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 k(s; t)f(t)dt + �(s): (1)Here the spatial coordinates are s 2 R2 and t 2 R2, and 
 is a closed region containing the domain of the image. Thefunction g : R2 !R is the measured image, usually known only for certain discrete values of s. This function resultsfrom blurring the unknown true image f with the kernel k and then adding noise �. The number of measurementsis �nite|usually an n� n array of pixel values|so the model is discretized into a matrix equationg = Kf + n: (2)This type of integral equation (1) is known to be ill-posed, and the discretized matrix K 2 Rn2�n2 is severely ill-conditioned. Speci�cally, the singular values of K decrease gradually and cluster at zero. Because of the presenceof noise, solving Kf = g, does not yield an accurate restoration. Regularization techniques must be applied tostabilize the numerical methods. These techniques include Tikhonov regularization1; truncated value decomposition2;truncated iterative methods such as Landweber3 and conjugate gradient (CG) iterations4; and mixed approaches.5Because of the large dimensions involved in image restoration, iterative methods are usually the methods ofchoice. Typically, the most time consuming computations are matrix-vector products involving K and possibly KT .Most often, the kernel k is assumed to be spatially invariant: k(s; t) = k(s�t).6,7 In this case, the integral equationis a convolution, and K is then a block Toeplitz matrix with Toeplitz blocks. Thus matrix-vector multiplication canbe accomplished e�ciently using fast Fourier transforms (FFT). The matrix K can be constructed from an idealizedmodel of the true kernel or determined experimentally by imaging a single point source to determine the point spreadfunction (PSF). There are situations, though, in which it is important to take account of the spatial variation of thepoint spread function.Further author information -J.G.N.: Email: jnagy@mail.smu.edu; URL: www.smu.edu/�jnagy; research supported by an NSF Postdoctoral Research Fellowship inthe Mathematical SciencesD.P.O.: Email: oleary@cs.umd.edu; URL: www.cs.umd.edu/�oleary; research supported by National Science Foundation Grant CCR95-03126.



Spatially variant blurs occur in a variety of applications. The errors in the shaping mirrors of the original HubbleSpace Telescope resulted in large spatial variation in the PSF, and despite the much improved imaging qualityafter the HST was �xed in 1994, there is still a need to exploit older images.8 Two or more objects moving withdi�erent velocities relative to a recording device produce spatially-variant motion blurs.9 Spatially variant blursalso occur when the object and image coordinates are tilted relative to each other, as well as in X-ray projectionimaging,10 positron emission tomography,11,12 lens distortions,13 wave aberrations,13 and spatially varying Gaussiantype blurs.14 Moreover, it is unlikely that any blur is truly spatially invariant in any realistic application, especiallyover large image planes.13 We now review some techniques that have been used to model spatially variant blurs.If the blur is spatially invariant, then the kernel k(s; t) = k(s � t) in the integral equation (1) gives rise to amatrix K in (2) that is block Toeplitz with Toeplitz blocks. Thus, for an n � n image, at most O(n2) storage and(using fast Fourier transforms) only O(n2 logn) arithmetic operations are needed� to form matrix-vector productswith K.If the blur is spatially variant, then k(s; t), and hence K, may not have any special structure. Thus, matrixvector multiplications with the n2�n2 matrix K will be extremely expensive, even for moderately sized images. Oneexception is if k is separable; that is, k(s; t) = k1(s)k2(t): In this case, K is a Kronecker product of two matrices havingdimensions n � n. Thus, standard numerical linear algebra techniques, such as the singular value decomposition,become computationally feasible. Separable, spatially variant PSFs are considered by Angel and Jain.14 Since thissituation is not computationally di�cult, our further discussions will assume the blur is not separable.Among the earliest methods for restoring images degraded by (non-separable) spatially variant blurs is a geomet-rical coordinate transformation technique.15{18 Essentially, this technique uses coordinate \distortions" or knownsymmetries to transform the spatially variant PSF into one that is spatially invariant. After applying a spatiallyinvariant restoration method, another coordinate distortion is applied to obtain the result. Although this techniqueis useful for certain blurs such as rotational motion, it is not very practical for complicated blurs since the operatork, as well as the coordinate transformation functions, need to be known explicitly. Moreover, in general it is notpossible to transform every spatially variant blur into one that is spatially invariant. Recently, McNown and Hunt15have developed a general technique (for one dimensional problems) to approximate the given spatially variant blurby one in which the coordinate transformations are known.Another approach, which can treat a more general class of blurs, is based on the assumption that the blur isapproximately spatially invariant in small regions of the image domain. These sectioning methods19,20,9,21 partitionthe image, restoring each local region using its corresponding spatially invariant PSF, and the results are then sewntogether to obtain the restored image. To reduce blocking artifacts at the region boundaries, larger, overlappingregions are used, and then the restored sections are extracted from their centers. Trussell and Hunt9 proposedusing the Landweber iteration for the local deblurring, and suggested a complicated stopping criteria based on acombination of local and global convergence constraints. Fish, Grochmalicki and Pike20 use a truncated singularvalue decomposition (TSVD) to obtain the local restorations.A third, more recent, approach is related to the sectioning methods in that the image is partitioned into subregionson which the blur is assumed to be spatially invariant. However, rather than deblurring the individual subregionslocally and then sewing the individual results together, this method sews (interpolates) the individual PSFs, andrestores the image globally. In algebraic terms, the blurring matrix K can be written asK = pXi=1 pXi=1 DijKij; (3)where Kij is a block Toeplitz matrix with Toeplitz blocks representing the spatially invariant PSF in region (i; j),and Dij is a nonnegative diagonal matrix satisfying PPDij = I. For example, if piecewise constant interpolationis used, then the lth diagonal entry of Dij is 1 if the lth point is in region (i; j), and 0 otherwise.Faisal et al.22 use this formulation of the spatially variant PSF, apply the Richardson-Lucy algorithm withpiecewise constant interpolation of the PSFs, and discuss a parallel implementation. Boden et al.23 also describe�For simplicity, operations counts assume that the argument of the log function is a power of two, perhaps by padding the originaldata. In practice, a general-radix FFT routine should be used to avoid padding whenever n has many factors.



a parallel implementation of the Richardson-Lucy algorithm, and consider piecewise constant as well as piecewiselinear interpolation. Nagy and O'Leary24 use a conjugate gradient algorithm with piecewise constant and linearinterpolation, and also suggest a preconditioning scheme (for both interpolation methods) that can substantiallyimprove rate of convergence.Boden et al.23 suggest that linear interpolation of the PSFs be rejected: for their data, they obtain roughly a factorof 340 decrease in throughput performance per iteration compared to piecewise constant interpolation, without muchimprovement in resolution. Nagy and O'Leary24 also noted little improvement in resolution on their test problems.In this work, though, we carefully consider the implementation of linearly interpolated PSFs, and show that thecost is only modestly larger than the cost for constant interpolation. Moreover, we demonstrate that for some blurs,linear interpolation can produce signi�cantly better restorations than piecewise constant interpolation.2. E�cient Application of a Spatially-Variant PSFIn this section we provide a detailed description of the implementation and the computational cost of computingmatrix-vector multiplications using the approximation to the spatially variant blur given in equation (3). We beginwith the spatially invariant case and, in particular, implementations based on the overlap-add and overlap-saveapproaches. This discussion then leads to an obvious extension to applying a constant interpolated spatially variantblur, and only a slight further modi�cation is needed for the linearly interpolated case.2.1. Spatially Invariant BlursFor spatially invariant blurs, the n2 � n2 blurring matrix K is block Toeplitz with Toeplitz blocks, and it is wellknown that FFTs can be used to e�ciently form the matrix vector productsy = Kx and y = KTx:The nonzero entries of K are obtained from an image of the PSF, and x and y are obtained by stacking rows (orcolumns) of n� n image arrays X and Y .The matrix-vector interpretation for applying the blurring operator is useful. However, for implementation, it ismore convenient to consider obtaining Y by applying a two-dimensional convolution to X. Speci�cally, let P be an(r + 1) � (r + 1) array containing an image of the PSF, with r � n and r even. Then the array Y (i.e., the vectory = Kx) can be obtained by convolution of P with X, producing an (n + r) � (n + r) array, which we denote asY (n+r). Y is then obtained by stripping o� the r superuous rows and columns of Y (n+r); that is,Y (n+r) = 24 � � �� Y �� � � 35 = P �X:Remarks on notation:� � is used to denote 2-D linear convolution, and � will denote element-wise multiplication.� � is used to denote superuous rows and columns.� Superscripts on arrays are used to emphasize that rows and columns need to be removed to obtain the basearray (In this case, r rows and columns are removed from Y (n+r) to obtain the n� n base array Y ).� fft2(�) denotes a 2-D FFT of an array.� sfft2(�) denotes a 2-D FFT of a shifted array. Speci�cally, sfft2(�) = fft2(shift(�)), where shift swapsthe (1; 1) and (2; 2) blocks, and the (1; 2) and (2; 1) blocks of the array, putting the center of the point spreadfunction in the upper left corner.



The standard approach to computing Y (n+r) is to use zero padding to �rst embed X and P into arrays ofdimension (n+ r)� (n+ r), which, using our notation, are denoted as X(n+r) and P (n+r), respectively. Then Y (n+r)is computed using 2-D FFTs as Y (n+r) = ifft2(sfft2(P (n+r)) � fft2(X(n+r))) :To assess computational cost here, and in the rest of this section, we assume that cm2 logm arithmetic operationsare needed to compute a 2-D FFT on an m � m array, where c is a constant of moderate size. Thus, to computeY as described above, we require 3c(n + r)2 log(n + r) + (n + r)2 arithmetic operations. We note, though, thatsfft2(P (n+r)) is �xed and thus needs to be computed only once, no matter how many matrix-vector products areformed. Therefore, the cost of applying a spatially invariant blurring operator using this standard approach is(n+ r)2(2c log(n+ r) + 1) :Although X and P are real arrays, we need three complex arrays of dimension (n + r) � (n + r) to perform thisoperation. If the extent of the PSF is small compared to the dimension of the images (i.e., r � n), the storagerequirements can be substantially reduced using the overlap-add method or the overlap-save method.2.1.1. Overlap-AddSuppose P is an (r + 1)� (r + 1) array containing an image of the PSF, X is an n� n image, and r � n. PartitionX as X = 26664 x11 x12 � � � x1px21 x22 � � � x2p... ... ...xp1 xp2 � � � xpp 37775 ;where we assume each xij has dimension s�s. Throughout this section we assume that s is even, and hence s=2 is aninteger. De�ne Mij to be the n� n masking array whose elements are 1 for components in the region correspondingto xij, and 0 otherwise. Then X = pXi=1 pXj=1Mij �X;and because convolution is a linear operation, it follows thatY = P �X = pXi=1 pXj=1P � (Mij �X): (4)Observe that the nonzero entries in the convolution P �(Mij �X) can be computed from P �xij . Since the dimensionsof P and xij are much smaller than those of X, much less storage is required: P and xij can be embedded intoarrays p(r+s) and x(r+s)ij having dimensions (r + s) � (r + s), so the storage is 3(r + s)2 rather than 3(r + n)2.We can e�ciently accumulate the sum in equation (4) from the convolutions y(r+s)ij = P �xij of size (r+s)�(r+s).Those pixels outside the image domain are superuous and can be discarded. Those that correspond to points inadjacent subregions within the image domain must be accumulated in the sum; hence the name \overlap-add". Wesummarize this discussion in the following algorithm.Algorithm: Overlap-Add Convolutionfor i = 1; 2; : : : ; pfor j = 1; 2; : : :pExtract region xij from X.Obtain p(r+s) and x(r+s)ij by padding P and xij with zeros.Compute y(r+s)ij = ifft2(sfft2(p(r+s)) � fft2(x(r+s)ij )).Add the relevant points into the sum Y .endend



Note that sfft2(p(r+s)) needs to be computed only once, and not each time through the loop. To assess thecost, let r + s = `s. Then the computational cost of the overlap-add algorithm isp2f2c(r + s)2 log(r + s) + 2(r + s)2g = 2`2n2(c log(r + s) + 1) :Although the total computational cost is slightly more than the standard approach described above, the overlap-add method has the signi�cant advantage that storage can be kept at a reasonable level, even for large images.Moreover, this approach has obvious parallelism.In matrix-vector notation, equation (4) can be written asy = pXi=1 pXj=1KDijx;where Dij is a diagonal matrix whose diagonal entries correspond to the masking arrayMij : one if the correspondingelement of x is in the (i; j) region, and zero otherwise. The matrix-vector form will be useful in establishing a relationto the spatially variant implementation.2.1.2. Overlap-SaveIn the overlap save method, instead of partitioning X, we partion the unknown result Y asY = 26664 y11 y12 � � � y1py21 y22 � � � y2p... ... ...yp1 yp2 � � � ypp 37775 :For each i; j, we extract from X the smallest region that, when convolved with P , results in yij exactly. In this case,we can write Y = pXi=1 pXj=1Mij � Y = pXi=1 pXj=1Mij � (P �X): (5)Note that the nonzero portion of Mij � (P �X) is simply yij .To obtain yij, we take an extended region around xij , which we denote as x(r+s)ij , having dimension (r+s)�(r+s).That is, we take r=2 rows and columns surrounding xij , padding with zeros for regions on the boundary. The pointsource image P is embedded in an array of dimension (r + s)� (r + s), and 2-D FFTs are used for the convolution,from which yij is extracted and saved into Y . We summarize this scheme in the following algorithm.Algorithm: Overlap-Save Convolutionfor i = 1; 2; : : : ; pfor j = 1; 2; : : :pExtract extended region x(r+s)ij from X.Obtain p(r+s) by padding with zeros.Compute y(r+s)ij = ifft2(sfft2(p(r+s)) � fft2(x(r+s)ij )).Extract yij from y(r+s)ij and save into Y .endendAs with the overlap-add algorithm, sfft2(p(r+s)) needs to be computed only once, not each time through theloop. The computational cost and storage are essentially the same as the overlap-add method.In matrix-vector terms, equation (5) can be written asy = pXi=1 pXj=1DijKx:



2.2. Spatially Variant BlursRecall from (3) that we write our spatially-varying blurring matrix asK = pXi=1 pXj=1DijKij;where Kij is the block Toeplitz matrix associated with the PSF in region i; j, and Dij is diagonal withPPDij = I.In this subsection we consider how to e�ciently perform matrix vector productsy = Kx and y = KTx :2.2.1. Piecewise Constant InterpolationIn the case of piecewise constant interpolation, the diagonal matrices Dij are precisely those used in the abovediscussion. Therefore, to form the matrix-vector product:y = Kx = pXi=1 pXj=1DijKijx;we can simply use a modi�cation of the overlap-save method. The only di�erence is that we have separate PSFs,pij, for each subregion. Using convolution notation, this matrix-vector product becomesY = pXi=1 pXj=1Mij � (pij �X);where the masking matrices Mij are precisely those used above. Since each of the PSFs has narrow support, thedimension of pij will be small compared to n. Therefore, the procedure is the same as in the overlap-save method:we take the smallest extended region surrounding xij that allows yij to be computed exactly, extract yij from y(r+s)ijand save into Y . We summarize this scheme in the following algorithm.Algorithm: Matrix-vector multiplication y = Kx: Constant interpolation.for i = 1; 2; : : : ; pfor j = 1; 2; : : :pExtract extended region x(r+s)ij from X.Obtain p(r+s)ij by padding with zeros.Compute y(r+s)ij = ifft2(sfft2(p(r+s)ij ) � fft2(x(r+s)ij )).Extract yij from y(r+s)ij and save into Y .endendMatrix-vector multiplication with KT is similar:y = KTx = pXi=1 pXj=1KTijDijx;which clearly can be done through an appropriate modi�cation of the overlap-add method. We summarize this inthe following algorithm. Note that transposing the matrix K translates into conjugation of the spectrum of p(r+s)ij .



Algorithm: Matrix-vector multiplication y = KTx: Constant interpolation.for i = 1; 2; : : : ; pfor j = 1; 2; : : :pExtract region xij from X.Obtain p(r+s)ij and x(r+s)ij by padding with zeros.Compute y(r+s)ij = ifft2(conj(sfft2(p(r+s)ij )) � fft2(x(r+s)ij )).Accumulate sum.endendThe computational cost for these algorithms is essentially the same as the overlap-save and overlap-add methods:p2f2c(r + s)2 log(r + s) + 2(r + s)2g = 2`2n2(c log(r + s) + 1) :where the right hand side is obtained by assuming r + s = `s.Precomputing sfft2(p(r+s)ij ) is more expensive than in the spatially invariant case, since there is a di�erent PSFfor each region. However, this only increases the setup cost, not the number of operations required to apply theoperator. Storage requirements, though, can increase signi�cantly, but the total amount of storage is on the sameorder as that needed in the standard approach to the spatially invariant blurring operator (cf. the beginning ofSection 2.1.).2.2.2. Linear InterpolationSuppose the spatially variant blurring operator is approximated by linear interpolation of PSFs in adjacent regions.In this case, the masking arrays Mij specifying the main diagonal of Dij , are constructed as follows:� The elements of Mij are zero, except in a subregion of dimension 2s� 2s.� The subregion where the elements are nonzero corresponds to the region x(2s)ij ; that is, the s� s region xij pluss=2 additional rows and columns surrounding xij. This is illustrated in Figure 1a, where � is used to indicatepositions of PSFs, with pij in the center, and the box represents an s � s region corresponding to xij.� The nonzero elements of Mij are 1 in the center, and decrease linearly to 0 on the boundaries of the 2s � 2ssubregion. A mesh plot of a sample masking function is shown in Figure 1b.� Regions on the boundary of the image domain have masking arrays appropriately modi�ed so that the sum ofthe masking arrays is an array with every entry equal to 1.The matrix-vector multiplication y = Kx can be written in convolution notation asY = pXi=1 pXj=1Mij � (pij �X): (6)Consider the computation of Mij � (pij �X). Note that Mij is nonzero only on a 2s� 2s subarray corresponding tox(2s)ij . We denote this part of Mij as mij. By convolving pij with x(2s+r)ij , we can obtain the 2s � 2s subregion ofpij �X, which can then be masked with mij, and the appropriate region in the sum (6) accumulated. The followingalgorithm summarizes this discussion.



Algorithm: Matrix-vector multiplication y = Kx: Linear interpolation.for i = 1; 2; : : : ; pfor j = 1; 2; : : :pExtract extended region x(2s+r)ij from X.Obtain p(2s+r)ij by padding with zeros.Compute y(2s+r)ij = ifft2(sfft2(p(2s+r)ij ) � fft2(x(2s+r)ij )).Extract y(2s)ij from y(2s+r)ij .Mask the result mij � y(2s)ij , and accumulate the sum.endendNote that mij and sfft2(p(2s+r)ij ) need only be computed once. The total cost for forming a matrix-vectormultiplication using the above algorithm isp2(2c(2s+ r)2 log(2s + r) + (2s+ r)2) + 2n2 � 2(` + 1)2n2c log(`+ 1)s+ (` + 1)2n2 + 2n2 :The transpose multiplication can be e�ciently implemented by making a similar modi�cation to the overlap-add method. We mention that, as with piecewise constant interpolation, transposing the matrix K translates intoconjugating the spectrum of p(2s+r)ij .Algorithm: Matrix-vector multiplication y = KTx: Linear interpolation.for i = 1; 2; : : : ; pfor j = 1; 2; : : :pExtract extended region x(2s)ij from X.Mask and overwrite: x(2s)ij = mij � x(2s)ij .Obtain p(2s+r)ij and x(2s+r)ij by padding with zeros.Compute y(2s+r)ij = ifft2(conj(sfft2(p(2s+r)ij )) � fft2(x(2s+r)ij )).Accumulate the sum.endendThe computational cost is essentially the same as the algorithm for computing y = Kx.3. Numerical ExperimentsIn this section we present some numerical results to demonstrate that using multiple PSFs can substantially improverestorations of images degraded by spatially varying blurs. Moreover, it is observed that linear interpolation can bemuch better than piecewise constant interpolation.One of the di�culties in attempting to test and compare restoration methods for spatially varying blurs is settingup fair test problems. One particular set of data that has been used for Hubble Space Telescope applications is asimulated star cluster image.23,22,24 (This data was obtained via anonymous ftp from ftp.stsci.edu in the directory/software/stsdas/testdata/restore/sims/star cluster.) It has been shown in23,22,24 that piecewise constantinterpolation of multiple PSFs can provide better restorations than using a single PSF. We have found that for thisparticular data set, linear interpolation produces better solutions than constant interpolation, but the di�erence isnot that great.
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a. Sample region. b. Mesh plot of sample mask.Figure 1. a. Region on which the maskMij is nonzero for linearly interpolated PSFs. Each � indicates the positionof a PSF, with pij in the center, and the box represents the s�s region corresponding to xij. b. Mesh plot of samplemasking array Mij with n = 64 and s = 16. The masking array de�nes the matrix Dij.To construct a test example, we take a 128� 128 portion of the simulated star cluster image (obtained from theabovementioned ftp site) shown in Figure 2a. This \true" image is then degraded by a separable spatially variantGaussian blur,14 K = A 
A, with entries generated asaij = exp(�i(i� j)2); i = 2� 19j64� ij640 ; i; j = 1; 2; : : : ; 128;and scaled so that A1 = 1, where 1 is the vector whose entries are all ones. 1% white noise was added to theblurred image, resulting in a signal-to-noise ratio of 10 log10(jjKf jj2=jjnjj2) = 20dB. The degraded image is shownin Figure 2b. Special techniques could be used to exploit the separable structure of K, but we concentrate here oncomparing constant, piecewise constant, and piecewise linear approximations to the kernel. Point spread functions,with r + 1 = 25, were created by blurring point sources in various regions of the image, as shown in Figure 2c. Ascan be seen a large amount of spatial variation occurs in the blurring.
a. Original image. b. Blurred image. c. Point spread functions.Figure 2. True and blurred images.A conjugate gradient algorithm (cf. Bj�orck25) is used as an iterative image restoration method. To illustrate thedi�erence in using various PSFs and interpolation schemes to approximate K, we computed relative errors:jjf � f (j)jjjjf jj ;



where f is the true solution, and f (j) is the solution at the jth iteration of the conjugate gradient method. Figure 3 isa plot of these errors. In Figure 3a, we plot the errors using a single PSF taken from the center of the image domain(dotted curve) with the errors using nine PSFs. These nine PSFs were taken from regions (1,1), (1,3), (1,5), (3,1),(3,3), (3,5), (5,1), (5,3), and (5,5). (Regions are numbered as entries in a matrix would be; for example, (1,1) is theupper-left region.) As can be seen, piecewise constant interpolation (dashed curve) performed very poorly. This isprobably due to the fact that the PSFs furthest from the center of the image are relatively smooth, and hence thecorresponding Ki are more ill-conditioned than those near the center of the image. As a result, K is dominated bythe ill-conditioned matrices corresponding to the PSFs in the outer regions.However, we do see that linear interpolation signi�cantly improves the accuracy of the solutions. In particular,Figure 3a (solid line) shows that the errors are much reduced compared to constant interpolation of these PSFs.Moreover, linear interpolation of these 9 PSFs provides better solutions than using only one PSF.Because the PSFs in the outer regions of the image domain are more ill-conditioned, we performed the sameexperiment using nine PSFs in the regions closest to the center; that is, in regions (2,2), (2,3), (2,4), (3,2), (3,3),(3,4), (4,2), (4,3), (4,4). The relative errors at each iteration for this case are shown in Figure 3b, where thedashed line corresponds to using constant interpolation, and the solid line to linear interpolation. Although constantinterpolation produces smaller relative errors, the di�erence is not signi�cant. However, by comparing Figures 3aand b, we can see that this choice of 9 PSFs provides signi�cantly lower errors than the 9 taken from the outerregions of the image.In Figure 3c we plot the errors using all 25 PSFs. For constant interpolation (dashed curve), including the ill-conditioned PSFs in the outer regions is not helpful. However, linear interpolation of the 25 PSFs yielded signi�cantlysmaller errors.Figures 4 | 6 show the best solutions computed using each of these approximate kernel functions.
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a. 9 PSFs, outer regions. b. 9 PSFs, inner regions. c. 25 PSFs.Figure 3. Plots of relative errors at each iteration.4. Concluding RemarksWe have shown that application of a spatially-variant blurring operator is closely related to the overlap-add andoverlap-save convolution schemes for spatially invariant blurs, and exploiting this relationship results in e�cientFFT-based algorithms. A detailed analysis showed that the additional cost for using linear interpolation of the pointspread functions is only modestly larger than for constant interpolation. Moreover, numerical experiments illustratedthat substantially better resolution of iterative image restoration methods can be obtained using linear interpolation,especially if the blur changes dramatically from one region of the image to another.



a. 1 PSF b. 9 (outer) PSFs, cons. interp. c. 9 (outer) PSFs, lin. interp.Figure 4. Computed restoration using 1 PSF, and the 9 PSFs from the outer regions of the image domain.
a. 9 (inner) PSFs, cons. interp. b. 9 (inner) PSFs, lin. interp.Figure 5. Computed restoration using the 9 PSFs from the inner regions of the image domain.

a. 25 PSFs, cons. interp. b. 25 PSFs, lin. interp.Figure 6. Computed restoration using all 25 PSFs.
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