generated until a feasible one can be obtained, so that

the SA algorithm can continue its iterations. Even though the non-penalty cost

functions approach eliminates the risk of converging to an infeasible solution and the

solution space appears to be much smaller than the penalty cost functions approach,

the former approach appears to be more time consuming and more complicated to

implement.

In this work, the non-penalty cost functions approach has been selected over the

penalty cost functions one. This design choice emerged after evaluating the

implementation of SA based on the latter approach. For the construction of

topological clusters, a penalty ()P C cost was introduced for the infeasible candidate

solutions. The penalty cost is directly related to the degree of infeasibility of the

candidate solutions and it is measured with respect to the number of topological

partitions for each cluster.

 180

Definition 5.5 (Topological Partition): If iC is the thi cluster, then iC
kT , which

denotes the thk topological partition (subset) of iC , is defined from the maximal set of

nodes iC
k in C∈ , which are topologically connected - are connected only through intra-

cluster links. If the cluster iC consists of L topological partitions, it holds that:

• For a node i iC C
k kn T∈ then i iC C

k zn T∉ for z k≠ .

•
1

i

L
C

i l
l

C T
=

= ∪ .

Definition 5.6 (Topological Clusters Penalty Cost): If iC denotes the thi cluster,

iC
kT is the thk topological partition (subset) of iC and iℑ is defined as the set of all

subsets iC
kT :

:i iC C
i k i k

k

T C T⎧ ⎫
ℑ = =⎨ ⎬

⎩ ⎭
∪ (5.12)

then the penalty cost ()P C is defined as:

() ()
1

1
K

i
i

P C
=

= ℑ −∑ (5.13)

The term ()1iℑ − suggests the existence of only one topological partition per cluster.

Any number of partitions more than one is considered undesirable and contributes to

the penalty cost.

As it appears from the above definition, the larger the number of topological

partitions, the larger the penalty cost. Due to the type of constraint, the simplicity of

 181

generating new candidate solutions in the penalty cost function approach is

compromised from the complexity of determining the topological clusters for the

penalty cost evaluation. Furthermore, due to the termination condition applied, the

algorithm was converging most of the times to a non-feasible solution, which is

undesirable.

The infeasibility of the solutions in the penalty cost functions approach was

crucial for adopting the non-penalty cost functions approach. Despite the more

complicated generation of new candidate solutions mechanism, the algorithm

guarantees the convergence to feasible solutions. Furthermore, the complexity of the

generation mechanism in the non-penalty cost functions approach has been shifted to

the evaluation of the cost in the penalty cost functions approach. So, the latter

approach does have any advantages over the former one.

By adopting the non-penalty cost functions approach, the generation mechanism

had to be implemented efficiently in order to have the minimal effect possible on the

convergence time of the algorithm. As it appeared to be from the evaluation of the

resulted convergence times, the feasibility test of the generation mechanism is the

dominant part of the SA algorithm for the specific type of constraint imposed. Due to

the dominating effect of the feasibility test, the convergence time of the algorithm

was varying significantly among several implementation of the mechanism. The

following graphs, which present the convergence times of the SA algorithm with

respect to network size and number of clusters generated, are indicative of the latter

observation.

 182

Figure 5.8. Convergence time of SA algorithm with respect to network size and
number of clusters generated when inefficient feasibility test mechanism is applied.

Figure 5.9. Convergence time of SA algorithm with respect to network size and
number of clusters generated when efficient feasibility test mechanism is applied.

10
030

050
070

090
0

246810

0
200
400
600
800
1000
1200
1400
1600
1800

Co
nv

er
ge

nc
e

Ti
m

e
(s

ec
s)

Nodes

Clusters

Simulated Annealing - Convergence Time

()()2 2
1() m in , , KC

J C V a r C C=

10
030

050
070

090
0

246810

0
200
400
600
800
1000
1200
1400
1600
1800

Co
nv

er
ge

nc
e

Ti
m

e
(s

ec
s)

Nodes

Clusters

Simulated Annealing - Convergence Time

()()2 2
1() m in , , KC

J C V a r C C=

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00 2

4
5

10

0

2

4

6

8

10

12

14

16

18

20

C
on

ve
rg

en
ce

 T
im

e
(s

ec
s)

Network Size Clusters

SA Convergence Time vs. Number of Generated Clusters

()()2 2
1() m in , , KC

J C V a r C C=

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00 2

4
5

10

0

2

4

6

8

10

12

14

16

18

20

C
on

ve
rg

en
ce

 T
im

e
(s

ec
s)

Network Size Clusters

SA Convergence Time vs. Number of Generated Clusters

()()2 2
1() m in , , KC

J C V a r C C=

 183

Figure 5.10. Pseudo code implementing the efficient feasibility test mechanism

Figure 5.8 represents the convergence times The only difference between the two

versions of SA algorithm is the implementation of the feasibility test mechanism. As

for every cluster iC
 begin
 Initialize the sets
 V , which contains the nodes
 iC

k in C∈ not assigned to any topological partition iC
zT of cluster iC

 and
 { }V ′ = ∅ , which contains the nodes iC

k in C∈ assigned to any of the

 topological partitions iC
zT of cluster iC

 Initialization
 { }: ,1i iC C

k k i iV n n C k C= ∈ ≤ ≤
 V ′ = ∅
 Main loop
 Insert a node iC

jn V∈ to V ′

 { }: ,1 ,i iC C
k k i iV n n C k C k j= ∈ ≤ ≤ ≠

 { }iC
jV n′ =

 for every node iC

zn V ′∈
 begin
 Insert in V ′ any of the one hop neighbors iC

ln of iC
zn , for

which
 holds that: iC

ln V∈ (iC
ln V ′∉)

 end

if V = ∅ and iV C′ =
 iC is feasible

 else
 iC is infeasible

 end

if every cluster iC is feasible
 the candidate clustering solution generated is feasible

 184

figure 5.8 shows, the implementation that corresponds to penalty cost functions

approach is the least efficient one and is based on processing of lists for determining

the topological partitions for each cluster. The implementation that corresponds to

figure 5.9 is the most efficient one and corresponds to lookup processing. Even

though the lookup processing is based on arrays, which requires more memory

compared to lists, it is much more effective on improving the convergence time

performance of SA algorithm. Specifically, the convergence times between the two

implementations differ significantly. The implementation that corresponds to figure

5.8 and is based on lists processing requires almost 30 minutes to complete for

networks of 1000 nodes, as opposed to the less than 20 seconds convergence time

required from the implementation that corresponds to figure 5.9 and is based on

lookup methods. The pseudo code that implements the efficient feasibility test that

corresponds to figure 5.9 is provided in figure 5.10.

5.3.5 Initial Solution

The main design objective for the hierarchy generation framework is the real

time convergence to clustering solutions that satisfy the pre-specified hierarchy

generation objectives. In this section one more adjustment on the functionality of SA

algorithm is proposed. This adjustment is related to the initial clustering solution

utilized for bootstrapping the algorithm. In the original implementation of SA

algorithm, the only requirement is the optimality of the solution obtained (real time

convergence is not considered), the algorithm is bootstrapped with a randomly

obtained initial solution. For the clustering problem at hand, the only requirement

imposed to the randomly obtained initial solution is its feasibility with respect to the

 185

constraint of topological clusters. The adjustment proposed is to bootstrap the

algorithm with an initial solution which has better cost than a randomly obtained one

with respect to the cost function being optimized. Even though, if we apply such an

initial clustering solution the improvement on the convergence time of SA algorithm

seems intuitive, it is not. Due to its randomization nature, the SA algorithm searches

randomly the surface of solutions and at some extent accepts deteriorations in cost

instead of only improvements. Hence, even if the SA is bootstrapped with a better

initial solution, it might converge slower. For this reason, prior to adopting the

“better than random initial solution” adjustment, the effectiveness of the approach has

to be investigated. There are two issues to be addressed:

1. The level of the improvement we get with respect to the quality of the initial

solution.

2. How we can generate initial solutions that will provide us with large

convergence time improvements.

In this work the firs issue will mainly addressed in detail, since it is important for

determining the effectiveness of the approach and is incorporation for enhancing the

SA algorithm. As we have mentioned, due to the randomization character of SA, it is

not straightforward that by starting from a better than a random initial solution will

result to any convergence time improvement at all. The latter has been investigated by

quantifying the convergence time effect with respect to the quality of the initial

solution. Specifically, SA has been bootstrapped with a better than random initial

clustering solutions and its convergence time has been determined. From the

collection of these results has been observed that despite the randomization character

 186

of the algorithm, by starting from a better than a randomly selected clustering solution

(i.e. with respect to the cost function being optimized), the convergence time is

improved. For quantifying the improvement on the convergence time, some indicative

results with respect to various qualities of initial solutions are provided below. These

results were collected for networks of 100 and 200 nodes. Samples of such networks

are being demonstrated in figure 5.11.

Figure 5.11. Sample networks of size 100 and 200 nodes

The methodology applied for the collection of results is based on the networks

presented above and the SA clustering algorithm implementation described from the

block diagram of figure 5.1. The cost function (equation 5.6) for the generation of

balanced size clusters was utilized. The cost of a random generated solution with

respect to this cost function was computed and then sample clustering solutions with

cost that was fraction of the cost of this random solution were generated.

The y-axis of the following figures represents the convergence time in seconds

for various qualities (costs) of initial solutions, and they are characterized from the

fraction of their cost compared to the random initial solution. The x-axis is marked

with the value of this fraction. The convergence times represented from the following

meters

m
et

er
s

Network Configuration (100 nodes – 500m x 500m)

meters

m
et

er
s

Network Configuration (100 nodes – 500m x 500m)

meters

m
et

er
s

Network Configuration (100 nodes – 500m x 500m)

meters

m
et

er
s

Network Configuration (100 nodes – 500m x 500m)

meters

m
et

er
s

Network Configuration (200 nodes – 1000m x 1000m)

meters

m
et

er
s

Network Configuration (200 nodes – 1000m x 1000m)

meters

m
et

er
s

Network Configuration (200 nodes – 1000m x 1000m)

meters

m
et

er
s

Network Configuration (200 nodes – 1000m x 1000m)

meters

m
et

er
s

Network Configuration (200 nodes – 1000m x 1000m)

meters

m
et

er
s

Network Configuration (200 nodes – 1000m x 1000m)

meters

m
et

er
s

Network Configuration (200 nodes – 1000m x 1000m)

meters

m
et

er
s

Network Configuration (200 nodes – 1000m x 1000m)

meters

m
et

er
s

Network Configuration (100 nodes – 500m x 500m)

meters

m
et

er
s

Network Configuration (100 nodes – 500m x 500m)

meters

m
et

er
s

Network Configuration (100 nodes – 500m x 500m)

meters

m
et

er
s

Network Configuration (100 nodes – 500m x 500m)

meters

m
et

er
s

Network Configuration (200 nodes – 1000m x 1000m)

meters

m
et

er
s

Network Configuration (200 nodes – 1000m x 1000m)

meters

m
et

er
s

Network Configuration (200 nodes – 1000m x 1000m)

meters

m
et

er
s

Network Configuration (200 nodes – 1000m x 1000m)

meters

m
et

er
s

Network Configuration (200 nodes – 1000m x 1000m)

meters

m
et

er
s

Network Configuration (200 nodes – 1000m x 1000m)

meters

m
et

er
s

Network Configuration (200 nodes – 1000m x 1000m)

meters

m
et

er
s

Network Configuration (200 nodes – 1000m x 1000m)

 187

graphs are indicative for the cost function (equation 5.6) but they provide some very

useful observations for the proposed adjustment. The following results have been

averaged out after a large number of runs ()1000O .

Convergence Time Speedup Starting from a
Fraction of a Random Initial Solution (100 nodes)

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0 0.2 0.3 0.4 0.5 0.65 0.75

Fraction of the Cost of a Random Initial Solution

C
on

ve
rg

en
ce

 T
im

e
(s

ec
s)

Figure 5.12. SA convergence time improvement with the quality of the initial solution
for 100 nodes network

Convergence Time Speedup Starting from a
Fraction of a Random Initial Solution (200 nodes)

0

1

2

3

4

5

6

0 0.15 0.25 0.35 0.5 0.6 0.75

Fraction of the Cost of a Random Initial Solution

C
on

ve
rg

en
ce

 T
im

e
(s

ec
s)

Figure 5.13. SA convergence time improvement with the quality of the initial solution
for 200 nodes network

 188

The most important conclusion can be drawn from the above figures is that the

bootstrapping of SA algorithm with a better than a random initial solution has

advantageous effect on the convergence time of the algorithm. Both curves in figures

5.12 and 5.13 respectively present a dropping tendency with the improvement of the

cost of the initial solution compared to the cost of the random one. Furthermore,

important conclusions can be drawn also from the quantification of the convergence

time improvement. By comparing the results of figures 5.12 and 5.13 respectively,

there is an indication that the larger the network, the larger appears to be the

improvement on the convergence time. For the sample network of 100 nodes utilized

in this simulation analysis, the convergence time drops ~100ms when the clustering

solution has cost 75% better compared to the random one. Whereas, for the sample

network of 200 nodes the convergence time improves by ~4.8s when the initial

clustering solution presents 75% better cost compared to the random one.

Furthermore, to quantify better this decrease (improvement) on convergence time, the

percentage of improvement is provided in the following table.

Network size Actual Time
Improvement

Percentage of
Improvement

100 0.1s 19.2%
200 4.8s 82.8%

Table 5.1. Percentage improvements on convergence time

By looking at the corresponding percentages of improvement on convergence

time when SA starts from a “better than random initial solution”, it is obvious that

the larger the network, the larger the improvement. The latter can be explained from

the much slower convergence times presented from the original SA algorithm when

 189

the network size increases, so there is more space for improvement. The proposed

adjustment is sufficient to improve enough the convergence time and constitute a

traditionally slow approximation algorithm, realizable and applicable in dynamic

environments like the MANETs.

Since there are indications (e.g. based on the simulation analysis results), that

despite the randomized search of SA algorithm’s towards the optimal solution, the

convergence time is improved by starting from a good initial solution, then

mechanisms that will generate the appropriate initial solutions have to be suggested.

This work does not explore this problem in depth, since the applied mechanisms must

be aware of the hierarchy generation objectives (cost function being optimized).

Initial solutions that can improve the convergence time can be generated from

heuristic methods customized to the hierarchy generation objectives (i.e., for the

generation of balanced size clusters we can generate initial solutions utilizing a

customized min-cut algorithm). Also, modified optimization algorithms can be useful

for the generation of quality initial solutions. Furthermore, a feasible, previously

generated optimal solution from SA can be utilized for bootstrapping. Due to the

dynamics of MANETs environment, the clustering decisions have to undergo

corrections in order to retain their optimality with respect to the topology changes. In

the case where the SA have to be reapplied, then instead of generating a new initial

solution a previously optimal one can be used for bootstrapping, under the condition

that it is still feasible with respect to the new topology. The latter approach can

provide quality initial solutions especially when the topology is slowly changing with

respect to the reapplication frequency of SA algorithm.

 190

An important consideration that has to be made for the selection of an efficient

initial solution generation mechanism is that the combined time for the generation of

the initial solution and the convergence of SA has to be smaller than the convergence

time of SA when it is bootstrapped with a randomly selected initial solution. Hence,

the following inequality has to be satisfied at all times in order not to eliminate the

advantageous effect of initial solution on the convergence time of the algorithm.

' '

nris ris gnris SA gris SA gnris gris SA SA

gis SA

T T t t t t t t t t

t t

≤ ⇒ + ≤ + ⇒ − ≤ − ⇒

⇒Δ ≤ Δ (5.14)

where,

Parameters Description

 nris : Non-random initial solution

ris : Random initial solution

T : Complete process time

t : Partial process time

5.3.6 Energy Updates

The basic functionality of SA algorithm is based on the cost evaluation of the

candidate clustering solution ()C t obtained from a generation mechanism in every

algorithmic iteration ()t t +∈Z . The cost of the candidate solution is compared with

the cost of the currently optimal one *
tC and depending on their difference

() ()()*
tE J C J C tΔ = − (5.15)

the Metropolis criterion

 191

()()*
1

1 if 0

exp if 0tc t

t

E
P C C t E E

c
+

Δ >⎧
⎪← = ⎛ ⎞Δ⎨ Δ ≤⎜ ⎟⎪

⎝ ⎠⎩

 (5.16)

decides on which of the solutions (()C t or *
tC) will prevail (e.g. will be carried on as

the optimal *
1tC + in the ()1 tht + iteration). Obviously, every time a new candidate

solution is generated, its cost must be evaluated. This evaluation requires computation

time, so inevitably contributes to the convergence time of the SA algorithm.

Intuitively, the contribution becomes more significant for larger optimization

problems (i.e. large network sizes). This is because more iterations are required for

the convergence of the algorithm, so more candidate solutions are being generated

whose cost has to be evaluated.

Since the design objectives suggest the improvement of the speed of convergence

of the algorithm, a possible adjustment that could reduce the convergence time is the

efficient evaluation of the candidate solutions cost. Based on the generation

mechanism principle, where in the tht iteration a new candidate solution ()C t is

obtained by perturbing the currently optimal one *
tC . The perturbation is

characterized from the transition probabilities and the neighborhood structure

mentioned above. The cost of the currently optimal solution *
tC is known and is

()*
tJ C . In order to compute the cost ()()J C t of the new candidate solution ()C t ,

only the contribution (update) of the perturbation on the currently optimal cost

()*
tJ C have to be specified. Specifically, the mechanism that is proposed is instead of

determining the cost of the candidate solution generated at each iteration, is to

 192

compute the update to the cost, that results from the perturbation. This mechanism

can be incorporated into the functionality of SA algorithm as follows:

Initial Iteration: Generate an initial clustering solution C and evaluate its cost ()J C

with respect to the cost function being optimized. Since this is the initial iteration, SA

marks this solution as the currently optimal one *
0C and its cost ()*

0J C is the

currently optimal one ()*J C .

Follow Up Iterations: Assume that on the (0)tht t > iteration, the optimal clustering

solution is *
tC and its corresponding cost is ()*

tJ C . By perturbing *
tC we obtain a

new candidate solution ()C t . The corresponding cost of this solution ()()J C t can be

computed utilizing the contribution pEΔ of the perturbation p on the cost of the

currently optimal clustering solution:

()() ()*
k pJ C k J C E= + Δ (5.17)

So, instead of having to compute ()()J C k from scratch, we just have to compute the

difference pEΔ of the cost due to the perturbation p.

Due to this mechanism, the only time that the entire clustering solution has to be

taken into consideration for the cost computation ()J C is during the initial iteration.

Afterwards the computation is done based on the cost differences (updates) pEΔ .

For the evaluation of the efficiency of the adjustment on the convergence time of

the algorithm, two cost functions for the generation of balanced size clusters have

been utilized. Their description follows:

 193

()()2 2
1() min ,...., KC

J C Var C C= (5.18)

and

2

1
() min

K

iC i
J C C

=

= ∑ (5.19)

where,

Parameter Definition
K Number of generated clusters

iC Cluster i

iC Size of cluster i

For each of the cost function the update function pEΔ has to be defined, so that it can

be utilized for the computation of the new candidate solutions cost. This function

depends on the perturbation method applied for the generation of the new candidate

solutions in each SA iteration. As it was mentioned, the basic principle of the

perturbation mechanism is the migration of a member node from a cluster ()*
iC t to

another cluster ()*
jC t of the currently (tht iteration) optimal clustering solution

()*C t , subject to the constraint that the new candidate solution must be topologically

feasible. Thus, with respect to this perturbation mechanism and the cost functions

(equation 5.17 and equation 5.18) being optimized, the update function pEΔ is

defined appropriately:

For equation 5.17

() () ()()1 2
1

1pE t E t E t
K

Δ = Δ −Δ
−

 (5.20)

where

 194

 K: number of generated clusters

() ()() ()() () ()
4 4 4 4* * * *

1 1 1i j i jE t C t C t C t C tΔ = − + + − − (5.21)

() () 2*
2 4E t C t

K
αα ⎛ ⎞Δ = +⎜ ⎟

⎝ ⎠
 (5.22)

() ()* * 1j iC t C tα = − + (5.23)

() ()2 2* *

1

1 K

i
i

C t C t
K =

= ∑ (5.24)

For equation 5.18

() () ()()* *2 1p i jE t C t C tΔ = − − − (5.25)

Using the relations above we evaluate pEΔ which determines through the Metropolis

criterion the optimal clustering solution of the ()1 tht + iteration.

For the evaluation of the cost updates method the above expressions were applied for

the cost computation in every iteration of SA algorithm. For both cost functions, the

average SA convergence times for several networks were determined. These values

Figure 5.14. Expected Convergence Times Comparison for SA and SA with Energy
Updates (SAEU) for the generation of balanced size clusters (cost function 5.18)

0

20

40

60

80

100

120

C
on

ve
rg

en
ce

 T
im

e
(s

ec
s)

100 200 500 1000

Network Size

Energy Updates Effect on Convergence Time
(Clusters 10, Node Degree 3)

SA SAEU

()()2 2
1() min ,, KC

J C Var C C=

0

20

40

60

80

100

120

C
on

ve
rg

en
ce

 T
im

e
(s

ec
s)

100 200 500 1000

Network Size

Energy Updates Effect on Convergence Time
(Clusters 10, Node Degree 3)

SA SAEU

()()2 2
1() min ,, KC

J C Var C C=

 195

Figure 5.15. Expected Convergence Times Comparison for SA and SA with Energy
Updates (SAEU) for the generation of balanced size clusters (cost function 5.19)

were compared with the average convergence times for the same set of networks

when the method of cost updates is not applied (e.g. original implementation of SA

algorithm).

The results above indicate small improvement on the convergence time of SA

algorithm, when the energy updates methods is utilized. Specifically, for scenarios

(network sizes 100 and 200 nodes) where the convergence time of the algorithm is

already fast, the improvement is negligible. For scenarios (network sizes 500 and

1000 nodes), where the convergence time is larger, there is a noticeable improvement

but still it is not significant. This behavior can be explained from the dominating

contribution of new candidate solutions generation phase on the convergence time of

the algorithm– as it was explained in a previous subsection. The contribution of the

0
10
20
30
40
50
60
70
80
90

100
C

on
ve

rg
en

ce
 T

im
e

(s
ec

s)

100 200 500 1000

Network Size

Energy Updates Effect on Convergence Time
(Clusters 10, Node Degree 3)

SA SAEU

2

1
() min

K

iC i
J C C

=

= ∑

0
10
20
30
40
50
60
70
80
90

100
C

on
ve

rg
en

ce
 T

im
e

(s
ec

s)

100 200 500 1000

Network Size

Energy Updates Effect on Convergence Time
(Clusters 10, Node Degree 3)

SA SAEU

2

1
() min

K

iC i
J C C

=

= ∑

 196

cost computation on convergence time is not significant compared to the generation

mechanism’s contribution. Due to this, any improvement on the cost computation

mechanism is not expected to contribute in significant changes (improvements) on the

convergence time of the algorithm. Moreover, offline processing is required in order

to obtain the update function ()pE tΔ for every cost function being optimized. In

conclusion, the method reduces the generalized character of SA algorithm for

insignificant improvements on the convergence time. On the other hand, there are

scenarios (large networks - large solution spaces – large convergence times) where

even small improvements are important and beneficial for the real time applicability

of the algorithm.

5.4 Convergence Times of the Adjusted SA Algorithm

Several adjustments on the parameters and on the functionality of the original SA

algorithm have been proposed for reducing the time required to obtain solutions that

satisfy a set of pre-specified hierarchy generation objectives. During the presentation

of these adjustments, the effect on the convergence time of each one of these

separately has been evaluated. In this section comprehensive results for the

convergence time of the SA algorithm are provided. These results correspond to the

implementation of SA that has been adjusted with respect to the collection of

adjustments suggested and are indicative of the convergence time performance of the

algorithm. The first of the following two graphs represents the convergence time of

the algorithm with respect to network size and number of clusters being generated.

The second graph represents the convergence time of the algorithm with respect to

the network size and the average node degree.

 197

Specifically, figure 5.16 represents the convergence time of the adjusted SA

algorithm for several network sizes, varying from 100 to 1000 nodes and different

numbers of generated clusters, which vary from 2 to 10 clusters. All the networks

utilized for the collection of the following results present average node degree

(average number of participating nodes’ one hop neighbors) equal to 10.

Figure 5.16. Convergence times of the adjusted SA algorithm with respect to various
network sizes and number of generated clusters (average node degree equals to 10)

From figure 5.16 interesting observations can be drawn. The most important one

is the ability of the algorithm, for large number of scenarios, to converge very fast to

efficient clustering solutions (e.g. few msecs to few secs – for 200 nodes less than 1

second is required). These scenarios include networks sizes of few hundreds of nodes.

Equally important on the convergence time of the algorithm is the number of

generated clusters. The larger the number of generated clusters, the larger the

convergence time of the algorithm for the same network size. In conclusion the

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00 2

4
5

10

0

2

4

6

8

10

12

14

16

18

20

C
on

ve
rg

en
ce

 T
im

e
(s

ec
s)

Network Size Clusters

SA Convergence Time vs. Number of Generated Clusters

10nodedgr =

()()2 2
1() min ,, KC

J C Var C C=

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00 2

4
5

10

0

2

4

6

8

10

12

14

16

18

20

C
on

ve
rg

en
ce

 T
im

e
(s

ec
s)

Network Size Clusters

SA Convergence Time vs. Number of Generated Clusters

10nodedgr =

()()2 2
1() min ,, KC

J C Var C C=

 198

adjusted SA algorithm can be applied successfully and efficiently in real time for a

majority of scenarios (combination of network size and clusters generated) even for

highly dynamic networks. For other scenarios, with larger solution spaces, the

algorithm presents larger convergence times, which are still not prohibitive for

networks with slower dynamics (the topology changes do not happen very

frequently).

As the network size and the number of generated clusters, the average node

degree of the network is equally important for the convergence time of the algorithm.

This is indicated from the results pictured on the following figure 5.17.

Figure 5.17. Convergence times of the adjusted SA algorithm with respect to various

network sizes and average node degrees (the number of generated clusters equals
to5).

The main observation is that the larger the average node degree, the faster is the

convergence time of the algorithm for the same network size and number of

generated clusters. This result can be justified due to the topological constraints

imposed and the generation of new candidate clustering solutions mechanism. The

0

10

20

30

40

50

C
on

ve
rg

en
ce

 T
im

e
(s

ec
s)

3
4

5
6

7
8

9
10100 200 300 400 500 600 700 800 900 1000

Avg. Node Degree
Network Size

SA Convergence Time vs. Average Node Degree
(Clusters 5)

()()2 2
1() min ,...., KC

J C Var C C=

0

10

20

30

40

50

C
on

ve
rg

en
ce

 T
im

e
(s

ec
s)

3
4

5
6

7
8

9
10100 200 300 400 500 600 700 800 900 1000

Avg. Node Degree
Network Size

SA Convergence Time vs. Average Node Degree
(Clusters 5)

()()2 2
1() min ,...., KC

J C Var C C=

 199

latter mechanism releases only feasible solutions to be compared against the currently

optimal solution at every algorithmic iteration. For small average node degree the

generation mechanism runs into the risk of becoming very slow due to the sparse

nature of the network and the inherent difficulty to locate fast new feasible candidate

solution. This observation along with the dominant effect of the mechanism on the

convergence time of the algorithm result on the effect pictured on figure 5.17. In

contrary, new feasible solutions are obtained faster in dense networks (large average

node degree), so the algorithm is expected to converge faster (e.g. for average node

degree 10dgr = the algorithm requires less than 20 secs to generate 10 clusters ina

network of 1000 nodes).

 The adjusted SA algorithm appears to be efficient, scalable and applicable in real

time for a majority of scenarios. Furthermore, the parameters (network size, average

node degree and number of clusters to be generated) of the network under

consideration are important for the speed of convergence of the algorithm. The latter

observation may lead to suggestions for modifying dynamically the network, so that

the targeted convergence time is achieved and the network dynamics are captured. If

such an approach could be adopted, the results of figures 5.16 and 5.17 could be

utilized for specifying the network parameters, which achieve better convergence

times.

 200

Chapter 6: Metrics Based Distributed Domain Generation
Algorithm

6.1 Introduction

The Simulated Annealing based domain generation framework presented in the

previous chapters has been adjusted so as to provide rapidly clustering solutions that

satisfy the instructed hierarchy generation objectives. On the other hand, due to its

centralized nature, the SA based clustering framework will not be able to perform

adequate in highly dynamic environments. Since the study of such environments is

within the scope of this work, efficient hierarchy generation mechanisms must be

provided.

For efficiently capturing the dynamics of fast changing networks, distributed

hierarchy generation algorithms must be designed. Their ability to generate

hierarchical structures based only on the collection and exchange of local information

makes them favorable for highly dynamic environments. On the other hand, the

hierarchical structures obtained, are not expected to have the quality (cost) of the

structures provided from the SA-based mechanism, due to the localized hierarchy

generation decisions. In such rapidly changing environments the speed of the

algorithm is more important that the quality of the solution, since the hierarchical

structures generated are expected to be short-lived because of the frequent changes on

the topological map of the network. But still, it is crucial for the hierarchical

 201

structures obtained to satisfy the set of pre-specified hierarchy generation objectives,

so that the hierarchy is beneficial to the performance of the network and not harmful.

For dealing with highly mobile environments and aiming on accomplishing the

hierarchy generation objectives, a distributed hierarchy generation algorithm has been

designed, in accordance to the spirit of SA-based algorithm. The functionality of the

designed algorithm is based on the exchange of one hop information. This

information is related to the hierarchy generation objectives and is expressed via the

utilization of the appropriate metrics presented in chapter 4. For the presentation of

the distributed algorithm specific hierarchy generation objectives and the

corresponding metrics have been selected. Specifically, the generation of similar to

mobility domains is imposed and the utilization of the mobility metrics is required.

Due to the enforcement of the similar mobility objective and the utilization of

mobility metrics, the corresponding version of the distributed hierarchy generation

algorithm is being referred as “mobility based distributed generation algorithm

(DGA)”

The main objective of this algorithm is the generation of stable hierarchical

structures by grouping together the nodes that present similar mobility characteristics.

Doing so, it is expected that the nodes of the same group will remain connected for

long periods of time, reducing significantly the membership changes and the resulted

maintenance overhead. If the maintenance overhead is reduced, the performance of

the network will improve, benefiting from the hierarchical application of the various

networking protocols onto a stable hierarchical structure.

 202

The algorithm is based on one-hop information exchange and presents O(n)

communication complexity in a network of n nodes. The generated clusters appear to

be more robust compared to some well known existing distributed clustering

algorithms. Furthermore, the algorithm presents very promising performance

characteristics in cases of large and highly mobile networks, where the existing

distributed algorithms fail. The ability of the algorithm to handle the dynamics of the

network emerges from its inherent functionality to group the nodes with respect to

these dynamics.

6.2 Overview of the mobility based DGA

In this section the principal operation of the proposed mobility based domain

generation algorithm is presented. An example is also given, which demonstrates the

algorithmic steps followed from DGA for generating a robust to mobility hierarchical

structure.

6.2.1 Mobility Based Distributed Generation Algorithm (DGA)

The mobility based DGA is based on one-hop information exchange. The

information is related to the mobility metrics we introduced in section 3. We assume

that each node represented from a unique ID, can obtain information about its speed,

direction and position (e.g., only in the case where the metric of interest is the Link

Expiration Time (LET)). Also, the set of their one-hop neighbors can be obtained

from the exchange of link state information or the transmission of heartbeat

messages.

 203

In the proposed algorithm each node joins a domain after having gone through

three phases. The objective suggests that the generated domains consist of similar

nodes with respect to their mobility characteristics. The three phases of the algorithm

towards the generation of hierarchical structure are:

• Phase I – Neighbor Selection

In this phase each node broadcasts its ID and information (direction, speed,

position) related on the decision making metric (relative direction, relative velocity,

LET) to its one-hop neighbors. Each node, after the collection of the appropriate

information is able to determine the value of the metrics (mobility in this case) of

interest for each one of its neighbors. For each node, the set of these values

determines the one hop neighbor that the corresponding node will select to join for

the formation of a domain. Specifically for the mobility based DGA, where the

metrics of interest could be the relative direction or the relative velocity, a node will

select the one hop neighbor that corresponds to the lowest metric value – in the case

of LET the neighbor that corresponds to the highest value is the dominant candidate.

In the case where multiple dominant candidates are present (the same lowest value

corresponds to more than one hop neighbors), a tiebreaker rule is used (e.g. ID of the

neighbors or random selection) for resolving the conflict, since only one neighbor has

to be selected for the formation of a domain.

• Phase II – InfoExchange List Composition

After having selected the most appropriate neighbor to form a domain with, each

node informs the selected neighbor node for this decision. Each node collects the

decisions related to him and records the IDs of the neighbor nodes who have selected

 204

him. After the collection of these messages, each of the nodes generates the

InfoExchange list, which is the union of the node IDs collected in Phase II, the ID of

the neighbor he has selected and his own ID. The InfoExchange list is sorted in

ascending order. The ordering of the InfoExchange list is very important for the

convergence of the algorithm since it provides the basis for the distributed

synchronization of the participating nodes.

• Phase III – Domain Formation

For the domain formation, each node does not have to communicate with every

neighbor but only with those in the Infoexchange list. In the distributed environment

the sorted Infoexchange list is utilized for synchronization among the nodes. A node

has to wait for the nodes with lower ID in the Infoexchange list to decide on the

domain to join and then has to communicate its selection. If the ID of the node is the

lowest in the list, then forms a cluster with this ID and communicates it to its

neighbors that exist in the list. By the completion of this phase each node belongs to a

domain characterized by a unique domain ID – these IDs corresponds to node IDs

which have been assumed unique.

After the high level overview of the various phases, the pseudo-algorithm

provided below reveals the detailed functionality of the proposed algorithm and of its

various phases as they are performed from each one of the participating nodes:

 205

Phase I

Step I: (Communication)

Broadcast to 1-hop neighbors a TYPE I message of the form:

(myID, Information)

The information values can be the speed, direction or position of the node and
depend on the metric of interest (e.g. relative direction, relative speed, LET)

Step II: (Processing)

Collect the (TYPE I) messages from 1-hop neighbors.
Based on the information collected, evaluate the metric of interest for each one of
the neighbors. With respect to the metric values obtained determine which one of
the neighbors is the most appropriate for grouping with in the cluster formation.

Phase II

Step III: (Communication)

Broadcast to the selected neighbor (e.g. neighbor with the best metric value) a
TYPE II message of the form:

(myID, neighborID)

Step IV: (Processing)

Collect all TYPE II messages that are referred to my ID.
Generate the SelectedFromList list which contains the neighborIDs that have
selected myID as the preferred neighbor to be clustered with. Then generate the
InfoExchangeList:

InfoExchangeList
SelectedFromList neighborID myID

=
∪ ∪

Sort in ascending order the InfoExchangeList with respect to the node IDs.

 206

Phase III

Step V: (Communication)

if myID = Head(InfoExchangeList) then
 { myCID = CID
 Send to every node with
 nodeID InfoExchangeList∈
 a TYPE III message of the form:

(myID, CID=myID)
 }
 else{

 Until the reception of a TYPE III message from the nodes with:

 nodeID InfoExchangeList nodeID myID∈ ∧ <
 { Upon the reception of TYPE III message {
 if myCID =∅ then

 myCID = CID
 else
 if myCID > CID then
 myCID=CID
 }
 My turn to transmit:
 Send myCID to every node with
 nodeID InfoExchangeList∈

 Until the reception of TYPE III message from all the
 nodes with:

 nodeID InfoExchangeList nodeID myID∈ ∧ >
 {
 Upon the reception of a TYPE III message {
 if myCID > CID {
 myCID=CID
 send to all nodes with
 nodeID InfoExchangeList∈

 a message revealing my cluster selection
(myID, myCID)

 }}}}

 207

6.3 Mobility Based DGA: Example

In this section we complete the description of the mobility based DGA by

providing an example to demonstrate the domain generation algorithm and its various

phases for the construction of hierarchical structure, which is robust to mobility by

grouping together nodes with similar mobility characteristics. Assume that we have

the network of figure 6.1, consisting of 7 nodes. Assume also that there are two

groups of nodes, which consist of nodes with similar mobility characteristics. The one

group consists of the nodes 1, 2, 4 and 5 and the other group consists of the nodes 3, 6

and 7. With respect to this assumption, the mobility based DGA algorithm must

identify these two distinct groups of nodes, so that the hierarchy generated is robust.

Furthermore, for this example it is assumed that the metric of interest is the relative

velocity, since the grouping of nodes with similar mobility characteristics is

suggested from the hierarchy generation objectives. In Phase I the nodes broadcast

their node IDs, their direction and speed to their 1-hop neighbors. Also, at the same

time they collect the corresponding information (node ID, direction and speed) from

their 1-hop neighbors.

Figure 6.1. Domain generation example: Sample Network

1
2

3

4

5

6

7
1

2

3

4

5

6

7

 208

After having collected the appropriate information, the participating nodes

compute their relative velocity with each one of their 1-hop neighbors. Even though

the relative velocity is computed locally to each node, the value computed from a pair

of nodes (i,j) is the same, independently of whether is computed at node i or node j.

Assume that for this example the relative velocities computed for each pair of 1-hop

neighbors are provided from figure 6.2 below:

Figure 6.2. Relative velocity values as computed pairwise from neighboring nodes

Based on the above values of relative velocity, each node selects the most

dominant one hop neighbor (e.g. lowest relative velocity - the lower the relative

velocity, the more similar the mobility) with whom he wants to group with for the

formation of a domain Following the selection rule of this example in combination

with the values provided in figure 6.2, the neighbor selections of the participating

nodes by the end of Phase I are:

2

3

4

5

6

7
1 2 3 4 5 6

0.2

0 0.1

0.3

2

2.5

0.1 0--

- ---

--

-

- -

-

-

-

no
de

 ID

node ID

Relative Velocity

ij jir rU U=
ij jir rU U=

2

3

4

5

6

7
1 2 3 4 5 6

0.2

0 0.1

0.3

2

2.5

0.1 0--

- ---

--

-

- -

-

-

-2

3

4

5

6

7
1 2 3 4 5 6

0.2

0 0.1

0.3

2

2.5

0.1 0--

- ---

--

-

- -

-

-

-

no
de

 ID

node ID

Relative Velocity

ij jir rU U=
ij jir rU U=

 209

By entering Phase II, the nodes communicate their decisions from Phase I to the

1-hop neighbors they have selected. Each node collects and records the IDs of the

nodes from which they have been selected into the SelectedFromList. The

SelectedFromList for each one of the participating nodes is:

Each participating node, by combining the SelectedFromList, the selection made

in Phase I and his own ID, forms the InfoExchange list. The InfoExchange lists of the

nodes by the end of Phase II are:

Phase III completes the generation of the hierarchical structure. Each node will

utilize the InfoExchange list in order to communicate with its neighbor nodes and

ultimately select the domain to join. The nodes are listening to the domain selections

of the lower ID 1-hop neighbors that belong to their InfoExchange list until their turn

comes to decide on the domain to join. After they decide, they wait for the rest of the

1-hop neighbors (e.g., nodes with higher IDs) in their InfoExchange list to decide. For

the specific network of figure 6.1, the generated hierarchical structure after the

completion of Phase III looks like:

() () () ()
() () ()

1 5 2 5 3 7 4 1

5 1 6 7 7 6

→ → → →

→ → →

() () () ()
() () ()

1 4 , 5 2 3 4

5 1, 2 6 7 7 3 ,6

← ← ← ←

← ← ←

() () () ()
() () ()

1 : 1, 4 , 5 2 : 2 ,5 3 : 3, 7 4 : 1 ,4

5 : 1, 2 , 5 6 : 6 ,7 7 : 3 ,6 ,7

In fo E xch a n g e L is ts

 210

Figure 6.3. The hierarchical structure established from the mobility based DGA
algorithm

If we carefully observe, the values of the relative velocities of the nodes assigned

from the distributed algorithm into the same domain, these values are much lower

compared to the values of the relative velocities of the nodes assigned to different

domains. The mobility based domain generation algorithm behaves in accordance to

the suggested hierarchy generation objectives by grouping together the nodes with

similar mobility characteristics. By doing so, the algorithm succeeds on generating

robust to mobility domains, since it manage to identify the two groups of nodes with

similar mobility. The nodes in the same domain are expected to remain connected for

longer periods of time compared to the nodes that do not belong into the same group.

As it is shown later in the performance evaluation section, the generated domains are

more robust to topology changes compared to other distributed domain generation

algorithms that do not take into consideration the dynamics of the network.

6.4 Performance Evaluation

This section elaborates on the ability of the proposed distributed domain

generation algorithm to establish a hierarchical structure that is robust to mobility.

The effectiveness of the approach is evaluated by comparing it with a well known

CID=1 CID=3
1

2

3

4

5

6

7CID=1 CID=3
1

2

3

4

5

6

7
1

2

3

4

5

6

7

{ }
{ }

1: 1,2,4,5

2 : 3,6,7

CID

CID

=

=

 211

distributed domain generation algorithm (lowest ID – LID) which forms domains

without taking into consideration the dynamics of the network environment. The

purpose of this comparison is to remark the importance of having the domain

generation algorithm being aware of the network environment it operates into, since it

can provide more stable hierarchical structure, which can be beneficial to the network

instead of harmful.

6.4.1 Robustness of the mobility based DGA

The robustness of the mobility based DGA is measured from the stability of the

domains’ membership with respect to the mobility of the participating nodes. In order

to highlight the effectiveness of the proposed algorithm we are comparing it with the

lowest-ID (LID) algorithm [1], which utilizes metrics (the domain construction is

based on the unique IDs of the nodes) unrelated to the network environment for the

establishment of hierarchical structures.

LID selects cluster heads (CHs) among the participating nodes based on their

IDs. For the domain formation, the remaining nodes (non-clusterhead nodes) are

assigned to the CH node with the lowest ID among the CH nodes which are at most

1-hop away. The LID algorithm does not take into consideration the dynamics of the

network for the domain formation since the selection metrics (proximity, nodes’ ID)

are independent from them.

We compared the membership stability of the domains obtained from the

mobility based DGA with the corresponding stability of the domains obtained from

the lowest-ID (LID) algorithm. To evaluate the robustness of the hierarchical

structures generated by the mobility based DGA compared to LID we measured the

 212

average membership changes and the average number of generated domains. We

applied both algorithms in network environments of various sizes and mobility levels.

Namely, we generated networks of 100 to 1000 nodes and we applied the Random

Waypoint Mobility (RWPM) model with pause time 0.

In the RWPM model each node selects a destination in the limits of the pre-

specified area. This destination is approached with constant speed selected from the

node at random. When the destination is reached the node selects new destination and

new speed and the process is repeated. We investigated several scenarios

corresponding to different maximum allowable speeds (between 1m/s and 10m/s) in

order to evaluate the robustness of the generated hierarchies in various levels of

mobility. We ran the algorithms (mobility based DGA, LID) for 1000s of network

time. The statistics were sampled every 1s of network time.

Figure 6.4. Average membership changes (LID vs. mobility based DGA) with respect
to network size and mobility level.

100

700

1 3 5 7 9

2 4 6 8 10

0
10
20
30
40
50
60
70
80
90
100
110

A
vg

. N
um

be
r

of
 C

lu
st

er
s

Nodes
mobility based DGA vs. LID

Average Number of Clusters Generated

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 100-110

mobility (m/s)
mobility based DGA

mobility (m/s)
LID

mobility based
DGA

LID

100

700

1 3 5 7 9

2 4 6 8 10

0
10
20
30
40
50
60
70
80
90
100
110

A
vg

. N
um

be
r

of
 C

lu
st

er
s

Nodes
mobility based DGA vs. LID

Average Number of Clusters Generated

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 100-110

mobility (m/s)
mobility based DGA

mobility (m/s)
LID

mobility based
DGA

LID

 213

Figure 6.4 represents the average membership changes for networks of size 100 to

1000 nodes and maximum allowable node speeds of 1m/s to 10m/s. The left part of

the graph represents the average membership changes for the mobility based DGA

algorithm and the right part represents the average membership changes for the LID

algorithm, respectively. The higher the mobility and the larger the size of the

network, the better the performance of mobility-based DGA algorithm compared to

the performance of the LID algorithm. For example for 1000 nodes and 10m/s

maximum speed, mobility-based DGA requires on average 32 membership changes

per second and LID requires on average 44 membership changes per second. For

1000 seconds of network time, the mobility based DGA requires on average 12000

less membership changes than LID algorithm, which is an improvement of 27.2%.

Apart from the membership changes, a metric that indirectly characterizes the

robustness of the proposed algorithm, is the average number of generated domains.

The smaller the number of generated domains, the more tolerant is the hierarchical

structure to the topological changes due to mobility (e.g. the larger the domain, the

higher the probability of a node, whose connectivity changes, to remain connected to

its original domain).

 214

Figure 6.5. Average number of domains generated from LID and mobility based
DGA algorithms for various network sizes and mobility levels

Figure 6.5 demonstrates the average number of clusters generated from each one of

the algorithms. The left part of the graph represents the average number of domains

generated from the mobility based DGA and the right part represents the average

number of domains generated from the LID algorithm, respectively. The general

observation is that the number of domains that LID generates is more than double the

number of domains generated from the proposed algorithm. This observation suggests

that the average domain size of the mobility based DGA is more than double the

average domain size of LID. The latter can also be explained from the fact that LID

does not generate domains with diameter larger than 2-hops as opposed to mobility

DGA, which does not have such restrictions.

100

700

1 3 5 7 9

2 4 6 8 10

0
10
20
30
40
50
60
70
80
90
100
110

A
vg

. N
um

be
r

of
 C

lu
st

er
s

Nodes

mobility based DGA vs. LID
Average Number of Clusters Generated

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 100-110

mobility (m/s)
mobility based DGA

mobility (m/s)
LID

mobility based
DGA

LID

100

700

1 3 5 7 9

2 4 6 8 10

0
10
20
30
40
50
60
70
80
90
100
110

A
vg

. N
um

be
r

of
 C

lu
st

er
s

Nodes

mobility based DGA vs. LID
Average Number of Clusters Generated

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 100-110

mobility (m/s)
mobility based DGA

mobility (m/s)
LID

mobility based
DGA

LID

 215

Because LID generates domains without taking into consideration the network

environment, it is more possible to harm the performance of the network. The larger

the number of membership changes, the larger the introduced overhead to the applied

protocols. The stability of the hierarchy generated from the mobility based DGA aims

on the minimization of this overhead, so that the overall performance of the network

is improved.

Even though the superiority of the proposed algorithm has been presented with

respect to the RWPM model, the stability of the hierarchical structures established

from the mobility based DGA is expected to be even better in scenarios where group

mobility is exploited. If we evaluate the proposed algorithm with respect to a group

mobility model (Reference Point Group Mobility model), it is expected to establish

more robust hierarchical structures compared to RWPM. The mobility based DGA

was designed to identify and group together nodes with similar mobility

characteristics, so in a network environment, where distinct mobility groups exist, the

algorithm tends to eliminate the overhead due to the membership changes by

accurately grouping together the nodes that present similar mobility characteristics.

 216

Chapter 7: Domain Maintenance Approaches

7.1 Introduction

Domain autoconfiguration techniques allow the quick formation of highly

optimized hierarchies that greatly enhance network scalability and overall

performance. For example, instead of producing a simple two level hierarchy based

only on topology, the optimization can produce multi-level hierarchies that take into

account factors such as mission goals and predicted node/link heterogeneity.

However, in dynamic networks, these highly optimized solutions degrade very

quickly. Indeed, the application of standard local maintenance algorithms that do not

align well with the optimization goals, may result in very fast degradation of the

hierarchical structure’s quality (cost) with respect to the hierarchy generation

objectives. In this chapter a new taxonomy of local maintenance algorithms into four

basic classes is being presented. Furthermore, the performance benefits for using

representative approaches that act in accordance with the optimization goals are being

quantified. The classification of the local maintenance algorithms and the

quantification of their effect on the maintained hierarchical structure can be proved

beneficial on their design. The main trade off between the various categories of local

maintenance mechanisms is the amount and quality of information available and the

ability to preserve the quality of hierarchical structure with respect to the hierarchy

generation objectives.

 217

The mobile ad hoc networks (MANETs) require no fixed infrastructure, making

them ideal for many commercial, emergency and military scenarios. An open

question, however, is the ability of MANET networks to scale. Even for protocols

(routing, security, QoS) designed specifically for these dynamic environments, when

the size of the network becomes too large then these protocols either fail to capture

the network dynamics or swamp the network in signaling traffic [17][21][22][38][40].

Although some protocols can scale to hundreds or even thousands of nodes in

certain conditions, in general network scalability has always relied on the generation

of hierarchy. For example, the wireline world divides networks into subnets and

Autonomous Systems. The affect of hierarchy can be dramatic. For example, in

theory, clustering can reduce the overall routing protocol overhead with n nodes

from ()2O n to ()logO n n . Network hierarchy allows the applied protocols to operate on

smaller subgroups of the network and not on the entire network. Their hierarchy

allows protocols to deal with the dynamics of smaller groups of nodes. Hierarchy also

allows protocols to be tuned to more homogenous conditions. The benefits of a good

hierarchy have been shown to outweigh the complexity [39].

In order to cope with the rapid deployment and rapid reconfiguration needed for

future versatile networks, the generation of hierarchical structure must be done

automatically. Moreover, in mobile ad hoc networks (MANETs), such as the FCS (in

a Unit of Action) or WIN-T (in a Unit of Employment), there is a need for

mechanisms that not only automatically create such hierarchies but also maintain

them as the network changes.

 218

In the next section the various local maintenance approaches are categorized and

the characteristics of each of the defined classes are being presented. In section 3 we

evaluate the effect of the various local maintenance approaches on the preservation of

the quality (cost) of the optimized generated hierarchy with respect to the set of

hierarchy generation objectives. Finally, section 4 highlights the most important

conclusions obtained from the taxonomy and study of the various classes of local

maintenance mechanisms. The conclusions of this study can be utilized as a blueprint

for the design of appropriate local maintenance algorithms to support the application

of hierarchy generation mechanisms in dynamic environments.

7.2 Hierarchy Maintenance Schemes

Even though, the introduced domain generation framework is capable of

generating optimized hierarchical structures, due to the dynamic nature of the

underlying network environment, these structures will soon become sub-optimal and

might not comply with the topological constraints (e.g. infeasible hierarchical

structures). It would be inefficient and expensive to apply the hierarchy generation

mechanism for every topological change happening into the network. Firstly, the

hierarchy generation mechanism involves all the nodes, so extra network resources

will have to be utilized frequently causing large scale reactions from the nodes with

possible negative impact on the network performance. Secondly if the SA-based

generation algorithm is to be used, global knowledge is required, which may

impossible to be obtained and processed on time between each topological change,

especially in highly dynamic networks. Thus, the maintenance of the hierarchical

structure in case of topological changes must involve localized information for the

 219

reconstruction of the domains in a distributed fashion. The objectives for designing

and applying a distributed hierarchy maintenance approach, instead of utilizing the

introduced hierarchy generation mechanisms are the:

• Reduced overhead,

• Faster hierarchy reconstruction

Even though the distributed maintenance approach will be beneficial with respect

to network resources and reaction time to the dynamic network changes, considering

the spirit of the hierarchy generation framework proposed, the domains have to

satisfy a set of objectives, so that the hierarchy can be beneficial to the network

performance. The quality of the generated hierarchy is expressed through its cost

computed with respect to the cost function representing the generation objectives.

These objectives have to be preserved after the application of the maintenance

algorithm so that the quality of the hierarchical structure is maintained throughout the

lifetime of the network. Such a task is very challenging due to the limited availability

of information (localized information).

In this chapter the various local maintenance techniques have been categorized

with respect to the amount of information available and the relevance of this

information to the hierarchy generation objectives. Furthermore the impact of the

defined local hierarchy maintenance classes on the preservation of the hierarchical

structures “quality” (cost) has been studied and some very interesting observations

are being presented.

 220

7.3 Taxonomy of Local Maintenance Schemes

The main trade off in distributed maintenance is the tradeoff between overhead and

hierarchy quality. Four classes of local maintenance approaches have been identified:

• A0: Zero Overhead Local Maintenance

• A1: Objectives Independent Local Maintenance

• A2: Node Dependent Local Maintenance

• A3: Domain Dependent Local Maintenance

Figure 7.1 describes the classification of the various approaches introduced in this

study with respect to the amount and quality (e.g. relevance with the generation

objectives) of information involved in their decision mechanisms.

Figure 7.1. Taxonomy of local maintenance approaches

Schemes

Zero
Information

A0

Information

Objectives
Independent

A1

Objectives
Dependent

Neighboring
Nodes

A2

Neighboring
Domains

A3

Schemes

Zero
Information

A0

Zero
Information

A0

Information

Objectives
Independent

A1

Objectives
Dependent
Objectives
Dependent

Neighboring
Nodes

A2

Neighboring
Domains

A3

 221

In general, it is expected that the more relevant to the generation objectives (higher

quality) the information available during the maintenance phase, the better is

preserved the “quality” of the hierarchical structure. The maintenance decisions will

be based on metrics related to the original hierarchy generation objectives. For

example if the hierarchy generation objective is the construction of robust to mobility

domains, then the local maintenance is better to utilize metrics related to the speed,

direction and position of the participating nodes for the reconstruction of the

hierarchy.

In general the maintenance method is triggered locally by the nodes that become

infeasible (e.g. the nodes lose connectivity to their original clusters) due to the

topological changes. An overview of the amount and quality of information required

from each class of algorithms is provided below:

• A0. Zero Information Local Maintenance This approach does not require any

information to be collected from the network for the reconstruction of the

hierarchical structure. The approach in terms of overhead is optimal, since it does

not utilize any bandwidth resources but the lack of information is expected to

result in poor preservation of the hierarchical structure’s cost.

• A1. Objectives Independent Local Maintenance The schemes of this approach

collect and utilize local information for the reconstruction of the hierarchical

structure. The information, however, is unrelated to the metrics that have been

utilized from the hierarchy generation mechanism for the construction of the

optimized hierarchical structure. For example when the generation objectives

enforce the formation of robust to mobility domains, the speed and direction of

 222

nodes is required so that are grouped based on their mobility similarities. To the

contrary, during the maintenance the nodes may have access only to information

independent of the mobility characteristics of the neighboring nodes (i.e. IDs of the

neighboring nodes).

• A2. Node Dependent Local Maintenance. The approach (A2), as opposed to the

previous two, is aware of the hierarchy generation objectives and the

corresponding schemes attempt to maintain the “quality” of the generated

hierarchy by utilizing metrics related to these objectives. However, the

maintenance decisions are based on information gathered only from the immediate

neighbors (e.g. one hop neighbors).

• A3. Domain Dependent Local Maintenance. Like scheme (A2), A3 utilizes

relevant, to the hierarchy generation objectives, information for maintaining the

“quality” of the hierarchical structure; but unlike A2, A3 bases its restructuring

decisions on information collected from the entire neighboring domains. Clearly,

this approach requires the most overhead but it is expected to have the more

beneficial impact on the maintenance of the hierarchical structure’s quality.

7.4 Local Maintenance Representative Schemes

This section provides representative schemes from each of the four hierarchy

maintenance classes. These schemes will be able to provide a better insight on the

characteristics of the local maintenance algorithms of each of the hierarchy classes

that constitute the taxonomy defined above.

 223

• A0. Random. As its name reveals, the random maintenance mechanism is

probabilistic. Specifically, the nodes seeking to join a domain, randomly select one of

available neighboring domains with respect to the uniform distribution. If kV is the

set of neighboring domains iC of node k defined as:

{ }1 hop: s.t. k
i iV C j C j k= ∃ ∈ ←⎯⎯→

then node k selects a domain iC with probability ()k ip C , where

() 1
k i k k

p C p
V

= = (7.1)

Given the selection probabilities (7.1), node k generates a random number

[)0,1kr U∼ , which defines the neighboring domain zC to join as follows:

(){ }1, : 1k
z k k kC z V z p r z p+⎡ ⎤⎡ ⎤= ∈ ∩ − ⋅ ≤ < ⋅⎣ ⎦⎣ ⎦Z (7.2)

This scheme belongs in class A0 since it obtains the maintenance decisions

probabilistically, so the knowledge of any metric related to the characteristics of

neighboring nodes is not required.

• A1. Lowest ID (LID). The lowest ID (LID) scheme requires that each node owns

a unique ID. The lowest ID node among the nodes of each domain iC determines the

ID of this domain. The latter domain naming approach results into conflict free

naming of the generated domains due to the uniqueness assumption of the node IDs.

When a node k seeks to join a new domain, it selects the lowest ID domain zC

among the set kV of its neighboring domains.

 224

()()arg min
k

z

z z
C V

C ID C
∈

� (7.3)

where,

()iID C : is the ID of the thi cluster iC

This scheme belongs to class A1 of local maintenance schemes due to the utilization

of information (unique node ID) that is not related to any of the hierarchy generation

objectives for the network performance improvement.

• A2. Node Dependent Cost Function. This scheme relies on metrics relevant to

the objectives of the hierarchy generation phase. Even though the metrics are

relevant, their availability is limited. Each node is aware of the value of these metrics

from its immediate (one hop) neighboring nodes only. For example if the hierarchy

generation objective is to construct robust to mobility domains by grouping together

nodes with similar mobility characteristics (speed, direction); a node, which relies on

a maintenance scheme of A2 class, seeking to join a new domain; will join the same

domain as its neighboring node with the more similar mobility characteristics (speed,

direction). In cases where multiple choices exist (multiple neighbors present the same

degree of metrics similarity), a tiebreaker rule is applied (i.e., the node joins the

domain of the similar neighbor with the lower ID).

• A3. Domain Dependent Cost Function. This scheme, similarly to the previous

scheme, uses relevant metrics to the objectives enforced during the hierarchy

generation phase. Whereas, the availability of these metrics is less limited compared

to the schemes of class A2, since the metrics are being collected from the entire

 225

neighboring domains and not just from the immediate neighboring nodes. The

selection of the domain to join among the candidate domains happens by computing

locally the same cost function utilized in the hierarchy generation phase, for each one

of the candidate selections. The selection which results into the local domain

configuration with the best cost becomes the dominant selection of the node. For

example, assume that the hierarchy generation objective is the construction of

domains robust to mobility and is represented from the following cost function:

()
,

2

2

1 , 1

min
z

z
i j

CK

rC z i j

J C U
= =

⎛ ⎞⎡ ⎤
⎜ ⎟= ⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠
∑ ∑ (7.4)

where,

Parameter Definition
K Number of generated clusters

iC Cluster i

iC Size of cluster i

,i jrU Relative Velocity of nodes i, j

A node i , which utilizes a local maintenance scheme of class A3 and seeks to join a

neighboring domain, will collect the appropriate metrics from all the nodes of the

neighboring domains. Then for each possible local domain configuration it will

compute cost function (7.4) by utilizing the metrics collected and its own metrics.

The selection that results to the lowest cost domain configuration will become the

dominant configuration.

 226

The following section provides an indicative example on the application of the

representative local maintenance schemes described in this section and their effect on

the maintenance of the hierarchical structure quality, with respect to the applied cost

function.

7.5 Sample Application and Indicative Performance of the Representative

Local Maintenance Schemes

For providing both a basic understanding of the local maintenance schemes’

functionality and a representative view of their performance subject to the

preservation of the hierarchical structure’s quality, this section utilizes one of the

introduced cost functions and the corresponding metrics for the generation of

hierarchy. Then, each of the local maintenance schemes is applied appropriately and

the cost of the maintained structure is computed and compared to the optimal.

7.5.1 Representative Hierarchy Generation Objective

Consider as hierarchy generation objective the construction of robust to mobility

domains by grouping together nodes of similar mobility characteristics. In the

hierarchy generation phase the domains are formed by optimizing the cost function

(7.2) using the SA algorithm.

()
,

2

2

1 , 1

min
z

z
i j

CK

rC z i j

J C U
= =

⎛ ⎞⎡ ⎤
⎜ ⎟= ⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠
∑ ∑ (7.5)

where,

iC : Cluster i

iC : Size of cluster i

,i jrU : Relative Velocity of nodes i,j

 227

The relative velocity
,i jrU of two nodes i , j is defined from (7.6), (7.7) and (7.8).

, , ,

2 2
i j i j i jr X YU U U= + (7.6)

,
cos cos

i jX i i j jU S Sθ θ= − (7.7)

,
sin sin

i jY i i j jU S Sθ θ= − (7.8)

where,

iS : Speed of node i

iθ : Direction of node i

Assume the network and optimized hierarchy of Figure 7.. Due to mobility, node 11

changes the topological structure of the network and seeks to join a neighboring

domain. Such an event triggers the maintenance phase. The representative schemes

introduced above are being applied so that their impact on the “quality” (cost) of the

maintained hierarchical structure can be evaluated.

Figure 7.2. Topological change triggering the application of local maintenance

Assume also that the mobility metrics - speed (Sp) and direction (Dr) - of the nodes

are a given in Table 7.1.

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

10

9

12

11

6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

10

9

12

11

6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

10

9

12

11

6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

10

9

12

11

6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

 228

Table 7.1. Mobility characteristics of the nodes

7.5.2 Application of the Local Maintenance Schemes

Figure 7.3 presents the domain selections made by Node 11 (from Figure 7.) by

applying each one of the representative schemes:

Figure 7.3. Hierarchy resulted by the application of the representative schemes

ID Sp Dr ID Sp Dr ID Sp Dr
1

2

3

5

6

4

5

45

60

7

8

9

5

6

45

60

10

11

124

3

3

4

45

30

45

2 30

0

0

0

0 0

0

0

0

ID Sp Dr ID Sp Dr ID Sp Dr
1

2

3

5

6

4

5

45

60

7

8

9

5

6

45

60

10

11

124

3

3

4

45

30

45

2 30

0

0

0

0 0

0

0

0

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

1
3
1
3

1
3
1
3

1
3
1
3

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

A0 A1

A2 A3

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

1
3
1
3

1
3
1
3

1
3
1
3

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

11

10

9

12 6

7

8

5

1

3 4
2

CID = 9 CID = 5

CID = 1

A0 A1

A2 A3

 229

The selection process followed by Node 11 by applying each one of the local

maintenance schemes is described below:

• A0 (Random): Node 11 detects three neighboring domains, and will decide to

join randomly one of these with respect to uniform distribution. The probabilities

of Node 11 (11p) for joining any of the neighboring domains iC are:

() () ()11 1 11 2 11 3
1
3

p C p C p C= = =

So, Node 11 can equiprobably select each one of the neighboring domains to join,

resulting into different hierarchy configuration costs, as it is shown later

• A1 (Lowest ID): Node 11 will decide to join domain 1C because it has the lowest

ID among its neighboring domains:

1 2 31, 5, 9C C C= = =

• A2 (Node Dependent Cost Function): With respect to speed and direction values

given in Table 1, Node 11 has speed 4m/s and direction of 45 degrees. The

neighboring nodes of Node 11 and their corresponding domains are represented

from the following (node ID, domain ID) pairs:

() () ()1 2 32, 1 , 5, 5 , 9, 9C C C= = =

Node 5 has the closest match in mobility with Node 11. Thus Node 11 will select

to join the same domain as of Node 5 ()2 5C = .

• A3 (Domain Dependent Cost Function): Node 11 collects the appropriate

metrics (e.g. speed and direction) from each one of the nodes lying in its

 230

neighboring domains. Using function (7.5), Node 11 evaluates the cost of the

resulted maintained structure in the case of joining each of its neighboring

domains. The resulted costs are provided from the following (domain ID, cost)

pairs:

() () ()1 2 31, 81.77 , 5, 26.77 , 9, 25.13C C C= = =

Thus Node 11 will pick to join domain ()3 9C = , which results in the hierarchical

structure with the lowest cost among the various choices.

7.5.3 Cost Performance Comparison of the 4 Local Maintenance Approaches

For this example, each scheme results in a different hierarchical structure with

different cost (“quality”). Table 7.2 below reveals the cost of the maintained

hierarchy for each scheme applied in this example.

Approach Cost
A1. Objectives Independent (LID) A1C = 81.7689
A2. Node Dependent (A2) A2C = 26.7673
A3. Domain Dependent (A3) A3C = 25.1318
A0. Zero Information (Random) A1 A2 A3C C C∨ ∨

Table 7.2. Cost of the hierarchy after the application of the various Local
Maintenance schemes

A couple of indicative and very important observations are:

• The lowest cost (best hierarchy) is provided from approach A3 scheme. The

application of approach A3 schemes is expected to perform best, because it takes

into consideration metrics from the entire neighboring domains, which are also

relevant to the generation objectives. The drawback of the maintenance schemes

 231

of this approach is the large overhead introduced for the collection of the

appropriate information. Whereas, the “quality” of the maintained hierarchy

compensates for this drawback.

• Even though, the Random scheme of approach (A0) uses no metrics for the

selection process (zero overhead), it is statistically expected to perform better than

the schemes of approach A1, such as the LID, with respect to the “quality” of the

maintained hierarchy.

7.6 Impact of Maintenance Schemes on Domain Quality

This section shows that the impact of the schemes on the cost of the hierarchy for

the specific example given in the previous section is representative of the generally

expected performance of the corresponding approaches. From the cost functions

introduced in chapter 4, two of them have been used to construct optimized

hierarchies. Then, for a pre-specified amount of time, the various local maintenance

schemes have been applied. The cost of the maintained hierarchy was being evaluated

in pre-specified intervals of time, so that samples of the maintained hierarchy’s cost

can be obtained throughout the application of each of the schemes. These samples are

sufficient to characterize the impact of the each of the schemes and their

representation classes on the maintained hierarchy quality.

7.6.1 Impact of Schemes on “Balanced Size” Domains

On a network of 100 nodes 10 domains were defined utilizing the hierarchy

generation mechanism based on the SA algorithm. The hierarchy was generated with

 232

respect to the “balanced size domains” objective. By optimizing (minimizing) the

following cost function (see chapter 4):

()()2 2
1() min ,...., KC

J C Var C C= (7.9)

10 domains of 10 nodes each were obtained. Then, for 500 seconds of network time,

the representative maintenance schemes of approaches (A0), (A1) and (A3) were

applied on the optimized hierarchy.

Figure 7.4. Impact of three maintenance approaches on the “balanced size” domains

Figure 7.3 shows the average cost per second (out of 100 applications) of the

maintained hierarchy. The topology was changing every second with respect to

Random Waypoint Mobility (RWPM) model, with maximum speed 10m/s and no

pause time. For every network second, the cost of the maintained hierarchy was

evaluated using cost function (equation 7.9).

As expected scheme (A3) performs the best (but also causes more overhead).

Interestingly, the Random scheme (A0) maintains better the “quality” of the hierarchy

A0

Effect of Various Local Maintenance Schemes
(Net Size 100, Clusters 10, RWPM, Obj.: Balanced Size)

0.E+00

2.E+06

4.E+06

6.E+06

8.E+06

1.E+07

1.E+07

1.E+07

0 26 52 78 10
4

13
0

15
6

18
2

20
8

23
4

26
0

28
6

31
2

33
8

36
4

39
0

41
6

44
2

46
8

49
4

Time (secs)

C
os

t (
E

ne
rg

y)

A0 A1 A3

A1

A3A0

Effect of Various Local Maintenance Schemes
(Net Size 100, Clusters 10, RWPM, Obj.: Balanced Size)

0.E+00

2.E+06

4.E+06

6.E+06

8.E+06

1.E+07

1.E+07

1.E+07

0 26 52 78 10
4

13
0

15
6

18
2

20
8

23
4

26
0

28
6

31
2

33
8

36
4

39
0

41
6

44
2

46
8

49
4

Time (secs)

C
os

t (
E

ne
rg

y)

A0 A1 A3

A1

A3

 233

than the LID scheme (A1), even though does not collect and utilize any information

from the neighboring nodes or domains (e.g. does not require any overhead).

7.6.2 Impact of Schemes to “Robust to Mobility” Domains

A second experiment generated 6 domains in a network of 100 nodes. This time

the cost function (equation 7.5) was applied, resulting into the grouping of nodes with

similar mobility characteristics. After obtaining the optimized hierarchical structure,

each of the introduced local maintenance schemes, representing the four maintenance

classes, were applied for 250 seconds. The topology of the network was changing

every second with respect to Reference Point Group Mobility (RPGM) model [66] (6

groups of nodes with distinctive mobility characteristics were predefined, so the cost

function applied had to locate these 6 mobility groups – optimal grouping). Figure 7.5

presents the average cost of the maintained hierarchy per second (out of 100

applications) for the various maintenance schemes.

Figure 7.5. Impact of maintenance approaches on the “robust to mobility” domains

Effects of Various LM Schemes
(Network Size: 100, Clusters 5, RPGM, Obj.: Similar Mobility)

0.0E+00

2.0E+08

4.0E+08

6.0E+08

8.0E+08

1.0E+09

1.2E+09

1.4E+09

1.6E+09

1.8E+09

0 13 26 39 52 65 78 91 10
4

11
7

13
0

14
3

15
6

16
9

18
2

19
5

20
8

22
1

23
4

24
7

Time (secs)

C
os

t (
En

er
gy

)

A0 A1 A2 A3

A0 A1

A2 A3

Effects of Various LM Schemes
(Network Size: 100, Clusters 5, RPGM, Obj.: Similar Mobility)

0.0E+00

2.0E+08

4.0E+08

6.0E+08

8.0E+08

1.0E+09

1.2E+09

1.4E+09

1.6E+09

1.8E+09

0 13 26 39 52 65 78 91 10
4

11
7

13
0

14
3

15
6

16
9

18
2

19
5

20
8

22
1

23
4

24
7

Time (secs)

C
os

t (
En

er
gy

)

A0 A1 A2 A3

A0 A1

A2 A3

 234

Similarly to previous scenario (e.g. “balanced size” domains), approach (A0)

performs better than (A1), but both of them perform worse compared to (A3). Also,

by comparing (A2) with (A3), (A3) performs better (as expected due to the larger

amount of information it utilizes for the maintenance decisions).

7.7 Conclusions

This chapter categorizes various local maintenance approaches, with respect to:

a) whether they are aware of the hierarchy generation objectives utilized during the

generation phase, and b) the amount of information available to them. We show that

by ignoring the local maintenance algorithm, hierarchy generation may end up

harming the performance of the network instead of improving it. The maintenance

algorithm has to be designed in accordance to the performance objectives required.

The most commonly used approach applied today, the Lowest ID approach (A1),

consistently performs the worst. Better for both quality and overhead is a Random

Approach (A0). However, tailoring the maintenance to the hierarchy generation

objectives consistently maintains the best quality hierarchy, even though extra

overhead is required for the collection of the appropriate information. It is shown, for

example, how simple a balanced size hierarchy can be maintained over 5x longer,

while more complex hierarchies, that take into account factors such as mobility, can

be maintained over 100x longer. This longevity is critical to maintaining the sort of

effective and powerful network needed relying only on local information and

decisions. In this fashion the reapplication interval of the hierarchy generation

mechanism is prolonged, resulting in less overhead and faster reaction to the network

dynamics.

 235

Chapter 8: Network Applications of Hierarchy Generation
Mechanisms

8.1 Introduction

The hierarchy generation and maintenance framework being developed has been

tuned and evaluated, using a set of indicative cost functions. These cost functions

represent hierarchy generation objectives, which are not directly related to any of the

networking functions (e.g. routing, security, QoS). The hierarchy generation and

maintenance framework is not customized to specific objectives and aims on the

improvement of the network performance. To achieve the latter, the appropriate cost

functions have to be introduced and optimized. These cost functions will represent the

performance aspects of the network required to be improved.

In order to apply and evaluate the ability of the introduced mechanisms to

construct hierarchical structures that take into consideration and improve realistic

performance aspects of the networking functions, a new set of cost functions has been

introduced. These cost functions are directly related to the networking functions and

performance metrics, rather than focusing on the physical characteristics of the

participating nodes and generated domains. Specifically in this dissertation, the SA-

based framework has been applied for the generation of hierarchical structures aiming

on the improvement of routing and topology control.

A direct application of the developed hierarchy generation framework is the

reduction of power consumption due to transmissions. The transmission power is one

of the dominant elements of the node’s power consumption characteristics.

 236

Specifically, the approach utilizes the SA-based mechanism to determine the optimal

assignment of transmission power (transmission range) to each of the participating

nodes such that the network is 2-d connected but also the average power utilized is as

low as possible. The conservation of power in wireless environments that consist of

finite power portable devices is crucial for the survivability and lifetime of the

network. If this is not taken into account, nodes soon will start failing resulting in

partitioned networks unable to provide services to the participating users. Moreover,

by controlling the transmission power, the performance of MAC and subsequently of

the network improves due to the lower number of collisions and retransmissions. The

generation of power consumption aware hierarchical structures can be beneficial for

the connectivity, survivability and lifetime of the network. Section 2 presents the

details of the approach along with the metrics and cost functions introduced for the

generation of the corresponding hierarchical structures.

Furthermore, another direct application of the hierarchy generation framework is

on the improvement of hierarchical routing. The application of routing in a

hierarchically organized network results into paths that are longer with respect to hop

count than the paths that could be established in a flat network. This is the negative

effect of abstraction resulting from the aggregation of information happening for each

group of nodes. Due to the aggregation, the routing has an abstracted view of the

network topology, which results in suboptimal path lengths. The latter suboptimality

could potentially have serious consequences on the performance of the network. For

example, the longer path lengths may harm the end-to-end delay performance and the

throughput of the network (i.e. the transmitted packets will live longer into the

 237

network causing heavier load and more collisions in MAC, resulting in larger number

of dropped packets). The cause of the suboptimality in most of the cases is that the

hierarchy generation mechanism does not take into account this side-effect. Since the

SA-based mechanism is powerful and flexible enough to combine and satisfy

multiple objectives, the improvement of hierarchical routing path length

suboptimality can be performed in conjunction with other objectives by optimizing

the appropriate multi-objective cost functions. The details of the approach for the

reduction of hierarchical routing path length suboptimality are provided in section 3.

8.2 Hierarchy Generation for Power Control and Connectivity Assurance

Ad hoc networks are the new networking technology trend due to their promising

characteristics. These characteristics accommodate better the requirements imposed

by the commercial and military world. Most of the reference applications for these

networks assume devices that are of finite power. The validity of the latter

assumption is justified from the characteristics of the existing technology (web

enabled cell phones, PDAs, laptops, PPCs). The objective of the ad hoc networks

existence is to accommodate light weight, battery powered portable devices. Because

of the finite power limitation, the appropriate mechanisms have to be introduced for

the efficient utilization of the available power. A first step towards this direction is

the minimization of the unnecessary power utilization, wherever possible.

An active networking device consumes significant portion of its power for

communications and more specifically for transmissions. Therefore, the proposed

approach focuses on minimizing the average transmission power by adjusting

appropriately the transmission powers of the participating entities subject to the

 238

preservation of network connectivity. The network connectivity requirement is

essential since the utilization of lower transmission power from the participating

entities could result in partitioned networks. The enforcement of the latter

requirement (constraint) in the SA-based optimization process will control the

achievable minimum average power assignments that result in connected networks.

The fundamental principal of the mechanism introduced for optimal transmission

power assignments, is the grouping of the participating entities with respect to their

topological proximity. After the grouping has occurred, the intra-domain and inter-

domain connectivity of the network is ensured from the application of the appropriate

heuristic mechanisms. Thus, both network connectivity and optimization of the

average node transmission power assignments are achieved.

The development of the mechanisms is based on the assumption that the

transmitted power utilized from the nodes is proportional to the transmission range.

The nodes are grouped with respect to their relative proximity characteristics since it

is expected that the members of the same domain communicate with each other on a

regular basis (e.g. intra-cluster communication for control signaling). Hence, it is

preferable these members to be topologically close. In the case of the existence of

information that requires inter-cluster communication, dedicated nodes (Border

Routers - BRs) are responsible for the forwarding of this information through the

hierarchy until it reaches the destination domain. For ensuring the inter-cluster

connectivity the assignment of the appropriate nodes as BRs is required. The BRs

selection mechanism has also to be aware of the transmission power optimization

(minimization). The connectivity of BRs in this architectural framework is sufficient

 239

for ensuring network connectivity, since the intra-cluster connectivity will have been

established in an earlier stage of the mechanism.

For the grouping of nodes the introduced SA-based algorithm has been applied

on a representative cost function, which is related to the topological proximity of the

nodes. The metrics required for the evaluation and optimization of the corresponding

cost function, are related to the topological positions of the nodes. This information

can be collected from GPS devices, attached to the nodes and can be stored in an

accessible centralized or distributed database. Furthermore, the same information is

required from the heuristic algorithm responsible for the assignment of transmission

range (transmission power) to the participating network entities. The heuristic

algorithm is initially applied locally to each one of the generated domains, so that the

average node transmission power is minimized subject to intra-domain connectivity.

Moreover, for ensuring network connectivity, it is necessary that the generated

domains are connected. Towards achieving inter-domain connectivity the set of

candidate BRs has to be determined. Upon determining this set, a heuristic algorithm

is applied for the selection of appropriate transmission ranges to the BRs, so that both

inter-domain connectivity can be established and minimization of the average node

transmission power can be accomplished. The description and characteristics of the

heuristic algorithm are provided in a subsequent section. The following section

surveys some of the most cited work done in the area of transmission range control.

8.2.1 Related Work on Transmission Range Control

In this section we refer to some representative work on the power control

problem from the perspective of network clustering. The existing work problem

 240

comprises of techniques that try to identify the optimal transmit power to control the

connectivity of the network. In [42], the power control problem is viewed as a

network layer problem, and the COMPOW protocol is proposed. The work in [43]

proposes that each node has to adjust its transmission power such that its connectivity

degree (number of one-hop neighbors) is bounded. ElBatt et. al. in [41], through the

transmit power control, make an attempt to optimize the average end-to-end

throughput by controlling the degree of the nodes. In [44] a distributed topology

control algorithm is proposed. The latter technique is based on the utilization of

direction information. Kawadia and Kumar in [45] propose the CLUSTERPOW

algorithm, which aims on the increase of network’s capacity by increasing spatial

reuse. The algorithm consists of simply using the lowest transmit power level p ,

such that the destination is reachable (in multiple hops) by using power levels no

larger than p . The transmission range control mechanism proposed in this

dissertation differs from the existing ones, since it is part of a more general hierarchy

configuration framework. The same mechanism (SA) can assign transmission ranges

to the participating entities and configure the network hierarchy at the same time.

Such an approach has the advantages of simplicity, efficiency and robustness, since

the need for interfacing among different mechanisms has been eliminated. The details

of the transmission range control mechanism are provided in the following section.

8.2.2 Clustering and Transmission Range Control Algorithms

This section presents the algorithms and techniques that constitute the

transmission range control mechanism for optimizing (minimizing) the average

transmission power. The mechanism consists of four stages:

 241

• Grouping of nodes

• Intra-cluster transmission range assignment

• Selection of BRs

• Inter-cluster transmission range assignment

The details for each of the four stages follow.

Stage 1: Grouping of Nodes

For the grouping of nodes with respect to their topological proximity, the SA-

based framework has been applied for the optimization of the corresponding cost

function. The metrics that constitute the cost function involve the topological

coordinates of the nodes.. The objective is to group together nodes that are

topologically near, since it is expected that this will reduce the average node

transmission power (e.g., transmission range proportional to transmission power) for

achieving domain and network connectivity. The corresponding cost function, which

upon its optimization, will result in the grouping of the nodes with respect to their

relative proximity is:

()
1 1

min
iCK

ij iC i j
J C x z

= =

= −∑∑ (8.1)

where,
C : Domains map
K : Number of generated clusters
iC : The cardinality of ith cluster

ijx : The coordinates of the jth node on the ith
 cluster

iz : The center of mass coordinates of the ith cluster

Upon the optimization of the above cost function from the SA-based mechanism,

a corresponding hierarchical structure will be generated. This stage is followed by the

 242

selection of the optimal transmission ranges to be assigned on each one of the nodes

in the generated domains for establishing intra-domain connectivity.

Intra-Domain Transmission Range Assignment

After optimizing the grouping of nodes with respect to their topological

proximity, the heuristic mechanism for assigning the optimal (minimum) transmission

ranges to the nodes for the establishment of intra-domain connectivity takes over. The

latter mechanism operates in each generated domain iC separately and its objective is

formulated from the cost function (8.2) below:

() ()
1

min
iC

i ij
j

J C TxRange node
=

= ∑ (8.2)

subject to intra-domain connectivity

Since the above problem is NP-complete, for the optimization of (8.2), a faster

suboptimal heuristic algorithm has been proposed instead. The objective of the

algorithm is to assign to every node of a specific domain the lowest possible

transmission range so that intra-domain connectivity is ensured. The details of the

heuristic mechanism, applied to each domain kC separately, are provided from the

following pseudo code:

 243

Step I: Order the distances of each pair of nodes in the domain in ascending order. Store it in

the
 vector SortedPairDistances
Step II: Pick the first entry (lowest distance) from the SortedPairDistances and then store the
 corresponding pair of nodes in the ConnectedList list and the link in the LinksList

list.
 Remove this entry from the SortedPairDistances.
Step III: Until the kConnectedList C==

 Step IV: Pick the first entry – link ()node ,nodei j from the SortedPairDistances

such
 that one of the following is satisfied:

1. node & nodei jConnectedList ConnectedList∈ ∉

2. node & nodei jConnectedList ConnectedList∉ ∈
 Remove this entry from the SortedPairDistances
Step V: Add the nodes ()node ,nodei j in the list ConnectedList

Step VI: Add the link to the LinksList list
Step VII: Go to Step III

Upon the completion of the above algorithm the selected links of the connected domain are
stored in LinksList along with their distances. A sample entry of this list is the following:

nodei node j ijdist

Based on the entries of LinksList the transmission range assignments for each

domain can be determined. The assignment procedure (i.e. for the heuristic

optimization of 8.2) is described from the following pseudo-code:

 for (each entry of the form ()jnode ,node ,i ijdist)
 { if (nodei has not been assigned a iTxRange)

 i ijTxRange dist=
else {
 if (i ijTxRange dist<)
 i ijTxRange dist=
 } }

Generally, in the LinksList among all the distances of a node to its neigboring

nodes in the domain, the assignment procedure selects the maximum of them. This

 244

selection guarantees intra-domain connectivity. Whereas, in the case where the nodes

select the lowest distance, it may result in two neighboring nodes selecting each other

but not having connectivity to any other member of the group, resulting in partitioned

domain. Furthermore, the assignment procedure results also in the establishment of

bidirectional links among the members of a particular domain.

After having applied the above mechanisms, all the registered members of a

domain have been assigned a transmission range, which can be translated into a

specific transmission power. This transmission range (power) minimizes the average

power required for intra-domain connectivity (e.g. the nodes can deliver packets to

any other node of the domain) prolonging the lifespan (connectivity) of the

corresponding domain.

Having ensured intra-domain connectivity, network connectivity (i.e. inter-

domain connectivity) has to be established. The Border Routers (BRs) are responsible

for the domains’ outbound connections. The BRs are selected among the nodes of the

domain, which have at least one connection to a member of neighboring domain. The

BRs serve as the exits (entrances) from (to) the domain. The following paragraphs

describe the selection of BRs procedure and how they are assigned transmission

ranges such that the average power required for inter-domain connectivity is

optimized and network connectivity is quaranteed.

Border Routers Selection Mechanism

Having defined the domains and assigned the appropriate transmission range to

each node for minimum power intra-domain connectivity, inter-domain connectivity

must be established along the same lines. The domains communicate each other

 245

through a set of nodes called BRs. The issue under consideration is how these BRs

are being selected, such that the network is connected and the transmission power

required for ensuring inter-domain connectivity is minimized.

Firstly, the selection mechanism of BRs is presented, followed by the description

of the heuristics that assign the appropriate transmission range to each one of the

selected BRs. The mechanism for the selection of BRs is based on the fundamental

principal that for a pair of domains the nodes assigned the role of BR, are the nodes

that present the minimum distance among all the pairs of nodes between the two

domains. The BRs selection mechanism is represented from the following pseudo

code:

 for i=1,…,K-1 (K: number of domains)
 for j= i+1, …,K
 determine the nodeij and the nodeji
 among all the nodes of domain i and
 domain j respectively, such that
 min(dist(nodeij – nodeji))
 end
 end

The above procedure determines the set of candidate BRs:

{ }(1) (2) (1) (), , , ,C C C K C K−= "B B B B B

where,

{ }() : min ,C i ij ij jinode node node j i= − ∀ ≠B

The objective is the establishment of the optimal set of candidate BRs, which will be

a subset of set B . The above algorithm determines two BRs per every possible pair of

domains, so this density of BRs has to be optimized (minimized) appropriately for the

 246

establishment of the inter-domain connectivity (i.e. there is always a path from every

domain i to every other domain j (i j≠)) subject to the minimization of the average

transmission power utilization. The description of the heuristics responsible for the

selection of the set of BRs among the candidate ones and the assignment of the inter-

domain transmission ranges is provided in the subsequent section.

Inter-Domain Transmission Range Assignments

Since the candidate set B of BRs has been determined, the assignment of the

appropriate transmission ranges to a subset of them is required for minimizing the

average transmission power for inter-domain connectivity. By treating B as a

domain, the mechanism applied for the assignment of transmission ranges to the

nodes of a domain can be reused without any major modification. The only twist on

the functionality of the mechanism is required on the termination condition. For intra-

domain connectivity the procedure terminates when all nodes in the domain get

connected. Whereas, the same mechanism for establishing inter-domain connectivity

(over the BRs), has to terminate when all the domains get connected.

The application of the set of mechanisms presented above results in a connected

hierarchical structured network, where the average transmission power assigned to

the participating nodes has been minimized. The latter is being validated in the next

section, where the corresponding simulation results related to the mechanism

proposed are being analyzed and evaluated.

8.2.3 Performance Evaluation

This section provides the observations and conclusions obtained from the

simulation analysis of the transmission range control mechanism introduced earlier.

 247

Specifically, indicative results for the average transmission power savings are

presented in the form of shorter transmission ranges assignments for ensuring

network connectivity. The proposed mechanism is being compared to the scenario

where all the nodes utilize the same and the shorted possible transmission range so

that the network is connected. The indicative resulting network topologies for both

scenarios (proposed mechanism, common transmission range) are being provided in

figures 8.1 and 8.2, respectively. These figures represent the results collected from

experiments on networks of 100 nodes, which were uniformly distributed in an area

of (1000m x 1000m) and were configured in 6 domains.

The performance benefits of the proposed mechanism can be indicated by

visually comparing the resulting topologies of figures 8.1 and 8.2. The power

utilization superiority of the proposed mechanism can be justified from the sparser

resulting topology compared to the common transmission range approach. The

sparsity of the links indicates that network connectivity can be achieved with smaller

number of links. The proposed mechanism eliminates many of the unnecessary links

as it can be observed by comparing figures 8.1 and 8.2.

Figure 8.1. Network Topology by applying clustering and transmission range control

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

1
1

1
1

1

1

1

1

1 1

1

1

1

2

2

22

2

2

2 22

2

22

2

2

2 2

2
2

2

3

3

3

3

3
3

3
33 3

3

3

3

4

4
4

4

4

4
4

4

4
4

4

4

4

4

4

4
4

5
5

5

5

5

5
5

5
5

5

5

5

5

5 5
5

55
5

5 6
6

6

6

6

6

6

6

6
6

6

6

6 6 6

6

6 6

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

1
1

1
1

1

1

1

1

1 1

1

1

1

2

2

22

2

2

2 22

2

22

2

2

2 2

2
2

2

3

3

3

3

3
3

3
33 3

3

3

3

4

4
4

4

4

4
4

4

4
4

4

4

4

4

4

4
4

5
5

5

5

5

5
5

5
5

5

5

5

5

5 5
5

55
5

5 6
6

6

6

6

6

6

6

6
6

6

6

6 6 6

6

6 6

 248

Figure 8.2. Resulting network topology by applying common transmission range

The justification of the superiority of the proposed transmission range control

mechanism with respect to the average required power for ensuring network

connectivity is provided from the results of figure 8.3. The results represented from

this figure are related to the per node transmission range assigned and average

transmission range required from both approaches, such that network connectivity is

guaranteed. Similarly to figures 8.1 and 8.2, the results of figure 8.3 correspond to a

network of 100 nodes, which are uniformly distributed and organized in 6 domains in

an area of (1000m x 1000m).

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

 249

Transmission Range
(Max, Average,Average per Cluster, per Node)

0

50

100

150

200

250

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Nodes

Tx
R

an
ge

 (m
et

er
s)

TxRange/Node Avg. TxRange / Cluster
Max TxRange Max TxRange/Cluster

Figure 8.3. Transmission Range (max per cluster vs. avg. per cluster vs. node per
cluster)

The information represented from figure 8.3, is related to the performance of

both the proposed mechanism and the common transmission range approach.

Specifically, figure 8.3 exploits the per node transmission range assigned from the

proposed mechanism, the average and maximum transmission range per generated

domain and the shorted common transmission range required from the nodes for

ensuring network connectivity. The superiority of the proposed approach over the

assignment of a common transmission range is justified by comparing the average

transmission range assigned with the maximum one. The lower is the transmission

power of the nodes, the better is the energy conservation and the network

survivability is improved considerably. Furthermore, the mechanism proposed

benefits also the scalability of the network, since the generation of domains creates an

inherent hierarchical structure. Equally advantageous for the network performance is

 250

the lower density of the communications links, since fewer nodes will compete for

accessing the shared media resulting in better MAC and end-to-end (delay,

robustness) performance, due to the decrease on the number of collisions,

retransmissions and packet drops.

8.3 Using Multi-objective Domain Optimization for Routing in Hierarchical

Networks

Network hierarchy makes network protocols more scalable and robust, but also

makes the network more complex and reduces performance. With routing protocols,

hierarchy reduces overhead, routing table size, and convergence time, but can also

cause sub-optimality (stretch) of the routing path length compared to the flat

networks. With OSPF (Open Shortest Path First), for example, adding routing areas,

with route aggregation done in Area Border Routers, can significantly reduce link

state advertisements, link state database and convergence time, but can also increase

inter-area path length. Existing research has produced many excellent intra- and inter-

domain routing schemes and different proposals for aggregation at border routers

(BRs). As important, however, is the design of the routing hierarchy itself. This

section presents quantified comparisons of different hierarchical construction

techniques for a simple hierarchical routing protocol in a 100 node network. When

the hierarchy does not take into account routing path length suboptimality, we show

the potential for significant stretch (e.g., on average more than doubling the shortest

path for nodes under 6 hops apart). When we use multi-objective optimization, that

includes the goal of minimizing stretch, the stretch is significantly reduced (e.g.,

reducing the stretch by approximately 50% for the above example). In large or

 251

dynamic environments, the introduced SA-based framework is able to produce

optimized hierarchies quickly by trading a small loss in optimality for a large

reduction in optimization time. The paper analyzes the choice of multi-objective cost

function in this environment and concludes that simpler functions produce the best

overall results.

Most networking protocols typically only work well up to some limited size,

whether size is measured in terms of the number of nodes, diameter (hops) or node

density (number of neighbors). As networks get larger, scaling protocols presents

challenges in both the relatively stable wired internet and, more recently, in the more

dynamic wireless ad hoc networks. This is clearly a challenge for routing protocols,

where without careful design routing performance can degrade significantly, as

measured by: a) signaling overhead (e.g., bandwidth to send routing updates), b)

convergence delay (e.g., to heal failed links), c) forwarding delay (e.g., due to large

table size), and d) robustness (e.g., protection from misbehaving routers). There have

been significant improvements in the scalability of flat routing protocols. Particularly,

Fisheye State [48] and Hazy Sighted Link State (HSLS) [49] routing scale better than

most flat routing protocols. Limiting link state updates by space (hop limit) or time

(e.g., updates corresponding to far-away destinations are included with lower

frequency than those corresponding to near-by destinations) improves scalability.

Even these protocols, however, only scale so far before overhead or performance

becomes prohibitive.

Routing scalability has been a widely studied problem since the pioneering work

by Kleinrock and Kamoun [46]. In their landmark paper [46], they discuss the

 252

problems associated with scalability and the length of the route forwarding table in

large packet switched networks. They conclude that hierarchical routing is a

requirement for very large networks.

In general, hierarchical routing groups routers into routing domains (also called

clusters, Autonomous Systems, or areas) and one or more border routers (or

landmarks) from each domain represent their entire domain to those outside. This

process can be repeated iteratively with domains grouped into meta-domains

represented by second level border routers.

Creating an efficient hierarchical structure reduces the amount of information

stored, processed, and distributed. This reduction results in bandwidth saving, faster

healing of faults, faster table lookups, and greater robustness. For example, domains

reduce overhead by allowing aggregation of externally advertised information (e.g.,

using an address/label prefix to identify all nodes in a domain/cluster [47]). As

important, especially in dynamic networks, changes within a domain need only be

propagated within the domain. Any routing algorithm that requires routers to know

about every single destination becomes infeasible as the network grows, since the size

of routing tables and traffic received by each node increases in direct proportion to

the number of routers.

The main disadvantage of hierarchy in routing is the sub-optimality of the path

compared to shortest path routing. By isolating groups of nodes and aggregating

control information, hierarchy causes routing to take an abstracted view of the

network and not achieve optimal routing.

 253

There has been a lot of design and analysis of hierarchical routing protocols and

information aggregation in border routers (BRs) to provide the smallest overhead and

routing table (compactness) for a given route suboptimality (stretch). As important,

however, is the design of the routing hierarchy itself, which is the focus of this

section. Choices include, for example, selecting how many levels of hierarchy, which

nodes go in which domains, and what information to propagate at BRs.

In most networks today, the hierarchy is manually generated and is typically

more a function of administrative boundaries than performance optimization. In the

Internet, for example, a hierarchy is manually created using an inter-domain routing

protocol (typically BGP [50]) and an intra-domain routing protocol (typically OSPF

[51]). Indeed, often, intra-domain routing protocols such as OSPF are manually

divided into hierarchical routing areas. In dynamic networks, hierarchy is also

increasingly being used, but is generally created automatically (e.g., [39][40][52]) and

there is little analysis comparing different forms of hierarchy.

This section presents quantified comparisons of different approaches to hierarchy

construction and their effect on stretch. Initially, an overview of existing hierarchical

routing work is given. Then the cost functions and schemes introduced for the

minimization of the hierarchical routing stretch are presented, followed by their

simulation analysis and evaluation.

8.3.1 Hierarchical Routing Protocols

The following subsections, initially overview the widely deployed OSPF

hierarchical routing protocol, then discuss some integrated routing and distributed

domain formation protocols (the theoretical bounded TZ and several hierarchical ad

 254

hoc protocols). Finally, centralized domain formation (which can be combined with

hierarchal routing protocols like OSPF) is presented.

8.3.1.1 OSPF Areas

Open Shortest Path First (OSPF) is a link-state routing protocol for a single

Autonomous System (AS) [51]. Each router distributes its local state by flooding the

AS with Link State Advertisements. Flooding allows all routers to maintain identical

link-state databases describing the current AS topology. From its topology database,

each router generates its routing table by calculating a tree of shortest paths. After the

internal tree is created the external routing information is examined. This external

routing information may originate from another routing protocol such as BGP, or be

statically configured (static routes). External routing information is flooded unaltered

throughout the AS.

OSPF areas provide a two level tree, with only the special Area 0 being

responsible for distributing routing information between non-backbone areas.

Although all areas must be contiguous, the backbone connectivity can be established

and maintained through the configuration of virtual links (through a non-backbone

area).

There are three main types of OSPF routers: Internal, Area Border, and AS

boundary. Internal routers run a single copy of the basic routing algorithm. The Area

border routers run multiple copies of the basic OSPF link-state algorithm (and

separate link-state databases) for each area it is connected to. Area border routers

condense the topological information a) of their attached areas for distribution to

other areas, b) its cost to all networks external to the area to its internal routers. AS

 255

boundary routers advertises external routing information throughout the AS. The

paths to each AS boundary router are known by every router in the AS.

The topology of an area is typically invisible outside of the area. This isolation of

knowledge enables the protocol to greatly reduce routing traffic as compared to

treating the entire AS as a single link-state domain. Also, routing within the area

(intra-area routing) is determined only by the area's own topology, lending the area

protection from bad routing data. There are different kinds of non-backbone areas

depending on the amount of aggregation at border routers [56]. This becomes a key

choice in balancing routing overhead, table size, convergence time and routing sub-

optimality [57].

8.3.1.2 Thorup-Zwick (TZ) routing hierarchy

The Thorup-Zwick (TZ) routing scheme [58] provably has worst routing path of

no more than 3 times the optimal (flat) routing scheme (stretch-3) yet delivers a

nearly optimal routing table size. TZ begins (step 1) by interactively selecting

Landmarks [47] from the set of nodes. The selection itself is done in several rounds,

with available nodes selected using a uniform random probability. At the end of each

round, nodes join to their closest landmark. These Landmark selection rounds end

when all clusters are below a certain size and we have a network with a two-level

hierarchy. The essence of the TZ scheme is the right balance between the number of

landmarks and the cluster sizes. In Step 2 every node calculates its outgoing port for

the shortest path to every Landmark and every node in its cluster. Step 3 configures

the node labels to reduce the table size (like CIDR address configuration).

 256

Although this protocol is not practical in large dynamic networks, the importance

of this work is that it shows that through the introduction of hierarchy in large

networks and address/label configuration according to that hierarchy, it is possible to

tradeoff a small loss in route optimality to significantly improve the scalability of

networking protocols. Indeed, Krioukov, Fall and Yang [59] have shown that the

stretch is actually much less than 3 for scale-free networks such as the Internet (i.e.,

where any of the 10,000 backbone nodes is at most approximately 6 hops from every

other node). They show 70% of the routes are optimal and the average stretch is only

around 1.1 (10% more than the shortest path).

8.3.1.3 Hierarchical ad hoc routing Protocols

There is a large diversity in the ad hoc routing protocols [60] [61], but amongst

the most scalable are three that create a two level hierarchy. The Zone Routing

Protocol (ZRP) [19] proactively maintaining routes to destinations within a local

neighborhood (lowest level of the hierarchy). Reactive routing is used to determine

routes to destinations outside the zone using peripheral nodes. Landmark Ad Hoc

Routing (LANMAR [62] [63]) uses a combined link state and distance vector routing

protocol using the Landmark idea [47], but without requiring predefined hierarchical

addresses. The Optimized Link State Routing (OLSR) Protocol [64] uses multi-point

relays to reduce the number and size of link state update messages. Each node

determines a subset of its neighbors as multipoint relay nodes to propagate its link

state updates.

 257

8.3.1.4 Global hierarchy formation protocols

The global approach to creating a hierarchy is a computationally-intensive

centralized graph partitioning procedure using information from all network elements.

While the graph partitioning problems is known to be NP-Complete, many heuristic

solutions have been investigated including Kernighan-Lin [65] and Simulated

Annealing [35] heuristics. Application of graph partitioning to create an efficient

hierarchical structure began with the pioneering work by Steenstrup, Ramanathan,

and Krishnan at BBN [52] [40]. They focused on the use of Kernighan-Lin to create a

hierarchy for a single link state routing protocol. This work has been generalized to

include any network functions and allow the use of different routing protocols [39].

Real time optimization has been shown even for large networks using Simulated

Annealing [10] [54]. Finally, the complementary combination of global and local

optimization to create hierarchical routing domains is described in [55].

8.3.2 Minimizing the hierarchical routing path length suboptimality

It is known that the application of hierarchy introduces routing path length

suboptimality. The objective is to propose solutions, independent of the hierarchical

routing scheme applied, which will be able to minimize the suboptimality. The

schemes introduced utilize the existing SA-based framework. Due to the utilization of

the SA-based framework the difficulty of the design is mainly located on the

introduction of the appropriate cost functions that consider the hierarchical routing

path length (HRPL) suboptimality and attempt to minimize it. One of the novelties of

the proposed approach is that the minimization of the routing path length

suboptimality is attempted in conjunction with meeting also other hierarchy

 258

generation objectives, unrelated to the routing suboptimality. Such an approach,

attempts to exploit the multi-objective optimization capabilities of SA for the

generation of hierarchies able to satisfy multiple performance objectives,

simultaneously.

Depending on the problem assumptions three different schemes are adopted for

minimizing the HRPL suboptimality:

• Scheme 1: Given the hierarchy the domains’ clusterheads (CHs) must be selected

subject to the minimization of HRPL suboptimality.

• Scheme 2: Given the set of CHs the hierarchical structure must be generated so

that both the routing path length suboptimality is minimized and the hierarchy

generation objectives are satisfied.

• Scheme 3: This scheme combines schemes 1 and 2. The objective is the

combined selection of CHs and generation of hierarchy so that both the HRPL

suboptimality is minimized and other hierarchy generation objectives are

satisfied.

In the context of hierarchical routing, the CH as an entity is defined to be a

special node that represents its domain in the hierarchical routing functions. An

example of such an entity is provided in section 3.3.1.

8.3.2.1 Scheme 1: Selecting the CHs on a given hierarchical structure

The assumption of this scenario is that the hierarchy has already been generated

with respect to a set of pre-specified objectives that are not related to the routing path

length suboptimality. Such objectives, as they have been presented in [53], could be

the generation of balanced size or balanced diameter clusters, the minimization of

 259

border routers, the grouping of nodes with similar mobility characteristics, or

combinations of them. Given the hierarchical structure, a set S of special nodes (CHs)

has to be selected, so that the HRPL suboptimality is minimized with respect to the

applied hierarchical routing scheme R . The proposed cost function that represents the

latter objective is:

() (),
1

*

min

 subject to

SDF

i R iS i

SD

J S HRPL FRPL

C F R
=

= −

∧ ∧

∑ (8.3)

where,

SDF : Set of source and destination pairs
R : Hierarchical routing scheme applied
,i RHRPL : Hierarchical routing path length (hops) for the ith S-D pair when R is

applied
iFRPL : Flat routing path length (Dijkstra’s hops) for the ith S-D pair
*C : Optimal Clustering map with respect to a set of hierarchy generation

objectives
S : Set of CHs

The optimization of (8.3) from the SA-based framework will provide the optimal

set of CHs *S , which will minimize the HRPL suboptimality without affecting the

hierarchical structure and the generation objectives it satisfies.

8.3.2.2 Scheme 2: Generating the hierarchical structure given the set S of CHs

As opposed to the previous scenario, in this scenario it is assumed that that set

S of CHs is provided. The objective is to generate the hierarchical structure *C ,

which will satisfy a set of hierarchy generation objectives. These objectives can be

independent of the HRPL suboptimality. The hierarchy generation process has to be

aware of the HRPL suboptimality which will attempt to minimize given the set of

CHs S and a hierarchical routing scheme R . This scenario belongs to the multi-

 260

objective optimization class of problems, since the hierarchy generation objectives

and the minimization of HRPL suboptimality is preferred to be satisfied

simultaneously. Given that the cost function representing the non-HRPL hierarchy

generation objectives is ()HJ C then the cost function to be optimized for providing a

solution to the multi-objective problem is:

() () ()2
,

1

min 10

 subject to

SDF

H i R iC i

SD

J C J C HRPL FRPL

S F R
=

⎡ ⎤
= + ∗ −⎢ ⎥

⎣ ⎦
∧ ∧

∑ (8.4)

The optimization of (8.4) from the SA-based framework will provide that the

hierarchical structure capable of simultaneously satisfying the set of hierarchy

generation objectives and minimize HRPL suboptimality.

8.3.2.3 Scheme 3: Combined HRPL minimization and hierarchy generation

This scenario combines the two schemes described in sections 3.2.1 and 3.2.2.

This scenario, as the scenario described in 3.2.2, can also be considered as a multi-

objective optimization problem. The difference with the scenario described in 3.2.2 is

that the set S is not provided beforehand but needs to be optimally specified

dynamically. The cost function that represents this scenario is:

() () ()2

,, 1
, min 10

 subject to

SDF

H i R iC S i

SD

J C S J C HRPL FRPL

F R
=

⎡ ⎤
= + ∗ −⎢ ⎥

⎣ ⎦
∧

∑ (8.5)

This scenario is the most complicated of the three since S and *C have to be

constructed simultaneously.

 261

8.3.3 Performance Evaluation of the HRPL minimization schemes

Even though the schemes introduced are independent of the implied routing

scheme R and the set of hierarchy generation objectives, in order to be evaluated a

“generic” hierarchical routing protocol and a set of hierarchy generation objectives

have to be assumed. Prior to the simulation analysis and evaluation of the proposed

schemes, the assumptions of the experiments performed are presented. Initially, the

HRPL suboptimality with respect to R is being quantified. Then the evaluation of the

proposed schemes is done with respect to their ability on improving the HRPL

suboptimality.

8.3.3.1 Generic hierarchical routing protocol

There are many different ways to route packets hierarchically. For the evaluation

of the proposed schemes a simple generic hierarchical routing protocol is assumed.

The behavior of the protocol differs depending on whether the source (S) and

destination (D) belong (or not) in the same domain. In the case where the S-D pair

belongs in the same domain, the protocol functions as an optimal flat routing protocol

and the S-D distance (hops) is defined with respect to the S-D Dijkstra distance.

When source S and destination D belong in different domains, the hierarchical routing

functionality is represented from figure 8.4.

 262

S
CH1

CH2

CH3

BR11

BR21
BR22

BR31

D

S : Source
D : Destination
CH: Cluster Head
BR: Border Router

S
CH1

CH2

CH3

BR11

BR21
BR22

BR31

D

S : Source
D : Destination
CH: Cluster Head
BR: Border Router

Figure 8.4. Simple Hierarchical Routing Scheme

The important entities in this hierarchical routing scheme are the CHs and the

border routers (BRs). The CHs abstract the domain in the inter-domain routing

updates, and the BRs are nodes that have links to domains other than their own. The

hierarchical routing is performed by having the source S send to its Cluster Head

(CH), which in turn sends to a neighboring CH towards the domain of the destination

D, through the corresponding Border Routers (BRs).

The hierarchical route path length (),i j
k kHRPL S D for the kth source destination S-D

pair, where the source i
kS belongs in domain i and the destination j

kD belongs in

domain j ()j i≠ is defined as:

() () () (), , , ,i j i i i j j j
k k k kHRPL S D d S CH d CH CH d CH D= + + (8.6)

where,

(),i i
kd S CH : shortest intracluster distance from source i

kS node to its iCH

(),i jd CH CH : shortest intercluster distance from the iCH of the source node to the
jCH of the destination node, through neighboring CHs and BRs

(),j j
kd CH D : shortest intracluster distance from destination’s jCH to the destination

j
kD .

 263

The intra-domain CH-BRs distances are defined by Dijkstra’s algorithm. Inter-

domain distances among CHs are defined by abstracting the network using only the

CHs and BRs and then applying Dijkstra’s algorithm.

8.3.3.2 Hierarchy Generation Objectives

For the performance evaluation purposes a hierarchy generation objective has

been selected from [53], which aims on the generation of balanced size clusters. The

representative cost function is:

() ()2 2
1min ,...,H KC

J C Var C C= (8.7)

where,

iC : Cardinality (size) of ith cluster

K : Number of generated clusters

8.3.3.3 Quantifying HRPL suboptimality

Prior to the evaluation of the proposed schemes some representative results

related to the HRPL suboptimality will be provided, when the hierarchy generation

process does not take it into account. For this purpose, the generic hierarchical

routing protocol described above was applied on a hierarchical structure generated

with respect to the balanced size clusters objective. In each generated domain the

node with the lowest ID (LID) is selected as the CH. The following results (average

over 100 experiments) quantify the size of the suboptimality for different optimal

path lengths (Flat Routing Path Length - FRPL) in a network of 100 nodes where 4

domains were generated (figure 8.5).

 264

Figure 8.5. Simulated Network Topology

0

2

4

6

8

10

12

14

16

18

H
ie

ra
rc

hi
ca

l P
at

h
Le

ng
th

(h

op
s)

1 2 3 4 5 6 7 8 9 10 11 12

Optimal Path Length (hops)

Hierarchical Routing Path Length Suboptimality

FRPL HRLP

Figure 8.6. Quantification of suboptimality

Figure 8.6 is representative of the effect of hierarchy on routing when it is not

taken into account when this hierarchy is being generated. There are cases where the

resulting hierarchical path is more than double of the optimal path length. This can

significantly degrade the QoS performance of the network, since the packets will

have to traverse more links causing more collisions on the MAC layer. Due to this

 265

side effect, when HRPL K FRPL= ∗ , , 1K K∈ >] , worse degradation may be

introduced to the observed end-to-end delay endT (HRPL FRPL
end endT K T>> ∗) .

8.3.3.4 Evaluation of the schemes

The schemes proposed earlier have the ability to improve the HRPL

suboptimality and at the same time to construct hierarchical structures that improve

various other aspects of the network performance. For performance evaluation

purposes an indicative non-HRPL hierarchy generation objective (generation of

balanced size clusters) is enforced along with the minimization of hierarchical path

length suboptimality. The simulation results demonstrated on figure 8.7 reveal the

degree of effectiveness of each of the proposed schemes. These results correspond to

a network of 100 nodes where 4 domains have been generated. The upper graph of

figure 8.7 corresponds to the coexistence of 100 S-D pairs into the network and the

lower graph corresponds to the coexistence of 25 S-D pairs, respectively.

0

2

4

6

8

10

12

14

16

18

H
ie

ra
rc

hi
ca

l P
at

h
Le

ng
th

(h

op
s)

1 2 3 4 5 6 7 8 9 10 11 12

Optimal Path Length (hops)

Comparison of the Schemes for 100 S-D pairs

NoOptimization Scheme 1 Scheme 2 Scheme 3

 266

0
2
4
6
8

10
12
14
16
18
20

H
ie

ra
rc

hi
ca

l P
at

h
Le

ng
th

(h

op
s)

1 2 3 4 5 6 7 8 9 10 11 12

Optimal Path Length (hops)

Comparison of Schemes for 25 S-D pairs

NoOptimization Scheme1 Scheme2 Scheme3

Figure 8.7. Comparison of the proposed schemes

The main observation in terms of the schemes is that all of them improve the

suboptimality. Scheme 1 (selection of CHs given the hierarchical structure)

consistently outperforms the others by producing structures that provide paths that are

at most 3 hops from the optimal, independently of the optimal path length. This can

be explained due to the simpler form of its corresponding cost function (8.3)

compared to the more complex (8.4) and (8.5). The SA algorithm that constitutes the

cornerstone of the developed SA-based framework has been modified and adjusted

for speed trading off its optimality. So, for complex cost functions with large solution

spaces, the solutions obtained are more likely to be less optimal compared to the

solutions obtained for simpler with smaller solutions spaces cost functions. Even

though Scheme 3 attempts to solve a very complicated problem (simultaneously

select the CHs and generate the hierarchy); manages to improve the HRPL

 267

suboptimality and satify the non-HRPL objectives. Furthermore, it does this best

when fewer S-D pairs coexist into the network, because of the smaller solution space

of the optimization problem. Generally all 3 schemes perform better when less S-D

pairs coexist (i.e. smaller solution spaces of the corresponding optimization

problems). The performance (e.g. minimization of the HRPL stretch) difference

among the three schemes proposed; becomes smaller because the optimization

problem complexity is reduced, so the faster SA-based framework can converge to

better solutions.

 268

Bibliography

[1] H. W. Simpson, “The Point to Point Protocol (PPP),” Internet STD 51, July

1994.

[2] W. Townsley, et al, “Layer Two Tunneling Protocol ‘L2TP’,” RFC 2661, August

1999.

[3] L. Mamakos, et al., “Method for Transmitting PPP Over Ethernet (PPPoE),”

RFC 2561, February 1999.

[4] R. Droms, “Dynamic Host Configuration Protocol,” RFC 2131, March 1997.

[5] E. Guttman, “Autoconfiguration for IP Networking: Enabling Local

Communication,” IEEE Internet Computing, Vol. 5, Issue 3, pp. 81 – 86, May

2001.

[6] H. Zhou, L. Ni, and M. Mutka, "Prophet Address Allocation for Large Scale

MANETs," in Proceedings of INFOCOM 2003, San Francisco, CA, April 2003.

[7] Charles E. Perkins, Jari T. Malinen, Ryuji Wakikawa, Elizabeth M. Belding-

Royer, Yuan Sun, “IP Address Autoconfiguration for Ad Hoc Networks,” draft-

ietf-manetautoconf-01.txt, November 2001.

[8] S. Thomson and T. Narten, “IPv6 stateless address autoconfiguration,” RFC

2462, Internet Engineering Task Force, December 1998.

[9] N. Vaidya, "Weak duplicate address detection in mobile ad hoc networks," in

Proc. ACM MobiHoc'02, 2002.

 269

[10] S. Nesargi, R. Prakash, "MANETconf: configuration of hosts in a mobile ad hoc

network," Joint Conference of the IEEE Computer and Communications

Societies, INFOCOM `02, pp. 1059-1068, June 2002.

[11] K. Weniger, “PACMAN: Passive Autoconfiguration for Mobile Ad hoc

Networks,” IEEE Journal on Selected Areas in Communications (JSAC), Special

Issue 'Wireless Ad hoc Networks', March 2005.

[12] M. Mohsin, R. Prakash, “IP Address Assignment in A Mobile Ad Hoc Network,”

MILCOM 2002, pp. 856–861, Anaheim, CA, October 2002.

[13] A. McAuley, A. Misra, L. Wong, K. Manousakis, ”Experience with

Autoconfiguring a Network with IP Addresses,” Proceedings of IEEE MILCOM,

October 2001, Fairfax, USA.

[14] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles, “Dynamic Storage

Allocation: A Survey and Critical Review,” In H.G. Baker, editor, Proceedings of

the International Workshop on Memory Management (IWMM'95), Kinross,

Scotland, UK, volume 986 of Lecture Notes in Computer Science, pp. 1-116,

Springer-Verlag, Berlin, Germany, 1995.

[15] A. J. McAuley and K. Manousakis, “Self-Configuring Networks,” IEEE

MILCOM 2000 Conference Proceedings, Los Angeles, CA, October 2000.

[16] A. McAuley, Subir Das, S. Madhani, S. Baba and Y. Shobatake, “Dynamic

Registration and Configuration Protocol,” IETF Draft, draft-itsumo-drcp-01.txt.,

2001

 270

[17] R. Lin and M. Gerla, “Adaptive Clustering for Mobile Wireless Networks,” IEEE

Journal on Selected Areas in Communications, pages 1265-1275, September

1997

[18] M. Gerla and J. T. Tsai, “Multiuser, Mobile, Multimedia Radio Network,”

Wireless Networks, vol. 1, Oct. 1995, pp. 255–65.

[19] D. Baker, A. Ephremides, and J. Flynn “The design and simulation of a mobile

radio network with distributed control,” IEEE Journal on Selected Areas in

Communications, SAC-2(1):226--237, 1984

[20] A. Ephremides, J. E. Wieselthier, and D. J. Baker, “A Design Concept for

Reliable Mobile Radio Networks with Frequency Hopping Signaling,” in Proc.

IEEE, vol. 75, 1987, pp. 56–73.

[21] M. Chatterjee, S. K. Das, D. Turgut, “WCA: A Weighted Clustering Algorithm

for Mobile Ad hoc Networks, “ Journal of Cluster Computing (Special Issue on

Mobile Ad hoc Networks), Vol. 5, No. 2, April 2002, pp. 193-204

[22] S. Basagni, “Distributed and Mobility-Adaptive Clustering for Multimedia

Support in Multi-Hop Wireless Networks,” Proceedings of Vehicular

Technology Conference, VTC 1999-Fall, Vol. 2, pp. 889-893

[23] J. Wu and H. L. Li, “On Calculating Connected Dominating Set for Efficient

Routing in Ad Hoc Wireless Networks,” Proc. 3rd Int’l. Wksp. Discrete

Algorithms and Methods for Mobile Comp. and Commun., 1999, pp. 7–14.

[24] Y.-Z. P. Chen and A. L. Liestman, “Approximating Minimum Size Weakly-

Connected Dominating Sets for Clustering Mobile Ad Hoc Networks,” in Proc.

3rd ACM Int’l. Symp. Mobile Ad Hoc Net. & Comp., June 2002, pp. 165–72.

 271

[25] C.-C. Chiang et al., “Routing in Clustered Multihop, Mobile Wireless Networks

with Fading Channel,” in Proc. IEEE SICON’97, 1997.

[26] J. Y. Yu and P. H. J. Chong, “3hBAC (3-hop between Adjacent Clusterheads): a

Novel Non-overlapping Clustering Algorithm for Mobile Ad Hoc Networks,” in

Proc. IEEE Pacrim’03, vol. 1, Aug. 2003, pp. 318–21.

[27] T. J. Kwon et al., “Efficient Flooding with Passive Clustering — an Overhead-

Free Selective Forward Mechanism for Ad Hoc/Sensor Networks,” in Proc.

IEEE, vol. 91, no. 8, Aug. 2003, pp. 1210–20.

[28] P. Basu, N. Khan, and T. D. C. Little, “A Mobility Based Metric for Clustering in

Mobile Ad Hoc Networks,” in Proc. IEEE ICDCSW’01, Apr. 2001, pp. 413–18.

[29] A. B. McDonald and T. F. Znati, “Design and Performance of a Distributed

Dynamic Clustering Algorithm for Ad-Hoc Networks,” in Proc. 34th Annual

Simulation Symp., Apr. 2001, pp. 27–35.

[30] A. D. Amis and R. Prakash, “Load-Balancing Clusters in Wireless Ad Hoc

Networks,” in Proc. 3rd IEEE ASSET’00, Mar. 2000, pp. 25–32.

[31] J. Wu et al., “On Calculating Power-Aware Connected Dominating Sets for

Efficient Routing in Ad Hoc Wireless Networks,” J. Commun. and Networks,

vol. 4, no. 1, Mar. 2002, pp. 59–70.

[32] J.-H. Ryu, S. Song, and D.-H. Cho, “New Clustering Schemes for Energy

Conservation in Two-Tiered Mobile Ad-Hoc Networks,” in Proc. IEEE ICC’01,

vo1. 3, June 2001, pp. 862–66.

[33] T. Ohta, S. Inoue, and Y. Kakuda, “An Adaptive Multihop Clustering Scheme for

Highly Mobile Ad Hoc Networks,” in Proc. 6th ISADS’03, Apr. 2003.

 272

[34] C.H. Papadimitriou, K. Steiglitz, “Combinatorial Optimization: Algorithms and

Complexity,” Prentice Hall, New York, 1982.

[35] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization by Simulated

Annealing,” Science 220 (13 May 1983), 671-680.

[36] V. Cerny, “Thermodynamical Approach to the traveling salesman problem: An

efficient simulation algorithm,” Journal of Optimization Theory and

Applications 45, 1985, pp. 41-51.

[37] B.W. Kernighan, S. Lin, “An efficient heuristic procedure for partitioning

graphs,” Bell System Technical Journal 49, 1970, pp. 291-307.

[38] R. Morera, A. McAuley, “Flexible Domain Configuration for More Scalable,

Efficient and Robust Networks,” MILCOM, October 2002.

[39]. K. Manousakis, J. McAuley, R. Morera, J. Baras, “Routing Domain

Autoconfiguration for More Efficient and Rapidly Deployable Mobile

Networks,” Army Science Conference 2002, Orlando, FL

 [40]. Rajesh Krishnan, Ram Ramanathan and Martha Steenstrup, “Optimization

Algorithms for Large Self-Structuring Networks,” Proceeding of IEEE

INFOCOM '99, New York, USA, March 1999.

[41] T.A. ElBatt, S.V. Krishnamurthy, D. Connors, S. Dao, “Power Management for

Throughput Enhancement in Wireless Ad-Hoc networks,” IEEE ICC'00, New

Orleans, LA, June 2000

[42] Narayanaswamy S., Kawadia V., Sreenivas R.S, Kumar P.R, “Power control in

ad-hoc networks: Theory, architecture, algorithm and implementation of the

COMPOW protocol,” EWC 2002

 273

[43] R. Ramanathan, R. Rosales-Hain, “Topology Control of Multihop Wireless

Networks using Transmit Power Adjustment,” Procedings of INFOCOM 2000

[44] R. Wattenhofer, L. Li, P. Bahl, and Y.-M. Wang, “Distributed topology control

for power efficient operation in multihop wireless ad hoc networks,” in

Proceedings of INFOCOM, 2001, pp. 1388—1397

[45] Kawadia V., Kumar P.R., “Power Control and Clustering in Ad Hoc Networks,”

IEEE INFOCOM, April 2003.

[46] L. Kleinrock, F. Kamoun, “Hierarchical Routing for Large Networks:

Performance Evaluation and Optimization,” Computer Networks, Vol. 1, pp.

155-174, January 1977.

[47] P. F. Tsuchiya, “The landmark hierarchy: A new hierarchy for routing in very

large networks,” Computer Communications Review, vol. 18, no. 4, pp. 43–54,

August 1988.

[48] Guangyu Pei et al., “Fisheye State Routing: A Routing Scheme for Ad Hoc

Wireless Networks,” ICC 2000, June 2000.

[49] Cesar A., Santiváñez et al., “Making Link-State Routing Scale for Ad Hoc

Networks,” MOBIHOC 2001.

[50] Y. Rekhter, T. Li, “A Border Gateway Protocol 4 (BGP-4),” RFC 1771, March

1995.

[51] J. T. Moy, “OSPF: Anatomy of an Internet Routing Protocol,” Reading, MA:

Addison-Wesley, 1998.

 274

[52] R. Ramanathan, M. Steenstrup, “Hierarchically Organized, Multihop Mobile

Networks for QoS Support,” ACM/Baltzer Mobile Networks and Applications,

Vol.3, No.1, pp.101-19, January 1998.

[53] K. Manousakis, A. McAuley, R. Morera, “Applying Simulated Annealing for

Domain Generation in Ad Hoc Networks,” IEEE International Conference on

Communications (ICC), Paris, June 20004.

[54] K. Manousakis, J. Baras, A. McAuley, R. Morera, “Improving the Speed of

Dynamic Cluster Formation in MANET via Simulated Annealing,” 4th Army

Science Conference (ASC), Orlando, Florida, November, 2004.

[55] K. Manousakis, A. McAuley, R. Morera, J. Baras, “Rate of Degradation of

Optimization Solutions and its Application to High Performance Domain

Formation in Ad Hoc Networks,” IEEE/AFCEA MILCOM 2004. Monterey.

CA, October 2004.

[56] A. Zinin, A. Lindem, D. Yeung, “Alternative Implementations of OSPF Area

Border Routers,” Request for Comments: 3509, April 2003

[57] R. Rastogi, Y. Breitbart, M. Garofalakis, and A. Kumar “Optimal Configuration

for OSPF Aggregates”, IEEE/ACM Transactions on Networking, Vol. 11, No.

2, April 2003.

[58] M. Thorup and U. Zwick, “Compact routing schemes,” In Proceedings of the

13th Annual ACM Symposium on Parallel Algorithms and Architectures

(SPAA), pages 1-10, 2001.

[59] D. Krioukov, K. Fall, and X. Yang, “Compact Routing on Internet-like Graphs,”

Proceedings of IEEE INFOCOM 2004, March 2004.

 275

[60] Elizabeth M. Royer et al., “A Review of Current Routing Protocols for Ad Hoc

Mobile Wireless Networks,” IEEE Personal Communications, April 1999.

[61] Z. Haas, M. Perlman, “ZRP: A Hybrid Framework for Routing in Ad Hoc

Networks,” In Ad Hoc Networks, Ed. Charles E. Perkins, Addison-Wesley,

2001.

[62] Kaixin Xu et al., “Landmark Routing in Ad Hoc Networks with Mobile

Backbones,” Journal of Parallel and Distributed Computing, Special Issue on

Ad Hoc Networks, 2002.

[63] Mario Gerla et al., “Landmark Routing for Large Ad Hoc Wireless Networks,”

GLOBECOM 2000, November 2000.

[64] Thomas Clausen, Philippe Jacquet, “Optimized Link State Routing Protocol,”

Internet Draft, IETF MANET Working Group, draft-ietf-manet-olsr-11.txt, July

2003.

[65] S. Lin & B. W. Kernighan, “An Effective Heuristic Algorithm for the Traveling-

Salesman Problem”, Oper. Res. 21, 498-516 (1973).

[66] X. Hong, M. Gerla, G. Pei, and C. Chiang, “A group mobility model for ad hoc

wireless networks,” in Proceedingsof the ACM International Workshop on

Modeling and Simulation of Wireless and Mobile Systems (MSWiM), August

1999.

	
	Table of Contents
	
	List of Tables
	List of Figures
	Chapter 1: Introduction
	1.1 Introduction
	Chapter 2: Autoconfiguration of MANETs
	2.1 Introduction
	2.2 Related Work
	2.3 Problem Description
	2.4 Dynamic and Rapid Configuration Protocol (DRCP)
	2.4.1 DRCP Client-Server Messages
	2.4.2 Basic Call Flow
	2.4.3 Basic DRCP Client Operation
	2.4.4 Basic DRCP Server Operation
	2.4.5 DRCP Message Format
	2.4.6 Client Mobility

	2.5 Dynamic Configuration Distribution Protocol (DCDP)
	2.5.1 Basic DCDP-to-DRCP Communication
	2.5.2 DCDP-to-DCDP Communication
	2.5.3 DCDP-to-Network Manager Communication
	2.5.4 State Flow Diagrams and Messages Format
	2.5.5 Pool of Available Addresses Management

	2.6 Overview of the Complete IP Autoconfiguration Suite
	2.7 Implementation Based Performance Analysis

	Chapter 3: Dynamic Domain Generation: A Centralized Approach
	3.1 Introduction
	3.2 Background
	3.3 Algorithmic Framework for Hierarchy Generation
	3.3.1 Combinatorial Optimization
	3.3.1.1 General Classes of Algorithms

	3.3.2 Simulated Annealing (SA) algorithm

	3.4 Topological Constrains

	Chapter 4: Dynamic Domain Generation: Metrics and Cost Functions
	4.1 Introduction
	4.2 Metrics
	4.2.1 Cluster-Information Metrics
	4.2.2 Node-Mobility Metrics

	4.3 Cost Functions
	4.3.1 Cluster characteristics based cost functions
	4.3.2 Node mobility characteristics based cost functions

	4.4 Performance Evaluation
	4.4.1 Configuration of modified SA
	4.4.2 Cluster characteristics based cost functions
	4.4.2.1 Single Objective Cost Functions
	4.4.2.2 Multiple Objectives Cost Functions

	4.4.3 Node mobility characteristics based cost functions
	4.4.3.1 Experimental Set Up

	4.5 Importance of Cost Function Selection
	4.6 Conclusions

	
	
	
	
	
	Chapter 5: Customizing Simulated Annealing (SA) for Dynamic Environments
	5.1 Introduction
	5.2 Simulated Annealing: Tunable Parameters
	5.3 Customizing Simulated Annealing (SA) for Dynamic Environments
	5.3.1 Termination Condition (Stop Criterion)
	5.3.2 Cooling Schedule and Cooling Factor
	5.3.3 State Transition Probabilities
	5.3.4 Generation Mechanism: Feasibility Test
	5.3.5 Initial Solution
	5.3.6 Energy Updates

	5.4 Convergence Times of the Adjusted SA Algorithm

	Chapter 6: Metrics Based Distributed Domain Generation Algorithm
	6.1 Introduction
	6.2 Overview of the mobility based DGA
	6.2.1 Mobility Based Distributed Generation Algorithm (DGA)

	6.3 Mobility Based DGA: Example
	6.4 Performance Evaluation
	6.4.1 Robustness of the mobility based DGA

	Chapter 7: Domain Maintenance Approaches
	7.1 Introduction
	7.2 Hierarchy Maintenance Schemes
	7.3 Taxonomy of Local Maintenance Schemes
	7.4 Local Maintenance Representative Schemes
	7.5 Sample Application and Indicative Performance of the Representative Local Maintenance Schemes
	7.5.1 Representative Hierarchy Generation Objective
	7.5.2 Application of the Local Maintenance Schemes
	7.5.3 Cost Performance Comparison of the 4 Local Maintenance Approaches

	7.6 Impact of Maintenance Schemes on Domain Quality
	7.6.1 Impact of Schemes on “Balanced Size” Domains
	7.6.2 Impact of Schemes to “Robust to Mobility” Domains

	7.7 Conclusions

	Chapter 8: Network Applications of Hierarchy Generation Mechanisms
	8.1 Introduction
	8.2 Hierarchy Generation for Power Control and Connectivity Assurance
	8.2.1 Related Work on Transmission Range Control
	8.2.2 Clustering and Transmission Range Control Algorithms
	8.2.3 Performance Evaluation

	8.3 Using Multi-objective Domain Optimization for Routing in Hierarchical Networks
	8.3.1 Hierarchical Routing Protocols
	8.3.1.1 OSPF Areas
	8.3.1.2 Thorup-Zwick (TZ) routing hierarchy
	8.3.1.3 Hierarchical ad hoc routing Protocols
	8.3.1.4 Global hierarchy formation protocols

	8.3.2 Minimizing the hierarchical routing path length suboptimality
	8.3.2.1 Scheme 1: Selecting the CHs on a given hierarchical structure
	8.3.2.2 Scheme 2: Generating the hierarchical structure given the set S of CHs
	8.3.2.3 Scheme 3: Combined HRPL minimization and hierarchy generation

	8.3.3 Performance Evaluation of the HRPL minimization schemes
	8.3.3.1 Generic hierarchical routing protocol
	8.3.3.2 Hierarchy Generation Objectives
	8.3.3.3 Quantifying HRPL suboptimality
	8.3.3.4 Evaluation of the schemes

	
	Bibliography

