ABSTRACT

Title of dissertation: SPATTAL MODELING USING
TRIANGULAR, TETRAHEDRAL, AND
PENTATOPIC DECOMPOSITIONS

Michael Thomas Lee, Doctor of Philosophy,
2006

Dissertation directed by: Professor Hanan Samet
Department of Computer Science

Techniques are described for facilitating operations for spatial modeling using
triangular, tetrahedral, and pentatopic decompositions of the underlying domain.
In the case of terrain data, techniques are presented for navigating between adjacent
triangles of a hierarchical triangle mesh where the triangles are obtained by a recur-
sive quadtree-like subdivision of the underlying space into four equilateral triangles.
We describe a labeling technique for the triangles which is useful in implementing
the quadtree triangle mesh as a linear quadtree (i.e., a pointer-less quadtree). The
navigation can then take place in this linear quadtree. This results in algorithms
that have a worst-case constant time complexity, as they make use of a fixed number
of bit manipulation operations.

In the case of volumetric data, we consider a multi-resolution representation
based on a decomposition of a field domain into nested tetrahedral cells generated
by recursive tetrahedron bisection, that we call a Hierarchy of Tetrahedra (HT).

We describe our implementation of an HT, and discuss how to extract conforming

meshes from an HT so as to avoid discontinuities in the approximation of the asso-
ciated scalar field. This is accomplished by using worst-case constant time neighbor
finding algorithms. We also present experimental results in connection with a set of
basic queries for performing analysis of volume data sets at different levels of detail.

In the case of four-dimensional data which can include time as the fourth
dimension, we present a multi-resolution representation of a four-dimensional scalar
field based on a recursive decomposition of a hypercubic domain into a hierarchy
of nested four-dimensional simplexes, that we call a Hierarchy of Pentatopes (HP).
This structure allows us to generate conforming meshes that avoid discontinuities
in the corresponding approximation of the associated scalar field. Neighbor finding
is an important part of this process and using our structure, it is possible to find
neighbors in worst-case constant time by using bit manipulation operations, thereby

avoiding traversing the hierarchy.

SPATTIAL MODELING USING TRIANGULAR, TETRAHEDRAL,
AND PENTATOPIC DECOMPOSITIONS

by

Michael Thomas Lee

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
2006

Advisory Committee:

Professor Hanan Samet, Chair/Advisor
Professor Larry Davis

Professor Leila De Floriani

Professor Shunlin Liang

Professor Amitabh Varshney

(© Copyright by
Michael Thomas Lee
2006

TABLE OF CONTENTS

List of Figures

1 Introduction

1.1 Motivation
1.2 Related Work
1.3 Outline of Thesis

Two-Dimensional Triangle Quadtrees
2.1 Tree Node Labeling 0.
2.2 Neighbor Finding o oL
2.2.1 Step One : Locating the Nearest Common Ancestor
2.2.2 Step Two : Updating the Path to Contain the Neighbor .
2.2.3 Step Three : Updating the Rest of the Path to the Neighbor .
2.2.4 Putting it all Together to Find a Neighbor
2.3 Extensions to the Entire Sphere
2.4 Constant-Time Neighbor Finding Algorithm
2.4.1 Square Quadtreeso
2.4.2 Rightward Transitions
2.4.3 Leftward Transitions
2.4.4 Vertical Transitions L.
2.4.5 Transitions Across Different Faces of the Icosahedron
2.5 Neighbor Finding Using Octahedra and Tetrahedra
2.5.1 Octahedron o000
2.5.2 Tetrahedrono oo
2.6 Finding Neighbors of Greater or Equal Size
2.7 Comparison with Method based on Icosahedron

Three-Dimensional Hierarchies of Tetrahedra

3.1 A Hierarchy of Tetrahedra
3.1.1 Tetrahedral Decomposition.
3.1.2 Labeling Tetrahedrainan HT
3.1.3 Encodingan HT

3.2 Neighbor Finding o o
3.2.1 Locating the Nearest Common Ancestor
3.2.2 Updating the Location Code
3.2.3 Extensions to the Entire Cube

3.3 Constant-Time Neighbor Finding Algorithm
3.3.1 Neighbor Type 1
3.3.2 Neighbor Type 2
3.3.3 Neighbor Type 3
3.3.4 Neighbor Typed
3.3.5 Updating the Neighbor Mask
3.3.6 Transitions Across the Six Top Level Tetrahedra

i

3.4 Edge Neighbors Lo
3.5 Extracting a Conforming Tetrahedral Mesh
3.5.1 Axis-aligned Clusters
3.5.2 Plane-aligned Clusters
3.5.3 Non-aligned Clusters
3.6 Algorithms for Selective Refinement
3.6.1 A Depth First Approach
3.6.2 A Priority Based Approach
3.6.3 An Incremental Approach
3.7 Experimental Results

4 Four-Dimensional Hierarchies of Pentatopes
4.1 Pentatopic Decomposition
4.2 Labeling Pentatopesinan HP
4.3 Neighbor Finding Lo
4.3.1 Locating the Nearest Common Ancestor
4.3.2 Updating the Location Code
4.3.3 Extensions to the Entire Hypercube
4.4 Constant-Time Neighbor Finding Algorithm
4.4.1 Neighbor Type 1 oo
4.4.2 Neighbor Type 2
4.4.3 Neighbor Types 3,4, and 5
4.4.4 Updating the Neighbor Mask
4.4.5 'Transitions Across the 24 Top Level Pentatopes
4.5 Clusters of Pentatopesinan HP
4.6 A Depth First Algorithm for Selective Refinement
4.7 Experimental Resultso

5 Conclusions

Bibliography

iii

10

11

12

13

14

LIST OF FIGURES

Two possible orientations for a triangle: (a) tip-up, and (b) tip-down. 15
Labeling of a tree which is three levels deep. 17

STOPTAB(Neighbor_Direction,Child Type) relation indicating when
to cease the search for the nearest common ancestor in step 1 of the
neighbor finding algorithm. 000 21

NEXTTAB(Neighbor_Direction,Child Type) indicating the child type
of the neighboring child of the nearest common ancestor. 22

Example showing the top-level triangle faces of an icosahedron cor-
responding to the surface of the Earth. 27

Execution trace of procedure EXT_STEP_ONE for the left neighbor
of 000010010001010001. oo 28

NEXTTOP(Neighbor_Direction,Child_Type) indicating neighbors for
the triangles corresponding to the faces of the icosahedron. 29

REFLTOP(Neighbor_Direction,Child Type) indicating the child type
when finding neighbors across the top five and bottom five triangle
faces of the icosahedron taking reflection into account. 30

Examples of rightward transitions that generate a carry (denoted by a
rightward pointing arrow) as the neighboring triangles are not siblings. 38

The result of applying idmask ABIDXY to an example input value
so that all occurrences of the two-bit pattern with value ‘AB’ are
replaced by the two-bit pattern with value ‘XY’. 40

Example showing the steps in the generation of idmask 00ID11 for
some input values.o Lo 41

The effect of procedure CONSTANT _RIGHT on different bit pattern
pair values depending on whether or not there is an incoming carry
from theright. o oo 45

Examples showing how to find neighbors of equal size: (a) right neigh-
bor of 00011100, (b) left neighbor of 01110001, (c) vertical neighbor
of 0100111, o o 46

Examples of leftward transitions that generate a borrow (denoted by
a leftward pointing arrow) as the neighboring triangles are not siblings. 47

v

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Example showing the top-level triangle faces of an octahedron. 59

NEXTOCT (Neighbor_Direction,Child Type) indicating neighbors of
the triangles corresponding to the faces of the octahedron. 60

Example showing the top-level triangle faces of a tetrahedron. 62

NEXTTET (Neighbor_Direction,Child_Type) indicating neighbors for

the triangles corresponding to the faces of the tetrahedron. 62
Example showing the triangle adjacencies of the tetrahedron. 63
Fekete’s labeling scheme.o 00000000 L 66
Tree using Fekete's scheme.o 67
(a) Open direction A; (b) open direction B; (c¢) open direction C; (d)

all three directions are open. 70
List of rules used in Fekete’s algorithm. 72
Rules used to keep track of global status. 74
Layout for V=3, L=2, and R=1.. 74
Steps taken while finding neighbors of 123 using Fekete’s method. . . 77
Steps taken while finding neighbors of 143 using Fekete’s method. . . 79

Example of one substitution table to correlate between the different
orientations used to label two adjacent base triangles of the icosahedron. 83

Subdivision of the initial cubic domain into six tetrahedra. 85
Labeling of a 1/2 pyramid. L. 86
Labelingof a 1/4 pyramid. 87
Labeling of a 1/8 pyramid. 87
Nearest common ancestor of 210011. 90
Neighbor type 3 of 210011. 91
Neighbor type 4 of 210011. 94
Neighbor type 2 of 1010101011010. 97

37

38

39

40

41

42

43

44

45

46

47

48

49

20

Neighbor type 3 of 1010101011010. 101

Table indicating how to proceed at each level when searching for the

neighboring tetrahedron. 103
Neighbor sequences for all edges of the tetrahedra. 105
Axis-aligned cluster. oL oL 107
Steps required to find an axis-aligned cluster.. 108
Plane-aligned cluster. o o0 108
Steps required to find a plane-aligned cluster. 109
Nom-aligned cluster. oo 109
Steps required to find a non-aligned cluster. 110

The second column shows the number of tetrahedron splits per sec-
ond, the third column shows the number of cluster computations per

Uniform LOD extraction (a): error threshold equal to 5.0% of the
field range of the whole domain. The isosurface for a field value equal
to 100.0 is shown. Variable LOD extraction based on a field value
(b): error threshold equal to 0.1% of the field range enforced near
isosurface of value 1.27 (blue). The isosurfaces for field values equal
to 1.27 and 1.45 are shown. oL 120

Number of tetrahedra in the meshes at uniform LOD and percentage
with respect to the number of tetrahedra in the mesh at full resolution
extracted from the HT representation of the Plasma and Buckyball
data sets, respectively.o 121

Number of tetrahedra in the meshes at wvariable LOD based on a
region of interest and percentage with respect to the number of tetra-
hedra in the mesh at full resolution extracted from the HT repre-
sentation of the Buckyball data set. The error within the region is
specified in the left column. 121

Number of tetrahedra in the meshes at variable LOD and percentage
with respect to the number of tetrahedra in the mesh at full resolution
extracted from the HT representation of the Plasma data set. The
error within the proximity of the isosurface is specified in the left
column. 122

vi

o1

52

23

o4

95

26

o7

o8

29

60

61

Example of (a) an h-pentatope, (b) a c-pentatope, (c) an s-pentatope
and (d) an e-pentatope. The figures show the unfolding in 3D space
of each pentatope by representing its five tetrahedral faces. 126

Table with splitting rules. The second column denotes the shape of
the pentatope o which is split, the third column (G) indicates whether
the parent of ¢ is child 0 or child 1 of the grandparent of o, the fourth
column (P) indicates whether o is child 0 or child 1 of its parent, the
fifth column shows the split edge of o, the sixth column shows the
pentatopes resulting from the split, and their vertices. 129

The table indicates how to proceed at each level when searching for

the neighboring pentatope. oL 134
Example of neighbor type 2. 138
Example of neighbor type 3.o 141
Swaps performed as a result of various bit changes. 144

Uniform LOD extraction from the Buckyball data set: error threshold
equal to 1% of the field range. The isosurface for timestep 4 and field
value 100 is shown. Lo Lo 151

Variable LOD based on a region of space in the Buckyball data set:
error threshold equal to 1% of the field range within the selected
area, and arbitrarily large elsewhere. The isosurface for timestep 4
and field value 100 is shown.o 152

Variable LOD based on field value in the Buckyball data set: error
threshold equal to 1% of the field range on the tetrahedra intersected
by the isosurface with field value 100, and an error threshold arbi-
trarily large elsewhere. The isosurface for timestep 4 and field value
100 is shown. The number of pentatopes in the resulting 4D mesh is
70% of the number of pentatopes in the mesh obtained in the uniform
LOD extraction (see Figure 57). 153

Uniform LOD extraction from the Ritchmyer data set: error threshold
equal to 1% of the field range. The isosurface for timestep 4 and field
value 100 is shown. L L Lo 154

Variable LOD based on a region of space in the Ritchmyer data set:
error threshold equal to 1% of the field range within the selected
area, and arbitrarily large elsewhere. The isosurface for timestep 4
and field value 100 is shown. o000 155

vii

62

63

64

Variable LOD based on field value in the Ritchmyer data set: error
threshold equal to 1% of the field range on the tetrahedra intersected
by the isosurface with field value 100, and an error threshold arbi-
trarily large elsewhere. The isosurface for timestep 4 and field value
100 is shown. The number of pentatopes in the resulting 4D mesh is
92% of the number of pentatopes in the mesh obtained in the uniform
LOD extraction (see Figure 60).

Number of pentatopes in the meshes along with the percentage with
respect to the number of pentatopes at full resolution, and the number
of tetrahedra in the time slice with value 4 along with the percentage
with respect to the number of tetrahedra at full resolution.

Number of pentatopes in the meshes along with the percentage with
respect to the number of pentatopes at full resolution, and the number
of tetrahedra in the time slice with value 4 along with the percentage
with respect to the number of tetrahedra at full resolution.

viii

Chapter 1
Introduction

1.1 Motivation

The representation of spatial data is an important issue in the development
of efficient algorithms for applications in computer graphics, virtual reality, visu-
alization, image processing, and geographic information systems (GIS). In many
applications, a hierarchical representation of the data is useful as a way of recur-
sively partitioning the underlying space from which the data is drawn into smaller
regions, where the decomposition criteria are usually based on data homogeneity or
data distribution.

One interesting case is when a two-dimensional plane is recursively decomposed
into four congruent triangles, where we assume that the initial underlying space is
an equilateral triangle. In this case, the underlying space is said to be spanned by
a triangular mesh. This partitioning strategy is similar to methods based on the
region quadtree [37, 43] (see also [67, 68]), where triangular regions are used instead
of rectangular regions. We term the result a triangle quadtree.

Such meshes find uses in many applications such as finite element analysis
(e.g., [3, 4, 10, 14, 20, 21, 35, 42, 61, 69, 78]), or for defining multiresolution rep-
resentations of surfaces like subdivision surfaces [40]. The analysis is used, for

example, to improve the accuracy of solving a partial differential equation over a

region by controlling the error (e.g., [3]). Meshes are also used in ray tracing as a
way of representing a scene. In this situation, the meshes usually consist of cubical
three-dimensional elements, in which case we are dealing with an octree; but they
can also be two-dimensional, e.g. triangles. Regardless of the application, many
operations on the data require the ability to examine a neighbor of a triangular
element of the mesh (i.e., a node or a block) as well as making a transition to it.

Triangular meshes are also useful in the modeling of data that lies on the
surface of a sphere, as is the case, for example, in applications that involve modeling
the Earth (e.g., [15]). Traditional ways of representing such data invariably resort
to projections onto the plane (e.g., [74]) using one of many possible projections
(e.g., [71]). Clearly, there is no perfect projection. Such applications have led to the
use of an approximation of the sphere by projecting its surface onto the faces of an
inscribed regular polyhedron (e.g., [17, 18, 23, 24, 30, 56]), which are subsequently
recursively decomposed using conventional techniques such as region quadtrees for
two-dimensional planar data. The result is that each face is a triangular mesh in the
form of a triangle quadtree; the sphere is represented as a collection of n quadtrees,
where n is the number of faces in the inscribed polyhedron. The decomposition
criteria can vary from equal value, as is the case when attempting to distinguish
between oceans and land masses, to ranges of elevations when modeling terrain
data.

The quadtree representation of the mesh corresponding to the surface is usually
implemented as a tree with pointers from the root to its four children which in

turn contain pointers to their four children, etc. However, such an implementation

can be rather wasteful of storage and has led to the development of a number of
alternative quadtree representations which do not use pointers. The most common
of these representations is known as the linear quadtree [27] where the quadtree is
represented as a collection of numbers corresponding to its leaf nodes. In particular,
each face of the inscribed polyhedron is represented by a separate quadtree where
leaf node i is represented by a unique pair of numbers known as its location code
where the first number indicates the depth in the tree at which 7 is found and the
second number indicates the path from the root of the tree to 7. The path consists
of the concatenation of the two-bit numbers corresponding to the child types of each
node that is traversed on the path from the root to . We refer to the path as the
path array component of the location code.

One of the attractions of the linear quadtree when the faces are square is the
ability to make use of binary arithmetic to navigate between any pair of adjacent
nodes (i.e., nodes corresponding to squares of equal size) in time that is independent
of the depth of the quadtree in which the nodes are found [70]). This enables the
navigation to be performed very efficiently, as it just requires a few bit manipulation
operations which can be implemented in hardware using just a few machine language
instructions. We show how to adapt the linear quadtree to triangular meshes so
that such navigation can also be performed in time independent of the depth of the
quadtree.

This technique can be used in a ray tracer where a surface is represented by
a quadtree triangle mesh instead of a quadtree square mesh [25, 29, 41, 66, 73]. It

can also be used in finite element analysis. For example, in many applications it

is desirable to transform an arbitrary triangular mesh to a more restricted mesh
with “subdivision connectivity” [20] by applying a “remeshing” process that yields
a triangular hierarchy where groups of four triangles are aggregated into larger
triangles (but see [14] which uses a different approach to create a hierarchy based on
the time and the location at which the mesh refinement takes place). The results of
this “remeshing” process (i.e., [20]) can be traversed efficiently using our techniques.
In other applications (e.g., [3]), the triangulation is not hierarchical, thereby causing
some difficulty in performing operations such as finding ancestors, descendants, and
neighbors. Our technique makes these operations much easier to perform. Others
have devised special methods such as clipping the corners of the mesh elements
(e.g., [42, 78]) to overcome the fact that the mesh elements are square (e.g., [10],
which has the drawback that the square mesh elements are not congruent, although
they still form a hierarchy). Square mesh elements are viewed as attractive due to
the ease of finding neighbors and being able to perform local refinement. With our
methods, we can make use of the more natural triangular hierarchy, without the
addition of special “corner” handling, while still being able to find neighbors and
do local refinement efficiently.

Hierarchical data representations play an important role when working with
three-dimensional data. We consider the problem of modeling volume data sets, i.e.,
sets of points spanning a domain in the three-dimensional space, and having one
or more scalar field values associated with each data point. Hierarchical modeling
of volume data is useful in several applications, including scientific visualization,
medical imaging, simulation, and finite element analysis. A volume data set can

4

be modeled by decomposing its domain using a tetrahedral mesh with vertices at
the data points. When the data points are given at the vertices of a regular cubic
grid, the resulting decomposition is a mesh generated by a recursive decomposition
of tetrahedra based on the vertices of the regular grid.

Hierarchical models for volume data are an instance of multi-resolution mod-
els, also called Level-Of-Detail (LOD) models, which have been widely used for
describing surfaces and two-dimensional height fields (see [13] for a survey). A wvir-
tually continuous set of simplified meshes at different LODs can be generated from
a multi-resolution model. The resolution (i.e., the density of the cells) of an approx-
imating mesh may vary in different parts of the field domain, or in the proximity
of interesting field values. It has been shown [12] that queries on a LOD model
are instances of selective refinement, which is the process of extracting meshes at a
variable resolution from a multi-resolution model.

In our work, we consider hierarchical meshes generated by recursive bisection of
a tetrahedron along its longest edge, and we use the term Hierarchies of Tetrahedra
(HTs) to describe them. Such meshes have been used for multi-resolution modeling
of regularly-spaced volume data sets because of their ability to generate highly
adaptive domain decompositions.

When performing selective refinement on hierarchical models, a major issue is
the topological consistency of the extracted mesh, which must be ensured to avoid
discontinuities in the approximation of the scalar field. Consistency must be main-
tained while applying local refinement or coarsening. Thus extracting a consistent

mesh involves detecting those tetrahedra which form clusters that must be split, or

merged, simultaneously. Detecting these clusters requires neighbor finding [65, 67].

A four-dimensional representation addresses the problem of modeling time-
varying volumetric data sets, i.e., sets of points in the three-dimensional Euclidean
space describing a scalar field at different instances of time. Time-varying scalar
fields arise in engineering, biomedical and other scientific applications, which pro-
duce very large data sets by numerical simulations or acquisition. The growth in the
capability for computing and storing large data sets has resulted in incredible quan-
tities of large simulation data. The huge size of available data sets poses interesting
challenges for inspecting, analyzing and visualizing such data, that naturally leads
to the investigation of hierarchical methods to control and adjust the level of detail
of a given data set. The purpose of such models is to support selective refinement,
(i.e., extraction of adaptively refined representations) as well as progressive trans-
mission efficiently, thus reducing space requirements and enhancing computational
performance.

Time-varying volumetric data sets are sets of points in the three-dimensional
Euclidean space describing a scalar field (e.g., pressure, temperature, strength of
an electric, or a magnetic field) at different instances of time. Many visualization
tools treat them as collections of 3D scalar fields. This does not take into account
the fact that oblique cross sections can be very relevant features, or that smooth
animation at interactive rates are often needed. These operations are not supported
when a time-varying volume data set is modeled as a collection of representations
of 3D scalar fields, each corresponding to a different time slice. Thus, time-varying

data sets are often viewed as four-dimensional scalar fields by considering time as

the fourth dimension [39, 76]. These 4D scalar fields are analyzed by extracting
isosurfaces, consisting of tetrahedral cells, which are visualized by cutting them
with different planes or through direct volume rendering techniques. The domain
of a 4D scalar field can be modeled either as a hypercubic grid, or as a simplicial
mesh with vertices at the data points, obtained by triangulating the hypercube.
Isosurface extraction algorithms, however, are much simpler on simplicial meshes.

Multi-resolution representations are a very effective way for handling large
data sets describing time-varying scalar fields because of their ability of focusing
attention on a region of interest and reducing the size of the representation. This
will allow not only visualization and inspection of large-size time-varying data sets
in real-time, but it will also effectively support analysis and visualization of salient
features of scientific data sets. As mentioned above, an effective way of dealing with
time-varying data sets is to model them as 4D scalar fields.

In this work, we consider a recursive decomposition of a hypercube into a
hierarchy of nested 4-dimensional simplexes, that we call pentatopes. We call the
resulting hierarchy a Hierarchy of Pentatopes (HP). A hierarchy of pentatopes can
be used as the domain decomposition for a four-dimensional scalar field. A major
issue with any multi-resolution model based on a nested mesh is the topological
consistency of the adaptive domain decomposition defined by the mesh, since incon-
sistencies may produce discontinuities in the corresponding approximation of the
scalar field, and thus in the isosurfaces. Consistency must be maintained by split-
ting all pentatopes which share an edge at the same time. This is achieved through
an efficient technique based on computing face-neighbors of a pentatope. We pro-

7

pose a neighbor finding algorithm which makes use of a pointer-less representation
of a nested simplicial mesh. In such a representation, pentatopes are implicitly de-
scribed as strings of bits, called location codes, corresponding to the path from the
root, of the hierarchy representing the nested simplicial mesh. The algorithm per-
forms bitwise manipulation of the location code of the pentatopes to find neighbors
in worst-case constant time.

Therefore, regardless of whether we are interested in the two-dimensional,
three-dimensional, or four-dimensional case, efficient neighbor finding is an impor-
tant operation if we want to analyze and display triangular, tetrahedral, or pen-
tatopic meshes. In this thesis, we present algorithms for neighbor finding and show

how to obtain a worst-case constant time implementation.

1.2 Related Work

A Quaternary Triangular Mesh (QTM) is a region quadtree composed of trian-
gles. A particular QTM (based on an octahedron) is described by Dutton [18]. The
scheme proposed by Dutton uses a regular subdivision of each triangle region into
four subregions. Goodchild and Yang [30] simplify Dutton’s cell labeling approach
by using a different numbering of the triangles in order to obtain an addressing
system that provides easy transformation to and from latitude and longitude. They
also use an octahedron to model the sphere because the vertices can be aligned
with the poles and equator. Fekete [23] uses an icosahedron to model the sphere

since it gives a better initial approximation. Our methods differ from these methods

(e.g., [23, 30, 56]), which have a worst-case execution time proportional to the max-
imum level of decomposition. We achieve constant-time execution by introducing a
new method of labeling the elements of the triangular meshes corresponding to the
faces of the icosahedron (which we point out is also applicable to the octahedron and
tetrahedron) and showing how traditional two-dimensional neighbor-finding tech-
niques [65, 67] for quadtree square meshes (which work for both pointer-based and
linear quadtrees) can be adapted to deal with quadtree triangle meshes. This results
in worst-case constant time algorithms for finding neighbors of equal size.

Hierarchical triangle meshes based on recursive triangle bisection have been
extensively used for view-dependent terrain rendering (see, for instance, [16, 22, 48,
49, 57]). Recently, Lindstrom and Pascucci [49] have designed and implemented
a framework for performing out-of-core view-dependent rendering of large terrain
surfaces based on hierarchical meshes.

Evans et al. [22] use a hierarchy of right triangles to decompose a two-dimensional
surface which is given as an array of elevation values. Coordinates are not explicitly
stored since they can be calculated from the label (or location code) of the trian-
gle. This is only possible because a regular decomposition rule is used. Children
are formed by bisecting the parent triangle. A single bit of 0 or 1 indicates which
child was chosen at each level in the decomposition. Since a pointer-based binary
tree structure would be inefficient in its use of space, they use an array where the
label of a node determines the node’s location in the array. To ensure that nodes of
different depths have different location codes, they prepend a 1 to the node label.

In general, there is a one-to-one mapping between sequential integers and location

codes with depth information. Evans et al. choose to work with a continuous se-
quence of integer values instead of using depth explicitly. They find neighbors using
recurrence relations and recursive algorithms which run in time proportional to the
length of the location code (i.e., proportional to the depth of the triangle), and
also give faster neighbor calculation code which uses a relatively small number of
arithmetic and bitwise logical operations to find the location codes of neighbors in
constant time. They also store three extra bits with each triangle to indicate the
size of the neighboring triangles in each of the three possible directions.

Hierarchical tetrahedral meshes have been studied in finite element analysis
and in computer graphics for describing three-dimensional scalar fields when the
field values are given at the vertices of a regular square grid in 3D space. Examples
are tetrahedral meshes generated by the so-called red/green tetrahedron refinement
technique (see, for instance, [33]), or hierarchical meshes formed by tetrahedral and
octahedral elements [32].

A common way of generating hierarchical meshes consists of recursively bi-
secting tetrahedra on their longest edge (see, for instance, [31, 44, 55, 60, 79]). Such
meshes have been introduced for domain decomposition in finite element analy-
sis [34, 50, 62], and they have been applied in scientific visualization, for instance,
to generate progressive volume models of ultrasound data [64], or for space/time-
efficient progressive encoding of isosurfaces at a variable resolution [60]. A general-
ization and analysis of such meshes in arbitrary dimensions is presented in [58] in
connection with adaptive mesh generation. Zhou et al. [79] proposed a representa-

tion for a hierarchical tetrahedral mesh as a full binary forest, stored as an array.

10

A similar data structure has been used by Gerstner and Rumpf [28] for extracting
isosurfaces at different levels of detail. An indexing scheme for out-of-core encoding
and traversal has been proposed in [59].

An important issue when using hierarchical tetrahedral meshes is that if the
domain is adaptively refined, the field associated with the extracted mesh (and, thus,
the resulting isosurfaces) may present discontinuities in areas of transition. One way
of ensuring continuity is through error saturation [28, 79|, thus implicitly forcing all
parents to be split before their descendants (see also [49] for an effective saturation
technique for terrain data). In our approach, the continuity of the field is ensured by
efficiently extracting meshes without cracks through a neighbor finding technique.
Hebert [34] computes parents, children, and neighbors in a hierarchical tetrahedral
mesh in a symbolic way, but finding neighbors still takes time proportional to the
depth in the hierarchy.

In [31] an algorithm for interactively extracting and rendering isosurfaces of
large volume data sets is presented, which extends the ROAMing algorithm intro-
duced in [16]. The authors use a refinement scheme based on tetrahedron bisection,
and propose a data structure for representing such meshes that directly encodes
clusters of tetrahedra which must be split together to ensure consistency.

The problem of modeling and encoding time-varying scalar fields has been
recently considered by some authors [5, 38, 39, 63, 76]. In [38], a loss-less single
resolution compression technique is proposed for encoding very large and regularly-
sampled 4D data. Atalay and Mount [2] extend the techniques of Hebert [34] for use
in data sets with temporal components and other higher dimensional meshes, adding

11

both a pointerless representation and improved neighbor finding algorithms which
work in arbitrary dimensions. In [39], the problem of tracking and visualizing local
features from a time-varying volumetric data set is considered, based on extracting
time-varying isosurfaces and interval volumes using isosurfaces in higher dimensions.

Algorithms for isosurface extraction from 4D scalar fields have also been devel-
oped. Extensions of the marching cube algorithm to 4D have been proposed [5, 63],
which differ in the number of cases counted for the 4-cube, that is, 272 [63], and
222 [5]. In order to locate cells which are actually intersected by an isosurface, spa-
tial and temporal coherence can be used (see, for instance, [72, 77]). Also, in [6],
an algorithm for constructing the isosurfaces in any dimensions from a set of scalar
values given at the vertices of a regular grid of hypercubes is proposed. Weigle and
Banks [75] have designed a recursive algorithm for isosurface extraction from four-
dimensional simplicial complexes, counting 5 possible different cases for a 4-simplex.
The algorithm has been applied in [76] for visualizing unsteady 3D scalar fields.

In [5, 6], applications of four-dimensional scalar fields to extracting time-
varying isosurfaces, interval volumes in 3D space, and morphing of isosurfaces are
discussed. An interval volume is the set of points in a scalar field enclosed between
two isosurfaces defined by two different isovalues [53]. Algorithms for computing
an interval volume between two isosurfaces of a 3D scalar field have been presented
in [26, 39, 51, 53]. In [7], interval volumes are used to segment a volume data set,
and several new techniques for directly rendering the 3D field based on interval

volumes are presented.

12

1.3 Outline of Thesis

In Chapter 2, we describe our two-dimensional structure and present algo-
rithms for navigating within the structure in constant-time. Several top-level poly-
hedra are discussed, giving multiple options when modeling spherical data.

In Chapter 3, we describe our three-dimensional structure and present algo-
rithms for navigating within the structure in constant-time. This chapter includes
techniques for computing clusters along with three algorithms for performing selec-
tive refinement on an HT. Experimental results on the HT are also given.

In Chapter 4, we describe our four-dimensional structure and present algo-
rithms for navigating within the structure in constant-time. This includes a dis-
cussion on clusters of pentatopes along with a depth-first algorithm for selective
refinement on an HP. Experimental results on the HP are also given.

The conclusions can be found in Chapter 5.

13

Chapter 2
Two-Dimensional Triangle Quadtrees

2.1 Tree Node Labeling

We initially consider a general navigation problem where the underlying sur-
face is a sphere represented by a collection of triangle meshes. In particular, we
assume the the sphere is approximated by an icosahedron whose faces are each
represented by a triangle mesh.

The icosahedron has 20 triangular faces each of which is decomposed recur-
sively into four equilateral triangles. The result is a triangle quadtree. Every node in
the tree represents a triangle. We use the terms triangle and node interchangeably.
Each triangle has three edges, also termed sides or boundaries, and three vertices
(also termed corners — e.g., [78]). These triangles always have one of two orien-
tations: tip-up and tip-down. 7%p-up means that the corresponding triangle points
upward, and tip-down means that the triangle points downward. As tip-up triangles
cover a different section of space than tip-down triangles (and cannot be made to
cover the same space without some transformation such as rotation), we subdivide
the two triangle types differently. We will see that using different subdivisions for
the two types actually makes certain operations easier (e.g. point location). Since
we plan on linearizing our tree, the discussions and algorithms all make use of a

location code for each triangle consisting of two fields LEV and CODE correspond-

14

ing to the depth and path array, respectively. As these location codes determine
a triangle rather than just a point, the terms location code and triangle code are
used interchangeably. We also often use the term code to refer to the path array.
Moreover, since we decompose each triangle into four smaller equal-sized triangles,
each child triangle adds two bits to the path array component of the location code
of the parent. Regardless of the orientation of a triangle, we use the terms vertical,
left, and right to refer to neighboring triangles of equal size along its horizontal, left
angular, and right angular edges, respectively.

Tip-up triangles use the following bit patterns for children (see Figure 1a):

Top triangle: 00
Bottomleft triangle: 01
Center triangle: 10

Bottomright triangle: 11

Tip-down triangles use the following bit patterns for children (see Figure 1b):

Topleft triangle: 01
Center triangle: 10
Topright triangle: 11
Bottom triangle: 00

00 011011

011011 00

(2) (b)

Figure 1: Two possible orientations for a triangle: (a) tip-up, and (b)
tip-down.

Our node labeling scheme is almost the same as that proposed by Goodchild

and Yang [30]. The difference is that they use the label 0 for the middle triangle, 2

15

for the left triangle, 3 for the right triangle, and 1 for the upper or lower triangle.
As we will see in Section 2.4, our labeling scheme permits us to make right and
left transitions by use of addition and subtraction which will enable us to perform
the operations in constant time across the entire sphere. It is different from other
methods (e.g., [18, 23]) which are based on a “floating” labeling scheme (see [47] for
an example).

There are several other advantages to using our node labeling scheme. If we
use the topmost or bottommost point to locate a triangle (since we only need one
vertex, the orientation, and the size to determine the other two vertices), it is quite
simple to traverse the tree using only local computations to determine where we are
in space. The vertices of children are easy to determine relative to the positions of
their parents. In particular, a child is always half the size (one quarter the area) of its
parent. Child 10 always has the opposite orientation of its parent. The remaining
three children always have the same orientation as the parent. See Figure 2 for
an example of a tree which is encoded using this node labeling method. This is
in contrast with other methods (e.g., [18, 23, 56]) which lead to more complex
neighbor-finding methods.

Regardless of whether a triangle is tip-up or tip-down, the triangles do not all
have to be the same size. In other words, the triangles may be at different depths
in the quadtree. As mentioned earlier, in the case of a linear quadtree, the depth is
recorded in the LEV field. Assuming a maximum tree depth of n, the CODE field has
2n bits. For nodes or triangles at a depth ¢ where 7 < n, the rightmost n — 4 pairs
of bits are 00 (i.e., the 2 - (n — 7) least significant bits are 0).

16

000000

Figure 2: Labeling of a tree which is three levels deep.

2.2 Neighbor Finding

In this Section, we describe how to find an equal-sized neighbor of a node p
along an edge in the same face of the icosahedron. The algorithm is equivalent to
the one described in [30] which is based on the approach of Samet [65, 67]. We
present it here as it is the basis of our extension to the entire sphere in Section 2.3
as well as our constant-time algorithm in Section 2.4 (see also [46]). The node whose
neighbor is being sought can be at any depth in the set of quadtrees corresponding
to the faces; it is not restricted to being at the deepest level.

The algorithm does not need to make use of the actual coordinate values of

17

the triangle block corresponding to p. Instead, it just processes the path array
component of the location code (referenced by field name CODE and often referred to
simply as the code or the bit pattern of the location code). Elements of the path array
are referenced using array notation. Assuming that the root triangle is at depth 0,
given a triangle ¢ with location code P, we say that CODE(P) [i] refers to the relative
position (i.e., the child type) of the descendant at depth i of the root triangle which
is also an ancestor of ¢. In this manner, we can effectively trace the path from the
root of the tree to a given node by looking at CODE(P) [i] for successive values of i.

It is important to note that the procedures that we describe are destructive
(i.e., in-place) in the sense that the location code P whose neighbor is being computed
is overwritten with the location code of the neighboring triangle of equal size. If the
original location code is to be preserved, it should be saved prior to being transmitted
as a parameter to the neighbor-finding algorithm.

Our algorithm is decomposed into three steps to make it easier to understand.
The first step finds an ancestor of p which also contains the desired neighbor ¢q of p.
This node is called the nearest common ancestor of ¢ and p. Section 2.2.1 discusses
step one of our algorithm. This involves locating the nearest common ancestor.
In this step we just decide where in the path array corresponding to the location
code (i.e., at what depth) to start step two. Section 2.2.2 describes step two of our
algorithm. This involves changing the bit pattern of the location code to ensure
that the child identified in the code for the nearest common ancestor (determined
in step one) will contain the neighbor that we want. Section 2.2.3 explains step
three of our algorithm. This involves updating the rest of the path to the neighbor

18

in the location code (from the depth in step two down to the input node’s depth
in the tree). Section 2.2.4 describes how to combine steps one, two and three into
one routine which completes the whole task of neighbor finding. Observe that in an
actual implementation the steps would be combined into one procedure. We have
presented the process using this approach because it will be useful when we describe
the extension of the algorithms to deal with transitions between different faces of

the icosahedron in Section 2.3.

2.2.1 Step One : Locating the Nearest Common Ancestor

The first step is to find an ancestor of the current node which also contains the
desired neighbor of that node. This node is called the nearest common ancestor of the
two nodes. The technique used for finding the nearest common ancestor is effectively
the same as that found in most standard quadtree implementations [65, 67] that use
trees. Of course, we aren’t actually dealing with tree nodes. Instead, we want to
find the location code of the nearest common ancestor within p’s location code.

We now show how to find the right neighbor of p. If we start with p and work
our way up (right to left in the path array corresponding to the location code), then
we can stop scanning upward (leftward) when we find the ancestor of p which must
contain the right neighbor of p. We stop when we encounter a node that has a right
sibling (its parent contains a node that is adjacent to and to the right of p). If we
look at Figure la, then we see that this is true for children 01 and 10. Also, in

Figure 1b, children 01 and 10 have right siblings. Thus, we can stop as soon as we

19

find a 01 or 10 in the path array corresponding to the location code.

As an example, consider the location code with path array 010010110000.
Let us use EXCODE to refer to this path array. Therefore, EXCODE[6]1=00 (the last
two bits). If we want to start searching for the right neighbor of the node corre-
sponding to EXCODE, then we need to examine the bits while looking for a 01 or
10. EXCODE[6] does not equal 01 or 10, so we continue upward. EXCODE[5] is the
same as EXCODE[6], so we continue upward. EXCODE[4]=11 which does not equal
01 or 10, so we continue upward. EXCODE[3]=10 which means that we stop here.
This sets us up for step two, described in Section 2.2.2. Note that the path array
corresponding to the nearest common ancestor in this case is actually 0100 (all of
EXCODE ending at EXCODE[2]).

A similar analysis is used to determine the nearest common ancestor when
finding the left or vertical neighbor of a node. This process is encoded by procedure
STEP_ONE. It makes use of the relation STOPTAB given in Figure 3 (it is similar to
the stop component in the conversion table used in [30]). STOPTAB is indexed by the
bit pair corresponding to the child type and the direction of the neighbor. Entries
corresponding to the end of the search for the nearest common ancestor are denoted

by TRUE in the table.

procedure STEP_ONE(CODE,NEIGHBOR_DIR,CHILD_TYPE,DEPTH);

/* Obtain the nearest common ancestor of the node at depth DEPTH whose location
code has path array CODE when seeking a neighbor in direction NEIGHBOR_DIR.
CHILD_TYPE indicates the child type of the nearest common ancestor while the
final value of DEPTH is its depth. */

begin
value path_array CODE;
value integer NEIGHBOR_DIR;
reference integer CHILD_TYPE;

20

Child Type | Neighbor Direction
(Bits) Left | Right | Vert
00 FALSE | FALSE | TRUE

01 FALSE | TRUE | FALSE
10 TRUE | TRUE | TRUE

11 TRUE | FALSE | FALSE

Figure 3: STOPTAB(Neighbor_Direction,Child_Type) relation indicat-
ing when to cease the search for the nearest common ancestor in step
1 of the neighbor finding algorithm.

reference integer DEPTH;
preload Boolean array STOPTAB[0:2][0:3] with Figure 3;
CHILD_TYPE<CODE[DEPTH] ;
while not (STOPTAB[NEIGHBOR_DIR] [CHILD_TYPE]) do
begin
DEPTH<-DEPTH—1;
CHILD_TYPE<CODE[DEPTH] ;
end;
end;

2.2.2 Step Two : Updating the Path to Contain the Neighbor

Step two identifies and sets the position in the path array of the location code
corresponding to the child of the nearest common ancestor (found in step one) to
the appropriate child type of the neighbor. This step is simple. Let’s say we are
looking for a left neighbor ¢ of node p. If we have the nearest common ancestor and
we know what child contains p, it is easy to determine what child contains q. We
move left. If child 10 contains p, child 01 must contain the neighbor node ¢. If we
were looking for a right neighbor, we move right. The same procedure also holds
for vertical neighbors.

As a concrete example, consider the location code with path array 010010110000.
This is EXCODE from Section 2.2.1. The nearest common ancestor was 0100 and the

21

child at EXCODE[3] was 10. Recall that we want the right neighbor, which means
that the new child at this level should be on the right of 10. If we examine Figures 1a
and 1b we find that 11 is to the right of 10 in both of them. Thus, in this step, we
set EXCODE[3] to 11.

A similar analysis can be used to obtain the neighboring children for other
child types and directions. This process is encoded by procedure STEP_TWO. It
makes use of the relation NEXTTAB given in Figure 4 (it is similar to the new address
component in the conversion table used in [30]). NEXTTAB is indexed by the bit pair
corresponding to the child type of the child of the nearest common ancestor and
the direction of the neighbor that we are seeking. Its value is the child type of the

neighboring child of the nearest common ancestor.

Child Type | Neighbor Direction

(Bits) Left | Right | Vert
00 11 01 10
01 00 10 01
10 01 11 00
11 10 00 11

Figure 4: NEXTTAB(Neighbor Direction,Child_Type) indicating the
child type of the neighboring child of the nearest common ancestor.

procedure STEP_TWO(CODE,NEIGHBOR_DIR,CHILD_TYPE,DEPTH) ;

/* Obtain the child type of the neighboring child of the nearest common ancestor
of the node and its neighbor in direction NEIGHBOR_DIR. CODE is the path array
corresponding to the neighboring node in direction NEIGHBOR_DIR. Set the entry
at depth DEPTH of CODE to the child type of the ancestor of the neighboring node.
CHILD_TYPE indicates the child type of the child of the nearest common ancestor
which is an ancestor of the current node whose neighbor is being sought. */

begin
reference path_array CODE;
value integer NEIGHBOR_DIR;
value integer CHILD_TYPE;
value integer DEPTH;

22

preload integer array NEXTTAB[0:2][0:3] with Figure 4;
CODE [DEPTH] «+—NEXTTAB [NEIGHBOR_DIR] [CHILD_TYPE] ;
end;

2.2.3 Step Three : Updating the Rest of the Path to the Neighbor

Step three finds the path from the child obtained in step two to the neighbor
of p. This won'’t require searching since we can exploit the fact that the path to a
neighbor of a node is a reflection of the path to the node. In particular, for square
quadtrees, we reflect the path to p to get the path to the neighbor ¢. For triangles,
things work a little differently, but the layout of the children that we have chosen
(see Section 2.1) keeps things simple. Reflection for the triangles works as follows.
Keep in mind that a tip-up triangle is always adjacent to a tip-down triangle (and
vice versa). This leads to three cases (one for each neighboring direction).

For left neighbors, 00 always becomes 11. Notice that 00 is always within the
same y coordinate range as 01, 10, and 11 in the adjacent parent triangle. Since 11
is the closest of the three children, 11 is the appropriate “reflected” value. Child 01
always becomes 00. Only 00 in the adjacent parent triangle is within the same y
coordinate range as 01, so 00 is the only candidate for the “reflected” value. Finding
the left neighbors of children 10 and 11 is easy because their neighbors don’t require
leaving the parent node.

For right neighbors, 00 always becomes 01. Again, 00 is always within the
same y coordinate range as 01, 10, and 11 in the adjacent parent triangle. Since 01

is the closest of the three children, 01 is the appropriate “reflected” value. Finding

23

the right neighbors of children 01, and 10 is easy because their neighbors don’t
require leaving the parent node. Child 11 always becomes 00. Only 00 in the
adjacent parent triangle is within the same y coordinate range as 11, so 00 is the
only candidate for the “reflected” value.

For vertical neighbors, finding the neighbors of children 00 and 10 is easy
because their neighbors don’t require leaving the parent node. For both 01 and 11
the “reflected” value is equal to the original value (as Figures 1a and 1b are vertical
reflections of each other).

For example, let’s consider the location code 010010110000. This is EXCODE
from Section 2.2.1. The nearest common ancestor (from step one) was 0100 and
the child at EXCODE[3] was 10. In step two, we set EXCODE[3] to 11. The current
(processed) portion of EXCODE is 010011. The entire code is 010011110000. Thus
the remaining portion of EXCODE is 110000. This is the part that we will update
in this step. We are still trying to find the right neighbor. EXCODE[4]=11 which
becomes 00. EXCODE[5]1=00 which becomes 01. EXCODE[6]=00 which becomes 01.
The entire code 010010110000 becomes 010011000101 which gives us the right

neighbor. The process is encoded by procedure STEP_THREE.

procedure STEP_THREE (CODE,NEIGHBOR_DIR,CHILD_TYPE,DEPTH,DEPTH_NCA) ;
/* Calculate the path array entries in CODE corresponding to the NEIGHBOR_DIR
neighbor of the original node at depth DEPTH. CHILD_TYPE indicates the child
type of the nearest common ancestor while DEPTH_NCA is its depth. */
begin
reference path_array CODE;
value integer NEIGHBOR_DIR;
value integer CHILD_TYPE;
value integer DEPTH,DEPTH_NCA;
preload integer array NEXTTAB[0:2][0:3] with Figure 4;
while (DEPTH_NCA<DEPTH) do

24

begin
DEPTH_NCA<-DEPTH_NCA+1;
CHILD_TYPE<-CODE[DEPTH_NCA] ;
CODE [DEPTH_NCA] <—NEXTTAB [NEIGHBOR_DIR] [CHILD_TYPE] ;
end;
end;

2.2.4 Putting it all Together to Find a Neighbor

Now, if we combine the previously described steps, we can find the neighbor of
any node in our tree. The only issue that remains is how to apply these techniques
to the entire sphere. This is discussed in Section 2.3. Thus, the following routine is

sufficient for finding any neighbor of equal size within one triangle quadtree.

procedure FIND_NEIGHBOR(P,NEIGHBOR_DIR) ;
/* Return in P the location code corresponding to the neighbor in the NETIGHBOR_DIR
direction of the node corresponding to location code P. */
begin
value pointer location_code P;
value integer NEIGHBOR_DIR;
integer CHILD_TYPE;
integer DEPTH;
DEPTH«+LEV (P) ;
STEP_ONE (CODE(P) ,NEIGHBOR_DIR,CHILD_TYPE,DEPTH) ;
STEP_TWO (CODE(P) ,NEIGHBOR_DIR,CHILD_TYPE,DEPTH) ;
STEP_THREE (CODE (P) ,NEIGHBOR_DIR,CHILD_TYPE,LEV(P) ,DEPTH) ;
end;

Since step one (finding the nearest common ancestor) involves examining each
two-bit pair in the path array of the location code, its worst-case execution time is
on the order of the length of the code (related to the height of the tree). Step two
(changing two bits in the location code) always takes a constant amount of time.
Step three (changing the remaining bits) requires examining the same bits as in

step one, so its worst-case execution time is on the order of the length of the code.

25

Overall, in the worst case, neighbor finding requires time proportional to the length

of the location code, which, of course, is the maximum level of decomposition.

2.3 Extensions to the Entire Sphere

Indexing the entire icosahedron (rather than just one of its faces) actually
requires 20 of the previously described triangle quadtrees. This means that whenever
we reach the top level (or root) of one of these trees, a bit of extra work is required.
We label the 20 nodes corresponding to the roots of the quadtrees of the faces of the
icosahedron using a 6-bit code ranging from 000000 (decimal 0) to 010011 (decimal
19). We could have fit the 20 values into just 5 bits, but we decided to use an
even number of bits because the machine word length is always an even number
of bits. The order in which the triangle faces of the icosahedron are numbered
isn’t important since tables will be used most of the time. Thus we have numbered
the faces using a simple left-to-right and top-to-bottom order (see Figure 5). Our
numbering scheme has the property that triangles 0 to 4 are tip-up, 5 to 9 are
tip-down, 10 to 14 are tip-up, and 15 to 19 are tip-down.

Neighbor finding in the entire icosahedron involves several modifications to
our algorithm for a single face, but these changes are minor and have little impact
on the computational complexity of the algorithms. We continue to work with the
location code only. No coordinate values are used.

The only necessary modification to step one is that if we reach the top level of

the spherical quadtree (or if there are no remaining bits to examine in the location

26

00\ /01\ /02\ /03\ /04

9910%91197129%139714

15/ \16/ \17/ \18/ \19

Figure 5: Example showing the top-level triangle faces of an icosahe-
dron corresponding to the surface of the Earth.

code because we are at CODE[0]), we stop looking for the nearest common ancestor.
Obviously, the entire sphere contains every possible location and is therefore an
ancestor of every node. No additional stop tables are required. We always stop at
the top level. This process is encoded by procedure EXT_STEP_ONE. Also, note that
since Figure 5 is really a sphere, every triangle has a neighbor in every direction
(the triangles on the ends wrap around), so we are well-prepared for step two.
As an example, consider the location code with path array 000010010001010001.

We refer to it by EXCODE2. Our path array uses the extended format for the sphere
so EXCODE2[0]=000010 (the first six bits) and EXCODE2[6]1=01 (the last two bits).
Let’s suppose we are looking for the left neighbor of EXCODE2. Figure 6 traces the
execution of procedure EXT_STEP_ONE for this neighbor. Notice that in this case,

the nearest common ancestor is the entire sphere.

procedure EXT_STEP_ONE(CODE,NEIGHBOR_DIR,CHILD_TYPE,DEPTH);

/* Obtain the nearest common ancestor of the node at depth DEPTH whose location
code has path array CODE when seeking a neighbor in direction NEIGHBOR_DIR.
CHILD_TYPE indicates the child type of the nearest common ancestor while the
final value of DEPTH is its depth. */

begin
value path_array CODE;

27

DEPTH | CHILD_TYPE | STOPTAB | CONDITION VALUE
6 01 FALSE TRUE
5 00 FALSE TRUE
4 01 FALSE TRUE
3 01 FALSE TRUE
2 00 FALSE TRUE
1 01 FALSE TRUE
0 000010 ALWAYS STOP AT O

Figure 6: Execution trace of procedure EXT _STEP_ONE for the left
neighbor of 000010010001010001.

value integer NEIGHBOR_DIR;
reference integer CHILD_TYPE;
reference integer DEPTH;
preload Boolean array STOPTAB[0:2][0:3] with Figure 3;
CHILD_TYPE<CODE [DEPTH] ;
while DEPTH>0 and not (STOPTAB[NEIGHBOR_DIR] [CHILD_TYPE]) do
begin
DEPTH<-DEPTH—1;
CHILD_TYPE<«CODE[DEPTH] ;
end;
end;

Step two is similar to the one described in Section 2.2.2 and is encoded by
procedure EXT_STEP_TWO. The only modification from procedure STEP_TWO is the
use of a different relation NEXTTOP (Figure 7) to indicate how to update CODE[0]. It
summarizes the actions for all possible neighbors from Figure 5 and replaces relation
NEXTTAB in the algorithm for this case. This relation is used only when the nearest
common ancestor from step one is the entire sphere. As an example, for the left
neighbor of EXCODE2, from Figure 7 we find that the node to the left of EXCODE2 [0]
(000010 in binary or 2 in decimal) is 1. Thus, in step two, we set EXCODE2[0] to

000001.

procedure EXT_STEP_TWO(CODE,NEIGHBOR_DIR,CHILD_TYPE,DEPTH);
/* Obtain the child type of the neighboring child of the nearest common ancestor

28

Child | Neighbor Direction
Type | Left | Right | Vert
0 4 1 5
1 0 2 6
2 1 3 7
3 2 4 8
4 3 0 9
5 14 10 0
6 10 11 1
7 11 12 2
8 12 13 3
9 13 14 4
10 5 6 15
11 6 7 16
12 7 8 17
13 8 9 18
14 9 5 19
15 19 16 10
16 15 17 11
17 16 18 12
18 17 19 13
19 18 15 14

Figure 7: NEXTTOP(Neighbor Direction,Child_Type) indicating
neighbors for the triangles corresponding to the faces of the icosa-
hedron.

of the node and its neighbor in direction NEIGHBOR_DIR. CODE is the path array
corresponding to the neighboring node in direction NEIGHBOR_DIR. Set the entry
at depth DEPTH of CODE to the child type of the ancestor of the neighboring node.
CHILD_TYPE indicates the child type of the child of the nearest common ancestor
which is an ancestor of the current node whose neighbor is being sought. */
begin
reference path_array CODE;
value integer NEIGHBOR_DIR;
value integer CHILD_TYPE;
value integer DEPTH;
preload integer array NEXTTAB[0:2][0:3] with Figure 4;
preload integer array NEXTTOP[0:2][0:19] with Figure 7;
if DEPTH>0 then CODE[DEPTH]<NEXTTAB[NEIGHBOR_DIR] [CHILD_TYPE]
else CODE[0]<«-NEXTTOP[NEIGHBOR_DIR] [CHILD_TYPE];
end;

Step three requires one more relation called REFLTOP given in Figure 8 to deal

29

with the special case of reflection needed for nodes 0 to 4 and nodes 15 to 19.
All other nodes still use the NEXTTAB relation from Figure 4 in Section 2.2.3. The
rationale for this additional relation is as follows. If we consider the left neighbor
case and use a standard “mirror reflection”, we see that 00 stays 00 and 01 reflects
to 11. 10 and 11 cannot occur along the left edge of a node. Similarly, if we consider
the right neighbor case, we see that 00 stays 00 and 11 reflects to 01. 01 and 10
cannot occur along the right edge of a node. The vertical case doesn’t need to
be updated. The algorithm in Section 2.2.3 works for the entire sphere if we use
the reflection relation REFLTOP instead of NEXTTAB. Note that the vertical neighbor
entries are identical to those in relation NEXTTAB given in Figure 4 since no special

treatment is required for the vertical case.

Child Type | Neighbor Direction

(Bits) Left | Right | Vert
00 00 00 10
01 11 -- 01
10 - - 00
11 -- 01 11

Figure 8: REFLTOP(Neighbor Direction,Child_Type) indicating the
child type when finding neighbors across the top five and bottom five
triangle faces of the icosahedron taking reflection into account.

As an example, let’s continue to consider the location code with path array
000010010001010001 which was previously labeled as EXCODE2. The current (pro-
cessed) portion of EXCODE2 is 000001. The entire path array (after the previously
mentioned example steps) is 000001010001010001. Thus the remaining portion
of EXCODE2 is 010001010001. This is the part that we will update in step three.
Once again, we want to find the left neighbor. Using Figure 8, EXCODE2[1] (01) be-

30

comes 11, EXCODE2[2] (00) stays 00, EXCODE2[3] (01) becomes 11, EXCODE2[4] (01)
becomes 11, EXCODE2[5] (00) stays 00, and EXCODE2[6] (01) becomes 11. Thus,
010001010001 becomes 110011110011. The final path array is 000001110011110011,

which is the left neighbor that we desired.

procedure EXT_STEP_THREE (CODE,NEIGHBOR_DIR,CHILD_TYPE,DEPTH,DEPTH_NCA);
/* Calculate the path array entries in CODE corresponding to the NEIGHBOR_DIR
neighbor of the original node at depth DEPTH. CHILD_TYPE indicates the child
type of the nearest common ancestor while DEPTH_NCA is its depth. */
begin
reference path_array CODE;
value integer NEIGHBOR_DIR;
value integer CHILD_TYPE;
value integer DEPTH,DEPTH_NCA;
preload integer array NEXTTAB[0:2][0:3] with Figure 4;
preload integer array REFLTOP[0:2][0:3] with Figure 8;
if DEPTH_NCA>0 or (4<CHILD_TYPE and CHILD_TYPE<15) then
begin
while (DEPTH_NCA<DEPTH) do
begin
DEPTH_NCA<-DEPTH_NCA+1;
CHILD_TYPE<«CODE [DEPTH_NCA] ;
CODE [DEPTH_NCA] +—NEXTTAB[NEIGHBOR_DIR] [CHILD_TYPE];
end;
end
else
begin
while (DEPTH_NCA<DEPTH) do
begin
DEPTH_NCA<-DEPTH_NCA+41;
CHILD_TYPE<CODE [DEPTH_NCA] ;
CODE [DEPTH_NCA] <—REFLTOP [NEIGHBOR_DIR] [CHILD_TYPE];
end;
end;
end;

The procedure for finding the neighbor which combines the three steps (i.e.,
FIND_NEIGHBOR given in Section 2.2.4) does not need to be modified, except for

changing the names of the three procedures that it invokes by prepending ‘EXT_’ to

31

them. The result is encoded by procedure EXT_FIND_NEIGHBOR.

procedure EXT_FIND_NEIGHBOR(P,NEIGHBOR_DIR);
/* Return in P the location code corresponding to the neighbor in the NETGHBOR_DIR
direction of the node corresponding to location code P. */
begin
value pointer location_code P;
value integer NEIGHBOR_DIR;
integer CHILD_TYPE;
integer DEPTH;
DEPTH<LEV (P) ;
EXT_STEP_ONE(CODE(P) ,NEIGHBOR_DIR,CHILD_TYPE,DEPTH) ;
EXT_STEP_TWO(CODE(P) ,NEIGHBOR_DIR,CHILD_TYPE,DEPTH) ;
EXT_STEP_THREE (CODE(P) ,NEIGHBOR_DIR,CHILD_TYPE,LEV(P) ,DEPTH) ;
end;

2.4 Constant-Time Neighbor Finding Algorithm

In this Section, we describe how neighbor finding can be accomplished in worst-
case constant time. The algorithms presented here make use of the carry (borrow)
property of addition (subtraction) to quickly find a neighbor without specifically
searching for a nearest common ancestor and reflecting the path to the neighbor.
We replace the iteration in steps one and three of the algorithm presented in Sec-
tions 2.2 and 2.3 by an arithmetic operation that takes constant time instead of time
proportional to the depth of the tree as in the worst case of the iterative process.
The resulting algorithms make use of just a few bit manipulation operations which
can be implemented in hardware using just a few machine language instructions.
Of course, the constant time bound arises because the entire path array for each
location code can fit in one computer word. If more than one word is needed, then
the algorithms are a bit slower but still take constant time. Our algorithms are
based on the method devised by Schrack [70] for square quadtrees implemented us-

32

ing pointer-less quadtrees represented by the location codes of the leaf nodes. Our

contribution is twofold:

1. Its adaptation to triangle quadtrees and the formulation of the appropriate

triangle quadtree node labeling technique.

2. Tts adaptation to the icosahedron in the sense that we make it work for neigh-

boring triangles that are in different base triangles of the icosahedron.

Our algorithms also work for the octahedron and the tetrahedron. The only mod-
ification that is needed is to include a mechanism to handle the case where the
neighboring triangles are in different base triangles of the solid (i.e., tetrahedron or

octahedron). This is discussed in Section 2.5.

2.4.1 Square Quadtrees

In order to gain a better understanding of the basic idea, let us see how simple
addition can be used with square quadtrees to find right neighbors of equal size. We

make use of the following two definitions in our algorithms:

1. ODDBITMASK is defined as an alternating bit pattern starting with a 1 at the

leftmost bit position, so ODDBITMASK= 10101010.. ..

2. EVENBITMASK is defined as an alternating bit pattern starting with a 0 at the

leftmost bit position, so EVENBITMASK= 01010101. ...

Both masks should be a full code length. For example, if we store the path array
part of the location code in a long integer (4 bytes), then both masks would contain

33

32 bits. Our algorithms also make use of the following six bitwise operators:

1. COMPLEMENT (paraml) returns the complement of paramil.

. AND(paraml,param?2) returns the result of a bitwise ‘and’ between paraml and

param?2.

. OR(paraml,param2) returns the result of a bitwise ‘or’ between parami and

param2.

. XOR(paraml,param2?) returns the result of a bitwise ‘exclusive or’ between

paraml and param2.

. SHIFT_LEFT(paraml) returns the result of shifting paraml to the left by one

bit. A bit value of 0 is shifted into the bit string at the extreme right.

. SHIFT_RIGHT (paraml) returns the result of shifting paraml to the right by

one bit. A bit value of 0 is shifted into the bit string at the extreme left.

Neighbor finding in square quadtrees is achieved in worst-case constant time

by using the equivalence between the path array of the location code and the result

of interleaving the bits that comprise the binary representation of the z and y

coordinates of one of the corners (e.g., the upper-left-most corner), chosen in a

consistent manner, of the blocks corresponding to the leaf nodes. The result of bit

interleaving is also known as a Morton code [52, 67]. For example, the Morton code

for coordinates x and y has the form y,_1x,_1 - - - y121yoxo, where the y coordinate

is the most significant. The right neighbor of equal size is obtained by incrementing

the x coordinate value of the corner of the block by one. Assuming that we work

34

with the Morton code of the block, instead of the individual coordinate values, we
start this process by incrementing zy by one. If there is a carry, we add one to x;.
If there is another carry, we add one to x5, and so on. This process is iterative in
the sense that the carries are propagated one bit at a time. Ideally, we want to
accomplish the propagation of the carry using one operation. The problem is that
when the addition operation is applied directly to the Morton code value, we need
to skip the values of the corresponding y coordinates.

Schrack [70] achieves the propagation of the carries in constant time by saving
the values of all of the y bits, replacing their corresponding bit positions with 1s,
performing the addition, and then restoring the y bits to their original values. This

technique is shown in the procedure SCHRACK_RIGHT given below.

procedure SCHRACK_RIGHT(P);
/* Determine the location code of the right neighbor of equal size of the square
quadtree node with location code P. This involves setting the CODE field of P. */
begin
value pointer location_code P;
path_array SAVED_BITS;
/* Save all the y bits */
SAVED_BITS<—AND(CODE(P) ,0DDBITMASK) ;
/* Load the y bit positions with 1s */
CODE (P) <—OR (CODE (P) ,ODDBITMASK) ;
/* Add one (move right) */
CODE (P) «+—CODE(P)+1;
/* Clear the y bit positions */
CODE (P) <—AND (CODE(P) ,EVENBITMASK) ;
/* Restore the original y bits */
CODE (P) «+—0OR(CODE(P) ,SAVED_BITS) ;
end;

In order to see how this algorithm works, consider the following example
where x = 11 and y = 6. The Morton code is 01101101. The values of the
odd bits are saved in SAVED_BITS which for this example is 00101000. The result

35

of the first OR with ODDBITMASK changes our Morton code to 11101111. Adding
one yields 11110000. The second AND with EVENBITMASK changes our Morton code
to 01010000. The last OR with SAVED_BITS restores our original y value, thereby
making our final Morton code 01111000. We can easily see that this corresponds to
a block with x = 12 and y = 6 which means that our algorithm did indeed obtain
the proper answer.

Procedures SCHRACK_LEFT, SCHRACK_UP, and SCHRACK_DOWN, not given here
(see [47]), use a similar technique to SCHRACK_RIGHT to calculate the left, up, and
down neighbors of equal size. In particular, SCHRACK_LEFT differs from SCHRACK_-
RIGHT by loading the y positions with Os instead of 1s (using EVENBITMASK instead of
ODDBITMASK), and by using subtraction instead of addition. The only difference be-
tween procedures SCHRACK_DOWN and SCHRACK_UP, and procedures SCHRACK_RIGHT
and SCHRACK_LEFT respectively, is the replacement of EVENBITMASK by ODDBITMASK
and ODDBITMASK by EVENBITMASK.

Using standard Morton codes for square quadtrees, we see that we can find a
neighbor by addition if we just skip every other bit in the Morton code. This method
does not work directly in the case of the triangle quadtree, although something
similar can be made to work. One problem is the lack of a direct correlation between
the coordinate system of the decomposition induced by the triangle quadtree and
the path array values of the locational codes. Nevertheless, the values of the path
array of the location code in a triangle quadtree can be manipulated in an analogous
manner to the values of the path array of the location code in a square quadtree

as shown in the next three subsections. For the sake of simplicity, our presentation

36

assumes that the nodes whose neighbors are being sought are at the deepest level in
the quadtrees corresponding to the faces. The only modification needed to handle
a node at depth ¢ is to add or subtract 2! instead of 1 when calculating the path

array component (i.e., the Morton code) of the location code.

2.4.2 Rightward Transitions

In this Section, we consider a transition from a triangle to its right neighbor.
Below, we look at the transitions from the different children. Transitions from a 01
child to a 10 child or from a 10 to a 11 child are achieved by adding one when the
neighboring triangles are siblings. On the other hand, the triangle quadtree analog
of a carry in the square quadtree arises when we make a transition from a 00 child
to a 01 child or when we move from a 11 child to a 00 child (see Figure 9). This
is the case when the neighboring triangles are not siblings. Making a transition
from a 11 child to a 00 child is not a problem, because this is handled easily by
the use of addition. Basically, we add one to the bit string represented by the path
array of the input and the carry automatically updates the parent node. However,
moving from a 00 child to a 01 child doesn’t work so simply. We want a carry but
we don’t naturally get one. One way to obtain the carry is to locate and replace all

occurrences of 00s with 11s so that either of the following two situations is properly

handled:

1. A carry will be generated if necessary (i.e., the 00 is at the extreme right of

the path array of the input)

37

2. A carry will be properly propagated (i.e., the 00 is the recipient of a carry).

In both of these situations, we can use simple addition to find the neighbor. Since
we have replaced all 00s with 11, once the addition has taken place, any 00s that
became 00 (i.e., were affected by the addition) must be set to their proper value
which is 01, while all 00s that remained 11 (i.e., were unaffected by the addition)

must be reset to their original value which is 00.

00Y10 00
0119119901891

—

Figure 9: Examples of rightward transitions that generate a carry (de-
noted by a rightward pointing arrow) as the neighboring triangles are
not siblings.

In order to specifically deal with the 00 case, we introduce the concept of an

tdmask. From a general standpoint, the idmask has two roles:

1. to identify the bit positions which have particular values, and

2. to aid in marking these bit positions with specific values, not necessarily the

same, while leaving the values of the remaining bit positions unchanged.

We use the naming convention ABIDXY for the idmasks where AB denotes the values of
the bit pattern pair whose positions of occurrence we seek to identify, and XY denotes
the values of the bit pattern pair that we use to mark these positions of occurrence.
The idmasks are formed by invoking a procedure MAKE_IDMASK (INPUT,AB,XY) which

sets all pairs of bits in ¢dmask for which the corresponding bit pairs in the path array

38

component of INPUT have value AB to XY, while the bits corresponding to the other
bit pairs are set to 00. The actual idmasks are built by calls to specialized routines
of the form MAKE_IDMASK_ABIDXY'.

In our example of a rightward movement, we use the idmask 00ID11. In
particular, the idmask is used to identify the bit positions where we need to modify
the path array value of the input before and after performing the addition. Once
these bit positions have been identified (i.e., the bit positions in the path array of
the input that have the bit pattern pair value 00), they are marked with the bit
pattern pair 11, while the remaining bit positions are left alone. We use the marking
pattern 11 because taking its exclusive or with any input sequence ensures that all
pairs of bits with value 00 are changed to 11 and all pairs of bits with other bit
patterns are left alone since the exclusive or of any bit value 7 with 0 is .

Note that virtually any pattern of bit pairs can be identified by forming the
appropriate idmask in constant time. For example, Figure 10 shows the effect of
some example idmasks on a bit string. The idmasks 00ID11, 01ID11, ?0ID11, and
71ID11 use the marking pair 11 to identify the bit pairs 00, 01, a don’t care followed
by 0, and a don’t care followed by 1, respectively. Of course, other marking pairs can
be used as well. In particular, we show 01IDO1 which uses the pair 01 to mark the
pair 01, 70ID10 which uses the pair 10 to mark the pair 70, and 71ID10 which uses

the pair 10 to mark the pair ?1. These idmasks are used in the remaining sections for

!Procedure MAKE_IDMASK can be implemented using a table lookup method that uses the values
of the parameters AB and XY to invoke the appropriate routine MAKE_IDMASK_ABIDXY. We do not

give the code for MAKE_IDMASK here.

39

leftward and vertical transitions, as well as transitions between neighboring triangles

that are in different base triangles of the icosahedron.

Idmask | Input=00011011 | Input=10000100 | Input=11010100
00ID11 11000000 00110011 00000011
01ID11 00110000 00001100 00111100
?70ID11 11001100 11110011 00000011
?71ID11 00110011 00001100 11111100
01IDO1 00010000 00000100 00010100
?70ID10 10001000 10100010 00000010
?71ID10 00100010 00001000 10101000

Figure 10: The result of applying idmask ABIDXY to an example input
value so that all occurrences of the two-bit pattern with value ‘AB’ are
replaced by the two-bit pattern with value ‘XY'.

In order to gain an understanding of how an idmask is generated, let us exam-
ine the generation of 00ID11. Identifying 00 within a given child bit pair whose left
and right bits are labeled leftbit and rightbit, respectively, requires a Boolean
expression such as NOT(leftbit OR rightbit). Notice that this expression returns
TRUE only when both bits are 0 (i.e., FALSE). The sequence of operations given in Fig-
ure 11 shows how this idmask is generated for a given path array. The SHIFT_RIGHT
operation aligns every leftbit with every rightbit. Step 2 performs the OR part
of our Boolean expression. The X0R in step 3 performs the NOT part of our Boolean
expression (EVENBITMASK is used because only the values of the even bits starting
at the leftmost position are relevant at this point). The AND removes any ‘noise’ left
in the odd bits. This completes the Boolean expression (i.e., step 4 in Figure 11),
but doesn’t give us the pair of 1s that we wanted. In particular, at this point, our
marking pattern is 01 which we wish to change to 11. This is done by applying
two more operations as follows: A SHIFT_LEFT moves all the right bits into the left

40

bit position. A final OR combines our unshifted bits (i.e., the result of step 4) with
our shifted bits to yield the marking pattern we want (i.e., 00ID11). This process

is implemented by procedure MAKE_IDMASK_00ID11.

Step Operation Results
0 Example Input 00011011 | 10000100 | 11010100
1 SHIFT_RIGHT O 00001101 | 01000010 | 01101010
2 1 0RO (i.e., Input) | 00011111 | 11000110 | 11111110
3 2 XOR EVENBITMASK 01001010 | 10010011 | 10101011
4 3 AND EVENBITMASK 01000000 | 00010001 | 00000001
5 SHIFT_LEFT 4 10000000 | 00100010 | 00000010
6 5 0R 4 11000000 | 00110011 | 00000011

Figure 11: Example showing the steps in the generation of idmask
00ID11 for some input values.

path_array procedure MAKE_IDMASK_00ID11(P);

/* Return the 00ID11 idmask corresponding to the path array component of location
code P. */

begin
value pointer location_code P;
path_array 00ID11;
/* Identify the location of all 00s */
00ID11<—0R(SHIFT_RIGHT (CODE(P)),CODE(P));
00ID11<+-X0OR(00ID11,EVENBITMASK) ;
00ID11<+-AND(OOID11,EVENBITMASK) ;
/* Duplicate bits in 00ID11 */
00ID11<+-0R(00ID11,SHIFT_LEFT(00ID11));
return(00ID11);

end;

Now, let us return to our task of finding a right neighbor of equal size.
This is achieved using the following strategy, which is implemented by procedure
CONSTANT_RIGHT given below. We first compute idmask 00ID11 by invoking proce-
dure MAKE_IDMASK_00ID11. Next, we prepare for the addition step by taking the
XOR of idmask 00ID11 with the input path array. When the adjacent triangles are
siblings, the neighbor is obtained by simple addition, and there is no carry. When

41

the adjacent triangles are not siblings, the carry that is generated by the addition
process is used to obtain the correct path array values for the location code of the
adjacent triangle. This situation arises whenever the current child is either 00 or 11
(recall Figure 9). When the current child is 11, the necessary carry is generated or
propagated by the addition process. However, when the current child is 00, no carry
is generated or propagated by the addition process, and thus we have to artificially
create a situation where a carry is generated or propagated.

This situation is created by using idmask 00ID11 to identify all 00s in the path
array of the input and to replace them with 11s before performing the addition of
1 so that the carry will be generated or propagated if necessary. After the addition,

we must take care of the following two special cases:

1. 11s not affected by the addition (which were originally 00s) must be changed

back to 00, and

2. 11s which were affected by the addition and thus became 00s (again, only the
ones which were originally 00s) must be changed to 01 (because 00 plus one

is 01).

The handling of these special cases is also facilitated by use of the idmask 00ID11.
In particular, once the addition has taken place, CONSTANT_RIGHT must perform the

following two tasks in order to work correctly:

1. identify the occurrences of 11 in the result which were not affected by the

addition or the propagation of a carry (they must be reset to 00), and

42

2. identify the occurrences of 00 in the result which were generated by an addition

or a propagation of a carry (they are set to 01).

The first task is performed by taking the XOR of the idmask with the result of
the addition, thereby creating a bit pattern which we term ¢. This has the effect of
leaving all pairs of bits that were not originally 00 alone since the exclusive or of any
bit value ¢ with 0 is 7. This also has the effect of resetting to 00 all 11s at positions
in the path array of the input which originally contained 00 (which is desired) and
resetting to 11 all 00s at positions in the path array of the input which originally
contained 00.

Once the first task has been completed, perform the second task. In particular,
all 11s which were affected by the addition and thus became 00s (again, only the
ones which were originally 00s) must be changed to 01 (because 00 plus one is 01).
This is achieved by constructing a mask which has a 11 at every pair of positions
in the path array of the input which did not contain 00 (obtained by taking the
complement of idmask 00ID11). Next, we OR this mask with EVENBITMASK (an
alternating bit pattern starting with 0 at its left end — that is, 010101...) which
results in marking the even positions, starting at the leftmost position, in the path
array of the input which were part of the original 00 pair with a 01. Taking the AND

of the resulting mask with ¢ yields the desired result.

procedure CONSTANT_RIGHT(P);
/* Determine the location code of the right neighbor of equal size of the triangle
quadtree node with location code P. This involves setting the CODE field of P. */
begin
value pointer location_code P;
path_array 00ID11;
00ID11+MAKE_IDMASK(P,00,11);

43

/* Change 00s to 11s while leaving the rest alone */

CODE(P) <+—XOR(CODE(P) ,00ID11);

/* Add one (move right) */

CODE(P) <—CODE(P)+1;

/* Restore unchanged 00s */

CODE (P) «+—XO0R (CODE(P) ,00ID11);

/* Fixup 00s that got hit with a carry */

CODE(P) <—AND (CODE(P) ,0R (COMPLEMENT (00ID11) ,EVENBITMASK)) ;
end;

Figure 12 shows the effects of procedure CONSTANT_RIGHT on various bit pat-
tern pairs. The four columns under the heading Without Carry show what happens
to each of the four possible child bit pattern pairs when these bits are not involved
in a carry. It is important that the final bit pattern pair values match the initial
bit pattern pair values for these four columns. For example, suppose we want to
know what happens to the bit pattern pair 01 in the location code with path array
value 77011077 during the execution of procedure CONSTANT_RIGHT. Since 01 is fol-
lowed by 10, it is impossible for the addition of one to the path array value of the
input to have any effect on 01. In other words, 01 cannot be the recipient of an
incoming carry (from the right). Therefore, the effect of procedure CONSTANT_RIGHT
on it and any other bit pattern pair values that are followed by a bit pattern pair
that does not generate a carry are found in the second column of Figure 12 (titled
Without Carry).

As another example, suppose we want to know what happens to the bit pattern
pair 10 in the location code with path array value 77101111 during the execution
of procedure CONSTANT_RIGHT. Since 10 is followed by all 1s, adding one to the

path array value will change the 10 to 11. In other words, 10 is the recipient of

44

an incoming carry (from the right). Therefore, the effect of procedure CONSTANT _-
RIGHT on it and any other bit pattern pair values that are followed by a bit pattern
pair that does generate a carry are found in the third column of Figure 12 (titled
With Carry). Notice that in this case, the final bit pattern pair values are one

greater than the initial bit pattern pair values (11 becomes 00).

Action Without Carry With Carry
Initial Bits |00 01 10 11 |00 01 10 11
XOR 00ID11 |11 01 10 11|11 01 10 11
Add One 11 01 10 11|00 10 11 0O
XOR 00ID11 |00 01 10 11|11 10 11 OO0
Fixup 00s 00 01 10 11 01 10 11 00

Figure 12: The effect of procedure CONSTANT _RIGHT on different bit
pattern pair values depending on whether or not there is an incoming
carry from the right.

As an example of the action of procedure CONSTANT_RIGHT, let us find the right
neighbor of the triangle whose location code has path array value 00011100. Let
RCODE refer to this path array value. 00ID11 is 11000011 since both both RCODE[1]
and RCODE[4] have value 00. The first XOR changes RCODE to 11011111. Adding
one changes RCODE to 11100000. The second XOR changes RCODE to 00100011. The
operation OR (COMPLEMENT (00ID11) ,EVENBITMASK) yields 01111101. The final AND

changes RCODE to 00100001. This example is illustrated in Figure 13a.

2.4.3 Leftward Transitions

In this Section, we consider a transition from a triangle to its left neighbor.
This transition differs from a rightward transition in that instead of adding 1 to
the path array value of the location code and propagating a carry when moving

45

00 01
)

10 10\11 01"

01 Wga

00)+ 00") 10
01 14

(a) (b) ()

Figure 13: Examples showing how to find neighbors of equal size: (a)
right neighbor of 00011100, (b) left neighbor of 01110001, (c) vertical
neighbor of 10100111.

between triangles that are not siblings, we subtract 1 from the path array value of
the location code and propagate a borrow when moving between triangles that are
not siblings?.

Below, we look at leftward transitions from the different children. The cases
corresponding to a transition from a 10 child to a 01 child or from a 11 to a 10 child
are simple as they are achieved by subtracting one when the neighboring triangles
are siblings. On the other hand, the leftward movement analog of a carry for the
rightward movement arises when we make a transition from a 01 child to a 00 child
or when we move from a 00 child to a 11 child (see Figure 14). This is the case when
the neighboring triangles are not siblings. Making a transition from a 00 child to a
11 child is not a problem, because this is handled easily by the use of subtraction.
Basically, we subtract one from the bit string represented by the path array and the

borrow automatically updates the parent node. However, moving from a 01 child

2We could also implement the subtraction by the addition of —1 using twos complement arith-
metic, in which case the discussion would be in terms of additions and carries rather than subtrac-

tions and borrows. In the interest of clarity, we use the latter.

46

to a 00 child doesn’t work so simply. We want a borrow but we don’t naturally get
one. One way to obtain the borrow is to locate and replace all occurrences of 01s

with 00s so that either of the following two situations is properly handled:

1. A borrow will be generated if necessary (i.e., the 01 is at the extreme right of

the path array of the input)

2. A borrow will be properly propagated (i.e., the 01 is the recipient of a borrow).

In both of these situations, we can use simple subtraction to find the neighbor.
Since we replaced all 01s with 00, once the subtraction has taken place, any 01s
that became 11 (i.e., were affected by the subtraction) must be set to their proper
value which is 00, while all 01s that remained 00 (i.e., were unaffected by the

subtraction) must be reset to their original value which is 01.

00%101100

0119119901191

-

Figure 14: Examples of leftward transitions that generate a borrow
(denoted by a leftward pointing arrow) as the neighboring triangles are
not siblings.

In order to specifically deal with the 01 case, we once again make use of
the concept of an idmask. As in the case of the rightward movement, the idmask
identifies the bit positions where we need to modify the path array value of the
input before and after performing the subtraction. However, unlike the rightward
movement, we must identify the bit positions in the path array of the input that
have value 01 and change them to 00 prior to the subtraction while leaving all other

47

bit pattern pairs alone. This is not easily done if we use the marking pattern of
11, as we did in the case of a rightward movement, since now our goal is to change
a bit pattern pair whose two values are not the same. The task is more easily
accomplished by observing that the result of taking the exclusive or of bit pattern
pair 01 with bit pattern pair 01 is 00, while the result of taking the exclusive or of
all other bit pattern pairs with bit pattern pair 00 leaves them unchanged. Thus
for leftward transitions we use an idmask called 01ID01 with a marking pattern of
01 for all occurrences of 01 in the path array of the input. It is formed by a call to

MAKE_IDMASK_01IDO1 given below.

path_array procedure MAKE_IDMASK_01IDO1(P);
/* Return the 01ID01 idmask corresponding to the path array component of location
code P. */
begin
value pointer location_code P;
path_array 01ID01;
/* Identify the location of all 01s */
01IDO1<—AND(COMPLEMENT (CODE(P)) ,0DDBITMASK) ;
01ID01«SHIFT_RIGHT(01ID01);
01ID01<—AND(01ID0O1,CODE(P)) ;
return(01ID01) ;
end;

Finding the left neighbor of equal size is achieved using procedure CONSTANT_-
LEFT given below. The difference from procedure CONSTANT_RIGHT is the use of
idmask 01IDO1 instead of 00ID11 and subtraction instead of addition. After sub-
traction, CONSTANT_LEFT must perform the following two tasks in order to work

correctly:

1. identify the occurrences of 00 in the result which were not affected by the
subtraction or the propagation of a borrow (they must be reset to 01), and

48

2. identify the occurrences of 11 in the result which were generated by a subtrac-

tion or a propagation of a borrow (they are set to 00).

The first task is performed by taking the XOR of the idmask with the result
of the subtraction thereby creating a bit pattern which we term ¢. This has the
effect of leaving all pairs of bits that were not originally 01 alone since the exclusive
or of any bit value ¢ with 0 is 4. This also has the effect of resetting to 01 all 00s
at positions in the path array of the input which originally contained 01 (which is
desired) and resetting to 10 all 11s at positions in the path array of the input which
originally contained 01.

Once the first task has been completed, perform the second task. In particular,
all 00s which were affected by the subtraction and thus became 11s (again, only the
ones which were originally 01s) must be changed to 00 (because 01 minus one is 00).
This is achieved by constructing a mask which has a 11 at every pair of positions
in the path array of the input which did not contain 01, and a 01 in the positions
that did contain 01 (obtained by taking the COMPLEMENT of the result of applying
SHIFT_LEFT by one bit position to idmask 01ID01). Taking the AND of the resulting

mask with ¢ yields the desired result.

procedure CONSTANT_LEFT(P);
/* Determine the location code of the left neighbor of equal size of the triangle
quadtree node with location code P. This involves setting the CODE field of P. */
begin
value pointer location_code P;
path_array 01ID01;
01IDO1<+MAKE_IDMASK(P,01,01);
/* Change 01s to 00s while leaving the rest alone */
CODE (P) +—XOR (CODE (P) ,01ID01) ;
/* Subtract one (move left) */
CODE(P)<«—CODE(P)—1;

49

/* Restore unchanged 01s */

CODE (P) +X0R (CODE(P) ,01ID01);

/* Fixup 01s that got hit with a borrow */

CODE (P) <—AND (CODE (P) , COMPLEMENT (SHIFT_LEFT (01ID01))) ;
end;

As an example of the action of procedure CONSTANT_LEFT, let us find the left
neighbor of the triangle whose location code has path array value 01110001. Let
LCODE refer to this path array value. 01ID01 is 01000001 since both both LCODE[1]
and RCODE[4] have value 01. The first XOR changes LCODE to 00110000. Subtracting
one changes LCODE to 00101111. The second XOR changes LCODE to 01101110.
The operation COMPLEMENT (SHIFT_LEFT(01ID01)) yields 01111101. The final AND

changes LCODE to 01101100. This example is illustrated in Figure 13b.

2.4.4 Vertical Transitions

In this Section, we consider a transition from a triangle to its vertical neighbor.
This is a very simple transition as once we locate the nearest common ancestor (i.e.,
the parent of the smallest containing sibling triangles of the neighboring triangles),
the reflection process for finding the neighbor results in no change in any of the other
elements of the path array of the input. In particular, recall from Figures 1a and 1b
that with exception of the path array component corresponding to the containing
sibling triangles, the path array value of the neighbor is the same as the path array
value of the triangle whose vertical neighbor is being sought. We made use of this
property when we calculated vertical neighbors in Section 2.2.

The vertical transition differs from the rightward and leftward transitions in

20

that the path array values of the inputs do not change except for the transition be-
tween sibling triangles. In particular, we need to make one, and only one, transition
from the least significant 00 child (i.e., right-most in the path array of the input)
to the least significant 10 child or vice versa (i.e., from the least significant 10 child
to the least significant 00 child). From an implementation standpoint, making a
vertical transition is quite simple. All we need to do is identify the rightmost ?0
child and complement the left bit of its bit pattern pair value. All remaining bit
pattern pairs are left alone.

In order to facilitate the identification of the rightmost 70 case, we once again
make use of the concept of an idmask. In this case, we use the idmask ?70ID10 which
identifies the bit positions in the path array of the input with value 70 and marks
them with 10. We use the marking pattern 10 because we want to complement the
left bit of a bit pattern pair value and this is easily done with the aid of an exclusive
or operation as the exclusive or of any bit value ¢ with 1 is the complement of 1.

Idmask ?0ID10 is formed by a call to MAKE_IDMASK_70ID10 given below.

path_array procedure MAKE_IDMASK_70ID10(P);

/* Return the 70ID10 idmask corresponding to the path array component of location
code P. */

begin
value pointer location_code P;
path_array 70ID10;
/* Identify the location of all 00s and 10s */
70ID10<—AND (COMPLEMENT (CODE(P)) ,EVENBITMASK) ;
?0ID10<+-SHIFT_LEFT(?0ID10);
return(?0ID10) ;

end;

Finding the vertical neighbor of equal size is achieved using procedure CONSTANT_-
VERTICAL given below. It must complement the left bit of the rightmost 70 in the

o1

original input.

CONSTANT_VERTICAL first computes idmask ?0ID10 by invoking procedure
MAKE_IDMASK_70ID10. Next, it creates a new mask m from 70ID10 which is zero at
all bit positions with the exception of the rightmost 10. This is achieved by taking
the COMPLEMENT of 70ID10. The result is a mask n which contains 11 in all bit-pair
positions to the right of the rightmost 10 of 70ID10 which itself has become 01 in
n. Adding 1 to n, thereby resulting in p, means that all 11s to the right of the
rightmost 01 have become 00s while the rightmost 01 has become a 10. All other
bit-pair positions in n are unchanged by the addition. The desired mask m is now
obtained by taking the AND of p and ?0ID10. This works because all items to the
left of the rightmost 10 in p are the complements of the corresponding items in
?0ID10 while all items to the right of the rightmost 10 in p are 0. The final step
is to take the XOR of m with the original input value. This has the correct effect of
complementing the left bit of the rightmost 70 in the original input value since the
exclusive or of any bit value ¢ with 1 is the complement of 7. This process yields the

same effect as the column labeled “Vert” in Figure 4 in Section 2.2.2.

procedure CONSTANT_VERTICAL(P);
/* Determine the location code of the vertical neighbor of equal size of the triangle
quadtree node with location code P. This involves setting the CODE field of P. */
begin
value pointer location_code P;
path_array 70ID10,MASK;
?0ID10<+MAKE_IDMASK(P,?0,10) ;
MASK<—COMPLEMENT (?70ID10) ;
/* Use carry to find what to update */
MASK<—MASK+1;
/* Clear out everything but carry */
MASK<—AND (MASK, 70ID10) ;
/* Update the path array */

52

CODE (P) +—XOR (CODE(P) ,MASK) ;
end;

As an example of the action of procedure CONSTANT_VERTICAL, let us find the
vertical neighbor of the triangle whose location code has path array value 10100111.
Let VCODE refer to this path array value. ?70ID10 is 10100000 since both VCODE[1]
and VCODE[2] have value ?0. The operation COMPLEMENT (?0ID10) yields 01011111
which is stored in variable MASK. Adding one to MASK yields 01100000. Applying
AND (MASK,?0ID10) changes MASK to 00100000. The final XOR of MASK with VCODE

changes VCODE to 10000111. This example is illustrated in Figure 13c.

2.4.5 Transitions Across Different Faces of the Icosahedron

Transitions between different base triangles of the icosahedron are relatively
simple. This situation arises if the addition steps in procedures CONSTANT_RIGHT
and CONSTANT_VERTICAL generated a carry past the leftmost end of the the path
array of the input or if the subtraction step in procedure CONSTANT_LEFT gener-
ated a borrow past the leftmost end of the path array of the input. In this case,
some sort of carry (borrow) or overflow indicator will be set. Testing this flag is
achieved by a simple one-cycle machine instruction on most computer architectures.
Alternatively, we could allocate one additional bit at the extreme left of the path
array of the input to indicate when an ‘overflow’ condition has occurred. For exam-
ple, consider the location code 0011110011. If we reserve an overflow bit, the code
becomes 00011110011. The result of applying CONSTANT_RIGHT to 00011110011

yields 10100000100. Since the overflow bit is 1, we need to update the identity of

93

the base triangle for this example. This is achieved in constant time by making use
of Figure 7 which was described in Section 2.3.

Vertical transitions between different faces of the icosahedron as well as left
and right transitions between nodes corresponding to the faces of the icosahedron
labeled 05 to 14 as shown in Figure 5 are straightforward in the sense that there is
no change in the algorithms. However, special care must be taken when making left
and right transitions between nodes corresponding to the faces of the icosahedron
labeled 00 to 04 and 15 to 19. In Section 2.3, we solved this problem by making
use of Figure 8. We now want to obtain the same result in worst-case constant
time. The issue here is that the left and right neighbors are “mirror reflections”. In
particular, recall that in the case of a right neighbor, 00 stays 00 while 11 reflects
to 01. 10 and 01 cannot occur along the right edge of a node. Similarly, in the case
of a left neighbor, 00 stays 00 while 01 reflects to 11. 10 and 11 cannot occur along
the left edge of a node.

These situations are handled in a similar manner to what was done for the
vertical transition in the sense that we make use of reflection. The difference is
that we must perform the reflection for all occurrences of 11 in the case of right
neighbors and all occurrences of 01 in the case of left neighbors. These situations
are identified by complementing the left bit of the bit pattern value of each ?1 child.
All remaining bit pattern pairs are left alone.

In order to facilitate the identification of all occurrences of 71, we once again
make use of the concept of an idmask. In this case, we use the idmask ?1ID10
which identifies the bit positions in the path array of the input with value 71 and

54

marks them with 10. Idmask ?1ID10 is formed by a call to MAKE_IDMASK_?71ID10
given below. Note the similarity to idmask 70ID10 used in finding vertical neighbors

(procedure CONSTANT_VERTICAL).

path_array procedure MAKE_IDMASK_71ID10(P);
/* Return the ?71ID10 idmask corresponding to the path array component of location
code P. */
begin
value pointer location_code P;
path_array 71ID10;
/* Identify the location of all 01s and 11s */
?1ID10<—AND(CODE (P) ,EVENBITMASK) ;
?1ID10+—SHIFT_LEFT(?1ID10);
return(?1ID10) ;
end;

The reflection is implemented by procedure CONSTANT_REFLECTION given be-
low. It is important to note that we only use procedure CONSTANT_REFLECTION when
the overflow bit is 1 which indicates that the nearest common ancestor is actually
the entire sphere. The correctness of CONSTANT_REFLECTION depends on its proper
handling of both left and right neighbors.

Observe that procedure CONSTANT_REFLECTION works for both left and right
neighbors. In the left neighbor case, since we are on the extreme left edge of one of
the triangles of the faces of the icosahedron, the path array value can only contain
bit pattern pairs with values 00 and 01. Thus all 01s are ‘marked’ by ?1ID10 (with
the pattern 10). Therefore, one application of XOR to the input with ?1ID10 changes
all 01s to 11s as desired. Similarly, in the right neighbor case, since we are on the
extreme right edge of one of the triangles of the faces of the icosahedron, the path
array value can only contain bit pattern pairs with values 00 and 11. Thus all 11s
are ‘marked’ by ?1ID10 (with the pattern 10). Therefore, one application of XOR to

95

the input with ?71ID10 changes all 11s to 01s as desired.

procedure CONSTANT_REFLECTION(P);

/* Determine the location code of the right or left neighbor of equal size of the
triangle quadtree node corresponding to a face of the icosahedron labeled 00 to
04 and 15 to 19 with location code P. This involves setting the CODE field of P.
*/

begin
value pointer location_code P;
path_array 71ID10;

?1ID10<—MAKE_IDMASK(P,?1,10);

/* Update the path array */

CODE (P) «+—X0R (CODE(P) ,?1ID10) ;
end;

We now present the complete algorithms for finding right, left, and verti-
cal neighbors. They work regardless of whether the neighbors are in the same
or different faces of the icosahedron. The algorithms are encoded by procedures
EXT_CONSTANT_LEFT, EXT_CONSTANT_RIGHT, and EXT_CONSTANT_VERTICAL. Proce-
dure EXT_CONSTANT_RIGHT first invokes procedure CONSTANT_RIGHT. If the overflow
bit is 1, we need to update the child type of the root; otherwise we are done. We
can update the root value using Figure 7. If the current child of the root cor-
responds to a face of the icosahedron labeled 00 to 04 or 15 to 19, we discard
the result of CONSTANT_RIGHT (only the overflow condition was significant) and in-
voke procedure CONSTANT_REFLECTION with our original input location code. At
this point we are done as we have found the right neighbor of the input location
code. Procedure EXT_CONSTANT_LEFT, not given here (see [47]), is equivalent to
procedure EXT_CONSTANT_RIGHT once we replace the call to CONSTANT_RIGHT by a
call to CONSTANT_LEFT, as well as the constant ‘RIGHT’ by ‘LEFT’. Procedure EXT_-

CONSTANT_VERTICAL just needs to call procedure CONSTANT_VERTICAL, and then

o6

update the root value using Figure 7 if overflow occurs.

procedure EXT_CONSTANT_RIGHT (P) ;

/* Determine the location code of the right neighbor of equal size of the triangle
quadtree node with location code P. The routine works regardless of whether or
not the neighbor is on the same face of the icosahedron. This involves setting
the CODE field of P. */

begin
value pointer location_code P;
pointer location_code NEWP;
preload integer array NEXTTOP[0:2][0:19] with Figure 7;
NEWP<—create (location_code) ;

CODE (NEWP) +—CODE(P) ;
LEV(NEWP) <—LEV (P) ;
/* Use top of CODE(NEWP) as overflow space */
CODE (NEWP) [0]+-0;
/* Find standard right neighbor */
CONSTANT_RIGHT (NEWP) ;
/* Check for overflow */
if CODE(NEWP) [0]=0 then
/* Restore root position to original value */
CODE (NEWP) [0]+CODE(P) [0]
else
begin
/* Check for nodes 0 to 4 and 15 to 19 */
if not(4<CODE(P) [0] and CODE(P) [0]<15) then
begin
/* Get a new copy of the original path array value */
CODE (NEWP) <—CODE (P) ;
/* Use reflection to get the neighbor */
CONSTANT_REFLECTION (NEWP) ;
end;
/* Set root position to appropriate neighbor */
CODE(NEWP) [0]<+—NEXTTOP[‘RIGHT’] [CODE(P) [0]1];
end;
/* Set CODE(P) to the new path array value */
CODE (P) <—CODE (NEWP) ;
end;

procedure EXT_CONSTANT_VERTICAL(P);

/* Determine the location code of the vertical neighbor of equal size of the triangle
quadtree node with location code P. The routine works regardless of whether or
not the neighbor is on the same face of the icosahedron. This involves setting

o7

the CODE field of P. */
begin

value pointer location_code P;

pointer location_code NEWP;

preload integer array NEXTTOP[0:2][0:19] with Figure 7;

NEWP<—create (location_code) ;

CODE (NEWP) <—CODE (P) ;

LEV (NEWP) +-LEV (P) ;

/* Use top of CODE(NEWP) as overflow space */

CODE (NEWP) [0]14-0;

/* Find standard vertical neighbor */

CONSTANT_VERTICAL (NEWP) ;

/* Check for overflow */

if CODE(NEWP) [0]=0 then
/* Restore root position to original value */
CODE (NEWP) [0]«-CODE(P) [0]

else
/* Set root position to appropriate neighbor */
CODE (NEWP) [0]<-NEXTTOP [‘VERTICAL’] [CODE(P) [0]];

/* Set CODE(P) to the new path array value */

CODE (P) <—CODE (NEWP) ;

end;

2.5 Neighbor Finding Using Octahedra and Tetrahedra

In this Section, we briefly describe how to perform neighbor finding when the
sphere is approximated by other Platonic solids with triangular faces. Section 2.5.1
describes the modifications to the algorithms for the icosahedron needed for the

octahedron while Section 2.5.2 deals with the tetrahedron.

2.5.1 Octahedron

Approximating a sphere by an octahedron requires eight of our triangle quadtrees.
We label the eight nodes corresponding to the roots of the quadtrees of the faces of

the octahedron using a 4-bit code ranging from 0000 (decimal 0) to 0111 (decimal

o8

7). We could have fit the eight values into just 3 bits, but we decided to use an even
number of bits because the machine word length is always an even number of bits.
The order in which the faces of the octahedron are numbered isn’t important since
tables will be used. Thus we have numbered the faces using a simple left-to-right
and top-to-bottom order (see Figure 15). Our numbering scheme has the property

that triangles 0 to 3 are tip-up, and 4 to 7 are tip-down.

Figure 15: Example showing the top-level triangle faces of an octahe-
dron.

The only modification with respect to step two of the algorithm in Section 2.2
is the use of a different relation NEXTOCT (Figure 16) to indicate how to update
CODE[0]. It summarizes the actions for all possible neighbors from Figure 15 and
replaces relation NEXTTAB in the algorithm for this case. This relation is used only
when the nearest common ancestor from step one is the entire sphere.

We now present the complete constant time algorithms for finding right, left,
and vertical neighbors which is analogous to those given in Section 2.4.5 for the
icosahedron in the sense that they work regardless of whether the neighbors are on
the same or different faces of the octahedron. The algorithms are encoded by pro-
cedure OCT_CONSTANT_LEFT, OCT_CONSTANT_RIGHT, and OCT_CONSTANT_VERTICAL.
Procedure OCT_CONSTANT_RIGHT first invokes procedure CONSTANT_RIGHT. If the

overflow bit is 1, we need to update the child type of the root; otherwise we

99

Child | Neighbor Direction
Type | Left | Right | Vert
0 3 1 4
1 0 2 5
2 1 3 6
3 2 0 7
4 7 5 0
5 4 6 1
6 5 7 2
7 6 4 3

Figure 16: NEXTOCT(Neighbor_Direction,Child_Type) indicating
neighbors of the triangles corresponding to the faces of the octahe-
dron.

are done. We update the root value using Figure 16. Also, we throw away the
result of CONSTANT_RIGHT (only the overflow condition was significant) and in-
voke procedure CONSTANT_REFLECTION with our original input location code. We
are now done as we have found the right neighbor of the input location code.
Procedure OCT_CONSTANT_LEFT, not given here (see [47]), is equivalent to proce-
dure OCT_CONSTANT_RIGHT once we replace the call to CONSTANT_RIGHT by a call
to CONSTANT_LEFT, as well as the constant ‘RIGHT’ by ‘LEFT’. Procedure OCT_-
CONSTANT_VERTICAL, not given here (see [47]), just needs to call procedure CONSTANT_-
VERTICAL, and then update the root value using Figure 16 if overflow occurs. It is
identical to procedure EXT_CONSTANT_VERTICAL once we replace table NEXTTOP (Fig-

ure 7) by NEXTOCT (Figure 16).

procedure OCT_CONSTANT_RIGHT(P) ;

/* Determine the location code of the right neighbor of equal size of the triangle
quadtree node with location code P. The routine works regardless of whether or
not the neighbor is on the same face of the octahedron. This involves setting the
CODE field of P. */

begin
value pointer location_code P;
pointer location_code NEWP;

60

preload integer array NEXTOCT[0:2][0:7] with Figure 16;
NEWP<—create (location_code) ;
CODE (NEWP) +—CODE(P) ;
LEV(NEWP) <—LEV (P) ;
/* Use top of CODE(NEWP) as overflow space */
CODE (NEWP) [0]+-0;
/* Find standard right neighbor */
CONSTANT_RIGHT (NEWP) ;
/* Check for overflow */
if CODE(NEWP) [0]=0 then
/* Restore root position to original value */
CODE (NEWP) [0]«+CODE(P) [0]
else
begin
/* Get a new copy of the original path array value */
CODE (NEWP) +—CODE(P) ;
/* Use reflection to get the neighbor */
CONSTANT_REFLECTION (NEWP) ;
/* Set root position to appropriate neighbor */
CODE (NEWP) [0]«+—NEXTOCT [‘RIGHT’] [CODE(P) [0]1];
end;
/* Set CODE(P) to the new path array value */
CODE (P) +—CODE (NEWP) ;

end;

2.5.2 Tetrahedron

Approximating a sphere by a tetrahedron requires four of our triangle quadtrees.

We label the four nodes corresponding to the roots of the quadtrees of the faces of
the tetrahedron using a 2-bit code ranging from 00 (decimal 0) to 11 (decimal 3).
The order in which the triangle faces of the tetrahedron are numbered isn’t impor-

tant since tables will be used. Thus we have numbered the faces using the numbering

scheme of Figure 1b (see Figure 17).

The only modification with respect to step two of the algorithm in Section 2.2

is the use of a different relation NEXTTET (Figure 18) to indicate how to update

61

Figure 17: Example showing the top-level triangle faces of a tetrahe-
dron.

CODE[0]. It summarizes the actions for all possible neighbors from Figure 17 and
replaces relation NEXTTAB in the algorithm for this case. This relation is used only

when the nearest common ancestor from step one is the entire sphere.

Child | Neighbor Direction

Type | Left | Right | Vert
0 1 3 2
1 0 2 3
2 1 3 0
3 2 0 1

Figure 18: NEXTTET(Neighbor Direction,Child_Type) indicating
neighbors for the triangles corresponding to the faces of the tetra-
hedron.

If we examine the triangle adjacencies for the tetrahedron (see Figure 19),
then we notice that some of the transitions result in a “flipped” result. Compensat-
ing for this “flipped” result isn’t a significant problem since procedure CONSTANT_-
REFLECTION already does the required work. We just need to make sure that we
call CONSTANT_REFLECTION whenever we make a transition between faces 0 and 1,
0 and 3, or 1 and 3.

We now present the complete constant time algorithms for finding right, left,
and vertical neighbors which is analogous to those given in Section 2.4.5 for the ico-

sahedron in the sense that they work regardless of whether the neighbors are on the

62

Figure 19: Example showing the triangle adjacencies of the tetrahe-
dron.

same or different faces of the tetrahedron. The algorithms are encoded by procedure
TET_CONSTANT_LEFT, TET_CONSTANT_RIGHT, and TET_CONSTANT_VERTICAL. Proce-
dure TET_CONSTANT_RIGHT first invokes procedure CONSTANT_RIGHT. If the overflow
bit is 1, we need to update the child type of the root; otherwise we are done. We
can update the root value using Figure 18. If the current child of the root corre-
sponds to the faces of the tetrahedron labeled 0 or 3, then we invoke procedure
CONSTANT_REFLECTION with the current location code. We are now done as we have
found the right neighbor of the input location code. Procedure TET_CONSTANT_-
LEFT, not given here (see [47]), is equivalent to procedure TET_CONSTANT_RIGHT
once we replace the call to CONSTANT_RIGHT by a call to CONSTANT_LEFT, as well as
the constant ‘RIGHT’ by ‘LEFT’. We also check for children 0 and 1 instead of 0 and
3. Procedure TET_CONSTANT_VERTICAL, not given here (see [47]), is also equivalent
to procedure TET_CONSTANT_RIGHT once we replace the call to CONSTANT_RIGHT by
a call to CONSTANT_VERTICAL, as well as the constant ‘RIGHT’ by ‘VERTICAL’. We

also check for children 1 and 3 instead of 0 and 3.

63

procedure TET_CONSTANT_RIGHT(P);

/* Determine the location code of the right neighbor of equal size of the triangle
quadtree node with location code P. The routine works regardless of whether or
not the neighbor is on the same face of the tetrahedron. This involves setting
the CODE field of P. */

begin
value pointer location_code P;
pointer location_code NEWP;
preload integer array NEXTTET[0:2][0:3] with Figure 18;
NEWP<—create (location_code) ;

CODE (NEWP) <—CODE (P) ;
LEV(NEWP) <—LEV(P) ;
/* Use top of CODE(NEWP) as overflow space */
CODE (NEWP) [0]+4-0;
/* Find standard right neighbor */
CONSTANT_RIGHT (NEWP) ;
/* Check for overflow */
if CODE(NEWP) [0]1=0 then
/* Restore root position to original value */
CODE (NEWP) [0] «+-CODE(P) [0]
else
begin
/* Check for nodes 0 or 3 */
if CODE(P) [0]=0 or CODE(P)[0]=3 then
/* Use reflection to get the neighbor */
CONSTANT_REFLECTION (NEWP) ;
/* Set root position to appropriate neighbor */
CODE(NEWP) [0]«+—NEXTTET[‘RIGHT’] [CODE(P) [0]];
end;
/* Set CODE(P) to the new path array value */
CODE (P) +—CODE (NEWP) ;
end;

2.6 Finding Neighbors of Greater or Equal Size

The algorithms in Sections 2.2-2.5 assumed that the neighbors are of equal
size. When the neighbors are not of equal size, we need to do a bit more work.
In essence, given node P, our algorithms calculate the address of a neighbor () in

direction D of equal size. This is not a problem if all of the nodes of the quadtrees

64

are of equal size. In general, however, there is no guarantee that such a neighbor @)
actually exists if nodes can be of differing sizes. As mentioned in Section 1.1, the
nodes are usually kept in a list L that is sorted by numbers formed by concatenating
the base triangle number with the path array value and the depth from left to right.

If) is not a member of L, there are two possibilities. The first is that the
actual neighboring node of P in direction D is greater in size than P. In this case,
we find it by returning the node associated with the largest value in L which is less
than or equal to the value associated with (). The second possibility arises when
there are many nodes adjacent to P in direction D. In this case, there is no single
neighboring node, and we return the analog of a nonleaf node in a conventional
quadtree at the same depth as P with the same path array value as Q).

It is important to note that the calculation of the neighbor of equal size is
what is achieved in worst-case constant time. The calculation of the neighboring
node when all sizes are permitted requires a search through the list L. This search
is speeded up by maintaining L using an index such as a B-tree [9]. In fact, this is
how the list is usually implemented (e.g., [1]). In this case, the search takes time
logarithmic in the size of L, which is the total number of nodes in the triangle

hierarchy.

2.7 Comparison with Method based on Icosahedron

Our coding scheme is different from that proposed by Fekete [23]. In particu-

lar, our scheme was chosen to be simpler and more regular (and also stable under

65

resolution doubling), thereby making it easier to traverse the tree, locate children,
locate siblings, etc. In order to see this, we now explain Fekete’s method.

Fekete [23] proposed a location code whose path array elements are labeled
according to the following labeling convention, as illustrated in Figure 20. Label the
vertices of the parent A, B, and C. Label the midpoints as A’ (between B and C), B’
(between A and C), and C’ (between A and B). The children can be determined by
the vertices and midpoints of the parent.

Children are labeled as follows:

Triangle A B’C’: 1
Triangle A’B C’: 2
Triangle A’B’C : 3
Triangle A’B’C’: 4

C A’ B

Figure 20: Fekete's labeling scheme.

See Figure 21 for an example of a tree encoded using this scheme. Notice how
the positions of the labels change at each level in the tree. The labeling scheme was
designed so that the label sequences for adjacent triangles will differ in exactly one
symbol. Using the terminology of Section 2.2.1, this symbol is in the position of the
child of the nearest common ancestor of the two adjacent triangles. This makes the
determination of triangle adjacency somewhat simpler, but doesn’t guarantee that
only adjacent triangles will differ in exactly one symbol. If direction is important,

this labeling scheme must keep up with the current orientation since the relative

66

orientations of the triangles change at each level of subdivision. This is particularly
important if we want to know which neighbor we are finding. Also, orientation for
this labeling scheme is not as simple as tip-up or tip-down, since two different ‘tip-up’
triangles may have different orientations. A triangle’s first vertex (labeled A) may be
its top-most point, while another triangle’s first vertex may be its bottom-left-most

point.

111

114
113 112

143 142
123 144 132

124 141 134
122 121 131 133

422 421 431 433
322 424 441 434 233

324 423 444 432 234
321 323 443 442 232 231

341 343 413 412 242 241
331 344 313 414 212 244 221

334 342 314 411 214 243 224
333 332 312 311 211 213 223 222

Figure 21: Tree using Fekete's scheme.

Using this labeling scheme, where triangles are determined by their three ver-
tices and children are determined relative to their parents, we can calculate the

locations of a child’s vertices by computing the midpoints of specific line segments

67

(between the parent’s vertices. The midpoint between two vertices pt1 and pt2 is

denoted by MIDPOINT (pt1,pt2).

procedure FEKETE_GET_CHILD_1(PA,PB,PC,CA,CB,CC);
/* Return in CA, CB, and CC the locations of the vertices of the 1 child of the parent
having vertices at locations PA, PB, and PC. */

begin
value point PA,PB,PC; /* Parent vertices */
reference point CA,CB,CC; /* Child vertices */
CA+PA;

CB<-MIDPOINT (PA,PC);
CC<+MIDPOINT(PA,PB);
end;

procedure FEKETE_GET_CHILD_2(PA,PB,PC,CA,CB,CC);
/* Return in CA, CB, and CC the locations of the vertices of the 2 child of the parent
having vertices at locations PA, PB, and PC. */
begin
value point PA,PB,PC; /* Parent vertices */
reference point CA,CB,CC; /* Child vertices */
CA<MIDPOINT (PB,PC) ;
CB<PB;
CC<+—MIDPOINT(PA,PB);
end;

procedure FEKETE_GET_CHILD_3(PA,PB,PC,CA,CB,CC);
/* Return in CA, CB, and CC the locations of the vertices of the 3 child of the parent
having vertices at locations PA, PB, and PC. */
begin
value point PA,PB,PC; /* Parent vertices */
reference point CA,CB,CC; /* Child vertices */
CA<MIDPOINT (PB,PC) ;
CB<—MIDPOINT (PA,PC);
CC<+-PC;
end;

procedure FEKETE_GET_CHILD_4(PA,PB,PC,CA,CB,CC);
/* Return in CA, CB, and CC the locations of the vertices of the 4 child of the parent
having vertices at locations PA, PB, and PC. */
begin
value point PA,PB,PC; /* Parent vertices */
reference point CA,CB,CC; /* Child vertices */
CA«+MIDPOINT(PB,PC);

68

CB«+MIDPOINT (PA,PC);
CC<«—MIDPOINT(PA,PB);
end;

Fekete [23] prefers to perform neighbor finding by walking through the path
array of the location code from top to bottom (i.e., from left to right, or equivalently
from large node to small node), building a potential path array (termed a path from
now on) to the neighbor. This path consists of directions which are expressed as the
labels of the children. Upon reaching the end of the path array of the input location
code, the potential path is actually the complete path to the neighbor. In order
to determine the direction to the neighbor (e.g., to make sure that we get the left
neighbor), care must be taken to keep track of the global directions. This amounts
to six different orientations on account of the six possible placements of the labels 1,
2, and 3 within each triangle. A state table is needed to keep track of the changes
at each level.

Fekete makes use of the concept of an “open direction”, where direction d is
said to be open if both the d-neighbor s of triangle ¢ and ¢ itself are in the same
base triangle of the icosahedron. In particular, Fekete looks for “open directions” as
each element of the path is examined. An open direction d with respect to triangle
t is said to be “new” if the d-neighbor s of ¢ is a brother of ¢ (i.e., s and ¢ have the
same parent). The four possible configurations leading to the discovery of a new
open direction are shown in Figure 22. Old open directions are directions in which
neighbors were already discovered while processing previous elements of the path

(corresponding to larger nodes or triangles). Notice that all directions are always

69

¢4. >

(<) (d)

Figure 22: (a) Open direction A; (b) open direction B; (c) open direc-
tion C; (d) all three directions are open.

specified relative to the entire region represented by the tree corresponding to one of
the 20 base triangles of the icosahedron, and not relative to the individual triangles
at each level in the tree since these directions are constantly changing.

Fekete’s algorithm treats the path array as a string of symbols, where the left-
most symbol corresponds to the root of a base triangle of the icosahedron containing
the triangle whose neighbor is being sought. This string is processed from left to right
so that the right-most symbol corresponds to the subdivision leading to the smallest
possible triangle. At any given level, there is a relationship between the parent node
and the child node corresponding to the current symbol in the path string. If the

current symbol is a 1, 2, or 3, this relationship can be seen in Figure 22a-—c, based

70

on where the child (marked by the large dot) is located relative to the parent. In
these cases, exactly one new open direction (marked by the arrow in the Figure)
is discovered at this level of the algorithm. Whenever this occurs, the neighbor in
the new open direction can be determined by copying the substring of the original
input path string up to the current symbol (locating the parent) and appending a 4
because the brother is 4 in all three cases. If an open direction is found to be “new”
at this level, it is considered a new open direction even if it was encountered earlier
in the algorithm (which would technically also make it an old open direction). We
call this Rule 1.

Any open directions from previous levels of the algorithm become old open
directions. An equal-size neighbor will always exist in these directions. None of
the situations shown in Figure 22 apply in this case because the node and its cor-
responding neighbors are not brothers. Whenever this occurs, the neighbors in old
open directions can be determined by appending the current symbol to the potential
neighbor string from the previous level. We call this Rule 2.

If the current symbol is a 4, then the relationship between the parent node
and the child node can be seen in Figure 22d. In this case, all three directions are
considered new open directions (marked by the arrows in the Figure) because all
three were just discovered at this level of the algorithm. We call this Rule 3.

These rules are essential to Fekete’s algorithm. They are used extensively in
the examples which follow. A rules summary can be found in Figure 23. All open
directions encountered are kept on a list so that border cases can be identified. Any

missing directions reveal which borders are adjacent to the triangle. Interestingly,

71

Fekete’s algorithm can be summarized as processing the path array of the input
looking for the rightmost (and hence final) position where Rule 1 (i.e., the rightmost
open direction) or Rule 3 can be applied. Using the terminology of Section 2.2.1,
this is the position of the child of the nearest common ancestor of the two adjacent

triangles. It is the only one which is changed.

Rule Condition Action

1 The current symbol is not | Copy the substring of the original path
4 and the direction being | string up to the current symbol and append
considered matches the | a 4.
new open direction.
2 The current symbol is | Take the current path string of the potential
not 4 and the direction | neighbor and append the current symbol.
being considered matches
an old open direction.
3 The current symbol is 4 | Copy the substring of the original path
(thus there are three new | string up to the current symbol and append
open directions). a 1, 2, or 3 as appropriate for the direction
being considered.

Figure 23: List of rules used in Fekete's algorithm.

Earlier we mentioned that Fekete needs to keep track of global directions since
the individual triangles at each level can have many orientations. This affects the
determination of open directions as well as the appended symbols from Rule 3. If
we look again at Figure 20 and the labeling of children, the following observations
can be made. Our initial global directions are A, corresponding to vertical of center;
B, corresponding to right of center; and C, corresponding to left of center. We’ll
abbreviate this as A=V, B=R, and C=L. Notice that for parent triangle ABC, child 1 is
AC’B’ (in clockwise order). Since B and C switch positions, the directions associated

with them should be switched so that now A=V, B=L, and C=R. Thus the children of

72

child 1 are oriented as follows. Child 14 is in the center because this child is always
in the center. Child 11 is the vertical brother of 14 because the vertical orientation
of 1 is the same as that of its parent. Child 12 is the left brother of 14, because
the left to right directions of 1 are the opposite of those of the parent and 2 was on
the right in the parent. Child 13 is the right brother of 14 again because the left to
right directions are reversed and 3 was on the left in the parent. The other children
have similar analyses. Notice that with respect to parent triangle ABC, child 2 is
C’BA’. Since A and C switch positions, the directions associated with them should
also be switched so that A=V, B=R, and C=L would become A=L, B=R, and C=V. Child
3 is B’A’C, so that A=V, B=R, and C=L would become A=R, B=V, and C=L. For child 4
every vertex changes. Of course, vertical stays vertical (whether top or bottom), so
only the two marked L and R change. Thus A=V, B=R, and C=L would become A=V,
B=L, and C=R.

The global positions of the children are most useful in these algorithms. Child
4 is always in the center, so our three global directions are relative to child 4. In
effect, we need to invert or reverse our previous associations. Also, since vertex A
corresponds to child 1, B to 2, and C to 3, we use the appropriate numbers instead of
the letters. We abbreviate vertical as V, left as L, and right as R. Let’s suppose that
our base triangle is oriented as in Figure 20 so that V=1, L=3, and R=2. Notice that
we can also get this by reversing the equalities in A=V, B=R, and C=L to get V=A, L=C,
and R=B; then, substituting numbers for letters, we get V=1, L=3, and R=2. From the
previous paragraph we know that child 1 switches B and C. Since B corresponds to

2 and C to 3, we switch 2 and 3 so triangle 1 has global status V=1, L=2, and R=3. If

73

we next look at child 2 of 1, then we know that we have to switch 1 and 3 for child
2, so that triangle 12 has global status V=3, L=2, and R=1. If we next look at child 3
of 12, we know that we have to switch 1 and 2 for child 3, so that triangle 123 has
global status V=3, L=1, and R=2. Finally, if we look at child 4 of 123, we know from
the previous paragraph that we need to switch L and R. Therefore, triangle 1234
has global status V=3, L=2, and R=1. The rules used for each of the four children are

summarized in Figure 24.

Child Label Action Example
1 Swap 2 and 3 | V=3 L=2 R=1 becomes V=2 L=3 R=1
2 Swap 1 and 3 | V=1 L=2 R=3 becomes V=3 L=2 R=1
3 Swap 1 and 2 | V=3 L=2 R=1 becomes V=3 L=1 R=2
4 Swap L and R | V=1 L=2 R=3 becomes V=1 L=3 R=2

Figure 24: Rules used to keep track of global status.

C

B A

Figure 25: Layout for V=3, L=2, and R=1.

New open directions are easy to determine from the global status. Say, for
example, that V=3, L=2, and R=1, as shown in Figure 25. If we are considering child
1, then 1 is to the right of 4 because R=1. Therefore, 4 is the only brother of 1 and
4 is to the left of 1, so left is the only new open direction for child 1. If we are
considering child 2, then 2 is to the left of 4 because L=2. Therefore, 4 is the only

brother of 2 and 4 is to the right of 2, so right is the only new open direction for child

74

2. Likewise, with child 3, 3 is vertical of 4 because V=3. Therefore, 4 is the only
brother of 3, so vertical is the only new open direction for child 3. Remembering
that child 4 always invokes Rule 3 means that when V=3, L=2, and R=1, the paths
to the three brothers terminate with 3 for vertical, 2 for left, and 1 for right.

To gain a better understanding of the rules in Figure 23, consider the following
example. Suppose we have a current path string of 1 and we are considering the next
symbol which is 2 (i.e., triangle 12). Our current position can be found in Figure 21.
If we look for an open direction with respect to 12, we see that Figure 22¢ applies
because triangle 12 holds the ‘large dot’ position in this figure relative to triangle 1.
If we are looking for a right neighbor, Rule 1 should be used because the direction
being considered (right) matches the new open direction (the arrow in Figure 22c
points to the right). Rule 1 indicates that the same-size neighbor is 14. This can
be verified using Figure 21.

On the other hand, suppose we are looking for a vertical neighbor of 12 and
we are currently looking at the symbol 2. We know from the previous level that
vertical was an open direction and that the potential vertical neighbor was 4. This
was the case because we were previously looking at the path string 1, in which case
the vertical direction was open. At this point (i.e., when looking at the symbol
2), Rule 2 should be used because the direction being considered (vertical) doesn’t
match the new open direction (right), but it does match an old open direction. Rule
2 indicates that we can get the same-size neighbor by appending the current symbol
of 2 to the previous potential pathname string of 4. This gives a result of 42 as the

vertical neighbor. This can be verified using Figure 21.

75

It is important to note that we cannot find a left neighbor for 12 because left
is neither a new nor an old open direction. Notice that triangle 12 doesn’t have a
left neighbor within Figure 21. This is a border case which has to be dealt with
differently.

Now, let us modify our example so that our current path string is 1 while the
next symbol is 4 (i.e., triangle 14). Our current position can be found in Figure 21.
If we look for an open direction which corresponds to this position, we see that
Figure 22d applies because triangle 14 contains the ‘large dot’ position with respect
to triangle 1. At this point, Rule 3 should be used regardless of which neighbor we
are trying to find. Rule 3 indicates that the same size neighbors all start with 1. In
fact, these neighbors are 11 for vertical, 12 for left, and 13 for right. This can be
verified using Figure 21.

At this point, let us consider two complete examples. Let FKCODE1 be 123 and
let FKCODE2 be 143. Fekete labels the global directions based on the orientation of
the root triangle. For these examples, global direction A (i.e. the direction toward
the edge across from vertex A) corresponds to the vertical neighbor, global direction
B (i.e., the direction toward the edge across from vertex B) corresponds to the left
neighbor, and global direction C (i.e., the direction toward the edge across from
vertex C) corresponds to the right neighbor.

The results for our first example are found in Figure 26. Let us first examine
the vertical neighbor case. Our initial global status is noted in the Figure with V=1,
L=3, and R=2 (recall Figure 20). Fekete’s algorithm starts by examining the first

symbol. The first symbol in FKCODE1 is 1. This is not a 4 so we look for a new

76

Partial Potential Neighbor | Open Directions Global
Path String | Vert | Left | Right New 01ld VIL|R
1 4 - - Vert | - 113]2
12 42 - 14 Right | Vert 1123
123 124 | - 143 Vert | Vert+Right |3 |2 |1

Figure 26: Steps taken while finding neighbors of 123 using Fekete's
method.

open direction. Since V=1, our only open global direction is vertical (A). A single
new open direction is discovered and it is vertical (A), so we copy the substring of
the original path string up to the current symbol (which is empty) and append a 4
(Rule 1). Substring (empty) append 4 yields 4 (see Figure 26).

The algorithm continues by examining the next symbol. We first change the
global status to V=1, L=2, and R=3 because we have just finished processing child
1. The next symbol in FKCODE1 is 2. This is not a 4, so we look for a new open
direction. Since L=2, our only open global direction is to the right (C as 4 is to the
right of 2). As the new open direction is to the right (C) and not vertical (4), we
just append the symbol 2 to the current string (Rule 2). String 4 append 2 yields
42 (see Figure 26).

Next, the algorithm examines the last symbol. We first change the global
status to V=3, L=2, and R=1 because we have just finished processing child 2. The
last symbol in FKCODE1 is 3. This is not a 4 so we look for a new open direction.
Since V=3, our only open global direction is vertical (A as 4 is vertical of 3). A single
new open direction is discovered and it is vertical (A), so we copy the substring of
the original path string up to the current symbol (which is 12) and append a 4

(Rule 1). Substring 12 append 4 yields 124 (see Figure 26). Therefore, the vertical

7

neighbor of FKCODE1 is 124. This can be seen in Figure 21.

Now let us examine the left neighbor case. This is quite simple in that there is
never a left neighbor. This can be easily seen by examining the result of finding the
vertical neighbor, where we recall that we never encountered the left direction (B). In
particular, the last entry in the ‘Old Open Directions’ column of Figure 26 doesn’t
include direction left (B), so this is actually a border case. Therefore, FKCODE1
doesn’t have a left neighbor inside the triangle.

We conclude by examining the right neighbor case. From our analysis of
the vertical neighbor case we saw that this case does not arise until after Fekete’s
algorithm processes the second symbol. At this point our global status is V=1, L=2,
and R=3, corresponding to child 1. The second symbol in FKCODE1 is 2. This is not
a 4 so we look for a new open direction. Since L=2, our only open global direction
is to the right (C as 4 is to the right of 2). A single new open direction is discovered
and it is to the right (C), so we copy the substring of the original path string up to
the current symbol (which is 1) and append a 4 (Rule 1). Substring 1 append 4
yields 14 (see Figure 26).

The algorithm continues by examining the last symbol. We first change the
global status to V=3, L=2, and R=1 because we have just finished processing child
2. The last symbol in FKCODE1 is 3. This is not a 4 so we look for a new open
direction. Since V=3, our only open global direction is vertical (A as 4 is vertical
of 3). As the new open direction is vertical (A) and not to the right (C), we just
append the symbol 3 to the current string (Rule 2). String 14 append 3 yields 143

(see Figure 26). Therefore, the right neighbor of FKCODE1 is 143. This can be seen

78

in Figure 21.

Partial Potential Neighbor | Open Directions | Global
Path String | Vert | Left | Right New 01d VIL|R
1 4 - - Vert | - 113]2
14 11 12 13 All Vert 1123
143 113 | 123 | 144 Right | A1l 1132

Figure 27: Steps taken while finding neighbors of 143 using Fekete's
method.

The results for our second example are found in Figure 27. Let us first examine
the vertical neighbor case. Our initial global status is noted in the figure as V=1,
L=3, and R=2 (recall Figure 20). Fekete’s algorithm starts by looking at the first
symbol. The first symbol in FKCODE2 is 1. This is not a 4 so we look for a new
open direction. Since V=1, our only open global direction is vertical (A). A single
new open direction is discovered and it is vertical (A), so we copy the substring of
the original path string up to the current symbol (which is empty) and append a 4
(Rule 1). Substring (empty) append 4 yields 4 (see Figure 27).

The algorithm continues by examining the next symbol. We first change the
global status to V=1, L=2, and R=3 because we have just finished processing child
1. The next symbol in FKCODE2 is 4 which means that there are three new open
directions. As all three directions are now open, we copy the substring of the original
path string up to the current symbol (which is 1) and append a 1 for the vertical
case (Rule 3) because V=1. Substring 1 append 1 yields 11 (see Figure 27).

Next, the algorithm examines the last symbol. We first change the global
status to V=1, L=3, and R=2 because we have just finished processing child 4. The
last symbol in FKCODE2 is 3. This is not a 4 so we look for a new open direction.

79

Since L=3, our only open global direction is to the right (C as 4 is to the right of 3).
As the new open direction is to the right (C) and not vertical (A), we just append
the symbol 3 to the current string (Rule 2). String 11 append 3 yields 113 (see
Figure 27). Therefore, the vertical neighbor of FKCODE2 is 113. This can be seen in
Figure 21.

Now let us examine the left neighbor case. In our analysis of the vertical
neighbor case, we saw that this situation does not arise until after Fekete’s algorithm
processes the second symbol. At this point our global status is V=1, L=2, and R=3,
corresponding to child 1. The second symbol in FKCODE2 is 4, which means that
there are three new open directions. As all three directions are now open, we copy
the substring of the original path string up to the current symbol (which is 1) and
append a 2 for the left neighbor case (Rule 3) because L=2. Substring 1 append 2
yields 12 (see Figure 27).

The algorithm continues by examining the last symbol. We first change the
global status to V=1, L=3, and R=2 because we have just finished processing child
4. The last symbol in FKCODE2 is 3. This is not a 4 so we look for a new open
direction. Since L=3, our only open global direction is to the right (C as 4 is to the
right of 3). As the new open direction is to the right (C) and not to the left (B), we
just append the symbol 3 to the current string (Rule 2). String 12 append 3 yields
123 (see Figure 27). Therefore, the left neighbor of FKCODE2 is 123. This can be
seen in Figure 21.

We conclude by examining the right neighbor case. In our analysis of the

vertical neighbor case, we saw that this situation does not arise until after Fekete’s

80

algorithm processes the second symbol. At this point, our global status is V=1, L=2,
and R=3, corresponding to child 1. The second symbol in FKCODE2 is 4, which means
that there are three new open directions. As all three directions are now open, we
copy the substring of the original path string up to the current symbol (which is
1) and append a 3 for the right neighbor case (Rule 3) because R=3. Substring 1
append 3 yields 13 (see Figure 27).

Next, the algorithm examines the last symbol. We first change the global
status to V=1, L=3, and R=2 because we have just finished processing child 4. The
last symbol in FKCODE2 is 3. This is not a 4, so we look for a new open direction.
Since L=3, our only open global direction is to the right (C as 4 is to the right of
3). A single new open direction is discovered and it is to the right (C), so we copy
the substring of the original path string up to the current symbol (which is 14) and
append a 4 (Rule 1). Substring 14 append 4 yields 144 (see Figure 27). Therefore,
the right neighbor of FKCODE2 is 144. This can be seen in Figure 21.

If Fekete [23] had used a more traditional quadtree-like approach to neighbor
finding (e.g., [67]), his technique would have been along the following lines. To find
the nearest common ancestor (step one), he would somehow have to track all the
changes in orientation so he could determine when he finds the proper ancestor. Next
(step two), he would have to find the child of the nearest common ancestor which
contained the neighbor (again making use of the orientation). Finally, when step
three is executed there is no more work to do, as the label sequences for neighbors
differ by exactly one symbol and this symbol was updated in step 2. This is a direct

result of the fact that there is a change in orientation at each level of the triangle

81

quadtree. As we shall now see, this advantage doesn’t extend to the domain of the
entire sphere.

Finding neighbors in different base triangles of the polyhedron (e.g., in an
icosahedron) is cumbersome using Fekete’s method. The problem is that there is no
relationship between the ways in which the elements of the adjacent base triangles
are labeled. In other words, they are labeled independently of each other, although
each base triangle is labeled in a manner consistent with what we have described
in Figure 20. Thus we need to use some relationship between the orientations used
for the adjacent base triangles of the icosahedron. Fekete [23] suggests that this
can be achieved by using substitution tables (see Figure 28). These substitutions
are something like Figure 8. Fekete points out that there are six unique relative
orientations between two adjacent triangles, as there are three possible ways of
choosing the position of child 1 and two ways of choosing the position of child 2,
leaving just one choice for the position of child 3, as the position of child 4 is always
the same. Thus, six substitution tables are required. One of these six tables is used
when finding a neighbor along each of the 60 possible cases of triangle adjacencies
(three for each of the the 20 base triangles). Note that the 60 different adjacencies
do not all make use of the same table, although several may use the same table.
The table used depends on the labeling scheme and on the initial orientation that
was adopted for each of the 20 base triangles.

At this point, Fekete [23] no longer has the advantage of requiring no work
in step three of the algorithm. In fact, our approach has the advantage that nodes

corresponding to the faces of the icosahedron labeled 5 to 14 aren’t treated any

82

1-3 1 3 2
21

4
352 3 o

Figure 28: Example of one substitution table to correlate between the
different orientations used to label two adjacent base triangles of the
icosahedron.

differently than their children. Only nodes corresponding to the faces of the icosa-
hedron labeled 0 to 4 and 15 to 19 require special cases for left and right neighbors

in our approach, and this only requires the introduction of one additional relation.

83

Chapter 3
Three-Dimensional Hierarchies of Tetrahedra

3.1 A Hierarchy of Tetrahedra

The techniques up to this point are only applicable to the surface of three-
dimensional data. If we want to represent the complete three-dimensional space or
object, then we need a three-dimensional decomposition strategy along with appro-
priate supporting algorithms. We consider the problem of modeling volume data
sets, i.e., sets of points spanning a domain in the three-dimensional space, includ-
ing scalar field values for each data point. Such data sets are often modeled using
tetrahedral meshes. If the the data points come from a regular grid, then it is
possible to build a regular tetrahedral mesh from the data. We consider a regular

decomposition strategy.

3.1.1 Tetrahedral Decomposition

The bisection rule for tetrahedra consists of replacing a tetrahedron ¢ with the
two tetrahedra obtained by splitting ¢ at the middle point of its longest edge and by
the plane passing through such point and the opposite edge in ¢. This rule is applied
recursively to an initial decomposition of the cubic domain into six tetrahedra (see
Figure 29a). Splitting a tetrahedron in the initial cube subdivision results in two

tetrahedra with a shape identical to that obtained by splitting a pyramid with a

84

square base in half along the diagonal of its base. We call such shape a 1/2 pyramid
(see Figure 30a). Splitting a 1/2 pyramid along its longest edge results in two
tetrahedra whose shape we call a 1// pyramid (see Figure 31a). Finally, splitting a
1/4 pyramid along its longest edge results in two tetrahedra whose shape we call a
1/8 pyramid (see Figure 32a). Each of the six initial tetrahedra also have the shape
of a 1/8 pyramid. These shapes are cyclic in the sense that every three levels of

decomposition result in a congruent shape.

Vi 3 v,
2/
Vo X Vs 4
v /v

1 // \\
/ /5

Figure 29: Subdivision of the initial cubic domain into six tetrahedra.

3.1.2 Labeling Tetrahedra in an HT

A location code for a tetrahedron ¢ in an HT is a pair of numbers, in which
the first denotes the level of ¢ in the tree, and the second indicates the path from
the root of the tree to t. The location code for a tetrahedron is defined on the basis
of a labeling scheme for its children and for the vertices of these children in the
hierarchy, as explained below.

For simplicity of computation, we order the vertices of a tetrahedron in such
a way that its longest edge is v3v4. Since the longest edge in the initial cube is the

85

diagonal, we label the diagonal vsv3, where v, is the vertex of the cube at the origin
of the coordinate system.
Let t = [vy, vo, U3, V4] be a tetrahedron and v, is the midpoint of edge v3v, in t.

The following labeling conventions are assumed for the tetrahedra in the hierarchy:
e Iftisal/2 pyramid, then the two resulting 1/4 pyramids are t, = [v], v}, v}, vj] =
[V, V1, V2, v3] and t; = [v], v}, vh, v}] = [Um, V1, Ve, v4] (see Figure 30a).

Vl V’2

Figure 30: Labeling of a 1/2 pyramid.

e If t is a 1/4 pyramid and the parent was child 0, then the two resulting 1/8
pyramids are ty = [v],vh, v}, V)] = [Um,v1,v2,v3] and t; = [V}, vh, vh, vy =

[V, U1, Vo, 4] (see Figure 31a).

e Iftisa1/4 pyramid and the parent was child 1, then we swap the labels of the
children so that ty = [v], v}, v}, V)] = [Um, V1, Ve, v4] and t; = [v], vh, vh, v} =

[V, V1, U2, v3] (see Figure 31a).

e Iftisal/8 pyramid, then the two resulting 1/2 pyramids are to = [v}, vh, v}, vj] =

[V, V1, U2, v4] and t; = [v], v}, V4, v§] = [V, Va2, V1, v3] (see Figure 32a).

86

V3 V’4
Vl
Vv , 1
m)
vV 5 Vi Vs,
'V 3 \
Vg 1 vy Vi, 3

Figure 32: Labeling of a 1/8 pyramid.

3.1.3 Encoding an HT

Our encoding of a hierarchy of tetrahedra makes use of a linear representation

instead of a pointer-based one. The data structure consists of:

e a field table containing the field values at the n data points;

e a forest of six almost full binary trees, each of which describes the nested

subdivision of one tetrahedron in the initial cube and is encoded as an ar-

ray containing the errors associated with the tetrahedra corresponding to the

internal nodes of the tree.

Note that leaf nodes correspond to the tetrahedra in the mesh at full resolution,

and thus, they have a null error. Also, we do not store location codes, but they are

87

computed on-the-fly and used for indexing the field table and for neighbor finding.
To handle large-size data sets, we just store the above data structure on secondary
storage, and we perform random accesses to the field and error values.

In our current implementation, we encode with each tetrahedron ¢ the field
error associated with ¢, computed as the absolute value of the maximum of the
differences between the actual field value and the interpolated one at each point
which falls inside . An alternative, which is useful in rendering applications, is to
store the isosurface error (see [8, 31]), which can also be computed from the field
error and the gradient.

If n is the number of points in the data set, 12n bytes are required for the
error values plus 2n bytes for the field table, assuming two bytes per error and field
value, leading to a total cost of 14n bytes. Note that there are 6n tetrahedra in
the mesh at full resolution, since each cube of the input grid is subdivided into six
tetrahedra, and thus, 6n internal tetrahedra. If both the error and the field values
are quantized as in [31] to one byte, the storage cost of the data structure reduces

to 7n bytes.

3.2 Neighbor Finding

In this Section, we describe how to find an equal-sized face neighbor of a
tetrahedron. This is used during mesh generation to extract a conforming mesh from
the HT so as to avoid any discontinuities in the approximation of the scalar field. The

problem is to find the neighbors of a given tetrahedron along an edge, which reduces

88

to the subproblem of finding the tetrahedron adjacent to a given tetrahedron along
a specified face. The algorithm uses the approach defined in [67, 68]. We will not
make use of the actual coordinate values of the tetrahedron corresponding to a given
location code. Instead, only the location code itself will be processed. Elements of
the path array will be referenced using array notation.

We identify four neighbor directions based on the four faces of an arbitrary
tetrahedron t = [vy, v9, v3,v4]. Neighbor of type 1 is the tetrahedron which shares
face vivous with t. Neighbor of type 2 is the tetrahedron which shares face vivovy
with ¢. Neighbor of type 3 is the tetrahedron which shares face viv3vs with t.
Neighbor of type 4 is the tetrahedron which shares face vovzv, with ¢. It should
be clear that repeated application of a given neighbor type will continuously switch

between the two neighbors which share the listed face.

3.2.1 Locating the Nearest Common Ancestor

The first step is to find the nearest common ancestor of tetrahedron ¢ and its
neighbor ¢’ of type i. Since we are working with location codes, we want to find the
location code of the nearest common ancestor within the given location code.

Basically, given a neighbor direction ¢ (which determines the face we must
cross to get the neighbor), we just scan in the location code from right to left until
the neighbor direction forces us to cross face vivovs of the ancestor. This works
because face v;v9v3 is shared by siblings and the parent of these sibling ancestors is

also the nearest common ancestor of the input tetrahedron ¢ and its neighbor #'.

89

As an example, consider the location code 210011. Since the depth is five,
this location code refers to a 1/4 pyramid. If we want to find neighbor type 3 (face
v1U3vy), then we must first find the nearest common ancestor using the right to left
scan which was just described. Since our neighbor direction forces us to cross face
v1v3vs, we must look at the parent (21001). Keeping the same neighbor direction
means that we must now cross face vyvsv, of the parent. Again, we must look at
the next ancestor (2100). Keeping the same neighbor direction means that we must
now cross face vyvyv3 of the ancestor. Crossing face vivyv3 is our stopping condition,
so we stop at 2100. Officially, the nearest common ancestor (210) is one level up
(see Figure 33), but we need to know which child contained our input tetrahedron

in order to get the appropriate sibling for the neighbor.

Vg

Figure 33: Nearest common ancestor of 210011.

90

3.2.2 Updating the Location Code

In this step we simply invert the one bit corresponding to the child of the
nearest common ancestor. This works regardless of the original neighbor type which
we were trying to find. No further work is necessary, since all neighbors’ location
codes differ by just this one bit.

If we continue with our example from the previous section, then we know that
the nearest common ancestor is 210. Since 2100 has a sibling in the desired neighbor
direction, we just invert the last bit to point to the new sibling. In this example,
the sibling of 2100 is 2101, so the neighbor of 210011 which shares face vv3v, is

210111 (see Figure 34).

Figure 34: Neighbor type 3 of 210011.

91

3.2.3 Extensions to the Entire Cube

Since we actually have six tetrahedra as our first decomposition level of the
cube, we need to make sure that our transitions work between these six top level
tetrahedra. The vertices for these six tetrahedra have been initially labeled so that
they imitate the labels of vertices at lower levels in the decomposition. Note that
the labeling of these top six tetrahedra themselves is not critical since we can simply
use table lookup for top level neighbors.

In terms of neighbor finding, the first change is that we must stop whenever
we encounter the top of our location code. If we are leaving the cube at this point,
then we need to return an error. Otherwise, we know that a neighbor must exist,
so we consider the entire cube the nearest common ancestor for the two neighbors.

When we encounter the top level, finding the neighbor is no longer simply a
matter of inverting one bit. However, the process is still quite simple. We only need
to pick a new top level tetrahedron, since the rest of the path will be identical for
both neighbors. This property is similar to the fact that two neighbors within one
top level tetrahedron differ by only one bit. Therefore, we simply select the new top
level bits based on a table lookup.

Let us consider again the tetrahedron of location code 210011, and let us
try to find its neighbor of type 4 (sharing face vov3v4). Since our neighbor direction
forces us to cross face vov3v4, we must look at the parent (21001). Keeping the same
neighbor direction means that we must now cross face v;vov, of the parent. Again,

we must look at the next ancestor (2100). Keeping the same neighbor direction

92

means that we must now cross face vov3v, of the ancestor. Again, we must look
at the next ancestor (210). Keeping the same neighbor direction means that we
must now cross face viv9v, of this ancestor, so we must look at the next ancestor.
Keeping the same neighbor direction for the next ancestor (21) means that we must
now cross face vyv3v, to find the neighbor. Again, we must look at the next ancestor
(2). Keeping the same neighbor direction means that we must now cross face v;v3v4
of this ancestor. We cannot find the parent of this tetrahedron because we are at
the top level, so we use a table lookup to determine that the appropriate neighbor
is 3. Therefore, the neighbor of 210011 which shares face vouzvs is 310011 (see

Figure 35).

3.3 Constant-Time Neighbor Finding Algorithm

Here we describe how to perform neighbor finding in worst-case constant time.
The algorithms presented here make use of the carry property of addition to quickly
find a neighbor without specifically searching for a nearest common ancestor. We
replace the iteration which was part of the right to left scan in the previous neighbor
finding algorithm by an arithmetic operation that takes constant time instead of time
proportional to the depth of the tree. The algorithms make use of just a few bit
manipulation operations which can be implemented in hardware using just a few
machine language instructions. Of course, the constant time bound arises because
the entire path array for each location code can fit in one computer word. If more

than one word is needed, then the algorithms are a bit slower but still take constant

93

310011

210011
4

Depth 5

Figure 35: Neighbor type 4 of 210011.

time.

We will use an identification technique similar to the one used in navigating
between 2D triangle meshes (see Section 2.4). In the 2D case, we used bit masks
to identify certain bit patterns within the location codes. We called them idmasks.
These idmasks will help us to identify which nodes contain (or fail to contain)
a sibling in the appropriate neighbor direction, and therefore which positions in
the location code should propagate the carry. Assuming we generate our idmasks

correctly, finding the location of the nearest common ancestor is as simple as a single

94

addition. We use the highest carry position after the addition to determine which
bit gets inverted in order to find the neighbor.

Determining which positions should propagate the carry is not always an easy
task. The first thing we need to consider is what bit patterns indicate a carry based
on the neighbor direction which we are given. To simplify our tables and algorithms,
we only consider the recurrence relations for a 1/8 pyramid. It requires a maximum
of two steps (or changes in level) in order to ensure that we are working within a

location code of a 1/8 pyramid.

3.3.1 Neighbor Type 1

Neighbor type 1 always goes straight to the sibling (the nearest common ances-
tor is the parent), so not much work is required. In fact, finding the sibling is simply
a matter of inverting the last bit (based on the level or depth in the hierarchy) in

the location code.

procedure NEIGHBOR_1(TETRA);

/* Determine the location code of the neighbor which shares face 123 of the tetra-
hedron with location code TETRA. */

begin
value pointer location_code TETRA;

/* Flip the last bit */
CODE (TETRA) +—XOR (CODE(TETRA) , 1) ;
end;

3.3.2 Neighbor Type 2

Face v1vyv4, corresponding to neighbor type 2, is always contained by either
face vivqvs or face vvov, of the 3rd ancestor. This is a direct result of the splitting

95

rules given in Section 3.1.2. If face vyvyv, in the child is contained in face vivov3
of the 3rd ancestor, then we know the neighbor, because face v;v9v3 in the 3rd an-
cestor is shared by the ancestor and its sibling. However, if face v;v9v4 in the child
is contained in face viv9v, of the 3rd ancestor, then the neighbor isn’t immediately
obvious. We must continue searching for the neighbor through face vyv9v4, corre-
sponding to neighbor type 2, for the 3rd ancestor. This process continues until we
can determine the sibling of an ancestor and we know that we can find the sibling
when we are on face v;v9v3 on the ancestor.

Since our goal is to find the appropriate neighbor in constant time, we want
to use simple addition and take advantage of any carries. In particular, we want a
carry to occur whenever we need to continue searching (looking at the ancestor) in
the hierarchy. Finding neighbor type 2 requires finding either neighbor type 1 or 2
of the 3rd ancestor (same shape, double size, eight times the volume) depending on
which child of the 3rd ancestor was needed to reach the input location code. This
means that we need a carry if the child of the 3rd ancestor was child 0, and no carry

if it was child 1.

procedure NEIGHBOR_2(TETRA) ;

/* Determine the location code of the neighbor which shares face 124 of the tetra-
hedron with location code TETRA. */

begin
value pointer location_code TETRA;
path_array TEST,FLIP;

/* Identify positions where sibling can be determined */
TEST<—AND (CODE(TETRA) ,POS1MASK) ;

/* Use carry to find rightmost sibling position */
FLIP<-COMPLEMENT (TEST) +1;

/* Clear out everything but the final carry */
FLIP<AND(FLIP,TEST);

96

/* Make sure we adjust to the proper level */

FLIP<-SHIFT_LEFT(FLIP);

/* Flip the appropriate bit */

CODE(TETRA) +—XOR (CODE (TETRA) ,FLIP) ;
end;

Notice that the first line of NEIGHBOR_2 locates the positions within the
location code where the sibling can be determined because the relevant face is face
v1v9v3. This result is stored in TEST. Since we want carries where the sibling cannot
be determined, we need to complement TEST and then do the addition. To isolate
the one bit that needs to be flipped in the location code, we “and” the result of the
addition with the value stored in TEST (the positions where we CAN determine
the sibling). The bits are offset by one position at this point, so we shift the answer
left by one position. Finally, we simply flip the appropriate bit in the location code,
by using “xor” between the location code and the current bit mask (which contains

only one bit marking the position where we found the sibling).

Depth 12

Figure 36: Neighbor type 2 of 1010101011010.

97

As an example, let us consider location code 1010101011010 (see Figure 36).
We can determine the sibling at any position where the first bit (out of 3) is
1. The mask marking these positions is 0000100000000, so this is stored in a.
The complement of bit pattern a is 1111011111111, Adding one to this value
gives us 1111100000000. We isolate the one bit that needs to be inverted using
the logical AND. This gives us 0000100000000. We need to shift left, so we get
0001000000000. Finally, we use the logical XOR to invert the appropriate bit. The
input location code 1010101011010 XOR 0001000000000 gives us our final answer

of 1011101011010.

3.3.3 Neighbor Type 3

Face vyv3v4, corresponding to neighbor type 3, is generally contained by either
face v1v3v4 or face vov3v,4 of the 3rd ancestor. If it is contained by any other face, then
the neighbor can be determined without examining the 3rd ancestor. This is a direct
result of the splitting rules given in Section 3.1.2. Whenever the neighbor cannot be
determined because the nearest common ancestor is beyond the 3rd ancestor (this
will occur if face v;v3v4 in the child is contained in face vivsvs or face vov3vs of the
3rd ancestor), we must continue searching for the neighbor through the appropriate
face of the 3rd ancestor. Notice that if this is face v;v3v4 of the 3rd ancestor, then we
continue to search for the same neighbor type (3). Otherwise, if it is face vovsv, of
the 3rd ancestor, then we must change our strategy a bit, effectively finding neighbor

type 4 of the 3rd ancestor.

98

Since our goal is to find the appropriate neighbor in constant time, we want
to use simple addition and take advantage of any carries. We want a carry to occur
whenever we need to continue searching higher in the hierarchy. Finding neighbor
type 3 either terminates at the 2nd ancestor or requires finding neighbor type 3
or 4 of the 3rd ancestor depending on the bits corresponding to the 1st and 2nd
ancestors of the node. Basically, there should be no carry if the 1st ancestor was
child 0 of the 2nd ancestor. Otherwise, we want a carry and the neighbor type will
depend on the child type of the 2nd ancestor.

Since a carry occurs whenever we search higher than the 3rd ancestor, and
we might need to find either neighbor type 3 or 4 of the 3rd ancestor, we need an
indicator to keep track of which neighbor type we want to find at each level (or at

least at every third level). We will use a “neighbor mask” to store this information.

procedure NEIGHBOR_3(TETRA) ;

/* Determine the location code of the neighbor which shares face 134 of the tetra-
hedron with location code TETRA. */

begin
value pointer location_code TETRA;
path_array TEST,FLIP;

/* Identify positions where sibling can be determined */
TEST<CODE(TETRA) ;
TEST<+XOR(TEST,SHIFT_LEFT(SHIFT_LEFT (AND(TEST,POS3MASK))));
TEST<+COMPLEMENT (TEST) ;

TEST<«—AND (TEST, XOR (MASK (TETRA) ,POS2MASK)) ;
TEST<+OR(TEST,SHIFT_LEFT(TEST)) ;

TEST<—AND (TEST ,POS1MASK) ;

/* Use carry to find rightmost sibling position */
FLIP<-COMPLEMENT (TEST) +1;

/* Clear out everything but the final carry */
FLIP<«+AND(FLIP,TEST);

/* Make sure we adjust to the proper level */

if AND(FLIP,MASK(TETRA)) then FLIP<-SHIFT_RIGHT(FLIP);
/* Flip the appropriate bit */

99

CODE(TETRA) <—XO0R (CODE (TETRA) ,FLIP);
end;

The first step in finding neighbor type 3, is identifying where (i.e., at what
level in the location code) we can determine the neighbor. We want to construct the
mask TEST so that it marks the locations where the neighbor can be determined.
Since neighbors are determined before we reach the 3rd ancestor (otherwise, we
continue upwards in the hierarchy), we will examine the bits in sets of three, where
the leftmost (or most significant) bit is called bit 1, the next (or middle) bit is called
bit 2, and the rightmost (or least significant) bit is called bit 3.

If bits 1 and 3 are the same, then we can identify the neighbor. If bit 2 is 0
and we are looking for neighbor type 3 at this level (determined by looking at the
neighbor mask), then we can identify the neighbor. If bit 2 is 1 and we are looking
for neighbor type 4 at this level, then we can identify the neighbor. Notice that the
mask TEST is constructed based on these patterns. We complement TEST before
the addition because we want a carry to occur whenever we cannot identify the
neighbor at a given level. The carry continues until we reach the bit corresponding
to the level at which this neighbor can be identified. To isolate the one bit that needs
to be flipped in the location code, we “and” the result of the addition with the value
stored in TEST (the positions where we CAN determine the sibling). Depending
on which neighbor type we are finding at this point (again, determined by looking
at the neighbor mask), the bits might be offset by one position. If so, we shift
the answer right by one position. Finally, we simply flip the appropriate bit in the

location code, by using “xor” between the location code and the current bit mask

100

(which contains only one bit marking the position where we found the sibling).

Vo
1010101
Vs

2
1010001
Depth 6

//// \\\\ Vl V2
[8 10101010&\
Vs Vs
1010001011 , 1010101011010
Vi Vs

Depth 9 ~_ 7

Vy
1010001011010
Depth 12

Figure 37: Neighbor type 3 of 1010101011010.

As an example, let us consider location code 1010101011010 (see Figure 37).
We can determine the sibling if bits 1 and 3 are the same, or if bit 2 is 0 (since
we are only required to find neighbor type 3 in this case). This is true for the first
triple (010), true for the second triple (101), not true for the third triple (011), and
not true for the fourth triple (010). Therefore, the mask a which marks the true
positions is 0100100000000. The complement of ¢ is 1011011111111, Adding one
to this value gives us 1011100000000. We isolate the one significant bit using the
logical AND. This gives us 0000100000000. Finally, we use the logical XOR to invert
the appropriate bit. The input location code 1010101011010 XOR 0000100000000

gives us our final answer of 1010001011010.

101

3.3.4 Neighbor Type 4

Finding neighbor type 4 either terminates at the 1st ancestor or requires find-
ing neighbor type 3 or 4 of the 3rd ancestor depending on the bits corresponding
to the current node and its 2nd ancestor. Basically, there should be no carry if the
2nd ancestor was child 0 of the 3rd ancestor and the current node is child 0, or if
the 2nd ancestor was child 1 of the 3rd ancestor and the current node is child 1.
Otherwise, we want a carry and the neighbor type will depend on the child type of

the 2nd ancestor.

procedure NEIGHBOR_4(TETRA) ;

/* Determine the location code of the neighbor which shares face 234 of the tetra-
hedron with location code TETRA. */

begin
value pointer location_code TETRA;
path_array TEST,FLIP;

/* Identify positions where sibling can be determined */
TEST<«+CODE(TETRA) ;
TEST<«+XOR(TEST,SHIFT_LEFT(SHIFT_LEFT (AND(TEST,POS3MASK))));
TEST+«+COMPLEMENT (TEST) ;
TEST<—AND (TEST, XOR (MASK (TETRA) ,POS1MASK)) ;
TEST<+—O0R(TEST,SHIFT_LEFT(TEST)) ;
TEST<«AND (TEST,POS1MASK) ;
/* Use carry to find rightmost sibling position */
FLIP<COMPLEMENT (TEST) +1;
/* Clear out everything but the final carry */
FLIP<AND(FLIP,TEST);
/* Make sure we adjust to the proper level */
if not (AND(FLIP,MASK(TETRA))) then FLIP<-SHIFT_RIGHT (FLIP);
/* Flip the appropriate bit */
CODE (TETRA) < XOR (CODE(TETRA) ,FLIP) ;

end;

102

3.3.5 Updating the Neighbor Mask

The four neighbor relations along with the new bit patterns for stop cases are

summarized in the following table.

Current Bits | Neighbor 1 | Neighbor 2 | Neighbor 3 | Neighbor 4
000 001 Cont 2 100 010
001 000 Cont 2 101 Cont 4
010 011 Cont 2 Cont 3 000
011 010 Cont 2 Cont 3 Cont 4
100 101 Cont 1 000 Cont 3
101 100 Cont 1 001 111
110 111 Cont 1 Cont 4 Cont 3
111 110 Cont 1 Cont 4 101

Figure 38: Table indicating how to proceed at each level when searching
for the neighboring tetrahedron.

Notice that since neighbor types 3 and 4 switch whenever the child of the 3rd
ancestor is child 1. This causes somewhat of a problem since we need to know the
neighbor type for which we are searching along the entire location code simulta-
neously. If we drop back to an iterative approach then we lose our constant time
behavior. Thus, we introduce a neighbor mask which stores the state of our neigh-
bor switching. This allows us to make neighbor type 3 and 4 transitions in constant
time.

Of course, we need to be able to update or maintain our neighbor mask in
constant time too. Note that the neighbor mask only changes when the bit corre-
sponding to a 1/2 pyramid changes. When such a bit changes, we need to make
sure that all bits in our neighbor mask which occur before the given bit are changed

also. This is easily accomplished using the following segment of code.

procedure UPDATE_MASK(TETRA,FLIP);

103

/* Update the neighbor mask of location code TETRA. */
begin
value pointer location_code TETRA;
value path_array FLIP;
if AND(FLIP,POS1MASK) then
begin
FLIP+SHIFT_LEFT(-FLIP);
MASK (TETRA) <—XOR (MASK (TETRA) ,FLIP) ;

end;
end;

3.3.6 Transitions Across the Six Top Level Tetrahedra

Transitions between the six top level tetrahedra are relatively simple. This
situation arises if the addition from our constant time algorithm generates a carry
past the leftmost end of the input location code.

Transitions at the top level are really no different than our previous discussion.

We simply pick a new top level tetrahedron based on our table lookup.

3.4 Edge Neighbors

We have defined neighbor type 1 to be the neighbor that shares face vivovs,
neighbor type 2 to be the neighbor that shares face v;v9v4, neighbor type 3 to be the
neighbor that shares face v,v3v4, and neighbor type 4 to be the neighbor that shares
face vovzvs. The order of the vertices within each tetrahedron is fully determined
based on the split rules which we use during bisection. This technique ensures that a
given edge, for example vyv3, in a given tetrahedron is in the same position (vev3) for

any neighbors along that edge. Remember that this was the case for face neighbors,

104

and so it makes sense that it would apply here to edge neighbors.

Knowing these properties, it is really quite simple to find all edge neighbors
around a given edge.
sequence of two face neighbor operations. The specific two face neighbor types are
determined by the edge in question. If we continue with the example vovs edge, we
would use face neighbor types 1 and 4 to find all the edge neighbors. This is because
these are the two face neighbors that contain the specified edge (they contain both
ve and v3).

The following table shows the sequence of face neighbors that would be re-

quired to find all neighbors around a given edge.

These edge neighbors can be found using an alternating

Edge | 1/2 Pyramids 1/4 Pyramids 1/8 Pyramids

vivg |1, 3,1, 2 1,2,1,2 1,2,1,2

v | 1,2,1,3 1,3,1,3 1,3,1,3

v | 2,3,2, 3,23 2.3,2, 3 2.3,2,3 23, 23
vous | 1,4,1,4,1,4,1,4 |1,4,1,4,1,4 1,4,1,4,1,4,1, 4
vovs | 2,4,2, 4,2, 4,2,4 | 2,42 4,2 4 2.4,2, 4

vsvs | 3,4, 3, 4 3,4,3,4,3,4,3,4 |3,4,3 4,3 4

Figure 39: Neighbor sequences for all edges of the tetrahedra.

3.5 Extracting a Conforming Tetrahedral Mesh

In this Section, we discuss how we use the previously described neighbor finding
technique to extract a conforming mesh done at a variable level of detail from an HT.
A conforming tetrahedral mesh is a mesh with no “cracks”, meaning that the shared
faces, edges, and vertices of adjacent tetrahedra must match exactly, for a specified

error tolerance.

105

The error associated with each tetrahedron is the maximum of

the absolute value of the difference between the interpolated value and the given
field value at each internal point. The interpolated values for internal points are
determined using linear interpolation of the field values at the four vertices of the
tetrahedron. The resulting tetrahedral mesh should contain the minimum number
of tetrahedra which are necessary to satisfy a given error threshold while ensuring
that the tetrahedral mesh is conforming.

To generate a conforming tetrahedral mesh we need to ensure that the shared
faces of neighboring tetrahedra match exactly. This will ensure that the shared
edges of the tetrahedra match as well. This constraint ultimately restricts the size
of neighbors to be at most one level different. When splitting any tetrahedron, all
tetrahedra that share the bisected edge of the split tetrahedron must also be split
in order to maintain the consistency of the tetrahedral mesh. We shall group all
such tetrahedra into clusters based on the shared edge. The number of tetrahedra
in a given cluster will primarily depend upon the orientation or alignment of the
common edge.

There are basically three edge alignments that we will consider. An edge is
called azis-aligned if it is parallel to one of the coordinate axes. An edge is only
plane-aligned if it is parallel to one of the coordinate planes, but not to one of the

coordinate axes. An edge is considered non-aligned otherwise.

106

3.5.1 Axis-aligned Clusters

Only the 1/4 pyramid splits on an axis-aligned edge. Actually, the longest edge
of any 1/4 pyramid will always be an axis-aligned edge, and therefore will always be
the edge which causes other neighboring tetrahedra to split. The maximum possible
number of neighbors around an axis-aligned edge is 8, so at most 8 tetrahedra
will split whenever a 1/4 pyramid is split. Unless we are dealing with a border
case, exactly 8 tetrahedra must split simultaneously to maintain a conforming mesh.
Therefore, the cluster in this case will contain at most 8 tetrahedra and all members

of the cluster will be 1/4 pyramids (see Figure 40).

Figure 40: Axis-aligned cluster.

Using our neighbor finding techniques, all 8 tetrahedra can be found starting
with any one of them by finding the following sequence of neighbors. Notice that

this only requires constant time work.

3.5.2 Plane-aligned Clusters

Only the 1/2 pyramid splits on a plane-aligned edge. Actually, the longest edge
of any 1/2 pyramid will always be a plane-aligned edge, and therefore will always be

the edge which causes other neighboring tetrahedra to split. The maximum possible

107

Count Neighbor Direction Tetrahedron
1 Initial tetrahedron t, = [ABJK]
2 Find neighbor type 4 ty = [CBJK]
3 Find neighbor type 3 (if it exists) | t3 = [CDJK]
4 Find neighbor type 4 t, = [EDJK]
5 Find neighbor type 3 (if it exists) | ¢t = [EFJK]
6 Find neighbor type 4 te = [GFJK]
7 Find neighbor type 3 tr = [GHJK]
8 Find neighbor type 4 ts = [AHJK]

Figure 41: Steps required to find an axis-aligned cluster.

number of neighbors around a plane-aligned edge is 4, so at most 4 tetrahedra
will split whenever a 1/2 pyramid is split. Unless we are dealing with a border
case, exactly 4 tetrahedra must split simultaneously to maintain a conforming mesh.
Therefore, the cluster in this case will contain at most 4 tetrahedra and all members

of the cluster will be 1/2 pyramids (see Figure 42).

Figure 42: Plane-aligned cluster.

Using our neighbor finding techniques, all 4 tetrahedra can be found starting
with any one of them by finding the following sequence of neighbors. Notice that

this only requires constant time work.

108

Count Neighbor Direction Tetrahedron
1 Initial tetrahedron t, = [ABJK]
2 Find neighbor type 3 ty = [ADJK]
3 Find neighbor type 4 (if it exists) | t3 = [CDJK]
4 Find neighbor type 3 ty = [CBJK]

Figure 43: Steps required to find a plane-aligned cluster.

3.5.3 Non-aligned Clusters

Ouly the 1/8 pyramid splits on a non-aligned edge. Actually, the longest edge
of any 1/8 pyramid will always be a non-aligned edge, and therefore will always be
the edge which causes other neighboring tetrahedra to split. The maximum possible
number of neighbors around a non-aligned edge is 6, so at most 6 tetrahedra will
split whenever a 1/8 pyramid is split. Unless we are dealing with a border case (and
it is impossible for non-aligned edges to touch the border), exactly 6 tetrahedra
must split simultaneously to maintain a conforming mesh. Therefore, the cluster in
this case will contain exactly 6 tetrahedra and all members of the cluster will be 1/8

pyramids (see Figure 44).

I 2/
[D,
[7
. -
[s
[
B/ X/
i(""-‘-».(',i'/r/
\\\%//l.’"."‘-
K o7 E
N
/. [
& AN
/; v
Y N

Figure 44: Non-aligned cluster.

Using our neighbor finding techniques, all 6 tetrahedra can be found starting
with any one of them by finding the following sequence of neighbors. Notice that

109

this only requir

es constant time work.

Count Neighbor Direction Tetrahedron
1 Initial tetrahedron t, = [ABJK]
2 Find neighbor type 3 to =[AFJK]
3 Find neighbor type 4 ts =[EFJK]|
4 Find neighbor type 3 ty = [EDJK]
5 Find neighbor type 4 ts = [CDJK]
6 Find neighbor type 3 te = [CBJK]|

3.6 Algorithms for Selective Refinement

In this Section, we describe three algorithms for performing selective refine-
ment on an HT, which are based on a depth-first, priority queue, and incremental ap-
proach, respectively. A selective refinement operation applied to a multi-resolution
mesh M consists of extracting a conforming mesh » from M such that ¥ covers
the domain D of M, the resolution of X satisfies some user-defined error require-
ments, and ¥ is the mesh with the smallest number of tetrahedra satisfying the
above conditions (see [13]). In [8], a set of basic queries are defined for analysis and

visualization of a volume data set, that are called Level-Of-Detail (LOD) queries,

Figure 45: Steps required to find a non-aligned cluster.

and it is shown that all of them are instances of selective refinement.

3.6.1 A Depth First Approach

The depth-first algorithm is a standard refinement algorithm (see, for in-
stance, [50]). It starts from the initial mesh, consisting of the six top-level tetrahedra

which subdivide the cube, and initializes the currently extracted mesh (that we call

110

the current mesh) with them. For any tetrahedron ¢, that does not satisfy the error
requirements, we split the cluster c of tetrahedra which share their longest edge with
t. If a tetrahedron ¢’ in ¢ does not exist in the current mesh, then we split the cluster
associated with the parent of ¢'. This is applied recursively in order to guarantee
a conforming mesh. The process continues until all tetrahedra in the current mesh
satisfy the error requirements.

A pseudo-code description of the depth-first algorithm is given below. Predi-
cate EXIST(t) returns the value true if tetrahedron ¢ is part of the current mesh, and
the value false otherwise. Function PARENT(¢) deletes the last bit from the location
code of ¢, thus returning the parent of ¢{. Functions CHILD_0(¢) and CHILD_1(¢)
add a 0-bit and a 1-bit to the end of the location code of ¢, respectively, thus re-
turning the first and the second child of ¢, respectively. Function SPLIT(¢) replaces
t in the current mesh with CHILD_0(¢) and CHILD_1(¢). Function CLUSTER(t)
returns the set of all tetrahedra sharing the splitting edge vsvs with tetrahedron t.
This set can be found by using the alternating sequence of face neighbors described

in the previous section.

procedure SPLIT_CLUSTER(TETRA);

/* Split all tetrahedra within the same cluster as TETRA. This includes splitting
TETRA itself. */

begin
value pointer location_code TETRA;
pointer location_code NEIGHBOR;

for NEIGHBOR in {CLUSTER(TETRA)} do
begin
if not (EXIST(NEIGHBOR)) then SPLIT_CLUSTER (PARENT (NEIGHBOR));

SPLIT(NEIGHBOR) ;
end;

111

end;

procedure CHECK_SPLIT(TETRA);
/* Check if TETRA satisfies the error requirement and split if necessary. */
begin

value pointer location_code TETRA;

if FAIL_ERROR_REQ(TETRA) then
begin
SPLIT_CLUSTER(TETRA) ;

CHECK_SPLIT(CHILD_O(TETRA));
CHECK_SPLIT(CHILD_1(TETRA));

end;
end;

procedure EXTRACT_MESHQ) ;
/* Extract a conforming mesh where all tetrahedra satisfy the error requirement.

*/
begin
location_code TETRA;
for TETRA in {‘0’, ‘1°, ‘2°, ‘3’, ‘4’, ‘5°} do
begin
CHECK_SPLIT(TETRA) ;

end;
end;

It can be easily seen that the worst-case time complexity of the algorithm
is O(k), where k is the number of tetrahedra in the hierarchy. Since the tetra-
hedra are only split in SPLIT_CLUSTER if forced by our consistency constraint,
and SPLIT_CLUSTER is only called if one of the tetrahedra is beyond the error
threshold, the algorithm never splits a tetrahedron unless it is necessary, and thus,
it generates the minimum number of tetrahedra which are required to satisfy the

error requirements.

112

3.6.2 A Priority Based Approach

The priority-based algorithm applies the splitting process to the tetrahedra
according to an error-driven sequence. The tetrahedron with the largest error is
split at each iteration. As in the depth-first approach, when a tetrahedron ¢ is split,
all the tetrahedra in the same cluster as ¢ must be split as well. If a tetrahedron ¢’ in
the cluster is not in the current mesh, the splitting process is recursively applied to
the parent of ¢’. The algorithm makes use of a priority queue of tetrahedra, in which
the order is based on the errors associated with the tetrahedra. Tetrahedra are only
added to the priority queue if they violate the error requirements. To reduce the
number of insertions and the overall size of the priority queue, we simply insert
only one of two children of a tetrahedron if they belong to the same cluster, namely
the one with the largest error. Only tetrahedra on the queue, or tetrahedra which
must be included in the current mesh to maintain consistency, are considered for
splitting. It can be easily seen that the algorithm generates the minimum number of
tetrahedra necessary to satisfy the error requirements, and that the time complexity

of the algorithm is also linear in the number of tetrahedra in the hierarchy.

procedure CHECK_SPLIT2(TETRA);

/* Check if TETRA satisfies the error requirement and, if not, check if it has a higher
error than its BUDDY. */

begin
value pointer location_code TETRA;
pointer location_code BUDDY;

if FAIL_ERROR_REQ(TETRA) then
begin
BUDDY<+-NEIGHBOR_3(TETRA) ;

if FAIL_VALUE(TETRA) >FAIL_VALUE(BUDDY) then ENQUEUE(TETRA);
end;

113

end;

procedure SPLIT_CLUSTER2(TETRA) ;

/* Split all tetrahedra within the same cluster as TETRA. This includes splitting
TETRA itself. Add any children which do not satisfy the error requirement to the
priority queue. */

begin
value pointer location_code TETRA;
pointer location_code NEIGHBOR;

for NEIGHBOR in {CLUSTER(TETRA)} do
begin
if not (EXIST(NEIGHBOR)) then SPLIT_CLUSTER2(PARENT(NEIGHBOR)) ;

SPLIT(NEIGHBOR) ;

CHECK_SPLIT2(CHILD_O(NEIGHBOR)) ;
CHECK_SPLIT2(CHILD_1(NEIGHBOR)) ;
end;
end;

procedure EXTRACT_MESH2(Q) ;

/* Extract a conforming mesh where all tetrahedra satisfy the error requirement.
*/

begin
location_code TETRA;

for TETRA in {‘0’, ‘1’, ‘2°, ‘37, ‘4’, ‘5’} do
begin
if FAIL_ERROR_REQ(TETRA) then ENQUEUE(TETRA);
end;

while DEQUEUE(TETRA) do
begin
if EXIST(TETRA) then SPLIT_CLUSTER2(TETRA);

end;
end;

The priority-based approach produces an interruptible algorithm i.e., it gener-
ates a fairly good approximation of the solution, if time has expired, or the number

of tetrahedra in the current mesh is above a predefined bound. On the other hand,

114

using a priority queue increases the storage cost, but we have found experimentally
that the size of the queue is on average equal to 10 — 16% of the size of the output
mesh.

Figure 46 shows the number of tetrahedron splits and cluster computations
per second performed by the in-core and the out-of-core versions of the depth-
first algorithm and by the out-of-core version of the priority based algorithm. The
experiments were done on a Pentium III 650MHz machine with 384 Megs of Ram
running a Linux OS. The results show that the in-core version of the depth-first
algorithm is more than 50% faster than the out-of-core version, while the priority

based algorithm is about 20% slower than its depth-first counterpart.

Algorithm Tetrahedron Splits Cluster Computations

Range Average || Range Average
Depth-first in-core 560000-695000 | 641000 || 115000-122000 | 118000
Depth-first out-of-core || 250000-485000 | 402000 || 46000-85000 74000
Priority out-of-core 210000-465000 | 336000 || 39000-82000 61000

Figure 46: The second column shows the number of tetrahedron splits
per second, the third column shows the number of cluster computations
per second.

3.6.3 An Incremental Approach

In this Section, we describe an algorithm for selective refinement based on an
incremental approach. The algorithm considers the current mesh resulting from a
previous execution as the starting mesh and modifies such a mesh according to new
error requirements. Thus, the current mesh not only may be refined by splitting

tetrahedra in a cluster, but also may be coarsened by merging all tetrahedra incident

115

at a vertex. Such an approach may give sub-optimal solutions if the error does not
decrease monotonically, but it is very useful in highly interactive environments, since
it minimizes the work performed in updating the mesh.

A pseudo-code description of the incremental algorithm is given below. Func-
tion MERGE(t) replaces CHILD_0(¢) and CHILD_1(¢) in the current mesh with ¢.
The other primitives used in the algorithm description have been introduced in the
previous section. Procedure UPDATE_MESH considers each tetrahedron in the in-
put, or in the current mesh. For any tetrahedron that does not satisfy the error
requirements, a downward refinement operation is started. This is performed by
CHECK_SPLIT. For any tetrahedron that is too refined, CHECK_MERGE is called
to coarsen the mesh in a bottom-up direction.

Note that we never “force” a merge like we do in SPLIT_CLUSTER (where
we force other splits). Merging the tetrahedra incident at a vertex can only be
performed if all the tetrahedra to be merged are in the current mesh, and all the

tetrahedra in the corresponding cluster satisfy the error requirements.

procedure MERGE_CLUSTER (TETRA) ;

/* Merge all tetrahedra within the same cluster as TETRA. This includes merging
TETRA with its sibling. */

begin
value pointer location_code TETRA;
pointer location_code NEIGHBOR;

for NEIGHBOR in CLUSTER(PARENT(TETRA)) do
begin
MERGE (NEIGHBOR) ;
end;
end;

procedure CHECK_MERGE(TETRA) ;
/* Check if a merge is possible and then merge as appropriate. */

116

begin
value pointer location_code TETRA;
pointer location_code NEIGHBOR;

for NEIGHBOR in CLUSTER(PARENT(TETRA)) do
begin
if not (EXIST(CHILD_O(NEIGHBOR))) then RETURN;
if not (EXIST(CHILD_1(NEIGHBOR))) then RETURN;

if FAIL_ERROR_REQ(NEIGHBOR) then RETURN;
end;

MERGE_CLUSTER (TETRA) ;

CHECK_MERGE (PARENT (TETRA)) ;
end;

procedure UPDATE_MESH() ;
/* Update the current mesh so that the resulting tetrahedra satisfy the new error
requirement. */
begin
location_code TETRA;
for TETRA in CURRENT_MESH do
begin
if FAIL_ERROR_REQ(TETRA) then
CHECK_SPLIT(TETRA) ;
else
CHECK_MERGE (TETRA) ;

end;
end;

Our experiments with the incremental algorithm, when the data structure is
maintained out-of-core, show that the approximate number of tetrahedron splits
per second is about 280000 on average, which corresponds to approximately 51000
cluster computations per second. The number of tetrahedron merges per second is
approximately 300000 on average, which corresponds to approximately 54000 cluster

computations per second.

117

Note that the algorithm described in [31] also performs incremental selective
refinement, but it makes use of two priority queues containing candidate tetrahedra
to be split or to be merged (see also [16]). The use of priority queues make the

algorithm interruptible at the expense of extra storage.

3.7 Experimental Results

In this Section, we report performance statistics on LOD queries on the HT
implemented with the depth-first algorithm. We have used two volume data sets of

different sizes and characteristics:

e Plasma64 (274,625 vertices, 1,572,864 tetrahedra), a large synthetic data set
whose field values represent the 3D Perlin’s noise (courtesy of Visual Comput-

ing Group, National Research Council, Pisa, Italy).

e Buckyball (2,146,689 vertices, 12,582,912 tetrahedra), a very large regular

data set (courtesy of AVS Inc).

We show results on multi-resolution queries that extract a 3D mesh according

to the following LOD criteria:

e Uniform LOD: extraction of a mesh satisfying a constant error threshold; in

our experiments, the threshold varies from zero to the maximum error value.

e Variable LOD in a box: extraction of a mesh with an error below a given

threshold inside a 3D box and no error constraint outside it; in our experi-

118

ments, the box is at a fixed position, and the threshold inside the box varies

from zero to the maximum error.

e Variable LOD based on a field value: extraction of a mesh with an error below a
certain threshold on the pentatopes intersecting the isosurface of the specified

field value, and no error constraint elsewhere.

We have considered a uniform LOD query where the error is required to be
smaller than a given threshold value over the whole domain (see Figure 47a), and, as
an example of a variable LOD query, a query based on a field value (see Figure 47b).
In this latter case we require a high accuracy in a specified part of the domain or
in the proximity of a specified isosurface, and a lower one elsewhere. Our results
are in terms of the number of tetrahedra. This quantity is directly related to the
complexity of the queries as the execution time of the selective refinement algorithms
depends on this parameter.

Figure 48 shows the number of tetrahedra in the extracted mesh for a uniform
LOD query and the percentage of tetrahedra with respect to mesh at full resolution
for both data sets. The error threshold is expressed as a percentage of the absolute
value of the range of the field values in the data sets. Figure 49 reports the same
statistics for a variable LOD query based on a ROI (in this case, an axis-aligned
box) on the Buckyball data set. Different values of the error threshold have been
selected inside the box, while an arbitrary large value of the error is allowed in the
rest of the domain. Figure 50 reports the same statistics for a variable LOD query

based on a field value for the Plasma data set. Different values of the error threshold

119

(a) (b)

Figure 47: Uniform LOD extraction (a): error threshold equal to 5.0%
of the field range of the whole domain. The isosurface for a field value
equal to 100.0 is shown. Variable LOD extraction based on a field
value (b): error threshold equal to 0.1% of the field range enforced
near isosurface of value 1.27 (blue). The isosurfaces for field values
equal to 1.27 and 1.45 are shown.

have been selected for the tetrahedra intersecting the isosurface, while an arbitrary
large value of the error is allowed for the other tetrahedra.

For comparison purposes, we have also implemented a technique for extracting
conforming meshes from a hierarchy of tetrahedra based on error saturation, as
discussed in [54, 79]. First, all tetrahedra belonging to the same cluster are assigned
the same error value, which is equal to the maximum of their original error values.
Moreover, the approximation error associated with each tetrahedron is saturated to
be greater than or equal to the error associated with its children. This implies that,
during mesh extraction, if a tetrahedron is refined, then all tetrahedra belonging to

the same cluster are refined.

120

Uniform LOD Query
error || Plasma64 Buckyball
(% of field range) | tetrahedra | % tetrahedra || tetrahedra | % tetrahedra
0.1 1,493,696 94.9% 9,276,978 73.7%
0.5 620,996 39.4% 2,792,664 22.1%
1.0 337,384 21.4% 1,352,728 10.7%
5.0 16,800 11% || 247,760 1.9%
10.0 2,818 0.2% 95,400 0.7%

Figure 48: Number of tetrahedra in the meshes at uniform LOD and
percentage with respect to the number of tetrahedra in the mesh at
full resolution extracted from the HT representation of the Plasma and
Buckyball data sets, respectively.

Variable LOD Based on a Region of Interest

error | Buckyball
(% of field range) || tetrahedra | % tetrahedra
0.1 405,860 3.22%
0.5 190,936 1.51%
1.0 102,430 0.81%
2.0 23,108 0.18%
10.0 10,382 0.08%

Figure 49: Number of tetrahedra in the meshes at variable LOD based
on a region of interest and percentage with respect to the number
of tetrahedra in the mesh at full resolution extracted from the HT
representation of the Buckyball data set. The error within the region

is specified in the left column.

Our experimental comparisons, that we have performed on the basis of LOD
queries at a uniform resolution, have shown that the meshes extracted from a sat-
urated HT have, on average, 5% more tetrahedra than those extracted with our
method. On the other hand, the computing times of our depth-first algorithm are
the same as those of the corresponding algorithm on a saturated HT (which sim-

ply performs a top-down traversal of the hierarchy without any neighbor finding

computation).

121

Variable LOD Based on Field Value
error | Plasma64
(% of field range) | tetrahedra | % tetrahedra
0.0 19,070 1.2%
0.1 18,266 1.1%
0.5 12,100 0.8%
1.0 9,748 0.6%
5.0 1,912 0.1%
10.0 810 0.1%

Figure 50: Number of tetrahedra in the meshes at variable LOD and
percentage with respect to the number of tetrahedra in the mesh at full
resolution extracted from the HT representation of the Plasma data
set. The error within the proximity of the isosurface is specified in the
left column.

We have also compared an HT with a multi-resolution model based on un-
structured meshes built through edge collapse [11], called an Edge-based Multi-
Tessellation (Edge-based MT) on the basis of their selectivity on a set of LOD
queries. The comparisons included uniform LOD queries, variable LOD queries
based on a region of interest, and variable LOD queries based on a specified field
value. The experiments on the queries that we performed showed that the HT per-
formed better than the MT in terms of the number of tetrahedra in that there were
fewer tetrahedra for the HT than for the MT except when using a uniform level of
detail.

There are other methods which use techniques based on a variant of the typical
location code for identifying tetrahedra. Hebert [34] introduces the idea of using
symbolic algorithms to find parents, children, and neighbors. Operations are done

within symbolic tetrahedral codes which contain a path to the lattice origin of the

tetrahedron and a triple (permutation number, rotation number, and descendent

122

number) identifying the tetrahedron relative to the lattice origin. These lattice
origins effectively indicate which cubes (or sub-cubes) contain a given tetrahedron.
In particular, the center of each cube is used to represent the cube and acts as the
reference point for locating the tetrahedra. Using this technique, three of the four
tetrahedra sharing a face will share the same lattice origin and will require only a
table lookup to get the symbolic code of the appropriate neighbor. For the fourth
tetrahedron along the remaining face, the path to the lattice origin must be updated
to get the complete symbolic code of the neighbor. This results in a neighbor finding

algorithm that takes time proportional to the depth in the hierarchy.

123

Chapter 4
Four-Dimensional Hierarchies of Pentatopes

4.1 Pentatopic Decomposition

In this Section, we consider four-dimensional data sets represented as a hierar-
chy of four-dimensional simplexes, that we call pentatopes. The resulting hierarchy,
that we call a Hierarchy of Pentatopes (HP), forms the basis for producing adaptive
decompositions of the domain of a four-dimensional scalar field.

The general decomposition strategy starts with a hypercube, which is sub-
divided into 24 pentatopes, all sharing an edge (the diagonal of the hypercube)
which connects a pair of vertices of the hypercube which do not belong to the
same face (cube, square or edge) in the hypercube. A pentatope is bounded by
5 0-simplexes (vertices), 10 1-simplexes (edges), 10 2-simplexes (triangles), and 5
3-simplexes (tetrahedra). Two of the five tetrahedral faces of each pentatope are
contained by one of the eight cubic faces of the hypercube, while each of the remain-
ing three faces is shared by two pentatopes in the subdivision of the hypercube.

The pentatopes at level 0 in an HP result from the initial subdivision of the
hypercube. The pentatopes at level ¢+ + 1 are generated by bisecting pentatopes
at level 7. We need four bisection steps in order to create a pentatope at level
i (¢ > 3) which is a factor of two smaller in all directions than its ancestor at

level ¢+ — 4. Pentatopes at level ¢ are congruent to their ancestors at level ¢ — 4

124

modulus reflections. In other words, the bisection rule generates four classes of
congruent pentatopes. This result has been proven by Maubach [50] in the general
d-dimensional case: the number of congruency classes generated through bisection
is equal to d, independently of the level of refinement.

For clarity, we describe and classify the four simplicial shapes generated by

the bisection process (we denote with h the initial hypercube) as follows:

e h-pentatope: pentatope initially generated at level 0 by the subdivision of

hypercube h.

e c-pentatope: pentatope initially generated at level 1 by splitting an h-pentatope

along its longest edge, which is the diagonal of hypercube h.

e s-pentatope: pentatope initially generated at level 2 by splitting a c-pentatope

along its longest edge, which is the diagonal of a cubic face of hypercube h.

e e-pentatope: pentatope initially generated at level 3 by splitting an s-pentatope

along its longest edge, which is the diagonal of a square face of hypercube h.

Note that an h-pentatope is then generated at level 4 by the subdivision of
an e-pentatope at level 3 along its longest edge, which is an edge of hypercube h.
Thus, in an HP there are h-pentatopes at levels 4j, c-pentatopes at levels 45 + 1,
s-pentatopes at levels 45 + 2, and e-pentatopes at levels 45 + 3, 7 =0,1, ..., 1.

A hierarchy of pentatopes is generated from a grid of field values by top-down
recursive bisection of the initial hypercubic domain. We denote as V' the set of grid

vertices at which the field value is known. An approximation error is computed

125

(a) (b)

(<) (d)

Figure 51: Example of (a) an h-pentatope, (b) a c-pentatope, (c) an
s-pentatope and (d) an e-pentatope. The figures show the unfolding in
3D space of each pentatope by representing its five tetrahedral faces.

for each pentatope 0. We consider the error associated with ¢ as the maximum
of the absolute value of the difference between the actual field value at the points
of V inside ¢ and the field value at the same points linearly interpolated within o.
Thus, we could encode such errors by storing the full binary tree describing the HP
as an array, where each element of the array corresponds to a pentatope o, and it
contains just the error associated with o. Actually, there is no need to store the

leaves of the hierarchy since all the corresponding pentatopes have a null error. The

126

storage requirements are equal in this case to 48n bytes, since a hypercube is split
into 24 pentatopes, where n is the number of points in V', by assuming to encode
the error in 2 bytes. On the other hand, we can avoid encoding the hierarchy, if we
associate the error to the vertices in V. The error associated with a vertex p will be
the maximum of the errors associated with the pentatopes that have been split by
the introduction of vertex p. This will reduce the space requirements for encoding

errors to 2n bytes.

4.2 Labeling Pentatopes in an HP

Each pentatope ¢ in a hierarchy of pentatopes, with the exception of those be-
longing to the subdivision of the initial hypercube, is labeled with one bit, depending
on whether o is the child 0 or child 1 of its parent. In this way, any pentatope in
the hierarchy can be uniquely identified through a location code. A location code
for a pentatope ¢ in an HP consists of a pair of numbers, in which the first number
denotes the level of ¢ in the tree, while the second number denotes the path from
the root of the tree to 0. This path is a sequence of bits each corresponding to a
pentatope in the path from the root to o.

Let o = [v1, v9, V3, v4, Us] be a pentatope and vy, be the midpoint of the longest
edge of . We denote with oy and o child 0 and child 1, respectively, of 0. Eight
cases arise depending on whether o is an h-pentatope, a c-pentatope, an s-pentatope
or an e-pentatope, and on the parent-child relations in the hierarchy. These cases

are summarized in Figure 52.

127

o is an h-pentatope: the two resulting c-pentatopes are oy = [y, V1, U, VU3, Us]

and o1 = [V, V1, V2, U3, U4, Where vy, is the midpoint of edge [v4, v5] in 0.

o is a c-pentatope: If o is child 0, then the two resulting s-pentatopes are
00 = [Um, 1, V2, U3, V5] and o1 = [V, V1, U2, Vs, V4], Where vy, is the midpoint of

edge [vy,vs5] in 0.

o is a c-pentatope: If o is child 1, then the two resulting s-pentatopes are
00 = [Um, V1, Vs, U3, V4] and o1 = [V, V1, V2, Vs, V4], where vy, is the midpoint of

edge [ve, v5] in 0.

o is an s-pentatope: If ¢ is child 0 and its parent child 0, then the two resulting
e-pentatopes are gy = [Up,, U1, U2, U3, 04| and o1 = [vyy,, v1, Ve, V3, v5], Where v,

is the midpoint of edge [vy, v5] in 0.

o is an s-pentatope: If ¢ is child 1 and its parent child 0, then the two resulting
e-pentatopes are gy = [Un,, V1, U2, U3, V4| and o1 = [vyy,, v1, Vg, Us, V4], Where v,

is the midpoint of edge [vs, v5] in 0.

o is an s-pentatope: If ¢ is child 0 and its parent child 1, then the two resulting
e-pentatopes are gy = [Un,, U1, U2, Us, v3] and o1 = [vyy,, v1, Vs, Us, V4], Where v,

is the midpoint of edge [vs3,v4] in 0.

o is an s-pentatope: If ¢ is child 1 and its parent child 1, then the two resulting
e-pentatopes are oy = [Un, V1, U2, U3, V4] and o1 = [vyy,, V1, Vs, Vs, V4], Where v,

is the midpoint of edge [vs, v5] in 0.

128

e o is an e-pentatope: the two resulting h-pentatopes are oy = [V, V1, U2, U3, V4]

and o1 = [V, V1, V2, V3, Us|, where vy, is the midpoint of edge [v4, v5] in 0.

Case Shape G | P | Split Edge Resulting Children

1 h-pentatope [v4, V5] c-pentatopes: 0y = [V, V1, Vg, Us, Vs
and 07 = [vy,, V1, Ve, U3, V4]

2 | c-pentatope 0 [v4, vs] s-pentatopes: oq = [V, V1, Vg, U3, Us]
and 07 = [V, V1, Ve, U3, V4]

3 | c-pentatope 1 [vg, vs] s-pentatopes: og = [V, V1, Us, U3, V4]
and 01 = [vy,, v1, Ve, U3, V4]

4 | s-pentatope | 0 | 0 [v4, V5] e-pentatopes: oy = [V, V1, Vg, Us, V4]
and o7 = [vy, v1, Ve, U3, Us]

5 | s-pentatope | 0 | 1 [vs, vs] e-pentatopes: oy = [V, V1, Vo, U3, V4]
and o7 = [vy, V1, Ve, Us, V4]

6 | s-pentatope | 1 | 0 [vs, V4] e-pentatopes: 0g = [Um, V1, V2, Us, V3]
and 07 = [Uy, V1, Ve, Us, V4]

7 | s-pentatope | 1 | 1 [vs, vs] e-pentatopes: 09 = [V, V1, Vo, U3, V4]
and 07 = [vy, V1, Ve, Us, V4]

8 | e-pentatope [v4, vs] h-pentatopes: gy = [V, V1, Vo, U3, V4]
and 01 = [vy,, v1, Ve, U3, Us)

Figure 52: Table with splitting rules. The second column denotes the
shape of the pentatope o which is split, the third column (G) indicates
whether the parent of o is child 0 or child 1 of the grandparent of o,
the fourth column (P) indicates whether o is child 0 or child 1 of its
parent, the fifth column shows the split edge of o, the sixth column
shows the pentatopes resulting from the split, and their vertices.

The table shows the shape of the pentatope which is split, its split edge and
the two resulting pentatopes. Note that for a c-pentatope o, two possible cases arise
depending on whether o is a child 0 or a child 1. For an s-pentatope o, there are
four cases which depend on the parent-child relation between ¢ and its parent, and
between the parent and the grandparent of o.

A hierarchy of pentatopes, when used as the domain decomposition of a four-

dimensional scalar field, does not need to be explicitly stored either in a pointer-

129

based representation or through location codes. Location codes are computed on-

the-fly and used in neighbor finding to locate the pentatopes sharing a given edge.

4.3 Neighbor Finding

In this Section, we describe how to find an equal-sized face neighbor of a
pentatope. This is used during mesh generation to extract a conforming mesh from
the HP so as to avoid any discontinuities in the approximation of the scalar field. The
problem is to find the neighbors of a given pentatope along an edge, which reduces
to the subproblem of finding the pentatope adjacent to a given pentatope along a
specified tetrahedral face. The algorithm uses the approach defined in [67, 68]. We
will not make use of the actual coordinate values of the pentatope corresponding
to a given location code. Instead, only the location code itself will be processed.
Elements of the path array will be referenced using array notation.

We identify five neighbor directions based on the five tetrahedral faces of an
arbitrary pentatope t = [vy, vq, 3, vy, v5]. Neighbor of type 1 is the pentatope which
shares face vivovsv, with ¢. Neighbor of type 2 is the pentatope which shares face
v1V9v3v5 With ¢. Neighbor of type 3 is the pentatope which shares face v;v9v4v5 with
t. Neighbor of type 4 is the pentatope which shares face vjvsv vs with t. Neighbor
of type 5 is the pentatope which shares face vov3v,vs with t. It should be clear that
repeated application of a given neighbor type will continuously switch between the

two neighbors which share the listed face.

130

4.3.1 Locating the Nearest Common Ancestor

Let o be the given pentatope and ¢’ the k-neighbor of o we want to find.
We denote the nearest common ancestor of o and its k-neighbor ¢’ with o4. The
objective is to compute, from the location code of o, the location code of the nearest
common ancestor.

To find 04, the hierarchy of pentatopes must be ascended up from o to o4 by
reversing the path from o4 to 0. We stop when we identify 04. Since we are using
a representation based on location codes, the bottom-up retrieval of the nearest
common ancestor consists of scanning the bit string in the location code of ¢ from
right to left, dropping the rightmost bit from the bit string at each step. This
corresponds to moving to the parent of the current pentatope in the hierarchy. At
the end of the process, we obtain the location code of the nearest common ancestor
OA.

To identify the nearest common ancestor o4 of o and o', we observe that o4
is the pentatope which is split by the tetrahedral face f, containing the k-face fj of
0. Thus, 04 is the parent of the ancestor o* of & bounded by face f4. This does not
have to be verified geometrically, but we can decide whether we need to continue
the process or stop based on the shape of the current simplex 7 (whether it is an
e-pentatope, an h-pentatope, a c-pentatope or an s-pentatope) and on the type of
neighbor k.

As an example, consider the location code 9010110. Since the depth is six,

this location code refers to an s-pentatope. If we want to find neighbor type 4 (face

131

v1U3V4V5), then we must first find the nearest common ancestor using the previously
described right to left scan. Since our neighbor direction forces us to cross face
v1V304v5, we must look at the parent (901011). Keeping the same neighbor direction
means that we must now cross face vyvsvsvs of the parent. Again, we must look
at the next ancestor (90101). Keeping the same neighbor direction means that we
must now cross face v;v9v3v4 of the ancestor. Crossing face vivov3v4 is our stopping
condition, so we stop at 90101. Officially, the nearest common ancestor (9010) is
one level up, but we need to know which child contained our input pentatope in

order to get the appropriate sibling for the neighbor.

4.3.2 Updating the Location Code

In this step we simply invert the one bit corresponding to the child of the
nearest common ancestor o4. This works regardless of the original neighbor type
which we were trying to find. No further work is necessary, since all neighbors’
location codes differ by just this one bit.

If we continue with our example from the previous section, then we know that
the nearest common ancestor is 9010. Since 90101 has a sibling in the desired
neighbor direction, we just invert the last bit to point to the new sibling. In this
example, the sibling of 90101 is 90100, so the neighbor of 9010110 which shares

face V1V3V4V5 is 9010010.

132

4.3.3 Extensions to the Entire Hypercube

Since we actually have 24 pentatopes as our first decomposition level of the
hypercube, we need to make sure that our transitions work between the 24 top level
pentatopes. The vertices for these 24 pentatopes have been initially labeled so that
they imitate the labels of vertices at lower levels in the decomposition. Note that
the labeling of these top 24 pentatopes themselves is not critical since we can simply
use table lookup for top level neighbors.

In terms of neighbor finding, the first change is that we must stop whenever
we encounter the top of our location code. If we are leaving the hypercube at this
point, then we need to return an error. Otherwise, we know that a neighbor must
exist, so we consider the entire hypercube the nearest common ancestor for the two
neighbors.

When we encounter the top level, finding the neighbor is no longer simply a
matter of inverting one bit. However, the process is still quite simple. We only need
to pick a new top level pentatope, since the rest of the path will be identical for
both neighbors. This property is similar to the fact that two neighbors within one
top level pentatope differ by only one bit. Therefore, we simply select the new top

level bits based on a table lookup.

4.4 Constant-Time Neighbor Finding Algorithm

In this Section, we describe how to perform neighbor finding in worst-case

constant time. For the sake of simplicity, we consider only the case in which the

133

input pentatope o is an h-pentatope. In the case that o is not an h-pentatope,
we just need to move up in the hierarchy by at most four levels: either we find
the nearest common ancestor (and, thus, the k-neighbor we are looking for) in a
maximum of four steps (changes in level), or we find an h-pentatope, since the four
shapes are cyclic on four levels.

We can apply the rules described in Figure 53 to each group of four consecutive
bits in the location code of o by proceeding right to left. We would do bit operations
to identify the different bit patterns, but this is still a sequential search which does
not achieve a constant time behavior. To this aim, we need to be able to predict
the neighbor type we will be looking for in all groups of four bits at the same time,

thus avoiding an iterative process.

Current Bits | Neighbor 1 | Neighbor 2 | Neighbor 3 | Neighbor 4 | Neighbor 5
0000 0001 Cont 2 Cont 3 0100 0010
0001 0000 Cont 2 Cont 3 0101 Cont 5
0010 0011 Cont 2 Cont 3 Cont 4 0000
0011 0010 Cont 2 Cont 3 Cont 4 Cont 5
0100 0101 Cont 2 1100 0000 Cont 4
0101 0100 Cont 2 1101 0001 0111
0110 0111 Cont 2 1110 Cont 5 Cont 4
0111 0110 Cont 2 1111 Cont 5 0101
1000 1001 Cont 1 Cont 5 Cont 4 1010
1001 1000 Cont 1 Cont 5 Cont 4 Cont 3
1010 1011 Cont 1 Cont 5 1110 1000
1011 1010 Cont 1 Cont 5 1111 Cont 3
1100 1101 Cont 1 0100 Cont 3 Cont 4
1101 1100 Cont 1 0101 Cont 3 1111
1110 1111 Cont 1 0110 1010 Cont 4
1111 1110 Cont 1 0111 1011 1101

Figure 53: The table indicates how to proceed at each level when
searching for the neighboring pentatope.

We want to make use of the carry property of addition to find a neighbor

134

without specifically searching for the nearest common ancestor. In particular, we
replace the step-by-step process mentioned previously by an arithmetic operation
that takes constant time instead of time proportional to the depth of the tree. The
algorithms make use of bit manipulation operations which can be implemented in
hardware using a few machine language instructions. Of course, the constant time
bound arises because the entire bit string which identifies the path in the location
code is assumed to fit in one computer word. This, however, allows us to deal with
data sets containing up to 256 points in each of the four dimensions, or over 10°
total points.

Since our goal is to use bit operations in order to find the nearest common
ancestor, we need to identify which bit patterns indicate that the nearest common
ancestor is farther up in the tree (beyond the current set of four bits). Being
able to identify these patterns in a logical notation allows for a conversion into bit
operations that perform the same logical function over the entire location code in a
fixed number of operations. This is regardless of the actual length of the location
code, since bit operations can be performed over an entire computer word in a single
operation.

Looking at the patterns found in Figure 53 we can see that it is possible to
determine neighbor type 2 if bit 1 is 1, neighbor type 3 if bit 2 is 1, neighbor type 4
if bit 1 is equal to bit 3, and neighbor type 5 if bit 2 is equal to bit 4. Also note that
once the neighbor can be identified, the neighbor type determines which bit needs to
change in order to get the location code of the neighbor. Bit 4 changes for neighbor
type 1, bit 1 changes for neighbor type 3, bit 2 changes for neighbor type 4, and bit

135

3 changes for neighbor type 5. These patterns, which are discussed in greater detail
in [45], are the basis for the bit operations which lead to the constant-time behavior

in the algorithms that follow.

4.4.1 Neighbor Type 1

Neighbor type 1 always goes straight to the sibling (the nearest common ances-
tor is the parent), so not much work is required. In fact, finding the sibling is simply
a matter of inverting the last bit (based on the level or depth in the hierarchy) in

the location code.

procedure NEIGHBOR_1(PENTA) ;

/* Determine the location code of the neighbor which shares face 1234 of the pen-
tatope with location code PENTA. */

begin
value pointer location_code PENTA;
/* Flip the last bit */

CODE (PENTA) < XOR (CODE (PENTA) , 1) ;
end;

4.4.2 Neighbor Type 2

Since our goal is to find the appropriate neighbor in constant time, we want
to use simple addition and take advantage of any carries. In particular, we want a
carry to occur whenever we need to continue searching (looking at the ancestor) in
the hierarchy. Finding neighbor type 2 requires finding either neighbor type 1 or 2
of the 4th ancestor (same shape, double size, sixteen times the volume) depending
on which child of the 4th ancestor was needed to reach the input location code. This
means that we need a carry if the child of the 4th ancestor was child 0, and no carry

136

if it was child 1.

procedure NEIGHBOR_2(PENTA) ;

/* Determine the location code of the neighbor which shares face 1235 of the pen-
tatope with location code PENTA. */

begin
value pointer location_code PENTA;
path_array TEST,FLIP;
/* Identify positions where sibling can be determined */
TEST<—AND (CODE (PENTA) ,POS1MASK) ;
/* Use carry to find rightmost sibling position */
FLIP<COMPLEMENT (TEST) +1;
/* Clear out everything but the final carry */
FLIP<AND(FLIP,TEST) ;
/* Make sure we adjust to the proper level */
FLIP<+-SHIFT_LEFT(FLIP);
/* Flip the appropriate bit */
CODE(PENTA) < XOR (CODE (PENTA) ,FLIP);

end;

Notice that the first line of NEIGHBOR_2 locates the positions within the
location code where the sibling can be determined because the relevant face is face
v1v9v3. This result is stored in TEST. Since we want carries where the sibling cannot
be determined, we need to complement TEST and then do the addition. To isolate
the one bit that needs to be flipped in the location code, we “and” the result of the
addition with the value stored in TEST (the positions where we CAN determine
the sibling). The bits are offset by one position at this point, so we shift the answer
left by one position. Finally, we simply flip the appropriate bit in the location code,
by using “xor” between the location code and the current bit mask (which contains
only one bit marking the position where we found the sibling).

As an example, let us consider location code 710100110101100100011. We can

determine the sibling at any position where the first bit (out of 4) is 1. The rightmost

137

1 tells us which bit needs to be inverted in order to get the correct neighbor. The

sequence is shown in Figure 54.

Step Operation Results
0 Example Input 710100110101100100011
1 AND($0,POSIMASK) | 010000000100000000000
2 COMPLEMENT($1) 101111111011111111111
3 ADD_ONE($2) 101111111100000000000
4 AND($3,$1) 000000000100000000000
5 SHIFT_LEFT($4) | 000000001000000000000
6 XOR($5,$0) 710100111101100100011

Figure 54: Example of neighbor type 2.

4.4.3 Neighbor Types 3, 4, and 5

Finding neighbor types 3, 4, or 5 requires that we find the pentatope which
shares the appropriate tetrahedral face, and may involve finding any of these three
neighbor types at higher levels in the hierarchy if the requested face is contained by
face v1vov4V5, V1V3V4Vs, O VoV3V4V5 in the 4th ancestor.

Since our goal is to find the appropriate neighbor in constant time, we want
to use simple addition and take advantage of any carries. We want a carry to occur
whenever we need to continue searching higher in the hierarchy, and we also want
this process to take into account any changes in neighbor type as we go up in the
hierarchy. Therefore, we need an indicator to keep track of which neighbor type we
want to find at each level (or at least at every fourth level). As in the 3D case, we

will use a “neighbor mask” to store this information.

procedure NEIGHBOR_3(PENTA) ;
/* Determine the location code of the neighbor which shares face 1245 of the pen-
tatope with location code PENTA. */

138

begin
value pointer location_code PENTA;
path_array TEST,SELECT,FLIP;

/* Apply all stop tests to entire location code */
TEST+COMPLEMENT (CODE (PENTA)) ;
TEST<-SHIFT_RIGHT (SHIFT_RIGHT (AND (TEST,P0S12MASK)));
TEST+<—XOR (TEST, CODE (PENTA)) ;
/* Get bits related to neighbor type 3 */
SELECT<—AND (MASK (PENTA) ,POS12MASK) ;
SELECT<0R (SELECT,SHIFT_RIGHT (SHIFT_RIGHT(SELECT)));
/* Select appropriate results from stop tests */
SELECT<XO0R (SELECT,SHIFT_RIGHT (AND (SELECT,POS2MASK))) ;
SELECT<—COMPLEMENT (OR (SHIFT_RIGHT (SELECT) ,POS1MASK)) ;
TEST<—AND (TEST, SELECT) ;
/* Use carry to find rightmost stopping position */
FLIP<-COMPLEMENT (TEST) +1;
/* Clear out everything but the final carry */
FLIP<—AND(FLIP,TEST);
/* Make sure we adjust to the proper level */
FLIP<SHIFT_LEFT(FLIP);
/* Flip the appropriate bit */
CODE (PENTA) <—X0R (CODE (PENTA) ,FLIP);

end;

The first step in finding neighbor types 3, 4, or 5, is identifying where (i.e.,
at what level in the location code) we can determine the neighbor. We want to
construct the mask TEST so that it marks the locations where the neighbor can
be determined. Since neighbors are determined before we reach the 4th ancestor
(otherwise, we continue upwards in the hierarchy), we will examine the bits in sets
of four, where the leftmost (or most significant) bit is called bit 1, the next bit is
called bit 2, the next bit is called bit 3, and the rightmost (or least significant) bit
is called bit 4.

There are three stop cases to consider, one for each of the three neighbor

types. In Figure 53 we can see that neighbor type 3 stops with an answer if bit 2

139

is 1. Neighbor type 4 stops with an answer if bit 1 is equal to bit 3. And, neighbor
type 5 stops with an answer if bit 2 is equal to bit 4. The mask TEST is constructed
based on these patterns. The first three lines in the code compute and store the
results of all three tests simultaneously.

The SELECT mask is constructed to select the appropriate result (from the
three tests) for each level in the hierarchy. The “and” between TEST and SELECT
keeps only the relevant stop results. We complement TEST before the addition
because we want a carry to occur whenever we cannot identify the neighbor at a
given level. The carry continues until we reach the bit corresponding to the level at
which this neighbor can be identified. To isolate the one bit that needs to be flipped
in the location code, we “and” the result of the addition with the value stored in
TEST (the positions where we CAN determine the sibling). The bits are offset by
one position at this point, so we shift the answer left by one position. Finally, we
simply flip the appropriate bit in the location code, by using “xor” between the
location code and the current bit mask (which contains only one bit marking the
position where we found the sibling).

As an example, let us consider location code 710100110101100100011. We
can determine the sibling at any position where our stop tests give a result of 1.
The rightmost 1 tells us which bit needs to be inverted in order to get the correct
neighbor. The sequence is shown in Figure 55.

The procedures for neighbor types 4 and 5 are almost identical to neighbor
type 3. The only difference is the part of the code which gets the relevant bits from

the neighbor mask. The complete code (for both neighbor types 4 and 5) is given

140

Step Operation Results
0 Example Input 710100110101100100011
1 COMPLEMENT($0) | 001011001010011011100
2 | AND($1,POS12MASK) | 001001000010011001100
3 | SHIFT_RIGHT($2) x 2 | 000010010000100110011
4 XOR($3,%0) 710110100101000010000
5 Neighbor Mask 010111110011001100110
6 | AND($5,POS12MASK) | 010001100010001000100
7 | SHIFT_RIGHT($6) x 2 | 000100011000100010001
8 OR($7,%6) 010101111010101010101
9 | AND($8,POS2MASK) | 000000100010001000100
10 SHIFT_RIGHT($9) | 000000010001000100010
11 XOR($10,$8) 010101101011101110111
12 SHIFT_RIGHT($11) | 001010110101110111011
13 | OR($12,POSIMASK) | 011011110101110111011
14 | COMPLEMENT($13) | 000100001010001000100
15 AND($14,%4) 000100000000000000000
16 | COMPLEMENT($15) | 111011111111111111111
17 ADD_ONE($16) 111100000000000000000
18 AND($17,%15) 000100000000000000000
19 SHIFT_LEFT($18) 001000000000000000000
20 XOR($19,%0) 711100110101100100011

Figure 55: Example of neighbor type 3.

below.

procedure NEIGHBOR_4 (PENTA) ;

/* Determine the location code of the neighbor which shares face 1345 of the pen-
tatope with location code PENTA. */

begin
value pointer location_code PENTA;
path_array TEST,SELECT,FLIP;

/* Apply all stop tests to entire location code */
TEST<—COMPLEMENT (CODE (PENTA)) ;

TEST<SHIFT_RIGHT (SHIFT_RIGHT (AND (TEST,POS12MASK))) ;
TEST<XOR (TEST,CODE (PENTA)) ;

/* Get bits related to neighbor type 4 */
SELECT<—AND (MASK (PENTA) ,P0S34MASK) ;

SELECT<0R (SELECT,SHIFT_LEFT(SHIFT_LEFT(SELECT))) ;

/* Select appropriate results from stop tests */

SELECT<—XOR (SELECT, SHIFT_RIGHT (AND (SELECT,POS2MASK))) ;
SELECT<—COMPLEMENT (OR (SHIFT_RIGHT (SELECT) ,POS1MASK)) ;

141

TEST<«—AND (TEST, SELECT) ;
/* Use carry to find rightmost stopping position */
FLIP<COMPLEMENT (TEST)+1;
/* Clear out everything but the final carry */
FLIP<AND(FLIP,TEST);
/* Make sure we adjust to the proper level */
FLIP<+SHIFT_LEFT(FLIP);
/* Flip the appropriate bit */
CODE (PENTA) < XOR (CODE (PENTA) ,FLIP) ;

end;

procedure NEIGHBOR_5(PENTA) ;

/* Determine the location code of the neighbor which shares face 2345 of the pen-
tatope with location code PENTA. */

begin
value pointer location_code PENTA;
path_array TEST,SELECT,FLIP;

/* Apply all stop tests to entire location code */
TEST<—COMPLEMENT (CODE (PENTA)) ;
TEST<«SHIFT_RIGHT (SHIFT_RIGHT (AND (TEST,POS12MASK))) ;
TEST<«XOR (TEST, CODE (PENTA)) ;
/* Get bits related to neighbor type 5 */
SELECT<—SHIFT_LEFT(SHIFT_LEFT (AND (MASK (PENTA) ,P0S34MASK))) ;
SELECT<+XOR (SELECT, AND (MASK (PENTA) ,POS12MASK)) ;
SELECT<—0R (SELECT,SHIFT_RIGHT (SHIFT_RIGHT (SELECT)));
/* Select appropriate results from stop tests */
SELECT<—XO0R (SELECT ,SHIFT_RIGHT (AND (SELECT,P0S2MASK))) ;
SELECT<—COMPLEMENT (OR (SHIFT_RIGHT (SELECT) ,POS1MASK)) ;
TEST<—AND (TEST, SELECT) ;
/* Use carry to find rightmost stopping position */
FLIP<COMPLEMENT (TEST) +1;
/* Clear out everything but the final carry */
FLIP<AND(FLIP,TEST) ;
/* Make sure we adjust to the proper level */
FLIP<-SHIFT_LEFT(FLIP);
/* Flip the appropriate bit */
CODE (PENTA) <—X0R (CODE (PENTA) ,FLIP) ;

end;

142

4.4.4 Updating the Neighbor Mask

In order to perform neighbor finding in constant-time, we not only need access
to the neighbor type information in the neighbor mask, but we also need to be
able to update the neighbor mask itself in constant time. This is accomplished by
updating specific bit positions in the neighbor mask based on the bit that changes
in the location code.

From Figure 53 we can verify that the following is true:

o If the first two bits are 00, neighbor type 3 continues as neighbor type 3,
neighbor type 4 continues as neighbor type 4, and neighbor type 5 continues

as neighbor type 5. Therefore, 00 means no change in our neighbor state.

e If the first two bits are 01, neighbor type 3 never continues (assume type 3),
neighbor type 4 continues as neighbor type 5, and neighbor type 5 continues
as neighbor type 4. Therefore, 01 means we swap 4 and 5 in our neighbor

state.

e If the first two bits are 10, neighbor type 3 continues as neighbor type 5,
neighbor type 4 continues as neighbor type 4, and neighbor type 5 continues
as neighbor type 3. Therefore, 10 means we swap 3 and 5 in our neighbor

state.

e If the first two bits are 11, neighbor type 3 never continues (assume type 5),
neighbor type 4 continues as neighbor type 3, and neighbor type 5 continues

as neighbor type 4. Therefore, 11 means we rotate types in our neighbor state.

143

If we consider all possible changes in the first two bits (both to and from each

of the four options), we get a predictable set of related swaps which are shown in

Figure 56.
From To 00 To 01 To 10 To 11
00 No change | Swap 4 and 5 | Swap 3 and 5 | Not possible
01 | Swap 4 and 5| No change Not possible | Swap 3 and 5
10 | Swap 3 and 5 | Not possible No change | Swap 3 and 4
11 Not possible | Swap 3 and 5 | Swap 3 and 4 | No change

Figure 56: Swaps performed as a result of various bit changes.

The positions of the two values that swap tell us which positions should be
updated in the remaining parts of the neighbor mask. Since there are effectively
three bit pairs, one for each of the three possible neighbor types, there are only three
swap operations to consider (swap positions 1 and 2, swap positions 1 and 3, and
swap positions 2 and 3). Swapping fixed positions can be accomplished in constant
time. Thus, we can simply apply one of three constant-time swap operations in
order to update the neighbor mask in constant time. Notice that swaps involving
position 3 are really just a simple exclusive-or operation, since position 3 is only

implied (by process of elimination) and not actually stored in the neighbor mask.

procedure SWAP_1_2(PENTA,FLIP);
/* Swap positions 1 and 2 in neighbor mask of PENTA. */
begin

value pointer location_code PENTA;

value path_array FLIP;

path_array TEMP;

/* Modify FLIP so it can be used as a mask */

FLIP<+-SHIFT_LEFT(-FLIP);

/* Swap first two bits with last two bits */

TEMP<—SHIFT_LEFT (SHIFT_LEFT (AND (MASK (PENTA) ,POS34MASK))) ;

TEMP<—0R (TEMP,SHIFT_RIGHT (SHIFT_RIGHT (AND (MASK (PENTA) ,POS12MASK)))) ;

144

/* Clear out bits left of FLIP location */

MASK (PENTA) <—AND (COMPLEMENT (FLIP)) ;

/* Store swapped bits into neighbor mask */

MASK (PENTA) <—0R (AND (TEMP,FLIP) ,MASK (PENTA)) ;
end;

procedure SWAP_1_3(PENTA,FLIP);
/* Swap positions 1 and 3 in neighbor mask of PENTA. */
begin

value pointer location_code PENTA;

value path_array FLIP;

path_array TEMP;

/* Modify FLIP so it can be used as a mask */
FLIP<+-SHIFT_LEFT(-FLIP);
/* Get last two bits to be used for update step */
TEMP<—AND (AND (MASK (PENTA) ,P0S34MASK) ,FLIP) ;
TEMP<—SHIFT_LEFT (SHIFT_LEFT (TEMP)) ;
/* Swap first two bits with implied third pair of bits */
MASK (PENTA) <—XOR (MASK (PENTA) , TEMP) ;

end;

procedure SWAP_2_3(PENTA,FLIP);
/* Swap positions 2 and 3 in neighbor mask of PENTA. */
begin

value pointer location_code PENTA;

value path_array FLIP;

path_array TEMP;

/* Modify FLIP so it can be used as a mask */
FLIP<-SHIFT_LEFT(-FLIP);
/* Get first two bits to be used for update step */
TEMP<—AND (AND (MASK (PENTA) ,P0S12MASK) ,FLIP) ;
TEMP<—SHIFT_RIGHT (SHIFT_RIGHT(TEMP)) ;
/* Swap last two bits with implied third pair of bits */
MASK (PENTA) <—XOR (MASK (PENTA) , TEMP) ;

end;

4.4.5 'Transitions Across the 24 Top Level Pentatopes

Transitions between the 24 top level pentatopes are relatively simple. This
situation arises if the addition from our constant time algorithm generates a carry

145

past the leftmost end of the input location code.
Transitions at the top level are really no different than our previous discussion.

We simply pick a new top level pentatope based on our table lookup.

4.5 Clusters of Pentatopes in an HP

The bisection rule generates nested meshes, that in general are not conforming.
To produce a conforming mesh, when applying pentatope bisection, all pentatopes
that share a common edge with the pentatope that is being split, must be split
at the same time to guarantee consistency. We call any set of pentatopes which
share their longest edge a cluster. There are four types of clusters based on the four
choices of orientation of the edge that is bisected, that we call h-clusters, c-clusters,
s-clusters, and e-clusters, respectively. These four clusters correspond to the four
geometrically similar simplicial shapes, and each cluster will contain only pentatopes

with the same shape:

e an h-cluster is a hypercube formed by 24 h-pentatopes (the initial domain
subdivision is an h-cluster), all sharing the diagonal of a hypercube as their

longest edge, with 36 tetrahedral and 14 triangular faces.

e a c-cluster is formed by 12 c-pentatopes, all sharing the diagonal of a cube as
their longest edge (which thus lies on a hyper-plane parallel to one of the four

coordinate hyper-planes), with 18 tetrahedral and 8 triangular faces.

e an s-cluster is formed by 16 s-pentatopes, all sharing the diagonal of a square

146

as their longest edge (which thus lies on a plane parallel to one of the six

coordinate planes), with 24 tetrahedral and 10 triangular faces.

e an e-cluster is formed by 48 e-pentatopes, all sharing an edge aligned with one
of the four coordinate axes as their longest edge, with 72 tetrahedral and 26

triangular faces.

To produce a nested conforming subdivision, we need to be able to compute
efficiently, for each pentatope o that must be split along an edge e, all pentatopes
which belong to the same cluster as 0. Given a pentatope o and edge e of o, the
problem consists of computing the pentatopes sharing edge e with ¢ which form
a cluster. This can be performed by traversing the pentatopes incident at e and
moving from one pentatope o to a pentatope adjacent to o along a tetrahedral face,
until all pentatopes in the cluster are found. Constant-time neighbor finding is used

to locate adjacent pentatopes and thus to compute the necessary clusters.

4.6 A Depth First Algorithm for Selective Refinement

The depth-first algorithm is a standard refinement algorithm (see, for in-
stance, [50]). It starts from the initial mesh, consisting of the 24 top-level pentatopes
which subdivide the hypercube, and initializes the currently extracted mesh (that
we call the current mesh) with them. For any pentatope ¢, that does not satisfy the
error requirements, we split the cluster ¢ of pentatopes which share their longest
edge with ¢. If a pentatope ¢’ in ¢ does not exist in the current mesh, then we split
the cluster associated with the parent of #'. This is applied recursively in order to

147

guarantee a conforming mesh. The process continues until all pentatopes in the
current mesh satisfy the error requirements.

A pseudo-code description of the depth-first algorithm is given below. Predi-
cate EXIST(¢) returns the value true if pentatope t is part of the current mesh, and
the value false otherwise. Function PARENT(¢) deletes the last bit from the location
code of ¢, thus returning the parent of ¢{. Functions CHILD_0(¢) and CHILD_1(¢)
add a 0-bit and a 1-bit to the end of the location code of ¢, respectively, thus re-
turning the first and the second child of ¢, respectively. Function SPLIT(¢) replaces
t in the current mesh with CHILD_0(¢) and CHILD_1(¢). Function CLUSTER(%)
returns the set of all pentatopes sharing the splitting edge with pentatope t. This

set can be found by using the neighbor finding described previously.

procedure SPLIT_CLUSTER(PENTA);

/* Split all pentatopes within the same cluster as PENTA. This includes splitting
PENTA itself. */

begin
value pointer location_code PENTA;
pointer location_code NEIGHBOR;

for NEIGHBOR in {CLUSTER(PENTA)} do
begin
if not (EXIST(NEIGHBOR)) then SPLIT_CLUSTER(PARENT (NEIGHBOR));

SPLIT(NEIGHBOR) ;
end;
end;

procedure CHECK_SPLIT(PENTA);
/* Check if PENTA satisfies the error requirement and split if necessary. */
begin

value pointer location_code PENTA;

if FATL_ERROR_REQ(PENTA) then

begin
SPLIT_CLUSTER(PENTA) ;

148

CHECK_SPLIT(CHILD_O(PENTA));
CHECK_SPLIT(CHILD_1(PENTA));
end;
end;

procedure EXTRACT_MESH();
/* Extract a conforming mesh where all pentatopes satisfy the error requirement.

*/
begin
location_code PENTA;
for PENTA in {‘0’, ‘1’, ..., ‘23’} do
begin
CHECK_SPLIT(PENTA) ;
end;
end;

It can be easily seen that the worst-case time complexity of the algorithm
is O(k), where k is the number of pentatopes in the hierarchy. Since the pen-
tatopes are only split in SPLIT_CLUSTER if forced by our consistency constraint,
and SPLIT_CLUSTER is only called if one of the pentatopes is beyond the error
threshold, the algorithm never splits a pentatope unless it is necessary, and thus,
it generates the minimum number of pentatopes which are required to satisfy the

error requirements.

4.7 Experimental Results

In this Section, we show images and performance statistics obtained by per-
forming multi-resolution queries on an HP. We have used subsets of the Ritchmyer
Meshkov Instability data set from the ASCI team at Lawrence Livermore National

Laboratories. This represents a simulation in which two gases are initially separated

149

by a membrane pushed against a wire mesh. The complete data set consists of 270
time steps, and each time step is simulated over a 2048x2048x1920 grid. Also, we
have performed experiments by generating a 4D data set from the Buckyball data
set. This 4D data set was generated by using the field values inside each 4x4x4
subgrid as the different values in the fourth dimension for the point corresponding
to the subgrid. In both cases, the test data is within a 32x32x32x32 grid, resulting
in 1,185,921 total points and 25,165,824 total pentatopes at maximum resolution.
We show results on multi-resolution queries that extract a 4D mesh according

to the following LOD criteria:

e Uniform LOD: extraction of a mesh satisfying a constant error threshold; in

our experiments, the threshold varies from zero to the maximum error value.

e Variable LOD in a box: extraction of a mesh with an error below a given
threshold inside a 4D box and no error constraint outside it; in our experi-
ments, the box is at a fixed position, and the threshold inside the box varies

from zero to the maximum error.

e Variable LOD based on a field value: extraction of a mesh with an error below a
certain threshold on the pentatopes intersecting the isosurface of the specified

field value, and no error constraint elsewhere.

Figures 57-59 and 60-62 show meshes extracted by each of the queries for the
1% error threshold value for the Buckyball and Ritchmyer Meshkov Instability data

sets, respectively. These meshes have been obtained by cutting the extracted 4D

150

mesh through a hyperplane perpendicular to the time axis (but our algorithm works

for a cutting hyperplane parallel to any of the coordinate hyperplanes).

Figure 57: Uniform LOD extraction from the Buckyball data set: error
threshold equal to 1% of the field range. The isosurface for timestep
4 and field value 100 is shown.

Sample results for each of the three queries with error threshold values of 0,
1, 5, and 10% of the field range are given in Figure 63 for the modified Buckyball
data set and Figure 64 for the Ritchmyer Meshkov Instability data set. As expected,
using higher error thresholds or increasing the selectivity for the query reduces the
number of pentatopes which must be processed, and results in a lower level of detail
in the corresponding time slice. It should also be noted that the selectivity can be
used to focus on the time slice itself. In other words, we can extract a 4D mesh at
a certain resolution only in the specified time slice. This can be seen in Figures 63
and 64 where the numbers of pentatopes are consistently less than 10% of the mesh
size at full resolution (25,165,824). Looking at the uniform resolution we find that
when using a 1% error value threshold restricted to the time slice of interest leads
to a reduction in the number of pentatopes from 13,359,032 to 1,384,610 (as shown

151

Figure 58: Variable LOD based on a region of space in the Buckyball
data set: error threshold equal to 1% of the field range within the se-
lected area, and arbitrarily large elsewhere. The isosurface for timestep
4 and field value 100 is shown.

in Figure 63) with no change in the number of tetrahedra for the time slice, which
is 114,268 in both cases. It is interesting to note that the field value query allows a
further reduction of the size.

For comparison purposes, we have also implemented a technique for extracting
conforming meshes from a hierarchy of pentatopes based on error saturation, as
discussed in [54, 79]. First, all pentatopes belonging to the same cluster are assigned
the same error value, which is equal to the maximum of their original error values.
Moreover, the approximation error associated with each pentatope is saturated to
be greater than or equal to the error associated with its children. This implies that,
during mesh extraction, if a pentatope is refined, then all pentatopes belonging to
the same cluster are refined.

Our experimental comparisons, that we have performed on the basis of LOD

queries at a uniform resolution, have not shown a major increase in the number of

152

Figure 59: Variable LOD based on field value in the Buckyball data
set: error threshold equal to 1% of the field range on the tetrahedra
intersected by the isosurface with field value 100, and an error threshold
arbitrarily large elsewhere. The isosurface for timestep 4 and field value
100 is shown. The number of pentatopes in the resulting 4D mesh is
70% of the number of pentatopes in the mesh obtained in the uniform
LOD extraction (see Figure 57).

pentatopes in meshes extracted from a saturated HP. The resulting meshes have
less than 1% more pentatopes than those extracted with our method. Regardless,
the computation times of our depth-first algorithm are the same as those of the
corresponding algorithm on a saturated HP (which simply performs a top-down
traversal of the hierarchy without any neighbor finding computation).

Another method which uses a pointerless representation of hierarchical regular
simplicial meshes is Atalay and Mount [2]. They extend the techniques of Hebert [34]
by introducing a variation on the labeling scheme called an LPT code, and present
rules to compute the neighbors of a given simplex efficiently. Their system uses
the same bisection technique as Maubach [50] and is designed to work in arbitrary
dimensions. Of course, as Atalay and Mount point out, Hebert’s addressing scheme

could already be generalized to higher dimensions. In fact, constant-time algorithms

153

Figure 60: Uniform LOD extraction from the Ritchmyer data set: error
threshold equal to 1% of the field range. The isosurface for timestep
4 and field value 100 is shown.

could be achieved by making use of bit operations on the symbolic location codes.
Regardless, table lookups are important for efficient neighbor finding within the
hierarchy, as is the case in [2]. While this may not technically make it impossible to
create algorithms which are readily generalizable to higher dimensions, it does seem
to make such a generalization fairly impractical. In any case, the vertex ordering of
Atalay and Mount [2] is really just a generalization of the vertex ordering used by
Hebert [34]. Our hierarchy of pentatopes uses a completely different strategy. We
don’t use symbolic location codes or LPT codes, which encode the level, permutation,
and translation for each simplex relative to some other reference simplex. Instead,
even with location codes which are based solely on the path to the pentatope within

the hierarchy, we are able to compute neighbors in worst-case constant time.

154

Figure 61: Variable LOD based on a region of space in the Ritchmyer
data set: error threshold equal to 1% of the field range within the se-
lected area, and arbitrarily large elsewhere. The isosurface for timestep
4 and field value 100 is shown.

Figure 62: Variable LOD based on field value in the Ritchmyer data
set: error threshold equal to 1% of the field range on the tetrahedra
intersected by the isosurface with field value 100, and an error threshold
arbitrarily large elsewhere. The isosurface for timestep 4 and field value
100 is shown. The number of pentatopes in the resulting 4D mesh is
92% of the number of pentatopes in the mesh obtained in the uniform
LOD extraction (see Figure 60).

155

Modified Buckyball

error 4D mesh 3D time slice
(% of field range) | pentatopes | % pentatopes | tetrahedra | % tetrahedra
Uniform 0.0 | 2,419,152 9.6% || 196,608 100.0%
1.0 | 1,384,610 5.5% || 114,268 58.1%
5.0 772,086 3.1% 60,968 31.0%
10.0 493,358 2.0% 36,502 18.6%
Selected Box 0.0 421,072 1.7% 34,912 17.8%
1.0 207,194 0.8% 16,986 8.6%
5.0 102,736 0.4% 8,510 4.3%
10.0 66,718 0.3% 5,878 3.0%
Field Value 0.0 1,139,996 4.5% 87,300 44.4%
1.0 975,740 3.9% 78,538 39.9%
5.0 712,942 2.8% 55,944 28.4%
10.0 492,180 2.0% 36,422 18.5%

Figure 63: Number of pentatopes in the meshes along with the per-
centage with respect to the number of pentatopes at full resolution,
and the number of tetrahedra in the time slice with value 4 along
with the percentage with respect to the number of tetrahedra at full

resolution.
Ritchmyer Meshkov

error 4D mesh 3D time slice
(% of field range) | pentatopes | % pentatopes | tetrahedra | % tetrahedra
Uniform 0.0 | 2,419,152 9.6% || 196,608 100.0%
1.0 891,704 3.5% 81,368 41.4%
5.0 738,622 2.9% 67,576 34.4%
10.0 636,380 2.5% 57,364 29.2%
Selected Box 0.0 421,072 1.7% 34,912 17.8%
1.0 164,670 0.7% 16,156 8.2%
5.0 140,976 0.6% 14,036 7.1%
10.0 125,430 0.5% 12,436 6.3%
Field Value 0.0 1,141,396 4.5% 88,006 44.8%
1.0 821,822 3.3% 74,398 37.8%
5.0 704,778 2.8% 64,374 32.7%
10.0 625,996 2.5% 56,394 28.7%

Figure 64: Number of pentatopes in the meshes along with the per-
centage with respect to the number of pentatopes at full resolution,
and the number of tetrahedra in the time slice with value 4 along
with the percentage with respect to the number of tetrahedra at full

resolution.

156

Chapter 5

Conclusions

We have described a triangle coding scheme that provides a new and worst-case
constant time way to navigate between adjacent triangles in a hierarchical triangle
mesh, where the triangles are obtained by a recursive quadtree-like subdivision of
the underlying space into four equilateral triangles. Our navigation algorithms are
given in the context of a sphere approximated by an icosahedron, octahedron, or
tetrahedron represented by a collection of quadtree triangle meshes. The only dif-
ference is the mechanism to handle the case where the neighboring triangles are in
the meshes of different faces of the polyhedron. The algorithms are very efficient,
as they only require a few bit manipulation operations which can be implemented
in hardware using just a few machine language instructions.

Our neighbor finding technique has a natural application [40] in performing
subdivision surface computations over triangular meshes. Subdivision surface algo-
rithms are popular computer graphics algorithms for generating visually rich and
smooth surfaces from a coarse base mesh of control polygons. They provide a
powerful alternative to more traditional polygon or NURBS modeling and enable
developers to create scalable 3D applications that boast multi-resolution surface
capability [19, 36]. Our triangle encoding method alleviates the need to maintain

an explicit, pointer-based triangle quadtree while enabling worst-case constant time

157

neighbor finding. Furthermore, our neighbor finding methods are extremely cache
and register friendly, thereby lending themselves well to highly optimized implemen-
tations on widely available consumer hardware [40].

We have also considered the natural and logical extension of these methods
to three-dimensional data, where the basic shapes are now tetrahedra instead of
triangles (e.g., [61, 69]). We have considered a multi-resolution representation of
a 3D scalar field based on hierarchical tetrahedral meshes generated by tetrahe-
dron bisection, that we call a Hierarchy of Tetrahedra (HT). We have developed a
worst-case constant time neighbor finding algorithm for hierarchies of tetrahedra.
We have proposed an implementation of an HT, and we have discussed how to ex-
tract conforming meshes from an HT by using such an algorithm. We have also
performed theoretical and experimental comparisons with a LOD model based on
multiresolution unstructured tetrahedral meshes [11].

For four-dimensional data, we have proposed a multi-resolution representation
of the scalar field based on a recursive decomposition of its hypercubic domain into
a hierarchy of nested pentatopes, called a Hierarchy of Pentatopes (HP), generated
by bisecting each pentatope along its longest edge. To this aim, we have considered
the problem of extracting conforming nested meshes from a hierarchy of pentatopes
so as to avoid discontinuities in the corresponding approximation of the associated
scalar field.

Generating conforming nested meshes requires computing clusters of pen-
tatopes, which must be split at the same time. Clusters are extracted from the
hierarchy by finding the neighbors of a pentatope along one of its five tetrahedral

158

faces. We have developed a labeling technique for nested pentatopes which enables
us to identify a pentatope through its location code. We know how neighbors can be
extracted by manipulating location codes, and we have neighbor finding algorithms
which work in worst-case constant time. The constant-time behavior is achieved by
using bit manipulation operations.

We have experimented with queries on a time-varying scalar field at differ-
ent resolutions, and we have shown how such queries can be efficiently answered
based on the multi-resolution model we have proposed. We have shown that a
multi-resolution model is an effective and efficient tool for analyzing and visualizing
time-varying volume data sets. The major ingredient for extracting topologically
consistent simplified representations from a hierarchy of pentatopes is a neighbor
finding algorithm based on location codes and arithmetic bit manipulation.

There are several challenging issues related to this work. When the field val-
ues are uniform in large areas, or simply not available, we need to store a variable-
resolution hierarchy of pentatopes, in which not all levels will be present, as, for
instance, in a quadtree or an octree. Thus, a hierarchy of pentatopes can be en-
coded by associating with each pentatope its location code and its error value, and
the resulting sorting sequence can be stored in a B-tree or in a hash table. An ef-
ficient representation for variable-resolution pentatopic hierarchies is also the basis
for developing simplicial multi-resolution representations of implicit static and dy-
namic shapes described through adaptive 4D distance fields. Modeling operations
can be efficiently performed by exploiting our efficient neighbor finding algorithm.

Finally, we can compute both variable-resolution (according to an LOD criterion)

159

and multi-resolution representations of interval volumes between pairs of isosurfaces
of a 3D scalar field by generating a multi-resolution model of the corresponding 4D

field (defined in [6, 7]) as a hierarchy of pentatopes.

160

1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

BIBLIOGRAPHY

D. J. Abel. A Bt—tree structure for large quadtrees. Computer Vision, Graph-
ics, and Image Processing, 27(1):19-31, July 1984.

F. Atalay and D. Mount. Pointerless implementation of hierarchical simplicial
meshes and efficient neighbor finding in arbitrary dimensions. In Proceedings
of the 13th International Meshing Roundtable, pages 15-26, Williamsburg, VA,
September 2004.

R. E. Bank, A. H. Sherman, and A. Weiser. Refinement algorithms and data
structures for regular local mesh refinement. In R. Stepleman, M. Carver,
R. Peskin, W. F. Ames, and R. Vichnevetsky, editors, Scientific Computing,
IMACS Transactions on Scientific Computation, volume 1, pages 3—-17. North-
Holland, Amsterdam, The Netherlands, 1983.

M. Bern, D. Eppstein, and J. Gilbert. Provably good mesh generation. In
Proceedings of the 31st IEEE Annual Symposium on Foundations of Computer
Science, pages 231-241, St. Louis, MO, October 1990.

P. Bhaniramka, R. Wenger, and R. Crawfis. [sosurfacing in higher dimensions.
In Proceedings IEEE Visualization 2000, pages 267-273, October 2000.

P. Bhaniramka, R. Wenger, and R. Crawfis. Isosurface construction in any di-
mension using convex hulls. IEEE Transactions on Visualization and Computer

Graphics, 10(2):130-141, 2004.

P. Bhaniramka, C. Zhang, D. Xue, R. Crawfis, and R. Wenger. Volume interval
segmentation and rendering. In Proceedings Volume Visualization Symposium,
2004.

P. Cignoni, L. De Floriani, P. Magillo, E. Puppo, and R. Scopigno. Selec-
tive refinement queries for volume visualization of unstructured tetrahedral
meshes. IEEE Transactions on Visualization and Computer Graphics, 10(1):29-
45, 2004.

D. Comer. The ubiquitous B-tree. ACM Computing Surveys, 11(2):121-137,
June 1979.

A. da Silva and H. Duarte-Ramos. A progressive trimming approach to space
decomposition. In Proceedings of the 4th International Symposium on Spatial
Data Handling, volume 2, pages 951-960, Zurich, Switzerland, July 1990.

E. Danovaro, L. De Floriani, M. Lee, and H. Samet. Multiresolution tetrahedral
meshes: an analysis and a comparison. In Proceedings of the International
Conference on Shape Modeling 2002, pages 83-91, Banff, Canada, May 2002.

161

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

[23]

L. De Floriani and M. Lee. Selective refinement on nested tetrahedral meshes.
In G. Brunett, B. Hamann, and H. Mueller, editors, Geometric Modeling for
Scientific Visualization. Springer Verlag, 2003.

L. De Floriani and P. Magillo. Multi-resolution mesh representation: Models
and data structures. In M. Floater, A. Iske, and E. Quak, editors, Princi-
ples of Multi-resolution in Geometric Modeling, Lecture Notes in Mathematics,
Springer Verlag, Berlin (D), 2002.

L. De Floriani, P. Magillo, and E. Puppo. Building and traversing a surface
at variable resolution. In R. Yagel and H. Hagen, editors, Proceedings IEEE
Visualization °97, pages 103-110, Phoenix, AZ, Oct 1997.

L. De Floriani, P. Marzano, and E. Puppo. Multiresolution models for to-
pographic surface description. The Visual Computer, 12(7):317-345, August
1996.

M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich, and M. B.
Mineev-Weinstein. ROAMing terrain: Real-time optimally adapting meshes.
In R. Yagel and H. Hagen, editors, Proceedings IEEE Visualization ’97, pages
81-88, Phoenix, AZ, October 1997.

G. Dutton. Geodesic modelling of planetary relief. Cartographica, 21(2&3):188~
207, Summer & Autumn 1984.

G. Dutton. Locational properties of quaternary triangular meshes. In Proceed-
wngs of the 4th International Symposium on Spatial Data Handling, volume 2,
pages 901-910, Zurich, Switzerland, July 1990.

N. Dyn, D. Levin, and J. A. Gregory. A Butterfly subdivision scheme for surface
interpolation with tension control. ACM Transactions on Graphics, 9:160-169,
April 1990.

M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuet-
zle. Multiresolution analysis of arbitrary meshes. In Proceedings of the SIG-
GRAPH’95 Conference, pages 173-182, Los Angeles, August 1995.

D. Eppstein. Approximating the minimum weight triangulation. In Proceedings
of the 3rd Annual ACM-SIAM Symposium on Discrete Algorithms, pages 48-57,
Orlando, FL, January 1992.

W. Evans, D. Kirkpatrick, and G. Townsend. Right-triangulated irregular net-
works. Algorithmica, 30(2):264-286, 2001.

G. Fekete. Rendering and managing spherical data with sphere quadtrees. In
A. Kaufman, editor, Proceedings IEEE Visualization’90, pages 176-186, San
Francisco, October 1990.

162

[24] G. Fekete and L. S. Davis. Property spheres: A new representation for 3-
d object recognition. In Proceedings of the Workshop on Computer Vision:
Representation and Control, pages 192-201, Annapolis, MD, April 1984. Also
University of Maryland Computer Science TR-1355.

[25] A. Fujimoto, T. Tanaka, and K. Iwata. ARTS: accelerated ray-tracing system.
IEEE Computer Graphics and Applications, 6(4):16-26, April 1986.

[26] I. Fujishiro, Y. Maeda, H. Sato, and Y. Takeshima. Volumetric data explo-
ration using interval volume. IEEE Transactions on Visualization and Com-
puter Graphics, 2(2):144-155, 1996.

[27] 1. Gargantini. An effective way to represent quadtrees. Communications of the
ACM, 25(12):905-910, December 1982.

[28] T. Gerstner and M. Rumpf. Multiresolutional parallel isosurface extraction
based on tetrahedral bisection. In Proceedings 1999 Symposium on Volume
Visualization, 1999.

[29] A.S. Glassner. Space subdivision for fast ray tracing. IEEE Computer Graphics
and Applications, 4(10):15-22, October 1984.

[30] M. F. Goodchild and S. Yang. A hierarchical spatial data structure for global
geographic information systems. CVGIP: Graphical Models and Image Under-
standing, 54(1):31-44, January 1992.

[31] B. Gregorski, M. Duchaineau, P. Lindstrom, V. Pascucci, and K. Joy. In-
teractive view-dependent rendering of large isosurfaces. In Proceedings IEEE
Visualization 2002, Boston, MA, October 2002.

[32] G. Greiner and R. Grosso. Hierarchical tetrahedral-octahedral subdivision for
volume visualization. The Visual Computer, 16:357-369, 2000.

[33] R. Gross, C. Luerig, and T. Ertl. The multilevel finite element method for
adaptive mesh optimization and visualization of volume data. In R. Yagel and
H. Hagen, editors, Proceedings IEEE Visualization 97, pages 387-394, Phoenix,
AZ, October 1997.

[34] D. J. Hebert. Symbolic local refinement of tetrahedral grids. Journal of Sym-
bolic Computation, 17(5):457-472, May 1994.

[35] H. Hoppe. View-dependent refinement of progressive meshes. In ACM
Computer Graphics Proceedings, Annual Conference Series, (SIGGRAPH’97),
pages 189-198, Los Angeles, August 1997.

[36] H. Hoppe, T. De Rose, T. Duchamp, M. Halstead, H. Jin, J. McDonald,
J. Schweitzer, and W. Stuetzle. Piecewise smooth surface reconstruction. In
Proceedings of the SIGGRAPH’9) Conference, pages 295-302, Orlando, FL,
July 1994.

163

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

G. M. Hunter. Efficient computation and data structures for graphics. PhD
thesis, Department of Electrical Engineering and Computer Science, Princeton
University, Princeton, NJ, 1978.

L. Ibarria, P. Linstrom, J. Rossignac, and A. Szymczak. Out-of-core compres-
sion and decompression of large n-dimensional scalar fields. Computer Graphics
Forum, 22(3), 2003.

G. Ji, H. W. Shen, and R. Wenger. Volume tracking using higher dimensional
isosurfacing. In G. Turk, J. van Wijk, and R. Moorhead, editors, Proceedings
IEEE Visualization 2003, pages 209-216, October 2003.

S. Junkins. Constant time neighbor finding for subdivision surfaces. Technical
report, Intel Architecture Labs, Hillsboro, OR, May 1999.

M. R. Kaplan. Space-tracing: a constant time ray-tracer. Tutorial Notes of the
ACM SIGGRAPH Conference on the Uses of Spatial Coherence in Ray-Tracing,
San Francisco, July 1985.

A. Kela, R. Perucchio, and H. Voelcker. Toward automatic finite element anal-
ysis. Computers in Mechanical Engineering, 5(1):57-71, July 1986.

A. Klinger. Patterns and search statistics. In J. S. Rustagi, editor, Optimizing
Methods in Statistics, pages 303-337. Academic Press, New York, 1971.

M. Lee, L. De Floriani, and H. Samet. Constant-time neighbor finding in
hierarchical tetrahedral meshes. In Proceedings of the International Conference
on Shape Modeling € Applications, pages 286-295, Genova, Italy, May 2001.

M. Lee, L. De Floriani, and H. Samet. Constant-time navigation in four-
dimensional nested simplicial meshes. In Proceedings of the International Con-
ference on Shape Modeling 2004, pages 221-230, Genova, Italy, June 2004.

M. Lee and H. Samet. Traversing the triangle elements of an icosahedral spher-
ical representation in constant-time. In T. K. Poiker and N. Chrisman, ed-
itors, Proceedings of the 8th International Symposium on Spatial Data Han-
dling, pages 22-33, GIS Lab, Department of Geography, Simon Fraser Univer-
sity, Burnaby, British Columbia, Canada, July 1998. International Geographical
Union, Geographic Information Science Study Group.

M. Lee and H. Samet. Navigating through triangle meshes implemented as
linear quadtrees. ACM Transactions on Graphics, 19(2):79-121, April 2000.

P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust, and G. A.
Turner. Real-time continuous level of detail rendering of height fields. In
Proceedings of the SIGGRAPH’96 Conference, pages 109-118, New Orleans,
August 1996.

164

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

P. Lindstrom and V. Pascucci. Visualization of large terrains made easy. In
Proceedings IEEE Visualization 2001, pages 363-370, San Diego, CA, October
2001.

J. M. Maubach. Local bisection refinement for n-simplicial grids generated
by reflection. SIAM Journal on Scientific Computing, 16(1):210-227, January
1995.

N. Max. Consistent subdivision of convex polyhedra into tetrahedra. Journal
of Graphics Tools, 6(3):29-36, 2002.

G. M. Morton. A computer oriented geodetic data base and a new technique
in file sequencing. , IBM Ltd., Ottawa, Canada, 1966.

G. M. Nielson and J. Sung. Interval volume tetrahedralization. In Proceedings
IEEE Visualization '97, pages 221-228, 1997.

M. Ohlberger and M. Rumpf. Hierarchical and adaptive visualization on nested
grids. Computing, 56(4):365-385, 1997.

M. Ohlberger and M. Rumpf. Adaptive projection operators in multiresolu-
tion scientific visualization. IEEFE Transactions on Visualization and Computer
Graphics, 5(1):74-93, 1999.

E. J. Otoo and H. Zhu. Indexing on spherical surfaces using semi-quadcodes.
In D. Abel and B. C. Ooi, editors, Advances in Spatial Databases — 3rd Inter-
national Symposium, SSD’93, pages 510-529, Singapore, June 1993.

R. Pajarola. Large scale terrain visualization using the restricted quadtree
triangulation. In D. Ebert, H. Hagen, and H. Rushmeier, editors, Proceedings
IEEFE Visualization °98, pages 19-26, Research Triangle Park, NC, October
1998.

V. Pascucci. Slow growing subdivision (SGS) in any dimension: towards re-
moving the curse of dimensionality. Computer Graphics Forum, 21(3), 2002.

V. Pascucci. Multi-resolution indexing for hierarchical out-of-core traversal of
rectilinear grids. In G. Farin, H. Hagen, and B. Hamann, editors, Hierarchical
and Geometrical Methods for Scientific Visualization, Springer Verlag, Heidel-
berg, Germany, 2003.

V. Pascucci and C. L. Bajaj. Time critical isosurface refinement and smoothing.
In Proceedings IEEE Symposium on Volume Visualization, pages 33-42, Salt
Lake City, UT, October 2000.

R. Perucchio, M. Saxena, and A. Kela. Automatic mesh generation from solid
models based on recursive spatial decompositions. International Journal for
Numerical Methods in Engineering, 28(11):2469-2501, November 1989.

165

[62] M. Rivara and C. Levin. A 3D refinement algorithm for adaptive and multigrid
techniques. Communications in Applied Numerical Methods, 8:281-290, 1992.

[63] J. C. Roberts and S. Hill. Piecewise linear hypersurfaces using the marching
cube algorithm. In R. Erbacher and A. Pang, editors, Visual Data Exploration
and Analysis VI, Proceedings of SPIE Visualization 2000, pages 170-181. SPIE,
1999.

[64] T. Roxborough and G. Nielson. Tetrahedron-based, least-squares, progressive
volume models with application to freehand ultrasound data. In Proceedings
IEEE Visualization 2000, pages 93-100, October 2000.

[65] H. Samet. Neighbor finding techniques for images represented by quadtrees.
Computer Graphics and Image Processing, 18(1):37-57, January 1982.

[66] H. Samet. Implementing ray tracing with octrees and neighbor finding. Com-
puters & Graphics, 13(4):445-460, 1989. Also University of Maryland Computer
Science TR-2204.

[67] H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image
Processing, and GIS. Addison-Wesley, Reading, MA, 1990.

[68] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,
Reading, MA, 1990.

[69] M. Saxena and R. Perucchio. Element extraction for automatic meshing based
on recursive spatial decompositions. Department of mechanical engineering,
University of Rochester, Rochester, NY, June 1989.

[70] G. Schrack. Finding neighbors of equal size in linear quadtrees and octrees in
constant time. CVGIP: Image Understanding, 55(3):221-230, May 1992.

[71] J. P. Suyder. Map Projections - A Working Manual. United States Government
Printing Office, Washington, DC, 1987.

[72] P. Sutton and C. D. Hansen. Isosurface extraction in time-varying fields using
a temporal branch-on-need tree (TBON). In Proceedings IEEE Visualization
’99, pages 147-154, 1999.

[73] M. Tamminen, O. Karonen, and M. Mantyld. Ray-casting and block model
conversion using a spatial index. Computer—Aided Design, 16(4):203-208, July
1984.

[74] W. Tobler and Z. T. Chen. A quadtree for global information storage. Geo-
graphical Analysis, 18(4):360-371, October 1986.

[75] C. Weigle and D. Banks. Complex-valued contour meshing. In Proceedings
IEEFE Visualization 1996, pages 173-180, October 1996.

166

[76] C. Weigle and D. Banks. Extracting iso-valued features in 4-dimensional scalar
fields. In Proceedings IEEE Visualization 1998, pages 103-110, October 1998.

[77] J. Wilhelms and A. van Gelder. Multi-dimensional trees for controlled volume
rendering and compression. In Proceedings of the 1994 Symposium on Volume
Visualization, pages 17-18, Washington, DC, October 1994.

[78] M. A. Yerry and M. S. Shephard. A modified quadtree approach to finite
element mesh generation. IEEE Computer Graphics and Applications, 3(1):39-
46, January-February 1983.

[79] Y. Zhou, B. Chen, and A. Kaufman. A multiresolution tetrahedral framework
for visualizing regular volume data. In R. Yagel and H. Hagen, editors, Pro-
ceedings IEEE Visualization 97, pages 135-142, Phoenix, AZ, October 1997.

167

