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According to recent reports by The World Bank and the World Health Organization 

millions of people die every year because of exposure to ambient air pollution—the 

vast majority of them in developing countries (World Bank 2016; World Health 

Organization 2016). Policy makers throughout the developing world are starting to 

seriously address this issue by designing and implementing a battery of policies for 

reducing ambient air pollution. To weight the cost and benefits of these policies 

policy makers need estimates of the benefits of reducing ambient air pollution. In this 

dissertation I provide estimates of the benefits of air pollution reduction in terms of its 

effects on human health. I use data from Chile, a middle income country that in recent 

years experienced a period of rapid industrialization and economic growth—similar 

to the process that many developing economies are experiencing these days. I believe 

that estimates and methods from this dissertation can provide a valuable tool to aid 

policy makers in the developing world in their goals to reduce ambient air pollution.  



  

 

Chapter 1 examines the effects of exposure to ambient air pollution on infant 

mortality. Using state-of-the art techniques to identify causal effects and reduce 

possible bias due to measurement error in air pollution exposure, results from this 

chapter show significant effects of exposure to ambient air pollution on infant 

mortality. This effect is larger for infant mortality due to respiratory and 

cardiovascular diseases. 

 

Chapter 2 examines the effect of exposure to ambient air pollution on urgent care 

visits for different age groups and across different types of urgent care visits. Using a 

novel strategy to identify causal effects, results from this chapter show a significant 

effect on respiratory urgent care visits and on cardiovascular and circulatory urgent 

care visits. This effect is larger for the elderly and for respiratory urgent care visits 

due to pneumonia and lower respiratory diseases. 

 

Chapter 3 examines the effect of exposure to ambient air pollution on the probability 

of a pregnancy ending in a stillbirth delivery. Results from this chapter show a 

significant effect of acute exposure to air pollution on the probability of stillbirth 

delivery. This effect is larger for those stillbirths that are due to hypoxia.  

 

 

 

 

 

 



  

 

 

 

ESSAYS ON THE EFFECTS OF AIR POLLUTION ON HUMAN HEALTH   

 

 

 

by 

 

 

Juan Cristobal Ruiz-Tagle 

 

 

 

 

 

Dissertation submitted to the Faculty of the Graduate School of the  

University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

2018 

 

 

 

 

 

 

 

 

 

 

Advisory Committee: 

Professor Roberton Williams, Chair 

Professor Anna Alberini 

Professor Maureen Cropper, Dean’s Representative 

Professor Jorge Holzer 

Professor Mary Zaki 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Juan Cristobal Ruiz-Tagle 

2018 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 ii 

 

Foreword 
 

The first chapter is the product of joint work with Dr. Sebastian Miller, who was my 

supervisor while I was working at the Research Department of the Inter-American 

Development Bank. The idea of looking at the effects of air pollution on overall 

mortality was his, while I contributed by narrowing down the focus to looking only at 

the effects of air pollution on infant mortality (for reasons explained in the chapter). 

While Dr. Miller conducted the spatial imputation of air pollutants (using the Kriging 

method) and built a panel dataset of air pollution, infant mortality rate and weather 

covariates; I brought in thermal inversion data which allows to instrument for air 

pollution and thus address potential biases from confounding effects. I conducted the 

statistical analysis, reviewed the literature and wrote the paper. The second chapter is 

solely my responsibility. The third chapter is also joint work with Dr. Miller where he 

contributed with the spatial imputation of air pollutants while I contributed with the 

data for pregnancy outcomes (stillbirths and livebirths). I reviewed the relevant 

literature, conducted statistical analysis and wrote the paper. The Dissertation 

Committee acknowledges that Juan Cristobal Ruiz-Tagle made substantial 

contributions to the relevant aspects of these chapters. 



 

 iii 

 

Dedication 

 

To my wife, for her understanding and 

unconditional support that made this 

dissertation possible; and to my parents, for 

their support in the distance. 



 

 iv 

 

Acknowledgements 

 

First and foremost, I would like to thank my advisor Professor Rob Williams, for his 

support and guidance throughout the completion of this dissertation. I also owe a 

great deal of gratitude to Dr. Sebastian Miller for allowing for me to work 

independently while I worked with him at the Research Department of the Inter-

American Development Bank (IDB). This dissertation would not have been possible 

if both Professor Williams and Dr. Miller had not given me the freedom to work on 

this research during my time at the IDB. 

 

Many thanks also to Professor Anna Alberini for her useful comments and 

recommendations in the late stage of my dissertation and for her guidance navigating 

the job market. Thanks also to Professor Maureen Cropper for serving in my 

dissertation committee and for her timely support to advance my professional career. 

I would also like to thank the rest of my dissertation committee professors Jorge 

Holzer and Mary Zaki.  

 

Finally, thanks to my friends and colleagues for their social and academic support that 

made life easier during my time at the IDB and the University of Maryland.   



 

 v 

 

Table of Contents 
 

 

Preface ..................................................... Error! Bookmark not defined. 

Foreword .................................................................................................... ii 

Dedication ................................................................................................. iii 

Acknowledgements................................................................................... iv 

Table of Contents ....................................................................................... v 

List of Tables ........................................................................................... vii 

List of Figures ......................................................................................... viii 

Chapter 1: Ambient Air Pollution and Infant Mortality in Emerging 

Economies: Evidence from Santiago, Chile .............................................. 1 

1. Introduction ....................................................................................................... 1 

2. Background on Infant Mortality and Air Pollution in Santiago, Chile ............. 8 
a. Infant Mortality ............................................................................................. 8 

b. Ambient Air pollution Concentrations and Thermal Inversions................... 9 
3. Data and Methodology for Imputation of Ambient Air Pollution Data at the 

Municipality Level .................................................................................................. 15 

a. Infant Mortality Data .................................................................................. 15 
b. Ambient Air Pollution Data and Kriging Imputation ................................. 16 

c. Thermal Inversion Data .............................................................................. 18 
4. Descriptive Statistics ....................................................................................... 19 

a. Descriptive Statistics for Ambient PM10 Pollution and Infant Mortality ... 19 
b. Municipality-level Variation ....................................................................... 22 
c. Time Variation ............................................................................................ 26 

5. Framework for Regression Analysis ............................................................... 33 
a. Ordinary Least Square (OLS) and Fixed Effects (FE) Estimation for Panel 

Data 33 

b. 2SLS Estimation (OLS and FE) .................................................................. 35 

6. Results ............................................................................................................. 37 
a. First-stage Regressions ............................................................................... 38 
b. Effect of Ambient PM10 Air Pollution on Overall Infant Mortality ........... 40 
c. Effect of Ambient PM10 Pollution on Infant Mortality Due to Respiratory 

and Cardiovascular Diseases............................................................................... 46 

7. Additional Results – Effect of Cumulative Exposure to Ambient PM10 

Pollution .................................................................................................................. 47 
8. Discussion ....................................................................................................... 49 
9. Concluding Remarks ....................................................................................... 51 

Chapter 2: Air Pollution and Urgent Care Visits: Estimation of a Causal 

Relationship Using Exogenous Variation of PM2.5 Concentrations in 

Santiago, Chile ......................................................................................... 53 

1. Introduction ..................................................................................................... 53 



 

 vi 

 

2. Background on Urgent Care Visits and PM2.5 Pollution in Santiago ............ 58 
a. Urgent Care Visits in Santiago ................................................................... 59 
b. PM2.5 Pollution Concentrations................................................................... 59 

3. Data ................................................................................................................. 62 

4. Descriptive Statistics ....................................................................................... 65 
a. Health Data ................................................................................................. 65 
b. Pollution Data and Other Covariates .......................................................... 68 

5. Empirical Strategy .......................................................................................... 72 
6. Results ............................................................................................................. 76 

a. Effects of Contemporaneous Exposure to PM2.5 Pollution ............................. 76 
b. Effect of Cumulative Exposure to PM2.5 Pollution ......................................... 97 

7. Robustness Check: Adding Respiratory Visits in Valparaiso-Viña 

Metropolitan Area as Control Variable ................................................................. 107 
8. Discussion ..................................................................................................... 109 
9. Concluding Remarks ..................................................................................... 111 

Chapter 3: Adverse Effects of Air Pollution on the Probability of 

Stillbirth Delivery: Evidence from Central Chile .................................. 113 

1. Introduction ................................................................................................... 113 
2. Literature Review.......................................................................................... 115 

3. Data ............................................................................................................... 118 
a. Correlation between Air Pollution and Pregnancy Outcomes .................. 120 

b. Stillbirth Rates and Air Pollution across Municipalities and Time .......... 125 
c. Variation of Air Pollutants and Stillbirth .................................................. 127 

4. Duration of Pregnancies and Hazard Function Approach ............................ 129 
a. Duration of Pregnancies by Pregnancy Outcome ......................................... 129 

b. Hazard Function Approach ........................................................................... 132 
5. Econometric Analysis ................................................................................... 137 

a. Effect of Exposure to Air Pollution on Probability of Stillbirth ............... 138 

b. Effect of Exposure to Air Pollution on Probability of Stillbirth Due to 

Hypoxia ............................................................................................................. 142 

6. Discussion ..................................................................................................... 146 

7. Policy Implications ....................................................................................... 147 
8. Concluding Remarks ..................................................................................... 148 

Appendices ............................................................................................ 152 

1. Appendix I – The Kriging Method ............................................................... 152 
2. Appendix II – Summary of Current Literature for Chapter 3 ....................... 153 

Bibliography .......................................................................................... 154 

 



 

 vii 

 

List of Tables 
 

 
Table 1: PM10 Pollution, Infant Mortality Rate (all-causes) and Infant Mortality due to Respiratory and 

Cardiovascular Diseases (Inf. Mort. R&C) for Santiago’s Metropolitan Area. ....................................... 21 

Table 2: Municipality-level statistics for PM10 pollution, Infant Mortality Rate, Per-Capita Income and 

Ground-level Elevation. ......................................................................................................................... 24 

Table 3: Municipality-level Correlation Matrix for PM10 pollution, Infant Mortality Rate, Per-Capita 

Income and Ground-level Elevation. ...................................................................................................... 25 

Table 4: First Stage Regression for PM10 Pollution ................................................................................ 40 

Table 5: Estimates of the Effects of Exposure to PM10 Pollution on Overall Infant Mortality Rate. ...... 45 

Table 6: Estimates of the Effects of Exposure to PM10 Pollution on Infant Mortality Rate Due to 

Respiratory and Cardiovascular Diseases. ............................................................................................. 45 

Table 7: Descriptive Statistics of Respiratory Urgent Care Visits for Santiago by Type and Age Group. 

Mean and Standard Deviation (in parenthesis). .................................................................................... 67 

Table 8: Descriptive Statistics of PM2.5 Pollution, Seasonal Viral Diseases and Weather Variables for 

Santiago (period May 1st through August 30th, 2014). ........................................................................ 68 

Table 9: Parameter and Relative Risk Estimates of the Effect of PM2.5 Pollution on Total Respiratory 

Urgent Care Visits, All Age Groups. ....................................................................................................... 78 

Table 10: First Stage Regressions for Estimating the Effect of PM2.5 Pollution on Total Respiratory 

Urgent Care Visits. ................................................................................................................................. 82 

Table 11: Parameter and Relative Risk Estimates of the Effect of PM2.5 on Total Respiratory Urgent 

Care Visits, by Age Group. ..................................................................................................................... 86 

Table 12: Parameter and Relative Risk Estimates of the Effect of PM2.5 on Respiratory Urgent Care 

Visits, by Care Professional's Leading Diagnosis. .................................................................................. 88 

Table 13 : Parameter and Relative Risk Estimates of the Effect of PM2.5 on Respiratory Urgent Care 

Visits, by Age Group and Care Professional's Leading Diagnosis. ......................................................... 92 

Table 14: Parameter and Relative Risk Estimates of the Effect of PM2.5 Pollution on Cardiovascular and 

Circulatory Urgent Care Visits, by Age Groups. ..................................................................................... 95 

Table 15: Parameter and Relative Risk Estimates of the Effect of PM2.5 Pollution on Urgent Care Visits 

Due to External Causes, All Age Groups. ............................................................................................... 97 

Table 16: Parameter Estimates of the Effect of PM2.5 on Total Respiratory Urgent Care Visits, for All 

Age Groups. Controlling for Outcome Variable in Valparaiso-Viña Metropolitan Area. ..................... 108 

Table 17: PM10, CO Pollution and Covariates, by Pregnancy Outcome. .............................................. 123 

Table 18: Descriptive Statistics for Stillbirth, Stillbirth due to Hypoxia, PM10 & CO Pollution Over 

Length of Pregnancy and on Week of Birth or Fetal Death ................................................................. 129 

Table 19: Effect of PM10 and CO pollution on the probability of stillbirth. Hazard estimates. ............ 140 

Table 20: Effect of PM10 and CO pollution on the probability of stillbirth due to hypoxia. Hazard 

estimates. ............................................................................................................................................ 143 



 

 viii 

 

List of Figures 

 

 
Figure 1: Geographical terrain and direction of winds in Santiago’s air basin. ..................................... 11 

Figure 2: Thermal Inversion - Temperature, elevation and trapping of pollutants. .............................. 13 

Figure 3: Photo of the Thermal Inversion on Santiago, Chile. ............................................................... 14 

Figure 4 : Year Time Trends of PM10 Pollution and Infant Mortality. Santiago’s Metropolitan Area. 

Period 1997-2008. ................................................................................................................................. 29 

Figure 5: Seasonal trends of PM10 Pollution and Infant Mortality. Santiago’s Metropolitan Area. Period 

1997-2008. ............................................................................................................................................ 30 

Figure 6: PM10 and Thermal Inversions by Week of the Year. Period 1997-2008. ................................. 32 

Figure 7: Precipitations and Temperature by Week of the Year. Period 1997-2008. ............................ 32 

Figure 8: Effect of Cumulative Exposure to PM10 Pollution on Infant Mortality Rate .......................... 48 

Figure 9 : Time Series of Total Respiratory Urgent Care Visits and Average PM2.5 Pollution for Santiago. 

Period: May 1st through August 15th, 2014. ........................................................................................ 69 

Figure 10: Time Series of Standardized Total Respiratory Visits by Age Group (left,) and Standardized 

Respiratory Visits by Care Professional’s Leading Diagnosis (right). Period: May 1st through August 

30th, 2014. ............................................................................................................................................ 70 

Figure 11: Time Series of PM2.5 Pollution and Weekend Games. May 1st through August 30th 2014. 71 

Figure 12: Time Series of PM2.5 Pollution and Weekend Games (left), and Meteorological Variables 

(right) during the time of the FIFA World Cup 2014 (Jun 10th through July 15th, 2014). ..................... 72 

Figure 13: 2SLS Relative Risk Estimates (and 95% confidence intervals) of the effect of cumulative 

exposure to PM2.5 on Total Respiratory Urgent Care Visits, All Age Groups. ...................................... 100 

Figure 14: 2SLS Relative Risk Estimates (and 95% confidence intervals) of the effect of cumulative 

exposure to PM2.5 on Total Respiratory Urgent Care Visits, by Age Group. ........................................ 102 

Figure 15: 2SLS Relative Risk Estimates (and 95% confidence intervals) of the effect of cumulative 

exposure to PM2.5 on Total Respiratory Urgent Care Visits, by Type of Respiratory Problem. ............ 103 

Figure 16: 2SLS Relative Risk Estimates (and 95% confidence intervals) of the effect of cumulative 

exposure to PM2.5 on Respiratory Urgent Care Visits, by Type of Respiratory Visit and Age Group.... 105 

Figure 17: 2SLS Relative Risk Estimates (and 95% confidence intervals) of the effect of cumulative 

exposure to PM2.5 on Cardiovascular and Circulatory Urgent Care Visits, All Age Groups. ............... 106 

Figure 18: Mean PM10 and CO Pollution, by Pregnancy Outcomes ..................................................... 121 

Figure 19: Mean PM10 and CO Pollution, by Causes of Stillbirth Delivery ........................................... 122 

Figure 20: Municipality-level Stillbirth Rate, Stillbirth Due to Hypoxia and Acute Exposure to PM10 and 

CO Pollution. ........................................................................................................................................ 126 

Figure 21: Monthly average Stillbirth Rate, Stillbirth Due to Hypoxia and Acute Exposure to PM10 and 

CO Pollution. ........................................................................................................................................ 127 

Figure 22: Histogram of Livebirths and Stillbirths. .............................................................................. 131 

Figure 23: Hazard of Stillbirth Delivery for Pregnancies Ending at a Given Week t. ........................... 132 
  

 

 

 

 

 



 

 1 

 

Chapter 1: Ambient Air Pollution and Infant Mortality in 

Emerging Economies: Evidence from Santiago, Chile 

 

1. Introduction 

 

Exposure to air pollution is known to have damaging effects on human health, 

particularly to the very young and the elderly (Pope III and Dockery 2006).
1
 

Estimating the adverse effects of ambient air pollution on human health has important 

implications for assisting policymakers in weighing the costs and benefits of public 

policies designed for reducing ambient air pollution concentrations. Moreover, 

studying ambient air pollution for emerging economies provides some important 

lessons on the challenges that developing countries will face on their path to 

development. In this chapter we look at the case of Chile, a country which has 

experienced a successful growth performance over the past few decades, and that has 

suffered from the adverse consequences of high concentrations of ambient air 

pollution during the last 40 years (Instituto de Asuntos Públicos 2003).
2
  We focus on 

exposure to ambient air pollution in the form of particulate matter of diameter of 10 

microns or less (PM10) in Santiago, Chile, and examine the effects on mortality for 

infants – a particular vulnerable population. We focus on the effects on infant 

mortality for two reasons. First, since these very young individuals are unlikely to 

                                                 
1
 Exposure to air pollution can cause a constriction of the bronchial system that impairs lung 

functioning and this in turn can cause respiratory and cardiovascular diseases that may have serious 

consequences to human health and even cause death (Nadadur and Hollingsworth 2015). 
2
 Chile’s per capita GDP increased from US$9.000 to US$12.600 between the late 1990s and 2008 

(constant 2000, PPP adjusted). 



 

 2 

 

have experienced previous health complications in the past that may affect their 

health outcomes (particularly, those associated to respiratory and cardiovascular 

diseases), focusing on the infant population allows to better identify an effect on 

health outcomes that is actually due to exposure to air pollution. And second, unlike 

adult mortality or mortality among the elderly, infant mortality represents full life-

years lost in terms of life expectancy. 

 

There is a vast epidemiological literature that examines the association between both 

acute and chronic exposure
3
 to ambient air pollution and its effects on mortality 

(Ostro 1993; Dockery et al. 1993; Dockery and Pope 1994; Schwartz 1994).
4
  

However, most of the existing epidemiological literature fails to establish a causal 

relationship between exposure to ambient air pollution and mortality. Whereas this 

problem is more severe for the case of studies that look at the effects of chronic 

exposure, it is also an important problem for those studies that look at the effects of 

acute exposure.  

 

To estimate a causal effect on mortality in this chapter we focus on the effects of 

acute exposure to ambient air pollution. Therefore, we must address the problem of 

                                                 
3
 Whereas acute exposure usually refers to exposure during a ‘short’ period of time (where short is 

broadly defined), chronic exposure usually refers to exposure for a long period of time (usually 

lifetime exposure). 
4
 There have also been epidemiological studies conducted previously for Santiago, Chile (Ostro et al. 

1996). Indeed, using data from 1989 to 1991 Ostro et. al. (1996) examine the effects of acute exposure 

to ambient air pollution on all-age mortality in Santiago, Chile. Ostro et. al. (1996) find that a change 

of 10 micrograms per cubic meter (µg/m
3
) in three-day ambient PM10 is associated with a 1.1 percent 

increase in daily all-cause mortality. In addition, Cifuentes et al. (2000) examined the impact of 

ambient fine particulate matter (PM2.5) on daily mortality in Santiago, Chile. Using a three-day moving 

average data from 1988 to 1996, Cifuentes et al (2000) estimate that a 10-μg/m
3
 change in PM2.5 is 

associated with a .65 per cent change in all-cause mortality in Santiago, Chile. 
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possible factors that may affect mortality and that are also likely to be correlated with 

acute exposure to ambient air pollution (Chay and Greenstone 2003). For example, if 

not properly accounted for, the following confounding factors may introduce bias in 

the estimates of the effect of acute exposure to ambient air pollution on infant 

mortality: (i) differences in income and access to quality health care that allow to 

cope with the adverse effects of exposure to air pollution; (ii) changes in economic 

activity that may affect both pollution emissions as well as access to high-quality 

health care –which allows to cope for the adverse effects of pollution; (iii) sudden 

widespread health risks (such as  influenza or other viral outbreaks) that usually occur 

contemporaneously to high concentrations of ambient air pollution; and, (iv) 

geographical sorting due to individuals choosing to live (or work) at specific locations 

due to their associated exposure to ambient air pollution concentrations. To the best 

of our knowledge this is the first piece of research that simultaneously addresses all of 

these potential confounding factors. 

 

In estimating the effects of exposure to ambient particulate pollution on infant 

mortality only a few studies have successfully addressed the problem of potential 

confounders. For instance, Chay and Greenstone (2003) address the problem of 

potential confounders by exploiting variation on total suspended particles (TSP) 

induced by the 1981-1982 economic recession in the U.S.
5
  Also, Currie and Neidell 

(2005) address the problem of potential confounders by controlling for location-

                                                 
5
 Chay and Greenstone (2003) use U.S. wide data (at the county level) from the early 1980s to examine 

reductions in Total Suspended Particles (TSP, all particles with diameters less than or equal to 40 

microns µm) to estimate the effect of ambient air pollution on infant mortality. They exploit 

geographic variation in TSP to estimate its effect on infant mortality rates. 
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specific unobserved characteristics of high ambient air pollution areas in California.
6
 

In a more recent study, Arceo, Hanna, and Oliva (2016) examine whether estimates 

from developed countries (such as the aforementioned studies) can be transferred to 

developing countries. Using week-level data for Mexico City for years 1997-2006 

Arceo, Hanna, and Oliva (2016) use a similar strategy as Currie and Neidell  (2005) 

to estimate the effects of ambient air pollution on infant mortality by introducing 

municipality-level fixed effects. Moreover, Arceo, Hanna, and Oliva (2016) 

instrument for ambient air pollution using week counts of thermal inversions in order 

to address the attenuation bias generated by imperfect imputation of air pollution data 

for each municipality.  

 

In this chapter, we use data on ambient PM10 pollution and infant mortality to 

construct a municipality-week panel dataset for 34 municipalities in Santiago’s 

Metropolitan Area over the period 1997-2008. In estimating the effect of exposure to 

ambient PM10 pollution on infant mortality the panel structure of our dataset allows 

for estimating with municipality fixed-effects to control for municipality-specific 

factors that may have a direct effect on infant mortality—and that may act as 

confounders if not properly accounted for (e.g., factors such as the overall differential 

access to quality health care of those infants living in different municipalities). In 

addition, infant mortality as well as ambient PM10 pollution concentrations usually 

present a strong seasonal pattern, both intensifying during the winter months in 

                                                 
6
 Using data for years 1989 to 2000 Currie and Neidell (2005) use zip-code level fixed-effects to 

estimate linear hazard-functions. In this way Currie and Neidell (2005) estimate the effect of week-

level ambient air pollution concentrations on infant mortality rates. Notice that although Currie and 

Neidell (2005) have a detailed dataset at the week-level, they only find significant estimates of the 

effect of PM10 on infant mortality when aggregating PM10 pollution at the quarterly level. 
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Santiago, Chile. Moreover, widespread viral outbreaks and pandemics usually take 

place during the same period of time as the period of highest concentrations of 

ambient air pollution (Ruiz-Tagle 2017). These can deteriorate individuals’ health 

and make infants more vulnerable to die.  Although we do not directly observe when 

these viral outbreaks are most severe we indirectly account for these seasonal viral 

outbreaks by controlling for week-level average temperature and humidity—which 

act as proxies for viral outbreaks as they capture the weather conditions in which they 

are more likely to occur.  

 

Furthermore, we take advantage of the meteorological phenomenon of thermal 

inversions in Santiago’s air basin which create city-wide exogenous variation in the 

concentration of ambient air pollutants. Thermal inversions drive concentration of 

ambient air pollutant in Santiago by largely determining the overall ventilation of the 

air basin. Thereby, we use two-stage least squares (2SLS) to estimate the effects of 

ambient PM10 pollution on infant mortality. Unlike Arceo, Hanna, and Oliva (2016) 

that use a week count of thermal inversions, we use disaggregated meteorological 

data that explains both the presence and intensity of thermal inversions for Santiago. 

Therefore, we use detailed thermal inversion data to instrument for ambient PM10 

pollution concentration and obtain 2SLS estimates of the effects of acute exposure to 

ambient PM10 pollution on infant mortality. Moreover, in this chapter we also address 

the indirect effect that residential sorting may have on infant mortality. The problem 

of residential sorting arises because wealthy individuals can afford to live in 

municipalities that are consistently exposed to lower levels of ambient air pollution. 
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This means that wealthy individuals are not only better equipped to cope with the 

adverse effects of air pollution (by having better access to high-quality health care), 

but they are also exposed to lower concentrations of ambient air pollution. If not 

properly accounted for, this indirect effect of residential sorting may yield upward 

biased estimates of the effect of exposure to ambient air pollution on infant 

mortality.
7
 To address this indirect effect on infant mortality, due to differential 

exposure to ambient air pollution because of residential sorting, we use exogenous 

variation in air pollution that is municipality-specific. We do this by constructing 

municipality-specific instruments out of the city-wide thermal inversion data; thus, 

introducing municipality-specific exogenous variation in ambient PM10 pollution 

concentrations.  

 

On the other hand, the ambient air pollution data usually employed in the existing 

literature comes from sparse air quality monitoring stations and does not necessarily 

reflect the ambient air pollution to which individuals are actually exposed to. To have 

a more accurate measure of the ambient pollution for the relevant geographical areas, 

both Currie and Neidell  (2005) and Arceo, Hanna, and Oliva (2016) impute ambient 

air pollution data at the relevant geographical area (either zip-code or municipality 

level) by weighing the imputed zip-code-level or municipality-level air pollution data 

by the inverse of the distance (inverse distance weighting, or IDW) to the closest air 

quality monitoring stations. However, although IDW actually improves the precision 

of imputed ambient pollution exposure, the IDW method yields only an imperfect 

                                                 
7
 In fact, wealthy families in Santiago tend to live in municipalities in the east side of the city—at a 

higher elevation and closer to the Andes Mountains—that are exposed to lower concentrations of 
ambient air pollutants. 
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imputation of the actual ambient air pollution exposure of the population at the 

relevant geographical area (zip-code or municipality) and an error component still 

remains.
8
 This error in the imputation of ambient air pollution at the relevant 

geographical area introduces a bias in the estimates of the effects of ambient air 

pollution on infant mortality, producing what is known as attenuation bias.
9
  This 

attenuation bias is further exacerbated when estimating via fixed effects (Cameron 

and Trivedi 2005).
10

  In this chapter we employ the Kriging method to impute 

ambient air pollution for each municipality in Santiago, Chile. By exploiting the 

geographical dispersion of the air quality monitoring stations in Santiago the Kriging 

method constructs a full spatial mapping of ambient PM10 pollution for a large 

number of geographical points within each municipality in Santiago, allowing for a 

more flexible non-linear geospatial variation in concentrations of ambient air 

pollutants. Thereby, by using the Kriging method we obtain a more accurate ambient 

air pollution imputation for each municipality than by using the IDW method, and 

this reduces the attenuation bias. 

 

In sum, this chapter provides new evidence of the effects of exposure to ambient air 

pollution on infant mortality for the high levels of pollution concentrations observed 

                                                 
8
 In the applied econometrics literature this problem is commonly known as measurement error. 

9
 This error in air pollution imputation is even more likely to arise in the case of developing countries 

where, oftentimes, there are few and sparse air pollution monitoring stations, or these monitoring 

stations fail to report pollution data for certain periods of time. 
10

 Arceo, Hanna, and Oliva (2016) use instrumental variables estimation to address the problem of 

attenuation bias caused by the error in imputation of air pollution at the municipality level. The authors 

exploit the exogenous variation in air pollution caused by thermal inversions in the air basin of Mexico 

City. As an instrument for imputed air pollution data Arceo, Hanna, and Oliva (2016) use a weekly 

count of city-wide thermal inversions. By estimating two-stage least squares (2SLS) they reduce the 

attenuation bias caused by the error in the imputation of air pollution at the municipality level. As a 

consequence, they obtain considerable larger estimates of the effects of air pollution on infant 

mortality. Arceo, Hanna, and Oliva (2016) conclude that their 2SLS estimates are comparable to those 

results from previous studies in developed economies. 
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in emerging economies. We find that exposure to ambient PM10 pollution has a 

significant effect on infant mortality and that this effect is more severe for infant 

mortality that is caused by respiratory and cardiovascular diseases. Furthermore, we 

find considerable larger effects of exposure to ambient PM10 pollution over an 

extended period of time (several weeks). The rest of the chapter is organized as 

follows. The next section presents and overview of infant mortality and ambient PM10 

pollution in Santiago, Chile for the period 1997 to 2008. Section 3 discusses the data 

and the Kriging method for imputing ambient PM10 pollution at the municipality 

level. Section 4 presents descriptive analysis of the data and section 5 presents the 

framework for econometric analysis. The main results are presented in section 6 and 

additional results are presented in Section 7. Finally, section 8 provides a policy 

discussion and section 9 concludes. 

 

2. Background on Infant Mortality and Air Pollution in Santiago, Chile 

 

a. Infant Mortality 

 

Ambient air pollution can cause severe damage to human health. Clinical evidence of 

the consequences of exposure to particulate matter suggests that air pollutants can 

cause bronchia pulmonary and cardiovascular diseases such as lung inflammation and 

blood coagulation that can obstruct blood vessels, leading to angina or even to 

myocardial infraction, which can eventually result in death (Kampa and Castanas 
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2008). Meanwhile, the general public in Santiago seems to be aware of the adverse 

effects of air pollution on health. A recent survey by Chile’s Ministry of Environment 

shows that air pollution is the most important environmental problem for Santiago’s 

population (Dirección de Estudios Sociales 2017). This is in large part due to the 

adverse health effects on the most vulnerable population, particularly during the 

winter. 

 

b. Ambient Air pollution Concentrations and Thermal Inversions 

 

Ambient air pollution concentrations in Santiago’s Metropolitan Area are caused by 

emissions as well as by accumulation of pollutants due to the lack of ventilation of 

the air basin. Emissions of PM10 pollution in Santiago’s Metropolitan Area are largely 

due to motors vehicles (accounting for 40.5 percent of total anthropogenic sources) 

and the combustion of petroleum derivates for industrial processes (24.6 percent of 

total anthropogenic sources). The use of firewood or coal for residential heating and 

cooking accounts for only 14.8 percent of total anthropogenic sources (De la Maza 

and Serrano 2013).  

 

In addition to emissions of airborne pollutants, the actual concentrations of these 

pollutants also depend on the ventilation of ambient pollutants in Santiago’s air basin. 

This, in turn, is largely explained by both Santiago’s unique geography and by the 

presence of a thermal inversion above the city’s air basin. Here we briefly describe 

Santiago’s geography and then we further explain the phenomena of thermal 



 

 10 

 

inversion. Santiago is located in Chile’s central valley in a basing surrounded by 

Chile’s coastal mountain range to the west and the much taller Andes Mountains to 

the east and north east.
11

 Figure 1 shows a terrain map of Santiago’s surrounding area. 

Mild winds blow from the west-south-west (WSW) at the elevation of the city 

ground-level (around 550 meters above sea level). Conversely, at elevations above 

Santiago’s western coastal mountain range, strong winds blow from the west-north-

west (WNW), at elevations starting at around 1,000 to 1,200 meters above sea level. 

The winds at the city’s elevation bring in a constant fresh breeze of clean air to the 

WSW end of the city (light blue arrows in Figure 1). This breeze compresses the 

cloud of pollutants in the air basin against the Andes Mountains. That is, at the only 

gap of the mountains that surround Santiago (at the city’s WSW bound), mild winds 

blow towards the basin, and thus further trapping air pollutants.
12

   

 

                                                 
11

 Whereas the coastal mountain range reaches elevations of 800 to 1,500 meters above sea level, at 

this latitude the Andes Mountains presents elevations between 4,500 to 6,500 meters above sea level. 
12

 During the winter time these winds’ speed could be of less than 2 m/s. 
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Figure 1: Geographical terrain and direction of winds in Santiago’s air basin. 

 

Usually, fine particles of air pollutants that are emitted as a result of a combustion 

process are warmer than the air that immediately surrounds them. The difference 

between the temperature of the particle and the air around them, together with the 

little weight of these particles, creates buoyancy that makes these particles rise. Once 

these fine particles reach an altitude above Santiago’s northern and eastern mountain 

range, strong winds from the WNW blow these air pollutants away (see purple arrows 

in the map of Figure 1). This phenomena of ventilation of air pollutants in Santiago’s 

air basin is characterized as vertical ventilation (Garreaud and Rutllant 2006) and 

refers to a vertical movement of the cloud of air pollutants.  

 

Thermal inversions largely explain the vertical ventilation of Santiago’s air basin. Air 

generally turns cooler as is ascends at higher elevations, so the higher the elevation 
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the lower the air temperature. However when air at higher elevations is warmer than 

air at lower elevations this phenomenon is known as a thermal inversion. Thermal 

inversions trap airborne pollutants and impede the vertical ventilation of Santiago’s 

air basin by breaking with the buoyancy of these small particles that allows them to 

rise. This results on these small particles resting right above the mass of colder air 

beneath the warm layer brought in by the thermal inversion. As these small particles 

cool down and start to slowly descend, at the same time as more pollutants are being 

emitted at the ground level, these small particles start filling up the space between the 

thermal inversion layer and the city level, thus creating a cloud of airborne pollutants 

that fills Santiago’s air basin and increases the concentrations of ambient air 

pollutants to which the population living in Santiago is exposed to.  

 

As consequence of this phenomenon, thermal inversion keep the cloud of ambient air 

pollutants at an elevation below Santiago’s northern and western mountain range, 

thus obstructing the vertical ventilation of the city’s air basin (see Figure 2 and Figure 

3). When the thermal inversion breaks down the cloud of pollutants rises above the 

elevation of the western mountain range, reaching elevations above 1,000 meters 

above sea level, and thus this cloud of pollution particles is blown away by the strong 

WNW winds that prevail at these higher elevations. Similarly, during hot (summer) 

days air pollutants rise above the elevation of this mountain range and, in this way, 

strong winds clean the pollutants away from the air basin. In sum, thermal inversions 

determine whether a cloud of air pollutants would rest above the city, and this in turn 
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drives the overall ventilation of the entire air basin of Santiago’s Metropolitan Area, 

particularly during the late Fall and Winter seasons.
13

    

 

 

Figure 2: Thermal Inversion - Temperature, elevation and trapping of pollutants. 
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 Gramsch et al. (2014) examine how thermal inversions drive concentrations of PM pollution in 

Santiago. They refer to these meteorological phenomena as subsidence inversion and surface inversion. 

To measure outdoor air temperature at different elevations above Santiago’s air basin Gramsch et al. 

(2014) use data from commercial airplanes departing from the main airport in Santiago (located on the 

westbound area of the city, at an elevation of 474 meters above sea level). Santiago’s main airport is 

located at about 13 kilometers from the meteorological station at Lo Prado, from where we obtain 

ambient air temperature data to measure the presence (and intensity of) the thermal inversion. This data 

allows them to accurately identify both subsidence and surface thermal inversions. On days of thermal 

inversions, outdoor air temperature in Santiago’s air basin initially increases at higher elevations from 

the ground level. The first stretch of this increase in outdoor temperature occurs up to 600 meters (the 

surface inversion). Then, at 800 to 1000 meters, there is a sharp increase in outdoor temperature (the 

subsidence inversion). The surface inversion usually breaks down each day at around noon, 

particularly on clear sunny days—sunny days are rare during Santiago’s winter, so that the breakdown 

of the surface inversion is much more frequent during the summer time than during the winter time. 

This allows for the escape of pollutants via vertical ventilation (in the absence of subsidence 

inversions). However, subsidence inversions may last several days, an up to a week, trapping air 

pollutants in Santiago’s air basin and preventing from vertical ventilation.  Gramsch et al. (2014) 

report that on days when there is a surface inversion PM is 35 percent higher than on days without 

inversions. Moreover, when there is both surface and subsidence inversion, PM can be up to 84 percent 

higher than on days without inversions. 
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Figure 3: Photo of the Thermal Inversion on Santiago, Chile. 

 

Often times, the thermal inversion breaks due to the presence of precipitations, 

usually in the form of rain. The presence of precipitations usually is accompanied by 

strong winds at the level of this cloud that breaks the thermal inversion. Furthermore, 

rainfall facilitates the vertical exchange of air layers at different temperatures and thus 

breaks the thermal inversion. Furthermore, rain not only breaks down the thermal 

inversion, but the droplets themselves carry down the pollution particles, and in this 

way rain brings these pollution particles down to the ground level.
14
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 Therefore, despite the high concentration of particulate pollution during Santiago’s winter, it is not 

unusual to see a clear clean sky on the immediate days following rain precipitations in Santiago, as the 

concentrations of air pollutants plunge after a rainy day.  Bharadwaj and Eberhard (2008) exploit this 

characteristic of rainfall on driving air pollution concentrations in Santiago. They use rainfall (as 

deviations from the month average) as an instrumental variable for air pollution in Santiago to estimate 

the effects of air pollution on birthweight. 
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3. Data and Methodology for Imputation of Ambient Air Pollution Data at the 

Municipality Level 

 

We construct a weekly panel dataset of 34 municipalities for the period 1997-2008. 

We explain the dataset in detail next. 

 

a. Infant Mortality Data 

 

We use data from the Department of Health Statistics and Information (DEIS, 

according to the acronym in Spanish) of Chile’s Ministry of Public Health to generate 

municipality-level infant mortality rates. DEIS’s provide data on each deceased 

individual, his or her age and the municipality of residence. Furthermore, we have 

data on total live births for each municipality (based on the mother’s municipality of 

residence) so that we can compute total live population of infants (those under one 

year old). Week-level infant mortality rate is defined as number of infant deaths in a 

given week divided by the total number of live infants up to that given week, per 

100,000 inhabitants. In this way, for each of the 34 municipalities in Santiago, we 

compute municipality-week-level infant mortality rates over the period 1997-2008. In 

addition, in order to analyze the more direct effect of pollution on infant health, we 

compute infant mortality rates for those causes that are more directly linked to 

exposure to air pollution – namely, respiratory and cardiovascular diseases – by 

considering only those deaths with codes I and J according to the 10th revision of the 

International Classification of Diseases (ICD-10). Accordingly, we compute 
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municipality-week-level infant mortality rate due to respiratory and cardiovascular 

causes for 34 municipalities over the period 1997-2008. 

 

b. Ambient Air Pollution Data and Kriging Imputation 

 

We obtain ambient air pollution data from Chile’s Air Quality National Information 

System (SINCA, according to the acronym in Spanish). SINCA has 11 air quality 

monitoring stations throughout Santiago’s Metropolitan Area. The monitoring 

stations provide daily records of particulate matter less than 10 microns per cubic 

meter (PM10) for the period 1997-2008.   

 

We use the Kriging method to construct a geo-spatial mapping of ambient air 

pollution and impute air pollution concentrations to each municipality as follows. 

First, for each of the 11 SINCA’s air quality monitoring stations in Santiago we take 

the week-average PM10 pollution readings. Second, we employ the geographical 

coordinates of the monitoring stations to impute pollution levels to specific spatial 

reference-points using the Kriging method. This consists of estimating the parameters 

that describe the spatial correlation among observations of air pollution data from the 

air quality monitoring stations and then, using these estimates, finding predictions to 

specific spatial reference-points that minimize the sum of squared errors (Lleras-

Muney 2010).
1516

 The specific spatial reference-point we use for Kriging imputation 
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 The Kriging method has several advantages over the alternative methods previously used by 

economists, such as the inverse distance weighting method (IDW) (Cressie 2015). First, Kriging is the 

best linear unbiased predictor. Second, measures of fit of standard errors of the predictions can be 
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of ambient PM10 pollution data is that of public and private schools, as we assume 

that most people live within a vicinity to schools.
17

 That is, we impute air pollution 

exposure to the geographical location of each school within a municipality and then 

we average the imputed air pollution data across all (selected) schools for each 

municipality. Furthermore, we restrict our sample of schools to those schools located 

(i) at a distance of no more than 5 kilometers from the nearest air quality monitoring 

station, and, (ii) between 5 to 10 kilometers to the nearest air quality monitoring 

station but no farther than 20 kilometers to the second-nearest monitoring station.
18

  

Once we restrict the sample of schools, we averaged the imputed air pollution data 

across all selected schools for each municipality. In this way we generate a 

municipality-week panel for air pollution data that we then merge with the individual-

                                                                                                                                           
obtained. Third, covariates can be used to improve the predictions. Lastly, Kriging allows prediction 

for a much larger number of locations compared to IDW or municipality-averages. Indeed, using 

simulation methods Zimmerman et al. (1999) find that “Kriging methods were substantially superior to 

the inverse distance weighting methods over all levels of surface type, sampling pattern, noise and 

correlation”. 
16

 Lleras-Muney (2010) is one of the first papers in economics to use the Kriging method for spatial 

imputation of pollution data. Using air pollution data from U.S. Environmental Protection Agency, 

Lleras-Muney (2010) estimates the effects of air pollution on hospital admissions of children of the 

U.S. military personal. 
17

 Notice that the spatial reference-point could be any place, within a given municipality, that readily 

represents the air that people in that municipality are actually exposed to. Previous research has 

interpolated to the geographical location of the centroid of each zip-code area in the U.S. However, the 

surface area of many municipalities in our sample extend far beyond the areas where people actually 

live, sometimes all the way up to include large parts of rural areas or even large parts of the Andes 

Mountains. So that, interpolating to the centroid of such a municipality would be equivalent to 

interpolating pollution data to locations in the middle of the countryside or in the middle of the Andes, 

where very few people live. Alternatively, we could interpolate to the geographical location of City 

Hall building for each municipality. However, most city hall buildings have been built long before the 

expansion of the city, and therefore, tend to be clustered towards the central areas of the city, and do 

not necessarily represent the geographical location where people actually live. 
18

 Imputing pollution data using the Kriging methodology is much more reliable for interpolation than 

for extrapolation. Pollution data from Kriging interpolation for a geographical area that has more than 

one monitoring stations is quite reliable, particularly, when the monitoring stations are located at a 

short distance from each other and surrounding this particular spatial reference-point in its vicinity. 

Conversely, pollution data from Kriging extrapolation is much less reliable. That is, when there is only 

one monitoring station near the particular spatial reference-point or, if there is more than one 

monitoring station, these are located at a far distance from this particular spatial reference-point and 

are not surrounding it in its vicinity.  
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level infant mortality data outlined above. The appendix presents technical details of 

the Kriging method used for mapping ambient PM10 pollution data. 

 

c. Thermal Inversion Data 

 

To account for the presence of a thermal inversion in Santiago’s air basin we use data 

from a meteorological station—Lo Prado—located on the top of Santiago’s western 

mountain range, at an elevation of 1,080 meters above sea level, just about 500 

meters above the city’s elevation. From station Lo Prado we obtain ambient air 

temperature, barometric air pressure, wind speed and precipitations. Furthermore, we 

contrast this data from Lo Prado—basically ambient air temperature—with data from 

a meteorological station located at the city´s ground elevation, Torre Entel, at 540 

meters above sea level. That is, we compute the difference in ambient air temperature 

at Lo Prado (at 1080 meters) with ambient air temperature at Torre Entel (at 540 

meters), as well as detailed meteorological data at Lo Prado (barometric air pressure, 

wind speed, precipitations, etc). Furthermore, to obtain a measure of the thermal 

inversion that is municipality-specific we interact the difference in air temperature 

with a municipality-specific dummy. 

 

d. Additional Weather Controls 
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Furthermore, we obtain we obtain municipality-level temperature and precipitation 

data from the Air Quality Meteorological Network of Chile’s Meteorological Service 

and from the Water Service of Chile’s Public Works Ministry. 

 

4. Descriptive Statistics 

 

a. Descriptive Statistics for Ambient PM10 Pollution and Infant Mortality 

 

Table 1 presents descriptive statistics for ambient PM10 pollution, overall infant 

mortality and infant mortality due respiratory and cardiovascular causes (henceforth, 

R&C), for the period 1997-2008.
19

 Table 1 shows that the average ambient PM10 

pollution over this period is 77.2 𝜇𝑔/𝑚3.
20

  Also, the average infant mortality rate for 

this period is 15.5, per 100,000 live births, and the average infant mortality for 

respiratory and cardiovascular causes is 1.1, per 100,000 live births. The table also 

shows total municipality-week standard deviation as well as both standard deviations 

only across municipalities and standard deviations only across weeks (times series). 

Thus, Table 1 shows that most of the variation in ambient air pollution and infant 

mortality occurs across weeks. Whereas the cross-municipality variation represents 

30 percent of the total variation of PM10 pollution, the times series variation (across 

weeks) represents about 90 percent of the total variation of PM10 pollution. Similarly, 

                                                 
19

 Mean infant mortality (Inf Mort R&C) was multiplied by 52 weeks to obtain the column ‘Mean 

deaths in a year (per 100,000)’ on the far right of Table 1. 
20

 Chile’s standard for annual concentrations of PM10 is 50 μg/m
3
 and the standard for 24-hr 

concentration is 150 μg/m
3
. 
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whereas the cross-municipality variation for infant mortality and infant mortality 

R&C represents less than 10 percent of the total variation, the time series variation 

(across weeks) represents slightly more than 20 percent of the total variation. Next, 

we discuss in more detail the patterns and source of these cross-municipality and time 

series variations. 
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Table 1: PM10 Pollution, Infant Mortality Rate (all-causes) and Infant Mortality due to Respiratory and Cardiovascular Diseases (Inf. 

Mort. R&C) for Santiago’s Metropolitan Area. 

 

 

 

 

 

 

 

 

Total 

Municipality-

week

Cross-

municipality

Time series 

(week)

PM10 pollution 77.2 28.4 8.8 26.4 18,800            

Infant Mortality 15.5 28.4 2.7 5.8 18,800            85,006            807.4

Inf Mort (R&C) 1.1 7.2 0.5 1.6 18,800            85,006            58.4

Standard Deviation Mean deaths 

in a year       

(per 100,000)

Mean Observations

 Avgerage 

population 

(each week) 
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b. Municipality-level Variation 

 

Santiago is a highly segregated city where high-income families tend to cluster 

together in a few high-income neighborhoods and municipalities. Furthermore, high-

income individuals tend to have access to better health care, such as having access to 

an expensive network of private health care facilities through a private insurance 

network. Therefore, we should expect that high-income municipalities would present 

lower infant mortality rates. Table 2 presents mean ambient air pollution and infant 

mortality for each of the 34 municipalities in Santiago. For ease of analysis, we group 

these municipalities into 11 geographical sub-regions (City Center, Central East, 

Central North, Central South, Central West, East, North, South, West, South East and 

South West). Table 2 also presents other relevant variables that are likely to affect 

infant mortality—namely, average per-capita income and percentage of population 

with private/public health insurance for each municipality level. Table 2 also presents 

ground-level elevation at the urban centroid for each municipality.
21

 Table 2 shows 

that, municipalities in the East sub-region present low concentrations of ambient air 

pollution as well as low infant mortality rates. Those municipalities in the East sub-

region also present the highest per-capita income as well as the highest percentage of 

private health insurance. Thereby, it may likely be that better access to quality health 

care and high per-capita income largely explain low infant mortality rates in those 

                                                 
21

 Table 2 also shows that effects of pollution on municipality-level infant mortality should be weighed 

by its relative population size. For instances, whereas municipalities in the South East region represent 

more than fifteen percent of Santiago’s population, municipalities in the Central East and North 

regions represent less than five percent. As a consequence, when estimating the effect of PM10 

pollution on infant mortality we weigh each observation in our dataset by its corresponding 

municipality-weight. 
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municipalities in the East sub-region. That is, access to quality health care and high 

per-capita income may have a large direct effect on infant mortality. In our empirical 

model in the next section we estimate by municipality-level fixed effects to capture 

those factors across municipalities, such as average per-capita income or percentage 

of private/public health insurance, that are likely to affect infant mortality rates.
22
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 We also introduce municipality-specific time trends to control for changes over time that might be 

specific to each municipality. For example, there is evidence that those rich individuals (living in rich 

municipalities) increased their income by a larger proportion than the rest of the population during the 

1997-2008 period, and thereby, they may have increased the access to a better health care at a fastest 

rate than the rest of the population. These municipality-specific time trends should capture this time 

patterns. 
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Table 2: Municipality-level statistics for PM10 pollution, Infant Mortality Rate, Per-

Capita Income and Ground-level Elevation.  

 

Municipality PM10              
Elevation 

at centroid

Per-capita 

Income (2003 

USD)

Private/Public 

Health 

Insurance (%)

Infant 

Mortality 

Rate

Number of 

Infants

City Center

Santiago 76                540 5,249                 36/48 16.2             3,374          

Central East

Ñuñoa 76                584 5,981                 45/43 10.9             2,140          

Providencia 73                600 11,275              64/20 12.3             1,649          

Central North

Conchalí 75                499 2,260                 15/65 17.9             2,246          

Independencia 74                528 3,222                 24/62 22.4             1,101          

Recoleta 72                522 2,057                 12/78 17.7             2,585          

Central South

La Cisterna 84                561 3,414                 26/55 14.8             1,203          

La Granja 82                591 1,677                 11/78 15.6             2,351          

Lo Espejo 81                513 1,586                 9/80 18.7             1,841          

Macul 82                556 4,056                 29/54 14.7             1,686          

Pedro Aguirre Cerda 80                514 2,058                 13/78 16.8             1,681          

San Joaquín 83                547 2,126                 15/73 14.2             1,451          

San Miguel 82                541 4,645                 32/52 19.0             1,161          

San Ramón 84                580 1,601                 10/81 14.1             1,900          

Central West

Estación Central 77                487 2,791                 22/63 14.9             2,063          

Lo Prado 78                492 2,302                 15/75 16.8             1,758          

Quinta Normal 76                502 2,384                 16/65 16.6             1,656          

East

La Reina 72                640 8,122                 59/23 12.2             1,190          

Las Condes 64                722 12,571              69/19 10.1             3,580          

Lo Barnechea 55                825 12,279              58/36 11.1             1,173          

Peñalolén 78                640 2,487                 19/70 14.9             4,055          

Vitacura 65                695 17,915              74/17 9.7               1,172          

North

Huechuraba 69                520 2,707                 18/67 14.3             1,532          

Quilicura 81                471 2,272                 15/75 16.1             2,615          

South

El Bosque 80                575 1,999                 11/81 16.6             2,973          

La Pintana 66                623 1,411                 5/91 14.5             3,648          

San Bernardo 69                556 2,028                 11/79 18.3             4,703          

South East

La Florida 77                621 2,706                 25/62 13.9             5,490          

Puente Alto 60                667 2,560                 26/61 16.4             7,946          

South West

Cerrillos 78                493 2,781                 19/67 14.3             1,143          

Maipú 78                461 2,475                 29/58 15.3             7,422          

West

Cerro Navia 80                479 1,805                 7/85 16.7             2,519          

Pudahuel 81                462 2,090                 18/70 16.0             3,382          

Renca 79                492 1,995                 14/76 15.9             2,279          

 

AVERAGE 76                561.7 4,085                 26/62 15.3             2,608          

(*) Number of Infants refers to the number of those 365 days old and younger observed in a  (calendar) week, 

averaged for each municipality. Thereby,  an infant enters our dataset for a period of no more than fifty two 
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In addition to a direct effect of access to quality health care due to high percentage of 

private health insurance and high per-capita income, those individuals in East 

municipalities are also exposed to low level of air pollution as compared to that of 

other municipalities. This shows that there is geographical sorting in which rich 

individuals can afford to live in municipalities that are exposed to low levels of air 

pollution. This geographical sorting will create an indirect effect on mortality via low 

levels of exposure to air pollutants of those rich individuals. By failing to properly 

account for geographical sorting one may overestimate the effect of air pollution on 

infant mortality (yielding upward biased estimates). Indeed, Table 3 shows that 

municipality-level per-capita income has a strong negative correlation with infant 

mortality.
23

 This could be due to both, the direct effect of per-capita income (and 

access to better health care) on infant mortality as well as due to the indirect effect of 

per-capita income via low exposure to air pollutants.
24

  

 

Table 3: Municipality-level Correlation Matrix for PM10 pollution, Infant Mortality 

Rate, Per-Capita Income and Ground-level Elevation. 
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 Similarly, the correlation between municipality per-capita and percentage of population with private 

health insurance is .98 (not shown in Table 3). 
24

 Table 3 shows that the correlation between ambient PM10 pollution and average municipality-level 

per-capita income is -.57. 

Infant 

Mortality 

Rate

Per-capita 

Income
PM10 CO Elevation

Per-capita Income -0.69 1

PM10 0.36 -0.57 1

CO 0.13 -0.22 0.66 1

Elevation -0.61 0.68 -0.70 -0.33 1

Infant Mortality Rate 1

Infant 

Mortality 

Rate

Per-capita 

Income
PM10 CO Elevation

Per-capita Income -0.69 1

PM10 0.36 -0.57 1

CO 0.13 -0.22 0.66 1

Elevation -0.61 0.68 -0.70 -0.33 1

Infant Mortality Rate 1

Infant 

Mortality 

Rate

Per-capita 

Income
PM10 CO Elevation

Per-capita Income -0.69 1

PM10 0.36 -0.57 1

CO 0.13 -0.22 0.66 1

Elevation -0.61 0.68 -0.70 -0.33 1

Infant Mortality Rate 1

Infant 

Mortality 

Rate

Per-capita 

Income
PM10 CO Elevation

Per-capita Income -0.69 1

PM10 0.36 -0.57 1

CO 0.13 -0.22 0.66 1

Elevation -0.61 0.68 -0.70 -0.33 1

Infant Mortality Rate 1
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Moreover, those municipalities in the East are also located at the highest ground 

elevation, and those municipalities at high ground elevations also present low 

concentrations of PM10 pollution (Table 2). There are at least two reasons that explain 

this high negative correlation between ground elevation and concentrations of 

ambient air pollution. First, the chemical formation of fine part of particulate matter is 

largely influenced by the presence of humidity contained in the air. Regions at lower 

elevations tend to attract more humidity (so that they are more foggy and often times 

get swamped) which facilitates the chemical process underlying the formation of fine 

particulate matter, which in turn increases concentrations of PM10 pollution. For 

instance, the West sub-region is an area of low ground elevation and former wetlands 

that is characterized by high content of air humidity. The West sub-region also 

presents high concentrations of PM10 pollution. Second, in the early hours of the day 

a large mass of cold air descends from the Andes Mountains through the East 

mountain canyons blowing mostly on the East side of Santiago and creating a 

constant breeze of clean air that pushes away air pollutants towards the westbound of 

the city. This causes that the concentrations of air pollutants in the east side of the city 

are very low, particularly early in the mornings (Garreaud and Rutllant 2006). 

 

c. Time Variation 
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In this section we discuss yearly time trends as well as seasonal variation for ambient 

PM10 pollution and infant mortality rate. Furthermore, we discuss how the prevalence 

of thermal inversions largely drives seasonal variation of air pollutants. 

 

i. Yearly Trends for Ambient PM10 Pollution and Infant 

Mortality 

 

Figure 4 presents yearly concentrations of ambient PM10 pollution during the period 

1997-2008 as well as annual average infant mortality over the same period for 34 

municipalities of Santiago’s metropolitan area. Figure 4 show a steady decline in 

concentrations of ambient PM10 pollution over this period, as well as a decline in 

infant mortality rates. The steady decline in ambient PM10 pollution during this period 

can be (at least partially) explained by a bundle of policies aimed at reducing ambient 

particulate air pollution enforced by Chile’s health and environmental authorities. 

After three years of consistently exceeding the yearly standard for ambient PM10 

pollution concentrations during the early nineties (1992-1995), in year 1996 

Santiago’s Metropolitan Region was officially declared a ‘saturated zone’ by airborne 

particulate matter, carbon monoxide and ozone. As a consequence, the Chilean 

environmental authority designed a bundle of policies to address the problem of air 

pollution in Santiago’s Metropolitan Area, known as the first Air Pollution Control 

and Prevention Plan (PPDA, according to the acronym in Spanish). The actual 

implementation and enforcement of the provisions of the PPDA actually started in 

year 1998. The first PPDA was derogated and substituted by a new updated one in 
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2003 (and then again in 2010). They all focused on reducing concentrations of PM10 

pollution.
25

 The PPDAs includes both long-term and short-term provisions. Among 

the long-term ones was the total conversion of the city-wide motor vehicle fleet in 

which all new vehicles must have a catalytic converter that significantly reduces 

pollution emissions, and taxis and buses for public transportation must adopt this 

converter in order to be allowed to circulate. Accordingly, the gasoline mix for these 

motor vehicles was also substituted by a cleaner one. Furthermore, there were similar 

conversions in the standards for the most polluting stationary emitters (manufacturing 

facilities) in Santiago’s Metropolitan Area. With the exception of provisions that 

target short-lasting episodes of high concentrations of PM10 pollution, none of these 

long-term policies have been evaluated thus far, neither as a package nor 

individually.
26
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 Chile’s Ministry of Environment is currently revising the latest PPDA that will now focus on 

reducing concentrations of fine particulate matter (PM2.5). 
26

 One of the most salient policies of the PPDA was a short-term provision in which the government 

would identify and announce days in which PM10 pollution was expected to exceed certain dangerous 

threshold. The government would flag those days and announce a package of ‘emergency provisions’: 

mandatory restrictions on driving, the shutdown of some major stationary emitters (factories in the 

outskirts of the city), the strict prohibition of wood fuel for heating of dwellings, etc. Mullins and 

Bharadwaj (2015) estimate that these ‘emergency provisions under Santiago’s PPDA resulted in 

reductions of PM10 concentrations in the order of 17 percent to 25 percent in the days immediately 

following these environmental episodes. 
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Figure 4 : Year Time Trends of PM10 Pollution and Infant Mortality. Santiago’s 

Metropolitan Area. Period 1997-2008. 

 

ii. Seasonal Variation of Ambient PM10 Pollution and Infant 

Mortality 

 

Most of the variation in ambient PM10 pollution in Santiago’s Metropolitan Area 

occurs across the different seasons within any given year (see Figure 5). In the late 

summer (January and February) concentrations of PM10 start off low to then increase 

sharply during the autumn and reach a peak during the late autumn and early winter 

(May through June). Then these concentrations decline with the first rainfalls in the 

middle of the winter. They subsequently decline sharply with the continuous 

precipitations, warmer temperatures and intense winds of early spring (late August, 

September and October), and remain low throughout the rest of the summer 

(December through January).  
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Figure 5: Seasonal trends of PM10 Pollution and Infant Mortality. Santiago’s 

Metropolitan Area. Period 1997-2008. 

 

The plot presented in Figure 5 show that infant mortality follow a seasonal pattern 

similar to that of ambient PM10 pollution concentrations, but with some lag. Infant 

mortality increases steadily during the autumn to then sharply peak in the early winter 

(June) and remain high during the first months of spring (through September). 

Although the seasonal pattern presented in Figure 5 suggests strong correlation (with 

some lag) of ambient PM10 pollution and infant mortality, this does not necessarily 

imply that there is a causal relationship. There are important factors that present 

similar seasonal variation, such as seasonal viral outbreaks, that may as well drive 

infant mortality. In the next section we further discuss these correlations and we 

discuss our identifying strategy in order to estimate a causal effect. 

 

iii. Seasonal Variation of Thermal Inversions and Ambient PM10 

Pollution 
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Seasonal variation in ambient PM10 pollution concentrations can be explained by 

changes in pollution emissions as well as by changes in the ventilation conditions of 

Santiago’s air basin. As explained earlier, thermal inversions and precipitations play a 

major role in the ventilation of air pollutants in Santiago. Also, both thermal 

inversions as well as precipitations present a clear seasonal pattern; both are prevalent 

mostly during the winter. Figure 6 and Figure 7 show how the weekly variation in 

PM10 pollution in an average year closely tracks both thermal inversions as well as 

precipitations. Figure 6 presents weekly concentrations of ambient PM10 pollution as 

well as temperature difference (at elevations of 1080 m vs 540m) over the period 

1997-2008. Positive temperature difference indicates the presence of a thermal 

inversion. Thermal inversions are usually prevalent between week 16 (late April) and 

week 35 (early September) of the calendar year. Furthermore, Figure 7 also presents 

weekly precipitations and temperature at Santiago’s ground level over the same 

period. The bottom plot shows that precipitations are more prevalent between week 

21 (early to mid-June) and week 36 (mid-September), which roughly correspond to 

Santiago's winter. Furthermore, the bottom plot shows that average temperatures drop 

rapidly between weeks 12 and 17 (April and early May) to remain low throughout the 

rest of Santiago’s winter and then slowly start to climb back up by week 36 (mid-

September). In sum, Figure 6 shows that concentrations of PM10 pollution highly 

correlate with the presence and intensity of thermal inversions during the year. 

Indeed, the highest concentrations of ambient PM10 pollution usually occur around 

the same time of the year as when the thermal inversion is strongest (largest 

temperature difference at elevations of 1080m and 540m).  
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Figure 6: PM10 and Thermal Inversions by Week of the Year. Period 1997-2008. 

 

Figure 7: Precipitations and Temperature by Week of the Year. Period 1997-2008. 
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5. Framework for Regression Analysis 

 

a. Ordinary Least Square (OLS) and Fixed Effects (FE) Estimation for 

Panel Data 

 

To estimate the effect of PM10 pollution on infant mortality we take advantage of the 

municipality-week panel structure of our dataset over the period 1997-2008. Equation 

(1) below lays out the econometric framework. 

 

𝑀𝑖𝑤 = 𝛽0 + 𝛽1𝑃𝑖𝑤 + 𝛽2𝑊𝑖𝑤 + 𝛽3𝐷𝑀 + 𝛽4𝐷𝑌 + 𝜀𝑖𝑤 (1) 

 

Where 𝑀𝑖𝑤 denotes mortality rate at municipality 𝑖 for week 𝑤; 𝑃𝑖𝑤 denotes ambient 

PM10 pollution at municipality 𝑖 during week 𝑤; 𝑊𝑖𝑤 denotes weather variables for 

municipality 𝑖 and week 𝑤, such as precipitation, daily minimum and maximum 

temperature; 𝐷𝑀 and 𝐷𝑌 denote dummies for month and year, respectively,  and 𝜀𝑖𝑤 

denotes the unobserved error term. The parameter 𝛽1 captures the effect of exposure 

to ambient PM10 pollution on infant mortality rate. 

 

However, as we discussed in the previous section, characteristics of the population 

living in these municipalities (such as per-capita income or access to quality health 

care) as well as municipality-level health care infrastructure (such as primary care 
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facilities, hospitals, etc.) are likely to determine the infant mortality outcome.
27

 In 

fact, Table 3 shows that per-capita income is highly correlated with infant mortality, 

and so is the percentage of population with private/public health insurance (not shown 

in Table 3).
28

 Furthermore, as also shown in Table 3, municipality-level per-capita 

income—as well as the percentage of the population with private/public health 

insurance—is highly correlated with PM10 pollution concentrations at the 

municipality level. Therefore, leaving out of the model in equation (1) variables that 

determine infant mortality and that also correlate with the PM10 pollution variable 

would introduce bias in the estimation of 𝛽1. However, by estimating by 

municipality-level fixed effects we can indirectly capture these municipality-specific 

factors. Thereby, in the fixed-effect estimation we assume that the error term 𝜀𝑖𝑤 has 

the form 𝜀𝑖𝑤 = 𝜖𝑖 + 𝜖𝑖𝑤, so that equation (1) can be re-written as 

 

𝑀𝑖𝑤 = 𝛽0 + 𝛽1𝑃𝑖𝑤 + 𝛽2𝑊𝑖𝑤 + 𝛽3𝐷𝑀 + 𝛽4𝐷𝑌 + 𝛽5𝑦𝑖 + 𝜖𝑖 + 𝜖𝑖𝑤 (1’) 

 

Where 𝜖𝑖 is a municipality-specific error term that captures all time-invariant 

differences across municipalities (such as municipality-level socio-economic 

conditions, access to health-care or municipality-level health care infrastructure). 

Furthermore, in equation (1’) above we add a municipality-specific year trend, 𝑦𝑖, 

that allows to control for municipality-specific time trends. 

 

                                                 
27

 For instance, public provision of primary health care in Chile is locally managed at the municipality-

level. 
28

 Unfortunately, we do not have data on municipality-level health care infrastructure or data on the 

quality of public primary care provision at the municipality level. 



 

 35 

 

b. 2SLS Estimation (OLS and FE) 

There is recent evidence of a positive relationship between mortality and economic 

activity (procyclical mortality). Heutel and Rhum (2016) examine this relationship for 

the U.S. and find that air pollution concentrations explain part of this positive 

relationship between economic activity and mortality. The rationale for this positive 

relationship goes as follows. During economic booms there is higher manufacturing 

production which would trigger higher emissions of air pollutants by the 

manufacturing plants. Likewise, economic booms allow for both more government 

revenue and that allow for more funding and provision of public healthcare as well as 

for higher individual disposable income that allows families to afford high-quality 

private healthcare—both of these allow for higher capacity to cope with the adverse 

effects of air pollution. In other words, possible time-varying confounding effects 

may arise from failure to control for changes in economic activity. Therefore, to 

identify a causal effect of air pollution on infant mortality in the two-stage least 

squares regressions (2SLS) we use variation in PM10 pollution that is not driven by 

emissions—which are in turn affected by economic activity—but variation in PM10 

pollution that is driven by changes in ventilation of Santiago’s air basin (via variation 

in thermal inversions). Therefore, in this section we use the meteorological variables 

that explain thermal inversions as instrumental variables for air pollution and estimate 

equations (1) and (1’) by 2SLS. In the first stage we regress 𝑃𝑖𝑤 on the instruments, 

conditional on the rest of the variables in the model, and predict values for 𝑃𝑖𝑤 to 

obtain 𝑃̂𝑖𝑤. Then, in the second stage we regress  𝑀𝑖𝑤 on 𝑃̂𝑖𝑤 and the rest of the 

variables in the model. We use as instruments a vector of meteorological variables 
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that drive thermal inversions and ventilation of Santiago’s air basin, which includes: 

(i) a three-degree polynomial of week-average temperature difference at 1068 vs. 540 

meters,  (ii) a two-degree polynomial of week-average wind speed at 1068 meters, 

and (iii) a two-degree polynomial of week-average atmospheric air pressure at 1068 

meters. All these meteorological variables create city-wide variation in the 

concentrations of air pollution in Santiago’s air basin and we argue that this source of 

variation is exogenous to infant mortality. That is, the only effect that these variables 

have on infant mortality is via their effect on concentrations of ambient PM pollution, 

but they are not correlated with the error term. Furthermore, to create municipality-

specific exogenous variation in the concentrations of air pollution, we interact the 

meteorological variables that drive thermal inversions (specifically, a two-degree 

polynomial of week-average temperature difference, at 1068 vs. 540 meters) with 

municipality-specific dummies. In this way, we estimate the equation below to obtain 

the vector of parameters 𝛾𝑠 and obtain predicted values for 𝑃𝑖𝑤.
29

 

 

𝑃𝑖𝑤 = 𝛾1 + 𝛾2𝑇𝐼𝑖𝑤 + 𝛾3𝑊𝑖𝑤 + 𝛾4𝐷𝑀 + 𝛾5𝐷𝑌 + 𝛾6𝑦𝑖 + 𝜐𝑖𝑤 
 

 

Where 𝑇𝐼𝑖𝑤 denotes the set of thermal inversion instruments outlined above.  

In the second stage we substitute 𝑃̂𝑖𝑤 for 𝑃𝑖𝑤 in equations (1) and (1’) above, and 

regress 𝑀𝑖𝑤 on 𝑃̂𝑖𝑤 and the rest of the variables in the model (𝑊𝑖𝑤, 𝐷𝑀, 𝐷𝑌 and 𝑦𝑖).  

 

𝑀𝑖𝑤 = 𝛽0 + 𝛽1𝑃̂𝑖𝑤 + 𝛽2𝑊𝑖𝑤 + 𝛽3𝐷𝑀 + 𝛽4𝐷𝑌 + 𝛽5𝑦𝑖 + 𝜀𝑖𝑤 (1’’) 

 

                                                 
29

 𝑃̂𝑖𝑤 = 𝛾1 + 𝛾2𝑇𝐼𝑖𝑤 + 𝛾3𝑊𝑖𝑤 + 𝛾4𝐷𝑀 + 𝛾5𝐷𝑌 + 𝛾6𝑦𝑖  
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where, in the FE 2SLS model it is assumed that 𝜀𝑖𝑤 =  𝜖𝑖 + 𝜖𝑖𝑤. 

 

Therefore, if confounding effects may bias our OLS (or FE) estimates of 𝛽1, the 2SLS 

estimation yields unbiased estimates for 𝛽1 if the underlying assumptions for the 

instruments 𝑇𝐼𝑖𝑤 holds true (that is, that they are correlated with air pollution but 

uncorrelated with the error term). Moreover, even in the presence of measurement 

error in the imputation of air pollution at the municipality-level—which would 

introduce attenuation bias in the estimation of 𝛽1—the 2SLS estimation also yields 

unbiased estimates for 𝛽1. 

 

6. Results 

 

We present results of the first stage regression in Table 4, and results for the effect of 

exposure to ambient PM10 pollution on infant mortality in Table 5 (for OLS, FE, 

2SLS and FE 2SLS). Furthermore, we present results for the effect of ambient PM10 

pollution on infant mortality due to respiratory and cardiovascular diseases in Table 

6. The parameter estimates associated to PM10 correspond to a 10-𝜇𝑔/𝑚3 change in 

PM10 concentrations. Columns 1 and 2 in tables 5 and 6 present results of OLS 

estimations and columns 3 and 4 present results for municipality-level Fixed Effects 

(FE) estimations. In addition, columns 5 through 7 present results for 2SLS 

estimations and columns 8 through 10 present results for FE 2SLS estimations. 

However, before discussing the results from the second stage, in the next section we 

examine the first-stage estimation and discuss the validity of the instruments. 
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a. First-stage Regressions 

 

As explained earlier, in this section we look at the geographical and meteorological 

drivers of ventilation of ambient PM10 pollution in Santiago’s Metropolitan Area. 

Moreover, for the second stage we use the meteorological variables that explain 

thermal inversions for Santiago’s air basin as source of exogenous variation of 

ambient PM10 pollution. More precisely, we look at the difference of ambient air 

temperature between the meteorological station Lo Prado (located at 1068 meters 

above sea level) and Torre Entel (located at the city’s elevation, at 540 meters above 

sea level). Furthermore, we use data on atmospheric air pressure and wind speed at 

station Lo Prado as well as municipality-week level data on precipitations, high and 

low temperatures. We assume that none of the meteorological variables measured at 

Lo Prado should have a direct effect on infant mortality other than via their indirect 

effect on ambient air pollution concentrations. That is, we impose the exclusion 

restriction that, in the infant mortality regression (equation 1’), the parameters 

associated to temperature, air pressure and wind speed at Lo Prado are all equal to 

zero. Hence, using this meteorological data we instrument for the municipality-level 

PM10 pollution data to obtain estimates of the effects of exposure to ambient PM10 

pollution on both infant mortality and infant mortality due to cardiovascular and 

respiratory causes.  

 



 

 39 

 

Table 4 presents results of a FE regression of ambient PM10 pollution on 

meteorological variables. Explanatory variables are as follows: (i) a third degree 

polynomial of week-average temperature difference (540m vs. 1068m); (ii) a two 

degree polynomial of week-average wind speed at 1068 meters above sea level; (iii) a 

two degree polynomial of week-average atmospheric air pressure at 1068 meters 

above sea level; (iv) municipality-level week-average low daily temperature; (v) 

municipality-level week-average low daily temperature; (vi) municipality-level week-

average precipitations; (vii) month and year dummies; and, (viii) a municipality-

specific year trend.  As shown in Table 4, all coefficients are highly statistically 

significant. Furthermore, the set of regressors (i) through (iii) pass Staiger and Stock 

(1997)’s test of weak instruments at the 95 percent confidence level. We use these 

estimates presented in Table 4 to generate predicted values for ambient PM10 

pollution. Thereby, in the results presented in tables 5 and 6 we use these predicted 

values to substitute for the ambient PM10 pollution, and then run 2SLS and FE 2SLS 

regressions. 
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Table 4: First Stage Regression for PM10 Pollution 

 

 

b. Effect of Ambient PM10 Air Pollution on Overall Infant Mortality 

 

Table 5 presents parameter estimates for the effect of PM10 pollution on overall infant 

mortality. Column 1 shows that the OLS estimate for the specification that does not 

include any additional controls yields statistically significant estimate for 𝛽1. Adding 

controls for temperature, precipitation and month and year dummies (column 2) 

results in a much better fit of the infant mortality data (which is reflected in a higher 

R
2
 statistic) but the OLS estimate for 𝛽1 turns statistically non-significant. Recall that 

VARIABLES (1) (2) (3) (4) (5) (6)

Temperature Difference (Temp. at  1068 vs. 550 mts.) 0.799*** 0.794*** 1.797*** 0.775*** 0.795*** 1.862***

(0.026) (0.021) (0.103) (0.032) (0.028) (0.127)

TempDiff (squared) -0.037*** -0.048*** -0.082*** -0.034*** -0.048*** -0.104***

(0.006) (0.004) (0.024) (0.003) (0.003) (0.008)

TempDif (cubic) -0.014*** 0.006*** 0.006*** -0.014*** 0.006*** 0.006***

(0.002) (0.001) (0.001) (0.001) (0.000) (0.000)

WindSpeed at 1068m -0.581*** -0.842*** -0.832*** -0.753*** -0.843*** -0.833***

(0.214) (0.108) (0.101) (0.088) (0.052) (0.054)

WindSpeed (squared) -0.024 0.080*** 0.079*** 0.002 0.080*** 0.079***

(0.022) (0.012) (0.011) (0.009) (0.007) (0.007)

Atmospheric Air Pressure at 1068 mts. 27.531** -32.551*** -32.898*** 23.355*** -32.114*** -32.312***

(10.931) (8.322) (8.200) (3.481) (3.311) (3.477)

Atmospheric Air Pressure (squared) -0.015** 0.018*** 0.018*** -0.013*** 0.018*** 0.018***

(0.006) (0.005) (0.005) (0.002) (0.002) (0.002)

MunicipalityGroundElevation*TempDiff -1.777*** -1.889***

(0.168) (0.215)

MuniGroundElev*TempDiff (squared) 0.059 0.099***

(0.040) (0.013)

Low temp (weekly avg., by municipality) -0.045*** 0.006 0.004 -0.030*** 0.010 0.009

(0.016) (0.012) (0.012) (0.009) (0.008) (0.007)

High temp (weekly avg., by municipality) 0.071*** 0.010 0.011 0.045*** 0.009*** 0.009***

(0.009) (0.007) (0.007) (0.005) (0.003) (0.003)

Precipitations (weekly avg., by municipality) -0.122*** -0.185*** -0.184*** -0.125*** -0.185*** -0.184***

(0.007) (0.007) (0.007) (0.005) (0.010) (0.010)

No Yes Yes No Yes Yes

No No No Yes Yes Yes

Wu-Hausman p-value 0.917 0.00248 0.00644 0.933 0.00357 0.00655

F test on instruments 748.6 756.9 616.3 659.7 659.7 564.4

UnderID p-value 0 0 0 0 0 0

R-squared 0.366 0.743 0.753 0.380 0.722 0.735

Observations 18,800 18,800 18,800 18,800 18,800 18,800

Robust standard errors in parentheses.*** p<0.01, ** p<0.05, * p<0.1.

2SLS FE 2SLS

Municipality-specific year trend

Month & year dummies
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PM10 pollution presents a strong seasonal pattern (see Figure 5), so that adding these 

seasonal controls captures most of its seasonal variation, which may explain why this 

specification results in a non-significant estimate of 𝛽1.
30

  

 

On the other hand, controlling for municipality-specific fixed-effects allows to 

account for the different access to quality healthcare of those families living in 

different municipalities, which in turns allows to control for the differential capacity 

to cope with the adverse effects of exposure to PM10 pollution.
31

 The FE regressions 

allow to account for this effect. In turn, the parameter estimates for  𝛽1 in the FE 

regressions (columns 3 and 4) turn smaller than those of the OLS regressions 

(columns 1 and 2). Furthermore, the inclusion of seasonal variables  (temperature, 

precipitation) as well as month and year dummies, in column 4, results in a non-

significant estimate for 𝛽1—while also resulting in a better fit of the data (larger R
2
 

statistic). 

 

Columns 5 through 7 of Table 5 present 2SLS estimates for 𝛽1. These estimates are 

robust to the possible presence of time-varying confounding effects. In particular, by 

instrumenting for PM10 pollution using variation driven by thermal inversions, the 

                                                 
30

 On the other hand, low temperature presents a negative (seasonal) correlation with PM10 pollution 
and a negative (seasonal) correlation with infant mortality (as shown in Figure 6 and Figure 7); 
thereby ignoring low temperature (as in column 1) would overestimate the parameter 𝛽1. Conversely, 
precipitations present a strong negative correlation with PM10 pollution and positive correlation with 
infant mortality (Figure 6 and Figure 7); thus ignoring precipitations (as in column 1) would 
underestimate the parameter 𝛽1. 
31

 In fact, Table 2 shows that high-income municipalities also present high percentage of families with 
private health insurance. Thus, families living in different municipalities have different access to 
quality health care, and are better/worse equipped to cope with the adverse effects of exposure to 
PM10 pollution. 
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2SLS regression exploits the variation in PM10 pollution concentrations that is due 

solely to variation in ventilation of the air basin, and not due to variation in emissions 

of PM10 pollutants. Possible time-varying confounding effects may arise from failure 

to control for changes in economic activity. That is, economic activity should be 

positively correlated with pollution emissions, as well as it is likely to be negatively 

correlated with infant mortality (via its effect on access to, or supply of, high-quality 

healthcare). Thereby, failing to account for changes in economic activity would result 

in downward biased estimates of 𝛽1. This may explain the larger parameter estimates 

for  𝛽1 from the 2SLS regressions (columns 5 through 7 of Table 5) as compared to 

those of OLS regressions (columns 1 and 2 of Table 5).
32

 Moreover, the 2SLS 

estimates for 𝛽1 turn significant even after adding controls for temperature, 

precipitation, month and year dummies (columns 5 and 6 of Table 5). However, as in 

the OLS and FE estimations outlined above, the 2SLS estimate for 𝛽1 turns smaller 

after adding these controls.  

 

Finally, controlling for municipality-specific fixed effects, in columns 8 through 10 of 

Table 5, the FE 2SLS regression yields parameter estimates that are robust to the 

presence of possible time-varying confounders and that also account for municipality-

specific fixed-effects,. Results presented in columns 8 through 10 of Table 5 show 

that the FE 2SLS estimates turn statistically significant, even after adding seasonal 

controls (temperature, precipitation), month and year dummies, and municipality-

specific year trends.  

                                                 
32

 On the other hand, if the main source of bias in the OLS and FE estimates had been seasonal viral 
outbreaks, and if PM10 and seasonal viral outbreaks are positively correlated (seasonal correlation), 
then we should have found larger estimates for 𝛽1 under OLS and FE than under 2SLS and FE. 
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The parameter estimates in columns 7 and 10 are of particular interest. They are not 

just robust to the presence of possible unobserved time-varying confounders, but 

also—by introducing municipality-specific exogenous variation in air pollution—they 

are robust to possible presence of residential sorting that may overestimate the effect 

of air pollution on infant mortality.
33

 In fact, a comparison of the parameter estimates 

presented columns 9 and 10 of Table 5 (as well as those presented in columns 6 and 

7) suggests that residential sorting may indeed overestimate the effect of air pollution 

on infant mortality rate. For example, the parameter estimate for 𝛽1 in column 9 

suggests that a 10-μg/m3 reduction in ambient PM10 concentrations decreases infant 

mortality rate by .424 points. However, as well-off individuals can afford to live in 

expensive municipalities, in the East bound of Santiago, they are thus exposed to 

lower levels of pollution. Thereby, according to our estimate presented in column 10, 

the effect of a 10-μg/m3 reduction in ambient PM10 concentrations is to decrease 

infant mortality rate by .346 points, which is about 18 percent smaller than the one 

presented in column 9.
34

  

 

                                                 
33

 That is, certain groups of people (say, those well-off living in municipalities with high per-capita 

income) are not just better equipped to cope with the adverse effects of PM10 pollution (due to, say, 

better access to quality health care) but they are also exposed to lower concentrations of PM10 pollution 

because they can afford to live in relatively expensive municipalities (that is, municipalities in the East 

bound of the city, which are exposed to lower concentrations of air pollution). Whereas the former 

presents a direct effect on infant mortality (which is controlled for by the municipality-specific fixed 

effect), the latter has an indirect effect on infant mortality, via lower exposure to air pollution (which is 

controlled for by introducing municipality-specific exogenous variation in air pollution). 
34

 We also ran this specification of municipality-specific instruments by interacting thermal inversions 

with ground elevation at the urban centroid of each municipality. Results from this specification (not 

shown) remain qualitatively the same.  
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In terms of the overall effect of air pollution on infant mortality, the parameter 

estimates presented in column 10 of Table 5 should be interpreted as follows. The 

estimate for the effect of ambient PM10 pollution on infant mortality presented in 

column 10 suggests that a 10-μg/m3 reduction in average exposure to ambient PM10 

yields 17.8 fewer all-cause infant deaths per 100,000 infants, per year 

[52*.346=18.0]. This represents a 2.2 percent decrease with respect to mean all-cause 

infant mortality (presented in the last column of Table 1). The average number of 

infants a year in Santiago for the period 1997-2008 is 85,006 (see Table 1), so that 

our estimate suggests there would be about 15.3 fewer infant deaths a year as a result 

of a 10-μg/m3 reduction in average ambient PM10 pollution. Moreover, Figure 4 

shows that average ambient PM10 pollution in Santiago decreased by about 30-μg/m3 

from the late 1990s to 2008. Thereby our estimate suggests that such a reduction in 

average ambient PM10 pollution prevented about 45.9 infant deaths over the period 

1997-2008. 
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Table 5: Estimates of the Effects of Exposure to PM10 Pollution on Overall Infant Mortality Rate. 

 

Table 6: Estimates of the Effects of Exposure to PM10 Pollution on Infant Mortality Rate Due to Respiratory and Cardiovascular 

Diseases. 

 

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

PM10 0.396*** 0.085 0.375*** -0.039 0.698*** 0.469*** 0.445*** 0.711*** 0.424** 0.346**

(0.065) (0.096) (0.075) (0.109) (0.112) (0.180) (0.166) (0.115) (0.184) (0.174)

- Controls for temperature, precipitations, 

month & year dummies 
No Yes No Yes No Yes Yes No Yes Yes

- Controls for municipality-specific year-

trends
No No Yes Yes No No No Yes Yes Yes

- Municipality-specific instruments No No Yes No No Yes

Observations 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800

R-squared 0.002 0.008 0.002 0.008 0.001 0.007 0.007 0.000 0.009 0.009

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Infant Mortality Rate

OLS FE 2SLS FE 2SLS

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

PM10 0.131*** 0.026 0.140*** 0.024 0.202*** 0.109** 0.066 0.206*** 0.104* 0.094*

(0.020) (0.029) (0.026) (0.031) (0.031) (0.053) (0.048) (0.032) (0.054) (0.052)

- Controls for temperature, precipitations, 

month & year dummies 
No Yes No Yes No Yes Yes No Yes Yes

- Controls for municipality-specific year-

trends
No No Yes Yes No No No Yes Yes Yes

- Municipality-specific instruments No No Yes No No Yes

Observations 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800

R-squared 0.003 0.015 0.003 0.015 0.002 0.015 0.015 0.003 0.019 0.019

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Infant Mortality Rate Due to Respiratory and Cardiovascular Diseases

OLS FE 2SLS FE 2SLS
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c. Effect of Ambient PM10 Pollution on Infant Mortality Due to 

Respiratory and Cardiovascular Diseases 

 

Table 6 presents results for the effect of ambient PM10 pollution on infant mortality 

due to respiratory and cardiovascular diseases. The results mimic those presented in 

the previous section. Whereas both the OLS and FE estimates turn statistically 

significant (columns 1 and 3), once we introduce seasonal controls, time dummies 

(and municipality-specific year trends, in column 4 only), these estimates turn non-

significant (columns 2 and 4). On the other hand, the 2SLS estimates presented in 

column 5 and the FE 2SLS estimates presented in column 8 both turn statistically 

significant, even after introduction of seasonal controls, month and year dummies and 

time trends (columns 6 and 9) both the 2SLS as well as FE 2SLS yield (weakly) 

significant estimates. Furthermore, when exploiting municipality-specific exogenous 

variation in air pollution both 2SLS and FE 2SLS estimates turn slightly smaller 

(columns 7 and 10) and only weakly significant in the FE 2SLS regression.  

 

Our estimate for the effect of ambient PM10 pollution on infant mortality due to 

respiratory and cardiovascular diseases presented in column 10 suggests that a 10-

𝜇𝑔/𝑚3 reduction in average exposure to ambient PM10 concentrations prevents, each 

year, 4.8 infant deaths due to respiratory and cardiovascular diseases, per 100,000 

infants. This figure represents an 8.3 percent decrease with respect to mean deaths 

due to respiratory and cardiovascular disease a year.  
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7. Additional Results – Effect of Cumulative Exposure to Ambient PM10 

Pollution 

 

The epidemiological and medical literatures have studied both acute and chronic 

effects of exposure to air pollutants. Whereas chronic effects usually refer to exposure 

during the entire life span, acute effects have usually been only vaguely defined as 

short term exposure. Due to limitations for identification, most of the recent literature 

has focused largely on acute exposure to air pollution.
35

 The medical literature 

suggests that exposure to air pollutant should have a detrimental effect on human 

health, and that it should continuously deteriorate when exposed to a (highly) polluted 

environment. Indeed, in the case of mortality as an extreme health outcome, it is 

likely that those deceased during episodes of high pollution are individuals whose 

health has been continuously deteriorating up to a point that they became very 

vulnerable to die if exposed to a (highly) polluted environment, even for a relatively 

short period of time. 

 

In this section we use the same identification strategy as in section 6 to explore the 

effects of cumulative exposure to ambient PM10 pollution over a longer period of 

time, that is, over several consecutive weeks. To instrument for average ambient 

PM10 pollution over n (n>1) weeks we use n lags for the meteorological variables 

described in section 5 (thermal inversions). Figure 8 presents FE 2SLS results for the 

effect of cumulative exposure to PM10 pollution for a period of up to two twenty six 

                                                 
35

 An exception is the work of is the recent work of Anderson (2015) that looks at mortality among 

elderly individuals living in the proximity of U.S. highways in Los Angeles Metropolitan Area and 

compares those living downwind to those living upwind from major highways. 
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weeks (half a year). In the figure each estimate for 𝛽1 is plotted alongside its 

corresponding 95 percent confidence interval. The figure shows that the effect of 

cumulative exposure to ambient PM10 pollution is increasing in the number of weeks 

of exposure up to 13 weeks (one quarter), and it can be more than three times as large 

as the acute effect (effect of exposure during the current week). This result suggests 

that our estimates for acute exposure presented in Table 5 should be taken as a 

conservative (lower bound) estimate of the overall effect of exposure to ambient PM10 

pollution on infant mortality. 

 

 

Figure 8: Effect of Cumulative Exposure to PM10 Pollution on Infant Mortality Rate 
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8. Discussion 

 

Our results for the effect of ambient PM10 pollution on infant mortality fall 

somewhere in between those results from previous studies, such as for Mexico City 

and for California. Whereas our estimate of the effect of a 10-μg/m3 reduction in 

exposure to ambient PM10 on infant mortality is 17.8 fewer infant deaths per 100,000 

infants, per year, Arceo, Hanna, and Oliva (2016)’s estimate is 123.2 fewer infant 

deaths and Currie and Neidell (2005)’s estimate is 16.4 fewer infant deaths. 

Furthermore, these fewer infant deaths represent a 2.2 percent decrease of mean 

annual infant mortality for Santiago, a 6.2 percent decrease for Mexico City and a 4.2 

percent decrease for California.
36

 

 

This suggests that the estimates of the concentration-response function for the effects 

of exposure to ambient PM10 pollution on infant mortality vary according to different 

countries and geographical locations.
37

 This is important for the design of 

environmental health policy for different countries. In Chile, for example, the 

environmental authority has developed Air Pollution Control and Prevention Plans 

(PPDA) for Santiago since the late 1990s, and more recently also for other smaller 

cities. As explained earlier, PPDAs consist of a battery of provisions for reducing air 

                                                 
36

 Recall that the average infant mortality rate for Santiago over the period 1997-2008 is 1.55 percent. 

Similarly, the average infant mortality rate in Mexico City over the period considered in Arceo, Hanna, 

and Oliva (2016)’s paper (1997-2006) is 1.987 percent. On the other hand, the average infant mortality 

rate in California for the period considered in Currie and Neidell (2005)’s paper (1989-2000) is .391 

percent. That is, the average infant mortality rate in Santiago is about eighty percent as large as that of 

Mexico City and about four times that of California. 
37

 There is a variety of reasons for these differences. It could be because of differences in the chemical 

composition of the pollutants, levels of concentrations of pollutants, characteristics of the population 

such as their health and capacity to cope with low air quality, government environmental and health 

programs, etc. (Arceo, Hanna, and Oliva (2016). 
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pollution.  These PPDAs are evaluated ex-ante estimating social costs and benefits of 

expected improvements in air quality using concentration-response estimates from 

different studies.  

 

For Chile’s first PPDA in 1998, the concentration-response estimate that was used 

was that from Ostro et. al. (1996), which estimates that 10-μg/m3 decrease in average 

ambient PM10 pollution was associated with a 1.1 percent decrease in mortality across 

all age groups. Our concentration-response estimate yields that 10-μg/m3 change in 

average ambient PM10 pollution reduces mean all-cause infant mortality by 2.2 

percent, a figure that is twice as large as that of Ostro et. al. (1996). This suggests that 

the estimated benefits from reducing ambient PM10 pollution concentrations in 

Santiago were likely to be largely underestimated in Santiago’s 1998 PPDA.
38

 

Overall, using the estimates presented in this chapter would increase the estimated 

social benefits of air pollution reduction, thus suggesting that a more ambitious PPDA 

may have been worthwhile. 

 

In fact, whereas we estimate that a 30-μg/m3 reduction in ambient PM10 pollution 

(from the late 1990s to 2008) saved 45.9 infants lives, using Ostro et. al. (1996)’s 

estimates such a reduction in ambient PM10  pollution would have saved only 22.5 

infant lives. Chile’s Ministry of Social development recently set Chile’s official value 

                                                 
38

 Reductions in the risk of premature mortality (across all age groups) represent 68 percent of the total 

benefits valued in Santiago’s 1998 PPDA. 
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of a statistical life at US$ 0.431 million (MINDES 2017). Thereby, those additional 

23.4 saved infant lives can be valued today at US$ 10.085 million.
39

 

 

9. Concluding Remarks 

 

Air pollution is a growing concern in emerging economies. Estimating the effects of 

the adverse effects of ambient air pollution on human health is of great importance for 

the design of environmental policies that aim to reduce emissions of air pollutants and 

mitigates its adverse effects. In this chapter we analyzed the case of Santiago, Chile, a 

major city in an emerging economy that has suffered from the high levels of ambient 

air pollutants since the late 1980s.  

 

We focused on the effects of exposure to ambient PM10 pollution on infant mortality 

as particularly sensitive population (which can also be used as an index of overall 

human health). To accurately estimate the effects of air pollution on infant mortality 

we used a large municipality-week level dataset—spanning a period of 12 years—to 

obtain FE estimates that control for municipality-specific unobservable effects. 

Furthermore, we used detailed meteorological data that produces municipality-week 

exogenous variation on ambient PM10 pollution concentrations (via thermal 

inversions) allowing us to control for possible time-varying municipality-week 

confounding effects. We found statistically significant effects on infant mortality both 

                                                 
39

 Chile’s official figure for value of statistical life varies according to whether it is for deaths 

associated to traffic accidents or for deaths associated to cardiovascular and respiratory due to air 

pollution. In the calculation above we used the latter. 
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for all-cause infant mortality as well as infant mortality due to respiratory and 

cardiovascular diseases. We find that the effect of a 10-𝜇𝑔/𝑚3 reduction in exposure 

to ambient PM10 pollution on infant mortality results in 18 fewer infant deaths a year, 

per 100,000 live births. Furthermore, we contrasted our estimates to those from recent 

studies in California and Mexico City. Our results suggests that extrapolation of 

concentration-response estimates from industrialized countries to emerging 

economies should be conducted with caution. 
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Chapter 2: Air Pollution and Urgent Care Visits: Estimation of a 

Causal Relationship Using Exogenous Variation of PM2.5 

Concentrations in Santiago, Chile 

 

1. Introduction 

 

There is a large literature that looks at the effects of real world exposure to air 

pollution on human health (Pope III and Dockery 2006).  Most of the literature that 

focuses on the effects of acute exposure to air pollution looks at the effects of 

exposure to particulate matter (PM) on emergency respiratory visits and on hospital 

admissions due to respiratory diseases (Zheng et al. 2015; Wilson et al. 2004; Lim et 

al. 2016). For example, early studies in the U.S. (Seattle, WA) examine the effect of 

PM2.5 pollution on hospital emergency department visits among children (Norris et al. 

1999) and the non-elderly population (Sheppard et al. 1999). Around the same time, 

studies in Santiago, Chile look at the effects of PM pollution on urgent care visits to 

primary health facilities  (Ostro et al. 1999) and on visits to a Children’s Hospital 

(Ilabaca et al. 1999).
40 

 

 

In this chapter I look the health effects of acute exposure to fine particulate matter 

(PM2.5) on urgent care visits in Santiago, Chile. I look at both the effects of same-day 

                                                 
40

 Since then, there is a large literature of studies that looks at the acute health effects of air pollution in 

industrialized countries such as the U.S., Australia and Europe, as well in middle income and 

developing countries such as Chile, Australia, Korea, Taiwan and China  (Prieto-Parra et al. 2017; 

Fusco et al. 2001; Hwang, Hu, and Chan 2004; Tsai et al. 2006; Ko et al. 2007; Park et al. 2013; 

Jalaludin et al. 2008). 
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exposure as well as the effect of exposure over a period of up to fourteen consecutive 

days. The existing literature examines the effect of particulate air pollution across 

different age groups as well as across different cardiopulmonary diseases such as 

asthma, pneumonia, upper and lower respiratory diseases, cardiovascular and 

circulatory diseases, etc. (Pope 3rd 2000).  Likewise, I estimate effects for different 

age groups (infants, toddlers, children, adults and elderly) and focus on those urgent 

care visits associated to respiratory diseases (upper respiratory, lower respiratory, 

pneumonia and respiratory associated to influenza) and those urgent care visits 

associated to cardiovascular and circulatory diseases. 

 

However, most of the studies in the existing epidemiological literature fail to identify 

a causal effect of air pollution on emergency respiratory visits because of failing to 

control for potential confounding factors. When important factors that affect health 

outcomes, and that also correlate with air pollution, are not properly accounted for the 

effect of such unobserved factor is captured by the air pollution variable. This 

introduces bias on the estimate of the effect of air pollution on the health outcome 

and, thereby, it prevents from identifying a causal effect of air pollution on the health 

outcome. Successfully controlling for possible confounding effects remains a major 

challenge for most of the epidemiological literature (Touloumi et al. 2006) and there 

is skepticism on whether the effects identified by this literature are actually causal or 

mere statistical associations (Gamble and Lewis 1996).  
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With the exception of Braga et al. (2000), who control for respiratory epidemics, most 

epidemiological studies fail to account for the effect of seasonal respiratory viruses.  

Outbreaks of seasonal respiratory viruses usually occur during the winter time, 

around the same time of the highest levels of PM pollution concentrations. Therefore, 

failing to account for seasonal respiratory viruses overestimates the damaging effects 

PM pollution on health. In this chapter I explicitly account for seasonal respiratory 

viruses by using data on the prevalence of seasonal respiratory viruses during 

Santiago’s winter period (syncytial virus, type A flu, type B flu, parainfluenza, 

adenovirus and metavirus). However, I do not account for other non-viral diseases 

that may also drive respiratory or cardiovascular and circulatory urgent care visits. 

 

Yet, failing to account for seasonal respiratory viruses (or non-viral diseases) is not 

the only reason that estimates of the effects of exposure to air pollutants on health 

outcomes may be biased. For example, avoidance behavior may also act as a 

confounding effect. The problem of avoidance behavior arises when, at times of high 

pollution concentrations, those individuals most affected by air pollution take special 

provisions to avoid exposure to harmful pollutants (such as using a breathing mask or 

restricting time spent outdoors). Then failing to account for this avoidance behavior 

will underestimate the effects of pollution on health.  In this chapter I provide indirect 

evidence of the absence of such avoidance behavior in this data from Santiago. 

 

Furthermore, to estimate a causal effect of exposure to air pollution on health 

outcomes, in this chapter I use exogenous variation in PM2.5 pollution concentrations 
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driven by thermal inversions in Santiago and by FIFA World Cup (WC) games. 

Whereas thermal inversions trap air pollutants at the city level and prevents from 

proper ventilation, on days of WC games (particularly weekend games) there are 

major peaks of PM2.5 pollutants emissions as concentrations increase by 63 percent, 

presumably due to massive grill-outs on occasions of those games. I show that both 

thermal inversions as well as WC games largely drive PM2.5 pollution concentrations 

during the winter time in Santiago and I argue that these meteorological phenomena 

and sport events do not affect respiratory health outcomes other than via their effect 

on air pollution concentrations. However, massive grill-outs on occasions of WC 

games may affect cardiovascular and circulatory diseases via fatigue due to 

overeating and/or stress from watching the games. Therefore, when estimating the 

effects of PM2.5 pollution on cardiovascular and circulatory diseases I only use 

variation in PM2.5 pollution concentrations from thermal inversions. 

 

Whereas the existing literature does not exploit the occurrence of massive grill-outs 

on occasions of WC games as source of exogenous variation in air pollution 

concentrations, a couple of papers use thermal inversions as source of exogenous 

variation in air pollution to estimate effects on health outcomes. Arceo, Hanna and 

Oliva (2016) use a weekly count of thermal inversions as an instrument for weekly 

PM10 and CO concentrations for municipalities within Mexico City to estimate the 

effect of these pollutants on infant and neonatal mortality. Similarly, Jans, Johansson 

and Nilsson (2014) use a dichotomic variable for the presence of overnight thermal 

inversions to instrument for next-day PM10 concentrations and estimate its effects on 
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children’s acute respiratory diseases (asthma, pneumonia and bronchitis).
41

 However, 

Jans, Johansson and Nilsson (2014)’s data does not actually guarantee measuring the 

thermal inversion at the relevant elevation that creates the trapping of air pollutants. 

To generate data on the presence of thermal inversions they impute temperature data 

at different elevations based on inferring the associated elevation of air masses at a 

given level of atmospheric pressure. Furthermore, they have missing data on cloudy 

days (which represents 13.5 percent of the days in their data), introducing an 

important selection problem that may bias their results.
42

 

 

Unlike these previous studies, however, to instrument for PM2.5 concentrations I use a 

continuous variable that measures not just the presence but also the intensity of the 

thermal inversion (through the difference of air temperature at different elevations). 

Furthermore, I directly observe the air temperature throughout the entire period 

considered for this chapter and at the relevant elevation of occurrence of the thermal 

inversion in Santiago. This, together with the exogenous variation from WC games, 

provides a much stronger instrument for air pollution concentrations, and yields more 

accurate health effects estimates. Furthermore, I provide estimates not only for 

                                                 
41

 Beard et al. (2012) look at the ‘reduced-form’ direct effect of thermal inversions on respiratory visits 

for asthma in Utah. However, they do not use thermal inversions to instrument for air pollution and, 

thereby, do not provide estimates of the effect of air pollution on respiratory visits for asthma. 

Similarly, two papers in the biomedical literature look at the effect of wildfires on increasing 

respiratory emergency department visits in southern California (Dohrenwend et al. 2013)  and 

Australia (Haikerwal et al. 2016). If wildfires affect respiratory emergency visits only via increasing 

air pollution, then this could bring in exogenous variation in air pollution that could potentially stablish 

a causal relationship on respiratory emergency department visits. However, these papers look only at 

the ‘reduced-form’ direct effect of such wildfires on increasing respiratory emergency department 

visits, and fail to use statistical tools (such as instrumental variables estimation) that would allow them 

to estimate a causal effect. 
42

 As we will explain in detail in the next section, thermal inversions, and the trapping of pollutants 

because of their occurrence, are more likely to occur on cloudy days than on not cloudy days. This 

means that Jans, Johansson and Nilsson (2014) use a non-random sample of days for which they can 

readily instrument for air pollution. This may likely introduce bias in their reported estimates.  
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children but for a wide range of the population according to different age groups 

(infants, toddlers, children, adults and the elderly).  

 

The rest of the chapter is organized as follows. In the next section I present 

background information on urgent care visits as well as determinants of PM2.5 

pollution concentrations in Santiago. Then, in section 3 I present the data on urgent 

care visits (particularly, respiratory visits and cardiovascular and circulatory visits) as 

well as data on PM2.5 pollution in Santiago, and I show its correlation with both WC 

games as well as thermal inversions in section 4. In section 5 I present the empirical 

strategy to estimate the effects of air pollution on urgent care visits using two-stage 

least squares. In section 6 I present results for the effects of exposure to PM2.5 

pollution on respiratory urgent care visits (upper respiratory, lower respiratory, 

pneumonia and respiratory due to influenza) and on cardiovascular and circulatory 

visits, for different age groups (infants, toddlers, children, adults and the elderly). I 

present effects of both contemporaneous (same-day) exposure (section 6.a.) as well as 

cumulative exposure (over consecutive days) (section 6.b.). I present robustness 

checks in section 7. I discuss policy implications in section 8 and section 9 concludes. 

 

 

2. Background on Urgent Care Visits and PM2.5 Pollution in Santiago 
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a. Urgent Care Visits in Santiago 

 

The first system in the human body to get in contact with air pollutants is the 

respiratory tract. Whereas the bigger fraction of particles usually gets trapped on the 

upper respiratory tracts, the smaller fraction of particles can reach down to the lower 

respiratory tract and even enter the blood stream through the alveoli in the lungs 

(Nadadur and Hollingsworth 2015). Furthermore, exposure to air pollution may 

decrease immune functions and increase the risk of acute respiratory infections. In 

Santiago, acute respiratory illnesses have become the most common cause of medical 

visits in the cold winter months and are considered a priority by Chile’s health 

authorities (Ilabaca et al. 1999). Urgent care visits reflect adverse events of clear 

clinical significance and may feasibly relate to recent exposure to air pollution. The 

general public in Santiago seems to be aware of the adverse effects of air pollution on 

health. A recent survey by Chile’s Ministry of Environment shows that air pollution is 

the main environmental problem for Santiago’s population (Dirección de Estudios 

Sociales 2017). This is in large part due to the adverse health effects on the most 

vulnerable population, particularly during the winter period. 

 

 

b. PM2.5 Pollution Concentrations 

 

Airborne particulate matter less than 2.5 micrometers (PM2.5) is a heterogeneous 

mixture of chemical and particle sizes. In Santiago it is largely composed of organic 
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and elemental carbon (52 percent and 10 percent, respectively), nitrates (15 percent), 

ammonium (14 percent), and sulphates (15 percent) (Ministerio del Medio Ambiente 

2016). Concentrations of PM2.5 pollution in Santiago’s Metropolitan Area are caused 

by both pollution emissions as well as by accumulation of pollutants due to the lack 

of proper ventilation of the city’s air basin. Emissions of PM2.5 in Santiago’s 

Metropolitan Area are largely due to motors vehicles (accounting for 39.6 percent of 

total anthropogenic sources), the use of firewood or coal for residential heating and 

cooking (38.5 percent of total anthropogenic sources), and the combustion of 

petroleum derivatives for industrial processes (15.4 percent of total anthropogenic 

sources) (Ministerio del Medio Ambiente 2016). On the other hand, as explained in 

section 2.b. of Chapter 1, the process of ventilation of Santiago’s air basin is largely 

determined by both the unique geography around the city and by the presence of 

thermal inversions above the city’s air basin. In section 2.b. of Chapter 1 I thoroughly 

explain how thermal inversions drive overall ventilation of air pollutants in 

Santiago’s air basin. Those same concepts also apply for ventilation of PM2.5 

pollution.  However, in addition to ventilation of air pollutants driven by the presence 

of thermal inversion, in the next subsection I look at short-lasting peaks in emissions 

of PM2.5 pollution. 

 

i. Peak Emissions of PM2.5 Pollutants on Occasions of FIFA 

World Cup Weekend Games 
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In Chile there is a long tradition of grilling for social gatherings, particularly when 

most of the attendees are expected to be men. In a country where FIFA rules’ football 

largely dominates all other sports, there is also great enthusiasm for the Chilean 

national team, particularly among men.
43

 During the FIFA 2014 World Cup Chilean 

football supporters had probably many gatherings on occasion of national team’s 

games. Most of these gatherings, particularly those on occasion of games on 

weekends or Friday evenings, were probably accompanied by many grill-outs and 

long hours of emitting high amounts of particulate air pollutants.  

 

At the time of the FIFA 2014 World Cup Santiago’s highest official (equivalent to the 

city mayor), as well as the environmental authority, made public announcement on 

TV and media warning about the effects of such massive grill-outs on spiking air 

pollution concentrations and its associated health risks, particularly for the most 

vulnerable population. Despite the authorities’ public calls, on the day of every 

national team’s weekend game, as well as the day after a national team’s weekend 

game, the concentrations of PM2.5 pollution reached its highest levels during the 

winter of 2014 in Santiago, largely exceeding Chile’s standards.
44

 

 

                                                 
43

 This enthusiasm is further exacerbated by Chile’s national team currently enjoying what is arguably 

the best generation of players in its one hundred years of history, and the national team currently 

achieving its highest performance ever. Proof of it is that, after not ever wining a single major 

tournament during almost a hundred years of history, Chile’s team has recently won two consecutive 

major tournaments (Copa America) in years 2015 and 2016. The buildup of this team started long 

before winning these two tournaments though, and by the time of the FIFA 2014 World Cup the team’s 

performance was near its peak performance. Enthusiasm among supporters was probably near its peak 

as well. 
44

 Chile’s standards for PM2.5 pollution are 20 𝜇𝑔/𝑚3 (as annual mean), and 50 𝜇𝑔/𝑚3 (as 24-hour 

mean). 
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3. Data 

 

I obtain air pollution data from the Air Quality Monitoring Network (AQMN) of 

Chile’s Ministry of Environment. AQMN data comes from 10 monitoring stations 

located throughout Santiago’s Metropolitan Area (green dots in Figure 1). These 

monitoring stations employ a USEPA-approved air quality monitoring system (Met 

One BAM-1020) that uses beta ray attenuation to record hourly concentrations, in 

micrograms per cubic meter (𝜇𝑔/𝑚3), of particles with diameter less than 2.5 

micrometers (PM2.5)
45

. I average out the hourly PM2.5 pollution data across these 10 

monitoring stations and construct daily mean PM2.5 pollution for the period May 1
st
 

through August 15
th

.
46

  

 

I obtain meteorological data from Chile’s Meteorological Service. I obtain hourly 

data of temperature, precipitations and relative humidity from a meteorological 

station located at the city’s elevation (La Platina, at an elevation of 556 meters above 

sea level) and construct daily meteorological data covering the same period of time. 

In order to account for the presence of a thermal inversion in Santiago’s air basin I 

use data from a meteorological station (Lo Prado, at an elevation of 1,080 meters 

above sea level) located on the top of Santiago´s western mountain range, just about 

500 meters above the city’s ground elevation. From the meteorological station Lo 

Prado I obtain ambient air temperature and I contrast this temperature data with that 

                                                 
45

 This is about 3 percent of the diameter of a human hair. 
46

 I aggregate PM2.5 pollution at the day-level because data on urgent care visits is also available also at 

the day level. This allows us to examine how daily variation on exposure to PM2.5 pollution affects 

urgent care visits in Santiago. Later on, I also look at the effect of cumulative exposure to PM2.5 

pollution by aggregating throughout consecutive days. 
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of La Platina. I take the difference in ambient air temperature from these two stations 

to measure the presence and intensity of a thermal inversion on top of Santiago´s air 

basin. 

 

For the health data I obtain official daily registry data on health statistics from the 

Department of Statistics and Health Information of Chile’s Ministry of Health. The 

data comes from both public hospitals as well as public primary urgent care facilities 

(“Servicios de Atención Pública de Urgencia”, also known as SAPUs). I restricted the 

data to include only those municipalities that make the Metropolitan Area of 

Santiago. These public health facilities provide primary health care to more than 70 

percent of Santiago’s population, primary for the bottom four quintiles of the income 

distribution. I aggregate this daily data across all Santiago’s public primary care 

facilities for the period of May 1
st
 through August 15th, roughly covering Santiago’s 

full winter season. Furthermore, I also collect weekly data on the prevalence of 

seasonal respiratory viruses from the Public Health Institute (PHI) of Chile’s Ministry 

of Health. PHI collects weekly lab samples from public hospitals’ outpatients (infants 

and children less than 5 years old) and tests for the presence of respiratory viruses. 

These respiratory viruses include respiratory Syncytial Virus (RSV), Type A Flu, 

Type B Flu, Parainfluenza, Adenovirus and Metavirus.  

 

The health data classifies urgent care visits by different age brackets, allowing us to 

analyze urgent care visits for the following age groups: infants (individuals less than 
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1 year old), toddlers (individuals 1 to 4 years old), children (individuals 5 to 14 years 

old), adults (individuals 15 to 64 years old), and elderly (individuals 65 and older).  

 

In addition, the data on health outcomes allows urgent care visits to be characterized 

as respiratory visits and cardiovascular and circulatory visits according to the leading 

physician’s diagnostic. Respiratory visits can be further classified into different types: 

upper respiratory, lower respiratory, pneumonia, influenza and other causes.
47

 More 

specifically, I classify urgent care visits according to 10
th

 version of the International 

Classification of Diseases (ICD-10). Upper respiratory visits refer to classifications 

J00-J06 for acute upper respiratory infections
48

.  Lower respiratory visits refer to 

classifications J40-J47 for chronic lower respiratory diseases
49

 and classifications 

J20-J21 for other acute lower respiratory infections
50

. Respiratory visits associated to 

pneumonia and influenza refer to classifications J12-J18
51

 and J09-J11
52

, 

respectively. Other respiratory visits refer to classifications J22, J30-J39, J47 and J60-

                                                 
47

 Ilabaca et al. (1999) audited the quality of the record summary of emergency visits in Santiago with 

data from original medical records and found classification errors in less than 2 percent of the total 

records. 
48

 These include: acute nasopharyngitis (common cold); acute sinusitis; acute pharyngitis; acute 

tonsillitis; Acute laryngitis and tracheitis; acute obstructive laryngitis [croup] and epiglottitis;  and, 

Acute upper respiratory infections of multiple and unspecified sites. 
49

 These include: bronchitis, not specified as acute or chronic; simple and mucopurulent chronic 

bronchitis; unspecified chronic bronchitis; emphysema; other chronic obstructive pulmonary disease; 

and, asthma. 
50

 These include acute bronchitis and acute bronchiolitis 
51

 These include: viral pneumonia, not elsewhere classified; pneumonia due to streptococcus 

pneumoniae; pneumonia due to hemophilus influenza; bacterial pneumonia, not elsewhere classified; 

pneumonia due to other infectious organisms, not elsewhere classified; pneumonia in diseases 

classified elsewhere; and, pneumonia, unspecified organism. 
52

 These include: influenza due to certain identified influenza viruses; influenza due to other identified 

influenza virus; and, influenza due to unidentified influenza virus, 
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J98
53

. On the other hand, cardiovascular and circulatory visits refer to classifications 

I11, I21, I47, I49, and I64
54

.  

 

4. Descriptive Statistics 

 

a. Health Data 

 

Table 7 below presents descriptive statistics (means and standard deviations) of daily 

respiratory and cardiovascular and circulatory visits by age group and type of 

respiratory illness, for the period May 1
st
 through August 15

th
, 2014. 

 

Whereas most of the urgent care visits are by adult individuals, respiratory visits are 

more frequent among the very young and the very old. Table 7 shows that, out of the 

5,010 total average daily respiratory visits, 2,211 visits (representing 44.1 percent of 

the total) are by adult individuals. However, as a proportion of the number individuals 

in each age group, most respiratory visits are by infants, toddlers and the elderly. The 

breakdown by respiratory type shows that the most frequent respiratory visits are 

those due to upper respiratory diseases, especially among children and adults. Table 7 

show that daily average upper respiratory visits represent 57.8 percent of the total 

                                                 
53

 These include: unspecified acute lower respiratory infection; other diseases of upper respiratory 

tract; bronchiectasis; lung diseases due to external agents; other respiratory diseases principally 

affecting the interstitium; suppurative and necrotic conditions of the lower respiratory tract; other 

diseases of the pleura; intraoperative and postprocedural complications and disorders of respiratory 

system, not elsewhere classified; and other diseases of the respiratory system. 
54

 These include hypertensive heart disease; myocardial infarction; paroxysmal tachycardia; other 

cardiac arrhythmias; and cerebral infarction. 
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(2,895 out of 5,010 visits). This proportion of upper respiratory visits is even larger 

for children, 68.0 percent (615 out of 904), and for adults, 62.5 percent (1,381 out of 

2,211). The second most frequent type of respiratory visits is that due to lower 

respiratory diseases, representing 21.4 percent of the total daily average respiratory 

visits (1,074 out of 5,010). Lower respiratory visits are more frequent among infants 

(43.8 percent of the total respiratory visits within this age group), toddlers (28.7 

percent of the total respiratory visits within this age group), and the elderly (32.8 

percent of the total respiratory visits within this age group). Although respiratory 

visits due to pneumonia represent only 3.9 percent of the total respiratory visits, most 

of these visits are by the elderly, with 37.8 percent of total respiratory visits due to 

pneumonia (73 out of 193). Finally, respiratory visits due to Influenza represent only 

1.3 percent of the total respiratory visit, most of them (60.6 percent, or 40 out of 66) 

by adults. 

 

On the other hand, almost all of the 268 total average daily visits for cardiovascular 

and circulatory diseases are by adults and the elderly, representing 59.3 percent and 

39.6 percent of the total, respectively. 
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Table 7: Descriptive Statistics of Respiratory Urgent Care Visits for Santiago by Type and Age Group. Mean and Standard Deviation 

(in parenthesis). 

 

 

Obs.

Less than 1 year old 169 (51) 183 (79) 21 (13) 2 (2) 44 (16) 418 (141) 0.3 (0.8) 106

1 to 4 years old 624 (225) 326 (148) 39 (22) 9 (9) 136 (56) 1,134 (436) 0.7 (1.3) 106

5 to 14 years old 615 (306) 120 (75) 10 (6) 14 (14) 145 (83) 904 (475) 2.3 (3.3) 106

15 to 64 years old 1,381 (397) 332 (132) 50 (19) 40 (35) 408 (136) 2,211 (696) 159 (23) 106

65 and older 106 (42) 113 (50) 73 (30) 2 (3) 49 (19) 344 (135) 106 (15) 106

All Age Groups 2,895 (934) 1,074 (449) 193 (80) 66 (58) 782 (284) 5,010 (1,740) 268 (36) 106

Total

Respiratory Urgent Care Visits Cardio. & 

Circ. VisitsUpper Lower Pneumonia Influenza Other
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b. Pollution Data and Other Covariates 

 

As mentioned earlier, PM2.5 pollution as well as other variables may affect respiratory 

and cardiovascular and circulatory visits. Table 8 below presents descriptive statistics 

for PM2.5 pollution, seasonal viral indexes and weather variables.
55

 Table 8 shows that 

the average concentration of PM2.5 pollution for Santiago, over the period May 1
st
 to 

August 31
st
 2014, largely exceeds the World Health Organizations guidelines as well 

as Chile’s own standards.
56

 

 

Table 8: Descriptive Statistics of PM2.5 Pollution, Seasonal Viral Diseases and 

Weather Variables for Santiago (period May 1st through August 30th, 2014). 

 

 

                                                 
55

 PM2.5 pollution is measured as micrograms per cubic meter (𝜇𝑔/𝑚3) of airborne particles with a 

diameter of 2.5 micrometers or less. Seasonal virus indexes are measured as percentage of positive 

tests per calendar week for each virus (Syncytial, Type A Flu, Type B Flu, Para Flu, Adenovirus and 

Metavirus). 
56

 World Health Organization’s guidelines for PM2.5 pollution are 10 𝜇𝑔/𝑚3 as annual mean, and 25 

𝜇𝑔/𝑚3 as a 24-hour mean. Chile’s standard for PM2.5 pollution are 20 𝜇𝑔/𝑚3 as annual mean and 50 

𝜇𝑔/𝑚3 as 24-hour mean. 

Variable Mean Std. Dev. Obs.

46.09 17.93 106

Syncytiall Virus (%) 26.88 13.23 106

Type A Flu (%) 2.62 3.00 106

Type B Flu (%) 0.10 0.20 106

Para Flu (%) 2.87 1.83 106

Adenovirus (%) 1.10 0.67 106

Metavirus (%) 0.40 0.52 106

Temperature (Cº) 9.98 2.77 106

Precipitations (mm) 0.05 0.17 106

Relative Humidity (%) 76.67 9.23 106

PM2.5 (µg/m3)
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To gain an idea of the serial correlations Figure 5 below presents a time plot of PM2.5 

pollution and total respiratory visits. Figure 5 presents LOWESS-smoothed time 

series plots of total respiratory visits and PM2.5 pollution for the period May 1st to 

August 15
th

, 2014. I also add in Figure 5 a plot of weekly index for the prevalence of 

Type A Flu during the same period of time. Figure 5 shows a similar time pattern for 

all these three variables, showing a high correlation, particularly, regarding the peak 

that all three variables reach between late-June and early-July. This suggests that, 

when examining the effects of PM2.5 pollution concentrations on respiratory visits, it 

is important to account for the prevalence of seasonal respiratory viruses (such as 

Type A Flu), since much of the variation in respiratory visits may be accounted for 

variation of these seasonal viruses, rather than by variation in concentrations of PM2.5 

pollution alone.  

 

 

Figure 9 : Time Series of Total Respiratory Urgent Care Visits and Average PM2.5 

Pollution for Santiago. Period: May 1st through August 15th, 2014. 
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In addition, Figure 6 below shows LOWESS-smoothed time series respiratory visits 

by age group (left) and type of respiratory visit (right). In order to make the series 

comparable and show them in the same axis, I plot the standardized series for each 

category. The plot in the left shows that respiratory visits vary by age group, 

particularly between the very young, adults and the elderly. For infants, toddlers and 

children respiratory visits increase and reach a peak earlier than it does for adults and 

the elderly.  Similarly, the plot in the right shows that respiratory urgent care visits 

vary by type, particularly between those upper, lower or other respiratory visits and 

those respiratory visits associated to influenza or pneumonia. 

 

  
Figure 10: Time Series of Standardized Total Respiratory Visits by Age Group (left,) 

and Standardized Respiratory Visits by Care Professional’s Leading Diagnosis 

(right). Period: May 1st through August 30th, 2014. 

 

 

i. FIFA World Cup Games and PM2.5 Pollution 
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WC weekend games (gray bars).   The figure shows that PM2.5 pollution peaks when 

there is a WC weekend game, and that the only times that 24-hour average PM2.5 

pollution reaches levels above 80 𝜇𝑔/𝑚3 is around a WC weekend game. I believe 

that massive grill-outs on occasion of these WC weekend games create sharp 

increases in particulate pollution emissions. Hence, I observe these spikes in PM2.5 

concentrations around these WC games. 

 

 

Figure 11: Time Series of PM2.5 Pollution and Weekend Games. May 1st through 

August 30th 2014. 

 

ii. Thermal Inversions, Precipitations and PM2.5 Pollution 

 

World Cup games are not the only reason to observe sudden changes in PM2.5 

pollution in Santiago. In addition to pollution emissions, ventilation of Santiago’s air 

basin is one of the key determinants of PM2.5 pollution concentrations. Both, thermal 
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basin. The left graph in Figure 12 below presents the 24-hour average PM2.5 pollution 

only for the month of the FIFA 2014 World Cup, June 10th to July 13th, 2014 (left). 

Furthermore, the right graph in Figure 12 shows 24-hour average temperature 

difference between the city elevation and the meteorological station located 500 

meter above the city (blue line), precipitations (red bars), and 24-hour average 

temperature at the city elevation (green line). Figure 12 shows that 24-hour average 

PM2.5 pollution increases at the time of thermal inversions (high 24-hour average 

temperature difference) and drops dramatically with precipitations, even if not strong 

ones. 

 

  
Figure 12: Time Series of PM2.5 Pollution and Weekend Games (left), and 

Meteorological Variables (right) during the time of the FIFA World Cup 2014 (Jun 

10th through July 15th, 2014). 
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inversions as well as WC games. Furthermore, I contrast the 2SLS estimates with 

those from estimating by ordinary least squares (OLS). Equation (2) below sets the 

framework for analysis. I want to estimate the effects of the concentrations of PM2.5 

on day 𝑡 (𝑃𝑡) on urgent care visits on day 𝑡 (𝑌𝑡), where 𝑌𝑡 can be either respiratory 

visits or cardiovascular and circulatory visits. This effect is captured by the parameter 

𝛽. I control for a Seasonal Viral Index for week 𝑤 (𝑆𝑉𝐼𝑤), Precipitations on day 𝑡 

( 𝑃𝑟𝑒𝑐𝑖𝑝𝑡), and a vector of temperature, precipitation and relative humidity on the 

previous day (summarized by the vector 𝑊𝑡−1). Furthermore, I add a vector of 

dummies for each day of the week (𝐷𝑡), and a vector of dummies for each month 

(𝑀𝑡). Any unobservable effect, not accounted for in the variables listed above, is 

captured by the error term (𝜀𝑡). 

  

𝑌𝑡 = 𝛼 + 𝛽𝑃𝑡 + 𝛾1𝑆𝑉𝐼𝑤 + 𝛾2 𝑃𝑟𝑒𝑐𝑖𝑝𝑡 + 𝛾3𝑊𝑡−1 + 𝛾4 𝐷𝑡 + 𝛾5𝑀𝑡 + 𝜀𝑡 (2) 

 

If there is any correlation between one of the variables in the right hand side and the 

error term then the entire vector of parameter estimates (𝛼, 𝛽, 𝛾1, 𝛾3, 𝛾4, and 𝛾5) turns 

not only biased but also inconsistent. This problem is known as omitted variable bias 

and it is likely to arise in the presence of confounders that are not accounted for in the 

model.
57

 A well know technique to address this problem is by means of using an 

instrumental variable, say a variable 𝑧𝑡, that is not correlated with the error term, 

𝐶𝑜𝑣(𝑧𝑡, 𝜀𝑡) = 0, but that is correlated with the endogenous variable 𝑥𝑡, 𝐶𝑜𝑣(𝑧𝑡, 𝑥𝑡) ≠

                                                 
57

 Furthermore, it is usually the case that if say, an endogenous variable 𝑥𝑡 correlates with the error 

term, say 𝐶𝑜𝑣(𝑥𝑡 , 𝜀𝑡) ≠ 0, then the parameter estimate associated to such variable, is “greatly” biased 

and inconsistent. 
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0. Thus, by regressing by OLS 𝑥𝑡 on 𝑧𝑡, conditional on the other variables in the 

model, I can predict values for 𝑥𝑡, and obtain 𝑥̂𝑡. This is known as the first stage. 

Then, in the second stage regress  𝑌𝑡 on 𝑥̂𝑡 and the other variables in the model. This 

technique is commonly known as two-stage least squares (2SLS). 

 

I use 𝐺𝑡 and 𝑇𝐼𝑡 as instruments for 𝑃𝑡, where 𝐺𝑡 is a vector of daily dummies for WC 

weekend games; and 𝑇𝐼𝑡 is a vector with variables temperature difference and 

temperature difference squared that capture the presence and intensity of thermal 

inversions of Santiago’s air shed.  Thereby, by estimating the equation below by OLS 

I obtain 𝑃𝑡̂.
58

  

 

𝑃𝑡 = 𝜆 + 𝜑𝐺𝑡 + 𝜙𝑇𝐼𝑡 + 𝜓1𝑆𝑉𝐼𝑤 + 𝜓2 𝑃𝑟𝑒𝑐𝑖𝑝𝑡 + 𝜓3𝑊𝑡−1 + 𝜓4 𝐷𝑡 + 𝜓5𝑀𝑡 + 𝜐𝑡 

 

Finally, in the second stage I substitute 𝑃𝑡̂ for 𝑃𝑡  in equation (2) above, and regress 𝑌𝑡 

on 𝑃̂𝑡 and the other variables in the model (𝑆𝑉𝐼𝑤, 𝑊𝑡−1, 𝐷𝑡, and 𝑀𝑡). 

 

Therefore, even in the presence of possible confounding effects that may bias the 

estimates of 𝛽, if the underlying assumptions for the instruments 𝐺𝑡 and 𝑇𝐼𝑡 hold true 

(that is, that they are correlated with PM2.5 pollution but uncorrelated with the error 

term 𝜀𝑡), then 2SLS yields unbiased and consistent estimates for 𝛽.
59

 

                                                 
58

 𝑃̂𝑡 = 𝜆̂ + 𝜑̂𝐺𝑡 + 𝜙̂𝑇𝐼𝑡 + 𝜓̂1𝑆𝑉𝐼𝑤 + 𝜓̂2 𝑃𝑟𝑒𝑐𝑖𝑝𝑡 + 𝜓̂3𝑊𝑡−1 + 𝜓̂4 𝐷𝑡 + 𝜓̂5𝑀𝑡 

 
59

 For example, as explained earlier, an example of a confounder effect might the presence of 

avoidance behavior. On the other hand, even though we control for seasonal viral indexes, the viral 

indexes that we use in this paper are only a proxy for the widespread prevalence of seasonal viruses 
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In addition to presenting parameter estimates for 𝛽̂, in the next section I also present 

results in terms of relative risk estimates and its 95% confidence interval. The relative 

risk is the estimated change in the dependent variable—with respect to its mean 

value—for a change in PM2.5 equal to one standard deviation.
60

 That is, 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑅𝑖𝑠𝑘 =
1 + 𝛽̂𝜎𝑃

𝑦̅
 

 

Furthermore, I examine the effects of cumulative exposure to PM2.5 pollution over 

different periods of exposure, from 1-day exposure to up to 14-day exposure. To do 

so, I modify the econometric framework laid out in equation (2) to better capture the 

effect of exposure over consecutive days, as in equation (3) below. 

 

𝑌𝑡 = 𝛼 + 𝛽𝐴𝑣𝑔𝑃(𝑡−𝑗  ; 𝑡) + 𝛾1𝑆𝑉𝐼𝑤 + 𝛾2 𝑃𝑟𝑒𝑐𝑖𝑝𝑡 + 𝛾3𝑊𝑡−1 + 𝛾4 𝐷𝑡 + 𝛾5𝑀𝑡 + 𝜉𝑖 (3) 

 

Where 𝐴𝑣𝑔𝑃(𝑡−𝑗  ; 𝑡), (𝑗 = 0, … ,13), denotes (j+1)-day average PM2.5 pollution, over 

days 𝑡 − 𝑗  to  𝑡. To obtain predicted values for 𝐴𝑣𝑔𝑃(𝑡−𝑗  ; 𝑡) in the 2SLS estimation, I 

use the lag of instruments, both FIFA 2014 World Cup games as well as thermal 

inversions,  over days 𝑡 − 𝑗  to  𝑡. This means that, for 𝑗 = 0 (that is, 1-day exposure) 

I use basically the same estimating equation for the 2SLS as in equation (2) above; 

for 𝑗 = 1 (that is, 2-day exposure) I use both contemporaneous as well as 1-day 

                                                                                                                                           
that may affect the outcome variable 𝑌𝑡. These variables are built upon the proportion of positive tests, 

for specific types of seasonal viruses, from a relatively small random sample of young children (mostly 

less than 5 years old). Therefore, they may imperfectly control for the presence of viruses among 

different cohorts of Santiago’s population, particularly among older individuals. Furthermore, there 

might be non-viral effects (such as bacteriological diseases), not accounted for the viral indexes above, 

that while correlating with PM2.5 pollution, might also determine the outcome variable 𝑌𝑡 
60

 Recall from Table 7 that the standard deviation of PM2.5 in our sample is 17.93. 
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lagged instruments; for 𝑗 = 2 (that is, 3-day exposure) I add 2-day lagged 

instruments, and so on. Furthermore, when computing relative risks, I calculate the 

standard deviation for the corresponding period of exposure to PM2.5 pollution, that is 

I calculate 𝜎𝑃(𝑡−𝑗  ; 𝑡)
. 

 

6. Results 

 

a. Effects of Contemporaneous Exposure to PM2.5 Pollution 

i. Contemporaneous Effect on Total Respiratory Visits, All Age 

Groups 

 

Table 9 below shows parameter estimates for the effect of PM2.5 on total respiratory 

visits for different specifications of the regression equation (2) above. Whereas 

columns 1 through 4 present results without day-of-week and month dummies, 

columns 5 through 8 present results when further adding time controls. Furthermore, 

results from OLS regressions are presented in columns 1 and 5, whereas results from 

2SLS regressions are presented in columns 2, 3, 4, 6, 7 and 8. For the 2SLS results, 

columns 2 and 6 present results using only WC games as instruments; similarly, 

columns 3 and 7 present results using only thermal inversions as instruments; and, 

columns 4 and 8 present results using both WC games and thermal inversions as 

instruments. In all eight columns of Table 9 below I control for seasonal viral indexes 

(Syncytial virus, Type A Flu, Type B Flu, Para Flu, Adenovirus and Metavirus) and 
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weather variables (temperature, precipitation and relative humidity). Throughout, I 

present standard errors that are robust to heterogeneity and autocorrelation (HAC).
61

  

 

Results from Table 9 show that, overall, PM2.5 pollution has a statistically significant 

effect on total respiratory visits (although results presented in column 6 turn non-

significant). The OLS estimate (𝛽̂𝑂𝐿𝑆) from column 1 (without day-of-week and 

month dummies) suggests that a one-standard-deviation increase in PM2.5 pollution is 

associated with a 6.2 percent increase in respiratory visits (relative risk estimate 

1.062). However when estimating by 2SLS, this effect turns much larger, suggesting 

the presence of important confounding effects. Columns 2 through 4 show that a one-

standard-deviation increase in PM2.5 pollution increases respiratory visits by slightly 

more than 15 percent. Notice that this result holds regardless of the set of instruments 

I use. That is, whether I use only WC games as instruments (column 2), only thermal 

inversions as instruments (column 3), or both (column 4). The main difference of 

using different sets of instruments comes from the gains in precision of the 𝛽̂2𝑆𝐿𝑆 

estimate when using thermal inversions as compared to WC games, or better yet, 

using both. The standard error of the corresponding 𝛽̂2𝑆𝐿𝑆, shrinks from 11.974 

(column 2) to 11.152 (column 3) to 9.080 (column 4). The 95% confidence interval 

for the corresponding relative risk estimate shrinks accordingly.   

 

                                                 
61

 We use Newey-West (1994)’s optimal lag method to correct the variance-covariance matrix. 
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Table 9: Parameter and Relative Risk Estimates of the Effect of PM2.5 Pollution on Total Respiratory Urgent Care Visits, All Age 

Groups. 

 

OLS 2SLS 2SLS 2SLS OLS 2SLS 2SLS 2SLS

(1) (2) (3) (4) (5) (6) (7) (8)

PM2.5 17.264*** 42.437*** 43.826*** 42.740*** 10.008** 18.078 25.925*** 24.024***

(3.605) (11.974) (11.152) (9.080) (4.366) (12.088) (5.330) (6.376)

Relative Risk 1.062 1.152 1.157 1.153 1.036 1.065 1.093 1.086

[1.04, 1.09] [1.07, 1.24] [1.08, 1.24] [1.09, 1.22] [1.01, 1.07] [0.98, 1.15] [1.06, 1.13] [1.04, 1.13]

Day and Month Dummies No No No No Yes Yes Yes Yes

Instruments 

     World Cup Games Yes No Yes Yes No Yes

     Thermal Inversions No Yes Yes No Yes Yes

R-squared 0.678 0.639 0.635 0.638 0.870 0.867 0.856 0.859

Observations 106 106 106 106 106 106 106 106

Total Respiratory Visits, All Age Groups

HAC robust standard errors in parentheses (Bartlett kernel with 20 lags chosen by Newey-West's (1994) method). Relative risks's 95% 

confidence Intervals in brackets. *** p<0.01, ** p<0.05, * p<0.1.
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On the other hand, as shown by the R-squared statistics, notice that the model without 

day-of-week and month dummies accounts for more than 60 percent of the variation 

of the dependent variable (columns 1 through 4). Adding time controls (columns 5 

through 8), the model accounts for more than 85 percent of the variation of the 

dependent variable. Although adding day-of-week and month dummies allows for 

capturing unobserved time-specific effects, adding time controls yields smaller 𝛽̂ 

estimates and smaller relative risks estimates, both when estimating by OLS as well 

as when estimating by 2SLS. The results of the OLS estimation accounting for time 

controls presented in column 5 suggest that a one-standard-deviation increase in 

PM2.5 pollution is associated with a 3.6 percent increase in respiratory visits. 

Similarly, the results for the 2SLS estimations accounting for time controls (columns 

6 through 8) suggest that a one-standard-deviation increase in PM2.5 pollution 

increases respiratory visits by 6.5 percent to 9.3 percent, depending on the sets of 

instruments used in the 2SLS estimation. Since the model that uses all available 

instruments (column 8) yields a higher R-squared statistics, I choose the estimate 

from this model as the preferred estimate for the effect of PM2.5 pollution on total 

respiratory visits. That is, the results suggest that a one-standard-deviation increase in 

PM2.5 pollution increases respiratory visits by 8.6 percent. 

 

In what follows, I use the 2SLS specification that uses all available instruments (both 

WC games as well as thermal inversions) to examine the effect of PM2.5 pollution on 

respiratory visits across different age groups (subsection 6.a.ii.), across different types 



 

 80 

 

of respiratory diseases (subsection 6.a.iii.), and across both different age groups and 

different types of respiratory diseases (subsection 6.a.iv.). Furthermore, I present 

results for the effect of PM2.5 pollution on cardiovascular and circulatory visits 

(subsection 6.a.v.). However, before moving on to those sections, in the next section I 

examine the first stage estimation and discuss the validity of the instruments.  

 

1. First Stage Regressions 

 

Table 10 below presents the first stage regressions of the 2SLS estimation of Table 9 

discussed in the previous section. Whereas columns 1 through 3 of Table 10 present 

the first stage regressions without day-of-week and month dummies (corresponding to 

columns 2 through 4 of Table 9 above), columns 4 through 6  present the first stage 

regressions when adding time controls (corresponding to columns 6 through 8 of 

Table 9 above). Likewise, columns 1 and 4 of Table 9 present the first stage results 

when using only WC games as instruments, and columns 2 and 5 present results when 

using only thermal inversions as instruments. Columns 3 and 6 present results using 

both WC games and thermal inversions as instruments. 

 

Table 10 shows that the instruments, both WC games and thermal inversions, have a 

strong and statistically significant effect in explaining the variation of PM2.5 pollution. 

The parameter estimates associated to these instruments turn highly significant across 

all six columns. Furthermore, although same-day precipitations have a strong effect 

on explaining the variation of PM2.5, I believe that precipitations also affect 
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respiratory and cardiovascular and circulatory visits directly
62

, so that I do not use 

same-day precipitations as instrument for PM2.5 pollution.  

 

The Wu-Hausman test statistic in columns 2, 3, 5 and 6 of Table 10 below show that 

the 2SLS estimation yields a parameter estimate 𝛽̂2𝑆𝐿𝑆 that is statistically different 

from that of OLS, 𝛽̂𝑂𝐿𝑆. The Wu-Hausman p-value is less than 0.05, the conventional 

statistical significance. However, this test statistic is only weakly significant in the 

specification presented in column 1, when using only WC games and not adding time 

controls. Adding day-of-week and month dummies in column 4, the Wu-Hausman 

test statistic turns non-significant. Controlling for these time dummies may cancel out 

most of the effect of the WC games as instruments because all WC weekend games 

took place almost on the same day of the week (either Friday night or Saturday). 

Overall, however, the results from the Wu-Hausman test statistics suggests that, when 

estimating the effect of PM2.5 pollution on respiratory visits (equation 1 above), there 

may be important confounding effects that are left out in the initial model and may 

generate a downward bias in the OLS estimates.  

 

                                                 
62

 I believe that precipitations affect respiratory visits via two channels. The most direct one is due to 

individuals choosing not to go to a respiratory urgent care visits on days of rain. I believe that those 

individuals that may feel already sick may prefer not to go to an urgent care facility in days of rain, 

because of concerns that exposure to outside rain may make them sicker. Moreover, mobility and 

transportation is relatively limited in those rainy days. The second reason is that precipitations in the 

days before attending an urgent care facility may correlate with overall air humidity that makes it easy 

for spreading and aggravation of bacterial diseases. 



 

 82 

 

Table 10: First Stage Regressions for Estimating the Effect of PM2.5 Pollution on Total Respiratory Urgent Care Visits. 

 

VARIABLES (1) (2) (3) (4) (5) (6)

FIFA 2014 World Cup Games

Game #1 (Chile weekend game), lagged 44.466*** 37.100*** 45.673*** 37.179***

Game #2 (Chile weekend game) 40.660*** 29.856*** 39.540*** 26.742***

Game #2 (Chile weekend game), lagged 37.836*** 25.803*** 38.860*** 32.523***

Game #3 (Finals weekend) 23.982*** 24.997*** 22.872*** 20.895***

Thermal Inversions

Temperature Difference (1084m vs 560m) 3.154*** 2.797*** 3.296*** 2.966***

Temperature Difference , squared -0.266*** -0.253*** -0.255*** -0.239***

Seasonal Viral Index (weekly)

Syncytial virus 0.162 -0.241 -0.209 0.241 -0.264 -0.197

Type A Flu 0.553 1.413 1.368* 0.223 0.580 0.256

Type B Flu 17.170** 15.490* 16.249** 21.544** 23.970** 26.986***

Para Flu -0.385 -1.425 -0.550 -0.105 -1.176 -0.367

Adenovirus 7.190*** 8.081*** 7.154*** 6.496** 7.311*** 6.928***

Metavirus 1.578 -0.322 2.437 3.179 2.182 4.751

Weather Controls

Temperature, lagged -1.217 -2.284*** -1.363** -1.081 -2.307*** -1.530**

Precipitations -34.381*** -20.703*** -19.968*** -30.069*** -16.979** -15.571**

Precipitations, lagged -0.618 -7.284 -2.693 2.968 -3.516 0.014

Relative Humidity, lagged -0.323** 0.078 0.051 -0.352* 0.117 0.122

Day and Month Dummies No No No Yes Yes Yes

Additional Statistics

Wu-Hausman p-value 0.0571 < 0.01 < 0.01 0.469 < 0.01 < 0.01

F test on instruments 44.30 28.43 34.45 19.42 25.11 26.44

OverID p-value 0.481 0.433 0.718 0.315 0.459 0.475

Partial R-squared 0.238 0.357 0.502 0.222 0.379 0.516

R-squared 0.563 0.632 0.715 0.593 0.675 0.747

Observations 106 106 106 106 106 106

*** p<0.01, ** p<0.05, * p<0.1
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In order to further test the validity of the instruments I ran a generalized methods of 

moments (GMM) instrumental variables regression and tested the null hypothesis that 

all instruments are valid, against the alternative hypothesis that at least one of the 

instruments is not valid. In all six specifications, (columns 1 through 6 of Table 10) 

the p-values for the test of over identified restrictions leads us not to reject the null 

hypothesis. Therefore, I conclude that all instruments are valid. Furthermore, the F-

test statistic for the null that all instruments are equal to zero is larger than 20 across 

all six specifications of the 2SLS estimation (with the exception of the specification 

in column 5, where the F-test statistic turns slightly less than 20). This means that the 

finite sample bias of the 2SLS estimate (𝛽̂2𝑆𝐿𝑆) is less than 5 percent of the finite 

sample bias of the OLS estimate (𝛽̂2𝑆𝐿𝑆). In other words, this suggests that 2SLS 

estimation yields an estimate that is considerable closer than the OLS estimation to 

the true value  of 𝛽. 

 

On the other hand, the partial R-squared statistic, 𝑅̅2, shows the proportion of the 

total variance of PM2.5 pollution that is accounted for by the instruments in the model 

(WC games and thermal inversions). The results from Table 10 above show that, 

whereas WC games account for about 22 percent of the daily variation of PM2.5 

pollution during the period May 1
st
 through August 15

th
 (columns 1 and 4), thermal 

inversions account for about 36 percent of the variation in PM2.5 pollution during the 

same period of time (columns 2 and 5). Using all instruments together, they account 

for more than 50 percent of the daily variation in PM2.5 pollution (columns 3 and 6). 
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Additionally, the partial R-squared statistic has a direct relationship with the precision 

of the 2SLS estimate. Specifically, the standard error of the 𝛽̂2𝑆𝐿𝑆 is inversely 

proportional to the squared root of the partial R-squared statistic. More precisely 

𝑆. 𝐸. (𝛽̂2𝑆𝐿𝑆) ≅ √1/𝑅̅2𝑆. 𝐸. (𝛽̂𝑂𝐿𝑆). However, this relationship does not fully hold in 

Table 9 above since I correct the variance-covariance matrix according to Newey-

West(1994)’s method in order to obtain heterogeneity and autocorrelation consistent 

standard errors. 

 

On the other hand, Table 9 provides point estimates of the direct effect of WC games 

on concentrations of PM2.5 pollution. Estimates presented in column 6 of Table 9 

suggest that WC games increase PM2.5 pollution by 20 𝜇𝑔/𝑚3 to 37 𝜇𝑔/𝑚3, and by 

29 𝜇𝑔/𝑚3 in average. This corresponds to a 63 percent increase with respect to 

average PM2.5 pollution for this period (see Table 8).  

 

ii. Contemporaneous Effect on Total Respiratory Visits by Age 

Group 

 

In this section I analyze how the effect of PM2.5 on total respiratory visits varies for 

different subgroups of the population according to the age groups presented in Table 

7. In Table 11 below I present results in a different panel for each age group.  Panel A 

presents estimates for infants (those less than 1 year old); Panel B presents estimates 

for toddlers (those 1 to 4 years old); Panel C presents estimates for children (those 5 

to 14 years old); Panel D presents estimates for adults (those 15 to 64 years old); and, 
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Panel E presents estimates for the elderly (those 65 and older). Whereas column 1 

presents OLS estimates, column 2 presents 2SLS estimates. Furthermore, the 

regressions presented in both columns 1 and 2 control for day-of-week and month 

dummies (which account for those time-specific unobserved effects). All regressions 

in Table 11 control for seasonal viral indexes (Syncytial virus, Type A Flu, Type B 

Flu, Para Flu, Adenovirus and Metavirus) and weather variables (temperature, 

precipitation and relative humidity).  

 

The R-squared statistics presented in Table 11 below show that the model accounts 

for 83 to 88 percent of the variation of the total respiratory visits by age group when 

controlling for day-of-week and month dummies.
63

 Also, and similar to the results 

presented in Table 9 above, adding time controls yields more conservative estimates 

for 𝛽. 

 

The 2SLS estimates presented in Table 11 (column 2) are not just consistently larger 

than their OLS counterparts (columns 1), but as shown by their corresponding 

Hausman tests statistic, they are also statistically different from their OLS 

counterparts across all age groups.
64

 In fact, the 2SLS estimates are about two to three 

times larger than that of OLS, suggesting that there may be important confounding 

effects that bias down the OLS estimates.  

 

                                                 
63

 Before introducing time controls (not shown in Table 11), the R-squared statistic falls within .43 and 

.77. 
64

 Except from the results presented in Panel C for children (age group 5 to 14 years old), where 

according to the Hausman tests statistic the 2SLS is different from OLS only at 80% confidence. 

However, 2SLS and OLS estimates are statistically different when not introducing time controls. 
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Table 11: Parameter and Relative Risk Estimates of the Effect of PM2.5 on Total 

Respiratory Urgent Care Visits, by Age Group. 

 

Total Respiratory Visits, by Age Group

OLS 2SLS

(1) (2)

PM2.5 0.520 1.866***

(0.390) (0.486)

Relative Risk 1.022 1.080

[0.99, 1.06] [1.04, 1.12]

R-squared 0.844 0.829

Hausman test on PM2.5 21.65

PM2.5 2.176 5.734***

(1.400) (1.964)

Relative Risk 1.034 1.091

[0.99, 1.08] [1.03, 1.15]

R-squared 0.844 0.832

Hausman test on PM2.5 6.673

PM2.5 2.541 4.596**

(1.573) (2.099)

Relative Risk 1.050 1.091

[0.99, 1.11] [1.01, 1.17]

R-squared 0.836 0.833

Hausman test on PM2.5 2.187

PM2.5 3.960*** 9.262***

(1.304) (2.398)

Relative Risk 1.032 1.075

[1.01, 1.05] [1.04, 1.11]

R-squared 0.885 0.875

Hausman test on PM2.5 6.944

PM2.5 0.810*** 2.566***

(0.279) (0.599)

Relative Risk 1.042 1.134

[1.01, 1.07] [1.07, 1.2]

R-squared 0.831 0.802

Hausman test on PM2.5 10.95

Day and Month Dummies Yes Yes

Observations 106 106

HAC robust standard errors in parentheses. Relative risks's 95% 

confidence Intervals in brackets. *** p<0.01, ** p<0.05, * p<0.1.

Panel A: Less than 1 year old

Panel E: 65 and older

Panel D: 15 to 64 years old

Panel C: 5 to 14 years old

Panel B: 1 to 4 years old
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The results presented in Table 11 show that a one-standard-deviation increase in 

PM2.5 pollution increases total respiratory visits from 7.5 percent for adults (Panel D), 

to 13.4 percent for the elderly (Panel F). Furthermore, notice that the relative risk 

estimates for infants (Panel A) is smaller than the relative risk estimates of those 

slightly older, both toddlers (Panel B) as well as children (Panel C).
65

 Yet, although 

the effect of PM2.5 pollution on total respiratory visits varies across different age 

groups, these effects are not statistically different from each other.
66

  

 

iii. Contemporaneous Effect on Total Respiratory Visits by Type 

 

In this section I analyze the effect of PM2.5 pollution on the different type of 

respiratory visits according to the leading care professional’s diagnosis, as shown in 

Table 7 above. Table 12 below presents both OLS and 2SLS estimates for: upper 

respiratory (columns 1 and 2), lower respiratory (columns 3 and 4), pneumonia 

(columns 5 and 6), respiratory related to influenza (columns 7 and 8), and other 

respiratory problems (columns 9 and 10). All while controlling for seasonal viral 

indexes, weather variables and time dummies.  

 

                                                 
65

 One reason for this result may be that parents of these very young and vulnerable individuals tend to 

keep them in very safe and protected environments, particularly during the winter time in Santiago, 

when it is cold and humid outside, thus avoiding exposing them to high levels of air pollution.  
66

 Hausmann-type tests on relative risk estimates (using the Delta method) show that relative risks 

estimates are not statistically different across groups.   
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Table 12: Parameter and Relative Risk Estimates of the Effect of PM2.5 on Respiratory Urgent Care Visits, by Care Professional's 

Leading Diagnosis. 

 

 

OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

PM2.5 5.609** 12.405*** 1.959* 6.092*** 0.250 1.207*** 0.070 0.215** 2.119*** 4.105***

(2.836) (4.627) (1.076) (1.484) (0.166) (0.335) (0.095) (0.104) (0.615) (0.708)

Relative Risk 1.035 1.077 1.033 1.102 1.023 1.112 1.019 1.058 1.049 1.094

[1, 1.07] [1.02, 1.13] [1, 1.07] [1.05, 1.15] [0.99, 1.05] [1.05, 1.17] [0.97, 1.07] [1, 1.11] [1.02, 1.08] [1.06, 1.13]

R-squared 0.846 0.837 0.885 0.870 0.891 0.867 0.850 0.849 0.851 0.842
Hausman test on PM2.5 3.454 16.34 10.76 12.13 31.79

Day and Month Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 106 106 106 106 106 106 106 106 106 106

HAC robust standard errors in parentheses. Relative risks's 95% confidence Intervals in brackets. *** p<0.01, ** p<0.05, * p<0.1.

Respiratory Visits by Care Professional's Leading Diagnosis

Resp. OtherResp. InfluenzaPneumoniaLower RespiratoryUpper Respiratory
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Overall, the 2SLS parameter estimates turns statistically different from their OLS 

counterparts, and about two to four times larger than that of OLS.
67

 The 2SLS 

estimates show that the effect of PM2.5 pollution varies across different types of 

respiratory visits. In particular, the relative risk estimates show that the effect of 

PM2.5 on lower, pneumonia and other respiratory visits (columns 4, 6 and 10 of Table 

12, respectively) are larger than those results for total respiratory visits discussed 

earlier (presented in column 8 of Table 9 above). The estimates suggest that a one-

standard-deviation increase in PM2.5 pollution increases lower, pneumonia and other 

respiratory visits by about 10 percent (relative risk estimates are 1.101, 1.112 and 

1.094, respectively). This contrasts with the effect of the same increase in PM2.5 

pollution on overall respiratory problems (8.4 percent, according to column 8 of 

Table 9 above) 

 

On the other hand, although most respiratory visits, are due to upper respiratory 

diseases (57 percent of total, according to Table 7), the effect of PM2.5 pollution on 

respiratory visits due to upper respiratory problems is smaller than the overall effect 

presented in Table 9 above. Table 12 shows that a one-standard-deviation increase in 

PM2.5 pollution increases the relative risk of upper respiratory visits by 7.7 percent 

(relative risk estimate is 1.077).    

 

iv. Contemporaneous Effect on Total Respiratory Visits by Age 

Group and Type 

 

                                                 
67

 The 2SLS estimate for type upper respiratory is statistically different from that of OLS at 90%. 
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Next, I look at the estimates across different age groups and types of respiratory 

visits. Table 13 below presents 2SLS parameter and relative risk estimates for the 

effect of PM2.5 pollution on respiratory visits across different age groups (horizontal 

panels A trough F) and across different types of respiratory diseases (columns 1 

through 5). All regressions control for seasonal viral indexes, weather and time 

dummies.  

 

Similar to what we saw in section 6.a.iii. and Table 12 above, the effect of PM2.5 

pollution on respiratory visits is largest among the elderly (Panel F). Particularly, for 

lower respiratory, respiratory due to pneumonia and upper respiratory visits (relative 

risks estimates of 1.15, 1.142 and 1.133, respectively). Recall from Table 7 above that 

most of those individuals that experience respiratory diseases associated with 

pneumonia are in the age group 65 and older (37.8 percent of those with respiratory 

problems due to pneumonia). Thereby, these results suggest that many individuals in 

this age group suffer from respiratory diseases due to pneumonia because of exposure 

to PM25 pollution.  

 

The effect of PM2.5 pollution on lower respiratory diseases (columns 3 and 4) among 

children (Panel C) is also considerable large (relative risk estimate of 1.133). 

However, as can be seen from Table 7 above, very few individuals in this age group 

suffer from lower respiratory diseases (only 13.3 percent of total across all types of 

respiratory diseases for children). Therefore, although the effect of PM2.5 pollution on 
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lower respiratory visits for children is relatively large, relatively few individuals in 

this age group suffer that type of respiratory disease. 

 

On the other hand, the effect PM2.5 pollution on upper respiratory visits (Columns 1 

and 2) is relatively small among adults (Panel E), where the results report relative risk 

estimates of 1.066. As shown in Table 7 above most individuals fall into this age 

group (44.1 percent of all individuals) and that upper respiratory is the most prevalent 

respiratory disease (57.8 percent of total). Similarly, the effect PM2.5 pollution is also 

relatively small among infants (Panel A), particularly for lower respiratory (relative 

risks estimate 1.071). Table 7 above also shows that, for infants, most urgent care 

respiratory visits are associated with lower respiratory diseases (43.8 percent of total 

across all types for this age group). Thereby, these results suggest that, for the most 

prevalent type of respiratory diseases among infants, the effect of PM2.5 pollution is 

relatively small.  
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Table 13 : Parameter and Relative Risk Estimates of the Effect of PM2.5 on 

Respiratory Urgent Care Visits, by Age Group and Care Professional's Leading 

Diagnosis. 

 

 

2SLS 2SLS 2SLS 2SLS 2SLS

(1) (2) (3) (4) (5)

PM25 0.769*** 0.723*** 0.102 0.026*** 0.246***

(0.235) (0.267) (0.078) (0.010) (0.054)

Relative Risk 1.082 1.071 1.087 1.251 1.101

[1.03, 1.13] [1.02, 1.12] [0.96, 1.22] [1.07, 1.43] [1.06, 1.14]

R-squared 0.683 0.869 0.691 0.316 0.720

PM25 2.942** 1.765** 0.263*** -0.023 0.786***

(1.147) (0.698) (0.066) (0.048) (0.202)

Relative Risk 1.084 1.097 1.122 0.953 1.103

[1.02, 1.15] [1.02, 1.17] [1.06, 1.18] [0.76, 1.15] [1.05, 1.16]

R-squared 0.805 0.840 0.856 0.623 0.805

PM25 2.861* 0.891*** 0.046 0.077 0.721**

(1.626) (0.245) (0.037) (0.054) (0.316)

Relative Risk 1.083 1.133 1.083 1.102 1.089

[0.99, 1.18] [1.06, 1.2] [0.95, 1.22] [0.96, 1.24] [1.01, 1.17]

R-squared 0.823 0.835 0.688 0.714 0.815

PM25 5.050*** 1.768*** 0.218** 0.138 2.089***

(1.893) (0.377) (0.089) (0.086) (0.355)

Relative Risk 1.066 1.096 1.078 1.062 1.092

[1.02, 1.11] [1.06, 1.14] [1.02, 1.14] [0.99, 1.14] [1.06, 1.12]

R-squared 0.857 0.870 0.808 0.869 0.832

PM25 0.783*** 0.945*** 0.579*** -0.005 0.263***

(0.177) (0.213) (0.190) (0.015) (0.086)

Relative Risk 1.133 1.150 1.142 0.966 1.097

[1.07, 1.19] [1.08, 1.22] [1.05, 1.23] [0.76, 1.18] [1.04, 1.16]

R-squared 0.733 0.795 0.774 0.619 0.698

Day and Month Dummies Yes Yes Yes Yes Yes

Observations 106 106 106 106 106

HAC robust standard errors in parentheses. Relative risks's 95% confidence Intervals in brackets. *** p<0.01, 

** p<0.05, * p<0.1.

Panel F: 65 and older

Panel E: 15 to 64 years old

Panel C: 5 to 14 years old

Panel B: 1 to 4 years old

Panel A: Less than 1 year old

Respiratory Visits by Age Group and Care Professional's Leading Diagnosis

Upper 

Respiratory

Lower 

Respiratory Pneumonia

Resp. 

Influenza Resp. Other



 

 93 

 

v. Contemporaneous Effect on Cardiovascular and Circulatory 

Visits 

 

The data allows us to also examine effects on urgent care visits due to cardiovascular 

and circulatory disease during the period May 1
st
 to August 15

th
, 2014 for Santiago. 

Table 1 above shows the mean number of visits due to cardiovascular and circulatory 

problems by age group. Almost all urgent care visits due to this cause are by adults 

(59.3 percent) and the elderly (39.6 percent). I use the same analytical framework of 

equation (1) above to obtain parameter estimates 𝛽̂  and relative risk estimates of the 

effect of PM2.5 pollution on cardiovascular and circulatory visits. However, on days 

of WC games individuals may experience cardiovascular and/or circulatory problems 

due to causes other than air pollution, such as problems due to fatigue because of 

excess eating at barbeques and/or stress associated with watching the games. This 

would invalidate the use of WC games as instruments since they will fail to drive 

cardiovascular and circulatory visits only via the effect of WC games on PM2.5 

pollution. Therefore, for examining the effect of PM2.5 pollution on cardiovascular 

and respiratory visits I only use thermal inversions as instruments in the 2SLS 

estimations. Table 14 below presents results for the aggregate across all age groups 

(Panel A) as well as for adults (Panel B), and for the elderly (Panel C).
68

 Panel A of 

Table 14 shows that, for all age groups, a one-standard-deviation increase in PM2.5 

pollution increases cardiovascular and circulatory visits by 4.4 percent (relative risk 

estimate in column 4 is 1.044). Panel B shows that, although weakly significant, such 

                                                 
68

 For brevity, I omit results for the other age groups. Estimates for those age groups turn statistically 

non-significant.   
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an increase in PM2.5 pollution increases cardiovascular and circulatory visits for 

adults by 3.4 percent (relative risk estimate in column 4 is 1.032). I find the largest 

effect on cardiovascular and circulatory visits among the elderly. Panel C shows that 

a one-standard-deviation increase in PM2.5 increases cardiovascular and circulatory 

visits by 6.3 percent for this age group (relative risk estimate in column 4 is 1.063). 

Given that those individuals in older cohorts are more susceptible of suffering from 

cardiovascular and circulatory problems, we may expect that the deterioration of air 

quality may trigger larger adverse effects on their health condition. In fact, using the 

Delta method I find that the relative risk estimate for the elderly (1.063 in column 2 

of Panel C) is statistically larger than the relative risk estimate for adults (1.032 in 

column 2 of panel B). 
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Table 14: Parameter and Relative Risk Estimates of the Effect of PM2.5 Pollution on 

Cardiovascular and Circulatory Urgent Care Visits, by Age Groups. 

 

 

 

 

OLS 2SLS

(1) (2)

PM2.5 0.280** 0.657***

(0.126) (0.220)

Relative Risk 1.019 1.044

[1, 1.04] [1.02, 1.07]

R-squared 0.439 0.420

Hausman test on PM2.5 4.355

PM2.5 0.076 0.300*

(0.078) (0.165)

Relative Risk 1.009 1.034

[0.99, 1.03] [1, 1.07]

R-squared 0.386 0.371

Hausman test on PM2.5 2.362

PM2.5 0.230*** 0.372***

(0.077) (0.104)

Relative Risk 1.039 1.063

[1.01, 1.06] [1.03, 1.1]

R-squared 0.485 0.470

Hausman test on PM2.5 4.176

Day and Month Dummies Yes Yes

Observations 106 106

HAC robust standard errors in parentheses. Relative risks's 

95% confidence Intervals in brackets. *** p<0.01, ** p<0.05, * 

Panel A: All age groups

Panel B: 15 to 64 years old

Panel C: 65 and older

Cardiovascular & Circulatory 

Visits, by Age Group
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vi. Contemporaneous Effect on Urgent Care Visits Due to 

External Causes 

 

The data also allows us to look at the effect of PM2.5 pollution on urgent care visits 

due to external causes (other than respiratory or cardiovascular and circulatory). 

These refer to urgent care visits due to traffic accidents and minor accidents such as 

cuts and contusions. The results presented in Table 15 below show that exposure to 

PM2.5 pollution has no significant effect on urgent care visits due to external causes. 

This ‘falsification test’ suggests that I am correctly identifying the pathway in which 

PM2.5 pollution affects urgent care visits, which is, either via respiratory visits or via 

cardiovascular and circulatory visits.  

 

Furthermore, these results provide indirect evidence of the absence of avoidance 

behavior of the individuals in the sample from Santiago. If individuals were to adjust 

their behavior to reduce exposure on days of high concentrations of PM2.5 pollution, 

then they would restrict their outdoor activities and will stay indoors, which would be 

reflected on a negative relationship between PM2.5 pollution and urgent care visits due 

to external causes. The results suggest that there is no evidence of avoidance 

behavior.  
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Table 15: Parameter and Relative Risk Estimates of the Effect of PM2.5 Pollution on 

Urgent Care Visits Due to External Causes, All Age Groups. 

 

 

b. Effect of Cumulative Exposure to PM2.5 Pollution 

 

i. Cumulative Effect on Total Respiratory Visits 

 

So far, I have focused only on the acute effects of contemporaneous exposure to 

PM2.5 pollution. However, it is likely that most respiratory and cardiovascular 

diseases that result in these urgent care visits are not a consequence of such an 

immediate response to same-day pollution exposure. Exposure to high levels of PM2.5 

pollution for an extended period of time (longer than one day) may result in a steady 

worsening of an individual’s health, to a point at which this individual (or his/her 

guardian) eventually decides to go to an urgent care facility. Most of the existing 

literature has not looked into the varying effects of different periods of exposure to air 

OLS 2SLS OLS 2SLS

(1) (2) (3) (4)

PM2.5 0.212 3.560 1.047 1.786

(1.209) (2.365) (1.092) (1.458)

Relative Risk 1.003 1.050 1.015 1.025

[0.97, 1.04] [0.99, 1.12] [0.99, 1.05] [0.99, 1.07]

R-squared 0.487 0.450 0.744 0.742

Hausman test on PM2.5 2.711 0.585

Day and Month Dummies No No Yes Yes

Observations 106 106 106 106

HAC robust standard errors in parentheses. Relative risks's 95% confidence Intervals in 

brackets. *** p<0.01, ** p<0.05, * p<0.1.

Ugent Care Visits Due to External Causes, by Age Group

Panel A: All age groups
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pollution. In this section I examine the effects over different periods of exposure to 

shed some light on what should be the most relevant period of exposure when 

estimating the effects PM2.5 pollution on respiratory and cardiovascular diseases. That 

is, in this section I examine the effects of exposure to PM2.5 pollution over different 

periods of time, from a 1-day (contemporaneous) exposure to 14-day (cumulative) 

exposure.  

 

In figures 13 through 17 below I present results in terms of relative risk estimates and 

95% confidence intervals only from 2SLS estimations with day-of-week and month 

controls. In Figure 13 I plot the relative risks estimates (vertical axes) and periods of 

exposure to PM2.5 pollution (horizontal axis). I also present detailed results in terms 

of parameter estimates, standard errors and R-squared statistics in a companying table 

under Figure 13. The relative risk estimate is the change in the dependent variable, 

with respect to its mean value, for a change in PM2.5 equal to one standard deviation. 

Thereby, for purposes of computing the relative risk estimate of the cumulative effect 

of PM2.5 pollution, I calculate the standard deviation for each period of cumulative 

exposure to PM2.5 pollution. The row “SD of Cumm. PM2.5”, in the companying table 

(right below Figure 13), presents this standard deviation over 𝑗 + 1 days (𝑗 =

0, … ,13) of cumulative exposure to PM2.5 pollution.   

 

Whereas Figure 13 presents relative risk estimates for overall respiratory visits, 

Figure 14 presents results by age group and Figure 15 presents results for type of 

respiratory visit. Figure 16 presents results by both age group and type of respiratory 
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visit. Furthermore, Figure 17 presents relative risk estimates for cardiovascular and 

circulatory visits. Throughout, to calculate these relative risk estimates I use the 

standard deviation of cumulative exposure to PM2.5 pollution presented in row “SD of 

Cumm. PM2.5” of the companying table of Figure 13. 

 

Figure 13 below shows that the effect of PM2.5 pollution on overall respiratory visits 

varies depending on period of exposure. The effect of same-day as well as 2-day 

average exposure turns statistically significant (weakly significant for 2-day 

exposure). Whereas the effect of exposure over 3 to 9 days turns non-significant, the 

effect of exposure over 10 to 13 days turns statistically significant (although not 

statistically different from that of 1-day exposure). These results may reflect both an 

acute effect on respiratory visits due to exposure to short lasting peaks in PM2.5 

pollution concentrations as well as an effect on health of exposure to PM2.5 pollution 

over a longer period time. Short-lasting changes to PM2.5 pollution concentrations, 

such as those sharp peaks during WC games, may have a strong adverse acute effect 

on respiratory visits (same-day as well as 2-day average exposure). However, once 

those short-lasting peaks in PM2.5 pollution concentrations die out, the effect of 

exposure to PM2.5 pollution vanishes out. However, the cumulative effect of exposure 

to PM2.5 pollution over a longer period of time (over 10 to 13 days) remains 

significant.  
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Figure 13: 2SLS Relative Risk Estimates (and 95% confidence intervals) of the effect of cumulative exposure to PM2.5 on Total 

Respiratory Urgent Care Visits, All Age Groups. 

 

 

.9
1

1
.1

1
.2

0 4 8 12
PM2.5 averaged over j+1 days

95% Upper/Lower Bound Relative Risk Estimate

(Relative Risk Estimates and 95% CI, All Age Groups)

Effect of Cummulative Exposure to PM2.5 on Total Respiratory Visits

1 day 2 days 3 days 4 days 5 days 6 days 7 days 8 days 9 days 10 days 11 days 12 days 13 days 14 days

( j = 0 ) ( j = 1 ) ( j = 2 ) ( j = 3 ) ( j = 4 ) ( j = 5 ) ( j = 6 ) ( j = 7 ) ( j = 8 ) ( j = 9 ) ( j = 10 ) ( j = 11 ) ( j = 12 ) ( j = 13 )

Cummulative PM2.5 24.02*** 19.87* 11.25 9.01 7.66 7.19 11.65 19.15 24.86 32.64** 45.71** 59.5** 50.02** 47.84

(6.38) (10.68) (14.32) (15.72) (17.21) (19.04) (20.48) (19.39) (17.66) (16.41) (18.7) (23.54) (25) (29.18)

Relative Risk 1.086 1.064 1.033 1.024 1.019 1.016 1.025 1.038 1.048 1.06 1.081 1.101 1.083 1.077

[1.04, 1.13] [1, 1.13] [0.95, 1.11] [0.94, 1.11] [0.94, 1.1] [0.93, 1.1] [0.94, 1.11] [0.96, 1.11] [0.98, 1.11] [1, 1.12] [1.02, 1.15] [1.02, 1.18] [1, 1.16] [0.98, 1.17]

SD of Cumm. PM2.5 17.93 16.17 14.56 13.22 12.15 11.32 10.62 10.06 9.6 9.19 8.83 8.52 8.28 8.11

R-squared 0.859 0.861 0.864 0.865 0.866 0.866 0.866 0.867 0.869 0.871 0.872 0.874 0.871 0.869

Observations 106 106 106 106 106 106 106 106 106 106 106 106 106 106

HAC robust standard errors in parentheses. Relative risks's 95% confidence Intervals in brackets. *** p<0.01, ** p<0.05, * p<0.1.

Effect of Cummulative Exposure to PM2.5 on Total Respiratory Visits, All Age Groups
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ii. Cumulative Effect on Total Respiratory Visits by Age Group 

 

Similar to section 6.a.ii. above, I also examine the cumulative effect of PM2.5 

pollution exposure on respiratory visits across different age groups. Figure 14  below 

shows results, relative risks estimates and 95% confidence intervals across different 

periods of exposure in one quadrant for each age group. As I showed in Table 5 

above, Figure 14 shows that the effect on respiratory visits of acute same-day 

exposure to PM2.5 pollution turns statistically significant across all age groups. 

However, for those very young and very old individuals, I do not find statistically 

significant effect of PM2.5 pollution over more than 1 or 2-day exposure. These 

findings suggest that these vulnerable individuals are negatively affected mostly by 

acute episodes of PM2.5 pollution (such as sharp increases in PM2.5 pollution on days 

of WC games), but they seem less affected to exposure over a relatively longer period 

of time, over more than two consecutive days.  

 

The results presented in Figure 14 below, however, show a different pattern for 

children. For these individuals, these results suggest that there is a significant effect 

of PM2.5 pollution over consecutive days of exposure. Furthermore, the adverse effect 

on respiratory visits seems to increase over longer periods of exposure. For example, 

for these individuals, the relative risk estimate for the effect exposure to 12-day 

average PM2.5 pollution on respiratory visits is 1.244. This means that a one-standard-

deviation in 12-day average PM2.5 pollution increases respiratory visits by 24.4 

percent. This figure is more than twice as large as the effect of acute same-day 
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exposure to PM2.5 pollution for this same group of individuals (8 percent, as reported 

in Table 11 above). Since these individuals are of an age that they should be attending 

school (Pre-K to middle school), it might be that they spend relatively more time 

outdoors (probably playing and doing sports) than other individuals of different age. 

These outdoor activities may make them more susceptible to suffering from exposure 

to air pollutants over a longer period of time. 

 

 

Figure 14: 2SLS Relative Risk Estimates (and 95% confidence intervals) of the 

effect of cumulative exposure to PM2.5 on Total Respiratory Urgent Care Visits, by 

Age Group. 

 

iii. Cumulative Effect on Total Respiratory Visits by Type 

 

In this section I examine the effect of cumulative exposure to PM2.5 pollution on 

respiratory urgent care visits by type of respiratory disease. Figure 15 below shows 

that whereas same-day exposure to PM2.5 pollution has statistically significant effect 

across all types of respiratory visits, 2 and 3-day exposure have significant effects 
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only on lower, pneumonia and other respiratory visits.  On the other hand, exposure 

to 12-day average PM2.5 pollution has a significant effect on all respiratory visits 

except from those associated with pneumonia. For most types of respiratory visits the 

effect of exposure to PM2.5 pollution over 2 to 14 days seems not to be different to the 

effect of same-day exposure (with the exception of respiratory visits due to 

influenza). 

 

 
Figure 15: 2SLS Relative Risk Estimates (and 95% confidence intervals) of the 

effect of cumulative exposure to PM2.5 on Total Respiratory Urgent Care Visits, by 

Type of Respiratory Problem. 

 

iv. Cumulative Effect on Total Respiratory Visits by Age Group 

and Type 

 

In this section I examine the effect of cumulative exposure to PM2.5 pollution on 

respiratory visit by age group and type of respiratory visit. Figure 16 below presents 

results for the effect of cumulative exposure to PM2.5 pollution across both age groups 
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(row plots) and type of respiratory visits (column plots). The results basically reflect 

what was shown in figures 6 and 7 above. That is, the effect of cumulative exposure 

to PM2.5 pollution is largest for children, particularly for lower respiratory visits. 

Figure 12 shows that the relative risk estimate of 12-day average exposure on lower 

respiratory visits for this age group is 1.317, more than twice as large as the relative 

risk estimate of same-day exposure, 1.133, reported in Table 13 above. Furthermore, 

the large effect of 12-day average exposure to PM2.5 pollution for influenza visits for 

children seems to drive the large effect of respiratory visits due to influenza across all 

age groups shown in Figure 15 above. In fact, the effect of cumulative exposure to 

PM2.5 pollution on respiratory visits due to influenza is only significant for children, 

and it turns non-significant for all other age groups. 
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Figure 16: 2SLS Relative Risk Estimates (and 95% confidence intervals) of the 

effect of cumulative exposure to PM2.5 on Respiratory Urgent Care Visits, by Type of 

Respiratory Visit and Age Group. 
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v. Cumulative Effect on Cardiovascular and Circulatory Visits 

 

Similar to section 6.a.v., in this section I look at the effects of cumulative exposure to 

PM2.5 on cardiovascular and circulatory visits. Figure 17 below presents relative risk 

estimates and 95% confidence intervals for the effect of cumulative exposure to PM2.5 

on cardiovascular and circulatory visits for all age groups. Whereas the relative risk 

of one-day exposure is 1.047, the relative risk for 2 and 3-day exposure turns larger, 

at 1.064 and also significant. This means that a one-standard-deviation increase in 2 

or 3-day average PM2.5 pollution increases cardiovascular and circulatory urgent care 

visits by 6.4 percent. On the other hand, the relative risk estimate for the elderly turns 

statistically significant for 1 to 14-day exposure to PM2.5 pollution (not shown in 

Figure 16), and the relative risk estimate for a 2 to 3-day exposure for the elderly 

turns 1.08 and significant (not shown in Figure 16). 

 

 

Figure 17: 2SLS Relative Risk Estimates (and 95% confidence intervals) of the 

effect of cumulative exposure to PM2.5 on Cardiovascular and Circulatory Urgent 

Care Visits, All Age Groups. 
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7. Robustness Check: Adding Respiratory Visits in Valparaiso-Viña 

Metropolitan Area as Control Variable 

 

To check the robustness of the 2SLS estimates I introduce as an explanatory variable 

the correspondent outcome variable for Chile’s second largest metropolitan area: the 

metropolitan area that includes the cities of Valparaiso, Viña del Mar, Quilpué, y 

Villa Alemana (I refer to it as Valparaiso-Viña, for short). The Valparaiso-Viña 

metropolitan area has a very similar climate, and is about 120 kilometers (75 miles) 

west of Santiago. Furthermore, there is high connectivity between these two 

metropolitan areas to the extent that many people even commute every day to work in 

Santiago while living in Valparaiso-Viña (or vice versa). The main difference 

between these two large metropolitan areas is that, unlike Santiago, Valparaiso-Viña 

is not enclosed by mountains, and as a consequence, air pollutants do not accumulate 

as dramatically as they do in Santiago.
69

 Instead, Valparaiso-Viña is located off the 

coast of Chile and has geographical conditions that facilitate the ventilation of air 

pollutants. Chile’s Coastal Mountain Range (Cordillera de la Costa) separates 

Santiago from Valparaiso-Viña metropolitan area. 

 

Thereby, the variable for respiratory visits in Valparaiso-Viña may capture 

unobserved confounding effects that are not accounted for in the regressions and 

results presented earlier (such as Table 9 above). Table 16 below presents results 

from OLS (columns 1 and 3) and 2SLS (columns 2 and 4) for respiratory visits across 

                                                 
69

 Similarly, the concentrations of air pollutants in Valpo-Viña are not affected by thermal inversions. 
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all age groups, adding the outcome variable in Valparaiso-Viña as a control. Table 16 

presents both estimates for 𝛽, R-squared statistics and Hausman test statistics 

comparing to the corresponding  𝛽 estimates in Table 9 above. Furthermore, I present 

results with and without day-of week and month dummies (columns 1 and 2 and 

columns 3 and 4, respectively). The results in Table 16 show that, when adding day-

of-week and month dummies (column 4), the 2SLS estimate is not statistically 

different from that in Table 9 above (Hausman test statistic on PM2.5 smaller than 

3.86). I conclude that, when accounting for time-specific dummies, further controlling 

for respiratory visits in Valparaiso-Viña does not introduce new information that 

significantly changes the results of the model in Table 9. This suggests that I am 

correctly identifying the effect of PM2.5 pollution on respiratory visits and that the 𝛽 

estimates are robust to possible effects captured by respiratory visits in Valparaiso-

Viña metropolitan area. 

 

Table 16: Parameter Estimates of the Effect of PM2.5 on Total Respiratory Urgent 

Care Visits, for All Age Groups. Controlling for Outcome Variable in Valparaiso-

Viña Metropolitan Area. 

 

OLS 2SLS OLS 2SLS

(1) (2) (3) (4)

PM2.5 10.778* 26.802*** 4.186 17.999***

(5.520) (8.430) (2.768) (3.642)

R-squared 0.837 0.821 0.925 0.915

Hausman on PM2.5 (w.r.t. Table 3) 1.98 4.44 2.76 1.09

Day and Month Dummies No No Yes Yes

Observations 106 106 106 106

HAC robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Total Respiratory Visits (with Region V), All Age Groups
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8. Discussion 

 

On October 2016 Chile’s Congress passed new legislation to regulate air pollution 

emissions in Santiago’s Metropolitan Area. The legislation is part of the Air Pollution 

Control and Prevention Plans (“Plan De Prevención y Decontaminación Ambiental, 

PPDA”, in Spanish) that have been articulated by Chile’s Ministry of Environment to 

protect the environment under Chile’s current legislation.  This latest PPDA, aims to 

reduce annual PM2.5 pollution concentrations by 12 𝜇𝑔/𝑚3, and thus bring Santiago’s 

PM2.5 concentration below Chile’s standard for annual PM2.5 pollution 

concentrations.
70

  

 

The Ministry of Environment’s report for Santiago’s PPDA (“General Analysis of 

Economic and Social Impact of Santiago’s PPDA”, henceforth AGIES, according to 

the acronym in Spanish) conducts a cost-benefit analysis in which it estimates that the 

new PPDA for Santiago will have a net social benefit of USD 6,965 million over the 

course of the next 10 years, with a cost-to-benefit ratio of 1:6. Key to calculate these 

benefits are the expected reductions in PM2.5 concentrations and its corresponding 

health impacts on Santiago’s population. The AGIES estimates a constant reduction 

of PM2.5 concentrations over the next ten years that is expected to translate into 

241,404 fewer respiratory urgent care visits over the next 10 years. To arrive to this 

figure, the AGIES uses a concentration-response estimate from Norris et al. (1999) of 

                                                 
70

 Chile’s standards for PM2.5 concentration are 50 𝜇𝑔/𝑚3 for the daily average and 20 𝜇𝑔/𝑚3 for the 

annual average. 
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16.5 percent fewer respiratory visits, for children less than 18 years old, to a 10-

𝜇𝑔/𝑚3 change in PM2.5 pollution concentrations (Norris et al. 1999).  

 

The estimate presented in Table 3 above suggests that a 10-𝜇𝑔/𝑚3 change in PM2.5 

pollution concentrations would yield a 4.8 percent reduction in respiratory visits for 

the total population. Furthermore, the estimates presented in Table 5 above suggest 

that a 10-𝜇𝑔/𝑚3 change in PM2.5 pollution concentrations would yield 4.5 percent 

reduction in respiratory visits for infants and a 5.1 percent reduction for toddlers and 

children. The concentration-response estimates in this chapter are less than a third as 

large as those used to calculate the cost-benefit analysis in the AGIES report for 

Santiago’s PPDA (estimates from Norris et al., 1999, for children only). However, 

Norris et al. (1999)’s estimates used in Santiago’s AGIES report are closer to the 

estimates of the cumulative exposure to PM2.5 pollution for children (the largest 

estimates). For 12-day exposure to PM2.5 pollution I estimate that a 10-𝜇𝑔/𝑚3 

reduction in PM2.5 pollution will reduce respiratory visits by 13.6 percent for children.  

 

On the other hand, for a 10-𝜇𝑔/𝑚3 change in PM2.5 pollution concentrations Ilabaca 

et al. (1999) estimates a concentration-response of 0.6 percent for respiratory-related 

emergency visits and 1.48 percent for visits for pneumonia for children under 15 

years old in Santiago.
71

  The concentration-response estimates for those individuals 

                                                 
71

 Similarly, for a 10 𝜇𝑔/𝑚3 change in PM10 pollution concentrations, Ostro et al. (1999) estimates for 

lower respiratory visits a 0.5 percent change for children under 2 years old and a 0.74 percent change 

for children 3 to 15 years old. Jans, Johansson and Nilsson (2014) estimate that respiratory hospital 

admissions in Sweden (both in-patients as well out-patients) increase by 7.9 percent by each 10 

𝜇𝑔/𝑚3 increase in PM10 pollution. This effect is larger for admissions due to asthma (10.7 percent), 
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under 15 years old presented in this chapter are about eight times larger than Ilabaca 

et al. (1999)’s estimates for respiratory-related emergency visits and about four times 

larger for visits due to pneumonia. Moreover, in a meta-analysis of 26 previous 

studies for children, Lim et al. (2016) estimate a concentration-response of 2.7 

percent fewer respiratory visits for children, for a 10-𝜇𝑔/𝑚3 change in PM2.5 

pollution concentrations. Similarly, in a meta-analysis of 87 previous studies for 

asthma-related respiratory visits among the total population, Zheng et al. (2015) 

estimate a concentration-response of 1.7 percent fewer asthma-related respiratory 

visits for total population, for a 10-𝜇𝑔/𝑚3 change in PM2.5 pollution concentrations. 

As compared to these estimates, the  concentration-response estimates reported in this 

chapter are more than twice as large as those by Zheng et al. (2015) and those 

reported by Lim et al. (2016). 

 

9. Concluding Remarks 

 

In this chapter I look at the effect of exposure to fine particulate matter (PM2.5) on 

respiratory and cardiovascular and circulatory visits in Santiago, Chile. I look at 

effects for all visits as well as by age group and by type of respiratory visits, and 

estimate effects for both same-day exposure to PM2.5 pollution as well as exposure 

over consecutive days. 

 

                                                                                                                                           
bronchitis (10.1 percent) and pneumonia (9.4 percent) and for individuals 6 to 18 years old (10.4 

percent). 
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To identify a causal relationship and account for possible confounding effects I use 

exogenous variation on concentrations of PM2.5 pollution from thermal inversions and 

sharp increases in pollution emissions due to massive grill outs on occasion of FIFA 

2014 World Cup games. I find no evidence of avoidance behavior that may act as a 

confounding factor and, furthermore, I check that the estimates are robust to the 

presence of other possible confounders that should also be present in a nearby large 

metropolitan area (Valparaiso-Viña del Mar Metropolitan Area). Therefore, I believe 

that I have identified causal estimates of the effect of PM2.5 pollution on respiratory 

and cardiovascular and circulatory visits.  

 

I find that a one-standard-deviation increase in PM2.5 pollution increases daily 

respiratory visits by 8.6 percent, and daily cardiovascular and circulatory visits by 4.7 

percent. I estimate a larger effect for lower respiratory visits (10.2 percent), visits for 

pneumonia (11.2 percent) and for the elderly (13.4 percent for respiratory and 6.3 

percent for cardiovascular and circulatory visits). Furthermore, I find larger effects 

for exposure over consecutive days. I estimate that a one-standard-deviation increase 

in 12-day exposure to PM2.5 pollution increases respiratory visits by 10.1 percent (by 

24.4 percent for children). Similarly, I estimate that a one-standard-deviation increase 

in 2-day exposure to PM2.5 pollution increases cardiovascular and circulatory visits by 

4.4 percent (by 6.3 percent for the elderly). 
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Chapter 3: Adverse Effects of Air Pollution on the Probability of 

Stillbirth Delivery: Evidence from Central Chile 

 

1. Introduction 

 

There is a large literature documenting the effects of exposure to airborne air 

pollutants on human health across several cities and regions in both developing as 

well as the industrialized world (Nadadur and Hollingsworth 2015; Šrám et al. 2005). 

Much of the literature focuses on the adverse effects on particularly vulnerable 

subpopulations, namely infants and the elderly. In this chapter, we examine the 

adverse effects of airborne air pollution on a fundamental pregnancy outcome; that is, 

whether a pregnancy results in a livebirth delivery, or whether a fetal death occurs so 

that the pregnancy ends in a stillbirth delivery. Although there is a growing literature 

documenting the adverse effects of air pollution on several pregnancy outcomes —

such as low birth weight and preterm birth—there is little evidence on the adverse 

effects of air pollution on the probability of pregnancy ending in a stillbirth delivery 

(Nadadur and Hollingsworth 2015).  In fact, the empirical literature is, so far, 

inconclusive on whether air pollution has any significant effect on fetal deaths and 

stillbirth deliveries (Veras et al. 2015).  
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In this chapter, we look at the effects of two airborne pollutants, particulate matter of 

diameter less than 10 microns (PM10) and Carbon Monoxide (CO) on the probability 

of pregnancy resulting in a stillbirth delivery. We examine the effects of these two 

pollutants throughout two distinctive periods of exposure: chronic exposure, that is, 

exposure throughout the entire length of pregnancy, and acute exposure, exposure on 

the week of delivery (either a livebirth or stillbirth).   

 

On the other hand, as air pollution diminishes the capacity of the pregnant woman to 

transmit nutrients and oxygen to the fetus, a severe inhibition of this capacity may 

result in a fetal death due to the lack of oxygen in the fetus. Therefore, we also 

examine the effects of these two pollutants and these two periods of exposure on the 

most likely consequences of air pollution, a stillbirth due to hypoxia. 

 

We find evidence of adverse effects of acute exposure to both PM10 and CO pollution 

on the probability of stillbirth. Furthermore, we find larger effects for the probability 

of stillbirth due to hypoxia. Conversely, we find only weak evidence of chronic 

exposure to these air pollutants.  

 

The next section briefly reviews the existing literature. We present the data we 

employed in section 3 and in section 4 we explain the statistical methods we use for 

econometric analysis. Section 5 presents econometric results and in section 6 we 

contrast these results with those of the existing related literature. We discuss on the 
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policy implications of our results in section 7 and present concluding remarks in 

section 8. 

 

2. Literature Review 

 

There is a growing body of literature that looks at the effects of air pollution on 

births’ health outcomes. For instance, Edwards et al. (2015) reviews 139 articles and 

extracts extensive information about the effects of exposure to criteria pollutants 

(carbon monoxide, particulate matter, nitrogen dioxide, sulfur dioxide, ozone) 

polycyclic aromatic hydrocarbons and traffic-related air pollutants. Edwards et al. 

(2015)’s review examines six pregnancy outcomes: gestational-age, preterm birth, 

small for gestational-age, full term low birth-weight and both continuous and 

threshold low birth-weight. However, few studies look at the association between 

maternal exposure to air pollutants and fetal death or stillbirth delivery. Moreover, 

most of these studies examine the effects of exposure to air pollution during specific 

periods of the pregnancy (the days immediately before delivery, specific months and 

trimesters of pregnancy) as well as exposure during the entire length of pregnancy. 

The table in Appendix II summarizes the existing related literature and its main 

findings. 

 

The existing literature that looks at the effects of exposure to air pollution on the 

probability of stillbirth finds (i) significant effects of acute exposures (just a few days 

immediately before delivery) to peak levels of carbon monoxide pollution (Faiz et al. 
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2013)
72

; or, (ii) only weak evidence of exposure to air pollution when measured in 

levels, significant only at 90% confidence (Pereira et al. 1998)
73

. Regarding exposure 

to particular matter, both PM10 and PM2.5 (also known as fine particulate matter), the 

literature finds significant effects of different windows of exposure (third trimester, 

first two months, and entire length of pregnancy) and at different intensities. Whereas 

Kim et al. (2007) find statistical evidence on the probability of stillbirth from 

exposure to PM10 during the third trimester of pregnancy in Seoul, Korea; Hwang et 

al. (2011) find evidence of exposure during the first two months of pregnancy in 

Taiwan. Furthermore, De Franco et al. (2015) find evidence of exposure to peak 

levels of PM2.5 during the third trimester of pregnancy in the State of Ohio; and 

Green et al. (2015) find only weak evidence of exposure to levels of PM2.5 for the 

entire pregnancy in the State of California. 

 

However, because of to the focus on trimester-specific exposure, the existing 

literature misses those stillbirth deliveries that could have been due to exposure to air 

pollution but did not lasted through the third trimester of pregnancy. This misses 

those pregnancies that may have already resulted in a stillbirth but that did not last 

passed the second trimester of pregnancy.
74

 If those early stillbirth deliveries are due 

to exposure to air pollution, then this selection of observations introduces a 

(selection) bias. This bias would lead us to accept the null hypothesis of no 

                                                 
72

 Peak levels of pollution refers to pollution events in which pollution is higher than the sum of the 

mean pollution and inter-quantile range ( > mean + IQR). If pollution has a normal distribution, this 

would be equivalent to episodes of pollution in the top 2.5% percent of its distribution.  
73

 Notice that Pereira et al. (1998) is an ecological study. Most ecological studies have only one city-

wide measure of pollution exposure and do not include mother-specific controls, such as mother’s 

medical history, demographics and socioeconomic characteristics. 
74

 In fact, as I will show below, about half of the stillbirth deliveries in our sample to not last passed the 

second trimester of pregnancy (passed the twenty sixth week of pregnancy). 
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statistically significant effect of air pollution on stillbirth deliveries.  Same is true for 

those studies that focus on month-specific exposure through the eighth and ninth 

month of pregnancy. 

 

Moreover, the existing literature does not find conclusive evidence of an effect of 

exposure to CO pollution on stillbirth deliveries (other than at peak levels), nor does 

it find evidence of acute exposure to PM10 pollution on stillbirth deliveries. In this 

paper we examine the effects on the probability of stillbirth of both acute and chronic 

exposure to PM10 and CO pollution. Moreover, the existing literature fails to control 

for potential confounders such as those given by seasonal patterns of conception and 

delivery, and, most importantly, for possible location-specific unobservable effects 

(for example, municipality-specific confounders that may introduce bias to the 

estimation of the effect of exposure to air pollution). In this paper we address all these 

issues  and, in doing so, we do not introduce a selection bias due to  missing 

observations on pregnancies that resulted in stillbirth before reaching the third 

trimester of pregnancy.
75

 Furthermore, we control for potential seasonal and location-

specific confounders. 

 

Moreover, in this paper we also look at cause-specific stillbirths by focusing on those 

stillbirths that are most likely to be driven by exposure to air pollutants; stillbirths due 

to hypoxia.
76

 Thus, in this paper we also we provide supporting evidence of the more 

                                                 
75

 We refer to acute exposure as exposure to air pollution on the week of delivery, and to chronic 

exposure as to average exposure throughout the entire duration of the pregnancy. 
76

 Hwang et al. (2011) and Green et al. (2015) suggest that one possible pathway linking air pollution 

exposure and stillbirth would be via the oxygen uptake by the fetus. They suggest that pollutants may 
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likely pathway in which air pollution may affect the fetus, via severely inhibiting the 

capacity of the pregnant woman to provide the necessary nutrients and oxygen to the 

fetus. Therefore, we also examine whether exposure to air pollution is more likely 

trigger stillbirths due to hypoxia. 

 

3. Data  

 

We obtained individual-level data on stillbirth deliveries from official records of the 

Department of Health Statistics of Chile’s Ministry of Public Health. This data 

contains nationwide hospitals’ records on those women who have delivered livebirths 

and stillbirths. The data records the municipality where the mother lived at the time of 

delivery as well as the date of delivery. This data also provides information on 

mother’s pregnancy histories (number of previous livebirths deliveries, whether she 

had delivered a stillbirth in the past, etc), and mother’s personal characteristics 

(mother’s age, years of schooling, etc). The data also reports the number of weeks of 

pregnancy at the time of delivery.  We restrict our data to pregnancies lasting more 

than thirteen weeks as miscarriages of pregnancies lasting less than that often go 

                                                                                                                                           
increase maternal methemoglobin levels, which can oxidize fetal hemoglobin levels and inhibit the 

oxygen transport needed by the fetus (Green et al., 2015). Thereby, a severe lack of oxygen by the 

fetus could potentially result in fetal death due to hypoxia. Furthermore, Veras et al. (2015) suggest 

that air pollution can affect the utero-placental and umbilical cord flow and consequently the transport 

of glucose and oxygen through the placenta. Airborne particulate matter can affect pregnancy 

outcomes due to inflammation of the placenta, which could impair transplacental nutrient exchange 

thus affecting nutrition of the fetus and reducing oxygenation of maternal blood Kannan et al. (2007). 

Similarly, Maisonet et al. (2004) suggest that alveolar inflammation can lead to increased difficulties 

with blood flow, impacting placental functions. 
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unreported.
77

 In this way, we have data on 4,915 stillbirth deliveries and 857,820 

livebirth deliveries over the period 2008-2015, yielding a rate of 5.7 stillbirths for 

every thousand pregnancies lasting more than thirteen weeks.  

 

Additionally, the health data allows us to categorize those stillbirths according to the 

leading cause of death as diagnosed by the physician at the time of delivery. When a 

pregnancy ends in a delivery of a stillbirth, the physician must write down the leading 

diagnostic according to the tenth version of the international classification of disease 

(ICD-10). In our dataset, of those 4,915 stillbirth deliveries in our data, 1,365 

correspond to stillbirth due to hypoxia whereas 3,550 correspond to stillbirths due to 

other causes (different from hypoxia). This yields a rate of 1.6 stillbirths due to 

hypoxia out of every thousand pregnancies (lasting more than thirteen weeks).  

 

Air pollution data comes from Chile’s Air Quality National Information System; a 

network of air quality monitoring stations of Chile’s Environmental Ministry. The 

monitoring stations provide daily records of both particulate matter with diameter less 

than 10 microns per cubic meter (PM10) and carbon monoxide concentrations (CO) in 

parts per million. We build a municipality-week level dataset by assigning pollution 

exposure to each municipality for each week as follows. First, we take the week-

average pollution from each monitoring station. Second, we construct a spatial 

mapping of pollutants by using the geographical coordinates of the monitoring 

stations to impute pollution levels to spatial reference points. As we assume that most 

                                                 
77

 We also conducted analysis restricting the sample to those pregnancies that lasted more than twenty 

weeks. The results remain largely unchanged. 
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people live within certain vicinity of schools we use the geographical location of 

schools within a given municipality as spatial reference points to spatially impute air 

pollution concentrations.
78

 That is, we impute air pollution concentrations to the 

geographical location of each school within a municipality and then we average the 

imputed air pollution data across all (selected) schools for each municipality.
79

 In this 

way we generate a municipality-week dataset for air pollution data that we then 

merge with the individual-level pregnancy data outlined above.  

 

a. Correlation between Air Pollution and Pregnancy Outcomes 

 

Our data allows us to assign municipality-level PM10 and CO pollution on the week 

of delivery of each pregnancy (either a livebirth or stillbirth). We refer to this as acute 

exposure. Furthermore, since we also have data on the number of weeks of 

pregnancy, we also assign average PM10 and CO pollution exposure throughout the 

entire length of pregnancy, to which we refer to as chronic exposure. Figure 18 below 

plots average chronic and acute exposure to PM10 pollution (left plot) and average 

chronic and acute exposure to CO pollution (right plot) for each pregnancy outcome 

                                                 
78

 Furthermore, we restrict our sample of schools to those that are located (i) at a distance of no more 

than 5 kilometers from the nearest air quality monitoring station, and, (ii) between 5 to 10 kilometers 

to the nearest monitoring station, but no more  than 20 kilometers to the second-nearest monitoring 

station. If there is more than one monitoring station within a 20 kilometer radius from the school, we 

take the average by weighting the pollution data of each station by the inverse of the distance to the 

school. This methodology for spatial imputation of pollution data is known as the Inverse of the 

distance as weights (IDW) and has been previously been employed in (Currie and Neidell 2005) and 

(Arceo, Hanna, and Oliva 2016), to name a few.  
79

 We only consider those municipalities for which we have pollution data for at least 70% of the 

weeks of any given year. 
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(either a livebirth or a stillbirth delivery). The figure also adds its corresponding 95% 

confidence intervals. 

 

PM10 Pollution CO Pollution 

  
Figure 18: Mean PM10 and CO Pollution, by Pregnancy Outcomes 

 

The left plot of Figure 18 shows that the average chronic exposure to PM10 pollution 

of those livebirths is not statistically different from the average chronic exposure to 

PM10 pollution of those pregnancies that ended in a stillbirth. The same is true for the 

average acute exposure to PM10 pollution. However, this figure is somehow different 

for CO pollution. The right plot of Figure 18 shows that the average chronic exposure 

to CO pollution of those livebirths is higher than that of stillbirths, whereas this 

difference becomes statistically insignificant for acute exposure to CO pollution.  

 

We also look at cause-specific stillbirth, by distinguishing between those stillbirths 

diagnosed as due to hypoxia from those diagnosed as due to causes other than 

hypoxia (‘SB Other’ in Figure 19 below). The left plot of Figure 19 below shows that 

the average chronic exposure to PM10 pollution for those stillbirths due to hypoxia is 
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statistically higher than that of both stillbirth due to causes other than hypoxia (SB 

Other) and for livebirths. This difference is even larger for acute exposure to PM10. 

On the other hand, although the right plot of Figure 19 shows that the average chronic 

exposure to CO pollution for those stillbirths due to hypoxia is not statistically 

different from that of livebirths. However, the average acute exposure to CO pollution 

is statistically higher than both that of stillbirths due to other causes and that of 

livebirths.    

 

PM10 Pollution CO Pollution 

  
Figure 19: Mean PM10 and CO Pollution, by Causes of Stillbirth Delivery 

 

In addition, Table 17 below shows both mean and standard deviation of PM10 and CO 

pollution (both for chronic and acute exposure), for pregnancies that resulted in a 

livebirth or a stillbirth, and within those stillbirths, whether the stillbirth was due to 

hypoxia or due to other causes. These are the same numbers that we use to generate 
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both Figure 18 and Figure 19. Also, Table 17 presents the number of observations for 

each category.
80

  

 

Table 17: PM10, CO Pollution and Covariates, by Pregnancy Outcome. 

 

 

 

In addition to presenting statistics for PM10 and CO pollutants by birth outcome, 

Table 17 above also presents descriptive statistics (means and standard deviations) for 

mother’s personal characteristics (mother’s age, history of past stillbirths, marital 

status and years of education) and the season of the year at both the beginning and at 

the end of the pregnancy (season of conception and season of delivery). Table 17 

above shows that the average age at time of delivery is statistically higher for those 

                                                 
80

 So that 95% confidence intervals shown in figures 18 and 19 can easily be calculated by using the 

simple formula 𝑀𝑒𝑎𝑛 ± 𝑆𝐷/√𝑁. 

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

PM10 - Chronic  exposure 62.51 16.03 64.17 15.52 61.87 16.18 62.79 0.36

PM10 - Acute  exposure 64.41 24.32 67.13 24.09 63.35 24.33 63.90 23.29

CO - Chronic  exposure 0.718 0.425 0.740 0.441 0.709 0.418 0.730 0.363

CO - Acute  exposure 0.741 0.548 0.781 0.577 0.726 0.535 0.741 0.541

Mother's age 28.7 7.5 27.8 7.5 29.0 7.4 27.7 6.7

Mother's past stillbirths 0.041 0.199 0.044 0.205 0.040 0.196 0.019 0.136

Marital status (0=married, 1=single) 0.39 0.49 0.36 0.48 0.40 0.49 0.33 0.47

Mother's years of education 12.1 3.0 11.6 2.9 12.3 3.1 12.6 2.9

Season of Conception

Summer 0.22 0.42 0.23 0.42 0.22 0.42 0.23 0.42

Autumn 0.23 0.42 0.21 0.41 0.24 0.43 0.26 0.44

Winter 0.29 0.45 0.31 0.46 0.28 0.45 0.27 0.45

Spring 0.25 0.43 0.25 0.43 0.25 0.43 0.24 0.42

Season of Delivery

Summer 0.27 0.44 0.27 0.45 0.27 0.44 0.26 0.44

Autumn 0.28 0.45 0.30 0.46 0.28 0.45 0.28 0.45

Winter 0.23 0.42 0.23 0.42 0.23 0.42 0.24 0.43

Spring 0.22 0.41 0.20 0.40 0.22 0.42 0.23 0.42

(N = 4,915) (N = 1,365) (N = 3,550) (N = 857,820)

Stillbirths Live Births

All Stillbirths Stillbirths Hypoxia Stillbirths Other
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pregnant women that delivered a stillbirth than for those that delivered a livebirth. 

However, when looking at the average age of those that delivered a stillbirth due to 

hypoxia, the average age of those women is not statistically different from the 

average age of those women who delivered a livebirth. Those who delivered a 

stillbirth due to causes other than hypoxia (SB Other) are statistically older than those 

that delivered livebirths. Table 17 also shows that those women that delivered a 

stillbirth (either due to hypoxia or due to other causes) present a higher incidence of 

history of delivering stillbirths in the past (41 per every thousand pregnant women) 

than those that delivered a livebirth (19 per every thousand pregnant women). Those 

women that delivered a stillbirth are more likely to be single (39 percent) and have 

fewer years of education (12.9) than those that delivered a livebirth (of which 33 

percent are single and have an average of 12.6 years of education). Finally, the 

bottom panel of Table 17 shows descriptive statistics for season of conception and 

season of delivery. Among those that delivered a stillbirth, 29 percent of them 

became pregnant during the winter, which is statistically higher than that of those 

women that delivered a stillbirth and became pregnant during any other season of the 

year. This difference is further accentuated when focusing on those stillbirths due to 

hypoxia (31 percent). In sum, Table 17 shows that there are important differences in 

the personal characteristics and the patterns of pregnancy between those women that 

delivered a stillbirth and those that delivered a livebirth. In assessing the effect of air 

pollution exposure on pregnancy outcomes we explicitly control for the personal 

characteristics of the woman as well as for the seasonal pattern of the pregnancy. 
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b. Stillbirth Rates and Air Pollution across Municipalities and Time 

  

To further explore the relationship between air pollution and pregnancy outcomes we 

look at the average stillbirths rates and pollution exposure both across different 

municipalities and across time, for the period 2008-2015. Figure 20 below presents 

average acute exposure to PM10 and CO pollution and stillbirth rate (upper plots) and 

rate of stillbirth due to hypoxia (lower plots) for the 84 municipalities in our dataset, 

where each blue dot represents average for each municipality. We have added a trend 

(red line) to highlight the possible correlations between these variables. The figure 

suggests that, when aggregated at the municipality level, there is little correlation 

between average acute exposure to PM10 pollution and average stillbirth rate across 

municipalities (upper left plot). However, the figure suggests a weak positive 

correlation between average acute exposure to CO pollution and stillbirth rate across 

municipalities (upper right plot). The lower plots of Figure 20, however, show a 

relatively stronger positive correlation between average acute exposure to PM10 and 

CO pollution and stillbirth rate due to hypoxia across municipalities (lower plots). On 

the other hand, the plots for chronic exposure to both PM10 and CO pollution (omitted 

here) present very similar patterns as those of acute exposure, in Figure 20.  

 

 Acute exposure to PM10 Acute exposure to CO 
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Figure 20: Municipality-level Stillbirth Rate, Stillbirth Due to Hypoxia and Acute 

Exposure to PM10 and CO Pollution. 

 

On the other hand, Figure 20 presents month-average acute exposure to PM10 and CO 

pollution and stillbirth rates and stillbirth due to hypoxia, for the period 2008-2015. 

The figure suggests little serial correlation between acute exposure to PM10 and CO 

pollution and stillbirth (upper plots), as well as little serial correlation between acute 

exposure air pollution and stillbirth due to hypoxia (lower plots). 
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Figure 21: Monthly average Stillbirth Rate, Stillbirth Due to Hypoxia and Acute 

Exposure to PM10 and CO Pollution. 

 

c. Variation of Air Pollutants and Stillbirth 

 

Our analysis thus far suggests that there is a positive correlation between acute 

exposure to air pollution and stillbirth delivery, and a stronger positive correlation 

between acute exposure to air pollution and stillbirth due to hypoxia. In this section 

we further examine how the variation in exposure to air pollution relates to the 

variation in stillbirth rate and stillbirth due to hypoxia.
81

  Table 18 below presents 

means and standard deviations of stillbirth rate for all causes, stillbirth rate due to 

                                                 
81

 The regression analysis discussed in detail in the subsequent section exploits this variation to 

examine how exposure to air pollutants affects stillbirth rates. 
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hypoxia and both chronic as well as acute exposure to PM10 and CO pollution for the 

sample of 84 municipalities over the period 2008-2015. The table shows that the 

stillbirth rate (all causes) in our sample is 0.057, and the stillbirth rate due to hypoxia 

is 0.016.   

 

Also, as it can be expected, Table 18 shows that both chronic and acute exposure 

yield pretty similar means but they differ in their variation in terms of their respective 

standard deviations (where the more disaggregated week-level acute pollution 

exposure presents much larger standard deviations).  

 

Table 18 also presents a decomposition of the standard deviation across 

municipalities and weeks. The table shows that the overall variation of stillbirth rate 

and stillbirth due to hypoxia is evenly distributed across the space and time dimension 

of our data (that is, across both municipalities and weeks), ranging from 9 percent of 

the overall variation (for municipality-level variation of stillbirth rate) to 14 percent 

(for both the municipality-level variation of stillbirth due to hypoxia as well as for the 

week-level variation of stillbirth). For chronic exposure to PM10 pollution, the 

variation is also evenly distributed across municipalities and time (weeks) at 67 

percent and 65 percent of the total variation, respectively. However, the more 

disaggregated measure for PM10 pollution, acute exposure, varies largely across time 

(weeks), representing 79 percent of the overall variation of acute exposure to PM10 

pollution. On the other hand, most of the variation of exposure to CO pollution occurs 
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across weeks for both chronic exposure to CO (68 percent) as well as for acute 

exposure to CO (77 percent). 

 

Table 18: Descriptive Statistics for Stillbirth, Stillbirth due to Hypoxia, PM10 & CO 

Pollution Over Length of Pregnancy and on Week of Birth or Fetal Death 

 

 

4. Duration of Pregnancies and Hazard Function Approach 

a. Duration of Pregnancies by Pregnancy Outcome 

 

One of the fundamental differences between stillbirths and livebirths is that the 

pattern of duration of pregnancy of those stillbirths is remarkable different to that of 

livebirths. Most fetal deaths and stillbirths deliveries occur before full-term 

gestation.
82

 Figure 22 below presents histograms for both livebirths and stillbirths 

according to the number of weeks of pregnancy at the time of delivery. The figure 

                                                 
82

 Full term pregnancy is defined in the medical literature as those pregnancies that last at least 36 

weeks since conception. 

Variable Mean Obs.

Overall Municipality Week

Stillbirth rate (all causes) 0.0057 0.106 0.009 0.015 90,697          

Stilbirth Hypoxia 0.0016 0.058 0.008 0.008 90,697          

PM10 - Chronic exposure 62.77 13.87 9.26 9.05 90,697          

PM10 - Acute exposure 63.93 23.34 9.22 18.44 90,697          

CO - Chronic exposure 0.73 0.37 0.11 0.25 90,697          

CO - Acute exposure 0.74 0.54 0.11 0.42 90,697          

Standard Deviation



 

 130 

 

below show that whereas most livebirth deliveries occur between weeks 38 and 40 

(indeed, more than 75 percent of total livebirth deliveries), very few stillbirths occur 

during that period of gestation (less than 10 percent of total stillbirth deliveries). 

Stillbirth deliveries seem to distribute relatively evenly over the entire pregnancy, 

with a relatively larger amount of stillbirth deliveries concentrated between the 16
th

 

and 24
th

 week of pregnancy and another (although smaller) concentration of stillbirth 

deliveries in the weeks before the completion of a full term of pregnancy.
83

 On the 

other hand, the distribution of pregnancies varies little between those stillbirths due to 

hypoxia and stillbirths due causes other than hypoxia (not shown here). 

 

                                                 
83

 The remarkable differences in the distribution of weeks of pregnancies for livebirths and stillbirths 

seem to have been overlooked by the existing literature that examines the relationship between air 

pollution and pregnancy outcomes. As explained earlier, this omission is likely to have introduced 

selection bias in previous studies. We should also note that the duration of the pregnancy is 

intrinsically connected with the pregnancy outcome (either a livebirth or a stillbirth) and those 

observed or unobserved factors that determine the duration of pregnancies are very likely to also 

determine the pregnancy outcome. Thus, if not properly controlling for these factors, this would 

introduce further biases in the estimation of the effects of exposure to air pollution on pregnancy 

outcomes. 
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Figure 22: Histogram of Livebirths and Stillbirths. 

 

In addition, for each week of actual delivery, Figure 23 below shows the ratio of 

those pregnancies ending in a stillbirth in week t over all pregnancies ending in week 

t, and contrasts the time pattern of those pregnancies that end in a Stillbirth delivery 

to those that end in a livebirth delivery. The figure shows that whereas most 

pregnancies that end early (say, before the 26th week of pregnancy) present a very 

large probability of ending on a stillbirth (indeed, the probability is always greater 

than .8), those pregnancies that end close to full term (after the 36th week of 

pregnancy) have a very low probability of ending in a stillbirth (probabilities lower 

than .05).  
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Figure 23: Hazard of Stillbirth Delivery for Pregnancies Ending at a Given Week t. 

 

b. Hazard Function Approach 

 

To estimate the effect of air pollution exposure on the probability of stillbirth in this 

paper we employ the hazard function approach. The hazard function approach allows 

to explicitly account for the time at risk throughout the duration of the pregnancy, and 

to gauge how exposure to air pollution during the pregnancy may affect whether a 

pregnancy results in a stillbirth or livebirth delivery. 
84

 

 

In terms of the biostatistics terminology, a stillbirth or livebirth delivery can be 

thought of as a transition out of a current state of pregnancy, resulting in an 

                                                 
84

Currie and Neidell (2005) employ a linear hazard functions approach to estimate the effect of PM10, 

O3 and CO on infant mortality in California. While controlling for location specific unobserved factors 

at the zip-code level, the authors find significant effects of acute (week-level) exposure to CO.  
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interruption of the pregnancy. In this paper, we focus on how exposure to air 

pollution affects these transitions out of pregnancy and how such exposure to air 

pollution may make it more likely for any specific pregnancy outcome to occur 

(either a livebirth or a stillbirth delivery).  

 

The hazard function approach consists on estimating the probability that the status of 

a pregnant woman changes, at a given week (say week 𝑇), from pregnant to no longer 

pregnant, where this no-longer-pregnant status can be either a livebirth or a stillbirth 

delivery. More formally, the hazard function approach consists on estimating the 

probability that a given pregnancy that has lasted through period 𝑇 ≥ 𝑡 − 1, 

transitions out of its current state at period 𝑇 = 𝑡 . In other words, this approach 

consists of estimating the (discrete-time) hazard function ℎ(𝑋, 𝑡) defined by  

ℎ(𝑋, 𝑡) =
𝑓(𝑋, 𝑡)

𝑃𝑟𝑜𝑏(𝑋, 𝑇 > 𝑡 − 1)
=

𝑓(𝑋, 𝑡)

1 − 𝐹(𝑋, 𝑡 − 1)
 (4) 

 

where 𝑓(. ) denotes the (discrete-time) probability distribution function and 𝐹(. ) 

denotes the (discrete-time) cumulative distribution function. Both need to be 

specified.  

 

Whereas the numerator in equation (4) denotes the unconditional probability of a 

transition out of a state of pregnancy, the denominator in equation (4) denotes the 

survival probability, that is, the probability that the pregnancy lasts at least up to 

period 𝑇 ≥ 𝑡 − 1. Hence, the hazard ℎ(𝑡) denotes the probability of a transition out of 
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a state of pregnancy at a given period 𝑇 = 𝑡, occurs, given that such a transition has 

not occurred yet.  

 

Under this framework, exposure to air pollution may have two effects that are 

captured simultaneously by the hazard of stillbirth in equation (4). First, exposure to 

air pollution may shorten the elapsed time in the current state (shorten the duration of 

pregnancies), which is captured by a decrease in the survival probability (the 

denominator in equation (4)). Second, for those pregnancies that end at a given period 

𝑇 ≥ 𝑡 − 1, exposure to air pollution may increase the probability that those 

transitions out of pregnancies result in stillbirth deliveries (as opposed to  resulting in 

livebirth deliveries), yielding an increase in the numerator of equation (4) above. 

 

In order to assess the effects of covariates on the hazard probability, it is common 

practice in the empirical literature to assume that the underlying continuous-time 

model follows a proportional hazard rate 𝜃(𝑋, 𝑡) = 𝜆(𝑋)𝜃0(𝑡), so that the hazard rate 

of transitioning out of the current state depends on both the elapsed time in that state 

(pregnancy time, 𝜃0(𝑡)) as well as on covariates 𝑋 (a function 𝜆(𝑋)). Where 𝜃0(𝑡) is 

known as the baseline hazard, and 𝜆(𝑋) = 𝑒𝛽′𝑋 denotes a vector of covariates where 

each covariate 𝑋𝑖 has a proportional effect on the hazard probability via 𝛽𝑖. Assuming 

a logit specification for 𝑓(. ) in (1) above, the proportional hazard rate assumption in 

a leads to the complementary log-log regression model discrete-time setting (Jenkins 

2005): 
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ℎ(𝑋, 𝑡) = 1 − exp [− exp(𝛽′𝑋 + 𝛾𝑖(𝑡))] 

    or 

𝐿𝑜𝑔[−𝐿𝑜𝑔[1 − ℎ(𝑡, 𝑋)]] = 𝛽′𝑋 + 𝛾𝑖(𝑡) 

(5) 

 

where 𝛾(𝑡) is the cumulative hazard (𝛾(𝑡) = ∫ 𝜃0(𝑢)𝑑𝑢
𝑡

𝑡−1
) that depends on elapsed 

time only (not on covariates 𝑋s). 

 

Using this hazard function approach, in the next section we estimate both the 

probability of a pregnancy transitioning out to a stillbirth (that is, the probability of 

Stillbirth) and the probability of a pregnancy transitioning to a stillbirth due to 

hypoxia (Stillbirth Hypoxia). When estimating such probabilities we focus in 

particular on how both chronic and acute exposure to PM10 and CO pollution shapes 

this probability. That is, for any given week of pregnancy in which the pregnant 

mother is at risk of suffering from of the effects of exposure to air pollution, we focus 

on how such exposure may affect the probability of her pregnancy ending in a 

stillbirth delivery.  

 

From equation (5) above, the regression framework for assessing the effect of air 

pollution on probability of stillbirth can be expressed as follows. 

𝐿𝑜𝑔[−𝐿𝑜𝑔[1 − ℎ𝑖(𝑡, 𝑋)]] = 𝛽′𝑋𝑖 + 𝛾(𝑡)𝑖 

= 𝛽1𝑃𝑖𝑡 + 𝛽2𝑧𝑖 + 𝛽3𝑤𝑡

+ 𝛾𝑖(𝑡) 

(5’) 

 



 

 136 

 

where 𝑃𝑖𝑡 denotes exposure to air pollution over period 𝑡 (chronic or acute exposure 

to either PM10 or CO pollution); 𝑧𝑖 denotes mother’s characteristics (such as age, 

history of past stillbirth deliveries, marital status and years of education) as well as 

controls for seasonality of the pregnancy (season of conception and season of 

delivery); and 𝑤 denotes a set of month and year dummies. Furthermore, 𝛾𝑖(𝑡) is a 

function that captures the effect of the duration of the pregnancy (in weeks) on the 

hazard of stillbirth delivery. In this case, we use a semi-parametric piece-wise 

constant hazard with breaks at pregnancy weeks 21, 28, and 36.   

 

To implement this discrete-time estimation strategy, we treat a pregnancy that lasted 

for 𝑛 weeks as if it contributes 𝑛 observations to the sample.
85

 Thus, this model can 

be implemented by estimating equation (5’) using a complementary log-log 

regression model where the dependent variable takes on value 1 when a pregnancy 

ends in a stillbirth and on value 0 in all other cases (both when a pregnancy continues 

from one week to the next one, and when a pregnancy ends in a livebirth delivery). 

Alternatively, in the presence of competing end states (say, a stillbirth delivery or a 

livebirth delivery) the complementary log-log regression model reduces to a 

multinomial logit (Jenkins 2005). In our case, the multinomial logit has three 

potential outcomes. Whereas the base outcome is that of remaining pregnant (from 

one week to the following one), the two other outcomes are a stillbirth delivery and a 

livebirth delivery. Therefore, to estimate the effect of exposure to pollution on the 

probability of stillbirth as a transition out of a state of pregnancy we could use either 

                                                 
85

 In this framework, we calculated chronic exposure to air pollution as the moving average of the 

week-level air pollution variable, averaging out up to the n-th week of pregnancy.  
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the complementary log-log model or the multinomial model (they indeed yield both 

the same results).
86

  

 

In the next section, using this hazard function approach, we estimate the effect of air 

pollution on the probability of a pregnancy transitioning out to a stillbirth by 

estimating a multinomial logit. Furthermore, we also estimate the effect on the 

probability of a pregnancy transitioning to a stillbirth due to hypoxia by estimating a 

multinomial logit with three end states (namely, stillbirth delivery due to hypoxia, 

stillbirth delivery due to other than hypoxia and livebirth delivery). When estimating 

these multinomial logits we focus in particular on how both chronic and acute 

exposure to PM10 and CO pollution shapes these probabilities for any given week of 

pregnancy.  

 

5. Econometric Analysis 

 

In this section we present the parameter estimates of the model outlined above. We 

first examine the effect of air pollution on the probability of a pregnancy ending in a 

stillbirth delivery and in the next sub-section we look at the effect of air pollution on 

the probability of a pregnancy ending in stillbirth due to hypoxia.  

                                                 
86

 By changing the base outcome to that of a livebirth, the multinomial logit also allows to estimate the 

effect of exposure to air pollution on—once a delivery occurs— whether that delivery is a stillbirth or 

a livebirth. If both stillbirth and livebirth deliveries where to occur around the same week of 

pregnancy, then contrasting stillbirth deliveries directly with livebirth deliveries would be the 

appropriate model.  However, as Figure 5 shows, most of stillbirth deliveries do not occur around the 

same week of pregnancy as livebirths deliveries do (livebirths occur around the 38th week of 

pregnancy). Therefore, in this paper we focus on estimating the effect of exposure to air pollution on a 

transition out of pregnancy towards a stillbirth delivery, and contrast that with the probability of 

remaining pregnant on that particular week. 
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a. Effect of Exposure to Air Pollution on Probability of Stillbirth 

 

Table 19 below presents hazard function parameter estimates for the effect of 

exposure to air pollution on the probability of stillbirth (the 𝛽1s). Each cell presents 

parameter estimates associated to exposure to PM10 and CO pollution (and its 

corresponding standard error) from an independent regression. Each regression 

introduces only one pollutant (first two rows for PM10 and third and fourth rows for 

CO), and only one specification for each period of exposure to each pollutant (either 

chronic exposure or acute exposure). That is, two pollutants and two periods of 

exposure to each pollutant. For the estimates presented in column 1 we do not 

introduce any additional controls. The estimates presented in column 2 introduce 

controls for pregnancy weeks (piecewise hazard with breaks at 21, 28, and 36 

pregnancy weeks), mother’s age, whether the mother has experienced stillbirth 

deliveries in the past, marital status and years of education.
87

 In column 3 we 

introduce dummies for months, year and seasonality of pregnancy (both for the 

season of conception as well as for the season of delivery). Column 4 introduces all 

the controls from columns 2 and 3. Finally, Column 5 adds dummies by municipality 

to control for unobserved municipality-specific effects. Due to computer processing 

capacity the regressions used only a 10 percent random sample of those pregnancies 

that resulted in a livebirth delivery. Accordingly, regressions coefficients and 

                                                 
87

 Although we do not directly observe the smoking habits of the pregnant woman, mother’s years of 

education, marital status and age, together, can act as a good proxy for smoking habits of the pregnant 

woman. 
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standard errors were adjusted by frequency weights in order to account for this 

sampling of livebirth deliveries.  

 

The results presented in Table 19 show that the parameter estimates associated to 

acute exposure to PM10 pollution (second row of Table 19) are statistically significant 

across all specifications, as shown in columns 1 through 5. Furthermore, the 

parameter estimates associated to acute exposure to CO pollution (fourth row of 

Table 19) are statistically significant only across those specifications that introduce 

time and municipality-specific controls. On the other hand, the results shown  in 

Table 19 show that both chronic exposure to PM10 and CO pollution  have mostly a 

non-significant effect on the probability of stillbirth. Most parameter estimates on 

chronic exposure to both PM10 and CO pollution are statistically non-significant at 

conventional levels.  
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Table 19: Effect of PM10 and CO pollution on the probability of stillbirth. Hazard 

estimates. 

 

 

The hazard estimates of the parameter associated to acute exposure to PM10 vary from 

.00112 (column 1) to 0.00449 (column 5), depending on the set of controls we 

introduce. When introducing only acute exposure to PM10 pollution (column 1), we 

obtain that the parameter estimate is small and only weakly significant. Adding 

further controls for mother’s characteristics (column 2), dummies for month, year, 

season of conception and delivery (columns 3 and 4), and dummies for municipality 

(column 5) yields larger and more significant estimates.  Moreover, once we 

introduce time and municipality controls, the parameter estimates turn relatively 

stable across all these different specifications (columns 3, 4 and 5).  

 

(1) (2) (3) (4) (5)

-0.00212** -0.00170 0.000116 0.000589 0.00196

(0.00100) (0.00116) (0.00149) (0.00176) (0.00270)

0.00112* 0.00118** 0.00343*** 0.00354*** 0.00449***

(0.000581) (0.000600) (0.000759) (0.000758) (0.000893)

-0.0882* -0.0937* -0.0617 -0.0641 -0.0908

(0.0455) (0.0488) (0.0676) (0.0688) (0.0736)

-0.000205 -0.00334 0.0859*** 0.0999*** 0.0976***

(0.0311) (0.0302) (0.0302) (0.0310) (0.0321)

N Y N Y Y

N N Y Y Y

• Municipality Dummies N N N N Y

Obs. expanded by pregnancy weeks 2,261,543    2,261,543    2,261,543    2,261,543    2,261,543    

Observations 90,697         90,697         90,697         90,697         90,697         

Standard errors clustered by municipality. *** p<0.01, ** p<0.05, * p<0.1. 

• Controls: Pregnancy weeks, Mother's 

age, Past stil lbirth delivery, Marital 

Status and Years of education.
• Dummies for Month, Year and 

Seasonality of pregnancy (season of the 

year for both conception & delivery)

PM10 - Chronic  exposure

PM10 - Acute  exposure

CO - Chronic  exposure

CO - Acute  exposure
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According to the parameter estimate in column 5 (which introduces all available 

controls), our estimate suggests that the probability that a pregnancy ends in a 

stillbirth (as opposed to remaining pregnant) increases by .449 percent due to a 1-unit 

change in acute exposure to PM10. Table 18 shows that the standard deviation of 

acute exposure to PM10 is 23.34 and that the stillbirth rate (baseline probability of 

stillbirth) in our sample is 5.69 per every thousand pregnancies. Thereby, our estimate 

suggests that a one-standard-deviation increase in acute exposure to PM10 pollution 

would increase the stillbirth rate by 10.5 percent, bringing it up to 6.29 per every 

thousand pregnancies [6.29=.00569 *(1+23.34*.00449)]. Thereby, for our sample 

(spanning 84 municipalities over the years 2008-20015), a one-standard-deviation 

increase in acute exposure to PM10 pollution would result in 508.4 additional stillbirth 

deliveries over the period [508.4 = 0.00629*(4,915+857,820) - 4,915], an average of 

63.6 additional stillbirths a year. 

 

On the other hand, the hazard estimates associated to the effect of acute exposure to 

CO pollution on probability of stillbirth varies from -.000205 (column 1) to .0999 

(column 4), depending on the set of controls we introduce. Once we introduce 

controls for month, year, season of conception and delivery (columns 3 and 4), and 

dummies for municipality (column 5) the parameter estimates turn statistically 

significant and relatively stable across all these specifications.  

 

The parameter estimate that introduces all available controls (column 5) yields an 

estimate for the effect of acute exposure on the probability of stillbirth of .0976. 
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Thereby, this estimate suggests that a one-standard-deviation increase in acute 

exposure to CO pollution (see Table 18) would increase the stillbirth rate by 5.3 

percent, bringing it up to 5.99 per every thousand pregnancies [=0.00529*(1 + 

.54*.0976)].
88

 Therefore, such an increase in acute exposure to CO pollution would 

result in 252.7 additional stillbirth deliveries over the period considered in this paper 

[=0.00599*(4,915+857,820) - 4,915], an average of 31.6 additional stillbirths a year. 

 

b. Effect of Exposure to Air Pollution on Probability of Stillbirth Due to 

Hypoxia 

 

One of the channels that air pollution is thought to adversely affect the fetus during 

pregnancy is via the nutrients and oxygen that the pregnant woman transmits to the 

fetus. Thereby, exposure to air pollution is likely to restrict her capacity to properly 

transmit nutrients and oxygen to the fetus. In situations where this inhibition is severe 

enough to end the pregnancy in a stillbirth, it is likely that the cause of fetal death is 

diagnosed by the physician as hypoxia. Therefore, the adverse effects of exposure to 

air pollution on pregnancies are likely to be more directly reflected in those fetuses 

that die due to hypoxia. 

 

In Table 20 below we present estimates of the hazard function regression analysis for 

stillbirths due to hypoxia. Similar to Table 19, the first column presents estimates 

without introducing any controls, and then columns 2 to 5 introduce further controls.  

                                                 
88

 Table 18 shows that the standard deviation of acute exposure to CO pollution is .54. 
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Each cell in Table 20 refers to an independent regression with only one pollutant (and 

only type exposure) where the first statistic refers to the parameter estimate associated 

to that pollutant and the second statistic refers its corresponding standard error.  

 

Table 20: Effect of PM10 and CO pollution on the probability of stillbirth due to 

hypoxia. Hazard estimates. 

 

 

The estimates presented in Table 20 show that acute exposure to PM10 and CO 

pollution has a statistically significant effect on the probability of stillbirth due to 

hypoxia. Furthermore, these parameter estimates turn relatively stable throughout all 

different specifications of Table 20 (columns 1 through 5). On the other hand, the 

estimates for the effect of chronic exposure to PM10 and CO pollution are not 

consistently significant throughout different model specifications in Table 20. 

 

(1) (2) (3) (4) (5)

0.00326 0.00436* 0.00976*** 0.0119*** 0.00181

(0.00205) (0.00227) (0.00305) (0.00361) (0.00530)

0.00565*** 0.00560*** 0.00874*** 0.00878*** 0.00633***

(0.00147) (0.00144) (0.00181) (0.00179) (0.00198)

0.0344 0.0220 0.194* 0.198* 0.0808

(0.0806) (0.0840) (0.102) (0.111) (0.109)

0.131** 0.111** 0.252*** 0.255*** 0.212***

(0.0591) (0.0552) (0.0651) (0.0659) (0.0660)

N Y N Y Y

N N Y Y Y

• Municipality Dummies N N N N N

Obs. expanded by pregnancy weeks 2,261,543   2,261,543   2,261,543   2,261,543   2,261,543   

Observations 90,697         90,697         90,697         90,697         90,697         

Standard errors clustered by municipality. *** p<0.01, ** p<0.05, * p<0.1. 

• Controls: Pregnancy weeks, Mother's 

age, Past stil lbirth delivery, Marital 

Status and Years of education.
• Dummies for Year and Seasonality of 

pregnancy (season of the year for both 

conception & delivery)

PM10 - Chronic  exposure

PM10 - Acute  exposure

CO - Chronic  exposure

CO - Acute  exposure
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The estimates presented in column 5 of Table 20 suggest that the probability of a 

pregnancy ending in a stillbirth due to hypoxia increases by .633 percent due to a 1-

unit increase in acute exposure to PM10. Given that the stillbirth rate due to hypoxia is 

1.58, per every thousand (see Table 18), a one-standard-deviation increase in acute 

PM10 pollution would bring this rate up to 1.82 per every thousand 

[=.00158*(1+23.34*.00633)], which corresponds to a 14.8 percent increase. This 

means that a one-standard-deviation increase in acute exposure to PM10 pollution 

would result in 201.7 additional stillbirth deliveries due to hypoxia, 

[=0.00182*(4,915+857,820)-1,365], an average of 25 additional stillbirths due to 

hypoxia a year.  

 

Similarly, the estimates for acute exposure to CO pollution in column 5 show that a 

one-standard-deviation increase in acute CO pollution would bring the probability of 

stillbirth due to hypoxia up to 1.76 per every thousand [=.00158*(1+.54*.212)], 

which corresponds to a 11.4 percent increase. That is, such an increase in acute 

exposure to CO pollution would result in additional 154.2 stillbirths due to hypoxia 

[=0.00182*(4,915+857,820) - 1,365], an average of 19.3 additional stillbirth due to 

hypoxia a year.  

 

Our findings support the notion that the effect of exposure to air pollution is stronger 

among those stillbirths due to hypoxia. Table 18 shows that stillbirths due to hypoxia 

amount to only 27.8 percent of total stillbirths (1,365 out of 4,915). However, the 

additional stillbirths due to hypoxia that would result from an increase in pollution 
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exposure amounts to a much larger proportion. Whereas the additional stillbirths due 

to hypoxia that would result from a one-standard-deviation increase PM10 pollution 

would represent 37.9 percent of the total additional stillbirths, the figure from an 

increase in one-standard-deviation in CO pollution would represent 61 percent of the 

total additional stillbirths. This finding support our prior that the pathway in which air 

pollution adversely affects pregnancies is primary manifested through those fetal 

deaths that are caused by hypoxia. 

 

An additional finding that is worth noticing is that the hazard estimates for the 

probability of stillbirth due to hypoxia are quite similar for both chronic as well as 

acute exposures to both PM10 as well as CO pollution. This is particularly true for 

columns 3 and 4 of Table 4 (first and second row for PM10 pollution, and third and 

fourth row for CO pollution). This suggests a consistent estimate for the effects of 

both PM10 and CO pollution regardless of whether it is chronic exposure or acute 

exposure.  This may be because the aggregation of the pollution exposure variable 

throughout many weeks of pregnancy (in the case of chronic exposure) reduces the 

variability of the pollution variable, which, in turn, generates larger standard errors in 

the parameter estimate. This suggests that our statistical methods may be limited 

when it comes to reliable reporting significant effects of chronic exposures to air 

pollutants. Although chronic exposure may actually have significant adverse effects 

on pregnancies, our statistical methods cannot actually capture that effect. 

 



 

 146 

 

6. Discussion 

 

In this chapter we estimate that acute exposure to a 10-unit increase in acute exposure 

to PM10 pollution increases the probability of stillbirth by 4.49 percent. On the other 

hand, about half of the stillbirth deliveries in our sample occur during the third 

trimester of pregnancy—after the 26
th

 week of pregnancy (see Figure 22). Thereby, 

our measure of acute exposure to PM10 can be somewhat compared to measures of 

exposure to PM10 pollution in the last trimester of pregnancy of those stillbirth 

deliveries (either second or third trimester of pregnancy). For instance, Kim et al. 

(2007) find that a 10-unit increase exposure to PM10 pollution in the third trimester of 

pregnancy increases the probability of stillbirth by 8 percent. However, whereas the 

stillbirth rate that reported in Kim et al. (2007) for the city of Seoul is 4.45 percent, 

the stillbirth rate in our data is only .57 percent. For stillbirth rates similar to the one 

reported in our paper, Hwang et al.  (2011) find that only exposure to peak levels of 

PM10, during the first and second month of pregnancy, increases the probability of 

stillbirth by about 2 percent.
89

 Moreover, in a study that looks at the effects of 

exposure to fine particulate matter (PM2.5), De Franco et al. (2015) find that exposure 

to peak levels of PM2.5 during the third trimester of pregnancy increase the 

probability of stillbirth by 42 percent. Similarly, Green et al. (2015) find some 

evidence that exposures to peak levels of PM2.5 during the entire pregnancy increase 

the probability of stillbirth by 6 percent. 

                                                 
89

 Peak levels of pollution refers to pollution events in which pollution is higher than the sum of the 

mean pollution and inter-quantile range ( > mean + IQR). If pollution has a normal distribution, this 

would be equivalent to episodes of pollution in the top 2.5% percent of its distribution. 
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7. Policy Implications 

 

Air pollution is a growing global concern, particularly in middle income and 

emerging economies. Consequently, estimating the effects of air pollution on human 

health can provide policy makers with the necessary tools to back efforts to reduce 

concentrations of air pollutants.  

 

For example, Chile’s environmental authority has developed Air Pollution Control 

and Prevention Plans (PPDAs) for Santiago since the late 1990s, and more recently 

also for other smaller cities throughout the rest of the country. PPDAs consist of a 

battery of provisions for reducing air pollution. As of today, Chile’s environmental 

authority has developed PPDAs for 18 cities, covering largely the same geographical 

area as the set of municipalities considered in this paper.   

 

The goal of these PPDAs is to bring air pollution concentrations below Chile’s 

national standard, which is 50 micrograms per cubic meter for PM10. These PPDAs 

are evaluated ex-ante estimating social costs and benefits of expected improvements 

in air quality using estimates from different international studies that look at the effect 

of changes in pollution concentrations on specific health outcomes (these estimates 

are known in the literature as dose-response functions). However, the effect of air 

pollutants on stillbirth deliveries has not yet been included in the evaluation of 

Chile’s PPDAs. As a consequence, it is likely that the benefits from the efforts to 
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reduce air pollution concentration have been largely underestimated in the cost-

benefit analysis for Chile’s PPDAs.  

 

Indeed, the average PM10 concentration in our sample is 63.93, exceeding Chile’s 

standard for this pollutant (see Table 18). To bring PM10 concentrations to meet 

Chile’s standard for PM10 would require an average reduction in concentration of 

13.93 units. According to our estimates from Table 3, such a reduction would 

translate into 300 fewer stillbirth deliveries over the period 2008-2015, and an 

average of 37.6 fewer stillbirth deliveries a year. Chile’s Minister of Social 

Development has recently set the official value of statistical life at US$ 0.431 million 

(MINDES 2017). Therefore, the value of those fewer stillbirth deliveries resulting 

from reducing concentrations of PM10 pollution to meet Chile’s standard would 

amount to US$16.2 million a year. These benefits have not been valued in the cost-

benefit evaluations of the efforts to reduce air pollution concentrations under Chile’s 

PPDAs. 

 

8. Concluding Remarks 

 

In this chapter we examined the relation between exposure to airborne air pollution 

and the effect that this may have on the probability of a pregnant woman ending their 
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pregnancy in a stillbirth delivery. The existing literature shows only weak evidence of 

the relationship between exposure to air pollution and stillbirth delivery.
90

  

 

We looked at the effect of both chronic as well as acute exposure to PM10 and CO 

pollutants on the probability of stillbirth by estimating hazard functions that explicitly 

account for the time at risk throughout the duration of the pregnancy.  We controlled 

for number of weeks of pregnancy, mother’s characteristics, seasonal pregnancy 

characteristics, month and year-specific dummies, and municipality-specific 

dummies. We find that acute exposure to PM10 has an adverse effect on the 

probability of stillbirth. We estimate that a one-unit change in acute exposure to PM10 

pollution increases the probability of stillbirth by .449 percent. This means that, for 

our sample of 84 municipalities over the period 2008-2015 in Chile, a one-standard-

deviation change (increase/decrease) in PM10 concentrations would translate into 63.6 

(additional/fewer) stillbirths a year. 

 

Furthermore, to the best of our knowledge, the existing literature does not examine 

the effect of exposure to air pollution on the probability of cause-specific stillbirths, 

and the likely pathway of the effects of pollution exposure on fetal deaths that result 

in a stillbirth delivery. In this paper we looked at the effects of PM10 and CO on the 

probability of stillbirth due to hypoxia (those fetuses that die due to the lack of 

oxygen). We find that acute exposure to both PM10 and CO increase the probability of 

                                                 
90

 As noted earlier, only exposure to very high levels of air pollutants is associated to a statistically 

significant higher probability of stillbirth (De Franco et al., 2015). 
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stillbirth due to hypoxia and has a larger effect than that of the one on stillbirth due to 

all causes.  

 

On the other hand, it could be argued that the lack of controls for smoking habits of 

the pregnant woman may introduce bias in our parameter estimates. However, as long 

as smoking habits does not systematically correlate with exposure to air pollution 

after controlling for mother’s years of education,  age, marital status and location of 

residence (municipality of the mother), the lack of control for smoking habits should 

not introduce bias in our estimates.  

 

Moreover, as with most of epidemiological studies in the literature, this study assigns 

exposure to air pollutants only imperfectly. In our case, we assign exposure based on 

a sound average of the pollution concentration at the municipality of residence. A 

more accurate measure of pollution exposure would be such that it would allow to 

record air quality at an exact location for each pregnant woman in each period of time 

during her pregnancy. Unfortunately, our data does not allow for such accurate 

recordings. Furthermore, it is likely that pregnant women are more aware of the 

health risks of the surrounding environment. Pregnant women attend regular 

checkups with their gynecologist and health practitioners who may alert them of the 

health hazards of exposure to high levels of air pollution. They may also be more alert 

at the news and warnings of the local environmental and health authorities. As a 

consequence, pregnant women may change their behavior to limit their exposure to 

air pollutants. For example, they may choose not to exercise and to reduce time spent 
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outside in days of high pollution concentrations. They may even be inclined to wear a 

breathing or dust mask during days of high pollution concentrations, although this 

would be rare in a country like Chile. Nevertheless, both assigning only an imperfect 

measure of actual pollution exposure as well as a possible change in behavior to 

minimize pollution exposure would bias our results towards the null of no effect. The 

fact that we find a statistically significant effect under these limitations likely 

represents a lower bound of the true effect of air pollution on the probability of 

stillbirth. 
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Appendices 

1. Appendix I – The Kriging Method 

 

With the exact coordinate location of schools and monitoring stations, data were 

interpolated using the Kriging method.
91

 Kriging interpolates using the spatial 

variation of air pollution based on the empirical semi-variogram: 

 

𝛾(ℎ) =
1

2𝑀(ℎ)
∑ {𝑧(𝑥𝑖) − 𝑧(𝑥𝑖 + ℎ)}2

𝑀(ℎ)

𝑗=1

 

 

where ℎ is the distance, 𝑧(𝑥𝑖) the observed value at location 𝑥𝑖 and 𝑀(ℎ) are the 

number of pairs. The Kriging method utilizes the semi-variogram to determine the 

nature of variance and localized variability of data to generate values on a surface 

taking into account localized spatial trends. Kriging involves estimating values for 

any location using weights, which are optimized according to the semi-variogram 

model, the location of the samples and all the relevant inter-relationship between 

known and unknown values. With ordinary Kriging, the variable 𝑍 at a given location 

𝑥0 is written as a weighted linear function of the 𝑁 neighboring values: 

 

𝑍(𝑥0) = ∑ 𝜔𝑧(𝑥𝑖)

𝑁

𝑖=1

 

 

The interpolation was performed day-by-day but conditioning to those days with at 

least five reports from different monitoring stations. The parameters for the variogram 

model were estimated using a likelihood-based method with an exponential 

correlation function and then were interpolated with an ordinary Kriging. 

                                                 
91

 We used geoR package in R software, which makes it possible to handle spatial data and undertake 

several geostatistical procedures. 
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2. Appendix II – Summary of Current Literature for Chapter 3 

Authors Location and 
Years 

Pollutants & Imputation of 
Exposure  

Length of 
Exposure in 
the 
Analysis 

PM and CO 
Mean (SD) 

Stillbirth 
rate (%) 

Methodology and 
Econometrics 

Controls Effects on Stillbirth 
(Odd Ratios) 

Kim et. al. 
(2007) 

Seoul, Korea. 
May 1st  2001 – 
May 31st 2004. 

PM10 
Nearest monitoring station to 
mother’s address using 27 
monitoring stations in Seoul.  

Trimesters, 
Last six weeks. 
Months,  

89.3 (45.7) 4.4 Hospital-based 
cohort study. 
Logistic regression 

Demographics, mother’s  
SES, medical history, pregnancy 
complications, exposure to 
smoking, alcohol use  

1.1  for Third 
trimester 

Pereira et. 
al. (2008) 

Sao Paulo, Brazil. 
Jan 1991 – Dec 
1992.  

PM10, CO (also SO2, NO2 & O3). 
City-wide daily average using 13 
and 5 monitoring stations for PM10 
and CO, respectively. 

3 and 14 days 
before delivery 
for CO and 
PM10, 
respectively. 

CO:  
5.73 (1.89) 
PM10:  
65.0 (27.3) 

8.36  Citywide ecological 
study. 
Poisson regression. 

Season (month and day 
dummies) and weather 
(temperature, relative 
humidity). 

CO: Positive & 
significant at 90% 

Hwang et. 
al. (2011) 

Taiwan. 
Jan 1st 2001- Dec 
31st 2007. 

PM10, CO (also SO2, NO2 & O3)  
Interpolated using IDW to postal-
code area (one block face) using 
72 monitoring stations. 

Months, 
Trimesters and 
entire 
pregnancy. 

PM10:  
72.9 (23.3) 
CO:  
0.66 (0.18) 

0.62 Nationwide 
population-based.  
Logistic regression. 

Sex, maternal age, gestational 
age, municipality-level SES, 
season of conception and year 
of birth. 

PM10: 1.02 for First 
and Second Month 
 

Faiz et. al. 
(2012) 

State of New 
Jersey, USA. 
Jan 1st 1998 – 
Dec 31st  2004. 

PM2.5, CO (also SO2 & NO2) 
Nearest monitoring station to 
mother’s address (10Km and 5Km) 
using 25 and 16 monitoring 
stations for PM2.5 and CO, 
respectively 

Trimesters and 
entire 
pregnancy 

PM2.5:  
13.8 (1.6) 
CO:  
0.92 (0.3) 

0.42 Statewide 
population-based. 
Logistic regression 

Maternal age, race and 
educational attainment, 
participation in prenatal care 
and self-reported smoking. Also, 
neighborhood SES, mean 
temperature, calendar year and 
month of conception. 

CO:  
1.14  of peaks ( > 
mean+IQR)  during 
Second and Third 
trimesters 

Faiz et. al. 
(2013) 

State of New 
Jersey, USA. 
Jan 1st 1999 – 
Dec 31st  2004 

PM2.5, CO (also SO2 & NO2) 
Nearest monitoring station to 
mother’s address (10Km and 5Km) 
using 5 and 13 monitoring stations 
for PM2.5 and CO, respectively 

2 to 6 days 
before delivery 

PM2.5:  
14.7 (8.8) 
CO: 
0.85 (0.4) 

0.42 Statewide 
population-based. 
Logistic regression 

Maternal age, race and 
educational attainment, 
participation in prenatal care 
and self-reported smoking. Also,  
mean apparent temperature. 

CO: 
1.20 and 1.17 of 
peaks ( > 
mean+IQR)  for lag-
2 days and lag-3 
days, respectively. 

De Franco 
et. al. 
(2015) 

State of Ohio, 
USA. 
2006 - 2010 

PM2.5 
Nearest monitoring station to 
mother’s address (10Km) using 57 
monitoring stations. 

Trimesters and 
entire 
pregnancy 

PM2.5: 
13.3 (1.8) 

0.53 Statewide 
population-based. 
Logistic regression. 

Maternal age, race, educational 
attainment, prenatal care and 
season of conception. 

PM2.5:  
1.42  of peaks ( > 
mean+IQR)  during 
Third trimester. 

Green et. 
al. (2015) 

State of 
California, USA. 
Jan 1st 1999 – 
Dec 31st  2009 

PM2.5, CO (also SO2, NO2 & O3) 
Nearest monitoring station to the 
centroid of mother’s postal-code. 
20Km and 5Km for PM2.5 and CO, 
respectively. 

Trimesters and 
entire 
pregnancy 

PM2.5: 
15.2 (5.1) 
CO: 
1.29 (0.67) 

0.46 Statewide 
population-based. 
Logistic regression. 

Maternal education, race/ 
ethnicity and age. Season and 
year of conception, sex of the 
infant/fetus, relative humidity, 
and air basin. 

PM2.5: 
1.06 of  peaks ( > 
mean+IQR) for 
entire pregnancy 
(significant at 90%) 
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