
Fillippova et al. BMC Bioinformatics 2012, 13:276
http://www.biomedcentral.com/1471-2105/13/276

SOFTWARE Open Access

Coral: an integrated suite of visualizations for
comparing clusterings
Darya Filippova1*, Aashish Gadani3 and Carl Kingsford1,2

Abstract

Background: Clustering has become a standard analysis for many types of biological data (e.g interaction networks,
gene expression, metagenomic abundance). In practice, it is possible to obtain a large number of contradictory
clusterings by varying which clustering algorithm is used, which data attributes are considered, how algorithmic
parameters are set, and which near-optimal clusterings are chosen. It is a difficult task to sift though such a large
collection of varied clusterings to determine which clustering features are affected by parameter settings or are
artifacts of particular algorithms and which represent meaningful patterns. Knowing which items are often clustered
together helps to improve our understanding of the underlying data and to increase our confidence about generated
modules.

Results: We present Coral, an application for interactive exploration of large ensembles of clusterings. Coral makes
all-to-all clustering comparison easy, supports exploration of individual clusterings, allows tracking modules across
clusterings, and supports identification of core and peripheral items in modules. We discuss how each visual
component in Coral tackles a specific question related to clustering comparison and provide examples of their use. We
also show how Coral could be used to visually and quantitatively compare clusterings with a ground truth clustering.

Conclusion: As a case study, we compare clusterings of a recently published protein interaction network of
Arabidopsis thaliana. We use several popular algorithms to generate the network’s clusterings. We find that the
clusterings vary significantly and that few proteins are consistently co-clustered in all clusterings. This is evidence that
several clusterings should typically be considered when evaluating modules of genes, proteins, or sequences, and
Coral can be used to perform a comprehensive analysis of these clustering ensembles.

Background
Collections of protein interactions, gene expression vec-
tors, metagenomic samples, and gene sequences contain-
ing thousands to hundreds-of-thousands of elements are
now being analyzed routinely. Clustering is often used to
condense such large datasets into an understandable form:
it has been successfully used on protein-protein interac-
tion (PPI) networks to discover protein complexes and
predict protein function, e.g. [1]; on gene expression data
to find patterns in gene regulation and essential cell pro-
cesses, e.g. [2]; and on metagenomic samples to identify
new species, compare them to existing clades, evaluate

*Correspondence: dfilippo@cs.CMU.edu
1Lane Center for Computational Biology, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA 15213, USA
Full list of author information is available at the end of the article

the diversity of a population, and suggest interdependen-
cies between them [3,4]. In other words, clustering has
become a ubiquitous part of analysis for large biological
datasets.
There are many clustering algorithms available for

numerical and network data, e.g. [5-12]. Each algorithm,
and choice of its parameters, results in different clus-
terings. Sometimes, clustering algorithms must resolve
ties when generating modules or may be randomized.
Consequently, a single clustering algorithm may produce
diverse partitions on the same data [13]. Clusterings may
also change when the underlying data becomes increas-
ingly noisy or displays variation under different conditions
(such as varying gene expression levels). In addition, con-
sidering many optimal and near-optimal partitions has
been shown to improve the understanding of module
dynamics and the strength of relationships between indi-
vidual items [14-17]. Such clusterings may offer drastically

© 2012 Fillippova et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Fillippova et al. BMC Bioinformatics 2012, 13:276 Page 2 of 13
http://www.biomedcentral.com/1471-2105/13/276

different perspectives on the data, where assessing the
commonalities and differences is of great interest.
There are several ways in which the problem of diverse

clusterings has been addressed. Some tools rely on a
single clustering only and focus on module quality assess-
ment, e.g. [18,19]. Comparing two or more clusterings
at a time is usually done by computing a single met-
ric, such as the Jaccard or Rand index [20], to compare
clusterings side-by-side [21] or in a dendrogram [22].
These approaches can easily compare a pair of clus-
terings, but are not extendable to greater number of
clusterings. Another approach is to aggregate multiple
partitions into a consensus clustering [23,24] without
delving into the differences between individual clusterings
and, thus, disregarding possibly important information
about the clusterings. Finally, some approaches have made
steps towards visual examination of multiple clusterings:
King and Grimmer [25] compare clusterings pairwise and
project the space of clusterings onto a plane to visualize
a clustering landscape, and Langfelder et al. [26] investi-
gate ways to compare individual modules across multiple
conditions. However, none of these approaches offer a
platform for a multi-level analysis of ensembles of diverse
clusterings.
In the present study, we describe Coral—a tool that

allows for interactive and comprehensive comparison of
multiple clusterings at different levels of abstraction. Coral
allows users to progressively move from an overview to
analysis of relationships between individual data items.
Users may start by examining statistics on the data and
individual clusterings, or by assessing the overall homo-
geneity of a dataset. Users can then compare any two
partitions in the ensemble in greater detail. Larger scale
trends become pronounced when groups of items that
co-cluster often are automatically identified and high-
lighted. We also extend parallel sets plot [27] to show
how individual items switch modules across clusterings.
Coral’s visualizations are interactive and are coordinated
so that users can track the same group of data items across
multiple views.

Implementation
In Coral’s design, we followed the visualization mantra
coined by Shneiderman [28]: overview, zoom-and-filter,
details-on-demand. At the overview level, Coral displays
dataset statistics and highlights the most similar and dis-
similar clusterings; at the mid-level, “zoomed-in,” analysis
explains similarities between clusterings through module
comparison; the low-level analysis compares co-clustering
patterns at the level of individual data items: the genes,
proteins, or sequences. The displays are coordinated [29]
so selecting data in one of the views highlights the corre-
sponding items in the other views (see Figure 1).

Coral works with modules — groups of items closely
related to one another according to some metric or prop-
erty. For example, modules can constitute a collection of
genes that get co-expressed together or proteins forming a
complex. A clustering is a collection of modules and usu-
ally is an output of a clustering algorithm. Users may also
choose to group data according to attributes that come
with the data such as cellular component or molecular
function GO terms and use that partition as a clustering.
Users may combine data from different experiemnts and
across species so long as the data items that the user treats
as homologous have the same IDs across the dataset.
Coral takes as an input the module files where each file

represents a single clustering, and each line in the file
contains a list of data items (proteins, genes, or sequence
ids) from a single module, e.g. as produced by MCL,
the clustering algorithm by van Dongen [5]. Coral aggre-
gates and visualizes these data through several connected
displays, each of which can be used to answer specific
questions about the clusterings. Below, we examine a few
such questions and describe how Coral’s visualizations
help to answer them.

Howmany and what size modules do clusterings have?
To gain a quick overview of their collection of cluster-
ings, Coral users may start the analysis by reviewing basic
statistics about their data: number of modules per clus-
tering, average module size, number of items that were
clustered, clustering entropy [30], and percentage of data
items that ended up in the overlapping modules. Ques-
tions such as “Do clusterings have the same number of
modules?” and “Are module sizes evenly distributed?” can
be easily answered through these statistics. Each statistic
is shown as a bar chart, and each clustering is associ-
ated with a unique color hue that is used consistently to
identify the clustering throughout the system. If a clus-
tering contains overlapping modules, the corresponding
bar in the chart is striped as opposed to a solid bar for
the clusterings containing no overlapping modules (see
Figure 1).

Which clusterings are the most and least similar?
Coral computes similarity scores between all clusterings
and visualizes the lower triangle of the similarity matrix
in a ladder widget (Figure 2). The ladder compactly dis-
plays similarity scores for every pair of clusterings in
the ensemble allowing for precise comparisons. Coral
offers a choice of several similarity measures to com-
pare partitions: Jaccard coefficient, Mirkin metric, Rand
index, Folkes-Mallow metric, mutual information, vari-
ation of information, purity and inverse purity, and the
F-measure [30]. The ladder is color-coded as a heatmap
with more intense blue cells corresponding to higher sim-
ilarity scores and paler cells corresponding to low scores.

Fillippova et al. BMC Bioinformatics 2012, 13:276 Page 3 of 13
http://www.biomedcentral.com/1471-2105/13/276

Figure 1 Coral overview. Coral views in a clockwise direction: co-cluster matrix (1), pairs table (2), parallel partitions plot (3), module-to-module
table (4), ladder (5), overview statistics (6). Users may rearrange the individual views or close them to focus on fewer visualizations at a time. Data: A.
thaliana clusterings.

Figure 2 All-to-all clustering comparison in a ladder widget. The ladder represents a lower triangle of an all-to-all matrix where each cell (i, j)
holds a score for similarity between clusterings Ki and Kj . Users can choose between several comparison metrics by toggling a dropdown above the
ladder. Every cell is color-coded, with darker colors indicating more similarity between the pair.

Fillippova et al. BMC Bioinformatics 2012, 13:276 Page 4 of 13
http://www.biomedcentral.com/1471-2105/13/276

Clicking a cell updates the contents of a module-to-
module comparison widget (see next subsection).

Which modules are the most similar between the two
clusterings?
A natural follow-up to finding a highly similar pair of
clusterings is to review the similarities between their
individual modules. Is a group of interacting genes pre-
served between the two stages in the cell life cycle? Is
there a match for a given protein complex in the PPI
network of another species? Module-to-module compar-
ison answers these questions and explains the origins of
clustering similarity at a “zoomed-in” module level.
For a given pair K1,K2 of clusterings, Coral calculates

the Jaccard similarity J = |m1
i
⋂

m2
j |/|m1

i
⋃

m2
j | between

every module m1
i ∈ K1 and m2

j ∈ K2 thus capturing the
amount of overlap between the two modules. For every
such module pair, Coral displays the pair’s Jaccard score
and items in the union, intersection, left and right set
differences. All module pairs are organized in a sortable
table (see Figure 3). The slider above the table allows the
user to filter out module pairs for which the Jaccard score
is outside the slider’s range allowing users to focus on
highly similar (or dissimilar) modules. Although module-
to-module analysis is possible with the parallel partitions
plot (discussed below), the table offers a sortable and fil-
terable view of the same data while supplying additional
information (e.g. Jaccard index). The module-to-module
table shows only the module pairs with some overlap
and easily scales to hundreds of modules, thereby offer-
ing a more compact and easily navigable alternative to a
confusion matrix (e.g. as used in [26]).

Does this module appear in other clusterings?
The ability to track individual items and whole mod-
ules across multiple clusterings provides a high level
of abstraction in clustering analysis: modules may split
and merge as users switch from clustering to cluster-
ing. To afford an exploration at the module level, we
have developed a parallel partitions plot — an extension
of a parallel sets plot used in the analysis of categor-
ical multivariate data [27]. The parallel partitions plot
represents each clustering as a horizontal band. The
blocks comprising each bands represent modules, with
the width of a block proportional to the number of
items in that module. Semi-transparent parallelograms
between clusterings connect data items with the same
name. That is, each item in a clustering will be con-
nected to its copy in the band immediately below it
(see Figure 4).
The parallel partitions plot allows users to track indi-

vidual items and whole modules across all partitions.
To see whether a module splits or merges in other clus-
terings, users can select a module with a mouse while
holding a shift key to highlight its members in every
clustering in the plot (see red traces in Figure 4). Sim-
ilarly, users may select individual items and trace them
through every clustering band. The selections made
in the parallel partitions plot propagate to other views
making it easy to track the same group of items through-
out the application. The plot is zoomable — users may
zoom in to focus on a few items at a time or zoom
out to see global trends across the ensemble. When
the zoom level permits it, the plot displays the item
labels.

Figure 3Module-to-module comparison for two clusterings.When users decide to focus on a pair of clusterings, they may explore all pairs of
modules in a sortable table. Each module pair is shown against its Jaccard score, and lists of items in the module intersection, left and right
differences. Users can filter the table rows by Jaccard score to only show rows within a given similarity range by adjusting the slider above the table.
Cells holding the Jaccard scores are color-coded to indicate similarity.

Fillippova et al. BMC Bioinformatics 2012, 13:276 Page 5 of 13
http://www.biomedcentral.com/1471-2105/13/276

Figure 4 Parallel partitions maps modules between clusterings. Horizontal bands represent partitions, and modules are separated by blank
spaces. Semi-transparent bands connect the same items from different clusterings. Red traces highlight selected items across all partitions and show
how modules split and merge. Here, the user has selected a group of 215 proteins that belong to the largest core in the ensemble of clusterings for
A. thaliana PPI network. The Louvaine, Clauset, MCL, and MCODE.F clusterings assign all of the selected proteins to a single module. For other
clusterings, most of the selected proteins are placed in a grab bag region of items that were not contained in any module (shown in gray).

The order of items in the clustering bands matches the
order of items in the co-cluster matrix (discussed below)
as closely as possible, while at the same time attempting
to minimize the amount of crossover between the paral-
lelograms connecting items in the consecutive clusterings.
However, the items in the bands must be placed inside
their respective modules. We discuss an algorithm that
finds a good ordering of items in the clustering bands in
the Methods section.

What other items are in the samemodule as a given item u?
A single clustering assigns a data item v to a mod-
ule defining its cohort — a set of items in the same
module as v. Knowing the item’s module helps in
assigning function to unknown proteins [6] and novel
genes [2]; knowing that the item’s cohort is consistent
across many clusterings increases the confidence of such
predictions.
In Coral, pairwise co-cluster memberships are aggre-

gated in a co-cluster matrix [24]. Given a single clus-
tering K , n = |K |, we define an n × n matrix
AK to be K ’s co-cluster matrix where its entries
aKij are:

aKij =
{
0 vi and vj are in different modules in K
1 vi and vj are in the same module in K .

For some item pairs, co-clusteringmay be an artifact of a
tie-breaking policy or a choice of an algorithm parameter:
such item pairs may only co-cluster in few clusterings. On
the other hand, we would like to know whether there were
item pairs that co-clustered across most partitions in the

ensemble. These cohort dynamics stand out if we sum up
the co-cluster matrices to form a single matrix:

A+ =
k∑

t=1
AKt ,

where AKt is a co-cluster matrix for a clustering Kt and k
is the number of clusterings. Here, the a+

ij entries equal k
(the number of clusterings) for item pairs (vi, vj) that have
co-clustered in all partitions suggesting a strong relation-
ship between the items, and the low a+

ij values correspond
to pairs that co-clustered in only a few clusterings and are
more likely to have been assigned to the same module by
chance. The cells are colored according to their values and
vary from white (low values) to red (high values). Users
may zoom in and out on the matrix to focus on areas of
interest.
The co-cluster matrix is hard to read unless similar rows

and columns are placed near each other. Reordering the
rows and columns of A+ brings non-zero entries closer
to the diagonal and exposes any modular structure. When
clusterings are highly similar, the reordered matrix will
consist of blocks along the diagonal with high a+

ij values
(Figure 5). Clusterings that are very dissimilar produce
reorderings similar to Figure 6 — the diagonal blocks
mostly contain low a+

ij values (colored white or light pink)
with many entries away from the diagonal.

Are there whole groups of items that co-cluster together
often?
Groups of items that end up in the same module across
many clusterings are of a particular interest because they
represent the robust subclusters in the data. Such com-
monly co-clustered sets are called cores. Items in cores

Fillippova et al. BMC Bioinformatics 2012, 13:276 Page 6 of 13
http://www.biomedcentral.com/1471-2105/13/276

Figure 5 (a) A co-cluster matrix of three identical decompositions forms blocks on the diagonal with only red cells indicating that all
three clsuterings agreed (synthetic data). (b) Big modules were broken up into smaller modules to form new clusterings (four Hybrid
decompositions from the Langfelder study [16]).

form the most trustworthy modules and indicate par-
ticularly strong ties between data items, increasing, for
example, the confidence in protein complex identification
[32] and gene annotation [33].
In a co-cluster matrix, cores translate to contiguous

blocks of high-value entries. Coral finds the cores using
a fast dynamic programming algorithm and highlights
themwithin the co-cluster matrix (inset, Figure 6a).When
users provide clusterings derived from a network, Coral
can augment cores with an overlay showing each core’s
cohesion — the ratio Ein/Eout where Ein is the number
of edges within the core and Eout is the number of edges
that have one endpoint inside the core and another end-
point outside of it [34]. When a core’s cohesion is low,
the blue overlay is smaller indicating that the core shares
many connections with the rest of the network (Figure 6b).
Cores for which cohesion is high are more isolated from
the rest of the network — these cores are distinguishable
by the blue overlays that almost cover the core.

Do items within a ground-truth clustering often co-cluster
in other clusterings?
When validating new protein complexes or co-expressed
gene modules, users may want to see how well their
results match ground-truth clusterings such as protein
complexes from MIPS [35], or sets of co-regulated genes
from RegulonDB [36]. In Coral, users may designate a sin-
gle clustering as a base — a set of trusted modules with
which other clusterings are expected to agree. When in
this mode, Coral will only highlight those cells in the co-
cluster matrix that are within the modules of the base and
gray out all other non-zero matrix cells to bring users’
attention to the clustering in question. Figure 7 shows an
example of a co-cluster matrix with the base set to be the
A. thalianamodules reported in [31].

In which clusterings do particular items co-cluster?
The co-cluster matrix displays the total number of times
any two items were co-clustered, and the tooltips that
appear after hovering over a matrix cell show a list of
clusterings in which a given pair has been co-clustered.
To facilitate sorting and search for particular item pairs,
Coral provides a companion table where each row rep-
resents a pair of data items and displays the number of
times the items co-clustered along with the pair’s signa-
ture. The signature is a k-long vector where the tth element
is 1 when both data items, say, proteins, have been placed
in the same module in clustering Kt . If the pair’s items
were not in the same module in Kt , the tth element is
set to 0.
Visually, the signature’s elements that are 1 are drawn

as tall solid columns and zeros are represented by the
short stumps using the same color for each clustering as
used in the overview statistics and in the parallel parti-
tions plot. Figure 8 shows an example of two such pairs
that have different co-cluster signatures suggesting that
the relationship between the last two A. thaliana proteins
is stronger than that of the first pair. Users can sort the
rows by either the item name, the number of shared clus-
terings, or by the co-clustering signature. Users can also
filter by the signatures to display only the rows matching a
user’s pattern.

Reordering the co-cluster matrix
The order of rows and columns in the co-cluster matrix
is critical to extracting meaningful information from it.
Finding an optimal matrix reordering is NP-complete for
almost any interesting objective. Algorithms for the opti-
mal linear arrangement [37] and bandwidth minimization
[38] problems have been used to reorder matrices with
considerable success; however, both approaches perform

Fillippova et al. BMC Bioinformatics 2012, 13:276 Page 7 of 13
http://www.biomedcentral.com/1471-2105/13/276

Figure 6 Reordered co-cluster matrix reveals co-clustering patterns. (a) Values in the co-cluster matrix range from 1 (light pink) to 9 (red) for
nine clusterings of the A. thaliana PPI network with 2402 proteins from [31]. Pink regions represent item pairs that were placed in the same module
by very few clusterings while regions of more saturated red represent proteins that co-clustered in most clusterings. Black indicates that the items
never co-clustered. On the inset matrix, the matrix items under the green square formed a core. A large blue square overlay suggests that the core
was tightly integrated into the rest of the network. (b) Left: nodes that formed a core in (a) are colored green, the edges between the nodes within
the core are colored blue. The inset to the right shows an isolated view of the core nodes (green), edges between core nodes (blue), and nodes one
hop away from the core nodes (gray). Green nodes share many edges with nodes outside of the core which resulted in the core’s low cohesion.

poorly for matrices that have many off-diagonal elements.
After comparing several reordering algorithms using the
bandwidth and envelope metrics, we have chosen the
SPIN [39] approach that consistently produced better
results on a wide range of matrices.
This approach works as follows: given a matrix A+,

we solve a linear assignment problem (LAP) by mapping
A+’s rows to their optimal positions in the matrix. In

other words, given a bipartite graph G = (R, I,E) with R
being the set of A’s rows, I a set of indices to which the
rows will be assigned, and E all possible edges between
nodes in R and I, we seek a matching between R and I
with in a minimum cost. The edges connecting the row
nodes to index nodes are weighted according to how well
a row fits a particular index according to a metric that
rewards rows that have non-zero entries close to diagonal

Fillippova et al. BMC Bioinformatics 2012, 13:276 Page 8 of 13
http://www.biomedcentral.com/1471-2105/13/276

Figure 7 Base clustering mode for the co-cluster matrix. The base
clustering highlights only the item pairs that co-clustered within the
selected clustering graying out the rest of the matrix. Base clustering
helps users focus on comparisons with the selected clustering. In this
figure, the colored areas represent the original 26 A. thaliana
modules; their mostly pink hue indicates that their item pairs
co-clustered in few clusterings. Large areas of gray indicate that many
novel modules found by other clusterings were not found by the link
clustering algorithm [10].

and penalizes those rows that have weight away from
diagonal:

w(i, �) =
n∑

j=1
a+
ij |j − i|,

where w(i, �) is the weight of assigning ith row to �th posi-
tion, and the a+

ij values are the co-cluster matrix entries.
After permuting A+’s rows, the columns of A+ must be
permuted to match the row order, thus changing the
weights w(i, �) and making the row assignments found
previously no longer optimal, so this process is repeated.
In Coral, we use two different solvers for the LAP prob-
lem: a fast, greedy solver and the Hungarian algorithm.
The greedy solver matches rows to indexes by iteratively
selecting the best row-index pair; it quickly finds a starter
reordering that can later be improved by the Hungar-
ian algorithm. The Hungarian algorithm solves the linear
assignment problem optimally, but because a permutation
of rows invalidates the ordering of the columns, the algo-
rithm has to be re-run for several iterations to improve
the reordering. We continue iterating LAP until we get
no improvement in assignment cost, observe a previously
considered permutation, or exceed the maximum number
of iterations.

Identifying cores
Given a reordered co-cluster matrix A, we want to find
contiguous areas containing high co-cluster values (cores).
We rely on the notion of region density:

d(p, q) =
∑q−1

i=p
∑q

j=i+1 a
+
ij

|q − p| = s(p, q)
|q − p| , (1)

where a region is a square block on the matrix diagonal
between rows p and q, and its density is the sum s(p, q)
of all matrix entries within the area divided by the area’s
width |q− p|. Alternatively, we can think of the co-cluster
matrix A+ as a weighted adjacency matrix of some graph
G(A+), then d(p, q) is the density of a subgraph S induced
by the vertices p, . . . , q: d(p, q) = |E(S)|/|V (S)|, where
|E(S)| is the sum of edge weights in S and V (S) is a set
vertices in S [33].
To find cores, we want to find areas on the diagonal such

that the sum of their densities is highest. We do not allow
the identified cores to overlap (thus we require disjoint
subgraphs). We formulate the problem of finding maxi-
mally dense arrangement of areas as a dynamic program
with the recurrence:

Dopt(j) = max
1≤i<j

{Dopt(i − 1) + d(i, j)}.

whereDopt(j) is the optimal area arrangement between 0th
and jth item, and Dopt(n) gives the optimal partition of a
matrix A+ into cores.
Assuming that densities d(p, q) are precomputed and

require only a constant time to look up, the dynamic pro-
gram above takes O(n2) time (for each i, we solve at most
n subproblems, and i ranges from 1 to n). However, a brute
force algorithm for computing the block sums s(p, q) (and,
hence, the densities) in equation 1 must iterate through

Figure 8 Co-cluster signatures help track where two items have
co-clustered. Two rows from the pairs table for the A. thaliana
dataset: each row starts with the two item IDs (here: A. thaliana
proteins), followed by the number of times these two proteins were
co-clustered, followed by a co-cluster signature that tells in which
clusterings the two proteins were co-clustered. Clusterings order for
this example: A. thaliana, Clauset, CFinder, Louvain, MCL,
MCODE.F, MCODE, MINE, SPICi. Proteins AT1G04100 and
AT1G51950 co-clustered in 8 clusterings. The two share many specific
GO annotations: both are involved in auxin stimulus, localize to the
nucleus, and participate in protein binding and sequence-specific
DNA binding transcription factor activity. AT1G04100 and AT1G50900
were in the same module just once and shared no GO annotations
suggesting that the relationship between these two proteins was of a
different nature.

Fillippova et al. BMC Bioinformatics 2012, 13:276 Page 9 of 13
http://www.biomedcentral.com/1471-2105/13/276

every pair 1 ≤ p < n, p < q ≤ n, each time computing
a sum of

(|q−p+1|
2

)
entries, resulting in a runtime of O(n4).

This can be improved because the sums are related. We
have:

s(p, q + 1) = s(p, q) +
q∑

i=p
ai,q+1,

making it possible to compute all s(p, q) in O(n2) time.
This reduces the total runtime to find cores to O(n2 +
n2) = O(n2).
The algorithm finds a series of areas of varying size and

density. Some areas are of no interest and were included
in the series only because every block contributes a non-
zero score to the total sum. To focus on the meaningful
regions only, we filter out the cores with density less than
the average density. To calculate the average density for a
region p, . . . , q, we first compute an average cell value for
A+:

wavg = s(1, n)

z̄
,

where z̄ is the number of non-zero cells in A+. We then
define a probability of an edge existing in a graph induced
by A+:

P(e) = z̄(n−1
2

) .
Then, for a given ordering of the matrix A+, let

S be a subgraph induced by vertices p, . . . , q. Then
hpq = |q − p + 1| is the number of vertices in S and

(hpq
2

)
is the maximum number of edges S can possibly have. For
this block, the expected block density would be:

davg(p, q) = wavgP(e)
(hpq
2

)
hpq

= s(p, q)
z̄

z̄(n−1
2

)
(hpq
2

)
hpq

=
(hpq
2

)
s(p, q)

hpq
(n−1

2
) .

The areas that have density higher than their davg(p, q)
represent groups of data items that have co-clustered
together more often than is expected by chance. Hence,
Coral displays only these cores.

Ordering in parallel partitions
When ordering clustering bands in the parallel partitions
plot, we would like to put similar clusterings next to each
other and avoid putting two dissimilar clusterings verti-
cally adjacent. The intuition for such a constraint is that
if the two clusterings Ki and Ki+1 share many similari-
ties, the bands connecting individual items between the
clusterings will only cross a few times making it easier to
track module changes. We also need to order items within
the bands in a way that puts items from the same module

next to each other and does not allow items from other
modules to interleave.
To find a vertical order for the clustering bands, we

apply a greedy algorithm that uses clustering similarity
scores. First, we compute the similarity for every pair of
clusterings sim(Ki,Kj) using Jaccard. Next, we find the
two most similar clusterings K1,K2, add them to a list,
and look for a clustering most similar to either K1 or K2
(whichever is greater). We proceed by repeatedly picking
the clustering that is most similar to the last clustering
added to the list. The order in which clusterings were
added to the list determines the order of the clustering
bands.
We pursue two objectives when ordering items and

modules within a single clustering band: items that belong
to the samemodule must be placed next to each other, and
the ordering has to be similar to the column ordering in
the co-cluster matrix (so as to maintain the user’s mental
mapping between the two visualizations). To preserve the
matrix ordering in clustering bands, each module is best
placed in a position where most of its items are close to
the matrix columns corresponding to those items. How-
ever, the order of the columns in the matrix may be such
that two items u and v from the same module are far apart
in A+. We propose a heuristic to solve this ordering prob-
lem: given an ordering of the columns in the matrix A+,
for each module mi in clustering K = {m1, . . . ,mki} we
compute its rank based on how “displaced” items in the
module are relative to the positions of the module’s items
in the matrix:

d(mj) =
∑
u∈mj

i(u),

where i(u) is the index of a column inA+ corresponding to
the data item u. Modules that should be placed first in the
clustering band would have the lowest rank, so we sort the
modules in order of increasing d, and the module’s posi-
tion in the sorted array determines module’s position in
the clustering band.

Results
Data
Arabidopsis thaliana is a model organism widely used
in plant science, but out of its 35,000 predicted pro-
teins one third still lack an assigned function [40]. A
recent publication reports a new protein interaction net-
work for A. thaliana that covers a part of the plant’s
proteome not studied previously [31]. We have selected
several clustering algorithms that are often used on PPI
networks (Table 1) and, for each of the algorithms, we
have generated a clustering of the largest connected com-
ponent of the A. thaliana’s network. To test the result-
ing modules for robustness, we compare this ensemble
of clusterings to the modules reported by the authors

Fillippova et al. BMC Bioinformatics 2012, 13:276 Page 10 of 13
http://www.biomedcentral.com/1471-2105/13/276

of [31] who used a link-clustering method by Ahn,
Bagrow, and Lehman [10]. Prior to comparison, we fil-
tered the newly generated modules using the same cri-
teria as [31] by removing modules of size smaller than
6 and with partition density < 0. The new modules
were tested for GO enrichment with FuncAssoc [41] (see
Table 1 for details).
For our comparison, we have focused on the graph clus-

tering algorithms for which the implementations were
available (see Table 1). Louvain [9] and Clauset [7]
are two algorithms that search for a network partition
with highest modularity [42]. Both tend to find large clus-
ters and usually cover most of the nodes in a network.
CFinder [8] is a clique percolationmethod that identifies
overlapping communities by continuously rolling cliques
of an increasing size. Resulting clusterings usually con-
tain many small modules with a high amount of overlap
and cover only a part of the network ignoring graph struc-
tures like bridges and stars. MCL [5] is a fast, flow-based
clustering algorithm that uses random walks to separate
high-flow and low-flow parts of the graph. Its modules
tend to be small and usually cover most of the input net-
work. MCODE [6] algorithm finds modules in biological
networks by expanding communities around vertices with
high clustering coefficient. “Fluff” and “haircut” options
for MCODE allow to add singleton nodes connected to the
module by just one edge and to remove nodes weakly
connected to the module correspondingly. MINE [12] is
closely related to MCODE, but uses a modified weight-
ing scheme for vertices which results in denser, possibly
overlapping modules. SPICi [11] grows modules around
vertices with high weighted degree by greedily adding
vertices that increase module’s density. The partitions
containmany densemodules, but usually cover only a part
of the network.

Table 1 Clustering algorithms used on A. thaliana network

Algorithm Proteins Modules Enriched

Louvain [9] 2369 23 21

CFinder [8] 508 666 180

Clauset [7] 2313 20 18

MCL [5] 844 46 33

MCODE [6] 268 20 16

MCODE.F [6] 1314 20 19

MINE [12] 206 57 29

SPICi [11] 259 46 27

Statistics on clusterings of the largest connected component of the A. thaliana
network. All algorithms were run using their default settings. MCODEwas run
without “haircut” and no “fluff,” MCODE.F included “fluff.” The table reports the
number of proteins that were assigned to at least one module, the number of
modules after filtering according to procedure used in Vidal et al. [31], and the
number of modules FuncAssoc [41] reported as enriched for at least one GO
annotation.

Applying Coral to A. thaliana clusterings
To get an overview of the data, we review various statis-
tics on the generated clusterings. For the majority of the
clusterings, modules that remained after filtering cov-
ered only a portion of the network. The two clusterings
produced by the modularity-based methods, Louvain
and Clauset, were the only clusterings that included
more than 95% of all proteins into their modules. The
number of modules per clustering varied significantly
from 20 to 666 (Table 1). The average module size was
highest for Clauset (115.65), Louvaine (103.00), and
the MCODE.F (82.05) clusterings significantly exceed-
ing the average module size among all other clusterings
(3.02-26.31 items per module). For the original 26 A.
thaliana modules [31], 3% of the proteins were assigned
to more than one module; in the CFinder clustering
over half of the clustered proteins (59%) participated in
multiple modules.
The nine A. thaliana clusterings are highly dissimilar:

most cells in the ladder widget (Figure 2) are white or
pale blue, and the majority of pairwise Jaccard similarity
scores are below 0.07. MCL yielded the partition most
similar to A. thaliana modules reported in [31] (A.Thal
original) with Jaccard similarity of 0.60. Surprisingly,
the 26 modules generated by link clustering [31] shared
very little similarity with CFinder, the only other algo-
rithm in the ensemble designed to produce overlapping
modules.
Low pairwise similarity scores between so many pairs

of clusterings is easily explained using the module-to-
module table: clusterings with Jaccard similarity below
0.07 overlap by a few small modules or no modules at
all. The similarity of 0.60 between MCL and A.Thal
(Figure 4) may be attributed to the two big modules
that are largely replicated between the two clusterings:
the module m9 from MCL and the module m0 from A.
thaliana (highlighted row) overlap by 288 proteins with
Jaccard similarity 0.8. Several smaller modules (shown at
the top of the table) are duplicated exactly between the
two clusterings.
The co-clustering matrix for A. thaliana clusterings

contains several large regions of co-clustered proteins
along the diagonal (Figure 6), however, most cells are
pale indicating that they were co-clustered by only a few
clustering algorithms; very few matrix cells are close to
the saturated red. Indeed, 65.25% of all co-clustered pairs
of A. thaliana proteins have co-clustered just once across
all of the nine clusterings used in the analysis and only
6.34% of protein pairs were co-clustered in 5 or more
partitions. This low number of protein pairs that were
assigned to the same cluster means that the clusterings in
the ensemble mostly disagreed.
The dynamic program for identifying cores found 249

areas in the A. thaliana network in which proteins

Fillippova et al. BMC Bioinformatics 2012, 13:276 Page 11 of 13
http://www.biomedcentral.com/1471-2105/13/276

co-clustered more often than could be expected by
chance, with the largest core containing 215 proteins and
with the average number of proteins per core of 10.38
proteins. Most cores, including the largest core, had low
cohesion values indicating that the proteins forming the
cores had many connections to proteins outside of the
cores (see Figure 6). This finding is correlated with the
fact that the clusterings did not agree in general and only
small sets of proteins were consistently clustered together
across the ensemble.
Finally, setting A.thal original to be the base clus-

tering shows that the modules found by [31] covered only
a fraction of modules found by other methods, although
they included the largest core. The majority of A.thal
original modules were colored pale pink indicating
that modules found by the link clustering were found
by no more than 3 other clustering methods. We trace
the largest core in the parallel partitions plot (Figure 4):
the proteins in the core are co-clustered by A.thal
original, Clauset, Louvaine, MCL, and MCODE.F
while SPICi, MINE, and MCODE ignored the majority of
core’s proteins completely. CFinder, with its many over-
lapping modules of size 3, 4, and 5, clusters some of the
core’s proteins and puts a large part of the core in the grab
bag group representing unclustered proteins.

Discussion
Clustering algorithms may generate wildly varying clus-
terings for the same data: algorithms optimize for different
objectives, may use different tie breaking techniques, or
only cluster part of the data items. A popular technique
for optimizing modularity has been shown to suffer from
a resolution limit [43] and multiple decompositions may
have the same modularity value [14]. When a true decom-
position is available, the clustering quality can be quan-
tified using the similarity score and the true positive and
true negative rates. However, when there is no true clus-
tering, it is hard to decide which clustering is better than
the others. We propose that researchers generate several
clusterings by either using different clustering algorithms
or varying algorithm parameters. Coral can help compare
such clusterings and identify cores in which the data items
co-cluster across multiple clusterings.
Most views and statistics in Coral work for both non-

overlapping and overlapping clusterings. All overview
statistics extrapolate well for overlapping modules except
for entropy which assumes that no two modules overlap
and therefore may overestimate the actual entropy. The
co-cluster matrix naturally adapts to overlapping modules
by allowing their corresponding blocks to overlap. Cur-
rently, if a pair of data items co-occur in more than one
module within a single clustering, their co-cluster value is
set to 1 and is not weighted higher relative to other pairs.
The parallel partitions plot assumes that the modules in

individual clusterings do not overlap. However, if there
are overlapping modules, parallel partitions will still lay
out the modules in a line by duplicating the co-occurring
element in every module in which it occurs.
Although the examples we use in this paper are based

on network clustering, Coral does not require its input
data to be a network partition and can be used with equal
success on gene expression or classification data. In par-
ticular, if users would like to compare several classification
results, they can do so in the same manner as we have
demonstrated for the A. thaliana clusterings. The similar-
ity measures of purity, inverse purity, and the F-measure
implemented in Coral are helpful in comparing classifica-
tions to the available truth. The module-to-module table
is a more flexible alternative to the confusion matrix that
is often used to evaluate classification results.
Coral has been used to analyze clusterings of up to 4115

items. The runtime varies with the number of clusterings,
number of modules and data items per clustering, and the
size of the modules. The startup operations — parsing the
input clusterings, computing dataset statistics and all-to-
all clustering similarities, as well as rendering the views
— take from under a second to 11 seconds for cluster-
ings from 33 to 4115 data items. Matrix reordering is the
single biggest performance bottleneck for Coral. Reorder-
ing the co-cluster matrix for 2376 A. thaliana proteins
took, on average, 29 seconds when to reorder using the
greedy heuristic and 70 seconds when to reorder using the
Hungarian algorithm. However, both the greedy heuris-
tic and the Hungarian algorithm find good orderings after
very few iterations and the reordering only needs to be
computed once before analysis. Solutions for LAP com-
puted with the Hungarian algorithm improve with every
iteration and usually converge on a good reordering fast.

Conclusions
Coral offers a comprehensive array of visualizations that
allow users to investigate modules from various view-
points inlcuding several novel views. Coral guides users
from overview statistics implemented as familiar bar
charts to detailed cluster-to-cluster comparison in a table.
The ladder widget, a lower triangle of the comparison
matrix, helps users pick the most similar (or dissimilar)
pair of clusterings and to judge how similar clusterings in
the dataset are overall. A color-coded co-cluster matrix
shows how often any pair of items in the dataset have been
placed in a module together. A novel adaptation of paral-
lel coordinates, parallel partitions plot, makes tracking a
group of items across clusterings easy with intuitive selec-
tion techniques. These views combined create a powerful
tool for a comprehensive exploration of an ensemble of
clusterings. Coral can help users generate questions and
hypotheses about the data that could be later definitively
answered with the help of additional experiments.

Fillippova et al. BMC Bioinformatics 2012, 13:276 Page 12 of 13
http://www.biomedcentral.com/1471-2105/13/276

Availability and requirements
- Project name: Coral
- Project home page:
http://cbcb.umd.edu/kingsford-group/coral/

- Operating systems: platform-independent
- Programming language: Java
- Other requirements: Java 1.6 and 1Gb of RAM
- License: GNU GPL

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
CK and DF conceived the project, DF is the designer and developer for the
application. CK provided design considerations and worked on developing
some of the algorithms. AG implemented reordering algorithms for co-cluster
matrix. DF and CK contributed to final manuscript. All authors read and
approved the final manuscript.

Acknowledgements
This work was partially supported by NSF grants EF-0849899, IIS-0812111, and
CCF-1053918 and NIH grant 1R21AI085376 to C.K. The authors thank Megan
Riordan for helpful programming contributions, and Geet Duggal and Rob
Patro for their helpful insights on matrix reordering.

Author details
1Lane Center for Computational Biology, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA 15213, USA. 2Center for
Bioinformatics and Computational Biology, University of Maryland, College
Park, MD, USA. 3Department of Computer Science, University of Maryland,
College Park, MD, USA.

Received: 6 April 2012 Accepted: 9 October 2012
Published: 29 October 2012

References
1. Sharan R, Ulitsky I: Network-based prediction of protein function.Mol

Syst Biol 2007, 3:88.
2. Ulitsky I, Maron-Katz A, Shavit S, Sagir D, Linhart C, Elkon R, Tanay A,

Sharan R, Shiloh Y, Shamir R: Expander: from expression microarrays
to networks and functions. Nat Protoc 2010, 5(2):303–322.

3. Chatterji S, Yamazaki I, Bai Z, Eisen JA: CompostBin: A DNA
composition-based algorithm for binning environmental shotgun
reads. Tech. rep., arXiv 2007.

4. White JR, Navlakha S, Nagarajan N, Ghodsi MR, Kingsford C, Pop M:
Alignment and clustering of phylogenetic markers— implications
for microbial diversity studies. BMC Bioinf 2010, 11:152.

5. van Dongen S: Graph clustering by flow simulation PhD thesis,
University of Utrecht; 2000.

6. Bader G, Hogue C: An automated method for finding molecular
complexes in large protein interaction networks. BMC Bioinf 2003, 4:2.

7. Clauset A, Newman MEJ, Moore C: Finding community structure in
very large networks. Physical Rev E 2004, 70(066111):6.

8. Adamcsek B, Palla G, Farkas IJ, Derényi I, Vicsek T: CFinder: locating
cliques and overlapping modules in biological networks.
Bioinformatics 2006, 22(8):1021–1023.

9. Blondel VD, Guillaume JL, Lambiotte R, Lefebre E: Fast unfolding of
communities in large networks. J Stat Mech: Theory and Experiment
2008, 2008(10):P10008.

10. Ahn YY, Bagrow JP, Lehmann S: Link communities reveal multiscale
complexity in networks. Nat Lett 2010, 466(5):761–765.

11. Jiang P, Singh M: SPICi: a fast clustering algorithm for large biological
networks. Bioinformatics 2010, 26(8):1105–1111.

12. Rhrissorrakrai K, Gunsalus KC:MINE: module identification in networks.
BMC Bioinformatics 2011, 12(192):1–10.

13. Navlakha S, Kingsford C: Exploring biological network dynamics with
ensembles of graph partitions. In Proceedings of the 15th Pacific
Symposium on Biocomputing (PSB). Hawaii; 2010:166–177 .

14. Duggal G, Navlakha S, Girvan M, Kingsford C: Uncovering many views of
biological networks using ensembles of near-optimal partitions. In
Proceedings of the 1st International Workshop on Discovering, Summarizing
and UsingMultiple Clusterings (KDDMultiClust). Washington, DC; 2010:9.

15. Lewis AC, Jones NS, Porter MA, Charlotte DM: The function of
communities in protein interaction networks at multiple scales. BMC
Syst Biol 2010, 4:100.

16. Langfelder P, Zhang B, Horvath S: Defining clusters from a hierarchical
cluster tree: the Dynamic Tree Cut package for R. Bioinformatics 2008,
24(5):719–720.

17. Hopcroft J, Khan O, Kulis B, Selman B: Tracking evolving communities
in large linked networks. Proc Nat Acad Sci USA 2004, 101(Suppl
1):5249–5253.

18. Yu Z, Wong HS, Wang H: Graph-based consensus clustering for class
discovery from gene expression data. Bioinformatics 2007,
23(21):2888–2896.

19. Hibbs MA, Dirksen NC, Li K, Troyanskaya OG: Visualization methods for
statistical analysis of microarray clusters. BMC Bioinf 2005, 6:115.

20. Thalamuthu A, Mukhopadhyay I, Zheng X, Tseng GC: Evaluation and
comparison of gene clustering methods in microarray analysis.
Bioinformatics 2006, 22(19):2405–2412.

21. Seo J, Gordish-Dressman H: Exploratory data analysis with categorical
variables: an improved rank-by-feature framework and a case
study. Int J Human-Comput Interact 2007, 23(3):287–314.

22. Laderas T, McWeeney S: Consensus framework for exploring
microarray data using multiple clustering Methods. OMICS: J Integr
Biol 2007, 11:116–128.

23. Strehl A, Ghosh J: Cluster ensembles— A knowledge reuse
framework for combining multiple partitions. J Machine Learning Res
2002, 3:583–617.

24. Monti S, Tamayo P, Mesirov J, Golub T: Consensus clustering: a
resampling-based method for class discovery and visualization of
gene expression microarray data.Machine Learning 2003, 52:91–118.

25. Grimmer J, King G: General purpose computer-assisted clustering
and conceptualization. Proc Nat Acad Sci USA 2011, 108(7):2643–2650.

26. Langfelder P, Luo R, Oldham MC, Horvath S: Is my network module
preserved and reproducible? PLoS Comput Biol 2011, 7:e1001057.

27. Kosara R, Bendix F, Hauser H: Parallel sets: interactive exploration and
visual analysis of categorical data. IEEE Trans Visualization Comput
Graphics 2006, 12(4):558–568.

28. Shneiderman B: The eyes have it: a task by data type taxonomy for
information visualizations. In Proceedings 1996 IEEE Symposium on
Visual Languages. Boulder, CO: IEEE Comput Soc Press; 1996:336–343.

29. North C, Shneiderman B: Snap-together visualization: a user interface
for coordinating visualizations via relational schemata. In
Proceedings of theWorking Conference on Advanced Visual Interfaces - AVI
’00. New York: ACM Press; 2000:128–135.

30. Meilă M: Comparing clusterings by the variation of information. In
Proceedings of the 16th Conference on, Learning Theory and Kernel Machines:
7th Kernel Workshop. Edited by Schölkopf B, Warmuth MK. Berlin:
Springer-Verlag; 2003:173–187. Lecture, Notes in Computer Science, vol.
2777.

31. Arabidopsis Interactome Mapping Consortium: Evidence for Network
Evolution in an Arabidopsis InteractomeMap. Science 2011,
333(6042):601–607.

32. Luo F, Li B, Wan XF, Scheuermann RH: Core and periphery structures in
protein interaction networks. BMC Bioinf 2009, 10(Suppl 4):S8.

33. Saha B, Hoch A, Khuller S, Raschid L, Zhang X: Dense subgraphs with
restrictions and applications to gene annotation graphs. In
Proceedings of the 14th Annual international conference on Research in
Computational Molecular Biology (RECOMB’10). Edited by Berger B. Berlin:
Springer-Verlag; 2010:456–472. Lecture Notes in Computer Science, vol.
6044.

34. Bailey TA, Dubes RC: Cluster validity profiles. Pattern Recognit 1982,
15(2):61–83.

35. Mewes HW, Ruepp A, Theis F, Rattei T, Walter M, Frishman D, Suhre K,
Spannagl M, Mayer KFX, Stümpflen V, Antonov A:MIPS: curated

Fillippova et al. BMC Bioinformatics 2012, 13:276 Page 13 of 13
http://www.biomedcentral.com/1471-2105/13/276

databases and comprehensive secondary data resources in 2010.
Nucleic Acids Res 2011, 39(Database issue):D220—D224.

36. Gama-Castro S, Salgado H, Peralta-Gil M, Santos-Zavaleta A, Muñiz
Rascado L, Solano-Lira H, Jimenez-Jacinto V, Weiss V, Garcı́a-Sotelo JS,
López-Fuentes A, Porrón-Sotelo L, Alquicira-Hernández S, Medina-Rivera
A, Martı́nez-Flores I, Alquicira-Hernández K, Martı́nez-Adame R,
Bonavides-Martı́nez C, Miranda-Rı́os J, Huerta AM, Mendoza-Vargas A,
Collado-Torres L, Taboada B, Vega-Alvarado L, Olvera M, Olvera L, Grande
R, Morett E, Collado-Vides J: RegulonDB version 7.0: transcriptional
regulation of Escherichia coli K-12 integrated within genetic
sensory response units (Gensor Units). Nucleic Acids Res 2011,
39(Database issue):D98—D105.

37. Mueller C, Martin B, Lumsdaine A: A comparison of vertex ordering
algorithms for large graph visualization. In Proceedings of the 6th

International Asia-Pacicifc Symposium on Visualization (APVIS’07). Edited by
Hong S-H, Ma K-L. Piscataway: IEEE; 2007:141–148.

38. Lai Y, Williams K: A survey of solved problems and applications on
bandwidth, edgesum, and profile of graphs. J Graph Theory 1999,
31(2):75–94.

39. Tsafrir D, Tsafrir I, Ein-Dor L, Zuk O, Notterman DA, Domany E: Sorting
points into neighborhoods (SPIN): data analysis and visualization by
ordering distance matrices. Bioinformatics 2005, 21(10):2301–2308.

40. Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, Chen C,
Duesbury M, Dumousseau M, Feuermann M, Hinz U, Jandrasits C, Jimenez
RC, Khadake J, Mahadevan U, Masson P, Pedruzzi I, Pfeiffenberger E, Porras
P, Raghunath A, Roechert B, Orchard S, Hermjakob H: The IntAct
molecular interaction database in 2012. Nucleic Acids Res 2011,
40(D1):D841—D846.

41. Berriz GF, Beaver JE, Cenik C, Tasan M, Roth FP:Next generation software
for functional trend analysis. Bioinformatics 2009, 25(22):3043–3044.

42. Newman MEJ:Modularity and community structure in networks. Proc
Nat Acad Sci USA 2006, 103(23):8577–8582.

43. Fortunato S, Barthelemy M: Resolution limit in community detection.
Proc Nat Acad Sci USA 2007, 104:36–411.

doi:10.1186/1471-2105-13-276
Cite this article as: Fillippova et al.: Coral: an integrated suite of visualiza-
tions for comparing clusterings. BMC Bioinformatics 2012 13:276.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	How many and what size modules do clusterings have?
	Which clusterings are the most and least similar?
	Which modules are the most similar between the two clusterings?
	Does this module appear in other clusterings?
	What other items are in the same module as a given item u?
	Are there whole groups of items that co-cluster together often?
	Do items within a ground-truth clustering often co-cluster in other clusterings?
	In which clusterings do particular items co-cluster?
	Reordering the co-cluster matrix
	Identifying cores
	Ordering in parallel partitions

	Results
	Data
	Applying Coral to A. thaliana clusterings

	Discussion
	Conclusions
	Availability and requirements
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

