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Turnip crinkle virus (TCV) and Pea enation mosaic virus (PEMV) are two 

positive (+)-strand RNA viruses that are used to investigate the regulation of translation 

and replication due to their small size and simple genomes. Both viruses contain cap-

independent translation elements (CITEs) within their 3´ untranslated regions (UTRs) 

that fold into tRNA-shaped structures (TSS) according to nuclear magnetic resonance and 

small angle x-ray scattering analysis (TCV) and computational prediction (PEMV). 

Specifically, the TCV TSS can directly associate with ribosomes and participates in 

RNA-dependent RNA polymerase (RdRp) binding. The PEMV kissing-loop TSS (kl-

TSS) can simultaneously bind to ribosomes and associate with the 5´ UTR of the viral 

genome. Mutational analysis and chemical structure probing methods provide great 

insight into the function and secondary structure of the two 3´ CITEs. However, lack of 

3-D structural information has limited our understanding of their functional dynamics.  



 

Here, I report the folding dynamics for the TCV TSS using optical tweezers (OT), 

a single molecule technique. My study of the unfolding/folding pathways for the TCV 

TSS has provided an unexpected unfolding pathway, confirmed the presence of Ψ3 and 

hairpin elements, and suggested an interconnection between the hairpins and 

pseudoknots. In addition, this study has demonstrated the importance of the adjacent 

upstream adenylate-rich sequence for the formation of H4a/Ψ3 along with the 

contribution of magnesium to the stability of the TCV TSS.  

In my second project, I report on the structural analysis of the PEMV kl-TSS 

using NMR and SAXS. This study has re-confirmed the base-pair pattern for the PEMV 

kl-TSS and the proposed interaction of the PEMV kl-TSS with its interacting partner, 

hairpin 5H2. The molecular envelope of the kl-TSS built from SAXS analysis suggests 

the kl-TSS has two functional conformations, one of which has a different shape from the 

previously predicted tRNA-shaped form.  

Along with applying biophysical methods to study the structural folding dynamics 

of RNAs, I have also developed a technique that improves the production of large 

quantities of recombinant RNAs in vivo for NMR study. In this project, I report using the 

wild-type and mutant E.coli strains to produce cost-effective, site-specific labeled, 

recombinant RNAs. This technique was validated with four representative RNAs of 

different sizes and complexity to produce milligram amounts of RNAs. The benefit of 

using site-specific labeled RNAs made from E.coli was demonstrated with several NMR 

techniques.  
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Chapter 1: Introduction   

1.1. Viral RNA structures modulating translation initiation and ribosome 

interactions 

Positive (+)-strand RNA viruses that directly use their RNA genomes for 

translation account for one third of all virus genera (1). The significant loss of human and 

animal life, as well as destruction of agricultural crops attributed to these genera are 

perpetrated by members such as hepaviruses, coronaviruses, flaviruses, and 

tombusviruses (2). Protein production in these viruses depends on expression of the viral 

genes using cellular ribosomes, in which translation initiation is a determinant step for the 

efficiency of translation. Due to the inherent size limitations of viral particles, (+)-strand 

RNA viruses contain compact genomes that encode for a small number of proteins and 

rely on RNA structural elements to regulate translation initiation. An increasing number 

of cis- and trans-acting RNA elements in (+)-strand RNA viral genomes have been found 

to function in translation initiation and ribosome interactions (2-9). Although many 

functionally important viral RNA structural elements have been identified to date, there is 

a paucity of critical structural information regarding these elements, which could provide 

valuable insight into their functions. Since RNA structural elements involved in 

translation initiation are critical for efficient viral propagation, they are the focus of this 

study. 

 

1.1.1. Translation initiation  

Translation is the process in which the genetic information in RNA is decoded 

into an amino acid sequence of proteins using cellular ribosomes. This process is often 

separated into three well defined phases: initiation, elongation and termination (10). 
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Among these three phases, initiation displays the greatest diversity of mechanisms among 

different organisms (3, 5). Whether under highly variable or limited environmental 

conditions, organisms tend to adopt optimal mechanisms for translation initiation in order 

to produce their proteins efficiently. 

 In general, translation initiation mechanisms are broadly categorized as either 

cap-dependent or cap-independent (2-5). Most eukaryotic mRNAs follow a cap-

dependent mechanism for translation initiation, whereby the placement of a single 7-

methylguanosine cap (m7Gppp; Figure 1.1) directs the assembly of the ribosomal 

machinery on the 5´ capped mRNA (3, 10). The accessibility of the m7Gppp to initiation 

factors (IFs), such as eIF4E, the cap-binding protein, directly determines the translation 

efficiency of mRNAs. For instance, a stable hairpin placed in the proximal region of the 

5´ cap can block the interaction of IFs or ribosome scanning, which can inhibit translation 

(11-13). In the cap-dependent mechanism (Figure 1.2), translation initiation starts with 

the interaction of the small 40S ribosomal subunit with eukaryotic initiation factors 3 

(eIF3) and eIF1A. This complex then binds the ternary complex containing eIF2-GTP 

and Met-tRNA to create the larger 43S complex. Association of the 43S complex with 

eIF4A helicase and eIF4F (composed of eIF4E and eIF4G), which interacts with capped 

mRNA through eIF4E, assists in the assembly of the 43S complex on capped mRNA (3). 

This process is facilitated by circularization of the mRNA, which is achieved by the 

interaction between the cap, eIF4E, the poly(A) binding protein (PABP), poly(A) tail of 

the mRNA and eIF4G (14). The 43S complex then scans mRNA in the 5´ to 3´ 
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Figure 1.1. The simple structure of the 7-methylguanosine cap of cap-dependent translation versus 

the complex RNA structure of an internal ribosome entry site (IRES) 

A. A 5´ cap is made of an inverted guanosine, which forms a 5ʹ to 5´ triphosphate linkage with the 5´ 

terminal  nucleotide of the mRNA (15).  B. Schematic secondary structure of  the IRES of Plauti stalin 

intestine virus (PSIV) includes several stem-loops and pseudoknots (16).    

 

 

 
 
Figure 1.2. Model of cap-dependent translation 

Translation includes three phases: initiation (step 1), elongation (steps 2 and 3) and termination (step 4). 

Translation initiation is supported by closed-loop mRNA (14). In cap-dependent translation, the closed-

loop structure is formed through PABP (purple) creating a bridge between the poly(A) tail and an initiation 

factor eIF4E (blue), which interacts with the 5´ cap (red). Initiation begins with the interaction of eIF4F via 

eIF4E with the 5´ cap and the PAPB to assist the assembly of 43S complex on mRNA. The 43S complex 

includes 40S ribosomal subunit (lighter green), eIF3, and a ternary complex (not shown). Once assembled 

on the mRNA, the complex scans until it finds the first AUG in good context where it joins the 60S 

ribosomal subunit. Translation moves into elongation step until the ribosome reaches the stop codon where 

the ribosome dissembles and translation terminates. Image modified from Dreher et.al 2006 (17). 

 

direction to find the first “start” codon in an optimal context (3). The translation initiation 

stage is completed after the large 60S ribosomal subunit joins the 43S complex at the 

5´ to 5´ triphosphate 
bridge 

5´ end mRNA 

7-methylguanosine A B 
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start codon to form the 80S ribosomal complex (3). Translation proceeds to the 

elongation stage in which amino acids are sequentially added to the growing polypeptide 

chain based on the encoded mRNA sequence. Protein synthesis terminates when the 

ribosome reaches a “stop” codon. The ribosome is then disassembled and recycled for the 

next round of translation (3).    

Under adverse conditions, such as stress or starvation where caps or eIFs are 

limited or inhibited, translation initiation of a small subset of mRNAs can occur by a cap-

independent mechanism (18, 19). Cap-independent translation is prevalent in (+)-strand 

animal and plant viruses since such mechanisms allow viral RNAs to compete efficiently 

with host mRNAs for the translational machinery (3-5, 7, 20). One common feature 

displayed by RNA templates that utilize cap-independent translation is the presence of 

structural elements, which can range from small and simple to large and complex (Figure 

1.3) (5, 7, 20). Such elements appear to functionally replace the cap or the entire 

translation initiation complex by providing a scaffold for ribosome assembly (4, 5, 7, 20). 

A closed-loop structure formed by either a protein bridge or RNA:RNA interaction 

between RNA termini has also been suggested to assist cap-independent mechanisms of 

translation initiation (17, 21). 

Two representative cap-independent translation mechanisms include the “internal 

ribosome entry site” (IRES) mechanism (Figure 1.3A), more commonly found in animal 

viruses and a small group of cellular mRNAs (19), and the “cap-independent translation 

enhancer” (CITE) mechanism (Figure 1.3B), which is usually found in plant viruses (5). 

Both IRESes and CITEs are RNA structural elements that can interact with translation 

initiation factors or directly bind to ribosomes, allowing assembly of translational 
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machinery on mRNAs. IRESes are typically located internally within the 5´ untranslated 

regions (UTRs) of RNAs. CITEs are mostly found within the 3´ UTRs of viral genomes. 

Different RNA sequences found in IRESes and CITEs tend to form conserved structures 

that can be categorized into structural subgroups. Current knowledge detailing 2-

dimentional (2-D) or 3-D structural organization of these cap-independent RNA elements 

will be reviewed in the following sections. 

 

 

 

 

 

 

Figure 1.3. Examples of models of cap-independent translation initiation 

Close-loop RNA structure proposed to form either by a protein bridge or RNA:RNA interaction to assist 

translation initiation in cap-independent. A. Model of translation initiation using internal ribosomal entry 

sites (IRES) in poliovirus, which have uncapped, poly-adenylated genomes. The IRES is complex and 

located in the 5´ UTR of the viral genome; assembly of the initiation complex is supported through the 

direct interaction of 5´ RNA structural elements with translation initiation factors and ribosomal subunits. 

PAPB is suggested to support the close-loop RNA structure (21). B. Model of translation using 3´ cap-

independent translational enhancers (CITEs) in plant viruses. In many plant viruses, RNA structural 

elements located at the 3´ UTR of viral genome recruit translation initiation factors or ribosome/ribosome 

subunits. Circularizing of the genome through a long-range RNA:RNA interaction between 3´ CITEs and e 

5´ hairpins or ribosome bridge assists in transferring of the translational machinery to the 5´ end to enhance 

translation of the virus (17, 22, 23). Images modified from Martinez-Salas et al, 2008 (21), Dreher et al, 

2006 (17).  

 

1.1.2. IRESes and their 3-dimentional (3-D) structures 

IRESes were first discovered in two piconaviruses: poliovirus (PV) and 

Encephalomyocarditis virus (EMCV) in 1988 (24, 25). Since then, IRESes have been 

identified in at least 39 additional (+)-strand RNA viruses that infect mammals, 

invertebrates and plants (19, 26). IRES-dependent translation initiation mechanisms 

B A 

IRES 
CITE 
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allow many viruses to efficiently hijack the translation machinery of host cells. 

Additionally, 85 cellular mRNAs have been reported to use IRES elements for protein 

translation when cap-dependent translation initiation is compromised or inhibited (19, 

26). IRESes are often found in the 5´ UTRs of mRNAs and contain structural elements 

that are highly efficient in recruiting initiation factors and ribosomal subunits to initiate 

translation in a cap-independent manner. Although IRESes are found in both viral and 

cellular mRNAs, they have different core structures. While viral IRESes tend to have 

conserved structures, little structural conservation has been found in IRESes of cellular 

mRNAs (27).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. Diagram of four groups of viral IRESes recruiting translational machinery 

Tightly folded IRES requires fewer elements of translational machinery. Compact group I IRESes require 

only the 40S ribosomal subunit. Group II IRESes require eIF2 and eIF3 in addition to the 40S ribosomal 

subunit. More translation initiation factors, including eIF2, eIF4A, eIF4B, eIF4G bind to extended IRESes 

of group III and IV. These two groups also require  the presence of additional proteins called IRES trans-

activating factors (ITAPs) (7). 

 

Viral IRES elements are diverse in size, sequence and the requirements for trans-

acting factors (8, 28). Highly structured IRESes can directly bind various translation 

initiation factors but they do not interact with the cap-binding protein, eIF4E (9, 21). 

Group IV 

Group III 

Group II 

Group I 
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Interestingly, in viruses, tightly folded IRESes found in dicistroviruses, flaviviruses 

require fewer proteins to support their interaction with ribosomes while extended and 

largely flexible IRESes found in piconaviruses require more proteins including 

translation initiation factors and IRES trans-acting factors (Figure 1.4) (7).  

Viral IRES elements can be quite large, with piconavirus IRESes ranging from 

280 to 460 nt (9, 28). Due to the large size and complexity of IRES elements, the precise 

mechanisms by which they regulate translation initiation remain unclear. Structural 

knowledge of IRESes mostly comes from studies using picornaviruses, Hepatitis C virus 

(HCV), and dicistroviruses.  

 

1.1.2.1. Group I IRES 

Viral IRESes are classified into four groups based on conserved structures and 

requirements for initiation factors (Figure 1.4) (7, 21, 28, 29). Group I IRESes are found 

in dicistroviruses, and are the only IRES group located in the intergenic region (IGS) 

between two open reading frames (ORFs) (30). Highly structured group I IRESes require 

neither initiation factors nor an initiator methionyl tRNA. Group I IRESes can bind 

directly to the ribosome and translation initiates at the ribosome A-site rather than the P-

site, which is used during canonical translation initiation (21, 31, 32). The length of IGS 

varies among Dicistroviruses, however secondary and tertiary structures of their IRESes 

are highly conserved and contain three different regions (1, 2, and 3). Regions 1 and 2 

fold into a compact domain that is structurally independent from the variable region 3 

(domain 3) (Figure1.5A) (33-35). Each region of group I IRESes is stabilized by a 

specific pseudoknot (PK), (PKI, PKII and PKIII) (Figure 1.5A) (34). Region 1 binds the 

40S ribosomal subunit while region 2 binds the larger 60S ribosomal subunit (16, 33, 35, 
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36). This is the only IRES group for which a high-resolution structure is available for 

both ribosomal subunit bound and unbound (16, 37, 38). In the crystal structure of the 

Plauti stali intestine virus (PSIV) IRES (solved at 3.1 Å) (Figure 1.5B), the two 

conserved and distal IV and V stem-loops (SL) of region 1, responsible for direct binding 

to the 40S ribosome subunit, are found in close proximity and extend away from the 

folded IRES (16). Region 2 folds along the side of region 1 and interacts  with the 60S 

ribosomal subunit (16). Region 3 is important for the initiation step. In PSIV, 

 

Figure 1.5. Model structure of group I IRES 

A. Secondary structure of PSIV IRES. The structure of PSIV IRES is divided into three different regions 

(domains) in which each region is stabilized with one corresponding pseudoknot (PK).  B. Crystal structure 

of region I and II of PSIV IRES. Stem-loop IV and V which are important for the interaction with the 40S 

ribosomal subunit are found in close proximity. Region 2 folds along the side of region 1 to support the 

interaction of region 2 with the 60S ribosomal subunit.  C. The 3-D crystal structure of domain III of CrPV. 

Domain III mimics the interaction of tRNA with mRNA.  D. The cryo-EM of CrPV IRES with 80S 

A 

D 

C 
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ribosome. IRES is in purple, the 40S ribosomal subunit is in yellow and the 60S ribosomal subunit is in 

blue. IRES is found to extend to the P-site of the ribosome. Location of ribosomal L1 stalk and rpS5 are 

indicated (20). Images adapted from Jeffery S. Kieft 2008 (20). 

 

 

mutations/deletions that disrupt base-pairing between PKI with a CUU of region 3 impair 

translation (Figure 1.5A, C) (39). Chemical structure probing of the PSIV IRES in the 

presence of the ribosome indicates that the interaction between PK I and CUU of region 3 

lies in the P-site of the ribosome to position the initiation codon in the A-site, thus 

supporting initiation of translation at the A-site (35). Translation of group I IRES often 

initiates at a non-AUG codon including GCC, GCU, GCA, or CAA, which normally 

encode alanine or glutamine (21, 40). The crystal structure of the Cricket paralysis virus 

(CrPv) IRES (Figure 1.5C) indicates that region 3 mimics the intermolecular interaction 

between the initiator tRNA anticodon loop and the AUG start codon, supporting 

translation initiation at a non-AUG start codon (41). A structural comparison of the IRES 

with or without bound 80S ribosomes (Figure 1.5B-D) suggests that IRES domains fold 

prior to ribosome binding and, once bound to the ribosome, the structure of the group I 

IRES does not undergo a global structural rearrangement rather it slightly shifts local 

angles between helices of each region (16).  

 

1.1.2.2. Group II IRES 

An example of a group II IRES is the 5´ UTR of Hepatitis C virus (HCV), a 

member of the Flaviviridae family, in which viral RNA genomes lack a 5´ cap and 3´ 

poly(A)-tail (42, 43). HCV-like IRESes are also found in some piconaviruses (9). 

Translation initiation with group II IRESes involves binding of the 40S ribosomal subunit 

and interaction with the initiation factor eIF3 and ternary complex [eIF2-GTP-Met- 
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Figure 1.6. Model structure of group II IRES 

A. Secondary structure of the HCV IRES. Arrangements of four domains are indicated. Domain IV is 

supported by a pseudoknot.  B. Fragments of domain II and III have been solved by NMR and X-ray 

crystallography.  C. Cryo-EM complex of HCV IRES (magenta) with 80S ribosome (yellow and blue). 

Locations of IRES domain II and III, ribosomal L1 stalk and rpS5 are indicated. (*) denotes contact 

between the HCV IRES and L1 stalk (7). Images adapted from Jeffery S Kieft  2008 (20). 

 

tRNA] (20, 21, 44). Biochemical studies have established the secondary structure of the  

HCV 5´ UTR with one PK and four long stem-loops, which are divided into four domains 

(Figure 1.6A), with domains II–IV harboring RNA elements that interact with the 
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ribosomal subunit and translation initiation factors to facilitate translation (42, 43, 45). 

Domain II is an extended stem-loop that interacts with the 40S ribosomal subunit at the 

E-site and is important for tRNA binding while domain IV inserts its nucleotides into the 

mRNA-binding cleft of the 40S ribosomal subunit (18). High-resolution structures of 

truncated fragments of group II IRESes have been solved (Figure 1.6B). Structural 

analyses of nine fragments of HCV IRES domains II and III indicate that, in its unbound 

state, the HCV IRES adopts an extended conformation that contrasts the compact, 

globular conformation of group I IRESes (Figure 1.6B) (7). In addition, the extended 

conformation allows group II IRESes to interact with the ribosome at multiple sites, such 

as with the ribosomal L1 stalk, which is a flexible structure and responsible for tRNA 

movement within the ribosome during translocation (Figure 1.6C) (46, 47). The cryo-EM 

structure of the ribosome-bound HIV IRES indicates that, upon binding, there are almost 

no structural changes within the IRES and conformation of the free-form IRES is 

maintained.  

 

1.1.2.3. Group III and IV IRESes 

Group III and IV IRESes are common in the piconaviridae family, and are 

typically ~450 nt in length. These two groups of IRESes share an extended and flexible 

structure organized into multiple domains that interact with initiation factors eIF4A, eIF3, 

and the C-terminus of eIF4G (Figure 1.7). In addition, both IRES groups require IRES 

trans-activating factors (ITAFs) that possibly act as RNA chaperons; however, the actual 

functions of ITAFs with regard to group III and IV IRESes are still unknown (Figure 1.4) 

(28, 48). Group III IRESes, typified by Encephalomyelitis virus (ECMV) (Figure 1.7A), 

are found in genomic RNAs of cardio- and aphthovirus, while group IV IRESes, typified 
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by poliovirus (Figure 1.7B), are found in genomic RNAs of enteroviruses and 

rhinoviruses. Both groups contain an oligopyrimidine sequence located upstream of the 

initiation start codon AUG (Figure 1.7), where the distance between the oligopyrimidine 

sequence and the initiation start codon AUG is critical for translation initiation of EMCV 

(49). In viral genomes that contain group III IRESes, the IRES structures are 

                                               

Figure 1.7. Schematic diagram of group III and IV IRESes 

A. Group III IRES of EMCV.  Ribosome is assembled directly at the AUG start codon.  B. Group IV IRES 

in poliovirus. IRES positioned some distance away from the initiation site. Once assembled on the IRES, 

the ribosome scans until it reaches the AUG start codon. The binding sites of translation initiation factors 

and ribosome are indicated by arrows (7, 8). Images adapted from Balvay et al, 2009 (8). 
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located immediately upstream of an AUG start codon (Figure 1.7A), allowing the 

translational machinery to be assembled directly on the start codon. However, in viral 

genomes that contain group IV IRESes, the IRESes are located further upstream from the 

AUG start codon (Figure 1.7B).  Thus, once assembled, the ribosome is required to scan 

down the RNA genome until it reaches the initiation AUG start codon (7, 8). So far, no 3-

D structures are available for group III and IV IRESes owing to their large size, 

complexity and presence of extensive flexible regions.  

 

1.1.3. Current structural knowledge of cap-independent translation enhancers 

(CITEs) and their interacting elements to facilitate translation initiation 

  Cap-independent translation enhancers (CITEes) were first discovered in Satellite 

tobacco necrosis virus (STNV) and later found in plant viruses from the Luteoviridae and 

Tombusviridae and Umbravirus genus (5, 50). CITEs differ from IRES elements in that 

they are located within or near the 3′ UTR of viral RNA genomes and act to enhance 

translation at the 5´ terminus. 3´ CITEs commonly contain RNA structural elements that 

can form long-range RNA:RNA interactions to assist in genome circularization by 

bringing the two ends in close proximity. Many of these 5´ and 3´ interacting sequences 

are conserved and are normally present in apical loops of hairpins (2, 4, 17). Unlike long 

multidomain IRESes, multiple functional RNA sequences of 3´ CITEs commonly cluster 

within one RNA structural domain, which allows the structure to simultaneously perform 

multiple functions. For instance, the stem of a 3´ CITE can recruit the translation 

machinery while its apical loop can simultaneously perform the long-range RNA:RNA 

interaction. These simultaneous interactions facilitate delivery of either the 
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Figure 1.8. Sequences and secondary structures of 7 types of 3´ CITEs in plant viruses 

A. ISS of MNSV-64.  B. TED of STNV.  C. PTE of PEMV.  D. YSS of TBSV.  E. BTE of BYDV. F. TSS 

of TCV.  G. kl-TSS of PEMV. Sequences of known or predicted to form long-range RNA:RNA 

interactions are in green. The conserved 17-nt sequence of BTE is boxed in blue. Sequences that form 

pseudoknots are connected with an arrow. Images adapted and modified from Simon et al, 2013 (5).  
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3´bound initiation factors or ribosome to the 5´end of the genome (5, 51). Another 

common feature of CITEs is that they generally recruit either eIF4F, and/or subunits 

eIF4E and eIF4G, or/and ribosome subunits for their translational enhancing activities. 

Although they share common functions, seven structurally distinct classes of CITEs have 

been categorized so far based on their size, sequence, and structure (Figure 1.8) (4, 5, 52). 

 

1.1.3.1. I-shaped structure (ISS) 

The smallest and simplest of the 3´ CITEs is found in Maize necrotic streak virus 

(MNeSV) of tombusviruses (53) and Melon necrotic spot virus (MNSV) of carmoviruses 

(54). This type of 3´ CITE is predicted to form an I-shaped structure (ISS) with multiple 

internal stems separated by internal loops (Figure 1.8A) (55). The conserved interacting 

sequence of the ISS is located in the apical loop of the element, and is complementary to 

a sequence located in the 5´ UTR. The MNeSV ISS requires an intact eIF4F for tight 

binding (Kd = 190 nM), which is mediated by the eIF4E component (55). The MNeSV 

ISS can form a tripartite complex with the 5´ UTR and eIF4F in vitro, supporting the 

hypothesis that interaction between the 5´ UTR and the MNeSV ISS modulates delivery 

of 3´ bound initiation factors to the 5´ terminus (55). 

 

1.1.3.2.  Translation enhancer domain (TED) 

Translation enhancer domain (TED), the first 3´ CITE discovered, was originally 

found in Satellite tobacco necrosis virus (STNV) (50, 56). The structure of the 120-nt 

TED was first computationally predicted and later confirmed by genetic analysis. Similar 

to the ISS, the TED is comprised of a long stem divided into multiple internal stems 

separated by bulges (Figure 1.8B). TED interacts with eIF4G with high affinity (Kd = 30 
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nM) (56, 57). Deletion of TED from the 3´ UTR of STNV reduces translation of reporter 

constructs by more than 20-fold and translational activity can only be rescued by the 

addition of a 5´ cap (56). Long-range RNA:RNA interaction of TED with 5´ sequences is 

likely but has not been confirmed since mutation of putative interacting sequences only 

modestly reduced translation and reestablishing the interaction with compensatory 

mutations did not restore translation to wildtype level (58). 

 

1.1.3.3. Panicum mosaic virus-like translational enhancer (PTE) 

Panicum mosaic virus-like translational enhancer (PTE) is another type of 3´ 

CITE first discovered in Panicum mosaic virus and later found in seven carmoviruses and 

aureusviruses (Figure 1.8C) (59, 60). Unlike other 3´ CITEs and IRESes, which bind 

eIF4F or eIF4G, the PTE interacts only with eIF4E with high affinity (Kd = 48 nM) (59, 

60). The PTE is predicted to form a long basal stem containing a large G-bulge domain 

branching into two helical stem-loops connected by a C-rich sequence (C-domain) 

(Figure 1.8C). The C-domain forms a pseudoknot with the G-bulge of the main stem (59, 

60). More detailed information about the PEMV PTE is presented in section 1.2. With the 

exception of the PTE of Pea enation mosaic virus 2 (PEMV), the 5’ stem-loop of PTEs 

are predicted to form a long-range RNA:RNA interaction with complementary sequences 

located in the apical loop of a 5´ proximal hairpin (60).  In Saguaro cactus virus (SCV), 

the long-range RNA:RNA interaction between the PTE and its 5´ interacting sequence, 

located in the coding region, has been confirmed. Insertion of these two SCV elements 

into a reporter construct enhanced translation by 75-fold (23). Relocation of the 5´ 

terminal hairpin closer to the 5´ terminus of the SCV genome reduces translation 

efficiency, indicating that the location of the 5´ terminal hairpin is important for efficient 
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translational enhancer activity of the PTE (61). Location of the PTEs in carmoviruses is 

not conserved; a few PTEs span the C terminus of the coat protein coding region while 

others are located within the 3´ UTR (23).  

 

1.1.3.4.  Y-shaped structure (YSS) 

The 3´ CITE Y-shaped structure (YSS) was first identified in Tomato bushy stunt 

virus (TBSV) and Carnation Italian ringspot virus (CIRV) in the Tombusvirus genus 

(Figure 1.8D) (62, 63). The YSS was later found in all but two tombusviruses. It forms a 

large three-way branched helix in which all stems are much longer than those of similar 

PTE. Sequence and structure of the YSS are critical for translational enhancer activity of 

the 3´ UTR in vivo (62). The apical loop of the 5´ YSS hairpin contains an interacting 

sequence that is complementary to a 5´ UTR hairpin loop located within a T-shaped 

structure element (62, 64). The 5´ T-shaped structure element is also required for 

replication, suggesting a mechanism that regulates the switch between translation and 

replication (65). Exchanging three CITEs (YSS, ISS and PTE) does not cause significant 

loss in translation and replication as long as their corresponding RNA:RNA interactions 

with the 5´ terminal sequences are maintained. Thus, these CITEs are proposed to act as 

one structural domain to deliver bound translation initiation factors to the 5´ end of the 

genome (63). In addition to forming a long-range RNA:RNA interaction with the 5´ end, 

the CIRV YSS specifically binds eIF4F and its isoform, isoeIF4F (63).  

 

1.1.3.5.  Barley yellow dwarf virus-like element (BTE) 

Barley yellow dwarf virus-like element (BTE) is found in Luteovirus, Diathovirus, 

and Necrovirus genera as well as some umbraviruses and is one of best-characterized 3´ 
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CITE (Figure 1.8E) (66-70). Phylogenetic comparisons, mutagenesis, and structural 

probing of the Barley yellow dwarf virus (BYDV) BTE has identified a                      

major conserved stem-loop structure as well as a 17-nt conserved sequence 

[GGAUCCUGGgAaACAGG] in which the bold nucleotides form a stable stem (66-69). 

Computer modeling predicts that the secondary structure of the BTE is comprised of a 

series of stem-loops radiating from a central hub (Figure 1.8E). The proposed structure of 

the BTE was later confirmed by structural probing (70). Mutation of the bases in the hub 

decreases translational activity of the BYDV BTE, suggesting the importance of these 

bases for BTE function. Interestingly, there are no apparent canonical base-pairs between 

nucleotides of the hub (67). From phylogenetic analyses of BTE elements in related 

viruses, the hub is responsible for holding two to five hairpins, which suggests that its 

nucleotides must have non-canonical base pairs to maintain a stable structure. Interaction 

between the first three bases of the 17-nt conserved sequence with nucleotides in the 

opposite sequence extends the basal stem (67). The long-range RNA:RNA interaction 

sequence in the BTE is located within a stable hairpin loop III (SL-III) (Figure 1.8E) that 

is positioned outside of the 17-nt conserved sequence (70, 71). Disrupting the long-range 

RNA:RNA interaction of the BTE reduced translational efficiency, which is restored by 

compensatory mutations (72). The BTE of BYDV binds to eIF4F via eIF4G to enhance 

translation (73). Stem-loop I (SL-I) of the BTE was inferred to interact with eIF4F as this 

sequence was protected by the presence of eIF4F in footprinting experiments. The 

relocation of BYDV BTE to the 5´ terminus maintains its translation enhancing function, 

indicating that the element functions in transferring translation machinery to the 5´ UTR 

(67) .  
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1.1.3.6.  The tRNA-shaped structure (TSS) and the kissing-loop TSS 

The 3´ CITE known as the tRNA-shaped structure (TSS) is found in Turnip 

crinkle virus (TCV) and Cardamine chlorotic fleck virus (CCFV) and contains a unique 

set of three hairpins and two pseudoknots (Figure 1.8F) (74). Unlike other 3´ CITEs, 

which are mostly found to interact with initiation factors, the TCV TSS interacts directly 

with the 60S ribosomal subunit and 80S ribosomes (75). A long-range RNA:RNA 

interaction sequence has not been identified for the TCV TSS, suggesting that the 

connection between the 5´ and 3´ ends in the TCV genome might be established through 

a ribosome bridge. The TSS TCV is the only CITE whose structure was validated by 

small angle X-ray scattering (SAXS) and NMR (details in TCV section) (76). Another 

structural analogue of the TSS, the kissing-loop (kl-) TSS, was later identified in 

umbravirus Pea enation mosaic virus RNA 2 (PEMV) (Figure 1.8G). Unlike the TCV 

TSS, the kl-TSS of PEMV contains an apical loop that interacts with a hairpin positioned 

within the coding sequence at the 5´ end (51, 77). More details about the 3´ CITEs of 

TCV and PEMV are presented in section 1.2. 

 

1.2.  Turnip crinkle virus and Pea enation mosaic virus and their 3´ CITEs as models 

for structural analysis of ribosome binding translation enhancers 

1.2.1. Turnip crinkle virus: a model virus to study the conformational switch of the 

TCV TSS 

Turnip crinkle virus (TCV) belongs to the carmovirus genus in the family 

Tombusviridae and is a model (+)-strand RNA virus with a compact genome of 4053 nt 

(Figure 1.9). The genome encodes five proteins: p28, a replication accessory protein; p88, 

the RNA-dependent RNA polymerase (RdRp); p8 and p9, two movement proteins; and 

p38, a coat protein and silencing suppressor (78). The p28 and p88 proteins are translated 
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directly from genomic RNA, in which p88 is the read-through extension product of p28. 

The p8 and p9 are translated from 1.72 kb subgenomic 1 RNA and the coat protein is 

translated from 1.45 kb subgenomic 2 RNA.  

 

Figure 1.9. Genomic organization of TCV 
TCV has one genomic RNA and two subgenomic RNAs (sg1 and sg2). The three RNAs are 3’ coterminal. 

The TSS is in the 3’ UTR (74). p28 and p88 are involved in replication, p8 and p9 are involved in 

movement and the coat protein (CP) participates in encapsidation and RNA silencing suppression.  

 

 

TCV has been used as a model not only to investigate host-pathogen interactions 

in plants (79), but also to study RNA structural elements in viral genome involved in 

regulation of translation and replication (22, 74, 80-83). With the absence of both 5´ cap 

and 3´ poly(A) tail, translation of TCV genomic and subgenomic RNAs follows a non-

canonical translation mechanism and is dependent on RNA structural elements found in 

the 3´ UTR (74, 84). The existence of five hairpins (H4, H4a, H4b, H5 and Pr) and four 

pseudoknots (Ψ1, Ψ2, Ψ3 and Ψ4) in the 3´ UTR of TCV and their specific functions in 

translation and replication have been established using genetic covariation, biochemical 

structure assays, and phylogenetic comparisons between related carmoviruses (74, 80, 

85-87). These hairpins and pseudoknots are present in a region encompassing the 195-nt 

RNA sequence known as “the F4 fragment” (Figure 1.10) (22, 74, 80-83). TCV TSS, a 

cap-independent translation enhancer, which contains pseudoknots Ψ3 and Ψ2, as well as 

hairpins H4a, H4b and H5, is located between the H4 and Pr hairpins of the F4 fragment 
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(74). Two additional pseudoknots (Ψ1 and Ψ4) connect the TCV TSS to the Pr and H4 and 

allow these elements to interact for proper regulation of translation and replication (75, 

85). 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1.10. The secondary structure of the F4 fragment at the 3´ UTR of TCV 

A. Secondary and tertiary interactions within the 3´ UTR of TCV. This 3´ UTR region is identified as F4. 

The TSS sequence is color-coded corresponding to its 3-D predicted structure in (B). Mutation m21 is 

boxed.  B. The 3-D predicted structure of the TSS by RNA2D3-D.  C. Structure of the TCV TSS by NMR 

and SAXS. Images adapted and modified from Mcormack et al, 2008 and Zuo et al, 2010 (74, 76). 

 

 

1.2.1.1. The core promoter (Pr) and Ψ1 

The Pr of TCV is a stem-loop located at the 3´ terminus and is structurally 

conserved among all carmoviruses (Figure 1.10A) (6, 85-87). The Pr sequence was first 

discovered in a small, non-translated satellite RNA (satC) of TCV. SatC is a recombinant 

subviral RNA that shares 166 nt at its 3′ terminus with the TCV genomic RNA. Addition 

of the Pr sequence to a non-related template allowed it to be transcribed by the TCV 

RdRp (86). Several other RNA elements required for replication in TCV were also first 
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discovered in satC (85, 87-89). Deletion of the three C-terminal cytidylate residues in 

satC led to increased transcription, indicating that these nucleotides serve as a 

transcriptional suppressor (85, 90). In addition, deletion of these C residues led to 

increased flexibility of the three consecutive guanylates positioned within the large 

symmetrical loop of H5 hairpin in structure probing experiments, suggesting the presence 

of a PK (Ψ1) connecting the two sequences. Disruption of Ψ1 in satC by a point mutation 

resulted in increased accumulation of satC in protoplast while restoring the interaction by 

compensatory mutations results in wild-type levels of accumulation (85). This further 

confirmed the presence of Ψ1 and its repressive activity on transcription. Stability of the 

Pr stem is important for in vitro and in vivo satC accumulation, since disruption of the Pr 

stem is detrimental (86). The Pr loop sequence is essential for TCV transcription and 

translation. Mutation of the Pr loop reduced in vitro transcription of a 3´ end fragment 

while increasing translation of a reporter construct (82). Transcription of TCV requires 

both 3´ UTR upstream sequence and the Pr, indicating a functional interconnection 

between Pr and upstream sequence (6, 80). Pr loop also modulates ribosome recoding 

required for RdRp synthesis by forming a long-range RNA:RNA interaction with the 

readthrough stimulatory element (RSE). Disruption of this interaction leads to 

undetectable levels of RdRp production (91). 

 

1.2.1.2. Hairpin H4  

Hairpin H4 of TCV contains an asymmetric loop near the base of the stem and a 

large apical loop that are both important for replication and translation (75, 80). Gel 

mobility shift analysis indicates that H4 and/or surrounding sequences interact with the 

RdRp and this interaction enhances transcription of both negative and positive strands of 
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satC and TCV (80, 92, 93). Specific mutations in the H4 terminal loop moderately 

repress translation of reporter constructs but can eliminate nearly all detectable virus 

accumulation in protoplasts. Mutations in the H4 asymmetric loop (m21), (Figure 1.10A) 

completely repressed translation in vivo and, like specific mutations in the apical loop and 

elsewhere in the 3’UTR, promote accumulation of compensatory second-site mutations 

clustered in several regions within the 3’ UTR and within the coat protein coding region 

(75, 82, 94). Chemical structure probing of the 3´ UTR of the second-site mutants that are 

located in the coding region of the coat protein indicated that the few second-site mutants 

are clustered in a discreet RNA domain, suggesting a long-range RNA:RNA interaction 

between the genomic domain 1 and domain 2 of TCV (94). H4 exerts a negative effect on 

ribosome binding of a fragment containing TCV sequence from H4 to Ψ2 (“F3” 

fragment). Disruption of Ψ4, which connects the H4 terminal loop with the large 

symmetrical loop of H5, resulted in a two-fold increase in ribosome binding to the F3 

fragment while compensatory mutations restoring Ψ4 reduced ribosome binding (75). 

Local interactions between RNA elements within the 3´ UTR of TCV is further 

confirmed when a single point mutation (A3864U) upstream of H4 led to second-site 

changes in the H4b stem and the Pr loop (83).  

 

1.2.1.3. The TCV TSS 

As mention above, TCV contains a cap-independent translation enhancer (the 

TSS), comprised of pseudoknots Ψ3 and Ψ2 and hairpins H4a, H4b and H5 (Figure 1.10) 

(74). Mfold (95) prediction, structural probing and mutagenesis analysis confirmed the 

presence of H4a, H4b, H5 and Ψ2 in the 3´ end of satC and TCV (74, 96, 97). H5 consists 

of an upper stem, large symmetrical loop and an apical loop, is conserved in all 
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carmoviruses, and likely acts as an RdRp chaperone (98). Ψ2 is formed by interaction 

between the loop of H4b and the 3´ flanking region of H5, is conserved in four 

carmoviruses and is essential for replication of TCV and satC (99, 100). H4b and H4a are 

located just upstream of H5. H4b is predicted to be in eight other carmoviruses while H4a 

is only found in three carmoviruses (6). In both satC and TCV, H4a and its upstream 

sequence form a stable H-type pseudoknot (Ψ3) (74, 75). However, disrupting Ψ3 does 

not affect the accumulation of satC in protoplasts. Elements similar to the TCV TSS are 

also found in closely related Cardamine chlorotic fleck virus (CCFV). Substituting the 

entire core TSS structure in TCV with the one from CCFV, but not individual elements, 

led to viral accumulation similar to wildtype (wt) TCV, suggesting that these hairpins and 

pseudoknots of the TSS function together as a structural domain (74). H4a, H4b and Ψ3 

together are also viable as a unit in satC (97). Addition of the TCV TSS to the 3´ termini 

of luciferase construct that contains the 5´ UTR of TCV enhanced translation of reporter 

construct in protoplasts, indicating this element supports non-canonical translation (75). 

Computational modeling using RNA2D3D predicted that TCV TSS hairpins and 

pseudoknots form a stable tRNA-shaped structure that has topology similar to a canonical 

tRNA. H4a and Ψ3 are superimposed with the amino-acceptor arm of the phenylalanine 

tRNA (Phe-tRNA) while H5 is somewhat longer than the anti-codon stem-loop of the 

Phe-tRNA (Figure 1.10B) (74). Filter-binding and competition assays demonstrated that 

the TCV TSS binds to 80S ribosomes at the P-site through interaction with ribosomal 60S 

subunit (Kd = 0.45 M) (75). The 40S ribosomal subunit interacts with a pyrimidine-rich 

sequence in the 5´ UTR of the genomic RNA in the vicinity of the start codon. In 

addition, the TCV TSS does not contain interacting sequences with the 5´ terminal 
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sequence. Thus, it is proposed that a ribosome bridge might connect the two ends of the 

TCV genome for optimal transfer of ribosomal subunits from the 3´ end to the 5´end 

during non-canonical translation (22, 74). The tRNA-shaped conformation of the TCV 

TSS was later confirmed by NMR and SAXS in which structures of H5 and H4b were 

established (Figure 1.10C). However in these structural studies, in order to support 

transcription by T7 RNA polymerase, two guanines residues were added to the 5´ end of 

the core TSS sequence.  These two nucleotides (with surrounding sequence) formed a 

different hairpin that replaced Ψ3 (Figure 1.10C) (76), placing the existence of this 

pseudoknot into question. However, disruption of Ψ3 with a single point mutation, which 

increases the flexibility of H4a and the 5´ upstream adenylate-rich sequence, decreased 

ribosome binding to the TCV TSS, and reduced translation and accumulation in 

protoplasts (74, 75). Switching the adenylate (A)-rich sequence to a uridylate (U)-rich 

sequence decreased ribosome binding and translational efficiency in luciferase constructs 

(75). In addition, virus accumulation in protoplasts was undetectable when the adenylate-

rich sequence was deleted (80). Thus, a possible role of the adenylate-rich sequence is to 

stabilize Ψ3 (74, 75).  

Chemical structure probing analysis of RNA fragments containing the TSS in the 

presence of 80S ribosomes detected only small conformational changes localized to the 

TSS region (22). Interestingly, substantial structural changes within the TSS and adjacent 

regions were observed in the presence of RdRp (Figure 1.11), suggesting that the TCV 

TSS has two functional conformations (81), and that regulation of the conformational 

switch within the TSS-containing region might regulate the switch between viral 

translation and replication. In addition, RNA elements of satC that resemble RNA 
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elements of the TCV TSS are also suggested to switch conformations to activate the 

replication of the satC template (93). Thus, the conformational change in the stable TCV 

TSS and its interaction with RNA elements in nearby sequences that regulate translation 

and replication render the TCV TSS as an exciting system for studies of RNA 

conformational changes. 

    

 

 

 

 
Figure 1.11. Structural probing of the TSS and surrounding sequence of TCV. 

A. In-line structure probing of an RNA fragment (sequence shown) in the absence and presence of 80S 

ribosomes.  B. In-line structure probing of F4 RNA in the absence and presence of RdRp. Flexible 

nucleotides are presented in red. Red boxes and green boxes denote nucleotides with increased or decreased 

flexibility, respectively, in the presence of either ribosomes (A) or RdRp (B) (22, 74, 81, 83). Images 

adapted and modified from Stupina et al, 2008 and Yuan et al, 2009 (75, 81). 

 

1.2.2. Pea enation mosaic virus and multiple 3´ CITEs 

PEMV RNA 2 (PEMV), a recombinant virus of the umbravirus genus (family not 

assigned but contains many elements similar to members of the Tombusviridae) has a 4.2 

kb genome, which is uncapped and has no poly(A)-tail. The viral genome encodes a 

carmovirus-like RdRp and two overlapping, movement-associated proteins (p26 and p27) 

(Figure 1.12A) (101). PEMV RdRp allows the virus to replicate independently in 
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Figure 1.12. The secondary structure of the 3´ UTR of PEMV 

A. Genomic organization of PEMV RNA 2. The PEMV genome encodes four proteins: p33, p94, p26 and 

p27. p94 is the product of ribosomal frameshifting of p33.  B. Proposed secondary structure of the 3´ UTR 

of PEMV by SHAPE. Multiple RNA structural elements in the 3´ UTR of PEMV are indicated. Residues 

corresponding to high and low reactivities to NMIA are in red and green, respectively. Terminal stop codon 

of p27 is highlighted in yellow. Pseudoknots (known and predicted) are indicated with dashed lines (102).   
 

 

protoplasts, however, due to the lack of a coat protein, encapsidation and transmission of 

PEMV from plant-to-plant requires the presence of gene products encoded by the 

associated viral RNA, PEMV RNA 1 (103). Unlike other viruses containing only single 
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3´ CITE in the viral 3´ UTR, examination of the long 3´ UTR (~ 705 nt) of PEMV has 

revealed multiple 3´ CITEs. Each 3´ CITE interacts with either eIF4E, ribosomal subunits 

or the 80S ribosome (Figure 1.12B), suggesting the presence of a novel translation 

enhancement mechanism (51, 59, 60, 77) . 

 

1.2.2.1. The PTE of PEMV 

As mentioned in the previous section, a Panicum mosaic virus-like translational enhancer 

(PTE) was the first 3´ CITE found in PEMV (Figure 1.8C) and is conserved in several 

carmoviruses (5, 59, 60). Translational enhancer activity of the PEMV PTE is supported 

through its interaction with eIF4E (59). In canonical translation, interaction of the mRNA 

with eIF4F helps to recruit other translation initiation factors. The PEMV PTE binds 

specifically to eIF4F through eIF4E rather than eIF4G, and likely recruits other 

translational initiation factors (59). Computational prediction and confirmation by 

structure probing shows that the PTE has a T-shaped structure that is presumably held 

through a magnesium-dependent pseudoknot connecting the C-domain and G-domain 

(Figure 1.13A) (60). Superimposing the computational model of the PEMV PTE with the 

3-D structural model of eIF4E exposes the binding pocket of the PTE with eIF4E (Figure 

1.13A), in which the binding pocket is formed by a pseudoknot between the C and G 

domains. The protrusion of the G domain is hypothesized to directly interact with eIF4E 

(60). 
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Figure 1.13. The predicted 3-D structure of the 3´ CITEs of PEMV. 

A. The PTE (green) is docked with eIF3E (yellow). The pseudoknot and the cap-binding pocket are 

indicated.  B. The kissing-loop TSS (kl-TSS) of PEMV.  C. The TSS of PEMV. The stems of CITEs 

aligned with tRNA stems are indicated. AA: acceptor stem of tRNA, AC: anticodon stem of tRNA. Images 

adapted from Wang et al, 2011, and Gao et al, 2012, 2013 (60, 77, 102). 

 

1.2.2.2. The kl-TSS of PEMV 

The PEMV PTE does not form any discernible long-distance interaction with the 

5´ UTR (59). However, an apical loop that is upstream of the PTE and located in the P2 

stem of the PEMV kl-TSS interacts with an apical loop of a hairpin (H2) located in the 

5´coding region (Figure 1.8G, 1.12B and 1.13B) (77). The apical loop of the P2 stem of 

the PEMV kl-TSS contains the conserved carmovirus kissing-loop motif GCCA (77). 

The presence of a terminal 5´ 89-nt RNA fragment retarded the mobility of radioactive-

labeled PEMV kl-TSS in gel shift assays, indicating that the two RNA fragments interact 

(77). When combined with the 5´ 89-nt, the PEMV kl-TSS enhances in vitro translation 

of a luciferase construct by 14-fold (77). Disruption of the RNA:RNA interaction 

between P2 of the PEMV kl-TSS and 5´ H2 impaired in vitro translation of the reporter 

construct and in vivo accumulation of the full-length PEMV genome. These negative 

effects were restored by compensatory mutations, indicating the importance of the long-

range RNA:RNA interaction of the PEMV kl-TSS (77). The PEMV kl-TSS is predicted 
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to form a three-way junction branching into two hairpins. Like the TCV TSS, the PEMV 

kl-TSS is predicted to assume a tRNA-shaped structure since its computational model is 

superimposed with Phe-tRNA (Figure 1.13B). The P2 stem is aligned with the amino-

acceptor stem and the P3 stem is aligned with the anticodon stem. Unlike TCV TSS, in 

which H5 is slightly longer than the anticodon stem of the Phe-tRNA, the P3 stem of 

PEMV and the anticodon stem of the tRNA have similar length. The kl-TSS interacts 

individually with both ribosomal subunits as well as 80S ribosomes while the TCV TSS 

interacts with 60S ribosomal subunits and 80S ribosomes (22, 77). Unlike the TCV TSS, 

the PEMV kl-TSS does not occupy the ribosomal P-site, indicating that the PEMV kl-

TSS might enhance translation through a different mechanism (51). The P1 stem and the 

apical loop of the PEMV kl-TSS are important for ribosome binding. Disrupting the P1 

stem resulted in reduction of ribosome binding by several fold (77). A similar negative 

effect on ribosome binding was also observed using mutant kl-TSS fragments in which 

the P3 loop was either enlarged or truncated (77). The kl-TSS is able to interact 

simultaneously with the 5’ 89-nt fragment and ribosomes (51). Interaction of PEMV kl-

TSS with translation initiation factors has not been reported.  

 

1.2.2.3. The TSS of PEMV   

A third 3´ CITE of PEMV was recently found near the 3´ terminus of the PEMV 

genome. This independent 3´ CITE contains two pseudoknots and three hairpins (Figure 

1.12 B), which are arranged similarly to the order of elements in the TCV TSS, and is 

predicted to form a similar tRNA-shaped structure. As such, this 3´ CITE of PEMV is 

called the PEMV TSS. However, Ψ3 of the PEMV TSS is less stable (Figure 1.13C) 

(102). Like the TCV TSS, the PEMV TSS also binds to 80S ribosomes and 60S 
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ribosomal subunits. However, ribosome binding of the PEMV TSS is weaker (Kd =2.4 

µM) as compared to the ribosome binding affinity of the TCV TSS (102). In the TCV 

TSS, Ψ3 and H4a are critical for ribosome binding (74, 75). Thus, the less stable Ψ3 of the 

PEMV TSS may be responsible for the weak ribosome binding of the element (102). 

Similar to the TCV TSS, the PEMV TSS does not contain any inherent sequence that 

interacts with the 5´ UTR sequence of the viral genomic RNA. However, the apical loop 

of a small hairpin (kl-H) located upstream of the PEMV TSS (Figure 1.12B) can form a 

long-range RNA:RNA interaction with the 5´ H2 that interacts with the PEMV kl-TSS in 

a reporter construct. The PEMV TSS and the kl-H with 5´H2 works synergistically to 

maintain translation of reporter constructs lacking functional kl-TSS and PTE (102). The 

presence of the kl-H in trans inhibits translation of the reporter construct containing the 

three 3´ CITEs of PEMV (102), indicating that the kl-H is important for translation. 

However, compensatory mutations between the kl-TSS and 5’H2 result in fully 

functional virus, indicating that the kl-H must have an alternative pairing partner in full-

length virus. 

 The three 3´ CITEs of PEMV have significantly different structural, positional 

and functional properties and also appear to be different from the TCV TSS. The 

ribosome binding mode for the two 3´ CITEs is also different from the ribosome binding 

mechanisms of IRES. Since translation is a critical step in the virus life cycle, it is 

necessary to understand the structure of these 3´ CITEs to have a better insight into their 

modes of action.  
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1.3. An overview of structures, folding and conformational switches in RNAs 

RNAs, despite having only four different bases, are capable of performing a 

variety of cellular functions that rival those of proteins, which contain 20 amino acid side 

chains. This considerable functional plasticity is in large part due to the ability of RNAs 

to fold into alternative functional structures (104, 105). RNAs are characterized by 

primary sequences, secondary structures and tertiary folds. Typical motifs found in the 

secondary structure of RNAs are hairpins, bulges, internal loops, and junctions. Typical 

motifs found in RNA tertiary interactions are pseudoknots, coaxial stacks, A-minor 

motifs, ribose zippers, and kissing loops (106, 107). Secondary structure of RNA is stable 

and dominated with canonical Watson-Crick base pairs, whereas higher order structure is 

less stable and dominated with non-canonical base pairs (108). RNA secondary structure 

can be predicted with reasonable accuracy using the nearest-neighbor model (95, 109) 

while prediction of tertiary structure is still limited due to the lack of thermal melting data 

(110). The folding process of RNA structures starts out with neutralization of the 

negatively charged phosphate backbone by cations such as sodium and magnesium (111), 

leading to formation of compact structural intermediates. Formation of a native state from 

compact intermediates can occur by a single step through the simultaneous collapse of 

multistages (112) or can undergo multiple transitional steps through the 

arrangement/rearrangement of intermediates (113). Tertiary interactions are proposed to 

guide the folding process of RNAs (114, 115). Once folded into the native state, RNA 

structures do not remain static but continue to be dynamic. Dynamic conformation 

changes in an RNA’s structure allows it to perform either multiple functions or to signal 

the turning on and off of cellular processes (105, 116). Multiple regulatory RNAs have 

multiple conformations, for example, riboswitches (117, 118), 3´ CITEs (75, 81) (119, 
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120), and viral RNA packaging signals (121, 122). Conformational switch of RNA can be 

induced by environmental cues such as changes in pH, ion, magnesium, metabolites or 

proteins (123, 124). Knowledge of how RNA structures fold is essential for both 

understanding their functions and enabling the building of computational models that 

have the ability to simulate and predict the dynamic structure of new RNA elements. 

 

1.4. An overview of biophysical methods used in this study 

1.4.1. Optical tweezers (OT)–method of choice for studying RNA folding 

Single molecule techniques have emerged as powerful tools for understanding the 

behavior of biological molecules such as DNA, RNA and proteins in terms of their 

folding pathways and energy landscape (125-127). In contrast to measuring ensemble 

averaged behaviors, single molecule techniques allow for the direct examination of 

activities of individual molecules, which enables the determination of the entire 

distribution of structural progression in real time and elucidation of folding variables (e.g. 

force, extension lengths, unfolding/folding kinetics) (110, 127-131).  

A recently developed laser machine, optical tweezers (OT), can probe the structure 

of a single RNA molecule and provide an integrated picture of secondary structure and 

tertiary interactions (128, 132, 133). Most methods used to study RNA structure alter the 

environment (e.g. by heating). OT has the advantage of using force as a variable, which 

allows for examination of the stability and unfolding/folding behaviors of a single RNA 

molecule without affecting the surrounding environment, providing for a more relevant 

structure (128, 132-134). For example, OT has been used to reveal the unusual stability 

of a 2-nt kissing loop RNA interaction (128) or formation of a pseudoknot through the 

rearrangement of the two hairpins of the rpsO riboswitch (135). There is no nucleic acid 
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size limit using OT, and has been utilized to study the mechanical properties of a 16 µm 

DNA (136), which is roughly equivalent to the size of the largest viral RNA genome 

(125, 137).  

OT can uncover hidden information and mechanical properties regarding RNA 

folding pathways, which may elucidate the mechanisms of biological processes. For 

example, OT analysis of the -1 ribosomal frameshifting pseudoknot of human telomerase 

RNA has revealed that an increase in the mechanical stability of the pseudoknot leads to 

an increase in -1 frameshifting efficiency (138). OT can also reveal short-lived 

intermediate folding states of nucleic acid structure (139) allowing the folding energy 

landscape of an RNA to be reconstructed (133, 139). Such data is revealing information 

on dynamic conformational states of RNA.  

Two OT experiments, force ramping and force clamping, are used to elucidate 

molecular folding mechanisms and dynamic conformations of RNA (Figure 1.14). In 

force ramping, force is increased or decreased at a constant rate, while in force clamping, 

force is held constant. In both experiments, any changes in extension of the RNA are 

monitored. Force-dependent extension of the molecule is converted to force-free 

extension (contour length) using worm-like chain models. The rupture force range and 

the life-time intermediate states are also recorded so that they can be used to characterize 

the intermediate states, to calculate unfolding/folding kinetics of the RNA and to estimate 

RNA stretching/refolding work, thereby estimating the stability of the RNA. The stability 

of an RNA structure is equal to the value of work at which the magnitudes of probability 

distribution of unfolding work and the probability of refolding work of RNA is equal 

(130, 140).  
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Figure 1.14. Representative data collected in OT experiments. 

A. Force extension curve of an RNA hairpin in a force ramping experiment. A constant rate of 1 pN/s is 

applied to stretch the RNA hairpin flanked by 500 bp DNA/RNA handles at each end. At low force, the 

DNA/RNA handles are stretched monotonously. When the applied force reaches critical force (13.5 pN), 

the RNA hairpin opens, creating a sudden increase in extension (X = X2-X1), called a rip, in the force 

extension curve. Force extension curves before and after the transition are fitted with the worm-like chain 

model to obtain the contour length of the handles and the handles plus single-stranded RNA. The area 

underneath the rip represents the work required to open the RNA hairpin and this work can be used to 

estimate RNA stability.  B. Hopping behavior of an RNA hairpin in a force clamping experiment. Force is 

held  constant and the change in extension of the hairpin is measured over time. Images adapted form 

Tinoco et al, 2006  (130). 

  

  As with proteins, RNA sequence is hypothesized to cluster into domains so that 

RNA elements can fold/unfold as a unit and act synergistically to perform functions due 

to their cooperative behaviors (141). The cooperativity between RNA elements is defined 

as the process during which unwinding of one RNA element affects the unfolding/folding 

behavior of the other RNA elements e.g., their stability, extension length, rupture force 

range, transition position, unfolding/folding kinetics and pathways (128, 129, 132-134). It 

has been reported that cooperative interactions of RNA structures to increase the stability 

of RNA structural domains and to shift the transition position of RNA close to the folded 

states (Figure 1.15) (129, 130, 132-134, 142). As such, secondary and tertiary RNA 

structures can be grouped into structural domains based on their cooperativity. These 

behaviors/mechanical properties of RNA can be obtained from OT experiments. The 
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Figure 1.15. Representative mechanical properties of the cooperative tertiary interaction of kissing 

loops of two hairpins (hp) under applied force of OT 

A. Diagram describes the rupture of the kissing complex by application of force in non-cooperative/no 

kissing interaction (B) and cooperative/kissing interaction situations (C).  B. Force extension curves (FECs) 

of the two hairpins with non-cooperative interaction.  C. Force extension curves of the two hairpins with 

cooperative interaction. The unfolding FECs are represented in blue and the refolding FECs are represented 

in green. No kissing/non-cooperative interaction of the two hairpins results in unfolding of the two hairpins 

sequentially. Cooperative tertiary interaction of the kissing complex stabilizes the complex, resulting in 

unfolding of the kissing complex with double transition or triple transition at higher force level. Images 

adapted from Li et al, 2006 (128).  

 

biological relevance of the OT method is that it is capable of stretching the molecule until 

it completely unfolds and then allowing the molecule to refold. This process mimics the 

self-assembling process of an RNA sequence in nature (110, 127). The technique also 

provides information on interactions between RNA structures without the need to 

examine individual RNA elements. Thus, this method helps to reduce the amount of work 

required to study structural/functional domains of an RNA.  
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1.4.2. Nuclear magnetic resonance (NMR) spectroscopy to study RNA structure at 

high resolution  

The magnetic moment of a nucleus interacts with an external magnetic field, 

allowing the nucleus to absorb the energy at a corresponding resonant frequency. An 

NMR spectrometer can detect, amplify, and record the resonant frequency of the nucleus 

and transform it into a frequency signal. Since these signals depend on the strength of the 

applied magnetic field, they are measured against a standard compound and reported in 

units of parts per million (ppm). The resonant frequency of a nucleus varies based on its 

chemical environment and thus, is referred to as a chemical shift. For example, a proton 

that is covalently-bonded with a nitrogen has a different chemical shift compared to the 

chemical shift of a proton that is covalent-bonded with a carbon. NMR spectroscopy, 

which can determine chemical shifts of atoms, is a powerful biophysical tool for 

structural studies of RNAs in solution at atomic resolution. NMR has provided insight 

into the structures of numerous RNAs and the structures-based mechanism of multiple 

processes. For example, the small size structure of the 29-nt ribosomal A-site (143) and 

the relatively large size structure of 150-nt genome packing signal of HIV (144) have 

been solved by NMR. NMR spectroscopy provides information on the base-pair pattern 

(76), site-specific information of ligand binding (145), local structure and global structure 

of RNAs (146), and conformation of RNA structures (147). The Watson-Crick base-pair 

pattern of RNA is readily inferred from the imino signals of bases. When base-paired, 

RNA imino protons are normally protected from the solvent exchange, hence their 

chemical shifts can be observed in 1-D or 2-D NMR experiments (146). Each imino 

proton peak of a 1-D spectrum or each imino proton and nitrogen peak of a 2-D spectrum 

represents a base-pair in the RNA (Figure 1.16A-C). Protons that are within ~ 5 Å can 
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Figure 1.16. Examples of 1-D and 2-D NMR spectra of the E-loop of E. coli 5S rRNA  

A. Schematic representation of Watson-Crick base-pairs AU and GC. Hydrogen bonds are represented by 

dashed lines.  B. Secondary structure of the E-loop. Residues are color-coded corresponding to their 

resonance on 2-D spectra shown in C and D.  C. 2-D 1H,15N-imino HSQC spectra of the E-loop. G and U 

regions are labeled.  D. 2-D 1H,1H- NOESY spectra of the E-loop. Solid and dashed lines indicate 

sequential NOE contacts of the RNA. Images adapated from Furtig et al, 2003 (146). 

 

 

transfer their magnetization to each other, thus producing a correlated peak/cross peak in 

the nuclear Overhausser effect spectroscopy (NOESY) experiment (Figure 1.16D) (146). 

The cross peaks that connect resonances of the different imino protons of different bases 

allow for sequential assignment of the imino proton resonances of bases in RNA 

molecules (Figure 1.16D). Signal intensity of imino proton peaks in NOESY spectra is 

A 

C 

B D   



39 

 

inversely proportional to the distance (r-6) between protons (146). For example, two 

protons that are near each other produce a cross-peak with higher intensity than those that 

are further away from each other (Figure 1.16D). Thus, inherent distances between the 

correlated protons can be extracted. Scalar coupling constants (JXY; X,Y can be either 

protons (H) or heteroatoms-15N, 13C, or 31P) and residual dipolar couplings provide 

valuable information on local angles or global angles in RNA, respectively (146, 148). 

Thus, information on distances and angles between atoms of RNA molecules can be used 

to reconstruct the structures of RNA molecules. Whereas NMR has emerged as the tool 

of choice to solve RNA structures and probe dynamics (149), three bottlenecks limit 

effective RNA analysis: (i) extensive chemical shift overlap of resonances, (ii) strong 

13C-13C dipolar and scalar couplings of adjacent carbon atoms and (iii) rapid signal loss 

due to line broadening for RNA molecules bigger than 50 nt (150). These limitations can 

be overcome by using site-specifically labeled nucleotides (rNTPs) in combination with 

ultrahigh field NMR spectroscopy: the spectral resolution increases, the signal to noise 

ratio is enhanced due to the removal of 13C-13C coupling, and the structural assignment of 

RNAs is simplified (151-154). 

 

1.4.3. Small angle X-Ray scattering for studying the global shape of RNA structure 

Small angle X-Ray scattering (SAXS) is another structure determination method 

suitable for RNAs as the high electron density in RNA backbones make RNA molecules 

more sensitive for production of scattered profiles as compared with analysis of proteins 
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Figure 1.17. Examples of SAXS data analysis 

A. Scattering profile of an RNA obtained using SAXS.  B. Typical Kraky plots for molecules with different 

foldings. C. Guiner plots from which radius gyration and molecule weight of an RNA molecule can be 

deduced. D. Pair distance distribution function (PDDF) graph from which the maximum particle size 

(Dmax) can be deduced. PDDF of an RNA can be used to determine to the shape of the molecule. Images 

adapted from Putnam et al, 2007 and Fang et al, 2015 (155, 156).  

  

(155). Unlike X-Ray crystallography, SAXS can work with RNA samples in solution 

(155, 157), allowing SAXS experiments to be performed in near physiological 

conditions. Scattering profiles of RNAs are obtained by shooting the small-angle 

collimated X-rays through the sample solution and are represented as signal intensity I(q) 

plotted over a range for the scattering momentum vector (q) (Figure 1.17A).  Analyzing 

linear Guiner region (g.Rg < 1.3) of a scattering profile for RNA can provide information 

on the radius of gyration and molecular mass of the molecule (Figure 1.17B). Applying 

Porod’s law of globular macromolecules to plot q over I(q).q2 provides information on 

RNA folding (Kraky plot) in which compact molecules tend to produce a bell-shaped 
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curve, while unfolded molecules create plateau curves at high q range. Extended 

molecules have a bell-shaped curve at low q range and an increase in signal at high q 

range (Figure 1.17C). Fourier transformation of scattering profiles of RNA molecules 

produces pair distance distribution of RNAs, which can be used to build the molecular 

envelope of the RNA (Figure 1.17D). Fitting the ensemble of computational models into 

the molecular envelope of RNA molecule can provide tentative 3-D models of RNAs. 

SAXS has been used to analyze a wide range of RNA sizes (158, 159). Conformational 

switches of specific RNA molecules were also reported by using SAXS (117, 160).  

 

1.5. Thesis plan 

Mutational analysis and chemical structure probing methods provide great insight 

into the function and secondary structure and of 3´ CITEs. However, lack of 3-D 

structural information for most of these 3´ CITEs has limited our understanding of their 

functional dynamics. TCV and PEMV, two (+)-strand RNA viruses, are well-established 

viral models used for investigating the regulation of translation and replication due to 

their small size and relatively simple genomes. Both viruses contain CITEs in their 3´ 

UTRs that fold into a tRNA-shaped structure (TSS). Specifically, the TCV TSS can 

directly associate with ribosomes and participates in RdRp binding. The PEMV kl-TSS 

can bind to ribosomes and interact with the 5’ UTR of the viral genome. In this thesis, 

multiple biophysical tools including optical tweezers (OT), small angle X-ray scattering 

(SAXS), and nuclear magnetic resonance spectroscopy (NMR) have been used to 

elucidate the folding dynamics and structure of two CITEs, the TSS TCV and PEMV kl-

TSS, respectively.  
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In Chapter II, I report on the investigation of folding dynamics for the TCV TSS 

using optical tweezers. This study has provided us with an unexpected folding pathway 

for the TCV TSS, and confirmed the presence of Ψ3 and hairpin elements of the TSS. In 

addition, this study has demonstrated the importance of the adjacent A-rich sequence to 

the formation of H4a/Ψ3 along with contribution of magnesium to the stability of the 

TCV TSS. In Chapter III, I report on the structural analysis of the PEMV kl-TSS using 

NMR and SAXS. This study has re-confirmed the base-pair pattern of the PEMV kl-TSS 

and the interaction of the PEMV kl-TSS with 5´ hairpin H2. The molecular envelope of 

the kl-TSS built from SAXS shows that the kl-TSS might have two conformations and 

that one of the major conformation has a different shape than the previously predicted 

tRNA-shaped form. In Chapter IV, I report using wild-type and mutant E.coli strains to 

produce cost-effective, site-specific labeled, recombinant RNAs. The technique was 

validated with four RNAs of different sizes and complexity to produce milligram 

amounts of RNAs, which is sufficient for biophysical studies. Several NMR techniques 

were used to demonstrate the benefit of site-specific labeled RNAs made from E.coli. 
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Chapter 2:  The folding pathway of an internal 3’ proximal tRNA-

shaped structure in Turnip crinkle virus using optical tweezers 

2.1. Introduction 

RNAs play key roles in a variety of cellular functions due to their ability to fold 

into a large number of functionally competent and dynamic structures (5, 8, 123, 161). 

Driven by conformational plasticity, RNA elements can assume alternative 

conformations with separate and specific biological functions (123, 162). Riboswitches, 

for example, are often found in the UTRs of bacterial genes and can cycle between 

active/inactive conformations by regulating direct binding/unbinding of small 

metabolites. When riboswitches shift conformations, the resulting structure can inhibit 

translation or attenuate the transcription of downstream genes (163, 164). Many 

regulatory RNA elements found in the 5´ and 3´ UTRs of viral RNAs also undergo 

conformational transformations to regulate translation and replication, two mutually 

exclusive processes (75, 81, 121, 122, 162, 165, 166). Despite the biological importance 

of regulatory RNA elements, information about unfolding and refolding remains elusive. 

In this report we investigate the folding pathway of a 3´ cap-independent translational 

enhancer (CITE) of Turnip crinkle virus (TCV), which has been reported to assume 

different conformations when bound to either ribosomes or RdRp (75, 81). 

As mentioned in Chapter 1, TCV is a positive (+)-strand plant virus in the genus 

carmovirus, family Tombusviridae, with an uncapped, non-poly(A) genome of 4053 nt 

encoding five proteins (Figure 1.9). The TCV 3´ UTR contains five hairpins (H4, H4a, 

H4b, H5 and Pr) and four pseudoknots (Ψ1, Ψ2, Ψ3 and Ψ4) (Figure 1.10A) (5). Three 

hairpins (H4a/H4b/H5) and two pseudoknots (Ψ3 and Ψ2) fold into an internal tRNA-

shaped structure (TSS) that serves as a translational enhancer for cap-independent 
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translation (Figure 1.10B) (74, 75). H4a and Ψ3 are predicted to form an H-type 

pseudoknot that can superimpose with the amino-acceptor stem-loop of Phe-tRNA, 

whereas H5 is slightly longer than the anti-codon stem loop of Phe-tRNA (74). Ψ2 

superimposes with the structural region formed between the T-loop and D-loop of Phe-

tRNA. The TSS specifically binds to 80S ribosomes at the P-site through an interaction 

with the 60S ribosomal subunit (75). Binding of the TSS to ribosomes correlates with 

translational activity of reporter constructs and mutations that reduce ribosome binding 

also have a negative effect on translation (75). Similar hairpins and pseudoknots are 

found in the closely related Cardamine chlorotic fleck virus (CCFV). Substituting the 

entire core TSS structure or Ψ3/H4a/H4b with the analogous regions from CCFV led to 

viral accumulation similar or greater than wild-type (wt) TCV. In contrast, TCV 

accumulated poorly when individual elements or other combinations of elements from 

CCFV were substituted. These results suggest that either all, or a combination of the 

hairpins and pseudoknots function together as a structural domain (74) 

The TSS acts as a scaffold for multiple interactions with surrounding sequences 

(81, 97).  In addition, the TSS region is also important for RNA RdRp binding to the 

3´UTR (81) and for replication of a small, non-translated satellite RNA (satC) of TCV, 

which contains two 3´ regions of TCV (86). H5 is a key element in the replication of 

TCV and satC, and likely acts as an RdRp chaperone (98). Disruption of Ψ2 enhances in 

vitro transcription of TCV using purified RdRp, but reduces accumulation of TCV and 

satC in protoplasts (74, 99, 100). Disruption of Ψ3 also increases in vitro transcription of 

TCV (81) and does not affect the accumulation of satC in protoplasts. Interestingly, the 

satC TSS does not bind to ribosomes and is proposed to have an altered structure in satC 
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due to six different residues within the TSS region (167).  

The overlap that exists in the TSS region between elements critical for translation 

and replication suggests that a mechanism exists for transitioning between different 

structures that supports individual processes. The TSS conformation does not change 

significantly when bound to ribosomes (Figure 1.11A) (75) but is substantially altered 

upon binding to the RdRp, and reverts upon removal of the RdRp (Figure 1.11B) (22, 

82). Prominent changes include enhanced flexibility in the 3´ side of the H4a stem and 

reduced flexibility in the base of H5 (Figure 1.11B). The folding/unfolding dynamics that 

give rise to the TSS conformational changes are not known. Thus, the conformational 

change associated with translation and transcription, and the interaction with other RNA 

elements in the 3´UTR render the TSS an intriguing system for the study of RNA 

conformational switches. 

In this study, I used optical tweezers (OT) to investigate the folding pathway of 

the TSS. As mentioned in Chapter 1, OT is a type of single molecule force spectroscopy 

(Figure 2.1B) that can be used to probe the structure of single RNA molecules providing 

an integrated picture of secondary and tertiary structures (128, 132, 133). OT uses force 

as a variable for examining the stability and unfolding/folding behavior of single RNA 

molecules without changing the surrounding environment (128, 129, 133, 134). By 

working with single molecules, OT has revealed the hierarchical folding of adenine 

riboswitches (133), and has demonstrated the rearrangement of two component hairpins 

to form a pseudoknot in the operator of the Escherichia coli (E. coli) rpsO gene (135). 

OT has also been used to examine the stepwise folding at low force and the cooperative 

folding at higher force of a telomerase pseudoknot (168).  
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 Magnesium (Mg2+) is a major factor associated with conformational switches 

(123, 169-171). Mg2+ functions through its electrostatic interactions with the RNA 

phosphate backbone to reduce the strong repulsion between negative-charged 

phosphodiester groups (111, 172-174) thus promoting formation and stabilization of 

RNA tertiary structures (111, 175-178). A second major factor, RNA pseudoknots, are 

formed from interactions between the loop of one stem and sequences adjacent to the 

stem, are hypothesized to function like “a switch” in many regulatory RNA structures 

(97, 179-181). Due to the critical roles of Mg2+ and pseudoknots in RNA folding, both 

are evaluated in this Chapter for their contribution to the stability and the folding 

dynamics of the TSS and its individual components.  

Although the tRNA-shaped conformation of the TSS has been confirmed by 

NMR and SAXS (76), the existence of Ψ3 as well as the role of the upstream adenylate 

(A)-rich sequence in the TSS structure needed further clarification. Unlike other hairpins 

and pseudoknot, Ψ3 was not found in the TSS structure reported by NMR and SAXS (76) 

due to the addition of two guanylates at the 5´ end of the core TSS sequence to support 

transcription of T7 RNA polymerase. The nucleotide additions led to the formation of an 

alternative hairpin that replaced Ψ3, while the TSS still retained comparable ribosome 

binding activity (Figure 1.10C) (76). However, disruption of Ψ3 with a single point 

mutation increased flexibility of H4a and the 5´ A-rich sequence, which decreased 

ribosome binding, reduced translation of a luciferase reporter construct, and reduced 

accumulation of TCV in protoplasts (74, 75). Replacing the A-rich sequence with 

uridylates also decreased ribosome binding and translation efficiency of reporter 

constructs (75). In addition, virus accumulation in protoplasts was undetectable when the 
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A-rich sequence was deleted (80). Thus, a possible role of the upstream A-rich sequence 

is to stabilize Ψ3 (74, 75).  

Using optical tweezers, my results indicate that the TSS adopts an unexpected 

folding pathway in contrast to the folding pathway predicted by molecular dynamic 

simulations (MD), where H4a/Ψ3 is the least stable and unfolds first. I found that, in the 

absence of Mg2+, H4b unfolded first, followed by H5 and then H4a/Ψ3. In the presence of 

Mg2+, H4b unfolded together with H5, followed by H4a/Ψ3. My results confirm the 

presence of Ψ3 and reveal that H4a is unstable in the absence of the A-rich sequence and 

Ψ3. Mg2+ enhanced the stability of all hairpins and pseudoknots within the TSS, but 

surprisingly, the H4a/Ψ3 complex can still form in the absence of Mg2+.  In addition, in 

Mg2+, cooperativity between H4b and H5 requires the presence of Ψ2. Studying the 

folding pathway of the TSS illuminates the interconnection between its hairpins and 

pseudoknots and provides new insights in understanding its folding process and 

conformational switch dynamics. 

 

2.2.  Materials and Methods 

2.2.1. Preparation of RNA molecules for OT  

DNA fragments coding for wt and mutant TSS were amplified by polymerase 

chain reaction (PCR) using plasmids containing full length TCV genome. Fragments 

were inserted into pUC19 between EcoRI and SmaI restriction sites. TSS mutants were 

generated by site-directed mutagenesis using two complementary primers and high 

fidelity pfu polymerase following a protocol previously described (182). For site-directed 

mutagenesis, two fully complimentary mutant primers were designed to have the mutant 

nucleotides located at the center of each primer. A two-round PCR reaction was used to 
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perform site-directed mutagenesis. The first round PCR reaction contained 500 ng of 

plasmid, 1 µM of forward primer, 20 µM dNTPs, 3% DMSO, 1x of high GC buffer 

(NEB) and 2 unit of fusion pfu polymerease (NEB). The PCR reaction was denatured at 

98ºC for 2 min, and polymerization performed for 18 cycles using the subsequent steps: 

98ºC for 30 sec, 55ºC for 30 sec, and 72ºC for 45 sec. The PCR reaction was 

subsequently incubated at 72ºC for 5 min. After the first round of PCR, the reverse 

primer (2 µM) was added to the reaction. The PCR procedure was repeated. After the 

second round of PCR, Dpn I (10 U; NEB) was added and the reaction was incubated at 

37ºC for 1 hour. Five microliters of the mixture was transformed into 50 µl of E.coli 

competent cells using a standard heat-shock protocol. The correct plasmid was selected 

by sequencing.  

To prepare RNAs for OT, DNA templates of the RNA molecules were amplified 

from pUC19, in which the RNA cDNA sequence had been placed at the center flanked by 

500 bp on either side corresponding to the DNA sequence of the two handles. The T7 

promoter supporting transcription by T7 RNA polymerase was included in the DNA 

templates. The 100 µl volume transcription mixture included 1 µg of DNA template, 0.5 

mM rNTPs, 5 mM MgCl2, and 0.2 µg/µl T7 RNA polymerase. The reaction was 

performed in transcription buffer containing 40 mM Tris-HCl pH 8.0, 0.1 mM 

spermidine (Sigma), 0.01% Triton X-100, 10 mM DTT (Dithiothreitol), and 

supplemented with 2.0 U/mL thermostable inorganic pyrophosphatase (New England 

Biolabs, Inc.). After 3 h incubation at 37ºC, the reaction was quenched with an equal 

volume of 2x RNA loading dye (90% formamide, 5% glycerol, 0.1 mM EDTA, 0.025% 

bromophenol blue, 0.025% xylene cyanol FF). The nascent RNA was extracted from a 
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1% agarose gel using glass wool and centrifugation at 13,000 RPM followed by 

extraction with acid phenol:chloroform (pH 4.5) and ethanol precipitation. RNA was then 

dissolved in distilled water.  

DNA handle A was PCR amplified from bases 2587 to 401 of the pUC19 plasmid 

and DNA handle B was PCR amplified from bases 412 to 892. Handle B was dual-

biotinylated at its 5´ end using a dual-biotinylated primer. The digoxigenin (DIG) group 

was incorporated at the 5´ end of handle A using terminal deoxynucleotidyl transferase 

(Fermentas). In brief, 300 pmol of handle A was incubated with 7500 pmol of DIG-dUTP 

and 60 U of enzyme at 37ºC for 3 h. Enzymes were removed with 

phenol:chloroform:isoamyl (25:24:1), pH 8 and the excess DIG-dUTP was removed by 

using a 3K amicon filter column.  

RNA fragments for OT analysis were annealed with DIG-handle A and dual 

biotin-handle B in which RNA (1.5 µg) was mixed with 3 µg of DNA-handle A and 3 µg 

of DNA-handles B and 80 µl annealing buffer (80% formamide, 1 mM EDTA, 40 mM 

PIPES pH 6.3, 0.4 mM NaCl). The mixture was heated to 85ºC for 10 min and slow 

cooled to 65ºC for 90 min, 55ºC for 90 min and 10ºC for 10 min. The annealed product 

was precipitated with 3 M sodium acetate and 100% ethanol, rinsed with 70% ethanol 

and dissolved in 100 µl H2O. 

 

2.2.2.  Optical tweezers  

 Dual laser beam optical tweezers (183) with one optical trap was used to studying 

the folding properties of the TSS. Dual beam lasers were steered by mirrors, refocused 

using 100x magnification optical lenses, and passed through a flow chamber in the 
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opposite direction, creating an optical trap that holds a 4 µm bead coated with anti-DIG 

antibody. The position of the trapped bead was monitored by collecting the light scattered 

off the bead onto a position sensitive detector. Another 2 µm streptavidin-coated bead 

was mounted on a micro glass pipette using suction. The position of the micropipette was 

manipulated by controlling the piezoelectric flexure stage. Force was applied to the RNA 

molecule held between the two beads by moving the micropipette and optical trap away 

from each other. Changes in the extension of the RNA were measured by the relative 

movement of the trapped bead and the piezoelectric flexure stage. Experiments were 

performed in 10 mM Tris-HCl pH 7, 250 mM NaCl and with either 10 mM EDTA or 10 

mM MgCl2.  

 

2.2.3.  Force-ramping and force-clamping experiments 

RNA molecules were subjected to a force range from 0 pN to 25 pN. In force-

ramping, force was applied to a single RNA at a constant rate of 100 nm/s to unfold the 

molecule. This was followed immediately with refolding by decreasing the force at the 

same constant rate. In force-clamping, the RNA was held at a constant force for 1.5 or 2 

min and change in extension of the RNA over the time was measured. Force was 

increased by increments of 0.5 pN and measurements retaken to determine the unfolding 

pathway. In both experiments, any change in extension of the RNA was monitored from 

the change in the position of the beads; the applied force was determined from the change 

in the momentum of the laser light passing through the trapped bead. Force and extension 

were recorded at a rate of 1000 Hz.  
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2.2.4.  Data analysis 

Data analysis was performed at 200 Hz for force-ramping and at 1000 Hz for 

force-clamping. Contour lengths of the handles were fitted using the Makko-Sigga WLC 

model (Equation 2.1), as the model is more accurate at a low force regime (184). When 

fitting the force extension curves of the DNA/RNA handles, the persistent length was 

limited between 8 and 10 nm (132, 142). Force-clamping data was analyzed by fitting the 

histogram of the unfolded and folded states with Gaussian distribution to obtain the 

displacement of the two states. The contour length of the RNA transition was estimated 

based on the Odjik WLC (equation 2.2) (184). 

In which: F, force; x, extension; Lp, persistent lenth; L0, contour length; K, elastic 

modulus; kBT, Boltzmann’s constant times absolute temperature. 

      

  

2.3.  Results  

2.3.1. Folding and Unfolding of the TSS 

Genetic analysis and biochemical probing suggest that the TSS and surrounding 

sequences can adopt two conformations (Figure 1.11). One conformation is favored for 

ribosome binding (Figure 1.11A) while the second is associated with RdRp binding 

(Figure 1.11B) (75, 81). To investigate how these different conformations might 

interconvert, I examined the mechanical properties and folding/unfolding pathway of the 

TSS using OT. The TSS, along with upstream A-rich sequence and 10 additional residues 

Equation 2.2 
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and 8-nt downstream residues (118-nt fragment total) (Figure 2.1A) were joined at the 5´ 

and 3´ ends to 500-nt RNA handles, which were made double stranded (ds) after 

hybridization to cDNA tagged with biotin or DIG (Figure 2.1B). The biotin DNA handle 

was attached to a streptavidin-coated polystyrene bead and the other was attached to an 

anti-digoxigenin (AD)-coated bead. The streptavidin bead was held in place by a 

micropipette fixed on a piezoelectric stage and the AD bead was held in an optical trap. 

By moving the piezoelectric stage mechanically, the pipette was pulled away from the 

optical trap, allowing the connected single-stranded TSS to unfold. Alternatively, the 

pipette was repositioned proximal to the AD-bead, leading to TSS refolding (Figure 

2.1B) (130, 185).  

 

Figure 2.1. OT experimental set-up  

A. The TSS fragment that was used displaying secondary structure and known tertiary interactions. 

Pseudoknot sequences are highlighted in red and denoted by arrows. Predicted lengths of the elements are 

in parentheses.  B.  Experimental OT set-up. TSS RNA was placed between 500-bp DNA/RNA handles 

that interacted with either the anti-DIG bead or the streptavidin bead. The former bead was trapped by 

lasers and the latter by suction. RNA stretching was accomplished by moving the two beads away from 

another, allowing measurement of the RNA extension length. 

A 

B 
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The unfolding pathway of the TSS was initially investigated using force ramping, 

a technique whereby RNA is unfolded by pulling the beads apart at a constant velocity 

(100 nm/s) and then releasing allowing the beads to move closer together, refolding the 

RNA. Figure 2.2A shows a typical force/extension curve for a single DNA/RNA handle. 

When the DNA/RNA hybrid was stretched, the force magnitude increased with a gently 

rising slope. However, when the extension of the handle reached its crystallographic 

length (contour length- the total bp length of the double helix), the slope became sharper. 

The stretching curve of a single handle molecule corresponds to the elastic response of a 

ds DNA/RNA hybrid following the worm-like chain model (WLC) and fitting the 

force/extension curves (FEC) of the DNA/RNA handle using the Marko-Sigga WLC 

model (Equation 2.1, Materials and Methods) (130, 184). The fitted contour length of the 

DNA/RNA handles was 290±1.07 nm (N = 10), which corresponds to its total length 

(0.29 nm/bp for 1000 bp) (130, 142). There were no transitions observed in the FECs of 

the DNA/RNA handle at forces ranging from 0-40 pN (Figure 2.2A), the typical force 

range used to stretch RNA structural elements (130).  

The TSS contains three hairpins (H4a, H4b and H5), and two pseudoknots (Ψ2 

and Ψ3) that join H4a and H4b loops with nearby sequences (Figure 2.1A) (74). Since 

tertiary interactions like pseudoknots are generally dependent on Mg2+ (130), the TSS 

folding pathway was investigated in both the absence and presence of Mg2+. In the 

absence of Mg2+, the TSS was expected to unfold with three transitions corresponding to 

the three hairpins. At low force (<10 pN), the TSS extended monotonically corresponding 

to the unfolding of the DNA/RNA handles (Figure 2.2B), indicating a 
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Figure 2.2. Representative force extension curves (FEC) for the TSS using force ramping  

A. FEC of DNA/RNA handles (red) fitted with the Makko-Sigga WLC model (black). The extension length 

of a base-pair is 0.29 nm, and the persistent length of DNA/RNA was set between 8 and 10 nm. Total 

contour length of the DNA/RNA handles was 290±1.07 nm.  B. Representative FEC of the TSS in the 

absence of Mg2+. The three intermediates are labeled.  The red line represents the unfolding process and 

blue line represents the refolding process. Insets show the transitions enlarged. Rips 1, 2, 3 are labeled.  C. 

Representative FEC of TSS in the presence of Mg2+. The large and small rips in the unfolding process are 

labeled 1* and 3, respectively.  

A 

B 

C 
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single molecule was being stretched (it is possible to get more than a single nucleic acid 

attached to the beads). At higher force, three transitions (termed “rips”) labeled 1, 2, and 

3 appeared in stepwise fashion (Figure 2.2B), corresponding to successive unfolding of 

three TSS structural elements. No rips were observed when the force exceeded 20 pN 

(data not shown). When the force was released by allowing the two beads to move back 

together, the TSS refolded in three successive steps corresponding to its three unfolding 

transitions (3, 2, and 1). The difference between refolding force and unfolding force for 

each transition denotes the hysteric characteristics of the two processes, suggesting that 

these transitions take place outside of their thermal equilibrium. 

In the presence Mg2+, the TSS unfolded with a new large rip (1*) and one small 

rip that appeared identical to rip 3 that was present in the absence of Mg2+. The TSS 

refolded in Mg2+ with three small transitions (that were found to correspond to 3, 2, and 

1, see below) (Figure 2.2C). These results indicate that, in the presence of Mg2+, the TSS 

unfolded through the simultaneous rupture of multiple hairpins giving the large extended 

length of rip 1*. In addition, 80% of the FECs (N = 64) contained rip 1* in the presence 

of Mg2+ while only 14% of the curves (N = 86) contain rip 1* in the absence of Mg2+. 

This indicates that Mg2+ allows for increased cooperativity between RNA elements of the 

TSS.  

 

2.3.2. The order of TSS hairpin folding  

In the previous section, the TSS was shown to unfold with three rips in the 

absence of Mg2+. Based on the Mfold-predicted ΔG of the TSS hairpins, H4a should 

unfold first (ΔG= -6.9 kcal/mol), followed by H4b (ΔG= -9.2 kcal/mol) and H5 (ΔG= -

21.8 kcal/mol). To investigate if this is the order of hairpin unfolding, a complementary 
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Figure 2.3. Representative FECs of TSS when disrupted by complimentary oligonucleotides  

The TSS was annealed with an oligonucleotide complementary to H4b (A, B); H5 (C, D); H4a (E, F), and 

OT conducted in the absence (A, C, and E) and presence (B, D, and F) of Mg2+. The secondary structure of 

each disrupted TSS is presented to the left of the FECs, with the complimentary oligonucleotide denoted 

with a red line. Note that the oligonucleotide complementary to H4a has no effect on the FEC.  G, H, FECs 

of wt TSS presented here for ease in comparisons. Rips are numbered as in wt TSS 
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Figure 2.4. The folding pathway of the mutant TSS 

A. Mutations generated in H4a (mH4a). B, C.  FECs of mH4a in the absence and presence of Mg2+. The 

two rips on the FECs are indicated. E, F. FECs of wt TSS are presented for ease in comparisons. 

 

oligonucleotide approach was used to individually disrupt each hairpin and then the TSS 

was subjected to OT.  

In the absence of Mg2+, disrupting H4b eliminated rip 1, and disrupting H5 

eliminated rip 2 (Figure 2.3). This suggests that the unfolding pathway of the TSS starts 

with H4b followed by H5. Disrupting H4a had no effect on the three rips, suggesting that 
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the oligonucleotide did not hybridize to the hairpin. When stretched in the presence of 

Mg2+, disrupting H4b eliminated large rip 1*, and still generated rips 2 and 3. Disrupting 

H5 also eliminated rip 1*, and still generated rips 1 and 3 (Figure 2.3). These results 

strongly suggest that, in the presence of Mg2+, H4b and H5 together generate large rip 1*. 

This large rip may also contain Ψ2, which connects H4b with the base of H5. Thus, Mg2+ 

significantly increases the stability of H4b and facilitates cooperativity between at least 

H4b and H5.  

Assignment of H4b and H5 to rips 1 and 2 suggested that H4a or H4a/Ψ3 formed 

rip 3. However, the oligonucleotide complimentary to H4a did not alter the wt three TSS 

rips (Figure 2.3 E, F). One possible explanation is if stability of the H4a/Ψ3 structure 

precluded oligonucleotide annealing to the H4a sequence. To identify whether rip 3 

corresponds to the unfolding of H4a/Ψ3, point mutations (mH4a) were introduced into the 

TSS by site-direct mutagenesis (Figure 2.4A). Subsets of these mutations were previously 

shown to disrupt Ψ3 and H4a by in-line structure probing (75, 81). Using mH4a in the 

absence of Mg2+, rip 3 was no longer observed above 18 pN (Figure 2.4B, C), suggesting  

that this rip represents H4a/Ψ3. In the presence of Mg2+, rip 3 was also absent. Curiously, 

in 10 repetitions, rip 1* was also absent and replaced with rip 1 and 2. This suggests that 

the absence of H4a/Ψ3, affects the cooperation between H4b and H5. 

No rips were observed when a fragment containing only H4a was stretched 

(Figure 2.5), suggesting that H4a is not stable without Ψ3. This result is consistent with 

structure probing results that showed H4a is destabilized when Ψ3 is disrupted (75). Since 

H4a by itself is not a stable hairpin, the high stability of H4a/Ψ3 rip 3 can be attributed to 

the presence of Ψ3. Since rip 3 is observed in the absence of Mg2+ (Figure 2.2B and 2.3A, 
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C), the pseudoknot can form and is stable in monovalent salt.  In summary, in the absence 

of Mg2+, the TSS unfolded in the order of H4b, H5, and H4a/Ψ3. In the presence of Mg2+, 

the TSS unfolded the H4b/H5 complex, followed by H4a/Ψ3. 

 

Figure 2.5. The unfolding/folding pathways of H4a in the absence of Ψ3 

A.  H4a fragment in the absence of Ψ3.  B. FEC of H4a stretched in buffer containing 250 mM NaCl. No 

transition is observed, indicating that the hairpin by itself is not stable.   

 

 

2.3.3. The effect of Mg2+ on stability and folding kinetics of the TSS elements  

Since the three TSS rips were observed to unfold at a small range of different 

forces, force clamping experiments were performed to identify the limits of the force 

range. In these experiments, the RNA molecule was held at a constant force between 1.5 

and 2 mins. At critical force levels, an RNA hairpin transitions reversibly (“hops”) 

between its folded and unfolded states (Figure 2.6), creating upper and lower baselines in 

the extension/time curves.    

As shown in Figure 2.6, slowly increasing the force extends the lifetime that an 

element stays in the unfolded state. For example, the lifetime of the unfolded state of H4b 

was < 20% of the total time at 11.5 pN, increasing to 96% at 13.5 pN (11.5-13.5 pN) and 

100% at 14 pN and higher (14.5-20 pN) (Figure 2.6). Based on the increased 

A 

B 
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Figure 2.6. The extension versus time traces of the TSS at various force constants in 250 mM NaCl 

The TSS was held at constant force for between 1.5 and 2 min. Force was increased by 0.5 pN intervals. 

The assigned hairpin for each transition is indicated. U and F are denoted unfolding state and folding state 

of the hairpins, respectively. Force range of each hairpin is indicated. 
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Figure 2.7. The extension versus time traces of the TSS in 10 mM MgCl2  

The TSS was held at constant force between 1.5 and 2 min. Force was increased by 0.5 pN. The assigned 

hairpin for each transition is indicated. Transitions in which the unfolded H4b led to the unfolding of H5 

are boxed. 

 

lifetime of the unfolded state of each transition, force ranges required to unfold the 

corresponding hairpins and pseudoknots of the TSS were determined. In the absence of 
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Mg2+ (Figure 2.6), when the force is held constant, three hopping transitions (H4b, H5 

and H4a/Ψ3) were observed, consistent with the three transitions found in force ramping 

experiments. The force ranges to unfold these hairpins and pseudoknots were 10-13.5 pN 

for H4b, 13-15.5 pN for H5 and 14.5-18.5 pN for H4a/Ψ3 (Figure 2.6). In the presence of 

Mg2+, H5 unfolded between 14-17.5 pN, a slightly higher force range then observed in 

the absence of Mg2+, indicating that Mg2+ slightly increases the stability of H5 (Figure 

2.7). The addition of Mg2+ also slightly increased the stability of H4b (13-16.5 pN) and 

H4a/Ψ3 (16.5-18 pN) (Figure 2.7). These results suggest that Mg2+ increases the kinetic 

barriers of the TSS hairpins and pseudoknots. 

In the absence of Mg2+, an increased lifetime of the unfolded state for each 

transition was observed at each force increment. Multiple hopping of H4b and H4a/Ψ3 

transitions between unfolded and folded states was also detected at each force level 

(Figure 2.6). In the presence of Mg2+, the lifetime of the H4b unfolded state was less than 

1% of the total time at 15 pN, changed abruptly to 40% at 15.5 pN, and was nearly 100% 

at 16 pN (Figure 2.7). A similar sharp change in the lifetime of the unfolded state 

occurred for the H4a/Ψ3 transition: less than 1% of the total time at 17.5 pN, and 100% of 

total time at 18 pN (Figure 2.7). Very few H4b and H4a/Ψ3 hops were observed. The 

above results suggest that the unfolding kinetics for H4b and H4a/Ψ3 differs from that of 

H5 when Mg2+ is present.   

 

 

2.3.4. The extended length of the elements of the TSS 

In the force clamping experiment, measuring the displacement of an RNA 

element’s transitions between the unfolded state and the folded state allows for estimation 

of the extended length of an element (Figure 2.8). The extended length is then converted 
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into its contour length using Odjick WLC (Equation 2.2, Materials and Methods) (184). 

Details of the contour lengths for each transition measured at each force level are 

presented in Table 2.1. H4b and H4a/Ψ3 maintained similar contour lengths at all force 

levels in the absence of Mg2+, whereas H5 had a slightly longer length (~ 3 nm) at high 

force (Table 2.1A). The contour lengths of each transition at different force level were 

averaged and compared with their predicted lengths based on their sequences.  

Based on the number of nt in the hairpins and pseudoknots, the contour length of 

H4b was estimated to be 15.93 nm and the experimental contour length (in the absence of 

Mg2+) was 15.3±1.3 nm. For H4a/Ψ3, the estimated length was 13.57 nm and the 

experimental value was 33% lower at 9.1±1.5 nm. The reduced length observed 

 

Figure 2.8. Measuring the displacement of RNA transition between its unfolded (U) and folded (F) 

states 

A. Extension histogram (red) of each state was fitted with Gaussian function (black line). The length of 

each transition was obtained by subtracting the extension of the two states.  B. The length versus time trace 

(red) of the TSS, which was used for extension analysis.  C. Force versus time traces (black) during the 

force clamping experiments. During force clamping, the force feed-back was turned on, allowing force to 

be maintained constantly. At each force level, extension length of the intermediate states was obtained from 

three independent measurements of extension using the time trace of extension and then converted to 

contour length using the Odjik WLC model. 
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Table 2.1. Summary of contour lengths of TSS elements obtained by force-clamping  

A.  The contour lengths of each transition in 250 mM NaCl.  B. The contour lengths of each transition in 10 

mM MgCl2.. Std: standard deviation obtained for three independent measurements. The contour lengths of 

each transition obtained at different force levels were averaged (Ave). 

 

for H4a/Ψ3 might reflect the formation of the shorter Ψ3 stem (compared with its 

predicted structure by Mfold) that was observed in in-line structure probing (74).The 

estimated length of H5 was 24.78 nm and the experimental contour length was 30% 

lower at 17.0±1.8 nm. The reduced length observed for H5 might reflect the instability of 

the H5 lower stem (74), which might have unfolded at a low force range.   

 In the presence of Mg2+, H4b had a similar average contour length (15.8 nm), 

however the contour lengths obtained at 14.5-16 pN were slightly longer (1-3 nm) than 

those obtained at 13 pN and 13.5 pN. In addition, significant fluctuation of the H5 

contour length was observed in the presence of Mg2+. Interestingly, full length H4a/Ψ3 

was only obtained at 18 pN in the presence of Mg2+. These results indicate that in Mg2+:  

 (1) the measured contour length of H4b, H5 and H4a/Ψ3 depends on force; and (2) 

higher force causes unfolding with longer times at the transition states, indicating 

increased stability of the hairpins and pseudoknot. 

 

B 

A 
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2.3.5.  Interconnection between RNA elements in the TSS 

From the force ramping and force-clamping experiments, interconnections 

between RNA elements in the TSS were observed in the presence of Mg2+. The unfolding 

force range for H4b (13-16.5 pN) and H5 (14-17.5 pN) partially overlapped (Table 2.1B), 

and unfolding of H4b promoted H5 unfolding at 14-16.5 pN (Figure 2.7).  Since the only 

connection between H4b and H5 is Ψ2, this suggests that Ψ2 is contributing to the 

cooperativity between the two hairpins. In addition, since H4b is unfolding at a higher 

force in the cooperative structure, this suggests that Ψ2 is also stabilizing H4b. To 

examine the effect of Ψ2 on the unfolding of H4b, a force-clamping experiment was 

performed with H5 disrupted by oligonucleotide hybridization. My rationalization was 

that in the absence of H5, Ψ2 would not form and H4b should then unfold at the same 

force range as it does in the absence of Mg2+. Under these conditions, H4b unfolded at 

11.5 pN in Mg2+ (Figure 2.9), which was the same force level as in the absence of Mg2+, 

suggesting that Ψ2 was absent (Figure 2.6). The above results indicate that in the absence 

of Ψ2 and Mg2+
, H4b is less stable and that in the presence Ψ2 and Mg2+, unfolding of H4b 

is linked to the unfolding of H5. 

An additional observation that arose from force clamping was that H5 appeared to 

influence the formation of H4a/Ψ3. Under constant force, H4a/Ψ3 unfolded between 14.5–

18.5 pN in the absence of Mg2+ (Figure 2.7 and Table 2.1A), and between 16.5–18 pN in 

the presence of Mg2+ (Figure 2.8 and Table 2.1B). When H5 was disrupted and force was 

kept constant in the absence of Mg2+ (Figure 2.9B), no hopping of H4a/Ψ3 was observed 

between 16–18 pN (Figure 2.9A). However, the hop transition of H4a/Ψ3 was observed at 
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Figure 2.9. Length versus time traces of the H5-disrupted TSS  

The complementary oligonucleotide of H5 was annealed to the TSS molecule and force clamping was 

performed on the H5-disrupted TSS using 5–20 pN force range. A. The hopping behavior of H4b in the 

H5-disrupted TSS was observed at 11.5 pN in the presence of Mg2+.  B. The hopping behavior of H4a/Ψ3 in 

H5-disrupted TSS at 16 pN in the absence (A) or presence of Mg2+. Note that, in absence of H5, no 

hopping of H4a/ Ψ3 observed in the absence of Mg2+, indicating that the structure is no longer forming. 
  

a force range of 16–18 pN in the presence of Mg2+, suggesting that Mg2+ countered the 

negative effect of the absence of H5, allowing the stable formation of H4a/Ψ3  (Figure 

2.9B). Although H4a/Ψ3 was not observed by force clamping, a rip at high force was 

present in the force ramping FECs of disrupted H5 (Figure 2.3 C, D), which may reflect 

the force loading rate as others have found (134).  

Using mH4, where H4a/Ψ3 is disrupted, a new transition was observed between 

10–13.5 pN in Mg2+, the length of which was 7.38±0.98 nm at 10 pN (Figure 2.10). This 

transition is suggested to be unfolding of Ψ2 and the first few bases of the H4b stem 

(Ψ2
*), as the H4b transition was now observed at a lower force range (13.5 pN compared 

with 15 pN), and contained a shorter length (11.3±1.1 nm compared with 15.8 nm), 

which is expected in the absence of Ψ2. The hopping behaviors of H4b and H5 in mH4a 

in Mg2+ (13-16.5 pN; Figure 2.10) were similar to those found for the two hairpins in the  

A 

B 
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Figure 2.10. Length versus time traces using mH4a in the presence of Mg2+ 

In mH4a, H4a and Ψ3 are disrupted by mutations (Figure 2.4A). Ψ2
*

 is denoted for the unfolding of Ψ2 and 

the first few bases of the H4b stem. 

 

wt TSS in the absence of Mg2+ (Figure 2.6, 13-15.5 pN), which was in contrast to their 

coupled behavior observed using wt TSS in Mg2+ (Figure 2.7, 14.5-16.5 pN). These 

results suggest that in the absence of H4a/Ψ3, Ψ2 is unstable and unfolds at low force 

creating the short transition at 10 pN (Figure 2.10). 
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2.3.6. Effect of Mg2+ and upstream A-rich sequence on the stability of H4a/Ψ3 

When the TSS fragment was subjected to MD simulations, the order of unfolding 

was predicted to be: Ψ2, followed sequentially by Ψ3, H4a, H4b and H5 (Shapiro and 

Jing, personal communication). In contrast, my data demonstrates that H4a/Ψ3 is the most 

stable component of the TSS. One possible explanation is that H4a/Ψ3 is stabilized by 

additional tertiary interactions. Previous reports indicated that mutations disrupting 

H4a/Ψ3 also change the flexibility of the upstream A-rich sequence and vice versa (75, 

81), suggesting that the A-rich sequence is interacting with H4a/Ψ3.  In the TSS structure 

solved by NMR-SAXS, this A-rich sequence was not included and two guanines were 

added to the 5’ end of the H4a/Ψ3 sequence, which were needed to stabilize the TSS (76).  

To better understand the folding of H4a/Ψ3 and whether its enhanced stability is due to 

interaction with the A-rich sequence, the folding pathway of H4a/Ψ3 was studied using a 

short RNA fragment that contained H4a/Ψ3, the A-rich sequence, and several additional 

nucleotides on both sides to reduce any disturbance of the handles on H4a/Ψ3 structure 

(Figure 2.11A). 

Consistent with the unfolding/refolding pattern of H4a/Ψ3 observed in FECs of 

the full-length TSS fragment (Figure 2.2B), a single H4a/Ψ3 transition was observed in 

10 mM Mg2+ at 19.95±0.06 pN with refolding at 16.29±0.04 pN (Figure 2.11B). Force 

ramping in 10 mM NaCl or 250 mM NaCl resulted in a single rip at forces that were 2-5 

pN lower, suggesting that Mg2+ is exerting a stabilizing effect on the element (Figure 

2.11C). In addition, the extended length of H4a/Ψ3 was 10 nm in the absence of Mg2+ 

compared with 13 nm at 18 pN in Mg2+ (Figure 2.11B; Table 2.1A and B). This suggests 

that H4a/Ψ3 may be nucleated in the absence of Mg2+.  
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Figure 2.11. FECs of H4a/Ψ3 under different salt conditions 

A. H4a/Ψ3 fragment.  B. FECs of H4a/Ψ3 in 10 mM Mg2+ (N = 22), 250 mM NaCl (N = 72), or 10 mM NaCl (N 

= 96). The H4a/Ψ3 rip is indicated by an arrow.  C. Distribution of the unfolding force (red) and folding 

force (blue) of H4a/Ψ3. Critical force was obtained by Gaussian fitting. The A-rich sequence is boxed. 

 

Figure 2.12. FEC of 5A5U mutant in the presence 10 mM Mg2+  

A.  The five adenylates upstream (boxed) of H4a/Ψ3 were changed to five uridylates using site-directed 

mutagenesis, generating 5A5U. B. FEC of 5A5U in 10 mM MgCl2.  
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To examine the impact of the A-rich sequence on the folding dynamics of 

H4a/Ψ3, the 5 adenylates in the H4a/Ψ3 fragment were replaced with 5 uridylates, 

generating mutant fragment 5A5U. Using 5A5U, no transitions were observed in the 

presence or absence of Mg2+ (Figure 2.12). This result strongly suggests that the A-rich 

sequence plays a critical role in the stability of the H4a/Ψ3 element.  

 

2.4.  Discussion 

Conformational switches have been observed for many regulatory RNA elements 

found in 5´ and 3´UTR of (+)-strand RNA viruses (121, 162, 186). However, the 

unfolding/folding pathways for these elements remain elusive. To better understand the 

dynamics of one RNA structural switch, I investigated the unfolding/folding pathway of 

the TSS, a highly structured RNA located in the 3´UTR of TCV that adopts two 

biologically relevant conformations. The conformation assumed by the TSS under 

physiological conditions is required for ribosome binding (Figure 1.11A), whereas an 

alternate conformation is present upon RdRp binding (Figure 1.11B). Disruption of the 

native translation-promoting structure of the TSS resulted in reduced ribosome binding 

while enhancing in vitro transcription (75, 81). The TSS also reverts to the native 

conformation compatible for ribosome binding when the RdRp is degraded. Based on 

previous biochemical, genetic, and molecular modeling studies, the TSS was predicted to 

fold into a stable tRNA-shaped structure, which is the favorable conformation for 

ribosome binding to the P or E-site (75). Due to the highly stable structure of the TSS, the 

folding/unfolding mechanism that allows the element to adopt two conformations 

remained unclear.  

Optical tweezers was used to unfold and refold a single TSS molecule to more 
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closely investigate its structural dynamics. The TSS consists of three hairpins (H4a, H4b, 

and H5) and two pseudoknots (Ψ2 and Ψ3) (74). Based on the Mfold-predicted ΔG for the 

three hairpins, H4a (in the absence of the pseudoknot) is the least stable hairpin (ΔG = -

6.9 kcal/mol), followed by H4b (ΔG = -9.2 kcal/mol), and H5 (ΔG = -21.8 kcal/mol). The 

ΔGs of H4b and H5 correlate with the unfolding order of these hairpins in the absence of 

Mg2+; H4b unfolded between 10–13.5 pN, and H5 unfolded at 13–15.5 pN (Figure 2.6). 

Curiously, no rip corresponding to H4a alone was found. Instead, my results indicate that 

Ψ3 does not require Mg2+ to form and together with H4a is the most stable element of the 

TSS, unfolding at high force 14.5-18.5 pN (Figure 2.4 and 2.6). In Mg2+, the unfolding 

pathway of the TSS starts with disassembly of a cooperative structural complex 

composed of Ψ2, H4b and H5, followed by H4a/Ψ3 (Figure 2.2C).  

Data from previous studies indicated that RdRp binding to the 3´ end of TCV 

disrupts H4a/Ψ3 (81). Destabilization of Ψ3 also led to the disruption of the H4a stem, 

which increased minus-strand synthesis (81). Data from the above section indicated that 

unfolding of H4a/Ψ3 affected the unfolding of Ψ2 and H5. Thus, H4a/Ψ3 may play an 

important role in the conformational switch of the TSS. A more compact H4a/Ψ3 forms 

under low monovalent salt conditions (10 mM NaCl) in the absence of Mg2+ (Figure 

2.11). Full-length H4a/Ψ3 (13 nm) was obtained only in Mg2+ at high force (18 pN) 

(Table 2.1B), indicating that H4a/Ψ3 is a very stable structure that can be nucleated in a 

wide spectrum of biological conditions possibly needed for association with ribosomes. 

Unexpectedly, stability of H4a/Ψ3 depends upon the upstream A-rich sequence as the 

element does not form in its absence (Figure 2.12). This result is consistent with previous 

findings that replacing the A-rich sequence with a U-rich sequence decreased ribosome 
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binding and translational efficiency in luciferase constructs (75, 81). In addition, In 

addition, replacement of individual adenylates with cytidinates reduces TCV 

accumulation in protoplasts by ~50% (Xue Feng, unpublised) and replacement of two 

adenylates results in 20-fold decreases in accumulation (81). It is possible that the A-rich 

sequence functions like an A-minor motif, which promote stabilization of ribosomal 

RNA structures and Tetrahymena thermophila ribozymes through the insertion of its 

adenine bases into the partnering RNA structure (187, 188). The requirement for adjacent 

adenylates to stabilize H4a/Ψ3 offers an explanation for why my results differ 

significantly from MD simulations, which do not incorporate the A-rich sequence and in 

which the TSS unfolds beginning with Ψ2, followed sequentially by Ψ3, H4a, H4b and H5 

(Shapiro and Jing, personal communication).  

Mg2+ is important for stabilizing RNA tertiary structures (111, 172-174) and has 

been shown to be a key factor in controlling the conformational switch in a number of 

RNAs (171, 189, 190). When Mg2+ was added, the stability of all three TSS transitions 

increased by 2-3 pN over the force required in the absence of Mg2+ (Table. 2.1 and Figure 

2.7). These results indicate that Mg2+ has increased the kinetics barriers of these hairpins 

and pseudoknots. In addition, the hopping behavior of H4b and H4a/Ψ3 changed abruptly 

from folded to unfolded states between 15.5 and 16 pN for H4b and between 17.5 pN and 

18 pN for H4a/Ψ3 (Figure 2.7). This result might serve as evidence to explain the 

refolding dynamics of the TSS, which assumes a conformation compatible with ribosome 

binding in the absence of the RdRp (81).  

Additionally, there are several lines of evidence that indicate cooperation between 

individual RNA elements within the TSS. Ψ2 is proposed to increase cooperativity 
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between H4b and H5 in Mg2+, which are included in the large 1* rip in TSS FECs (Figure 

2.2C). Disruption of H4b or H5 led to the disappearance of this large transition, 

regardless of the buffer condition (Figure 2.3). In addition, when H5 is disrupted by 

oligonucleotide hybridization, Ψ2 would not form, H4b became less stable (transition at 

11.5 pN in Mg2+ (Figure 2.9A), at which force level H4b transitions in the wt TSS were 

only observed in the absence of Mg2+ (Figure 2.6). In the presence of Mg2+, H4b, which 

only connects promoted unfolding of H5 in a narrow force range between 14.0 pN and 

16.5 pN (Figure 2.7). The second connection between elements was observed for H5 and 

H4a/Ψ3 by force clamping (Figure 2.9). When H5 was disrupted, the H4a/Ψ3 transition 

was no longer observed at its corresponding force range in the absence of Mg2+, but was 

still observed in Mg2+ (Figure 2.9). These results indicate that H5 is required for folding 

of H4a/Ψ3, which is countered by the addition of Mg2+. The third connection was 

between the H4a/Ψ3 and Ψ2 in the force-clamping experiments. In mutant mH4, in which 

H4a/Ψ3 was disrupted, a short transition that might correspond to the unfolding of Ψ2
* 

 

was observed at 10 pN, 3 pN lower than the force obtained for the large transition 1* 

complex in the wt TSS in Mg2+ (Figure 2.7 and 2.10). The unfolding of Ψ2 at a lower 

force also had an effect on the folding behavior of H4b and H5, in which the two 

transitions were observed to hop between the folded and unfolded states more frequently 

than they did in the wt TSS (Figure 2.7 and 2.10). The observed connections between 

RNA elements of the TSS in Mg2+ provide further information for how the TSS assumes 

a conformation favoring RdRp binding. It is known that in the presence of RdRp, Ψ2 and 

H4a are disrupted (81). Thus, if Ψ2 is disrupted first, this might promote H4b and H5 to 

hop back and forth between their unfolded and folded states more frequently. Due to the 
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structural connection between the H5 and H4a/Ψ3, the unfolding of H5 can cause 

unfolding of H4a/Ψ3. On the other hand, if RdRp disrupts H4a/Ψ3 first, this may cause Ψ2 

to unfold, leading to the unfolding of H4b and H5. In contrast, since Mg2+ acts as a highly 

stabilizing agent for the hairpins, when the TCV enters cellular environment, Mg2+ can 

stabilize the TSS in the initial uncoated viral RNA for ribosome binding. Due to the 

unfolding of H4b and H4a/Ψ3 at higher force range in presence of Mg2+, these abrupt, 

high kinetic barriers for H4b and H4a/Ψ3 might suppress unfolding of the TSS allowing 

the TSS to facilitate translation. 
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Chapter 3:  The structural study of Pea enation mosaic virus kissing 

loop tRNA-shaped structure  

3.1.  Introduction  

As presented in Chapter 1, the efficiency of translation initiation of many (+)-

strand RNA viruses depends on structural element located within the 5' UTR and 3' UTRs 

(5, 7). Structural element involved in translation initiation known as CITEs are located at 

the 3' UTR (Chapter 1) and are commonly found in the Tombusviridae and Luteoviridae 

as well as in the genus Umbravirus (5, 191). CITEs are categorized into 7 structural 

groups: ISS, TED, PTE, YSS, BTE, TSS and kl-TSS based on their predicted secondary 

structures (Chapter 1) (5). These RNA elements are critical determinant for efficient 

translation in plant viruses and can enhance translation by 20-fold (5). CITEs interact 

with ribosomes or translation initiation factors and are proposed to transfer these factors 

to the 5' UTR by forming long-range RNA:RNA interactions or ribosome bridges (23, 75, 

77). Due to their ability to function as a modular unit, some CITEs are interchangeable 

between viruses (74). The RNA structures of CITEs are most often determined by 

SHAPE and in-line probing analysis, or computational modeling because they are 

typically large in size (60-168 nt) (5). Lack of experimentally defined 3-D structures for 

CITEs limits our understanding of their role in translational mechanism. The TCV TSS is 

the only 3' CITE for which the structure is solved by both NMR and SAXS (76), and that 

structure included two guanylates for stability and did not include the upstream A-rich 

sequence that I showed was critical in Chapter 2. Thus, to obtain more information about 

structural basis for translation enhancement of 3' CITEs, I have carried out structural 

characterization of the PEMV kl-TSS, which plays a significant role in ribosome 

recruitment and translation enhancement in PEMV. 
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Figure 3.1. Predicted structure of the kl-TSS and the 5' 89-nt fragment by Mfold and in-line probing  

A. Predicted structure of the 5' 89-nt fragment of PEMV.  Hairpins 5H1 and 5H2 (bold) are indicated.  

Interactions between nucleotides of the 5H2 apical loop and L2 loop of the kl-TSS are connected by dashed 

lines.  B. Predicted structure of the 81-nt kl-TSS of PEMV. Conserved residues in the L2 loop of the kl-

TSS are boxed. The stems and loops of the kl-TSS are color-coded corresponding to its 3-D predicted 

structure presented in C.  The boxed nucleotides at the 5' and 3' ends of the kl-TSS are not present in the 

71-nt RNA fragment. In the 71-nt kl-TSS, the first C:G base-pair is replaced with G:C to support 

transcription by T7 RNA polymerase.  C. 3-D model of the kl-TSS predicted with RNA2D3D. Stem P1, 

P2, P3 are indicated.  D. Superimposition of the 3-D model of the kl-TSS (red) and Phe-tRNA (grey).  

Location of the amino-acceptor stem (AA), and anticodon stem of the tRNA are indicated. Structures of the 

kl-TSS are adapted from Gao et.al 2012 (51, 77). 

 

As mentioned in Chapter 1, multiple translational enhancer element have been 

discovered in PEMV including the PTE, TSS and kl-TSS (192). The kl-TSS is positioned 

9-nt upstream of a PTE CITE, which unlike other PTE, is incapable of interacting with 5' 

end sequences. Instead, the associated kl-TSS forms a long-distance kissing-loop (kl) 

interaction with a sequence located within the 5' 89-nt (51, 77) (Fig.  3.1A, B). The kl-

TSS was predicted to form a tRNA-shaped structure that superimposes well on the 3-D 
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structure of the Phe-tRNA (PBD code 1EHZ) (Figure 3.1 C, D) and appears to be similar 

to the structure of the TCV TSS (51, 77). Like a variety of 3' CITEs found in other plant 

viruses, the kl-TSS has a conserved RNA:RNA interacting motif (GCCA) located in the 

apical L2 loop of the 5' P2 stem (59, 77). However, unlike 3' CITEs such as PTE that 

require binding to eIF4E for translation enhancement (60), translational enhancer activity 

of the kl-TSS is dependent on ribosome binding (77). The kl-TSS binds to both ribosomal 

subunits and to the 80S ribosome, but does not compete with the TSS for binding to the 

P-site (77). In contrast with the structure of the TCV TSS that contains two stabilized 

pseudoknots (74), the relative position of the three stems of the kl-TSS is dependent on 

the topology of its central 3-way junction (77). Mutations that disrupt the kl-TSS P1 or 

P3 stems, or truncate or enlarge the L3 loop, reduce ribosome binding by several fold 

(77).  In contrast, compensatory mutations that reform the P1 stem allow for near wild-

type (wt) levels of ribosome binding (77). From genetic and in-line probing data 

analyses, the kl-TSS L2 loop interacts with the loop of 5H2 within the 5' 89 nt fragment, 

and this interaction is compatible with ribosome binding (77). Solving the structure of the 

kl-TSS will provide insights into how this element interacts with ribosomes to enhance 

translation.   

 In this report, the interaction of the kl-TSS with 5H2 was confirmed using EMSA 

and NMR. The hydrogen bonding patterns of each stem in the kl-TSS were also 

established by NMR.  By using SAXS in combination with computer modeling, tentative 

structural models of the kl-TSS are proposed. This analysis indicates that the kl-TSS 

might have two conformational states. The major conformation appears to differ 
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significantly from the previously predicted structure while the minor conformation 

appears somewhat similar to the predicted structure. 

 

3.2.  Material and methods 

3.2.1. Preparation of RNA samples 

 RNAs used in this project were transcribed from either double-stranded or single-

stranded DNA templates depending on the size of RNA fragment. The T7 promoter (5′ 

CTAATACGACTCACTATAG) was incorporated into DNA templates. In-house T7 

RNA polymerase was prepared to perform in vitro transcription. To obtain the highest 

yields of transcribed RNAs, different transcription conditions were tested in 20 µl 

volumes.  In the reaction, the concentration of MgCl2 was varied from 4 to 15 mM, DNA 

templates from 0.3 to 0.6 µM, unlabeled rNTPs from 5 mM to 20 mM and the T7 RNA 

polymerase concentration from 0.1 µg/µl to 0.2 µg/µl. When isotopic 15N, 13C- rNTPs 

were used, their concentration was fixed at 5 mM. The reaction was performed in 

transcription buffer containing 40 mM Tris-HCl (pH 8.3), 0.1 mM spermidine (Sigma), 

0.01% Triton X-100, 10 mM DTT, and supplemented with 2.0 U/mL thermostable 

inorganic pyrophosphatase (New England Biolabs, Inc.). A final concentration of 80 

mg/mL PEG (8000MW) and (+)-strand T7 promoter oligonucleotide were added to the 

transcription reactions containing single-stranded DNA template. After 3 hours of 

incubation at 37ºC, the reaction was quenched with an equal volume of 2x RNA loading 

dye (90% formamide, 5% glycerol, 0.1 mM EDTA, 0.025% bromophenol blue, 0.025% 

xylene cyanol). To quantify the efficiency of RNA transcription, a 2.5 µl aliquot from 

each reaction was subjected to electrophoresis on 8M urea, 19:1 PAGE. The gels were 

stained with ethidium bromide and the RNA bands quantified using Gbox gel doc 
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(Biorad). Large-scale transcription (10 ml) was carried out with the optimal 

concentrations of Mg2+, DNA template, rNTPs and T7 RNA polymerase. For large scale 

RNA preparations, the reaction was incubated at 37ºC for 3-8 hours and was then 

quenched with 50 mM of EDTA pH 8. DNA templates and proteins were removed by 

acid phenol:chloroform extraction (pH 4.5).  The RNAs from the extraction were 

precipitated overnight with 0.3 M sodium acetate (pH 5.2) in combination with 3 

volumes of 95% ethanol at -20ºC.   Precipitated RNA was centrifuged and salt removed 

with 70% ethanol.  The RNA was then re-dissolved with a minimal amount of water (3 

ml) and purified using 8M urea denaturing PAGE (19:1). The percentage of acrylamide 

in the PAGE gel was selected based on the size of the purified RNAs.  The corresponding 

RNA band was then visualized by UV shadowing and excised. The RNA was electro-

eluted using an Elutrap (Owl) electro-separation system at 200 V for 8 hours at 4ºC.  

Collected RNA samples were combined and solvent exchanged using a spin filter with 

molecular weight cut-off (MWCO) of 3 kDa (Amicon ultra 3K, Millipore).   

 

3.2.2. Native PAGE 

 RNA (1 g) was heated in a water bath at 90ºC for 2 min and incubated on ice for 

2 min. The RNA was subsequently added to a folding buffer containing 50 mM Herpes 

(pH 7.5), 50 mM NaCl, and various Mg2+ concentrations ranging from 0.1 mM to 20 

mM.  The mixture was incubated at 37ºC for 30 min. Loading dye (10% glycerol and 

0.01 % xylene cyanol) was added to the RNAs before loading on a 12% native gel 

prepared with 29:1 acrylamide/bisacrylamide gel in a buffer containing 34 mM Tris, 66 

mM Hepes (pH 7.5), 0.1 mM EDTA, 50 mM NaCl, and 1 mM MgCl2. The native gel was 
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run at 4ºC and 300 V. Running buffer was re-circulated every hour. Gels were stained 

with ethidium bromide and observed with a Gbox (Biorad). 

 

3.2.3. RNA:RNA electrophoretic mobility gel shift assays (EMSAs)  

 EMSA was performed as previously described (77). In brief, in vitro transcribed 

kl-TSS RNA was dephosphorylated using calf intestinal phosphatase (CIP) and 32P end-

labeled using polynucleotide kinase. The labeled kl-TSS and the unlabeled full-length or 

truncated 5H2 RNA were folded separately as described above. 32P-labeled kl-TSS RNA 

(2 pmol )  was mixed with 20 pmol of unlabeled 5H2 RNA in RNA binding buffer (5 mM 

HEPES (pH 7.6), 100 mM KCl, 10 mM MgCl2, 0.1 mM EDTA, 3.8% glycerol). The 

mixture was incubated for 30 min at 25°C. RNA samples were resolved on 10% native 

polyacrylamide gels at 4°C for 4 to 5 h in 1× THEM buffer [34 mM Tris, 66 mM HEPES 

(pH 7.5), 10 mM MgCl2, 0.1 mM EDTA].  Gels were subsequently dried and exposed to 

X-ray film. 

 

 

3.2.4. Small angle X-rays scattering collection, processing and three-dimensional 

shape reconstruction 

 Small angle and wide angle X-ray scattering data was collected at three different 

RNA concentrations (0.8 mg/ml, 1.6 mg/ml, and 3.2 mg/ml). The folding buffer 

contained 50 mM Hepes (pH 7.5), 50 mM NaCl, and 3 mM MgCl2.  Data was collected at 

beam line 12-ID of the Advanced Photon Source at the Argonne National Laboratory.  

The wavelength (λ) of tX-Ray radiation was set to 1.033 Å. Procedures for SAXS/WAXS 

measurement were similar to those previously described (117, 193). For each RNA 

concentration and matching background buffer, 30 images were collected.   
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 SAXS data was averaged and the background-subtracted using the NCI-SAXS 

program package. The averaged scattering profiles of three RNA concentrations were 

used to extrapolate to a concentration of zero using PRIMUS in the ATSAS program 

package (http://www.embl-hamburg.de/biosaxs/). The GUINIER plot was plotted with 

ln(I(q)) vs q2 to check sample quality and to obtain I0 and radius of gyration (Rg) within 

the range of qmax*Rg < 1.3. The data from each RNA concentration was then normalized 

with I0. Conformation of the RNAs was examined using the Kratky plot for q < 0.3 Å-1.  

Scattering profiles of RNAs were then Fourier-transformed using tGNOM of the ATSAS 

package to obtain the normalized pair distance distribution graph.    

Ab in initio modeling was performed using the program DAMMIN in a slow 

mode (Svergun 1999).  For each RNA, 20 models were obtained. These models were 

filtered and averaged using the DAMPUP, DAMFILT and DAMAVER of the ATSAS 

package (http://www.embl-hamburg.de/bioSAXS). Normalized spatial discrepancy 

(NSD) between each pair of the models was computed. The model with the lowest NSD 

value was selected as the reference model for superimposing onto other models. Outliner 

models (2 models) with an NSD above mean + 2*variation were removed before 

averaging.   

 

3.2.5.  Conformational ensemble analysis 

 MC-Fold (194) was used to generate the secondary structure of the 71-nt kl-TSS, 

in which base-pairs of the P1, P2 and P3 stems were constrained using imino assignment 

of NMR. The first 10 secondary structure models with the lowest energy were submitted 

for MC-SYM to generate 3-D conformational ensembles of the kl-TSS (194).  Each 

secondary structure consisted of an average of 130, 3-D conformational models, with a 
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total of 1650 generated conformational models. These 3-D conformational ensembles 

were then relieved, refined, scored with Amber force field using MC-SYM (webserver), 

and sorted by the radius of gyration obtained from SAXS.  All back-calculated scattering 

profiles of these conformational ensembles were generated by using Fast X-ray 

Scattering (FoXS) (websever) (195). The difference of scattering profiles between 

experimental and back-calculated data was expressed as χ (195):  

 

 

Where c is the scaling factor, σ(qi) is the experimental error, Iexp(qi) and Ical(qi) are the 

experimental and back-calculated scattering intensities, respectively, at each i data point 

of the total M data point. To obtain the model that best represents , a sparse ensemble fit 

was performed using the back-calculated scattering profiles of the kl-TSS conformational 

ensembles using the sparse ensemble solutions (SES) (196). One state, two or three state 

models were scored using their χ values. To avoid overfitting, the data sets was 

resampled using a bootstrapping protocol (196). 

 

3.2.6. NMR  

 Folding of the kl-TSS was performed as described above except that the RNA 

was heated to 75ºC to avoid RNA aggregation when a high RNA concentration was used.  

The concentrations of the RNA samples subjected to NMR ranged from 0.1 to 0.8 mM 

and were dissolved in a 250 µl of NMR buffer [50 mM deuterated MOPS (pH 6.8), 30 

mM NaCl, 1 mM MgCl2, 10 % D2O] and transferred into a Shigemi NMR tube.  For 

indirect referencing of chemical shifts, 1H sodium 2,2-dimethyl-2-silapentane-5-sulfonate 

(DSS) was added to the NMR buffer for a final concentration of 0.25 mM.  NMR 

Equation 3.1: 
   

 

2

1

exp1












 


M

i i

icali

q

qcIqI

M 




83 

 

experiment were performed using a 600 MHz or 800 MHz Bruker Avance III 

spectrometer equipped with a HCN triple resonance cryoprobe. NMR experiment were 

performed at either 25ºC for samples in water, or 37ºC for samples in D2O.  All NMR 

data was processed using TopSpin 3.2 (Bruker Biospin) and NMRviewJ (197).   

 

3.3. Results 

3.3.1. The conformational analysis of the kl-TSS 

 An RNA sequence can adopt multiple conformations (123). Thus, the 

conformation of the kl-TSS was initially analyzed on a native PAGE gel. The kl-TSS was 

heated and snap-cooled in water and either immediate loaded onto the gel or incubated in 

folding buffer at 37ºC. As shown in Figure 3.2, the sample that was loaded without 

incubation migrated as a large smear, indicating that the RNA sample had not folded into 

a single conformation. Tight kl-TSS RNA bands were observed when the RNA was 

further incubated in 37ºC (Figure 3.2A, lanes 3-6,), indicating that the kl-TSS was folded 

homogenously. Various concentration of Mg2+ did not discernibly affect migration of the 

kl-TSS (Figure 3.2A).  

 

Figure 3.2. Folding of the kl-TSS  

A.  Native gel electrophoresis of the kl-TSS.  RNA samples were folded in buffer containing either urea, or 

various concentrations of Mg2+. Urea, RNA sample was heated in the presence of 6M urea. H, RNA sample 

that loaded immediately onto the gel after snap cooling.  RNAs were resolved on 10% PAGE (29:1) in 34 

mM Tris, 66 mM HEPES (pH 7.4), 0.1 mM EDTA, 50 mM NaCl, and 1 mM MgCl2 at 4ºC.  B.  Denaturing 

8M urea PAGE containing the same kl-TSS samples.  

 

A 

B 
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3.3.2. Base-pairing of the kl-TSS 

 In previous studies, the kl-TSS was used within an 81-nt fragment.  However,  

only 71-nt of the RNA sequence was predicted to participate in forming a three way 

junction (Figure 3.1) (77).  The upstream and downstream nucleotides were originally 

included with the 71-nt core kl-TSS (Figure 3.1B, boxed grey nucleotides) because the 

TCV TSS was found subsequent to NMR analysis to require the upstream A-rich 

sequence (74, 75).  However, high flexibility of single-stranded regions may be 

problematic in structural studies, (e.g SAXS and NMR). To investigate the impact of 

these single-stranded nucleotides on the structure of the 71-nt kl-TSS, 2-D 1H-15N imino 

heteronuclear single quantum correlation (HSQC) NMR experiment were performed with 

the 15N-labeled 71-nt and 81-nt PEMV kl TSS fragment. The first C:G base pair of the 

71-nt kl-TSS was switched to a G:C base pair to facilitate in vitro transcription by T7 

RNA polymerase. When base-paired, each imino proton of G and U is protected from 

solvent exchange, producing a single peak for GC and AU base-pairs (bp) and two peaks 

for GU bp on the 2-D 15N-imino spectra (Figure 3.3A, B). When base-paired, C(N3) and 

A(N1) signals on the cross-strand are also obtained from heteronuclear J(N,N)-HNN 

correlation spectroscopy (COSY) NMR (Figure 3.3 A, C). In Figure 3.3B, the imino 

spectrum of the 81-nt kl-TSS contains 11 peaks of G(H1/N1), and 6 peaks of U(H3/N3) 

correspond to 10-GC, 5-AU and 1-GU base-pairs. The number of base-pairs obtained was 

close to the expected number of base-pairs (14-GC bps, 6-AU bps and 1-GU bp) from the 

predicted secondary structure of the 81-nt kl-TSS. The lower value for the number of the  
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Figure 3.3. The 1H-15N HSQC spectra of the 15N-labeled kl-TSS 

A.  Magnetization transfer between G-H1/N1, U-H3/N3 of GC, AU, and GU bps in 15N-1H HSQC (black 

arrows). In HNN COSY, magnetization was transferred between G-H1/N1 (black arrow)-C-N3 (red arrow) 

and between U(H3)/N3(black arrow)-A-N3(red arrow).  B. 15N-1H HSQC spectrum of the 81-nt, 15N-

labeled kl-TS.  The experiment was performed in 50 mM deuterated MOPS at pH 6.8, 30 mM NaCl, and 1 

mM MgCl2 at 37 ºC. Data was acquired on the 800 MHz spectrometer.  The peaks represent resonances of 

proton G-H1 or U-H3 coupled to the resonances of nitrogen G-N1 or U-N3, respectively.  Each peak 

corresponds to a bp.  Regions for GC, AU and GU bp are indicated.   C. The 15N-1H HNNCOSY spectrum 

of the 81-nt, 15N-labeled kl-TSS. Resonance regions of G-N1, U-N3, C-N1 and A-N3 are labeled. Dashed 

lines indicate the magnetization transfer across the hydrogen bonds between G-N1 with C-N3 and U-N3 

A B 

C 

D 
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with A-N1.   D.  Overlap of the 15N-1H HSQC spectrum of the 81-nt, 15N-labeled PEMV kl-TS (black) and 

the 15N-1H HSQC spectrum of the 71-nt, 15N-labeled kl-TS (purple). 

 

observed base-pairs could be due to spectral overlap. The N-H··N hydrogen bonds 

between the two helical strands of the 81-nt kl-TSS were established by detection of 

signals of C(N3) and A(N1) on the HNN COSY spectrum (Figure 3.3C). Peaks of C(N3) 

and A(N1) correlating with imino peaks in the spectrum of the 81-nt kl-TSS were also 

observed, further corroborating the hydrogen bonds present within the RNA. The 15N 

spectra of the 81-nt and 71-nt kl-TSSes were superimposed and the overlaid spectra 

indicated that the two RNAs contain similar base pair patterns. Thus, the 5'- and 3' single-

stranded tail sequences do not affect hydrogen bonding of the 81-nt fragment (Figure 

3.3D). Therefore, the 71-nt kl-TSS RNA was chosen for further analysis. 

 

3.3.3. The interaction of the 71-nt kl-TSS with 5' end hairpin 2 (5H2) 

  A previous study reported the interaction between the 81 nt kl-TSS and the 5' 89-

nt genomic fragment that is co-terminal with the 5' end using electrophoretic mobility 

shift assays (EMSA) (77) (Figure 3.1A). Structure probing also revealed that the presence 

of the 5' 89-nt fragment altered the flexibility of the kl-TSS 6-nt apical loop (L2) of the 

P2 stem (77). Similar flexibility changes were also observed with the apical loop of 5H2. 

These results indicate that the apical loop of the 5H2 and L2 of the kl-TSS were 

responsible for the long-distance interaction (77). To determine if the interaction can be 

detected using isolated full-length and truncated 5H2 hairpin, EMSA was performed with 

32P kl-TSS and several truncated fragment (F1, F2 and F3) of the 5H2 (Figure 3.4A) 

(performed by Dr. Feng Gao). All 5H2 truncated fragment retarded the mobility of the 
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Figure 3.4. Interaction of the kl-TSS with truncated 5H2  

A. Structure of 5H2 and kl-TSS.  Interactions between the two loops are presented with dashed-lines. The 

locations of truncated fragment F1, F2 and F3 are indicated. The first CG base-pair of F2 and F3 fragment 

were replaced with G:C base-pairs to assist in transcription with T7 RNA polymerase.   B. Gel shift assays 

between the 32P-labeled kl-TSS (*kl-TSS) and truncated 5H2 fragment and the 5'89-nt genome fragment of 

PEMV.  C. Spectra of the 15N-labeled kl-TSS collected in the presence (black)/absence (pink) of the F1 

fragment of 5H2. One peak disappears as indicated by the pink arrow. The shifted peaks are indicated with 

black arrows.   

 

32P kl-TSS, indicating that the complete 5'89 fragment or full-length 5H2 is not required 

for the interaction (Figure 3.4B).  

 Interaction between 5H2 and the kl-TSS was expected to form four G:C and two 

A:U base-pairs, for which the kl-TSS contributed one G and one U (Figure 3.4A). Thus, a 

1H-15N HSQC experiment was utilized to investigate these interactions. New peaks were 

expected to appear on the 2-D 1H,15N-imino spectrum of the kl-TSS. In Figure 3.4C, the 

                  F1    F2     F3      5´89-nt 

Added fragment 

 

*kl-TSS    

 

A B 
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2D 1H-15N HSQC spectrum of the kl-TSS obtained in the presence of the unlabeled F3 

fragment of 5H2, was overlaid with the 2-D 1H-15N HSQC spectrum of the kl-TSS by 

itself. On the spectrum of the 15N-labeled kl-TSS collected in the presence of unlabeled 

F3 fragment, one G-imino peak was absent and several G-imino peaks appeared to be 

shifted (Figure 3.4C), suggesting that new hydrogen bonds had formed between 5H2 and 

the kl-TSS. Further detailed analysis of the interaction between these two RNAs will be 

presented in section 3.3.5. 

 

3.3.4. “Divide and conquer” approach to assign chemical shift resonances of the kl-

TSS  

   In the imino spectra of the kl-TSS (Figure 3.3D), 11 out of 15 G and 6 out of 7 U 

imino resonance peaks were observed. The absence of peaks could be the result of 

spectral overlap, which would interfere with resonance assignments. Therefore, the 

“divide and conquer” approach was used to assign resonances. This approach was 

successfully applied to build a high-resolution structure of 26 kDa HCV IRES (198). 

Truncated fragment of the kl-TSS were designed based on its RNA2D3D structural 

model in which the P3 stem loop of the kl-TSS likely functions as an independent 

structural unit and the P1 stem and P2 stem loop are positioned close to each other due to 

folding of the junction (77). The first fragment (P3) was 32 nt long and contained only 

the P3 stem loop (Figure 3.5A). The second fragment (P1P2) was 53 nt long and 

contained P1, P2 and the basal stem of the P3 to maintain the conformational topology of 

the kl-TSS three-way junction. In P1P2, the GC and GU base-pairs just below the internal 

loop of the P3 lower stem were replaced with a single A:U bp and then capped with a 

GAAA tetraloop (Figure 3.5A) to maintain a P3-like hairpin. An additional 49-nt 
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Figure 3.5. P3, P1P2 and P1P2ΔL2 fragments of the kl-TSS 

A.  Structures of P2, P1P2 and P1P2ΔL2 as predicted by Mfold.  A GAAA loop replaced the top stem of P3 

in the P1P2 construct. UUCG replaced loop L2 of P2 in the P1P2ΔL2 construct.   B.  Superimposition of 

the imino spectrum of 15N-labeled P3 fragment (purple) and the imino spectrum of 15N-labeled kl-TSS.   C.  

Superimposition of the imino spectrum of 15N-labeled P1P3 fragment (purple) and the imino spectrum of 

the 15N-labeled kl-TSS.  All imino spectra were collected in 50 mM deuMOPS (pH 6.8), 30 mM NaCl, 1 

mM MgCl2, 10% D2O at 37°C. 

  

 

fragment labeled P1P2ΔL2 that has the same hydrogen bond pattern of P1P2 was also 

designed, in which the 8-nt loop of P2 was replaced with a stable UUCG loop. 

  2-D 1H-15N HSQC was performed to compare base-pair pattern of these 

fragments with full-length kl-TSS. As shown in Figure 3.5B, the imino spectrum of P3 

overlaid well with that of the kl-TSS, indicating that P3 alone has a similar base pairing 

pattern as P3 within full length kl-TSS. Based on the 2-D 1H-15N HSQC spectrum of the 
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15N-labeled P3 (Figure 3.5B), nearly all base-pairs predicted from the secondary structure 

were observed (4 out of 5 G-imino peaks and 3 out of 4 U-imino peaks were observed).  

One G and one U had imino protons resonates at 11.5 ppm, indicating that they might 

form non-canonical base-pair interactions. In addition, the superimposed imino spectra 

between the 15N-labeled kl-TSS and P1P2 (Figure 3.5C) indicated that P1P2 also 

maintained a similar base pair pattern as the kl-TSS. In the spectrum of P1P2, 9 out of 10 

G-imino peaks were observed and 4 out of 6 U-imino peaks were observed (Figure 3.5C).  

The imino resonances of P3 and P1P2, which overlapped well with the imino resonances 

of the kl-TSS, rendered the spectra of these two fragment suitable for assignment of the 

full-length kl-TSS. In addition, the NOESY spectrum of P1P2ΔL2 is comparable with 

that of the P1P2 fragment (see below), rendered the NOESY spectrum of the P1P2ΔL2 

suitable for assignment of the P1P2 (the 1H-13C 2-D spectra at 13C6 and 13C8 region of 

P1P2ΔL2 also overlaid well with that of the kl-TSS (Appendix)). 

 

3.3.5. Resonance assignments for the imino protons of P3, P1P2 and the kl-TSS 

Since space magnetization transfer can occur for imino protons within a distance 

of 5 Å, this transfer results in the appearance of cross-peaks seen in NOESY NMR 

spectra (Chapter 1) (146). The imino resonance assignment of the RNA is accomplished 

by sequentially connecting imino peaks on the same strand and on the cross strand. To 

assign imino chemical shifts for P3, P1P2, P1P2ΔL2 and the kl-TSS, NOESY 

experiments were performed on each RNA (Figure 3.6, 3.7 and 3.8).   

 Sequences within the basal stem of P3 were used for starting the assignment 

based on two prominent imino cross-peaks between a G (11.3 ppm) and a U (11.5 ppm) 

observed in the NOESY spectrum (Figure 3.6C). These up-field chemical shifts and their 
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cross-peaks suggest that the G and U form a wobble base pair. Since there is only one 

predicted wobble pair in the secondary structure of P3, these two chemical shifts likely 

arise from U37(H3) and G58(H1) resonances. G36 is covalently bonded with U37 and 

forms a cross-strand with G58 (Figure 3.6A). In addition, the chemical shift of G36(H1) 

also has cross-peaks with both U37(H3) and G58(H1). Thus, these connections provide 

an unambiguous starting point for assignment of the P3 stem. U60(H3) with a chemical 

shift of 13.3 ppm was assigned through the cross-peak connecting it to G36(H1). The 

chemical shift of U62(H3) was assigned based on its connectivity with G32 on the 

NOESY spectra of P1P2 and P1P2ΔL2 (Figure 3.7) and the kl-TSS (Figure 3.8). The 

 

Figure 3.6. Imino assignment in P3  

A.  Secondary structure of P3. Nucleotides are color-coded corresponding to their assigned resonances on 

the 2-D 1H-15N HSQC spectrum (B) and 2-D NOESY spectrum (C).  B, C.  Strips of the 2-D 1H -15N HSQC 

spectrum of 15N-labeled P3.  D. 2-D NOESY spectrum. The number of assigned nucleotides in B, C and D 

are indicated. 
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Figure 3.7. Assignment of imino chemical shifts for P1P2 and P1P2ΔL2  

A, B. Secondary structures of P1P2 and P1P2ΔL2, respectively. Nucleotides are color-coded corresponding 

to their assigned resonances on the 2-D 1H-15N HSQC spectrum (C, D) and 2-D NOESY spectrum of P1P2 

and P1P2ΔL2 (E, F).  C, D. Chemical-shift strips of the 2-D 1H-15N HSQC spectrum of 15N-labeled P1P2. 

E, F. 2-D NOESY spectra of P1P2 and P1P2ΔL2. Cross-peaks are connected using color-coded solid lines.  

Number of the assigned nucleotides is indicated. G20 imino resonance (red) was only observed in the 

spectrum of P1P2 (E) while G16 imino resonance (blue) was only observed in the spectrum of P1P2ΔL2 

(F), allowing assignment of chemical shifts of G20(H1) and G16(H1) respectively. 

  

chemical shift of U62(H3) has a strong cross-peak with U34(H3), allowing assignment of 

the chemical shift of U34(H3) resonance.   

 Assignment of the apical stem of P3 began with the G52 imino peak, which had 
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cross-peaks to the chemical shifts of both G51(H1) and G53(H1). The cross-peak 

resonance between G53(H1) and U42(H3) in the NOESY spectrum of the kl-TSS (Figure 

3.8C) allowed for the confident assignment of the chemical shift of G53 on the apical P3 

stem. The partial assignment of P3 is presented in Figure 3.6. The assigned chemical 

shifts for P3 were then used to assign the chemical shifts on the spectrum of the kl-TSS. 

Assignments from P1P2ΔL2, in which the 8-nt L2 loop of P1P2 was replaced 

with a stable UUCG tetraloop, assisted with the imino chemical shift assignment for 

P1P2 (Figure 3.7A). Similar patterns for the imino cross- and diagonal- peaks of P1P2 

and P1P2ΔL2 were observed (Figure 3.7E, F), suggesting that these two RNAs possessed 

similar pattern of hydrogen-bonding. Interestingly, under similar 2-D NOESY 

experimental conditions, P1P2ΔL2 produced more cross-peaks with higher signal 

intensity for the imino protons than those in the NOESY spectrum of P1P2 (Figure 3.7F).  

These results suggest that the 8-nt L2 loop of the P2 stem might destabilize hydrogen 

bonds in the stems of P1P2. As such, the cross peaks between the chemical shifts of 

U28(H3) and G14(H1), and G16(H1) and G15(H1) were only observed in the spectrum 

of P1P2ΔL2 since the L2 loop was replaced with a UUCG tetraloop (Figure 3.7F). Thus, 

chemical shift assignment of the P2 stem begins with U28(H3) and G16(H1). The cross-

peak connections of U28(H3) and G16(H1) with G14(H1) and G15(H1) respectively, 

allowed for assignment of 4 out 5 bp of the P2 hairpin (Figure 3.7C, D and F).   

High exposure to solvent eliminates the imino signal from the base pair at the 

termini of an RNA helix. By applying this rule, assignment of the chemical shift of the 

imino protons of the upper P1 stem initiates with U68(H3) and connects with G5(H1) and 

G6(H1) on the P1P2 spectrum (Figure 3.7E). The remainder of the P1 stem was assigned 



94 

 

using the NOESY spectrum of P1P2ΔL2 in which the cross peak signal from U68 to G69 

is much stronger than the one in the NOESY spectrum of P1P2. A weak cross-peak 

connecting G69(H1) with G2(H1) allowed for assignment of the chemical shift of 

G2(H1).  G20(H1) was assigned as its chemical shift only appeared in the spectra of the 

kl-TSS and P1P2 fragment, where the loop of the P2 hairpin is present.   

 

Figure 3.8. Assignment of the imino spectrum for the kl-TSS  

A.  Secondary structure of the kl-TSS.  Nucleotides were labeled corresponding to their assigned imino 

proton.  B. 2-D 1H- 15N HSQC of the kl-TSS.  C. NOESY spectrum of the kl-TSS. The cross-peaks are 

linked using color-coded solid lines corresponding to specific stem. The assigned peaks are indicated.  P1 

basal stem: purple, P1 upper stem: orange; P2 stem: blue, P1 stem: green.   

 

The chemical shift assignment for the spectra of P3, P1P2 and P1P2ΔL2 were 

combined to assign the imino resonance of the kl-TSS (Figure 3.8). Based on the 

chemical shift assignment of the imino peaks for the kl-TSS, P3 stem residues are not 
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perturbed by the presence of 5H2, confirming that these residues are not involved in 

interaction with 5H2 (Figure 3.4C). Conversely, the G15(H1) and G20(H1) peaks 

disappeared while the G14(H1) peak was slightly perturbed, indicating that the P2 loop 

residues are responsible for the interaction with 5H2 (Figure 3.4C). In addition, in the 

presence of the 5H2, three new G imino peaks were observed on the spectrum of the kl-

TSS. One of the chemical shift might be the product from formation of a new base-pair 

and the other two may be the shifted signals from G15(H1) and G20(H1). No new 

chemical shift of U17(H3) was observed, ruling out the possibility of the U17(H3) imino 

being involved in the interaction. These results confirmed formation of the hydrogen 

bonds between 5H2 and the kl-TSS, and that the G residues of the P2 hairpin play 

important roles in these interactions. 

 

3.3.6. Initial global structural analysis of the wt kl-TSS  

 Small angle X-ray scattering (SAXS) data was collected to investigate the global 

structure of the kl-TSS. The scattering signals of the kl-TSS were collected using three 

different RNA concentrations (SAXS data was collected by Dr. Lin Xin and Dr. Fang, 

NCI). The signals of these three scattering profiles were zero-extrapolated to obtain an 

average scattering profile that is independent of RNA concentration. The average 

scattering intensity of the kl-TSS was normalized with its I0, allowing comparison 

between different RNA samples. In Figure 3.9B, the averaged scattering profile of the kl-

TSS was plotted as the average scattering intensity, I(q), versus momentum transfer, q. 

The scattering profile of the kl-TSS displayed the typical diffraction feature found in a 

double helix, with the P1 and P2 peaks occurring at a high-q region (Figure 3.9B) (199), 

suggesting that the kl-TSS contains helical regions. However, 
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Figure 3.9. SAXS analysis of the wt and extended kl-TSS 
A. Secondary structure of wt kl-TSS (green). The 8 bp extended version of the kl-TSS (ext_kl-TSS, black) 

was used to locate stems within the SAXS envelope.  B.  Ccattering profiles of the wt kl-TSS (green) and 

ext_kl-TSS (black). Signal intensities were normalized with their I0s. P1 and P2 peaks feature the scattering 

profile of electrons within the major and minor groves of the two helical strands.  C.  Guinier plots (blue) 

for cattering curves of wt kl-TSS and D. ext_ kl-TSS. The Guinier region (between the two red lines) was 

linear-fitted (green dashed line) to obtain Rg.  Errors of the fitting is presented in the green dotted curve at 

the bottom  E.  Kraky plots for the ext_kl-TSS (black) and wt kl-TSS (green).  F. Pair distance distribution 

function plots (PDDFs) of the ext_kl-TSS (black) and wt kl-TSS (green) indicate helical characteristics of 

the two RNAs with major distance population of 20 Å.  The 40-Å peak of the ext_kl-TSS is indicated. 
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the peak intensities of P1 and P2 were much lower than those found in a simple duplex 

(199). This may be due to the presence of non-duplex regions within the structure or 

because of the dynamic conformation of the RNA. The Guiner region for the kl-TSS 

scattering curve is linear, indicating that the RNA is monodispersed and homogeneous in 

solution (Figure 3.9C) (200). Using the Guinier approximation (ln[I(q)]~ ln[I(0)] – 

Rg
2q2/3) within the low range of q values (gRg < 1.3), the obtained radius of gyration (Rg) 

for the kl-TSS was 27.1 Å. In Figure 3.9E, the Kratky plot for the kl-TSS has one 

prominent peak with raised intensity at a higher q range, suggesting that this RNA is 

extended and partially folded (157). The Dmax of the kl-TSS obtained from the pair 

distance distribution plot (PDDF) was 72 Å. In addition, the PDDF plot for the kl-TSS 

revealed that the most populated distance of the kl-TSS was 20 Å (Figure 3.9F), which is 

close to the diameter (25 Å) of an A-form RNA duplex. 

 

3.3.7.  Hairpin assignment and low resolution ab initio modeling  

 To identify the positions of the individual stem-loops within the SAXS envelope 

of the wt kl-TSS RNA, its P1 stem was extended by 8 bp. The extended kl-TSS (ext_kl-

TSS) was expected to have a longer P1 stem, which would allow differentiating between 

the P1 and P2 stems within the SAXS envelope (Figure 3.9A). The signal intensity of the 

scattering profiles for the ext_kl-TSS was normalized using its I0 value. The signal 

intensities of P1 and P2 peaks for the ext_kl-TSS are slightly higher than those of the kl-

TSS (Figure 3.9B). This could be due to the increased number of base-pairs in this 

extended RNA. The Rg of the ext_kl-TSS is 28.7 Å (Figure 3.9D), which is slightly 

longer than the Rg of wt kl-TSS (27.1 Å). The Kraky profile of the ext_kl-TSS exhibits 

two clear peaks whereas there is only one peak for the wt kl-TSS (Figure 3.9E). This 
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Table 3.1. Normalized spatial discrepancy (NSD) of the kl-TSS (A) and the ext_kl-TSS (B) 

The NSD of the 20 conformations of each RNA was quantified using DAMSEL of the ATSAT package 

(REF). Avg: Average; Std: standard deviation. If the NSD value of the model is larger than mean + 2* std., 

the model is discarded.  A value of 0 indicates that the two models are perfectly superimposed and a value 

of 1 indicates that the two models are completely different.   
 

indicates that the mass of the ext_kl-TSS is distributed through a larger area than that of 

the wt kl-TSS. When comparing the PDDFs of the two RNAs (Figure 3.9F), the graphs 

clearly show that the ext_kl-TSS has an additional populated distance (40 Å) that is about 

two-fold greater than the diameter of an A-form helix, indicating that the extended P1 

might stack on one of the other two helices.   

B 

Recommendation NSD Model no. 

Include 0.651 12 

Include 0.657 18 

Include 0.66 3 

Include 0.665 7 

Include 0.666 11 

Include 0.671 19 

Include 0.673 9 

Include 0.674 4 

Include 0.677 10 

Include 0.68 5 

Include 0.681 2 

Include 0.682 17 

Include 0.684 11 

Include 0.685 18 

Include 0.69 8 

Include 0.693 20 

Include 0.693 6 

Include 0.695 16 

Discard 0.74 1 

Discard 0.746 15 

  Avg.  = 0.683 

  Std .  = 0.024 

 

Recommendation NSD Model no. 

Include 0.728 14 

Include 0.732 5 

Include 0.739 9 

Include 0.745 4 

Include 0.75 1 

Include 0.753 8 

Include 0.756 12 

Include 0.756 3 

Include 0.758 2 

Include 0.761 19 

Include 0.764 10 

Include 0.786 17 

Include 0.79 6 

Include 0.793 13 

Include 0.797 20 

Include 0.799 7 

Include 0.799 15 

Include 0.802 18 

Include 0.811 16 

Include 0.824 11 

  Avg.  = 0.772 

  Std.  = 0.028 

 

A 
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 To visualize the 3-D shapes of the ext_ kl-TSS and wt kl-TSS, the PDDF of 

the two RNAs were submitted to the program DAMMIN (201) to reconstruct 3-D models 

in 20 independent runs. The resulting 20 models for each RNA were then pairwise-scored 

using the program DAMSEL (201) to obtain the normalized spatial discrepancy (NSD) 

which is a quantitative measure of similarity between sets of 3-D point ranging from 0-1 

(0 meaning two models superimposed ideally and 1 meaning the two models are 

completely different). The average NSD of ext_kl-TSS and wt kl-TSS were 0.72 and 

0.68, respectively, indicating that there was a moderate convergence of their individual 

models with the overall ensembles of the two RNAs (Table 3.1A, B). The two outliner 

models of the kl-TSS were removed and the remaining models were then averaged with 

the DAMAVER/DAMFILT program to obtain the averaged/filtered envelope of the 

RNA.  By definition, the averaged envelope contains the space of all 20 models while the 

filtered envelope only contains the common space shared by the 20 models. The filtered 

envelope of the wt kl-TSS shows that the kl-TSS has an “N” shape with the thickness part 

of the envelope ranging from 15 Å to 20 Å (Figure 3.10A). The filtered envelope of the 

ext_kl-TSS was obtained using a similar process of data analysis as mentioned above 

(Figure 3.10B). Superimposing the filtered models of the ext_kl-TSS and wt kl-TSS 

offers a suggestion for the position of the individual stem-loops of the RNA. 
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Figure 3.10. Molecular envelopes of the ext_kl-TSS and the wt kl-TSS 

A.  Superimposition of the averaged (grey) and filtered envelops (green) of the wt kl-TSS and 90° side 

view. Side view shows the “N” shape of the wt kl-TSS. Envelopes are presented in surface mode.  B. 

Superimposition of the averaged (dark grey) and filtered envelopes (blue) of the ext_kl-TSS and 90° side 

view.  C. Superposition of the filtered envelopes of the wt kl-TSS (green) and the ext_kl-TSS (blue). The 

two envelopes were aligned using the sumpcom program of ATSAS. Location of P1, P2 and P3 stem are 

indicated.   
 

 Figure 3.10C shows a protrusion region for the ext_kl-TSS not found in the wt kl-

TSS, while the remaining parts of the two constructs superimposed well, indicating that 

this protrusion region is a part of the P1 stem. Difference in lengths between the P2 and 

P3 stems made it possible to assign the positions for these two hairpins within the 

envelope (Figure 3.10C). These assignment show that the P1 and P2 stem loops are 

positioned in close proximity with one another while the P3 stem loop protrudes away 

from the central hub.  The P2 and P3 stems stretch across the molecule and serve as the 
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two main contributors to the Dmax of the wt kl-TSS. This explains the slightly increased 

Rg of the ext_kl-TSS when its P1 stem loop was extended by 8 bp.   

 

3.3.8. 3-D structural model of the kl-TSS guided by its SAXS scattering profile 

 Conformational ensemble analysis was performed to obtain the 3-D model of the 

kl-TSS. 1650 conformational models of the kl-TSS were generated using MC-Sym and 

MC-Fold (194). The scattering profiles of these 3-D models were back calculated using 

fast X-ray scatting (FoXS) (195). Similarity between the back-calculated scattering 

profiles and experimental scattering profile was scored using the χ value (Materials and 

Methods). Figure 3.11A present the overlay of the best ten back-calculated scattering 

profiles in which their average χ value is 3.46±0.25. The SAXS envelope and these ten 3-

D models of the kl-TSS were aligned using the Sumpcom program (201). Figure 3.10B 

present the overlay of the kl-TSS envelope with the three best-fit models, supporting the 

localization of the hairpins within the kl-TSS. However, when these 3-D models were 

compared with the 3-D structure of Phe-tRNA (Figure 3.11C), which was used to 

superimposed with the computational model of the kl-TSS (77), the new 3-D models of 

the kl-TSS were more extended. Further analysis of the conformational ensembles of the 

kl-TSS using SES (196) indicated that the two state model gave moderate improvement 

in the χ value (analyzed by Andrew Longhini). The lowest χ value obtained from the 

single state model was 2.94 while the χ value for the two state model was 2.57. However, 

the χ value for the three state model did not improve (χ = 2.54). In addition, to further 

confirm the result of the analysis, a bootstrapping technique was applied. In this 

technique, synthetic data sets of experimental and back-calculated scattering data were 

created by randomly drawing out and adding back the original data sets.  The repeated 
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Figure 3.11. Ensemble analysis of 3-D models of the kl-TSS 

A.  Back-calculated scattering profiles of the 3-D models of the kl-TSS (red lines).  The back-calculated 

scattering profiles were obtained from FoXS (webserver) (195).  The black line is the experimental 

scattering profile of the kl-TSS obtained from SAXS.  B. Superimposition of three best fit models of the kl-

TSS in the SAXS envelope. The envelope and 3-D model of the kl-TSS were superimposed using the 

sumpcom program of the ATSAS package (201). The surface envelope is presented in green and the 3-D 

models are in blue with base-pairs in blue lines.  The best fit models have a χ value of 2.9.  C. 

Superimposition of Phe-tRNA (organge) and the SAXS envelope of the kl-TSS.  D. Superimposition of the 

two state models within the SAXS envelope of the kl-TSS.   E.  Two conformation states of the kl-TSS.  % 

populated values are shown.   

 

process was performed until the synthetic data sets had similar total data point as the 

original data sets. Interestingly, after multiple rounds of testing, the same two initial 

models were obtained (Figure 3.11D, E). Thus, it is likely that the kl-TSS has two 

conformational states which are presented in Figure 3.11 D, E. Of these two kl-TSS 

conformations, one is represented by 77 percent of the population while the other 

Χ = 3.46 ± 0.25 
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conformation is represented by 23 percent of the population (Figure 3.11 E). 

Interestingly, when comparing the two state models with the previously predicted model 

of the kl-TSS, the previously predicted model of the kl-TSS has similar topology with the 

low populated state conformation while the major conformation has a significantly 

different topology. 

 

3.4. Discussion 

 The discovery of 3'CITEs in plant viruses has increased the diversity of 

translation mechanisms. Different from IRESs, these robust 3'CITEs can enhance 

translation of viral proteins when canonical translation is not shut off. Many new 3' 

CITEs have been recently discovered and are currently divided into 7 classes based on 

their secondary structure (5). However, the limited knowledge of 3-D structures for 3´ 

CITEs has limited our understanding of the mechanisms of these translational elements. 

Therefore, in this Chapter, I have reported the structural characterization of the kl-TSS, 

representative 3' CITE of PEMV using SAXS and NMR.   

 From my study, the structure of the kl-TSS, unlike the TCV TSS, is independent 

of the adjacent 5' and 3' sequences. Removal of these adjacent nucleotides from the core 

kl-TSS sequence did not affect base-pairing of the kl-TSS (Figure 3.3D). The number of 

imino resonance peaks in the 2-D imino HSQC spectrum of the kl-TSS is representative 

of the number of formed hydrogen bonds within the structure (Figure 3.3D). The 

detection of NH···N cross peaks between A(N1) and U(N3/H3) and G(N1/H1) and 

C(N3) in 2D HNN COSY spectrum of the 81-nt kl_TSS (Figure 3.3C) directly showed 

covalent bond features of the hydrogen bonds within this RNA. The number of imino 

resonance peaks in the 2-D imino NMR spectrum of the kl-TSS (Figure 3.3) is close to 
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the number of the base-pairs predicted by Mfold (77, 95), indicating that the two 

structures have the same base-pair pattern.   

 Due to signal overlaps (Figure 3.3), resonances of the imino protons in the full-

length kl-TSS were assigned by using the “divide and conquer” approach. All of the 

imino resonances were observed in the spectrum of the 15N-labeled kl-TSS fragments 

without any significant chemical shift changes, solving the resonance overlap problem 

and improving the confidence in assignment of the imino protons in the full-length kl-

TSS (Figure 3.5-3.8). Probable resonance assignment in the lower stem of the P3 

fragment was initiated with a key resonance signature of G58:U37 wobble base-pair 

(Figure 3.6), in which both bases had cross-peaks with the imino proton of G36. The 

terminal G32 imino proton in the P3 fragment was highly susceptible to the solvent and 

thus was only assigned within the spectra of the P1P2 and P1P2ΔL2 fragments due to 

appearance of its cross peak with U62(H3) (Figure 3.7E, F). Resonance assignment for 

the imino protons in the P1 and P2 stems resulted from the replacement of the L2 loop in 

P1P2ΔL2 with the stable tetra loop UUCG. The cross- and diagonal-peaks of the imino 

protons in this fragment had much higher signal intensity and were well-resolved as 

compared with those in the P1P2 fragment (Figure 3.7E, F), allowing the assignment all 

of its observed imino protons (Figure 3.7D). The appearance of resonance for G20(H1) in 

the imino spectrum of the P1P2 fragment but not in the spectrum of the P1P2ΔL2 

indicated that G20 likely forms a hydrogen bond with  one of the C nucleotides within the 

L2 loop (Figure 3.7B). The assignment of the observable imino protons in the full-length 

kl-TSS was completed by combining the imino proton assignments for P3, P1P2 and 

P1P2ΔL2 fragments (Figure 3.8D). In the spectrum of the full-length kl-TSS, 13 out of 
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15 imino resonances for G nucleotides and all imino resonances for U nucleotides were 

assigned (Figure 3.8).  

 Previous studies have shown that interaction between the kl-TSS and the 5' 89-nt 

fragment is important for efficient translation (51, 77). This interaction was determined to 

only require 5H2 through retarded mobility of 32P-labeled kl-TSS with associated 

truncated fragments of 5H2 using EMSA (Figure 3.4). The hydrogen bonds between 5H2 

and the kl-TSS were further confirmed by the presence of a new G imino resonance peak 

and a few shifted imino peaks for the P2 stem in the imino spectrum of the kl-TSS 

(Figure 3.4C).  The un-disturbed resonances of the imino protons in the the P1 and P3 

stems in the presence of 5H2 (Figure 3.4 and 3.8) provide strong evidence that these two 

stems are not involved the interaction, which is consistent with the previous study (77). 

 The bootstrapping technique was used for the first time to analyze and score 

the number of 3-D models of the kl-TSS that can be fitted within the SAXS molecular 

envelop. Interestingly, after multiple rounds of testing, the same two initial models were 

obtained, increasing the confidence for this model fitting. Based on the fitting results, the 

kl-TSS is proposed to have two conformational states when using its SAXS scattering 

profile to analyze the conformational ensembles of the kl-TSS (Figure 3.11). The low- 

populated conformation of the kl-TSS has similar topology with the previously predicted 

structure for the kl-TSS. However, the P3 stem of the low-populated conformation is 

slightly longer than the one in the previously predicted structure (Figure 3.11). The 

highly-populated conformation of the kl-TSS differs from the tRNA-shaped structure of 

the TCV TSS.  This result supports the previous observation that the kl-TSS binds 

ribosomes with a slightly higher Kd (77) and at a different site than the P-site like in the 
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TCV TSS (51). However, the remaining question of why the kl-TSS adopts two 

conformations and which of these two conformations preferentially binds ribosomes will 

require further investigation.  
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Chapter 4: In vivo, site-specific labeling of homogeneous, recombinant 

RNA in wt and mutant E. coli for NMR structural studies 

4.1. Introduction 

 Among the various biophysical tools developed to solve RNA structures, such as 

high resolution X-ray crystallography and low resolution small-angle X-ray scattering 

(SAXS), only nuclear magnetic resonance (NMR) spectroscopy can probe sparsely 

(<5%) and highly (>90%) populated RNA structures in solution at atomic resolution 

(202-209). In chapter 3, I have presented the characterization of structure of the PEMV 

kl-TSS using NMR. However, to solve large RNA structures effectively using NMR, at 

least two inherent limitations of NMR must be circumvented: signal overlap and rapid 

signal decay. For example, extremely poor chemical shift dispersion of the ribose atoms 

and the large 13C-13C multiplets that arise from uniformly enriched 13C/15N-labeled RNAs 

decrease the overall sensitivity and resolution of NMR experiments (150). 

Four approaches have been proposed previously to address these limitations: total 

solid-phase chemical synthesis of RNA, and de novo, biomass, or selective-biomass 

biosynthesis of NTPs (152, 210-223). Other than total chemical synthesis, which is 

limited to the production of ≤ 40-nt RNAs, these other methods require in vitro T7 

bacteriophage polymerase-based transcription that is subject to addition of nontemplated 

nucleotides at the 5′- and 3′-termini of the transcribed RNA (224, 225).  

An alternative, cost-effective approach is to insert the RNA of interest in the 

anticodon loop of a tRNA-scaffold, express the chimeric construct in E.coli and then 

cleave off the recombinant RNA after purification (226-228). Due to its location within 

the tRNA scaffold, the RNA of interest is protected from degradation by cellular 

nucleases. Alternative approaches applied to limit the degradation of the recombinant 
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RNA include replacement of the tRNA-scaffold with the 5S ribosomal RNA (rRNA) 

(229) or an induced T7 RNA promoter with a constitutive lipoprotein promoter (230). 

After purification from E.coli, the RNA of interest is cleaved from the chosen scaffold 

using RNAse H, hammerhead ribozymes, or RNA-cleaving deoxyribozymes 

(DNAzymes). However, these methods have thus far only been used to synthesize 

unlabeled and 15N and/or 13C uniformly labeled RNAs (228, 230). 

  In this report, I combine the tRNA-scaffold approach with wt and mutant E.coli 

strains whose metabolic pathways have been modified to produce various site-specific 

labeling patterns of rNTPs when grown in specifically labeled carbon sources (211, 214). 

This combined approach allows for the rapid and uniform labeling of RNAs with 15N 

isotopes and site-specific labeling with 13C isotopes. Using wt K-12 E. coli grown in [1-

13C]-acetate, synthesized RNAs are specifically labeled with 13C isotopes at the C2 and 

C4 carbons of the pyrimidine nucleobases, at the C4 and C6 carbons of the purine 

nucleobases and at the C3′ ribose carbon atoms (211). When using mutant transketolase 

E.coli strain (tktA), which does not produce the pentose phosphate shunt enzyme 

transketolase, growth in [1-13C]-glucose generates RNAs labeled with 13C isotopes at the 

C5 and C6 carbons of the pyrimidine  nucleobases, the C2 and C8 carbons of the purine 

nucleobases and the C1′ and C5′ ribose carbons (214, 231, 232).  

  I demonstrate the general applicability of this method by successfully expressing 

and site-specifically labeling four RNAs with different complexities and sizes ranging 

from 48 nt to 118 nt (Figure 4.1), using 2-D HSQC and 3-D HNCO (146). I also present 

the first example of an NMR experiment that correlates the imino proton with carbonyl 

carbon atoms in large RNAs (50nt) to provide local structural information about the 
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nucleobases in the SAM-II riboswitch aptamer. Compared to uniform labeling, our site-

selective labeling approach provides clear advantages of improved resolution and 

sensitivity. 

 

Figure 4.1. Sequence and predicted structures of the recombinant tRNA-scaffolds 

A. The construct for the human tRNAlys-scaffold, which includes the Sephadex aptamer (green) for affinity 

purification and restriction sites necessary for subcloning RNAs of interest. The following four 

recombinant RNAs were expressed to demonstrate the utility of our labelling method in RNAs of varying 

lengths: B. the B. anthracis fluoride-binding riboswitch aptamer (tRNA/Fluo);  C. S-adenosylmethionine 

(SAM)-II riboswitch (tRNA/SAM);  D. the PEMV tRNA/kl-TSS; and  E. the TCV tRNA/TSS.  Inserted 

RNAs are highlighted in red. 

 

 

4.2. Materials and Methods 

4.2.1. Vector construction 

Vectors were constructed as previously described (228). The plasmid 

pBSKrnaSeph containing a sephadex aptamer at the anticodon stem of human lysine 

lysine tRNA (tRNAlys) was kindly provided by Dr. Frédéric Dardel. The sequences of 

computationally-predicted Bacillus anthracis fluoride-binding riboswitch aptamer (Fluo) 

(48 nt) (233, 234), the S-adenosylmethionine (SAM) metabolite binding (SAM-II) 
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riboswitch aptamer (54 nt) from the Sargasso Sea metagenome (117), the PEMV kl-TSS 

(81 nt) (51, 77) and the TSS (118 nt) (74, 76) were subcloned into the plasmid at Aat II 

and Sal I sites (Figure 4.1). The recombinant plasmids were confirmed by sequencing. 

Pilot expression of each vector was carried out using RNA minipreps as previously 

described (228). 

 

4.2.2. Bacterial strains 

The wild type E. coli strain K-12 NCM 3722 (CGSC #4401:F+) from the Coli 

Genetic Stock Center (CGSC)  was used for cloning, optimization, and site-specific 

labeling of RNAs. The mutant E. coli strain tktA (CGSC # 11606, F-Δ(araD-araB)567, Δ 

lacZ4787(::rrnB-3), λ-,ΔtktA783::kan, rph-1,Δ(rhaD-rhaB)568, hsdR514) was also used 

for site-specifically labeling of RNAs (214, 235). These bacterial strains were made 

chemically competent using CaCl2. 

 

4.2.3. E.coli growth media 

Media used in this project were Luria-Bertani-Miller (LB), 2x TY, Studier 

phosphate buffer (SPG), and LeMaster-Richards (LMR) media. These were prepared as 

described previously (215, 228, 236-238). To obtain 15N labeled RNAs, media was 

supplemented with 25 mM (15NH4)2SO4 and 0.4 % weight/volume (w/v) glucose. To 

obtain 13C site-specifically labeled RNAs, media was supplemented with 0.3 % (w/v) 

sodium [1-13C]-acetate for K-12 (211) or with 0.2 % (w/v) [1-13C]-glucose for tktA (214). 

Cultures were also supplemented with 100 µg/ml amp and minimal media were 

supplemented with 0.25x BME vitamins 100x solution (Sigma). Media for growing tktA 

was also supplemented with 25 µg/ml shikimic acid and 30 µg/ml kanamycin (214). 
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4.2.4. Buffer selection for minimal media with a limited carbon source 

The recombinant tRNA/Fluo construct was used to test the growth rate and the 

tRNA-scaffold expression of K-12 grown in two commonly used minimal media buffers, 

SPG-amp and LMR-amp, supplemented with 0.2 % (w/v) glucose. A single E.coli colony 

was used to inoculate 10 ml of LB-amp and incubated at 37°C and 300 RPM until the cell 

density measured by the absorbance at 600 nm (OD600) reached approximately 0.5 (215). 

Cells were pelleted by centrifugation, resuspended, and used to inoculate 100 ml of SPG-

amp medium supplemented with 0.4 % (w/v) glucose. At an OD600 of 0.5, cells were 

pelleted, resuspended, divided into equal portions, and used to inoculate 1 L of SGP-amp 

and 1 L of LMR-amp media supplemented with 0.2 % (w/v) glucose. To monitor growth, 

the OD600 of each culture was measured hourly, and cells from 10 ml of culture were 

pelleted hourly. To analyze recombinant tRNA-scaffold expression on denaturing PAGE, 

each pellet was resuspended in 500 µl of 10 mM Tris-HCl (pH 7.4) and 10 mM MgCl2 

(lysis buffer). Total cellular RNA was extracted by addition of an equal volume of acid 

phenol:chloroform (pH 4.5) (Life Technologies) with agitation at 4°C. Expression of the 

recombinant tRNA-scaffold in each sample was analyzed on 10 % (w/v) denaturing 

PAGE. The data were collected in triplicate. 

 

4.2.5. RNA production in E.coli 

I adapted a previously described double selection process (239) and large-scale 

growth protocol (214, 215, 228) to optimize the expression of the recombinant tRNA-

scaffold. 
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Double selection process 

Transformed mutant E. coli cells were plated on SPG-amp agar containing the 

desired carbon source for optimization. These plates were incubated at 37°C until 

colonies became visible. Five colonies were randomly selected and grown in 1 ml of LB-

amp. After 3 h, cells were pelleted, resuspended, and transferred to 10 ml of SPG-amp 

supplemented with the desired carbon source. The recombinant tRNA-scaffold is 

expressed during the log phase of E. coli growth (240), so 10 µl of each culture was 

spread on a new SPG-amp agar plate when they reached an OD600 of 0.5, again 

supplemented with the desired carbon source and incubated at 37°C. At an OD600 of 1.0, 

the total RNA of each culture was extracted using the lysis buffer and acid 

phenol:chloroform as described previously. The expression levels of the recombinant 

tRNA-scaffold of each colony were compared using analytical denaturing PAGE. The 

selection process was repeated using five progeny colonies originating from the plate of 

the colony with best expression of the recombinant tRNA-scaffold. In addition, at an 

OD600 of 0.5, 500 µl of each culture was added to 500 µl of 30 % volume/volume (v/v) 

glycerol and stored at -80°C as a glycerol stock.  

Large-scale growth and recombinant tRNA-scaffold expression 

Five microliters of the double selected colony glycerol stock was used to 

inoculate 10 ml of LB-amp medium, and this culture was incubated at 37°C, 300 RPM 

until the OD600 reached approximately 0.5 (~ 4 h). Cells from this culture were pelleted, 

resuspended, and used to inoculate 100 ml of SPG-amp supplemented with 0.4 % (w/v) 

unlabeled glucose to quickly enrich cell density in a shorter period of time. The initial 

OD600 of the100-ml culture was 0.05 to achieve a consistent growth rate (215). 

Depending on the E. coli strain, cells took 4-8 h to reach an OD600 of 0.5. Cells were then 
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pelleted and resuspended in 1 L of SPG-amp supplemented with the appropriate 

isotopically labeled carbon source. Cells were grown until the maximum OD600 was 

reached (12-18 h). When cultivating K-12 in acetate, cells were grown in separate 500 ml 

batch cultures in 4-L flasks to maintain a sufficient aeration rate (239, 241). Cultures 

were pelleted and resuspended in 2.5 ml lysis buffer/g of pellet to allow for sufficient 

suspension of cells. Total cellular RNA was partitioned from chromosomal DNA and 

proteins using an equal volume of acid phenol:chloroform (pH 4.5). Total RNA in the 

aqueous phase was precipitated using 0.1 volumes 5 M NaCl and 3 volumes 100 % 

ethanol. The RNA was pelleted using high-speed centrifugation, air-dried, and dissolved 

in distilled water. The RNA solution was further centrifuged at high speeds to remove 

any remaining fine protein debris. The supernatant, containing total cellular RNA, was 

then purified by anion-exchange or affinity chromatography 

 

4.2.6. RNA purification using anion-exchange chromatography and affinity-size 

exclusion chromatography 

The anion-exchange method was modeled after the protocol developed by Nelissen 

et. al. (230) with several modifications to optimize the purification of the recombinant 

tRNA-scaffold with less contamination from smaller cellular RNAs. After equilibration 

with purification buffer (40 mM potassium phosphate buffer, pH 7), the in-house pre-

packed 50-ml Source 15Q anion exchange column was loaded with the total cellular 

RNA from the 1 L culture using a 50-ml superloop (GE Healthcare). RNAs with different 

charge densities were separated using a segmented and linear gradient from 0.44 M to 

1M NaCl in purification buffer. The extended washing step consisted of 5 CV of 0.44 M 

NaCl in purification buffer followed by 5 CV of a gradient from 0.44 M to 0.52 M NaCl 
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in purification buffer allowed for the removal of smaller cellular RNAs. The recombinant 

tRNA-scaffold was then eluted with 5 CV of 0.52 M NaCl in purification buffer. rRNAs 

were removed from the column with 2 CV of a linear gradient from 0.52 M to 1M NaCl 

followed by 2 CV of 1 M NaCl in purification buffer (Figure 4.6). Fractions containing 

the purified recombinant tRNA-scaffold were confirmed by 10 % (w/v) denaturing 

PAGE. Positive fractions were combined using a 3 KDa molecular weight cutoff 

(MWCO) spin column (Millipore). The RNA was then solvent-exchanged into distilled 

water or appropriate buffer for either cleavage with DNAzymes or NMR experiments. 

Due to its capability of  binding to the sephadex tag in the tRNA-scaffold, the size 

exclusion HiLoad 26/600 Superdex 75 pg column (GE healthcare) was utilized for an 

automated affinity purification to replace manual purification using Sephadex G-100/G-

200 beads (226, 230). Total cellular RNA from 1 L of culture was loaded onto the 

Superdex column. The unbound RNA was removed with 1.5 CV purification buffer 

containing 100 mM NaCl. The recombinant tRNA-scaffold was eluted with purification 

buffer containing 4 M urea. Fractions containing the recombinant tRNA-scaffold were 

combined and solvent-exchanged as described above (Figure 4.7). 

 

4.2.7. 8-17 DNAzyme cleavage 

Two 8-17 DNAzymes were designed to excise each inserted RNA of interest from 

the recombinant tRNA-scaffold (242). 8-17 DNAzymes contain a catalytic core sequence 

that cleaves the RNA substrate at a dinucleotide, flanked by 12-nt “handle” sequences on 

either side that anneal to the RNA substrate. Optimal DNAzyme core sequences were 

selected according to Schlosser et al., 2008 (60). The two core sequences of the 

DNAzymes used were 5ʹ-TGTCAGCGACTCGAA-3ʹ and 5ʹ-GATAGCATTCCCGAG-3ʹ 



115 

 

to cleave the dinucleotide sites 5ʹ-GG-3ʹ and 5ʹ-GA-3ʹ, respectively. List of DNAzymes 

used to cleave the recombinant tRNA scaffolds were listed in Table 4.1 

 

Table 4.1. Sequence of DNAzymes  

The core sequences of each DNAzyme indicated with the bold, underlined letters were flanked with two 

substrate-recognition domains at the 5ʼ and 3ʼ ends 

 

The recombinant tRNA-scaffold was combined with the appropriate DNAzymes 

at ratios of 1:2:2 to 1:4:4 recombinant tRNA-scaffold:5ʹ-DNAzyme:3ʹ-DNAzyme 

depending on the inserted RNA of interest. An additional 18-mer oligonucleotide (5ʹ-

GCCCGAACAGGGACTTGAA-3ʹ), complementary to the 3ʹ side of the tRNA acceptor 

stem and T arm of the tRNA-scaffold, was added to the reaction in a ratio of 1:2 

(recombinant tRNA-scaffold:18-mer oligonucleotide) to assist in annealing of the 

DNAzymes to the recombinant tRNA-scaffold. The mixture was heated at 90°C for 3 

min and immediately snap-cooled on ice for 10 min. An equal volume of 100 mM MOPS 

(pH 7.2), 1 M NaCl, 250 mM KCl, 15 mM MgCl2, 30 mM MnCl2, and 1 mM 

spermidine) was added. Depending on the construct, the reaction was left at room 

temperature for 48 to 60 h and quenched with 80 mM EDTA. The RNA of interest was 

separated from the tRNA-scaffold, DNAzymes, and 18-mer oligonucleotide using 
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preparative denaturing PAGE. The RNAs were eluted from the gel using the Elutrap 

electroelution system (Whatman) and solvent-exchanged as described above. 

 

4.2.8. NMR spectroscopy 

The recombinant tRNA-scaffold samples were diluted with NMR buffer (as 

described in chapter 3) without any further folding step, while the RNAs of interest 

prepared from the recombinant tRNA-scaffold were re-folded using a slow-cool method 

in which RNAs were heated at 75°C for 3 min before the NMR buffer was added, 

followed by incubation at 37°C for 15 min. NMR spectra were collected at either 25°C or 

37°C with either a Bruker Avance 600 or 800 MHz spectrometer equipped with an HCN 

triple resonance cryoprobe.  The imino 1H-15N HSQC the tRNA/kl-TSS, the tRNA-

scaffold, and kl-TSS were recorded with 1024 (t2) x 256 (t1) points using spectral width 

of 17 kHz (1H) and 29 kHz (15N). The 1H-13C HSQC of the kl-TSS RNA synthesized by 

tktA were recorded at 1024 (t2) x 128 (t1) points using a spectral width of 6 kHz (1H) and 

3.8 kHz (13C) at the base C8 region and 8 kHz (1H) and 1.8 kHz (13C) for the ribose 

C5´region. The 2D 15N-edited HNCO was collected with 2048 (t3) x 48 (t2) points with a 

spectral width of 12 kHz (1H) by 1.8 kHz (15N). The 2D 13C-edited HNCO was collected 

with 2048 (t3) x 80 (t1) points with a spectral width of 12 kHz (1H) by 2.7 kHz (13C). All 

NMR data were processed using TOPSPIN 3.2 and NMRview (81). 

 

4.3. Results 

4.3.1. Pilot expression of the recombinant tRNA scaffolds in wt E. coli 

 NMR requires large quantities of RNA, and thus there is a need for protocols to 

synthesize RNA cost-effectively and efficiently. Previous work by Ponchon and Dardel 
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(2007) established that RNAs can be rapidly expressed in vivo and then purified to 

homogeneity (226). To obtain milligram quantities of homogeneous, uniform 15N-labeled 

and site-specifically 13C-labeled recombinant RNAs, previous schemes for recombinant 

RNA expression and purification were modified by incorporating the biomass production 

of site-specifically labeled rNTPs using wt and mutant E.coli strains. These highly and 

site-specifically labeled RNAs were obtained through selection of the appropriate growth 

media, application of a double selection process to select the best colony expressing the 

RNA, extension of a previously published anion-exchange purification method, and the 

optimization of 8-17 DNAzyme cleavage (Figure 4.2). 

 

Figure 4.2. General scheme for the expression and purification of the recombinant tRNA-scaffold in 

wild type and mutant E. coli strains. 

A. Wildtype K12 and mutant tktA E. coli strains containing the tRNA scaffold plasmid and grown in 13C 

(pink squares) and 15N (yellow circles) labeled metabolites.  B. The anticodon loop of tRNAlys-scaffold was 

replaced with the RNA of interest using Sal I and Aat II sites. The chimeric RNA transcript was under the 

control of the lipoprotein promoter (lpp) and terminated with a ribosomal RNA operon transcription 

terminator (rrnC). The sephadex tag was included for affinity purification.  C. Incorporation of NMR-

active isotopes into the recombinant tRNA-scaffold: E coli grown in minimal media supplemented with 
15N-ammonium sulfate and/or [13C-1]-glucose or [13C-1]-acetate. 13C isotopes are denoted with purple 

squares and 15N isotopes are denoted with yellow circles. This labeled chimeric tRNA-scaffold was then 

purified by anion exchange or affinity chromatography.  D. The inserted RNA was excised from the tRNA-

scaffold using two 8-17 DNAzymes.  E. Purification of RNA of interest using denature PAGE.  F. The 

final RNA product was utilized for structural and dynamic experiments using NMR spectroscopy. 
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To demonstrate the feasibility of such a method, four RNAs of various sizes, 

structural complexities, biological functions, and origins were generated (Figure 4.1). 

These include a 48-nt Bacillus anthracis fluoride-binding riboswitch aptamer (Fluo) 

(233, 234), a 54-nt S-adenosylmethionine (SAM) metabolite binding (SAM-II) 

riboswitch aptamer from the Sargasso Sea metagenome (117), an 81-nt PEMV kl-TSS, 

which is a 3ʼ-UTR ribosome-binding cap-independent translation enhancer (51, 77)  and 

a 118-nt TCV TSS, which is a similar ribosome-binding translation enhancer (74, 76). 

The RNAs were sub-cloned into the tRNA-scaffold plasmid (pBSKrnaSeph), which has a 

constitutive lipoprotein (lpp) promoter, causing the recombinant tRNA-scaffolds to be 

continuously expressed in wild type and mutant E.coli (226-228). Unlike the earlier 

approach, in which whole mixtures of transformed bacteria were used (228), a single wt 

K-12 colony containing each construct was initially used to inoculate 10 ml 2x TY 

cultures. The total extracted cellular RNA of each construct was analyzed using 

denaturing PAGE. All four constructs were efficiently expressed in rich media with the 

expected length (as indicated by arrows) (Figure 4.3).  

 

Figure 4.3. Expression of different recombinant tRNA-scaffolds in K12 grown in 2x TY rich media  

The length of the tRNA scaffold is 106-nt. The tRNA/Fluo is 151-nt and Fluo RNA is 48-nt. The 

tRNA/SAM II is 154-nt and the SAM II is 52-nt. The tRNA/kl-TSS is 184-nt and kl-TSS is 81-nt. The 

tRNA/TSS is 221-nt and the TSS RNA is 118-nt. Expressed recombinant tRNA-scaffold were indicated 

with arrows. 
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4.3.2. Buffer selection for minimal media with a limited carbon source 

In agreement with a previous study that reported variability in the growth rate and 

total RNA transcription of E.coli when grown in different minimal media (215), several 

constructs were initially poorly expressed in minimal media. To overcome these 

problems, conditions were explored that affected the growth rate and expression level of 

recombinant tRNA/Fluo, one of the poorly expressed constructs. In wt K-12 E.coli, this 

RNA was grown in two minimal media SPG-ampicillin (amp) and LMR-amp 

supplemented with 0.2 % (w/v) glucose. K-12 had a 5 h lag phase in both SPG-amp and 

LMR-amp (Figure 4.4A), consistent with a previous report (215). Surprisingly, after the 

lag phase, cells in SPG-amp grew much more rapidly and the culture reached a maximum 

 

Figure 4.4. The growth and the yield of RNA expression of K12 on Studier phosphate (SPG) and Le 

Master (LMR) media 
A. Optical density of E. coli K12 in batch culture in SPG (filled black circle) and LMR (filled gray square) 

media supplemented with 0.2% v/v glucose. The growth of K12 in each media was measured for every 

hour. Due to the fast growth of K12 in SPG, the growth at the end of log phase was measured every 15 min. 

The growth of K12 in each media was done in triplicate.  B and C. Expression of tRNA/Fluo in LMR and 

SPG, respectively. Each fractions were collected at every time point. Total extracted RNA of each fractions 

were loaded on 10 % denaturing PAGE.  
  

A B 

C 
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cell density after 5 h of rapid growth in log phase (Figure 4.4A). Cells in LMR-amp grew 

more slowly with 10 h in log phase and the maximum cell density was two-fold lower 

than the maximum cell density of cells grown in SPG-amp. Additionally, the expression 

of tRNA/Fluo was significantly higher in cells grown in SPG-amp (Figures 4.4B, C). 

Therefore, SPG-amp was chosen as the preferred buffer to make minimal media for all 

subsequent cultures. 

 

4.3.3. Double selection of high-expressing E. coli clones 

Several attempts to grow E.coli in SPG-amp produced low and inconsistent yields 

of the recombinant tRNA-scaffold. For example, the yield of tRNA/kl-TSS from 

randomly selected K-12 colonies grown in SPG-amp supplemented with 0.4 % (w/v) 

glucose varied from 18 mg/L to 26 mg/L. To minimize this variability and obtain a 

consistent yield of the recombinant tRNA-scaffold, a double selection process was 

adapted that had previously been used to obtain high yields and stable expression of 

recombinant proteins (239). In the first round of selection, five colonies were randomly 

 

Figure 4.5. Double colony selection of K12 expressing tRNA/kl-TSS, grown in 0.4% glucose and D
2
O 

A. First round selection (F): five colonies were inoculated into 10 ml of media supplemented with 0.4% 

glucose and D
2
O. Expression of tRNA/kl-TSS are shown using 10% denaturing PAGE. Colony 4  (bold) 

with best expression of tRNA/kl-TSS was spread on the second agar plates for second round selection.  B. 

Second round selection (S): five progeny colonies of colony 4 (4F) were inoculated into target media. 

Colony 5 (bold) was selected to create the glycerol stock.  C. Progeny bacteria of glycerol stock of colony 5 

(5S) was grown in different volumes and expression of tRNA/kl-TSS of each volume were compared. 
 

A B C 
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selected from the transformed E.coli initially grown on SPG-agar plates and subsequently 

inoculated into small-scale batch cultures supplemented with the target carbon source. 

The colony which expressed the highest RNA yield was spread on the second SPG-agar 

plate. In the second round of selection, the best-expressing progeny colony derived from 

the colony selected in the first round was used to make glycerol stocks. As expected, the 

first round of selection resulted in variable recombinant tRNA/kl-TSS expression in 

different colonies (Figure 4.5A). Using the 5S rRNA accumulating in each colony as an 

internal standard, colony 4 was selected as the best-expressing colony in the first 

selection round (Figure 4.5A) and generated stable and consistent expression of progeny 

colonies in the second round of selection (Figure 4.5B). Progeny colony 5 which 

expressed slightly higher yield than other colonies in the second round of selection was 

used to make the glycerol stock to inoculate future batch cultures. When used to inoculate 

higher volume cultures, bacteria of this glycerol stock produced stable RNA expression 

(Figure 4.5C).  

 

4.3.4. Large-scale production of the recombinant tRNA-scaffold in wt K-12 and 

mutant E. coli strains 

A judicious choice of cell strain, carbon source, and optimized production 

conditions enabled the production of RNAs with the desired labeling pattern of interest 

and in high yield.  E.coli strains were chosen for their ability to synthesize RNA with 

site-specific labeling patterns useful for providing NMR structural assignments and base-

pairing information. For example, K-12 grown in [1-13C]-acetate as the only carbon 

source creates 13C site-specifically labeled rNTPs at the carbonyl position of each base. 

These carbonyl carbon chemical shifts provide valuable base-pairing information (146), 
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which helps to resolve overlap in the imino region in a 3D experiment. In addition, when 

grown in [1-13C]-glucose, the tktA strain, whose metabolic flux is redirected mainly 

through the oxidative pentose phosphate pathway, is capable of site-specifically labeling 

the bases at the C2 (~75%) and C8 (44%) carbons of purines, and C5 (43%) and C6 

(28%) carbons of pyrimidines (214), which are important atomic sites in structural 

assignments and dynamics experiments of RNA molecules (151). For these reasons, K-12 

and tktA were chosen to produce uniformly 15N labeled and site-specifically 13C labeled 

RNAs. To create useful labeling patterns, the K-12 and tktA strains were grown in SPG-

amp supplemented with 15N2-ammonium sulfate in combination with [1-13C]-acetate or 

[1-13C]-glucose, respectively, as the sole carbon source. 

To maintain consistent recombinant tRNA-scaffold expression levels, a two-step 

enrichment process was used. First, cells from the doubly selected glycerol stock were 

seeded into 10 ml LB-amp, followed by transfer of these cells into 100 ml SPG-amp 

supplemented with 0.4 % (w/v) glucose. Second, these cells were then transferred into 1 

L of media supplemented with the selected carbon source for final growth. This simple 

procedure greatly improved yields. Since RNA is best expressed in log phase, and to 

minimize degradation that occurs in the stationary phase (240), bacteria in each seed 

culture were transferred when cells were in the log phase (OD600 of 0.5). Maintaining the 

initial OD600 of subsequent growth at 0.05 preserved the growth rate and gave consistent 

expression of the recombinant tRNA-scaffold, as observed in a previous study (215). 

Aeration was also an important factor that contributed to high level expression of the 

recombinant tRNA-scaffold in mutant E.coli grown in minimal media (239, 241). A 

previous study optimizing protein expression in minimal media showed that maintaining 
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the aeration by growing E.coli in multiple small volumes (5 x 50 ml) instead of one large 

volume (250 ml) of batch culture increased cell density significantly (239). In our hands, 

growing 10 ml cultures in 50 ml flasks, 50-100 ml cultures in 250 ml flasks, and 500-

1000 ml cultures in 4 L flasks maintained the growth rate and increased the RNA yield to 

milligram quantities (Table 4.2). The highest expression of tRNA/Fluo was obtained 2 h 

into the stationary phase (Figure 4.4C). Therefore, cells were collected 2 h into the 

stationary phase during large-scale production of the recombinant tRNA-scaffolds. 

Compared to wild type K-12, yields of the recombinant tRNA-scaffolds from 

mutant E. coli were reduced when both E. coli were grown in SPG-amp supplemented 

with 0.2 % (w/v) glucose. However, after double selection and a two-step scale-up 

growth, a yield of 8.6 mg/L was obtained for 13C-labeled tRNA/Fluo in tktA. This value 

was 2-fold greater than that obtained for 15N-labeled tRNA/Fluo in K-12 without colony 

selection. The benefit of double selection was also observed in K-12 colonies grown in 

SPG supplemented with acetate. In the absence of double selection, cells grew poorly and 

expressed little detectable RNA. However, using the double selection strategy, 1.25 mg/L 

tRNA/kl-TSS and 0.7mg/L tRNA/SAM-II were obtained in K-12 grown in [1-13C]-

acetate (Table 4.2), and usable NMR spectra were generated using these RNAs. 

 

E.coli strain 
K12 tktA 

RNA type 2x TY 
15

N-amonium sulfate, 
0.4% glucose 

15
N-amonium 

sulfate,0.3 % 
13

C-1-acetate 

15
N-amonium 

sulfate, 0.2% 
13

C-1-glucose 
tRNA/Fluo  10.6 mg 3.2 mg NA  8.6 mg* 

tRNA/SAM II  5 mg NA 0.7 mg* NA  
tRNA/kl-TSS 38 mg 18-26 mg 1.25 mg* 4.4 mg 

 

Table 4.2. Yield of chimera RNA per liter of culture 

*: represents sample prepared from glycerol stock of with doubly selected colony and two-step growth. 

And without selection, no yield or little yield was obtained. NA: not produced 
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4.3.5. RNA purification 

To improve the purity of the recombinant tRNA-scaffolds, anion exchange 

chromatography (230) was adapted by extending the washing step and including a linear 

low salt concentration gradient. The majority of small cellular RNAs were removed using 

5 column volumes (CV) of 0.44 M NaCl and 5 CV of a linear gradient from 0.44 to 0.52 

M NaCl (Figure 4.6). As a result, the recombinant tRNA-scaffold was well-resolved with 

little to no contamination by cellular RNAs and was eluted in an extended step of 5 CV 

of 0.52 M NaCl. Larger RNAs, such as 23S rRNAs, were removed using a gradient from 

0.52 M to 1 M NaCl. A final step of 2 CV of 1 M NaCl was added to remove any 

contamination before reusing the column. 

 

Figure 4.6. Purification of recombinant 15N-tRNA/kl-TSS using the Source 75 Q anion exchange 

column 

The total cellular RNA was extracted from 1 L of culture and loaded onto the column. The UV absorbance 

was monitored at 260 nm and is shown as a solid, black line. The salt concentration is presented as dashed, 

grey line. By using a combination of steps and different gradients of NaCl, the 15N-tRNA/klTSS was eluted 

in a single peak. The pure 15N-tRNA/kl-TSS from different eluted fractions is shown using 10% denaturing 

PAGE. 
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To overcome the problem of purifying recombinant tRNAs with sizes similar to 

cellular RNAs, the Sephadex tag in the tRNA-scaffold was utilized for affinity 

purification. Previously, Sephadex G-100 or G-200 beads were packed manually into a 

low-pressure column for affinity purification (226, 230). However, this procedure was 

labor intensive. I therefore used a HiLoad 26/600 Superdex 75 pg column (GE 

Healthcare) as an automatic affinity column to purify the recombinant tRNA-scaffold 

(Figure 4.7). The majority of cellular RNAs were removed with 1 CV purification buffer, 

and bound tRNA/kl-TSS was eluted in well-resolved fractions using 4 M urea (Figure 

4.7). RNAs that bound non-specifically to the column, and thus were eluted with the 

tRNA/kl-TSS, were removed in the downstream purification by denaturing PAGE. Both 

anion exchange and affinity chromatography provided highly efficient purification. After 

solvent-exchange, the purified RNA was appropriate for NMR experiments or cleavage 

using DNAzymes. 

 

Figure 4.7. Purification of recombinant 15N-tRNA/kl-TSS using affinity chromatograph 

Total cellular RNA extracted from 1 L of culture was loaded onto HiLoad 26/600 Superdex 75 pg column 

(GE Healthcare). The UV absorbance was monitored at 260 nm and is shown as a solid, black line. Cellular 
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RNAs were washed with purification buffer containing 100 mM NaCl. The 15N-tRNA/kl-TSS was eluted 

using 4 M urea, represented as a dashed, grey line. The 15N-tRNA/kl-TSS from different eluted fractions is 

shown using 10% denaturing PAGE. 

 

4.3.6. RNA excision using 8-17 DNAzymes 

To resolve the problem of overlapped NMR signals from the recombinant tRNA-

scaffold, the RNA of interest was removed from the tRNA-scaffold. Several trans-acting 

enzymes have been previously used for this excision step, including RNase H and 

catalytic DNAs known as DNAzymes (228, 229). With the capability of fast cleavage 

and less requirement of RNA substrate, RNase H was deemed preferable in a previous 

study. However, RNase H can cleave RNA nonspecifically in the absence of costly 

modified 2´-O-methyl RNA/DNA chimera (243-245).  

I therefore chose to use 8-17 DNAzymes, which cleave RNA specifically and are 

cost-effective due to their ease of synthesis and reusability. 8-17 DNAzymes contain a 

catalytic domain that cleaves RNAs at specific, unpaired dinucleotides, which are flanked 

by two substrate-recognition domains that form Watson-Crick base pairs with the RNA 

substrate (Figure 4.2) (242, 246). In our study, the catalytic sequence of 8-17 DNAzymes 

that specifically cleave unpaired dinucleotide cleavage sites (5′-GG-3′ and 5′-GA-3′) 

were chosen based on their rapid cleavage capability (242). Two DNAzymes were 

designed to cleave each tRNA-scaffold, one to cleave at the 5′ end and the other to cleave 

at the 3′ end of the inserted RNA of interest (Table 4.1, Materials and Methods). 

Accessibility of the two substrate-recognition domains of each DNAzyme to the 

recombinant tRNA-scaffold determines cleavage efficiency. To optimize the interaction 

of the DNAzymes with the recombinant tRNA-scaffold substrate, an 18-mer 

oligonucleotide was added that annealed to the acceptor stem and the T arm of tRNAlys. 
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Figure 4.8. Optimization of 8-17 DNAzyme cleavage of recombinant tRNA/kl-TSS 

A. The cleavage of 8-17 DNAzymes with different lengths of substrate-recognition domains from 7-nt to 

18-nt of both ends. Cleavage products were separated by 10% denaturing PAGE. The tRNA/kl-TSS 

substrate (S) in buffer without DNAzymes was used as negative control. The kl-TSS RNA transcribed in 

vitro was used as the positive control (P).  B. Various ratios of 8-17 DNAzyme:tRNA were tested. The 

reaction was stopped at 48 h. The 18-mer oligonucleotide was added in an equal molar amount to the 8-17 

DNAzymes except in the final lane (*), in which the DNAzymes:oligonucleotide:tRNA ratio was 5:2:1.  C. 

The efficiency of cleavage of 12-nt DNAzymes. Mixture was then incubated in DNAzymes buffer at room 

temperature. Aliquots were collected at 24, 36, 48, 60 hours. After 60 hours, the cleavage is nearly 100% 

complete.  

 

 

Comparison of the cleavage efficiencies of DNAzymes with substrate-recognition 

domains ranging from 7-18 nt in length showed that DNAzymes with short (<11 nt) 

substrate-recognition domains cleaved less efficiently than DNAzymes with long 

substrate-recognition domains (Figure 4.8A). However, DNAzymes with long (˃13 nt) 

substrate-recognition domains also cleaved the recombinant tRNA-scaffold 

A B 

C 
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nonspecifically (Figure 4.8A). In the case of tRNA/kl-TSS, DNAzymes with 12-nt 

substrate-recognition domains were utilized in a ratio of 4:4:2:1 5′ DNAzyme:3′ 

DNAzyme:18-mer oligonucleotide:recombinant tRNA-scaffold, respectively (Figure 

4.8B). This combination produced the most efficient cleavage. However, for the less 

structured tRNA/Fluo, efficient and complete cleavage was obtained using DNAzymes 

with substrate-recognition domains that are 11-12 nt in length. In this case, a ratio 

between components of the reaction as low as 2:2:2:1 was sufficient for optimal cleavage 

(data not shown). The cleavage of tRNA/kl-TSS by DNAzymes was nearly 100 % at 60 

hours of incubation (Figure 4.8C). 

 

 

4.3.7. NMR spectroscopic analysis of recombinant RNAs 

Analysis of the purified in vivo labeled RNAs by 1H-15N HSQC correlation 

experiments revealed a unique set of peaks in the NMR spectrum suggestive of one 

product with a single conformation in solution. The peaks of tRNA/kl-TSS overlaid well 

with the peaks of the tRNA-scaffold and the kl-TSS, again confirming that the 

recombinant tRNA-scaffold folds into a conformation that maintains the structure of the 

kl-TSS. The presence of the kl-TSS did not appear to affect the folding of the tRNA- 

scaffold (Figure 4.9). Using previous tRNAlys spectral assignments (247), peaks 

corresponding to modified rNTPs (e.g. m7G46) were clearly observed in the spectra of 

the tRNA/kl-TSS (Figure 4.9, top and bottom insets). In the 1H-15N HSQC spectrum of 

the 15N-kl-TSS prepared in K-12 (Figure 4.9), we observed five A-U and ten to twelve G-

C base pairs, consistent with the predicted secondary structure. Additionally, the 

spectrum indicates a strong non-canonical Watson-Crick GU wobble base-pair, also 
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consistent with the predicted secondary structure. However, the spectrum of the tRNA/kl-

TSS was heavily overlapped, precluding its direct use for other downstream applications.  

 

Figure 4.9. 2D 1H-15N imino HSQC spectra of purified 15N-labeled kl/TSS  

The 15N-labeled tRNA/kl-TSS (bottom inset) was made in K12 grown SPG supplemented with 15N-

ammonium sulfate. The imino 1H-15N spectra of tRNA is shown at the top right inset. The 15N-labeled kl-

TSS RNA was prepared from the cleavage of the 15N-labeled tRNA/kl-TSS using two 8-17 DNAzymes. All 

peaks of the tRNA/kl-TSS spectra overlay with either peaks of the tRNA scaffold or the kl-TSS spectra. 

Modified peak m7G46 of the tRNAlys is indicated in the spectra of the 15N-labeled tRNA/kl-TSS and the 
15N-labeled tRNA scaffold.  

 

Compared to 13C labeling, 15N labeling has limited utility, and yet till now all in 

vivo RNA labeling has focused on 15N labeling. Unlike the 15N sites in RNA, the 13C sites 

are more widely distributed among the different structural elements (248), making the 13C 

probes of significant interest. I report here the first example of such an in vivo site 

specific labeling using an E. coli strain deficient in the transketolase gene (tktA), which 

we had earlier shown shunts most of the metabolic flux via the oxidative pentose 

phosphate pathway (214). In agreement with those earlier studies (214), in vivo 

production of RNA using this E. coli strain on [1-13C]-glucose produced very high levels 
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Figure 4.10. 2D 1H-13C HSQC of the kl-TSS 
2D 1H-13C HSQC spectra obtained at the ribose region (A) and C8 region (B) of the kl-TSS extracted from 

tktA grown in SPG with 15N-amonium sulfate and [13C-1]-glucose. Labeled carbon regions were bracketed.  

 

(~75%) of enrichment of the ribose C5′ positions and moderate enrichment (~20%) of the 

ribose C1′ positions without unwanted one-bond 13C1′-13C2′ or 13C4′-13C5′ scalar and 

dipolar couplings (Figure 4.10A). RNAs made by tktA grown in [1-13C]-glucose also had 

useful nucleobase labeled sites. Ten out of fourteen C2 carbon peaks of adenine as well 

as the C8 carbon of all the purines in the kl-TSS RNA were labeled and readily 

A 

B 
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identifiable (Figure 4.10B). The C5 and C6 carbons of pyrimidines were also labeled 

without any residual carbon-carbon coupling (Figures 4.10A, B), as reported previously. 

In a previous study, the C6 and C8 carbons of RNA were employed in 3D NOE 

experiments to resolve the overlap problem of proton-proton cross-peaks, allowing 

structural assignment and providing distant restraint of the RNA. I anticipate this would 

be a useful application of the labels reported herein. 

In addition to the protonated carbon sites typically probed in NMR studies, the 

non-protonated carbonyl carbon sites, though less used, are useful probes of hydrogen-

bonding and ligand binding. The chemical shifts of these carbonyl groups, such as the C2 

and C4 of uracil nucleobases, involved in hydrogen bonding appear to be sensitive to the 

nature of the bond such that uracil C2 and C4 carbons have different chemical shift 

signatures in an AU or GU or UU base pairs (146). Thus, being able to label these sites is 

of great advantage. To showcase the potential utility of this approach for in vivo labeling, 

tRNA/SAM-II was produced in K-12 grown in SPG-amp supplemented with 15N2-

ammonium sulfate and [1-13C]-acetate as the sole carbon source. I were able to quickly 

verify with 1D 13C HSQC that the SAM-II RNA had 13C isotopes at the C4 carbons of all 

rNTPs, as well as the C2 carbons of cytosine and uracil, the C6 carbons of guanine and 

adenine (Figure 4.11A), and the C2′ and C3′ ribose carbons (Figure 4.11B. As expected, 

all of these labeling patterns were consistent with those of rNTPs prepared from E.coli 

grown in [1-13C]-acetate (211). To link the imino protons with the carbonyl carbons, we 

ran a 3D HNCO experiment (249-251) on the 52 nt SAM-II RNA (Figures 4.11D, E). 

The magnetization transfer steps during the HNCO experiment in UTP and GTP are 

shown in Figure 4.11C. The proton and nitrogen peaks of the 3D 15N-edited HNCO 
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Figure 4.11. NMR spectra of SAM-II extracted from K12 grown in SPG supplemented with 15N-

ammonium sulfate and [13C-1]-acetate 

A, B. 1D carbon spectra of base region and ribose region of SAM-II. Resonance of each carbon region 

were indicated.  C. Magnetization transfer of bases of the UTP and GTP in 3-D HNCO experiment. The R 

stands for ribose.  D. 2-D 13C-edited HNCO NMR at imino region of SAM-II.  E. 2D 15N-edited HNCO 

NMR at imino region of SAM-II.  F. 2-D 1H-15N HSQC spectra of the imino region of SAM II. Dashed 

lines indicate the connectivity of nitrogen and carbon resonance of the same base. Two black dashed lines 

presents that the two imino peaks have similar proton and nitrogen ppm but connect with two well 

separated carbons. 

 

spectrum of SAM-II corresponded with those obtained in 2D 1H-15N HSQC spectrum of 

the RNA, and the 2D HNCO experiment correlating the imino 1H and carbonyl 13C 

showed the labeled carbon positions of the UTPs and GTPs of SAM-II RNA (Figures 

4.11D, F). An important use of the HNCO for signal readout is to spread the 1H-15N 

correlation map along a third dimension. In that way overlapped proton and nitrogen 
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resonances in the 2D 1H-imino HSQC of the SAM-II RNA are now be well-resolved 

(Figures 4.11D, F). The resonances of the carbonyl groups of uracils (C2 and C4) derived 

from the HNCO experiment can allow the identification of the geometry of base pairing 

(146). The chemical shifts of C2 of uracils that engage in non-canonical hydrogen 

bonding in AU, UU and GU are typically shifted downfield with respect to that of non 

base-paired U-C2 of canonical base-paired AU. There are also clear differences of 

resonance between base-paired and non-base-paired U-C4. Canonically base-paired U-C4 

are normally shifted downfield (146). In case of SAM II riboswitch, many non-canonical 

base-paired U of the RNA (117, 252) were not detected in normal 15N-1H HSQC (Figure 

4.11F) but were clearly observed in 13C-edited HNCO spectra (Figure 4.11D). Therefore, 

labeling at C2 and C4 position of uracil together with application of HNCO experiment 

can bring much benefit to probing hydrogen bonding of nucleotides.  

 

4.4. Discussion 

Advances in RNA labeling technologies are necessary for continuing to move 

forward the field of RNA NMR structural biology. Towards this goal, we present here a 

versatile method to prepare uniformly 15N isotopic and site-specifically 13C isotopic 

labeled RNAs in vivo. To demonstrate the versatility of our approach, we optimized RNA 

expression and performed 2D and 3D-edited NMR experiments on a 52-nt SAM-II 

riboswitch RNA and a 71-nt cap-independent translation enhancer RNA element located 

in the 3’ UTR of Pea enation mosaic virus (kl-TSS RNA).  
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4.4.1. Optimization of in vivo labeling 

The in vivo labeling technologies introduced here combine the best attributes of 

the tRNA-scaffold approach with the selective biomass bio-production method (214, 

228). Five key features were introduced to optimize yields. Use of SPG media allowed 

for twice the cell density and higher RNA yield than that of other commonly used 

minimal media (Figure 4.4). Similarly, the adoption of a double colony selection protocol 

previously used to increase protein expression in E.coli (239), boosted the yields of the 

tRNA/kl-TSS, Fluo and SAM-II riboswitch RNA, which initially had either low or no 

yield of recombinant tRNA-scaffold expression (Table 4.2). Double selection also 

provided for consistency in RNA expression. To solve the problem of slow growth of 

E.coli cells in minimal media, the ratio between the culture volume and the flask volume 

was optimized, finding that a 1:8 ratio in a normal shaker with a maximum speed of 300 

RPM was most effective. To maintain consistency in RNA production, seed cells were 

grown without exceeding an OD600 of 0.5, with the initial OD600 of the following culture 

fixed at 0.05 (215). Finally, to excise the labeled RNA from the recombinant tRNA-

scaffold, two 8-17 DNAzyme were tested containing core sequences designed to cleave 

the dinucleotides 5′-GG and 5′-GA. Based on the optimization of the DNAzymes 

cleavage reactions, we found that the optimal length of the substrate-recognition domains 

of the DNAzymes should be 12 nt. Shorter or longer lengths caused less efficient or 

nonspecific cleavage. 

 

4.4.2. NMR of 15N and selective 13C labeled RNAs  

RNA NMR suffers from extensive chemical shift overlap of the constituent nuclei 

(1H, 13C, 15N, 31P). In the past, the chemical shift overlap problem was partially addressed 
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by the introduction of uniform labeling, and use of this approach has enabled spectacular 

success in studying the structure and dynamics of RNAs of up to 50 nt (150). However, 

uniform labeling introduces direct one-bond and residual dipolar 13C–13C couplings that 

degrade the attainable resolution and sensitivity. Ultimately, this labeling strategy 

prevents accurate measurement of 13C relaxation parameters such as longitudinal 

relaxation rate (R1), transverse relaxation rates (R2), and heteronuclear Overhauser effect 

(hNOE), and CPMG (Carl-Purcell-Meiboom-Gill) relaxation measurements. Although 

for CEST (Chemical Exchange Saturation Transfer) and R1ρ (rotating-frame relaxation 

rate) measurements (253-257), these couplings are more of a nuisance than an obstacle 

because elegant spectroscopic strategies exists to circumvent the coupling problem. 

Nonetheless, these couplings can complicate and limit the range of applicability of CEST 

and rotating-frame relaxation rate (R1ρ) measurements and their effects must be explicitly 

accounted for in data analysis (255-257). 

Of the five approaches introduced to address the limitations of uniform labeling 

(151, 258), selective biomass production of NMPs overcomes the isotopic scrambling 

problem with adequate suppression of 13C–13C couplings. Nonetheless, low overall yields 

remain a limiting issue (212, 214, 216, 259). The in vivo labeling technologies introduced 

here, which combine the recombinant tRNA-scaffold and selective biomass bio-

production approaches, is one way to alleviate these problems. 

The in vivo production of 15N uniformly and 13C site-specifically labeled RNAs is 

cost-effective by using inexpensive precursors as metabolic substrates (215). Using the 

wild type K-12, 18-26 mg of 15N-labeled tRNA/kl-TSS was obtained per liter culture. 

This is equivalent to ~1 mM of 81-nt 15N labeled RNA in 250 µl. 15N-only labeling in K-
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12 affords a rapid delineation of the number of A-U and G-C Watson-Crick base pairs 

within the tRNA/kl-TSS, and these overlay well with the peaks of the tRNA-scaffold 

alone and those of the kl-TSS RNA excised from the tRNA-scaffold alone (Figure 4.9). 

However, compared to 15N-only labeling, 13C labeling allows access to more widely 

distributed sites within the different RNA structural elements, among other benefits (146, 

150). In vivo labeling of RNA using the tktA E. coli strain enables site-specific placement 

of 13C isotopes at predictable sites within the ribose (~75% of C5′ positions, ~20% of C1′ 

positions, and negligible labeling elsewhere in the sugar ring) and nucleobase moieties 

(~75% of C2 and ~44% of C8 carbon atoms of purines and ~43% of C5 and ~28% of C6 

carbon atoms of pyrimidines) (214). A significant benefit of this labeling is that unwanted 

one-bond scalar and dipolar couplings (e.g. 13C1′-13C2′ or 13C4′-13C5′) are completely 

eliminated (Figure 4.10). These labeling patterns add to the growing arsenal of 

technologies that will be useful for many structural, dynamic, and functional RNA 

studies. 

This in vivo labeling approach can also provide direct access to non-protonated 

carbonyl carbon sites. The in vivo production of tRNA/SAM-II using K-12 grown in 

SPG-amp supplemented with 15N2-ammonium sulfate and [1-13C]-acetate as the sole 

carbon source enabled site-specific enrichment of C4 carbons of all nucleotides, as well 

as the C2 carbons of cytosines and uridines, C6 carbons of guanosines and adenosines, 

and C2′ and C3′ ribose carbons with 13C isotopes (Figures 4.11A, B). Given that the C2, 

C4, and C6 chemical shift resonances appear to correlate with the nature of the hydrogen 

bond (e.g. A-U, G-U, or U-U base pairs) (146), the ability to observe these shifts will go 

a long way in mapping the sites of ligand or drug binding to RNAs of biological interest. 
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Furthermore, using 3D HNCO NMR experiments, the imino protons can be readily 

linked with their carbonyl carbons (Figure 4.11D). Thus, using 3D 15N-edited HNCO for 

signal readout promises to remove spectra overlap by spreading the 1H-15N correlation 

map along a third dimension to resolve overlapped proton and nitrogen resonances. 
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Chapter 5: Conclusions and future directions 

RNA is a key factor involved in various cellular processes. The diverse functions 

of RNA are predicated upon its ability to assume different structural conformations 

associated with different properties. Information on folding dynamics for RNA structures 

is thus essential for understanding their biological function. Although detailed 

information of chemical composition and RNA secondary structure is currently available, 

the rules that govern RNA folding into 3-D structures, or how RNA structures switch 

between folding states to perform different functions remains to be fully elucidated. Due 

to their small simple genomes, TCV and PEMV, two (+)-strand plant RNA viruses, have 

been extensively used as models for analyses on how viruses maximize the use of their 

short 3´ UTRs for translation and replication. The aim of this thesis is to analyze the 

dynamic structures of two 3’UTR-containing CITEs to shed light on tertiary RNA 

structure and folding. 

In Chapter 2, by using OT to analyze the dynamics of structural folding of the 

TCV TSS, I determined that the TSS pseudoknots and Mg2+ play important roles in 

increasing the stability of TSS hairpins. Pseudoknotted H4a/Ψ3, in association with the 

upstream A-rich sequence (now to be referred to as AR-H4a/Ψ3), was the most stable 

RNA element while its hairpin component alone, H4a, was the least stable. Previous 

studies have shown that the formation of RNA tertiary structures depends on the presence 

of high concentrations of a monovalent salt or the presence of Mg2+ (173, 260). 

Interestingly, my study provided the first evidence that pseudoknotted H4a/Ψ3 was able to 

nucleate at 10 mM NaCl and formed the nearly full-length sized pseudoknot at a 

concentration of 250 mM NaCl, indicating that H4a/Ψ3 is able to form in the absence of 
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Mg2+. In contrast, the formation of Ψ2 in the TSS is Mg2+ -dependent. The possible 

presence of Ψ2 in Mg2+ increased the stability of H4b and coupled the unfolding process 

of H4b with H5. When induced by force in the absence of Mg2+, the TCV TSS initiates 

unfolding with H4b followed by H5 and AR-H4a/Ψ3. Conversely, in the presence of 

Mg2+, the complex containing Ψ2, H4b and H5 unfolds as a unit and is subsequently 

followed by the unfolding of AR-H4a/Ψ3. tRNA-like structures are found in the 3’ UTR 

of many positive-strand viruses and are proposed to function as conformational switches 

to regulate translation and replication (120, 179, 261). Recently, the first atomic 

resolution tRNA-like structure in turnip yellow mosaic virus is solved at 2 Å, in which 

the two pseudoknots of this RNA were also proposed to be involved in the regulation of 

the conformational switch (262). Analysis of the folding pathway for the TCV TSS also 

suggested the following structural connections: (1) between H4b and H5 via Ψ2; (2) 

between AR-H4a/Ψ3 and H5; and (3) between AR-H4a/Ψ3 and Ψ2. These connections 

might possibly allow the individual RNA elements within the TSS to facilitate each 

other’s folding. One explanation includes the possibility that the TSS (and its surrounding 

sequences) might undergo a conformational switch upon the RdRp binding. Similar 

interconnections are likely present in other viral tRNA-like structures, allowing these 

RNAs to efficiently switch between conformations. However, regarding the folding 

pathway of the TCV TSS, a number of questions still remain to be addressed: (1) How 

does the TSS fold in vivo? (2) How do salt concentrations or RdRp binding induce the 

conformational changes in the TSS? and (3) If the RdRp is the main factor promoting the 

conformation switch, is this due to the physical interaction of the RdRp with its target 
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RNA sequence, or does the RdRp merely select the populations of RNAs already folded 

in a binding-competent conformation?  

      In Chapter 3, EMSA was used to show the interaction between the PEMV kl-TSS 

and 5H2. The hydrogen-bond pattern of the kl-TSS was confirmed using a 2D 1H-15N 

HSQC experiment. Based on the resonance assignment of the PEMV kl-TSS, the 

interaction between kl-TSS with 5H2 further showed that the P2 loop, and not P1 or P3, 

of the kl-TSS is solely responsible for the interaction. The SAXS envelope of the kl-TSS 

suggests that the PEMV kl-TSS does not form a tRNA shape, as was previously 

predicted. The sparse ensemble selection and bootstrapping techniques were used for the 

first time to score the 3-D models of the kl-TSS that were fitted in its SAXS molecular 

envelope.  After vigorous resampling using bootstrapping, similar two models of the kl-

TSS were obtained, indicating that the kl-TSS may have two conformational states. One 

conformation contributes 77% to the overall population while the other conformer 

accounts for 23%. Differences between the conformations of the PEMV kl-TSS and the 

TCV TSS can explain the difference in the ribosome binding pattern for these two RNAs. 

However, several questions regarding the PEMV kl-TSS structure still remain to be 

answered: (1) Which conformational state of the PEMV kl-TSS is responsible for its 

binding with ribosomes and 5H2? (2) What is the ribosome binding site in the PEMV kl-

TSS? and (3) What factors cause the conformational switch in the PEMV kl-TSS? 

Chapter 4 presented a fast and cost-effective methodology for obtaining milligram 

quantities of uniformly 15N-labeled and site-specifically 13C-labeled RNAs for structural 

and dynamic studies using NMR. This method has several advantages, including: (1) use 

of inexpensive starting materials to prepare homogeneous RNAs  in vivo; (2) site-specific 
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labeling patterns that help to overcome chemical shift overlap problems and remove 

scalar coupling and 13C-13C dipolar couplings; (3) labeled RNAs that can be recycled by 

nuclease digestion followed by rephosphorylation to produce site-specifically labeled 

NTPs for making labeled RNAs; (4) a variety of multidimensional NMR experiments 

(e.g. 2D 1H-15N/1H-13C correlation spectra as well as 3D HNCO) can be applied using our 

labeling techniques to illuminate RNA function. I anticipate that this hybrid selective 

biomass and in vivo tRNA-scaffold approach for synthesizing RNAs will enable new 

types of RNA studies using multidimensional NMR technologies to better characterize 

the structural and dynamic basis of RNA function. 
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Appendix 

 

Superimposition of 1H-13C TROSY spectra at the base region of the P1P2ΔL2 and 

the kl-TSS 

The P1P2ΔL2 and kl-TSS were transcribed using site-specific labeled ribonucleotides, in 

which adenine and guanine were labeled at 13C8-carbon; cytidine and uracil were labeled 

at 13C6-carbon. The P1P2ΔL2 were transcribed with all four types of site-specific labeled 

ribonucleotides and its spectra.is presented in black color in panel A, B,C, and D. 2-D 
13C-1H TROSY spectrum of the kl-TSS was made using 13C8 adenine (A, blue), 13C6 

uracil (B, red), 13C8 guanine (C, cyan), and 13C8 cytidine(D, purple). The overlaid 

chemical shifts of the P1P2ΔL2 and the kl-TSS indicates that the P1, P2 and basal P3 

stem in the P1P2ΔL2 maintains similar topology as those in the kl-TSS. 

 

 

 

A 

C D 

B 
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